NASA Astrophysics Data System (ADS)
Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.
2012-05-01
Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.
Defect states of complexes involving a vacancy on the boron site in boronitrene
NASA Astrophysics Data System (ADS)
Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.
2011-12-01
First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.
Defect interactions in GaAs single crystals
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1984-01-01
The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.
First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-07-01
We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.
The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Anh, Le, E-mail: letheanh@jaist.ac.jp; Lam, Pham Tien; Manoharan, Muruganathan
We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs withmore » P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies.« less
Impurity-defect complexes in non-implanted aluminum
NASA Astrophysics Data System (ADS)
Pedersen, F. T.; Grann, H.; Weyer, G.
1986-02-01
The formation of impurity-defect complexes in ion-implanted aluminum has been studied in the temperature interval 100 400K. Radioactive119In isotopes have been implanted. Mössbauer spectra have been measured for the 24 keV γ-radiation emitted after the decay to119Sn. The spectra could be analysed satisfactorily with two lines, one of which is known to be due to substitutional Sn. A second line, which has a higher isomer shift and lower Debye temperature, is tentatively assigned to vacancy-associated Sn, formed by trapping of thermally mobile (multi-)vacancies. Comparison to similar DPAC experiments suggests that cubic Sn-V4 complexes are formed. Some indication (˜15%) for an athermal formation of impurity defects below 175K is obtained.
NASA Astrophysics Data System (ADS)
Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.
2015-08-01
The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallam, Brett, E-mail: brett.hallam@unsw.edu.au; Abbott, Malcolm; Nampalli, Nitin
2016-02-14
A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead tomore » a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.« less
NASA Astrophysics Data System (ADS)
Yang, Pei; Shi, Li-Jie; Zhang, Jian-Min; Liu, Gui-Bin; Yang, Shengyuan A.; Guo, Wei; Yao, Yugui
2018-01-01
Tuning band gaps of semiconductors in terms of defect control is essential for the optical and electronic properties of photon emission or photon harvesting devices. By using first-principles calculations, we study the stability condition of bulk CuInS2 and formation energies of point and complex defects in CuInS2 with hybrid exchange-correlation functionals. We find that at Cu-rich and In-poor conditions, 2Cui + CuIn is the main complex defect, while InCu + 2VCu is the main complex defect at In-rich and Cu-poor conditions. Such stable complex defects provide the feasibility of tuning band gaps by varying the [Cu]/[In] molar ratios. These results present how the off-stoichiometry CuInS2 crystal structures, and electronic and optical properties can be optimized by tuning the [Cu]/[In] ratio and Fermi level, and highlight the importance of complex defects in achieving better photoelectric performance in CuInS2. Such band gap tuning in terms of complex defect engineering is a general approach and thus applicable to other photo-harvest or light-emission semiconductors.
Defect formation energy in pyrochlore: the effect of crystal size
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Ewing, Rodney C.; Becker, Udo
2014-09-01
Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.
Sarmah, Swapnalee; Marrs, James A.
2014-01-01
BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, Jolly, E-mail: jolly.xavierp@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in
2014-02-24
We report sculptured diverse photonic lattices simultaneously embedded with intrinsic defects of tunable type, number, shape as well as position by a single-step dynamically reconfigurable fabrication approach based on a programmable phase spatial light modulator-assisted interference lithography. The presented results on controlled formation of intrinsic defects in periodic as well as transversely quasicrystallographic lattices, irrespective and independent of their designed lattice geometry, portray the flexibility and versatility of the approach. The defect-formation in photonic lattices is also experimentally analyzed. Further, we also demonstrate the feasibility of fabrication of such defects-embedded photonic lattices in a photoresist, aiming concrete integrated photonic applications.
Native and hydrogen-containing point defects in Mg3N2 : A density functional theory study
NASA Astrophysics Data System (ADS)
Lange, Björn; Freysoldt, Christoph; Neugebauer, Jörg
2010-06-01
The formation energy and solubility of hydrogen in magnesium nitride bulk (antibixbyite Mg3N2 ) have been studied employing density functional theory in the generalized gradient approximation. The effect of doping and the presence of native defects and complex formation have been taken into account. Our results show that magnesium nitride is a nearly defect-free insulator with insignificant hydrogen-storage capacity. Based on this insight we derive a model that highlights the role of the formation and presence of the parasitic Mg3N2 inclusions in the activation of p -doped GaN in optoelectronic devices.
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-05-01
The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.
Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedraza, D.F.; Mansur, L.K.
1985-01-01
A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less
Native defects in Tl 6SI 4: Density functional calculations
Shi, Hongliang; Du, Mao -Hua
2015-05-05
In this study, Tl 6SI 4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl 6SI 4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl 6SI 4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl 6SI 4more » gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.« less
NASA Astrophysics Data System (ADS)
Vendamani, V. S.; Pathak, A. P.; Kanjilal, D.; Rao, S. V. S. Nageswara
2018-04-01
We report a successful formation of Si-H related complexes under low temperature (LT) proton implantation. H2* defect is one of the Si-H related defects, which is stable at around 600 K. The absorption line of H2* defect is around 1830 cm-1 and has been investigated by Fourier transform infrared spectroscopy (FTIR). The intensity variations in the absorption spectrum has been observed for samples implanted at 1 µA and 8 µA beam currents. It is found that, the formation of H2* defect tends towards saturation level at higher implanted fluencies. This observation might be the effect of ion induced annealing during proton implantation. In addition, Elastic recoil detection analysis (ERDA) has been performed to find out the concentration and desorption of hydrogen in proton implanted Si samples. In conclusion, this work demonstrates the importance of H passivation on the device stability/deterioration performance.
Infrared absorption study of neutron-transmutation-doped germanium
NASA Technical Reports Server (NTRS)
Park, I. S.; Haller, E. E.
1988-01-01
Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.
Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure
NASA Astrophysics Data System (ADS)
Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.
2018-04-01
Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.
Hydrogen-enhanced clusterization of intrinsic defects and impurities in silicon
NASA Astrophysics Data System (ADS)
Mukashev, B. N.; Abdullin, Kh. A.; Gorelkinskii, Yu. V.; Tamendarov, M. F.; Tokmoldin, S. Zh
2001-01-01
Formation of intrinsic and impurity defect complexes in hydrogenated monocrystalline silicon is studied. Hydrogen was incorporated into samples by different ways: either by proton implantation at 80 and 300 K, or by annealing at 1250°C for 30-60 min in a sealed quartz ampoule containing ∼10 -3 ml of distilled water, or by treatment in hydrogen plasma. Radiation defects were incorporated either during the hydrogen implantation or by additional irradiation with protons or α-particles. The measurements were performed by electron paramagnetic resonance (EPR), deep level transient spectroscopy (DLTS) and infrared absorption (IR) methods. Essential differences of defect formation processes in hydrogenated samples as compared with reference samples were detected. The main reasons responsible for the differences are (i) hydrogen precipitation in a supersaturated solution during thermal treatment; (ii) interaction of hydrogen with defects and impurities and hydrogen-induced formation of defects; (iii) ability of hydrogen to play the role of accelerator of impurities precipitation. These factors result in the formation of vacancy-related, interstitial-related and impurity clusters which are observed only in the presence of hydrogen. The nature of the clusters and possible models of their structure are discussed.
Slow positron beam study of hydrogen ion implanted ZnO thin films
NASA Astrophysics Data System (ADS)
Hu, Yi; Xue, Xudong; Wu, Yichu
2014-08-01
The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.
Hybrid Functional Study of Sodium and Potassium Incorporation in Cu2ZnSnS4
NASA Astrophysics Data System (ADS)
Tse, Kin Fai; Wong, Manhoi; Zhang, Yiou; Zhang, Jingzhao; Zhu, Junyi
The thermodynamics of Na and K incorporation and its effects in Cu2ZnSnS4 (CZTS) is studied using density functional theory with hybrid functional. The allowed chemical potential of Na/K in CZTS is established. Formation energy calculations shows that Na can be significantly incorporated as both substitutional defects and interstitial defects, and incorporation of K related defects are generally less favorable. Transition energy calculations is performed showing that both Na and K exhibit benign defect properties and act as a p-type dopant. The qualitative disagreement between GGA with rigid band edge shifting and HSE calculations, formation of defect complexes, and implications in experiment will also be discussed. The understandings on the defect properties of Na and K provides an essential knowledge to further understand the surfactant effects of Na and K observed in experiments. This work is supported by General Research Fund Ref. No: 14319416.
Nuclear Pasta: Topology and Defects
NASA Astrophysics Data System (ADS)
da Silva Schneider, Andre; Horowitz, Charles; Berry, Don; Caplan, Matt; Briggs, Christian
2015-04-01
A layer of complex non-uniform phases of matter known as nuclear pasta is expected to exist at the base of the crust of neutron stars. Using large scale molecular dynamics we study the topology of some pasta shapes, the formation of defects and how these may affect properties of neutron star crusts.
Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng
2018-01-01
Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454
Defects formation and wave emitting from defects in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni
2016-05-01
Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.
Divacancy complexes induced by Cu diffusion in Zn-doped GaAs
NASA Astrophysics Data System (ADS)
Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.
2013-08-01
Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uedono, Akira; Malinverni, Marco; Martin, Denis
Vacancy-type defects in Mg-doped GaN were probed using a monoenergetic positron beam. GaN films with a thickness of 0.5–0.7 μm were grown on GaN/sapphire templates using ammonia-based molecular beam epitaxy and characterized by measuring Doppler broadening spectra. Although no vacancies were detected in samples with a Mg concentration [Mg] below 7 × 10{sup 19 }cm{sup −3}, vacancy-type defects were introduced starting at above [Mg] = 1 × 10{sup 20 }cm{sup −3}. The major defect species was identified as a complex between Ga vacancy (V{sub Ga}) and multiple nitrogen vacancies (V{sub N}s). The introduction of vacancy complexes was found to correlate with a decreasemore » in the net acceptor concentration, suggesting that the defect introduction is closely related to the carrier compensation. We also investigated Mg-doped GaN layers grown using In as the surfactant. The formation of vacancy complexes was suppressed in the subsurface region (≤80 nm). The observed depth distribution of defects was attributed to the thermal instability of the defects, which resulted in the introduction of vacancy complexes during the deposition process.« less
Nanoscale interfacial defect shedding in a growing nematic droplet.
Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro
2017-08-01
Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.
Influence of impurities on the high temperature conductivity of SrTiO3
NASA Astrophysics Data System (ADS)
Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.
2018-01-01
In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.
Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu
2013-01-01
Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309
Structure Formation in Solutions of Rigid Polymers Undergoing a Phase Transition
1987-04-01
cyclohexene dioxide (ERL-4206) - 10 g. nonenyl succinic anhydride (NSA) - 26 g. dimethyl amino ethanol ( DMAE ) - 0.4 g. After infiltration, short segments...existence of a significant number of defects within the individual microfibril. The presence of defects in the lateral packing of PBT chains is also suggested...of the D- and L- enantiomers yields a nematic phase. The ordered phases exhi- bit complex textures due to defects (disclinations) which depend on
Defect studies in copper-based p-type transparent conducting oxides
NASA Astrophysics Data System (ADS)
Ameena, Fnu
Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt to study the effect of the size of the MIII cation in the delafossites starting from Cu2O. Comparison of the formation energies between Cu2O and delafossite oxides clearly showed that the equilibrium concentration of the vacancies depended strongly on the structural parameters varied by the presence of different MIII cations. In particular, the size of the MIII cation greatly influenced the defect formation energies of VCu. It was observed from our calculations, as the size increases the formation energy decreases.
Analysis of the defect clusters in congruent lithium tantalate
NASA Astrophysics Data System (ADS)
Vyalikh, Anastasia; Zschornak, Matthias; Köhler, Thomas; Nentwich, Melanie; Weigel, Tina; Hanzig, Juliane; Zaripov, Ruslan; Vavilova, Evgenia; Gemming, Sibylle; Brendler, Erica; Meyer, Dirk C.
2018-01-01
A wide range of technological applications of lithium tantalate (LT) is closely related to the defect chemistry. In literature, several intrinsic defect models have been proposed. Here, using a combinational approach based on DFT and solid-state NMR, we demonstrate that distribution of electric field gradients (EFGs) can be employed as a fingerprint of a specific defect configuration. Analyzing the distribution of 7Li EFGs, the FT-IR and electron spin resonance (ESR) spectra, and the 7Li spin-lattice relaxation behavior, we have found that the congruent LT samples provided by two manufacturers show rather different defect concentrations and distributions although both were grown by the Czochralski method. After thermal treatment hydrogen out-diffusion and homogeneous distribution of other defects have been observed by ESR, NMR, and FT-IR. The defect structure in one of two congruent LT crystals after annealing has been identified and proved by defect formation energy considerations, whereas the more complex defect configuration, including the presence of extrinsic defects, has been suggested for the other LT sample. The approach of searching the EFG fingerprints from DFT calculations in NMR spectra can be applied for identifying the defect clusters in other complex oxides.
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.
2013-12-01
Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.
Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong
2004-10-01
Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.
A study of vacancy defects related to gray tracks in KTiOPO{sub 4} (KTP) using positron annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Li, Jing; Wang, Jiyang, E-mail: hdjiang@sdu.edu.cn
For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO{sub 4} (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.
Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Betsuyaku, K.; Kawasuso, A.
2008-03-01
Vacancy defects in ZnO induced by electron irradiation were characterized by the Doppler broadening of annihilation radiation measurements together with the local density approximation calculations. Zinc vacancies (VZn) are responsible for positron trapping in the as-irradiated state. These are annealed out below 200°C . The further annealing at 400°C results in the formation of secondary defects attributed to the complexes composed of zinc vacancies and zinc antisites (VZn-ZnO) .
Lorestani, Alexander; Sheiner, Lilach; Yang, Kevin; Robertson, Seth D.; Sahoo, Nivedita; Brooks, Carrie F.; Ferguson, David J. P.; Striepen, Boris; Gubbels, Marc-Jan
2010-01-01
The membrane occupation and recognition nexus protein 1 (MORN1) is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding. Lack of MORN1 resulted in double-headed parasites. These Janus-headed parasites form two complete apical complexes but fail to assemble a basal complex. Moreover, these parasites were capable of undergoing several more budding rounds resulting in the formation of up to 16-headed parasites conjoined at the basal end. Despite this segregation defect, the mother's cytoskeleton was completely disassembled in every budding round. Overall this argues that successful completion of the budding is not required for cell cycle progression. None of the known basal complex components, including a set of recently identified inner membrane complex (IMC) proteins, localized correctly in these multi-headed parasites. These data suggest that MORN1 is essential for assembly of the basal complex, and that lack of the basal complex abolishes the contractile capacity assigned to the basal complex late in daughter formation. Consistent with this hypothesis we observe that MORN1 mutants fail to efficiently constrict and divide the apicoplast. We used the null background provided by the mutant to dissect the function of subdomains of the MORN1 protein. This demonstrated that deletion of a single MORN domain already prevented the function of MORN1 whereas a critical role for the short linker between MORN domains 6 and 7 was identified. In conclusion, MORN1 is required for basal complex assembly and loss of MORN1 results in defects in apicoplast division and daughter segregation. PMID:20808817
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeletos, T.; Londos, C. A., E-mail: hlontos@phys.uoa.gr; Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk
2016-03-28
Carbon-oxygen-self-interstitial complexes were investigated in silicon by means of Fourier transform infrared spectroscopy. Upon irradiation, the C{sub i}O{sub i} defect (C{sub 3}) forms which for high doses attract self-interstitials (Si{sub I}s) leading to the formation of the C{sub i}O{sub i}(Si{sub I}) defect (C{sub 4}) with two well-known related bands at 939.6 and 1024 cm{sup −1}. The bands are detectable in the spectra both in room temperature (RT) and liquid helium (LH) temperature. Upon annealing at 150 °C, these bands were transformed to three bands at 725, 952, and 973 cm{sup −1}, detectable only at LH temperatures. Upon annealing at 220 °C, these bands weremore » transformed to three bands at 951, 969.5, and 977 cm{sup −1}, detectable both at RT and LH temperatures. Annealing at 280 °C resulted in the transformation of these bands to two new bands at 973 and 1024 cm{sup −1}. The latter bands disappear from the spectra upon annealing at 315 °C without the emergence of other bands in the spectra. Considering reaction kinetics and defect metastability, we developed a model to describe the experimental results. Annealing at 150 °C triggers the capturing of Si{sub I}s by the C{sub 4} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 2} complex. The latter structure appears to be bistable: measuring at LH, the defect is in configuration C{sub i}O{sub i}(Si{sub I}){sub 2} giving rise to the bands at 725, 952, and 973 cm{sup −1}, whereas on measurements at RT, the defect converts to another configuration C{sub i}O{sub i}(Si{sub I}){sub 2}{sup *} without detectable bands in the spectra. Possible structures of the two C{sub i}O{sub i}(Si{sub I}){sub 2} configurations are considered and discussed. Upon annealing at 220 °C, additional Si{sub I}s are captured by the C{sub i}O{sub i}(Si{sub I}){sub 2} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 3} complex, which in turn on annealing at 280 °C converts to the C{sub i}O{sub i}(Si{sub I}){sub 4} complex. The latter defect anneals out at 315 °C, without being accompanied in the spectra by the growth of new bands.« less
Generic equilibration dynamics of planar defects in trapped atomic superfluids
Scherpelz, Peter; Padavić, Karmela; Murray, Andy; ...
2015-03-18
Here, we investigate equilibration processes shortly after sudden perturbations are applied to ultracold trapped superfluids. We show the similarity of phase imprinting and localized density depletion perturbations, both of which initially are found to produce “phase walls”. These planar defects are associated with a sharp gradient in the phase. Importantly they relax following a quite general sequence. Our studies, based on simulations of the complex time-dependent Ginzburg-Landau equation, address the challenge posed by these experiments: how a superfluid eventually eliminatesa spatially extended planar defect. The processes involved are necessarily more complex than equilibration involving simpler line vortices. An essential mechanismmore » form relaxation involves repeated formation and loss of vortex rings near the trap edge.« less
Divacancy-tin related defects in irradiated germanium
NASA Astrophysics Data System (ADS)
Khirunenko, L. I.; Sosnin, M. G.; Duvanskii, A. V.; Abrosimov, N. V.; Riemann, H.
2018-04-01
A new absorption spectrum has been detected in the region of 770-805 cm-1 following the annealing of low temperature irradiated Sn-doped Ge. The spectrum develops simultaneously with the disappearance of the V2-related absorption band. The new spectra arise both in p- (doping with gallium) and n- (doping with antimony) type samples and are completely identical to the absorption spectrum of the corresponding dopants. The studies have shown that the defects responsible for the registered spectra have hydrogen-like excited states similar to those observed for hydrogen-like group-III acceptors and group-V donors in Ge. The defects are identified as SnV2Ga and SnV2Sb. The formation of the revealed complexes consists of two stages. During the first stage, the defects are created as a result of the direct interaction of SnV2 diffusing upon the annealing with atoms Ga or Sb. The second stage arises, apparently, due to the participation of SnV2 in the formation of intermediate defects that are optically inactive and transform into the revealed defects at annealing temperatures Tann. > 243 K.
Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age.
Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Jantsch, Michael F; Loidl, Josef; Jantsch, Verena
2010-03-15
From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.
Tight-binding calculation studies of vacancy and adatom defects in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing
2016-02-19
Computational studies of complex defects in graphene usually need to deal with a larger number of atoms than the current first-principles methods can handle. We show a recently developed three-center tight-binding potential for carbon is very efficient for large scale atomistic simulations and can accurately describe the structures and energies of various defects in graphene. Using the three-center tight-binding potential, we have systematically studied the stable structures and formation energies of vacancy and embedded-atom defects of various sizes up to 4 vacancies and 4 embedded atoms in graphene. In conclusion, our calculations reveal low-energy defect structures and provide a moremore » comprehensive understanding of the structures and stability of defects in graphene.« less
Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons
Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin; ...
2018-04-26
The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less
Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin
The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less
First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4
NASA Astrophysics Data System (ADS)
Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro
2018-02-01
The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Nordlund, Kai; Melerba, L
The processes that give rise to changes in the microstructure and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The formation and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage formation.Radiation-inducedmore » changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
Guarani, Virginia; Jardel, Claude; Chrétien, Dominique; Lombès, Anne; Bénit, Paule; Labasse, Clémence; Lacène, Emmanuelle; Bourillon, Agnès; Imbard, Apolline; Benoist, Jean-François; Dorboz, Imen; Gilleron, Mylène; Goetzman, Eric S; Gaignard, Pauline; Slama, Abdelhamid; Elmaleh-Bergès, Monique; Romero, Norma B; Rustin, Pierre; Ogier de Baulny, Hélène; Paulo, Joao A; Harper, J Wade; Schiff, Manuel
2016-01-01
Previously, we identified QIL1 as a subunit of mitochondrial contact site (MICOS) complex and demonstrated a role for QIL1 in MICOS assembly, mitochondrial respiration, and cristae formation critical for mitochondrial architecture (Guarani et al., 2015). Here, we identify QIL1 null alleles in two siblings displaying multiple clinical symptoms of early-onset fatal mitochondrial encephalopathy with liver disease, including defects in respiratory chain function in patient muscle. QIL1 absence in patients’ fibroblasts was associated with MICOS disassembly, abnormal cristae, mild cytochrome c oxidase defect, and sensitivity to glucose withdrawal. QIL1 expression rescued cristae defects, and promoted re-accumulation of MICOS subunits to facilitate MICOS assembly. MICOS assembly and cristae morphology were not efficiently rescued by over-expression of other MICOS subunits in patient fibroblasts. Taken together, these data provide the first evidence of altered MICOS assembly linked with a human mitochondrial disease and confirm a central role for QIL1 in stable MICOS complex formation. DOI: http://dx.doi.org/10.7554/eLife.17163.001 PMID:27623147
High resolution structural characterisation of laser-induced defect clusters inside diamond
NASA Astrophysics Data System (ADS)
Salter, Patrick S.; Booth, Martin J.; Courvoisier, Arnaud; Moran, David A. J.; MacLaren, Donald A.
2017-08-01
Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides, and defects within diamond. We present a transmission electron microscopy study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy indicates that the majority of the irradiated region remains as sp3 bonded diamond. Electrically conductive paths are attributed to the formation of multiple nano-scale, sp2-bonded graphitic wires and a network of strain-relieving micro-cracks.
Defect charge states in Si doped hexagonal boron-nitride monolayer
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Molepo, M. P.; Andrew, R. C.; Chetty, N.
2016-02-01
We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q = -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.
NASA Astrophysics Data System (ADS)
Salem, Mohamed; Fazzini, Marina; Ouagne, Pierre
2018-02-01
During the complex shape forming of composite fibrous reinforcement, the planar bending of roving tows results in an out-of-plane deflection, along with a rotation on its central axis. The need to accurately follow and quantify the mechanism of formation of such defect has led us to consider two 3D imaging techniques, of which, have been tested and compared in this work.
A comparative overview of the sperm centriolar complex in mammals and birds: Variations on a theme.
Soley, John T
2016-06-01
This paper presents an overview of the structure, function and anomalies of the sperm centriolar complex (CC) on a comparative basis between mammals and birds. The information is based on selected references from the literature supplemented by original observations on spermiogenesis and sperm structure in disparate mammalian (cheetah and cane rat) and avian (ostrich, rhea and emu) species. Whereas the basic structure of the CC (a diplosome surrounded by pericentriolar material) is similar in Aves and Mammalia, certain differences are apparent. Centriole reduction does not generally occur in birds, but when present as in oscines, involves the loss of the proximal centriole. In ratites, the distal centriole forms the core of the entire midpiece and incorporates the outer dense fibres in addition to initiating axoneme formation. The elements of the connecting piece are not segmented in birds and less complex in basic design than in mammals. The functions of the various components of the CC appear to be similar in birds and mammals. Despite obvious differences in sperm head shape, the centrosomal anomalies afflicting both vertebrate groups demonstrate structural uniformity across species and display a similar range of defects. Most abnormalities result from defective migration and alignment of the CC relative to the nucleus. The most severe manifestation is that of acephalic sperm, while angled tail attachment, abaxial and multiflagellate sperm reflect additional defective forms. The stump-tail defect is not observed in birds. A comparison of defective sperm formation and centrosomal dysfunction at the molecular level is currently difficult owing to the paucity of relevant information on avian sperm. Copyright © 2016 Elsevier B.V. All rights reserved.
Defect phase diagram for doping of Ga2O3
NASA Astrophysics Data System (ADS)
Lany, Stephan
2018-04-01
For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.
Sharma, Vinit K.; Herklotz, Andreas; Ward, Thomas Zac; ...
2017-09-11
Ion implantation has been widely used in the semiconductor industry for decades to selectively control electron/hole doping for device applications. Recently, experimental studies on ion implantation into more structurally and electronically complex materials have been undertaken in which defect generation has been used to control a variety of functional phenomena. Of particular interest, are recent findings demonstrating that low doses of low energy helium ions into single crystal films can be used to tailor the structural properties. These initial experimental studies have shown that crystal symmetry can be continuously controlled by applying increasingly large doses of He ions into amore » crystal. The observed changes in lattice structure were then observed to correlate with functional changes, such as metal-insulator transition temperature2 and optical bandgap3. In these preliminary experimental studies, changes to lattice expansion was proposed to be the direct result of chemical pressure originating predominantly from the implanted He applying chemical pressure at interstitial sites. However, the influence of possible secondary knock-on damage arising from the He atoms transferring energy to the lattice through nuclear-nuclear collision with the crystal lattice remains largely unaddressed. In this work, we focus on a SrRuO3 model system to provide a comprehensive examination of the impact of common defects on structural and electronic properties, obtain calculated defect formation energies, and define defect migration barriers. Our model indicates that, while interstitial He can modify the crystal properties, a dose significantly larger than those reported in experimental studies would be required. The true origin of the observed structural changes is likely the result of a combination of secondary defects created during He implantation. Of particular importance, we observe that different defect types can generate greatly varied local electronic structures and that the formation energies and migration energy barriers vary by defect type. Thus, we may have identified a new method of selectively inducing controlled defect complexes into single crystal materials. Development of this approach would have a broad impact on both our ability to probe specific defect contributions in fundamental studies and allow a new level of control over functional properties driven by specific defect complexes.« less
Lui, Y F; Ip, W Y
2016-01-01
Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation.
Displacement Cascade Damage Production in Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai
Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as wellmore » as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
NASA Astrophysics Data System (ADS)
Pan, Jie; Cheng, Yang-Tse; Qi, Yue
2015-04-01
Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative electrodes. Our results provide an understanding of the influence of the environment on defect formation and demonstrate a linkage between defect concentration in a solid electrolyte and the voltage of the electrode.
A study of the vacancy loop formation probability in Ni-Cu and Ag-Pd alloys. [50-keV Kr sup + ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalinskas, K.; Chen, Gengsheng; Haworth, J.
1992-04-01
The molten-zone model of vacancy loop formation from a displacement cascade predicts that the loop formation probability should scale with the melting temperature. To investigate this possibility the vacancy loop formation probability has been determined in a series of Cu-Ni and Ag-Pd alloys. The irradiations were performed at room temperature with 50 keV Kr+ ions and the resulting damage structure was examined by using transmission electron microscopy. In the Cu-Ni alloy series, the change in loop formation probability with increasing Ni concentration was complex, and at low- and high- nickel concentrations, the defect yield did not change in the predictedmore » manner. The defect yield was higher in the Cu-rich alloys than in the Ni-rich alloys. In the Ag-Pd alloy the change in the loop formation probability followed more closely the change in melting temperature, but no simple relationship was determined.« less
Mutations in Caenorhabditis elegans him-19 Show Meiotic Defects That Worsen with Age
Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M.; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Loidl, Josef; Jantsch, Verena
2010-01-01
From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans. PMID:20071466
NASA Astrophysics Data System (ADS)
Li, Xiao-Fei; Lian, Ke-Yan; Liu, Lingling; Wu, Yingchao; Qiu, Qi; Jiang, Jun; Deng, Mingsen; Luo, Yi
2016-03-01
Nitrogen-doped graphene (N-graphene) has attractive properties that has been widely studied over the years. However, its possible formation process still remains unclear. Here, we propose a highly feasible formation mechanism of the graphitic-N doing in thermally treated graphene with ammonia by performing ab initio molecular dynamic simulations at experimental conditions. Results show that among the commonly native point defects in graphene, only the single vacancy 5-9 and divacancy 555-777 have the desirable electronic structures to trap N-containing groups and to mediate the subsequent dehydrogenation processes. The local structure of the defective graphene in combining with the thermodynamic and kinetic effect plays a crucial role in dominating the complex atomic rearrangement to form graphitic-N which heals the corresponding defect perfectly. The importance of the symmetry, the localized force field, the interaction of multiple trapped N-containing groups, as well as the catalytic effect of the temporarily formed bridge-N are emphasized, and the predicted doping configuration agrees well with the experimental observation. Hence, the revealed mechanism will be helpful for realizing the targeted synthesis of N-graphene with reduced defects and desired properties.
Carbon Nanotubes: Molecular Electronic Components
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Saini, Subhash; Menon, Madhu
1997-01-01
The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.
Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers
NASA Astrophysics Data System (ADS)
Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari
2018-01-01
Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.
First principles study of intrinsic defects in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying
2010-11-01
The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.
NASA Astrophysics Data System (ADS)
Shropshire, Steven Leslie
Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of interstitial species in the flux were determined. Deformation of Au was found to produce only mono- and di-interstitial fluxes in a 1:2 ratio. Cross-sections increased rapidly with the number of vacancies, which is attributed to the amount of relaxation of lattice strains around solute-vacancy complexes.
Optical activity and defect/dopant evolution in ZnO implanted with Er
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej
2015-09-28
The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Ermore » atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.« less
Vines, L; Bhoodoo, C; von Wenckstern, H; Grundmann, M
2017-12-13
The evolution of sheet resistance of n-type In 2 O 3 and Ga 2 O 3 exposed to bombardment with MeV 12 C and 28 Si ions at 35 K is studied in situ. While the sheet resistance of Ga 2 O 3 increased by more than eight orders of magnitude as a result of ion irradiation, In 2 O 3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga 2 O 3 remained highly resistive, while In 2 O 3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to [Formula: see text] cm -2 . A model where larger defect complexes preferentially produce donor like defects in In 2 O 3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
NASA Astrophysics Data System (ADS)
Vines, L.; Bhoodoo, C.; von Wenckstern, H.; Grundmann, M.
2018-01-01
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than eight orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 × 1012 cm-2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
Waltzing route toward double-helix formation in cholesteric shells
NASA Astrophysics Data System (ADS)
Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa
2016-08-01
Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other.
NASA Astrophysics Data System (ADS)
Lee, Donghwa; Mitchell, Brandon; Fujiwara, Y.; Dierolf, V.
2014-05-01
An understanding of the formation and dissociation process of Mg-H defects in GaN is of paramount importance for high efficient GaN-based solid-state lighting. Through a combination of first-principle calculations and experimental observations, we find the existence of three types of Mg related centers forming different Mg-H-VN complexes in Mg:GaN. Our study shows that the three different arrangements, which differ by the relative position of the H, determine the degree of acceptor passivation by changing their charge state from +3 to +1. The energetic study demonstrates that the relative stability of the defect complexes can vary with the location of the Fermi level, as well as thermal annealing and electron beam irradiation. The inclusion of a VN is shown to produce an additional variance in optical spectra associated with Mg acceptor activation, resulting from changes in the defect configurations and charge states. Our study shows that these three Mg-H-VN complexes are key components for understanding the Mg acceptor activation and passivation processes.
Defect-induced magnetism in cobalt-doped ZnO epilayers
NASA Astrophysics Data System (ADS)
Ciatto, G.; Di Trolio, A.; Fonda, E.; Alippi, P.; Polimeni, A.; Capizzi, M.; Varvaro, G.; Bonapasta, A. Amore
2014-02-01
We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoO epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Stocks, George Malcolm; Zhang, Yanwen
2016-08-03
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Nimore » 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less
Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen
2016-09-14
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.
Defect phase diagram for doping of Ga 2O 3
Lany, Stephan
2018-04-01
For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less
Defect phase diagram for doping of Ga 2O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lany, Stephan
For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less
Point defects in ZnO: an approach from first principles
Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao
2011-01-01
Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically inactive and, hence, are unlikely to play essential roles in electrical properties. Overall defect energetics suggests a preference for the native donor-type defects over acceptor-type defects in ZnO. The O vacancy, Zn interstitial and Zn anti-site have very low formation energies when the Fermi level is low. Therefore, these defects are expected to be sources of a strong hole compensation in p-type ZnO. For the n-type doping, the compensation of carrier electrons by the native acceptor-type defects can be mostly suppressed when O-poor chemical potential conditions, i.e. low O partial pressure conditions, are chosen during crystal growth and/or doping. PMID:27877390
Formation of vacancy-impurity complexes in heavily Zn-doped InP
NASA Astrophysics Data System (ADS)
Slotte, J.; Saarinen, K.; Salmi, A.; Simula, S.; Aavikko, R.; Hautojärvi, P.
2003-03-01
Positron annihilation spectroscopy has been applied to observe the spontaneous formation of vacancy-type defects by annealing of heavily Zn-doped InP at 500 700 K. The defect is identified as the VP-Zn pair by detecting the annihilation of positrons with core electrons. We conclude that the defect is formed through a diffusion process; a phosphorus vacancy migrates until trapped by a Zn impurity and forms a negatively charged VP-Zn pair. The kinetics of the diffusion process is investigated by measuring the average positron lifetime as a function of annealing time and by fitting a diffusion model to the experimental results. We deduce a migration energy of 1.8±0.2 eV for the phosphorus vacancy. Our results explain both the presence of native VP-Zn pairs in Zn-doped InP and their disappearance in post-growth annealings.
Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2
Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn
2015-01-01
Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520
Primary damage formation in bcc iron
NASA Astrophysics Data System (ADS)
Stoller, R. E.; Odette, G. R.; Wirth, B. D.
1997-11-01
Primary defect formation in bee iron has been extensively investigated using the methods of molecular dynamics (MD) and Monte Carlo (MC) simulation. This research has employed a modified version of the Finnis-Sinclair interatomic potential. MD was used in the simulation of displacement cascades with energies up to 40 keV and to examine the migration of the interstitial clusters that were observed to form in the cascade simulations. Interstitial cluster binding energies and the stable cluster configurations were determined by structural relaxation and energy minimization using a MC method with simulated annealing. Clusters containing up to 19 interstitials were examined. Taken together with the previous work, these new simulations provide a reasonably complete description of primary defect formation in iron. The results of the displacement cascade simulations have been used to characterize the energy and temperature dependence of primary defect formation in terms of two parameters: (1) the number of surviving point defects and (2) the fraction of the surviving defects that are contained in clusters. The number of surviving point defects is expressed as a fraction of the atomic displacements calculated using the secondary displacement model of Norgett-Robinson-Torrens (NRT). Although the results of the high energy simulations are generally consistent with those obtained at lower energies, two notable exceptions were observed. The first is that extensive subcascade formation at 40 keV leads to a higher defect survival fraction than would be predicted from extrapolation of the results obtained for energies up to 20 keV. The stable defect fraction obtained from the MD simulations is a smoothly decreasing function up to 20 keV. Subcascade formation leads to a slight increase in this ratio at 40 keV, where the value is about the same as at 10 keV. Secondly, the potential for a significant level of in-cascade vacancy clustering was observed. Previous cascade studies employing this potential have reported extensive interstitial clustering, but little evidence of vacancy clustering. Interstitial clusters were found to be strongly bound, with binding energies in excess of 1 eV. The larger clusters exhibited a complex, 3D structure and were composed of <111> crowdions. These clusters were observed to migrate by collective <111> translations with an activation energy on the order of 0.1 eV.
NASA Astrophysics Data System (ADS)
de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti
2016-06-01
A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.
Non-monotonic temperature dependence of radiation defect dynamics in silicon carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayu Aji, L. B.; Wallace, J. B.; Shao, L.
Understanding response of solids to particle irradiation remains a major materials physics challenge. This applies even to SiC, which is a prototypical nuclear ceramic and wide-band-gap semiconductor material. The lack of predictability is largely related to the complex, dynamic nature of radiation defect formation. Here, we use a novel pulsed-ion-beam method to study dynamic annealing in 4H-SiC ion-bombarded in the temperature range of 25–250 °C. We find that, while the defect recombination efficiency shows an expected monotonic increase with increasing temperature, the defect lifetime exhibits a non-monotonic temperature dependence with a maximum at ~100 °C. This finding indicates a changemore » in the dominant defect interaction mechanism at ~100 °C. As a result, the understanding of radiation defect dynamics may suggest new paths to designing radiation-resistant materials.« less
Non-monotonic temperature dependence of radiation defect dynamics in silicon carbide
Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; ...
2016-08-03
Understanding response of solids to particle irradiation remains a major materials physics challenge. This applies even to SiC, which is a prototypical nuclear ceramic and wide-band-gap semiconductor material. The lack of predictability is largely related to the complex, dynamic nature of radiation defect formation. Here, we use a novel pulsed-ion-beam method to study dynamic annealing in 4H-SiC ion-bombarded in the temperature range of 25–250 °C. We find that, while the defect recombination efficiency shows an expected monotonic increase with increasing temperature, the defect lifetime exhibits a non-monotonic temperature dependence with a maximum at ~100 °C. This finding indicates a changemore » in the dominant defect interaction mechanism at ~100 °C. As a result, the understanding of radiation defect dynamics may suggest new paths to designing radiation-resistant materials.« less
Thermodynamics of surface defects at the aspirin/water interface
NASA Astrophysics Data System (ADS)
Schneider, Julian; Zheng, Chen; Reuter, Karsten
2014-09-01
We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.
Synergy of elastic and inelastic energy loss on ion track formation in SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.
2015-01-12
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontiummore » titanate (SrTiO 3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.« less
Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates
Franz, Cerstin; Askjaer, Peter; Antonin, Wolfram; Iglesias, Carmen López; Haselmann, Uta; Schelder, Malgorzata; de Marco, Ario; Wilm, Matthias; Antony, Claude; Mattaj, Iain W
2005-01-01
Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs. PMID:16193066
Briggs, Laura E.; Kakarla, Jayant; Wessels, Andy
2012-01-01
Partitioning of the four-chambered heart requires the proper formation, interaction and fusion of several mesenchymal tissues derived from different precursor populations that together form the atrioventricular mesenchymal complex. This includes the major endocardial cushions and the mesenchymal cap of the septum primum, which are of endocardial origin, and the dorsal mesenchymal protrusion (DMP), which is derived from the Second Heart Field. Failure of these structures to develop and/or fully mature results in atrial septal defects (ASDs) and atrioventricular septal defects (AVSD). AVSDs are congenital malformations in which the atria are permitted to communicate due to defective septation between the inferior margin of the septum primum and the atrial surface of the common atrioventricular valve. The clinical presentation of AVSDs is variable and depends on both the size and/or type of defect; less severe defects may be asymptomatic while the most severe defect, if untreated, results in infantile heart failure. For many years, maldevelopment of the endocardial cushions was thought to be the sole etiology of AVSDs. More recent work, however, has demonstrated that perturbation of DMP development also results in AVSD. Here, we discuss in detail the formation of the DMP, its contribution to cardiac septation and describe the morphological features as well as potential etiologies of ASDs and AVSDs. PMID:22709652
Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films.
Chandrasena, Ravini U; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario U; Wijesekara, Kanishka D; Golalikhani, Maryam; Davidson, Bruce A; Arenholz, Elke; Kobayashi, Keisuke; Kobata, Masaaki; de Groot, Frank M F; Aschauer, Ulrich; Spaldin, Nicola A; Xi, Xiaoxing; Gray, Alexander X
2017-02-08
We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO 3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO 3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering.
aPKCλ/ι and aPKCζ Contribute to Podocyte Differentiation and Glomerular Maturation
Hartleben, Björn; Widmeier, Eugen; Suhm, Martina; Worthmann, Kirstin; Schell, Christoph; Helmstädter, Martin; Wiech, Thorsten; Walz, Gerd; Leitges, Michael; Schiffer, Mario
2013-01-01
Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)—a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins—may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death. PMID:23334392
Rabbit Calvarial Defect Model for Customized 3D-Printed Bone Grafts.
Lee, Kang-Gon; Lee, Kang-Sik; Kang, Yu-Jeoung; Hwang, Jong-Hyun; Lee, Se-Hwan; Park, Sang-Hyug; Park, Yongdoo; Cho, Young-Sam; Lee, Bu-Kyu
2018-05-01
Bone graft materials are commonly used to regenerate various bone defects, but their application is often limited because of the complex defect shape in various clinical conditions. Hence, customized bone grafts using three-dimensional (3D) printing techniques have been developed. However, conventional simple bone defect models are limited for evaluating the benefits and manufacturing accuracy of 3D-printed customized bone grafts. Thus, the aim of the present study was to develop a complex-shaped bone defect model. We designed an 8-shaped bony defect that consists of two simple circles attached to the rabbit calvarium. To determine the critical-sized defect (CSD) of the 8-shaped defects, 5.6- and 7-mm-diameter trephine burs were tested, and the 7-mm-diameter bur could successfully create a CSD, which was easily reproducible on the rabbit calvarium. The rate of new bone formation was 28.65% ± 8.63% at 16 weeks following creation of the defect. To confirm its efficacy for clinical use, the 8-shaped defect was created on a rabbit calvarium and 3D computed tomography (CT) was performed. A stereolithography file was produced using the CT data, and a 3D-printed polycaprolactone graft was fabricated. Using our 8-shaped defect model, we were able to modify the tolerances of the bone graft and calvarial defect to fabricate a more precise bone graft. Customized characteristics of the bone graft were then used to improve the accuracy of the bone graft. In addition, we confirmed the fitting ability of the 3D-printed graft during implantation of the graft. Our 8-shaped defect model on the rabbit calvarium using a 7.0-mm trephine bur may be a useful CSD model for evaluating 3D-printed graft materials.
Reduction and removal of heptavalent technetium from solution by Escherichia coli.
Lloyd, J R; Cole, J A; Macaskie, L E
1997-03-01
Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.
Ab initio calculations of supramolecular complexes of fullerene C60 with CdTe and CdS
NASA Astrophysics Data System (ADS)
Kvyatkovskii, O. E.; Zakharova, I. B.; Ziminov, V. M.
2014-06-01
This paper presents the results of ab initio quantum-chemical calculations of supramolecular complexes C60CdHal, [C60]4CdHal, and [C60]6CdHal (Hal = S, Te), which simulate the defects forming in fullerite during the absorption or adsorption of cadmium telluride (sulfide). Calculations of the electronic structure of complexes with inclusion of their relaxation to the equilibrium state have been performed in terms of the density functional theory with the B3LYP hybrid functional. The obtained enthalpies of formation of complexes show that their formation leads to the energy gain of the order of 0.5-1.5 eV depending on the complex type. It has been shown that the formation of tetrahedral complexes [C60]4CdTe with the intercalated CdTe molecule is possible only with a considerable distortion of the tetrahedral void. The energy spectrum of low-lying excited electron states for the linear and octahedral complexes has been calculated. It has been found that a decrease in symmetry with the formation of complexes leads to the appearance of excited states of allowed singlet transitions in the electron spectrum, which are forbidden in optical spectra of initial components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciatto, G.; Fonda, E.; Trolio, A. Di
We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoOmore » epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.« less
Formation of p-type ZnO thin film through co-implantation
NASA Astrophysics Data System (ADS)
Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen
2017-01-01
We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.
Polymer-stabilized liquid crystalline topological defect network for micro-pixelated optical devices
NASA Astrophysics Data System (ADS)
Araoka, Fumito; Le, Khoa V.; Fujii, Shuji; Orihara, Hiroshi; Sasaki, Yuji
2018-02-01
Spatially and temporally controlled topological defects in nematic liquid crystals (NLCs) are promising for its potential in optical applications. Utilization of self-organization is a key to fabricate complex micro- and nano-structures which are often difficult to obtain by conventional lithographic tools. Using photo-polymerization technique, here we show a polymer-stabilized NLC having a micro-pixelated structure of regularly ordered umbilical defects which are induced by an electric field. Due to the formation of polymer network, the self-organized pattern is kept stable without deterioration. Moreover, the polymer network allows to template other LCs whose optical properties can be tuned with external stimuli such as temperature and electric fields.
Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.
2016-06-23
Previous experimental and theoretical studies suggest that the production of extended defect structures by collision cascades is inhibited in equiatomic NiFe, in comparison to pure Ni. It is also known that the production of such extend defect structures results from the formation of subcascades by high-energy recoils and their subsequent interaction. A detailed analysis of the ballistics of 40 keV cascades in Ni and NiFe is performed to identify the formation of such subcascades and to assess their spatial distribution. It is found that subcascades in Ni and NiFe are created with nearly identical energies and distributed similarly in space.more » This suggests that the differences in production of extended defect structures is not related to processes taking place in the ballistic phase of the collision cascade. Lastly, these results can be generalized to other, more chemically complex, concentrated alloys where the elements have similar atomic numbers, such as many high-entropy alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.
Previous experimental and theoretical studies suggest that the production of extended defect structures by collision cascades is inhibited in equiatomic NiFe, in comparison to pure Ni. It is also known that the production of such extend defect structures results from the formation of subcascades by high-energy recoils and their subsequent interaction. A detailed analysis of the ballistics of 40 keV cascades in Ni and NiFe is performed to identify the formation of such subcascades and to assess their spatial distribution. It is found that subcascades in Ni and NiFe are created with nearly identical energies and distributed similarly in space.more » This suggests that the differences in production of extended defect structures is not related to processes taking place in the ballistic phase of the collision cascade. Lastly, these results can be generalized to other, more chemically complex, concentrated alloys where the elements have similar atomic numbers, such as many high-entropy alloys.« less
Electrodeposited Cu2O doped with Cl: Electrical and optical properties
NASA Astrophysics Data System (ADS)
Pelegrini, S.; Tumelero, M. A.; Brandt, I. S.; Della Pace, R. D.; Faccio, R.; Pasa, A. A.
2018-04-01
For understanding the electrical and optical properties of electrodeposited Cl-doped Cu2O thin films, we have studied layers with increasing thickness and Cl concentrations of 0.8 and 1.2 at. %. The deposits were characterized by measuring the charge transport, the optical reflectance, and the photoluminescence. No significant decrease of electrical resistivity was observed in doped samples compared to undoped ones. A decrease of about five orders of magnitude was measured and ascribed to the presence of pinholes, as confirmed by scanning electron microscopy analyses. From optical measurements, we concluded that the Cl atoms are incorporated into substitutional sites of Cu2O lattices in agreement with photoluminescence results showing a strong reduction in the peak intensity of VO+2 defects in comparison to undoped layers. Computational calculation using density functional theory has pointed out high formation energy for single Cl related defects, but low formation energy for Cl-defect complexes, such as ClO + VCu, that strongly compensate the carriers generated by the Cl doping.
Formation and field-driven dynamics of nematic spheroids.
Fu, Fred; Abukhdeir, Nasser Mohieddin
2017-07-19
Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.
Defect Genome of Cubic Perovskites for Fuel Cell Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.
Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less
Defect Genome of Cubic Perovskites for Fuel Cell Applications
Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...
2017-10-10
Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less
Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction.
Rostami, Zahra; Jafari, Sajad
2018-04-01
Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh-Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.
Impact of cleaning methods on the structural properties and morphology of SrTiO3 surface
NASA Astrophysics Data System (ADS)
Arnay, Iciar; Rubio-Zuazo, Juan; Castro, German R.
2018-01-01
SrTiO3 is a widely used substrate for the epitaxial growth of complex systems. Nevertheless, in order to get good quality interface and avoid the formation of defects in the adsorbed layer it is essential to prepare the surface of the substrate prior to the deposition. Thermal and chemical treatments are mostly used to eliminate superficial contamination and improve the surface quality. However, there is a lack of information regarding the impact of these treatments on the formation of structural defects at the SrTiO3 surface. In this work we present a detailed characterization of the SrTiO3 surface for the different cleaning methods paying special attention to the formation of oxygen vacancies, large surface mosaicity and roughness. We prove that thermal treatment induces large surface roughness and that chemical etching produces important structural defects at the surface. Our results show that mechanical polishing provided the best compromise in terms of large surface domains, low roughness, absence of oxygen vacancies and absence of atomic structure modification, although with the presence of low level of contaminants at the SrTiO3 surface.
Membrane cytochromes of Escherichia coli chl mutants.
Hackett, N R; Bragg, P D
1983-01-01
The cytochromes present in the membranes of Escherichia coli cells having defects in the formate dehydrogenase-nitrate reductase system have been analyzed by spectroscopic, redox titration, and enzyme fractionation techniques. Four phenotypic classes differing in cytochrome composition were recognized. Class I is represented by strains with defects in the synthesis or insertion of molybdenum cofactor. Cytochromes of the formate dehydrogenase-nitrate reductase pathway are present. Class II strains map in the chlC-chlI region. The cytochrome associated with nitrate reductase (cytochrome bnr) is absent in these strains, whereas that associated with formate dehydrogenase (cytochrome bfdh) is the major cytochrome in the membranes. Class III strains lack both cytochromes bfdh and bnr but overproduce cytochrome d of the aerobic pathway even under anaerobic conditions in the presence of nitrate. Class III strains have defects in the regulation of cytochrome synthesis. An fdhA mutant produced cytochrome bnr but lacked cytochrome bfdh. These results support the view that chlI (narI) is the structural gene for cytochrome bnr and that chlC (narG) and chlI(narI) are in the same operon, and they provide evidence of the complexity of the regulation of cytochrome synthesis. PMID:6302081
Mitsopoulos, Panagiotis; Chang, Yu-Han; Wai, Timothy; König, Tim; Dunn, Stanley D.; Langer, Thomas
2015-01-01
Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV1-3 RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function. PMID:25776552
3D printed microchannel networks to direct vascularisation during endochondral bone repair.
Daly, Andrew C; Pitacco, Pierluca; Nulty, Jessica; Cunniffe, Gráinne M; Kelly, Daniel J
2018-04-01
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daghbouj, N.; Faculté des Sciences de Monastir, Université de Monastir, Monastir; Cherkashin, N., E-mail: nikolay.cherkashin@cemes.fr
2016-04-07
Hydrogen and helium co-implantation is nowadays used to efficiently transfer thin Si layers and fabricate silicon on insulator wafers for the microelectronic industry. The synergy between the two implants which is reflected through the dramatic reduction of the total fluence needed to fracture silicon has been reported to be strongly influenced by the implantation order. Contradictory conclusions on the mechanisms involved in the formation and thermal evolution of defects and complexes have been drawn. In this work, we have experimentally studied in detail the characteristics of Si samples co-implanted with He and H, comparing the defects which are formed followingmore » each implantation and after annealing. We show that the second implant always ballistically destroys the stable defects and complexes formed after the first implant and that the redistribution of these point defects among new complexes drives the final difference observed in the samples after annealing. When H is implanted first, He precipitates in the form of nano-bubbles and agglomerates within H-related platelets and nano-cracks. When He is implanted first, the whole He fluence is ultimately used to pressurize H-related platelets which quickly evolve into micro-cracks and surface blisters. We provide detailed scenarios describing the atomic mechanisms involved during and after co-implantation and annealing which well-explain our results and the reasons for the apparent contradictions reported at the state of the art.« less
NASA Astrophysics Data System (ADS)
Huang, Zhi; Chen, Yan; Feng, Qing-Ling; Zhao, Wei; Yu, Bo; Tian, Jing; Li, Song-Jian; Lin, Bo-Miao
2011-09-01
For reconstruction of irregular bone defects, injectable biomaterials are more appropriate than the preformed biomaterials. We herein develop a biomimetic in situ-forming composite consisting of chitosan (CS) and mineralized collagen fibrils (nHAC), which has a complex hierarchical structure similar to natural bone. The CS/nHAC composites with or without mesenchymal stem cells (MSCs) are injected into cancellous bone defects at the distal end of rabbit femurs. Defects are assessed by radiographic, histological diagnosis and Raman microscopy until 12 weeks. The results show that MSCs improve the biocompatibility of CS/nHAC composites and enhance new bone formation in vivo at 12 weeks. It can be concluded that the injectable CS/nHAC composites combined with MSCs may be a novel method for reconstruction of irregular bone defects.
Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)
2017-06-05
AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation
EPR and photoluminescence study of irradiated anion-defective alumina single crystals
NASA Astrophysics Data System (ADS)
Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.
2017-09-01
Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.
Vines, Lasse; Bhoodoo, Chidanand; von Wenckstern, Holger; Grundmann, Marius
2017-11-29
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than 8 orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 1012 cm2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed. © 2017 IOP Publishing Ltd.
The chicken frizzle feather is due to an a-keratin (KRT75) mutation that causes a defective rachis
USDA-ARS?s Scientific Manuscript database
Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. The present study focused on the gene, F, underlying the frizzle feather tr...
NASA Astrophysics Data System (ADS)
Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji
2018-06-01
We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.
Fullerene Derived Molecular Electronic Devices
NASA Technical Reports Server (NTRS)
Menon, Madhu; Srivastava, Deepak; Saini, Subbash
1998-01-01
The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale electronic devices. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal grapheme sheet, more complex joints require other mechanisms. In this work we explore structural and electronic properties of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme.
NASA Astrophysics Data System (ADS)
Arima, Hiroshi; Yoshida, Yuichi; Yoshihara, Kosuke; Shibata, Tsuyoshi; Kushida, Yuki; Nakagawa, Hiroki; Nishimura, Yukio; Yamaguchi, Yoshikazu
2009-03-01
Residue type defect is one of yield detractors in lithography process. It is known that occurrence of the residue type defect is dependent on resist development process and the defect is reduced by optimized rinsing condition. However, the defect formation is affected by resist materials and substrate conditions. Therefore, it is necessary to optimize the development process condition by each mask level. Those optimization steps require a large amount of time and effort. The formation mechanism is investigated from viewpoint of both material and process. The defect formation is affected by resist material types, substrate condition and development process condition (D.I.W. rinse step). Optimized resist formulation and new rinse technology significantly reduce the residue type defect.
Nordhues, André; Schöttler, Mark Aurel; Unger, Ann-Katrin; Geimer, Stefan; Schönfelder, Stephanie; Schmollinger, Stefan; Rütgers, Mark; Finazzi, Giovanni; Soppa, Barbara; Sommer, Frederik; Mühlhaus, Timo; Roach, Thomas; Krieger-Liszkay, Anja; Lokstein, Heiko; Crespo, José Luis; Schroda, Michael
2012-01-01
The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b6f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the QA/QA− redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids. PMID:22307852
Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro
2017-12-01
Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4 cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.
NASA Astrophysics Data System (ADS)
Kolotova, L. N.; Starikov, S. V.
2017-11-01
In irradiation of swift heavy ions, the defects formation frequently takes place in crystals. High energy transfer into the electronic subsystem and relaxations processes lead to the formation of structural defects and cause specific effects, such as the track formation. There is a large interest to understanding of the mechanisms of defects/tracks formation due to the heating of the electron subsystem. In this work, the atomistic simulation of defects formation and structure transitions in U-Mo alloys in irradiation of swift heavy ions has been carried out. We use the two-temperature atomistic model with explicit account of electron pressure and electron thermal conductivity. This two-temperature model describes ionic subsystem by means of molecular dynamics while the electron subsystem is considered in the continuum approach. The various mechanisms of structure changes in irradiation are examined. In particular, the simulation results indicate that the defects formation may be produced without melting and subsequent crystallization. Threshold stopping power of swift ions for the defects formation in irradiation in the various conditions are calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutanabbir, O.; Scholz, R.; Goesele, U.
We present a detailed study of the thermal evolution of H ion-induced vacancy related complexes and voids in bulk GaN implanted under ion-cut conditions. By using transmission electron microscopy, we found that the damage band in as-implanted GaN is decorated with a high density of nanobubbles of approx1-2 nm in diameter. Variable energy Doppler broadening spectroscopy showed that this band contains vacancy clusters and voids. In addition to vacancy clusters, the presence of V{sub Ga}, V{sub Ga}-H{sub 2}, and V{sub Ga}V{sub N} complexes was evidenced by pulsed low-energy positron lifetime spectroscopy. Subtle changes upon annealing in these vacancy complexes weremore » also investigated. As a general trend, a growth in open-volume defects is detected in parallel to an increase in both size and density of nanobubbles. The observed vacancy complexes appear to be stable during annealing. However, for temperatures above 450 deg. C, unusually large lifetimes were measured. These lifetimes are attributed to the formation of positronium in GaN. Since the formation of positronium is not possible in a dense semiconductor, our finding demonstrates the presence of sufficiently large open-volume defects in this temperature range. Based on the Tao-Eldrup model, the average lattice opening during thermal annealing was quantified. We found that a void diameter of 0.4 nm is induced by annealing at 600 deg. C. The role of these complexes in the subsurface microcracking is discussed.« less
Nicholson-Dykstra, Susan M.; Higgs, Henry N.
2009-01-01
The Arp2/3 complex-mediated assembly and protrusion of a branched actin network at the leading edge occurs during cell migration, although some studies suggest it is not essential. In order to test the role of Arp2/3 complex in leading edge protrusion, Swiss 3T3 fibroblasts and Jurkat T cells were depleted of Arp2 and evaluated for defects in cell morphology and spreading efficiency. Arp2-depleted fibroblasts exhibit severe defects in formation of sheet-like protrusions at early time points of cell spreading, with sheet-like protrusions limited to regions along the length of linear protrusions. However, Arp2-depleted cells are able to spread fully after extended times. Similarly, Arp2-depleted Jurkat T lymphocytes exhibit defects in spreading on anti-CD3. Interphase Jurkats in suspension are covered with large ruffle structures, whereas mitotic Jurkats are covered by finger-like linear protrusions. Arp2-depleted Jurkats exhibit defects in ruffle assembly but not in assembly of mitotic linear protrusions. Similarly, Arp2-depletion has no effect on the highly dynamic linear protrusion of another suspended lymphocyte line. We conclude that Arp2/3 complex plays a significant role in assembly of sheet-like protrusions, especially during early stages of cell spreading, but is not required for assembly of a variety of linear actin-based protrusions. PMID:18720401
Szatmári, Zsuzsanna; Sass, Miklós
2014-01-01
Atg6 (Beclin 1 in mammals) is a core component of the Vps34 PI3K (III) complex, which promotes multiple vesicle trafficking pathways. Atg6 and Vps34 form two distinct PI3K (III) complexes in yeast and mammalian cells, either with Atg14 or with UVRAG. The functions of these two complexes are not entirely clear, as both Atg14 and UVRAG have been suggested to regulate both endocytosis and autophagy. In this study, we performed a microscopic analysis of UVRAG, Atg14, or Atg6 loss-of-function cells in the developing Drosophila wing. Both autophagy and endocytosis are seriously impaired and defective endolysosomes accumulate upon loss of Atg6. We show that Atg6 is required for the downregulation of Notch and Wingless signaling pathways; thus it is essential for normal wing development. Moreover, the loss of Atg6 impairs cell polarity. Atg14 depletion results in autophagy defects with no effect on endocytosis or cell polarity, while the silencing of UVRAG phenocopies all but the autophagy defect of Atg6 depleted cells. Thus, our results indicate that the UVRAG-containing PI3K (III) complex is required for receptor downregulation through endolysosomal degradation and for the establishment of proper cell polarity in the developing wing, while the Atg14-containing complex is involved in autophagosome formation. PMID:25006588
NASA Astrophysics Data System (ADS)
Tyumentsev, A. N.; Ditenberg, I. A.; Sukhanov, I. I.
2018-02-01
In the zones of strain localization in the region of elastic distortions and nanodipoles of partial disclinations representing the defects of elastically deformed medium, a theoretical analysis of the elastically stressed state and the energy of these defects, including the cases of their transformation into more complex ensembles of interrelated disclinations, is performed. Using the analytical results, the mechanisms of strain localization are discussed in the stages of nucleation and propagation of the bands of elastic and plastic strain localization formed in these zones (including the cases of nanocrystalline structure formation).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanhong; Gao, Ping; Bi, Kaifeng
Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.
Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela
2017-01-01
It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700
NF-κB RelB Negatively Regulates Osteoblast Differentiation and Bone Formation
Yao, Zhenqiang; Li, Yanyun; Yin, Xiaoxiang; Dong, Yufeng; Xing, Lianping; Boyce, Brendan F.
2013-01-01
RelA-mediated NF-κB canonical signaling promotes mesenchymal progenitor cell (MPC) proliferation, but inhibits differentiation of mature osteoblasts (OBs) and thus negatively regulates bone formation. Previous studies suggest that NF-κB RelB may also negatively regulate bone formation through non-canonical signaling, but they involved a complex knockout mouse model and the molecular mechanisms involved were not investigated. Here, we report that RelB−/− mice develop age-related increased trabecular bone mass associated with increased bone formation. RelB−/− bone marrow stromal cells expanded faster in vitro and have enhanced OB differentiation associated with increased expression of the osteoblastogenic transcription factor, Runx2. In addition, RelB directly targeted the Runx2 promoter to inhibit its activation. Importantly, RelB−/− bone-derived MPCs formed bone more rapidly than wild-type cells after they were injected into a murine tibial bone defect model. Our findings indicate that RelB negatively regulates bone mass as mice age and limits bone formation in healing bone defects, suggesting that inhibition of RelB could reduce age-related bone loss and enhance bone repair. PMID:24115294
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai
2015-01-01
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators. PMID:26584670
Chantarawaratit, P; Sangvanich, P; Banlunara, W; Soontornvipart, K; Thunyakitpisal, P
2014-04-01
Periodontal disease is a common infectious disease, found worldwide, causing the destruction of the periodontium. The periodontium is a complex structure composed of both soft and hard tissues, thus an agent applied to regenerate the periodontium must be able to stimulate periodontal ligament, cementum and alveolar bone regeneration. Recent studies demonstrated that acemannan, a polysaccharide extracted from Aloe vera gel, stimulated both soft and hard tissue healing. This study investigated effect of acemannan as a bioactive molecule and scaffold for periodontal tissue regeneration. Primary human periodontal ligament cells were treated with acemannan in vitro. New DNA synthesis, expression of growth/differentiation factor 5 and runt-related transcription factor 2, expression of vascular endothelial growth factor, bone morphogenetic protein-2 and type I collagen, alkaline phosphatase activity, and mineralized nodule formation were determined using [(3)H]-thymidine incorporation, reverse transcription-polymerase chain reaction, enzyme-linked immunoabsorbent assay, biochemical assay and alizarin red staining, respectively. In our in vivo study, premolar class II furcation defects were made in four mongrel dogs. Acemannan sponges were applied into the defects. Untreated defects were used as a negative control group. The amount of new bone, cementum and periodontal ligament formation were evaluated 30 and 60 d after the operation. Acemannan significantly increased periodontal ligament cell proliferation, upregulation of growth/differentiation factor 5, runt-related transcription factor 2, vascular endothelial growth factor, bone morphogenetic protein 2, type I collagen and alkaline phosphatase activity, and mineral deposition as compared with the untreated control group in vitro. Moreover, acemannan significantly accelerated new alveolar bone, cementum and periodontal ligament formation in class II furcation defects. Our data suggest that acemannan could be a candidate biomolecule for periodontal tissue regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy
2017-02-01
Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.; ...
2017-04-21
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
NASA Astrophysics Data System (ADS)
Lany, Stephan
2018-02-01
The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.
Lany, Stephan
2018-02-21
The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lany, Stephan
The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.
NASA Astrophysics Data System (ADS)
González, Julio; Wang, Jin An; Chen, Lifang; Manríquez, Maria; Salmones, José; Limas, Roberto; Arellano, Ulises
2018-07-01
A set of MoO3/SBA-15 mesoporous catalysts were characterized with a variety of spectroscopic techniques and their crystalline structures were refined with Rietveld method. Oxygen defect concentration, crystallite size, phase composition, surface acidity, mesoporous regularity, and textural properties were reported. Both α-MoO3 and β-MoO3 phases coexisted but α-MoO3 was predominated. Oxygen defects were created in the orthorhombic structure and its concentration decreased from 3.08% for the 20 wt%MoO3/SBA-15 to 0.55% for the 25 wt%MoO3/SBA-15. All the MoO3/SBA-15 catalysts chiefly contained a big number of Lewis acid sites originating from oxygen defects in MoO3 crystals. In the absence of formic acid, the oxidation of 4,6-dibenzothiophene (4,6-DMDBT) in a model diesel was almost proportional to the number of Lewis acid sites. In the presence of formic acid, 4,6-DMDBT oxidation was significantly affected by the formation of surface peroxometallic complex and Lewis acidity. Formic acid addition could improve the ODS efficiency by promoting peroxometallic complex formation and enhancing oxidant stability. Under the optimal reaction condition using the best 15 and 20 wt%MoO3/SBA-15 catalysts, more than 99% 4,6-DMDBT could be removed at 70 °C within 30 min. This work confirmed that 4,6-DMDBT oxidation is a texture and particle size sensitive and Lewis acidity dependent reaction. This work also shows that crystalline structure refinement combination with experiments can gain new insights in the design of heterogeneous nanocatalysts and help to better understand the catalytic behavior in the oxidative desulfurization reactions.
Carlier, Aurélie; van Gastel, Nick; Geris, Liesbet; Carmeliet, Geert; Van Oosterwyck, Hans
2014-01-01
Although bone has a unique restorative capacity, i.e., it has the potential to heal scarlessly, the conditions for spontaneous bone healing are not always present, leading to a delayed union or a non-union. In this work, we use an integrative in vivo - in silico approach to investigate the occurrence of non-unions, as well as to design possible treatment strategies thereof. The gap size of the domain geometry of a previously published mathematical model was enlarged in order to study the complex interplay of blood vessel formation, oxygen supply, growth factors and cell proliferation on the final healing outcome in large bone defects. The multiscale oxygen model was not only able to capture the essential aspects of in vivo non-unions, it also assisted in understanding the underlying mechanisms of action, i.e., the delayed vascularization of the central callus region resulted in harsh hypoxic conditions, cell death and finally disrupted bone healing. Inspired by the importance of a timely vascularization, as well as by the limited biological potential of the fracture hematoma, the influence of the host environment on the bone healing process in critical size defects was explored further. Moreover, dependent on the host environment, several treatment strategies were designed and tested for effectiveness. A qualitative correspondence between the predicted outcomes of certain treatment strategies and experimental observations was obtained, clearly illustrating the model's potential. In conclusion, the results of this study demonstrate that due to the complex non-linear dynamics of blood vessel formation, oxygen supply, growth factor production and cell proliferation and the interactions thereof with the host environment, an integrative in silico-in vivo approach is a crucial tool to further unravel the occurrence and treatments of challenging critical sized bone defects. PMID:25375821
Lopez, Maria de Almeida; Olate, Sergio; Lanata-Flores, Antonio; Pozzer, Leandro; Cavalieri-Pereira, Lucas; Cantín, Mario; Vásquez, Bélgica; de Albergaria-Barbosa, José
2013-01-01
The aim of this research was to determine the bone formation capacity in fenestration defects associated with dental implants using absorbable and non-absorbable membranes. Six dogs were used in the study. In both tibias of each animal 3 implants were installed, and around these 5 mm circular defects were created. The defects were covered with absorbable membranes (experimental group 1), non-absorbable membranes (experimental group 2), and the third defect was not covered (control group). At 3 and 8 weeks post-surgery, the animals were euthanized and the membranes with the bone tissue around the implants were processed for histological analysis. The statistical analysis was conducted with Tukey’s test, considering statistical significance when p<0.1. Adequate bone repair was observed in the membrane-covered defects. At 3 weeks, organization of the tissue, bone formation from the periphery of the defect and the absence of inflammatory infiltrate were observed in both experimental groups, but the defect covered with absorbable membrane presented statistically greater bone formation. At 8 weeks, both membrane-covered defects showed adequate bone formation without significant differences, although they did in fact present differences with the control defect in both periods (p>0.1). In the defects without membrane, continuous connective tissue invasions and bone repair deficiency were observed. There were no significant differences in the characteristics and volume of the neoformed bone in the defects around the implants covered by the different membranes, whereas the control defects produced significantly less bone. The use of biological membranes contributes to bone formation in three-wall defects. PMID:24228090
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.
2018-05-01
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si.
Wallace, J B; Aji, L B Bayu; Shao, L; Kucheyev, S O
2018-05-25
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ∼-30 °C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ∼0.1 eV, independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ∼0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.
Electronic properties of doped and defective NiO: A quantum Monte Carlo study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan
NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less
Electronic properties of doped and defective NiO: A quantum Monte Carlo study
Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...
2017-12-28
NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less
NASA Astrophysics Data System (ADS)
Alberi, K.; Scarpulla, M. A.
2016-06-01
In many semiconductors, compensating defects set doping limits, decrease carrier mobility, and reduce minority carrier lifetime thus limiting their utility in devices. Native defects are often responsible. Suppressing the concentrations of compensating defects during processing close to thermal equilibrium is difficult because formation enthalpies are lowered as the Fermi level moves towards the majority band edge. Excess carriers, introduced for example by photogeneration, modify the formation enthalpy of semiconductor defects and thus can be harnessed during crystal growth or annealing to suppress defect populations. Herein we develop a rigorous and general model for defect formation in the presence of steady-state excess carrier concentrations by combining the standard quasi-chemical formalism with a detailed-balance description that is applicable for any defect state in the bandgap. Considering the quasi-Fermi levels as chemical potentials, we demonstrate that increasing the minority carrier concentration increases the formation enthalpy for typical compensating centers, thus suppressing their formation. This effect is illustrated for the specific example of GaSb. While our treatment is generalized for excess carrier injection or generation in semiconductors by any means, we provide a set of guidelines for applying the concept in photoassisted physical vapor deposition.
Alberi, Kirstin; Scarpulla, M. A.
2016-06-21
In many semiconductors, compensating defects set doping limits, decrease carrier mobility, and reduce minority carrier lifetime thus limiting their utility in devices. Native defects are often responsible. Suppressing the concentrations of compensating defects during processing close to thermal equilibrium is difficult because formation enthalpies are lowered as the Fermi level moves towards the majority band edge. Excess carriers, introduced for example by photogeneration, modify the formation enthalpy of semiconductor defects and thus can be harnessed during crystal growth or annealing to suppress defect populations. Herein we develop a rigorous and general model for defect formation in the presence of steady-statemore » excess carrier concentrations by combining the standard quasi-chemical formalism with a detailed-balance description that is applicable for any defect state in the bandgap. Considering the quasi-Fermi levels as chemical potentials, we demonstrate that increasing the minority carrier concentration increases the formation enthalpy for typical compensating centers, thus suppressing their formation. Furthermore, this effect is illustrated for the specific example of GaSb. While our treatment is generalized for excess carrier injection or generation in semiconductors by any means, we provide a set of guidelines for applying the concept in photoassisted physical vapor deposition.« less
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang
2015-11-20
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH 3NH 3PbI 3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less
Influence of complex impurity centres on radiation damage in wide-gap metal oxides
NASA Astrophysics Data System (ADS)
Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.
2016-05-01
Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.
NASA Astrophysics Data System (ADS)
Shi, Tingting
In this dissertation, a series of earth-abundant photovoltaic materials including lead halide perovskites, copper based compounds, and silicon are investigated via density functional theory (DFT). Firstly, we study the unique optoelectronic properties of perovskite CH3NH3PbI3 and CH3NH3PbBr 3. First-principle calculations show that CH3NH3PbI 3 perovskite solar cells exhibit remarkable optoelectronic properties that account for the high open circuit voltage (Voc) and long electron-hole diffusion lengths. Our results reveal that for intrinsic doping, dominant point defects produce only shallow levels. Therefore lead halide perovskites are expected to exhibit intrinsic low non-radiative recombination rates. The conductivity of perovskites can be tuned from p-type to n-type by controlling the growth conditions. For extrinsic defects, the p-type perovskites can be achieved by doping group-IA, -IB, or -VIA elements, such as Na, K, Rb, Cu, and O at I-rich growth conditions. We further show that despite a large band gap of 2.2 eV, the dominant defects in CH3 NH3PbBr3 also create only shallow levels. The photovoltaic properties of CH3NH3PbBr3 - based perovskite absorbers can be tuned via defect engineering. Highly conductive p-type CH3NH3PbBr3 can be synthesized under Br-rich growth conditions. Such CH3NH3PbBr 3 may be potential low-cost hole transporting materials for lead halide perovskite solar cells. All these unique defect properties of perovskites are largely due to the strong Pb lone-pair s orbital and I p (Br p) orbital antibonding coupling and the high ionicity of CH3NH3PbX3 (X=I, Br). Secondly, we study the optoelectronic properties of Cu-V-VI earth abundant compounds. These low cost thin films may have the good electronic and optical properties. We have studied the structural, electronic and optical properties of Cu3-V-VI4 compounds. After testing four different crystal structures, enargite, wurtzite-PMCA, famatinite and zinc-blend-PMCA, we find that Cu3PS4 and Cu3PSe4 prefer energetically the enargite structure, whereas, other compounds favor the famatinite structure. Among the compounds and structures considered, enargite Cu3PSe4, and famatinite Cu3AsS4, are suitable for single junction solar cell applications due to bandgaps of 1.32 eV and 1.15 eV, respectively. Furthermore, CuSbS2 are also studied by density functional theory and HSE06 hybrid functional. The chalcostibite CuSbS2 has an indirect band gap of 1.85 eV, whereas the chalcogenide Cu3SbS4 has a direct band gap of 0.89 eV. We find that the large difference on band gaps is mainly attributed to the different Sb charge states. We further predict that the Sb charge states will affect the defect physics. Particularly, the Sb lone pair s orbitals in CuSbS 2 have strong influence on the formation energies of Sb-related defects. Lastly, we have studied the atomic structure and electronic properties of aluminum (Al)-related defect complexes in silicon. We find a unique stable complex configuration consisting of an Ali and an oxygen dimer, Ali-2Oi, which introduces deep levels in the band gap of Si. The formation energies of the Ali-2Oi complexes could be lower than that of individual Ali atoms under oxygen-rich conditions. The formation of Ali-2Oi complexes may explain the experimental observation that the coexistence of Al and O results in reduced carrier lifetime in Si wafers.
NASA Astrophysics Data System (ADS)
Kosyak, V.; Postnikov, A. V.; Scragg, J.; Scarpulla, M. A.; Platzer-Björkman, C.
2017-07-01
Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of (" separators="|VCu --ZnC u + ) complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like ZnC u + antisites are involved in the formation of (" separators="|VCu --ZnC u + ) complex making CuZ n - dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.
Complex doping of group 13 elements In and Ga in caged skutterudite CoSb 3
Xi, Lili; Qiu, Yting; Zheng, Shang; ...
2014-12-12
The complex doping behavior of Ga and In in CoSb 3 has been investigated using ab initio total-energy calculations and thermodynamics. The formation energies of void filling, Sb substitution and complex dual-site occupancy defects with different charge states, and their dependence on chemical potentials of species, were studied. Results show that Ga predominantly forms dual-site 2Ga VF–Ga Sb defects and substitutes for Sb only at very high Fermi levels or electron concentrations. In, on the other hand, can play multiple roles in skutterudites, including filling in the crystalline voids, substituting for Sb atoms or forming dual-site occupancy, among which themore » fully charge-compensated dual-site defects (2In VF–In Sb and 4In VF–2In Sb) are dominant. The equilibrium concentration ratio of impurities at void-filling sites to those at Sb-substitution sites for Ga-doped CoSb 3 is very close to be 2:1, while this value markedly deviates from 2:1 for In-doped CoSb 3. Furthermore, the 2:1 ratio of Ga doping in CoSb 3 leads to low electron concentration (~2 × 10 19 cm –3) and makes the doped system a semiconductor.« less
Xekouki, Paraskevi; Stratakis, Constantine A
2012-12-01
Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney-Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD's loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects.
Xekouki, Paraskevi; Stratakis, Constantine A
2013-01-01
Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney–Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD’s loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects. PMID:22889736
Toward understanding dynamic annealing processes in irradiated ceramics
NASA Astrophysics Data System (ADS)
Myers, Michael Thomas
High energy particle irradiation inevitably generates defects in solids in the form of collision cascades. The ballistic formation and thermalization of cascades occur rapidly and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic an- nealing is crucial since such processes play an important role in the formation of stable post-irradiation disorder in ion-beam-processed semiconductors and determines the "radiation tolerance" of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken. First, the effects of dynamic annealing are investigated in ZnO, a technologically relevant material that exhibits very high dynamic defect annealing at room temper- ature. Such high dynamic annealing leads to unusual defect accumulation in heavy ion bombarded ZnO. Through this work, the puzzling features that were observed more than a decade ago in ion-channeling spectra have finally been explained. We show that the presence of a polar surface substantially alters damage accumulation. Non-polar surface terminations of ZnO are shown to exhibit enhanced dynamic an- nealing compared to polar surface terminated ZnO. Additionally, we demonstrate one method to reduce radiation damage in polar surface terminated ZnO by means of a surface modification. These results advance our efforts in the long-sought-after goal of understanding complex radiation damage processes in ceramics. Second, a pulsed-ion-beam method is developed and demonstrated in the case of Si as a prototypical non-metallic target. Such a method is shown to be a novel experimental technique for direct extraction of dynamic annealing parameters. The relaxation times and effective diffusion lengths of mobile defects during the dynamic annealing process play a vital role in damage accumulation. We demonstrate that these parameters dominate the formation of stable post-irradiation disorder. In Si, a defect lifetime of ˜ 6 ms and a characteristic defect diffusion length of ˜ 30 nm are measured. These results should nucleate future pulsed-beam studies of dynamic defect interaction processes in technologically relevant materials. In particular, un- derstanding length- and time-scales of defect interactions are essential for extending laboratory findings to nuclear material lifetimes and to the time-scales of geological storage of nuclear waste.
Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)
2017-06-05
AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and
Study on the intrinsic defects in tin oxide with first-principles method
NASA Astrophysics Data System (ADS)
Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin
2018-04-01
First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.
Paulo, Sabrina Soares; Fernandes-Rosa, Fábio L; Turatti, Wendy; Coeli-Lacchini, Fernanda Borchers; Martinelli, Carlos E; Nakiri, Guilherme S; Moreira, Ayrton C; Santos, Antônio C; de Castro, Margaret; Antonini, Sonir R
2015-04-01
Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship. © 2014 John Wiley & Sons Ltd.
Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study
NASA Astrophysics Data System (ADS)
Fiedler, Gregor; Kratzer, Peter
2016-08-01
The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.
Hruschka, Veronika; Tangl, Stefan; Ryabenkova, Yulia; Heimel, Patrick; Barnewitz, Dirk; Möbus, Günter; Keibl, Claudia; Ferguson, James; Quadros, Paulo; Miller, Cheryl; Goodchild, Rebecca; Austin, Wayne; Redl, Heinz; Nau, Thomas
2017-01-01
Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study. PMID:28233833
Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel
2017-02-01
The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Effect of friction stir welding parameters on defect formation
NASA Astrophysics Data System (ADS)
Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.
2015-10-01
Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.
NASA Astrophysics Data System (ADS)
Kawai, Hiroki; Nakasaki, Yasushi; Kanemura, Takahisa; Ishihara, Takamitsu
2018-04-01
Dopant segregation at Si/SiO2 interface has been a serious problem in silicon device technology. This paper reports a comprehensive density-functional study on the segregation mechanisms of boron, phosphorous, and arsenic at the Si/SiO2 interface. We found that three kinds of interfacial defects, namely, interstitial oxygen, oxygen vacancy, and silicon vacancy with two oxygen atoms, are stable in the possible chemical potential range. Thus, we consider these defects as trap sites for the dopants. For these defects, the dopant segregation energies, the electrical activities of the trapped dopants, and the kinetic energy barriers of the trapping/detrapping processes are calculated. As a result, trapping at the interstitial oxygen site is indicated to be the most plausible mechanism of the dopant segregation. The interstitial oxygen works as a major trap site since it has a high areal density at the Si/SiO2 interface due to the low formation energy.
Jiang, Ming; Xiao, Haiyan; Peng, Shuming; Yang, Guixia; Liu, Zijiang; Qiao, Liang; Zu, Xiaotao
2018-05-02
In this study, the low-energy radiation responses of Si, Ge, and Si/Ge superlattice are investigated by an ab initio molecular dynamics method and the origins of their different radiation behaviors are explored. It is found that the radiation resistance of the Ge atoms that are around the interface of Si/Ge superlattice is comparable to bulk Ge, whereas the Si atoms around the interface are more difficult to be displaced than the bulk Si, showing enhanced radiation tolerance as compared with the bulk Si. The mechanisms for defect generation in the bulk and superlattice structures show somewhat different character, and the associated defects in the superlattice are more complex. Defect formation and migration calculations show that in the superlattice structure, the point defects are more difficult to form and the vacancies are less mobile. The enhanced radiation tolerance of the Si/Ge superlattice will benefit for its applications as electronic and optoelectronic devices under radiation environment.
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; ...
2017-01-06
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less
NASA Astrophysics Data System (ADS)
Jiang, Ming; Xiao, Haiyan; Peng, Shuming; Yang, Guixia; Liu, Zijiang; Qiao, Liang; Zu, Xiaotao
2018-05-01
In this study, the low-energy radiation responses of Si, Ge, and Si/Ge superlattice are investigated by an ab initio molecular dynamics method and the origins of their different radiation behaviors are explored. It is found that the radiation resistance of the Ge atoms that are around the interface of Si/Ge superlattice is comparable to bulk Ge, whereas the Si atoms around the interface are more difficult to be displaced than the bulk Si, showing enhanced radiation tolerance as compared with the bulk Si. The mechanisms for defect generation in the bulk and superlattice structures show somewhat different character, and the associated defects in the superlattice are more complex. Defect formation and migration calculations show that in the superlattice structure, the point defects are more difficult to form and the vacancies are less mobile. The enhanced radiation tolerance of the Si/Ge superlattice will benefit for its applications as electronic and optoelectronic devices under radiation environment.
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.
2017-01-01
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10-0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.
Park, Chan Ho; Oh, Joung-Hwan; Jung, Hong-Moon; Choi, Yoonnyoung; Rahman, Saeed Ur; Kim, Sungtae; Kim, Tae-Il; Shin, Hong-In; Lee, Yun-Sil; Yu, Frank H; Baek, Jeong-Hwa; Ryoo, Hyun-Mo; Woo, Kyung Mi
2017-10-01
Cementum formation on the exposed tooth-root surface is a critical process in periodontal regeneration. Although various therapeutic approaches have been developed, regeneration of integrated and functional periodontal complexes is still wanting. Here, we found that the OCCM30 cementoblasts cultured on fibrin matrix express substantial levels of matrix proteinases, leading to the degradation of fibrin and the apoptosis of OCCM30 cells, which was reversed upon treatment with a proteinase inhibitor, ε-aminocaproic acid (ACA). Based on these findings, ACA-releasing chitosan particles (ACP) were fabricated and ACP-incorporated fibrin (fibrin-ACP) promoted the differentiation of cementoblasts in vitro, as confirmed by bio-mineralization and expressions of molecules associated with mineralization. In a periodontal defect model of beagle dogs, fibrin-ACP resulted in substantial cementum formation on the exposed root dentin in vivo, compared to fibrin-only and enamel matrix derivative (EMD) which is used clinically for periodontal regeneration. Remarkably, the fibrin-ACP developed structural integrations of the cementum-periodontal ligament-bone complex by the Sharpey's fiber insertion. In addition, fibrin-ACP promoted alveolar bone regeneration through increased bone volume of tooth roof-of-furcation defects and root coverage. Therefore, fibrin-ACP can promote cementogenesis and osteogenesis by controlling biodegradability of fibrin, implicating the feasibility of its therapeutic use to improve periodontal regeneration. Cementum, the mineralized layer on root dentin surfaces, functions to anchor fibrous connective tissues on tooth-root surfaces with the collagenous Sharpey's fibers integration, of which are essential for periodontal functioning restoration in the complex. Through the cementum-responsible fiber insertions on tooth-root surfaces, PDLs transmit various mechanical responses to periodontal complexes against masticatory/occlusal stimulations to support teeth. In this study, periodontal tissue regeneration was enhanced by use of modified fibrin biomaterial which significantly promoted cementogenesis within the periodontal complex with structural integration by collagenous Sharpey's fiber insertions in vivo by controlling fibrin degradation and consequent cementoblast apoptosis. Furthermore, the modified fibrin could improve repair and regeneration of tooth roof-of-furcation defects, which has spatial curvatures and geometrical difficulties and hardly regenerates periodontal tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans
2017-01-01
Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.
Yilmaz, Ayca; Helvacioglu-Yigit, Dilek; Gur, Cansu; Ersev, Handan; Kiziltas Sendur, Gullu; Avcu, Egemen; Baydemir, Canan; Abbott, Paul Vincent
2017-01-01
The purpose of this study was to compare the incidence and longitudinal propagation of dentin defects after gutta-percha removal with hand and rotary instruments using microcomputed tomography. Twenty mandibular incisors were prepared using the balanced-force technique and scanned in a 19.9 μ m resolution. Following filling with the lateral compaction technique, gutta-percha was removed with ProTaper Universal Retreatment (PTUR) or hand instruments. After rescanning, a total of 24,120 cross-sectional images were analyzed. The numbers, types, and longitudinal length changes of defects were recorded. Defects were observed in 36.90% of the cross sections. A total of 73 defects were comprised of 87.67% craze lines, 2.73% partial cracks, and 9.58% fractures. No significant difference in terms of new defect formation was detected between the retreatment groups. The apical and middle portions of the roots had more dentin defects than the coronal portions. Defects in three roots of the PTUR instrument group increased in length. Under the conditions of this in vitro study, gutta-percha removal seemed to not increase the incidence of dentin defect formation, but the longitudinal defect propagation finding suggests possible cumulative dentinal damage due to additional endodontic procedures. Hand and rotary instrumentation techniques caused similar dentin defect formation during root canal retreatment.
Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor
2013-01-01
Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans. PMID:23132495
Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor; Kronstad, James
2013-01-01
Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans.
Barrington, Chloe L.; Katsanis, Nicholas
2017-01-01
The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807
On the Enthalpy and Entropy of Point Defect Formation in Crystals
NASA Astrophysics Data System (ADS)
Kobelev, N. P.; Khonik, V. A.
2018-03-01
A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.
Influence of point defects on the near edge structure of hexagonal boron nitride
NASA Astrophysics Data System (ADS)
McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.
2017-10-01
Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.
On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Tolea, F.; Grecu, M. N.; Kuncser, V.; Constantinescu, S. Gr.; Ghica, D.
2015-04-01
The role of iron doping on magnetic properties of hydrothermal anatase TiO2:57Fe (0-1 at. %) nanoparticles is investigated by combining superconducting quantum interference device magnetometry with Mössbauer and electron paramagnetic resonance techniques. The results on both as-prepared and thermally treated samples in reduced air atmosphere reveal complexity of magnetic interactions, in connection to certain iron ion electron configurations and defects (oxygen vacancies, F-center, and Ti3+ ions). The distribution of iron ions is predominantly at nanoparticle surface layers. Formation of weak ferromagnetic domains up to 380 K is mainly related to defects, supporting the bound magnetic polaron model.
Positron annihilation study of vacancy-type defects in fast-neutron-irradiated MgO·nAl2O3
NASA Astrophysics Data System (ADS)
Rahman, Abu Zayed Mohammad Saliqur; Li, Zhuoxin; Cao, Xingzhong; Wang, Baoyi; Wei, Long; Xu, Qiu; Atobe, Kozo
2014-09-01
The positron lifetimes of fast-neutron-irradiated MgO·nAl2O3 single crystals were measured to investigate the formation of cation vacancies. Al monovacancy was possibly observed in samples irradiated by fast neutrons at ultra-low temperatures. Additionally, vacancy-oxygen complex centers were possibly observed in samples irradiated at higher temperatures and fast neutron fluences. Coincidence Doppler broadening (CDB) spectra were measured to obtain information regarding the vicinity of vacancy-type defects. A peak at approximately 11 × 10-3 m0c was observed, which may be due to the presence of oxygen atoms in the neighborhood of the vacancies.
Various Stone-Wales defects in phagraphene
NASA Astrophysics Data System (ADS)
Openov, L. A.; Podlivaev, A. I.
2016-08-01
Various Stone-Wales defects in phagraphene, which is a graphene allotrope, predicted recently are studied in terms of the nonorthogonal tight-binding model. The energies of the defect formation and the heights of energy barriers preventing the formation and annealing of the defects are found. Corresponding frequency factors in the Arrhenius formula are calculated. The evolution of the defect structure is studied in the real-time mode using the molecular dynamics method.
Bykov, Igor; Zagorodniy, Yuriy; Yurchenko, Lesya; Korduban, Alexander; Nejezchleb, Karel; Trachevsky, Vladimir; Dimza, Vilnis; Jastrabik, Lubomir; Dejneka, Alexander
2014-08-01
The nature of intrinsic and impurity point defects in lead zirconate titanate (PZT) ceramics has been explored. Using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) methods, several impurity sites have been identified in the materials, including the Fe(3+)-oxygen vacancy (VO) complex and Pb ions. Both of these centers are incorporated into the PZT lattice. The Fe(3+) –VО paramagnetic complex serves as a sensitive probe of the local crystal field in the ceramic; the symmetry of this defect roughly correlates with PZT phase diagram as the composition is varied from PbTiO3 to PbZrO3. NMR spectra (207)Pb in PbTiO3, PbZrO3, and PZT with iron content from 0 to 0.4 wt% showed that increasing the iron concentration leads to a distortion of the crystal structure and to improvement of the electrophysical parameters of the piezoceramics. This is due to the formation of a phase which has a higher symmetry, but at high concentrations of iron (>0.4 wt%), it leads to sharp degradation of electrophysical parameters.
Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon
NASA Astrophysics Data System (ADS)
Ferdous, Naheed; Ertekin, Elif
2018-05-01
Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.
NASA Astrophysics Data System (ADS)
Timerkaeva, Dilyara; Attaccalite, Claudio; Brenet, Gilles; Caliste, Damien; Pochet, Pascal
2018-04-01
The structure of the CiCs complex in silicon has long been the subject of debate. Numerous theoretical and experimental studies have attempted to shed light on the properties of these defects that are at the origin of the light emitting G-center. These defects are relevant for applications in lasing, and it would be advantageous to control their formation and concentration in bulk silicon. It is therefore essential to understand their structural and electronic properties. In this paper, we present the structural, electronic, and optical properties of four possible configurations of the CiCs complex in bulk silicon, namely, the A-, B-, C-, and D-forms. The configurations were studied by density functional theory and many-body perturbation theory. Our results suggest that the C-form was misinterpreted as a B-form in some experiments. Our optical investigation also tends to exclude any contribution of A- and B-forms to light emission. Taken together, our results suggest that the C-form could play an important role in heavily carbon-doped silicon.
Kim, Hyun-Soo; Mukhopadhyay, Rituparna; Rothbart, Scott B; Silva, Andrea C; Vanoosthuyse, Vincent; Radovani, Ernest; Kislinger, Thomas; Roguev, Assen; Ryan, Colm J; Xu, Jiewei; Jahari, Harlizawati; Hardwick, Kevin G; Greenblatt, Jack F; Krogan, Nevan J; Fillingham, Jeffrey S; Strahl, Brian D; Bouhassira, Eric E; Edelmann, Winfried; Keogh, Michael-Christopher
2014-03-13
Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Influence of plasma conditions on the defect formation mechanism in amorphous hydrogenated silicon
NASA Astrophysics Data System (ADS)
Kounavis, P.; Mataras, D.; Spiliopoulos, N.; Mytilineou, E.; Rapakoulias, D.
1994-02-01
The variation of a-Si:H film quality, deposited by a rf glow discharge of pure silane, is examined as a function of the interelectrode distance for two different pressures. Constant photocurrent and modulated photocurrent methods are used to estimate the magnitude and the shape of the defect states in the valence band and the conduction band, respectively. An effort is made to correlate the film quality parameters and the defect formation with the plasma macroscopic and microscopic parameters. The results suggest that, at low interelectrode distances, high sticking coefficient radicals modify the film growth and the defect formation mechanisms, leading to the deterioration of the film quality. The conclusions drawn are compared with the predictions of recent theoretical models concerning the defect formation in a-Si:H.
Cytokinesis defect in BY-2 cells caused by ATP-competitive kinase inhibitors.
Kozgunova, Elena; Higashiyama, Tetsuya; Kurihara, Daisuke
2016-10-02
Cytokinesis is last but not least in cell division as it completes the formation of the two cells. The main role in cell plate orientation and expansion have been assigned to microtubules and kinesin proteins. However, recently we reported severe cytokinesis defect in BY-2 cells not accompanied by changes in microtubules dynamics. Here we also confirmed that distribution of kinesin NACK1 is not the cause of cytokinesis defect. We further explored inhibition of the cell plate expansion by ATP-competitive inhibitors. Two different inhibitors, 5-Iodotubercidin and ML-7 resulted in a very similar phenotype, which indicates that they target same protein cascade. Interestingly, in our previous study we showed that 5-Iodotubercidin treatment affects concentration of actin filaments on the cell plate, while ML-7 is inhibitor of myosin light chain kinase. Although not directly, it indicates importance of actomyosin complex in plant cytokinesis.
Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae
Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.
2004-01-01
The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821
Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering
NASA Astrophysics Data System (ADS)
Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili
2018-03-01
The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.
Invisible defects in complex crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it; Della Valle, Giuseppe
2013-07-15
We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out tomore » be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.« less
Selection, Design and Applications of Solid Binding Peptides for Controlled Biomineralization
NASA Astrophysics Data System (ADS)
Gungormus, Mustafa
The regulated formation of inorganic minerals in living systems is called biomineralization. The mineralization processes of biogenic minerals are strictly regulated by a specific set of biomolecules, typically by proteins. Biologically formed calcium phosphates (hydroxyapatite (HA) in particular) are almost always nano-dimensional and nano-crystalline and are formed in vivo under mild conditions. The importance of understanding the molecular mechanisms underlying biological mineralization is underscored by the diseases associated with ectopic calcification or defects of skeletal mineralization. Proteins that mediate the mineralization process offer us a template for understanding how to potentially enhance the treatment of calcified tissue defects. However, the complexity and the number of proteins involved even in a rather simple biomineralization process can be daunting. The goal of this research was to identify short peptides through peptide-display libraries and demonstrate the utility of these peptides in better understanding the molecular mechanisms underlying biomineralization and as potential therapeutic agents in repairing calcified tissue defects. Using the phage-peptide display library, we have identified peptides that have affinity to HA and can regulate the formation of HA crystals. Utilizing the sequence knowledge obtained, we have identified putative functional domains within amelogenin; a naturally existing mineralization related protein, which, in turn, may provide a better understanding of the formation of dental enamel. These peptides also have the potential to be used to repair calcified tissue defects. To investigate this, we have developed and tested in vitro a hydrogel scaffold with pre-determined functionalities. We have also demonstrated the feasibility of obtaining significant re-mineralization of incipient dental root lesions ex vivo in a relatively short time using the mineralization-directing peptides. The approaches developed through this research may offer clinically acceptable novel procedures to treat calcified tissue defects because the developed peptide is safe to use and promotes the mineralization in a short period of time offered by none of the existing treatment options.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetfatsidis, K. A.; Sherwood, J. A.
NCFs (Non-Crimp Fabrics) are commonly used in the design of wind turbine blades and other complex systems due to their ability to conform to complex shapes without the wrinkling that is typically experienced with woven fabrics or prepreg tapes. In the current research, a form of vacuum assisted resin transfer molding known as SCRIMP registered is used to manufacture wind turbine blades. Often, during the compacting of the fabric layers by the vacuum pressure, several plies may bunch together out-of-plane and form wave defects. When the resin is infused, the areas beneath the waves become resin rich and can compromisemore » the structural integrity of the blade. A reliable simulation tool is valuable to help predict where waves and other defects may appear as a result of the manufacturing process. Forming simulations often focus on the in-plane shearing and tensile behavior of fabrics and do not necessarily consider the bending stiffness of the fabrics, which is important to predict the formation of wrinkles and/or waves. This study incorporates experimentally determined in-plane shearing, tensile, and bending stiffness information of NCFs into a finite element model (ABAQUS/Explicit) of a 9-meter wind turbine blade to investigate the mechanical behaviors that can lead to the formation of waves as a result of the manufacturing process.« less
Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis.
Xu, Deyang; Huang, Weihua; Li, Yang; Wang, Hua; Huang, Hai; Cui, Xiaofeng
2012-03-01
The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
First-principles characterization of native-defect-related optical transitions in ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, J. L.; Varley, J. B.; Steiauf, D.
We investigate the electrical and optical properties of oxygen vacancies (VO), zinc vacancies (V Zn), hydrogenated V Zn, and isolated dangling bonds in ZnO using hybrid functional calculations. While the formation energy of V O is high in n-type ZnO, indicating that this center is unlikely to form, our results for optical absorption signals associated with V O are consistent with those observed in irradiated samples, and give rise to emission with a peak at less than 1 eV. Under realistic growth conditions, we find that VZn is the lowest-energy native defect in n-type ZnO, acting as an acceptor thatmore » is likely to compensate donor doping. Turning to optical transitions, we first examine N O as a case study, since N-related transitions have been identified in experiments on ZnO. Here, we also examine how hydrogen, often unintentionally present in ZnO, forms stable complexes with V Zn and modifies its optical properties. Compared with isolated V Zn, V Zn-H complexes have charge-state transition levels lower in the band gap as well as have lower formation energies. These complexes also lead to characteristic vibrational frequencies which compare favorably with experiment. Oxygen dangling bonds show behavior mostly consistent with V Zn, while zinc dangling bonds give rise to transition levels near the ZnO conduction-band minimum and emission peaking near 2.4 eV. Lastly, we discuss our results in view of the available experimental literature.« less
First-principles characterization of native-defect-related optical transitions in ZnO
Lyons, J. L.; Varley, J. B.; Steiauf, D.; ...
2017-07-21
We investigate the electrical and optical properties of oxygen vacancies (VO), zinc vacancies (V Zn), hydrogenated V Zn, and isolated dangling bonds in ZnO using hybrid functional calculations. While the formation energy of V O is high in n-type ZnO, indicating that this center is unlikely to form, our results for optical absorption signals associated with V O are consistent with those observed in irradiated samples, and give rise to emission with a peak at less than 1 eV. Under realistic growth conditions, we find that VZn is the lowest-energy native defect in n-type ZnO, acting as an acceptor thatmore » is likely to compensate donor doping. Turning to optical transitions, we first examine N O as a case study, since N-related transitions have been identified in experiments on ZnO. Here, we also examine how hydrogen, often unintentionally present in ZnO, forms stable complexes with V Zn and modifies its optical properties. Compared with isolated V Zn, V Zn-H complexes have charge-state transition levels lower in the band gap as well as have lower formation energies. These complexes also lead to characteristic vibrational frequencies which compare favorably with experiment. Oxygen dangling bonds show behavior mostly consistent with V Zn, while zinc dangling bonds give rise to transition levels near the ZnO conduction-band minimum and emission peaking near 2.4 eV. Lastly, we discuss our results in view of the available experimental literature.« less
Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro
2017-01-01
A non-toxigenic mutant of the toxigenic serotype C Clostridium botulinum strain Stockholm (C-St), C-N71, does not produce the botulinum neurotoxin (BoNT). However, the original strain C-St produces botulinum toxin complex, in which BoNT is associated with non-toxic non-hemagglutinin (NTNHA) and three hemagglutinin proteins (HA-70, HA-33, and HA-17). Therefore, in this study, we aimed to elucidate the effects of bont gene knockout on the formation of the "toxin complex." Nucleotide sequence analysis revealed that a premature stop codon was introduced in the bont gene, whereas other genes were not affected by this mutation. Moreover, we successfully purified the "toxin complex" produced by C-N71. The "toxin complex" was identified as a mixture of NTNHA/HA-70/HA-17/HA-33 complexes with intact NTNHA or C-terminally truncated NTNHA, without BoNT. These results indicated that knockout of the bont gene does not affect the formation of the "toxin complex." Since the botulinum toxin complex has been shown to play an important role in oral toxin transport in the human and animal body, a non-neurotoxic "toxin complex" of C-N71 may be valuable for the development of an oral drug delivery system.
Formation of VP-Zn complexes in bulk InP(Zn) by migration of P vacancies from the (110) surface
NASA Astrophysics Data System (ADS)
Slotte, J.; Saarinen, K.; Ebert, Ph.
2006-05-01
We apply a combination of positron annihilation spectroscopy and scanning tunneling microscopy to show that thermally generated P vacancies diffuse from the InP surface toward the bulk. The defect observed in the bulk can be identified as a complex consisting of a P vacancy and a Zn impurity. We infer that this pair is formed when the diffusing positive P vacancy is trapped at the Zn dopant. A rough estimate for the migration energy of the P vacancy results in a value of 1.3eV .
Influence of Resin Composition on the Defect Formation in Alumina Manufactured by Stereolithography
Johansson, Emil; Lidström, Oscar; Johansson, Jan; Lyckfeldt, Ola; Adolfsson, Erik
2017-01-01
Stereolithography (SL) is a technique allowing additive manufacturing of complex ceramic parts by selective photopolymerization of a photocurable suspension containing photocurable monomer, photoinitiator, and a ceramic powder. The manufactured three-dimensional object is cleaned and converted into a dense ceramic part by thermal debinding of the polymer network and subsequent sintering. The debinding is the most critical and time-consuming step, and often the source of cracks. In this study, photocurable alumina suspensions have been developed, and the influence of resin composition on defect formation has been investigated. The suspensions were characterized in terms of rheology and curing behaviour, and cross-sections of sintered specimens manufactured by SL were evaluated by SEM. It was found that the addition of a non-reactive component to the photocurable resin reduced polymerization shrinkage and altered the thermal decomposition of the polymer matrix, which led to a reduction in both delamination and intra-laminar cracks. Using a non-reactive component that decomposed rather than evaporated led to less residual porosity. PMID:28772496
Ion channeling study of defects in compound crystals using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.
2014-08-01
Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.
Two Stages of Surface-Defect Formation in a MOS Structure under Low-Dose Rate Gamma Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V. D., E-mail: wdpopov@mail.ru
2016-03-15
The results of an experimental study of how surface defects are formed at the Si–SiO{sub 2} interface at γ-radiation dose rates of P = 0.1 and 1.0 rad/s are reported. It is found that the surface defects are formed in two stages. The defect-formation mechanisms are analyzed.
Li, Nan; Wei, Chunyao; Olena, Abigail F.; Patton, James G.
2011-01-01
microRNAs (miRNAs) are a family of 21-23 nucleotide endogenous non-coding RNAs that post-transcriptionally regulate gene expression in a sequence-specific manner. Typically, miRNAs downregulate target genes by recognizing and recruiting protein complexes to 3′UTRs, followed by translation repression or mRNA degradation. miR-92 is a well-studied oncogene in mammalian systems. Here, using zebrafish as a model system, we uncovered a novel tissue-inductive role for miR-92 during early vertebrate development. Overexpression resulted in reduced endoderm formation during gastrulation with consequent cardia and viscera bifida. By contrast, depletion of miR-92 increased endoderm formation, which led to abnormal Kupffer's vesicle development and left-right patterning defects. Using target prediction algorithms and reporter constructs, we show that gata5 is a target of miR-92. Alteration of gata5 levels reciprocally mirrored the effects of gain and loss of function of miR-92. Moreover, genetic epistasis experiments showed that miR-92-mediated defects could be substantially suppressed by modulating gata5 levels. We propose that miR-92 is a critical regulator of endoderm formation and left-right asymmetry during early zebrafish development and provide the first evidence for a regulatory function for gata5 in the formation of Kupffer's vesicle and left-right patterning. PMID:21447552
Kibble-Zurek Scaling during Defect Formation in a Nematic Liquid Crystal.
Fowler, Nicholas; Dierking, Dr Ingo
2017-04-05
Symmetry-breaking phase transitions are often accompanied by the formation of topological defects, as in cosmological theories of the early universe, superfluids, liquid crystals or solid-state systems. This scenario is described by the Kibble-Zurek mechanism, which predicts corresponding scaling laws for the defect density ρ. One such scaling law suggests a relation ρ≈τ Q -1/2 with τ Q the change of rate of a control parameter. In contrast to the scaling of the defect density during annihilation with ρ≈t -1 , which is governed by the attraction of defects of the same strength but opposite sign, the defect formation process, which depends on the rate of change of a physical quantity initiating the transition, has only rarely been investigated. Herein, we use nematic liquid crystals as a different system to demonstrate the validity of the predicted scaling relation for defect formation. It is found that the scaling exponent is independent of temperature and material employed, thus universal, as predicted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complexities of management of a urostomy in Ehlers-Danlos syndrome: a reflective account.
Oxenham, Julie
Mary (pseudonym) is a 30-year-old woman who underwent a urinary diversion and formation of an ileal conduit/urostomy (urinary stoma) due to the formation of multiple bladder diverticula, which caused micturition difficulties and recurrent urinary tract infections with associated pain and discomfort. The bladder diverticula were caused by Ehlers-Danlos syndrome (EDS), a hereditary disorder of the connective tissue or, particulary, defective collagen. Surgical intervention in patients with EDS is prone to complications due to poor wound healing, including issues of dehiscence, postoperative bleeding and poor uptake of anaesthesia and analgesia. After an initial presentation of the syndrome of EDS and Mary's history, this article offers a reflective account (informed by Gibbs' Reflective Cycle) and illustrates the complexities of caring for an individual with EDS who undergoes stoma formation. The author, a stoma care nurse, demonstrates how using purposeful reflection resulted in better understanding and awareness of caring for an individual with a rare syndrome and the nursing challenges this presented.
NASA Astrophysics Data System (ADS)
Sorkin, Anastassia; Su, Haibin
2018-06-01
The fusion processes of structures consisting of various combinations between sumanene and corannulene, leading to the formation of graphene nanoribbons (GNRs) under heating are simulated by density-functional-based tight-binding molecular dynamics. Distinct stages are unraveled in the course of GNR formation. Firstly, the carbon fragments coalescence into highly strained framework. Secondly, structural reconstruction invokes breaking most strained bonds to form a GNR structure containing numerous defects. Lastly, defects are remedied by the delicate ‘edge-facilitated self-healing’ process through two synergized edge-related effects: elevated mobility of defects and promoted structure reconstructions owing to the remarkable dynamics associated with edges. Importantly, detailed dynamics in the course of forming GNRs with defects and grain boundaries simulated in this work is valuable to provide better understanding at the atomistic scale of defect formation as well as self-healing in the context of the sp2 carbon network. In particular, edges play important roles in not only generating Stone–Wales (SW), 5-8-5 types of defects, 8-5-5-8 and pentagon–heptagon grain boundaries. In addition, our simulations predict the existence of one novel defect, coined as the Inverse SW defect, which is to be confirmed in future experimental studies. This study of dynamic structural evolution reveals that edges are prone to intrinsic and extrinsic modifications such as atomic-scale defects, structural distortions and inhomogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity
NASA Astrophysics Data System (ADS)
Pacchioni, Gianfranco
2000-05-01
Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.
Salvador-Severo, Karina; Gómez-Caudillo, Leopoldo; Quezada, Héctor; García-Trejo, José de Jesús; Cárdenas-Conejo, Alan; Vázquez-Memije, Martha Elisa; Minauro-Sanmiguel, Fernando
Mitochondriopathies are multisystem diseases affecting the oxidative phosphorylation (OXPHOS) system. Skin fibroblasts are a good model for the study of these diseases. Fibroblasts with a complex IV mitochondriopathy were used to determine the molecular mechanism and the main affected functions in this disease. Skin fibroblast were grown to assure disease phenotype. Mitochondria were isolated from these cells and their proteome extracted for protein identification. Identified proteins were validated with the MitoMiner database. Disease phenotype was corroborated on skin fibroblasts, which presented a complex IV defect. The mitochondrial proteome of these cells showed that the most affected proteins belonged to the OXPHOS system, mainly to the complexes that form supercomplexes or respirosomes (I, III, IV, and V). Defects in complex IV seemed to be due to assembly issues, which might prevent supercomplexes formation and efficient substrate channeling. It was also found that this mitochondriopathy affects other processes that are related to DNA genetic information flow (replication, transcription, and translation) as well as beta oxidation and tricarboxylic acid cycle. These data, as a whole, could be used for the better stratification of these diseases, as well as to optimize management and treatment options. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption
Wimer, H.F.; Yamada, S.S.; Yang, T.; Holmbeck, K.; Foster, B.L.
2016-01-01
Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP−/−) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data indicate that MT1-MMP activity in the dental mesenchyme, and not in epithelial-derived HERS, is essential for proper tooth root formation and eruption. In summary, our studies point to an indispensable role for MT1-MMP-mediated matrix remodeling in tooth eruption through effects on bone formation, soft tissue remodeling and organization of the follicle/PDL region. PMID:26780723
Effect of carbon and alloying solute atoms on helium behaviors in α-Fe
NASA Astrophysics Data System (ADS)
Zhang, Yange; You, Yu-Wei; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.
2017-02-01
Helium bubbles could strongly degrade the mechanical properties of ferritic steels in fission and fusion systems. The formation of helium bubble is directly affected by the interactions between helium and the compositions in steels, such as solute atoms, carbon and irradiation defects. We thereby performed systematical first-principles calculations to investigate the interactions of solute-helium and carbon-solute-helium. It is found that substitutional helium is more attractive than interstitial helium to all the considered 3p, 4p, 5p and 6p solutes. The attraction between carbon and substitutional helium suggests the carbon-solute-helium complex can be formed stably. By examining the charge density difference and thermal stability, it is found that the ternary complex shows stronger attraction with He than that of solute-helium pair for some solutes (S, Se, In, Te, Pb and Bi) and the complex could existed in iron stably at 700 K. The present theoretical results may be helpful for exploring alloy additions to mitigate the formation of large helium bubbles.
Energetics and Defect Interactions of Complex Oxides for Energy Applications
NASA Astrophysics Data System (ADS)
Solomon, Jonathan Michael
The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher energetic stability for La solid solutions than for Y. Additionally, calculations performed for different atomic configurations show a preference for reduced (increased) oxygen vacancy coordination around La (Y) dopants. The current results are shown to be qualitatively consistent with related calculations and calorimetric measurements of heats of formation in other trivalent doped fluorite oxides, which show a tendency for increasing stability and increasing preference for higher oxygen coordination with increasing size of the trivalent impurity. We expand this investigation by considering a series of trivalent rare earth fission product cations, specifically, Y3+ (1.02 A, Shannon radius with eightfold coordination), Dy3+ (1.03 A), Gd 3+ (1.05 A), Eu3+ (1.07 A), Sm3+ (1.08 A), Pm3+ (1.09 A), Nd3+ (1.11 A), Pr3+ (1.13 A), Ce3+ (1.14 A) and La3+ (1.16 A). Compounds with ionic radius of the M3+ species smaller or larger than 1.09 A are found to have energetically preferred defect ordering arrangements. Systems with preferred defect ordering arrangements are suggestive of defect clustering in short range ordered solid solutions, which is expected to limit oxygen ion mobility and therefore the rate of oxidation of spent nuclear fuel. Finally, the energetics of rare earth substituted (M3+= La, Y, and Nd) UO2 solid solutions are investigated by employing a combination of calorimetric measurements and DFT based computations. The calorimetric studies are performed by Lei Zhang and Professor Alexandra Navrotsky at the University of Calfornia, Davis, as part of a joint computational/ experimental collaborative effort supported through the Materials Science of Actinides Energy Frontier Research Center. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides. A consistent trend towards increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of M cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors compositions with higher oxygen-to-metal ratios where charge compensation occurs through the formation of uranium cations with higher oxidation states.
Beattie, Christine E; Kolb, Stephen J
2018-08-15
Spinal muscular atrophy is caused by deletions or mutations in the SMN1 gene that result in reduced expression of the SMN protein. The SMN protein is an essential molecular chaperone that is required for the biogenesis of multiple ribonucleoprotein (RNP) complexes including spliceosomal small nuclear RNPs (snRNPs). Reductions in SMN expression result in a reduced abundance of snRNPs and to downstream RNA splicing alterations. SMN is also present in axons and dendrites and appears to have important roles in the formation of neuronal mRNA-protein complexes during development or neuronal repair. Thus, SMA is an exemplar, selective motor neuron disorder that is caused by defects in fundamental RNA processing events. A detailed molecular understanding of how motor neurons fail, and why other neurons do not, in SMA will yield important principals about motor neuron maintenance and neuronal specificity in neurodegenerative diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Kun, E-mail: ktang@nju.edu.cn; Gu, Ran; Gu, Shulin, E-mail: slgu@nju.edu.cn
2015-04-07
In this article, the authors have conducted an extensive investigation on the roles of intrinsic zinc defects by annealing of a batch of Te-N co-doped ZnO films. The formation and annihilation of Zn interstitial (Zn{sub i}) clusters have been found in samples with different annealing temperatures. Electrical and Raman measurements have shown that the Zn{sub i} clusters are a significant compensation source to holes, and the Te co-doping has a notable effect on suppressing the Zn{sub i} clusters. Meanwhile, shallow acceptors have been identified in photoluminescence spectra. The N{sub O}-Zn-Te complex, zinc vacancy (V{sub Zn})-N{sub O} complex, and V{sub Zn}more » clusters are thought to be the candidates as the shallow acceptors. The evolution of shallow acceptors upon annealing temperature have been also studied. The clustering of V{sub Zn} at high annealing temperature is proposed to be a possible candidate as a stable acceptor in ZnO.« less
Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...
2015-06-16
We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less
NASA Astrophysics Data System (ADS)
Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.
2016-09-01
Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.
Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao
2014-01-01
Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage. PMID:24586618
Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal
NASA Astrophysics Data System (ADS)
Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun
2018-02-01
This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.
Unique Challenges for Modeling Defect Dynamics in Concentrated Solid-Solution Alloys
NASA Astrophysics Data System (ADS)
Zhao, Shijun; Weber, William J.; Zhang, Yanwen
2017-11-01
Recently developed concentrated solid solution alloys (CSAs) are shown to have improved performance under irradiation that depends strongly on the number of alloying elements, alloying species, and their concentrations. In contrast to conventional dilute alloys, CSAs are composed of multiple principal elements situated randomly in a simple crystalline lattice. As a result, the intrinsic disorder has a profound influence on energy dissipation pathways and defect evolution when these CSAs are subjected to energetic particle irradiation. Extraordinary irradiation resistance, including suppression of void formation by two orders of magnitude at an elevated temperature, has been achieved with increasing compositional complexity in CSAs. Unfortunately, the loss of translational invariance associated with the intrinsic chemical disorder poses great challenges to theoretical modeling at the electronic and atomic levels. Based on recent computer simulation results for a set of novel Ni-containing, face-centered cubic CSAs, we review theoretical modeling progress in handling disorder in CSAs and underscore the impact of disorder on defect dynamics. We emphasize in particular the unique challenges associated with the description of defect dynamics in CSAs.
NASA Astrophysics Data System (ADS)
Rahman, Abu Zayed Mohammad Saliqur; Cao, Xingzhong; Wang, Baoyi; Evslin, Jarah; Xu, Qiu; Atobe, Kozo
2016-12-01
We investigated neutron-irradiation-induced point defects in spinel single crystals using a synchrotron VUV-UV source and positron lifetime spectroscopy. Photoexcitation (PE) spectra near 230 nm and their corresponding photoluminescence (PL) spectra at 475 nm were attributed to F-centers. With increasing irradiation temperature and fluence, PE efficiency and PL intensity decreased dramatically. Positron lifetimes (PLT) of neutron-irradiated and non-irradiated samples were measured to identify the cation vacancies. A PLT measurement of 250 ps was obtained in a neutron-irradiated (20 K) sample which is tentatively attributed to an aluminum monovacancy. Decreasing PLT with higher irradiation indicates the formation of oxygen-vacancy complex centers.
Relevance of non-equilibrium defect generation processes to resistive switching in TiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelouahed, Samir; McKenna, Keith P., E-mail: keith.mckenna@york.ac.uk
First principles calculations are employed to identify atomistic pathways for the generation of vacancy-interstitial pair defects in TiO{sub 2}. We find that the formation of both oxygen and titanium defects induces a net dipole moment indicating that their formation can be assisted by an electric field. We also show that the activation barrier to formation of an oxygen vacancy defect can be reduced by trapping of holes which may be injected by the electrode. The calculated activation energies suggest that generation of titanium defects is more favorable than generation oxygen defects although activation energies in both cases are relatively highmore » (>3.3 eV). These results provide much needed insight into an issue that has been widely debated but for which little definitive experimental information is available.« less
Unified Numerical Solver for Device Metastabilities in CdTe Thin-Film PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasileska, Dragica
Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers de-vote significant empirical efforts to study these phenomena and to improve semiconduc-tor device stability. Still, understanding the underlying reasons of these instabilities re-mains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most com-monly alleged causes of metastability in CdTe device, such as “migration of Cu,” have been investigated rigorously overmore » the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses sug-gesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe pro-vide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic de-fects; for example, changing the state of an impurity from an interstitial donor to a sub-stitutional acceptor often is accompanied by generation of a compensating intrinsic in-terstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the elec-trical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire sys-tem and its interactions is required.« less
Metastability and reliability of CdTe solar cells
NASA Astrophysics Data System (ADS)
Guo, Da; Brinkman, Daniel; Shaik, Abdul R.; Ringhofer, Christian; Vasileska, Dragica
2018-04-01
Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers devote significant empirical efforts to study these phenomena and to improve semiconductor device stability. Still, understanding the underlying reasons of these instabilities remains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most commonly alleged causes of metastability in CdTe devices, such as ‘migration of Cu’, have been investigated rigorously over the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses suggesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe provide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic defects; for example, changing the state of an impurity from an interstitial donor to a substitutional acceptor often is accompanied by generation of a compensating intrinsic interstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire system and its interactions is required.
The laser radiation action on the crystal formation processes in the biological fluids
NASA Astrophysics Data System (ADS)
Malov, Alexander N.; Vaichas, Andrey A.; Novikova, Evgeniya A.
2016-11-01
The results of an experimental study of the laser radiation effect on the crystal`s formation in the volume of biological fluids that are complex multi-component solutions have been discussing. Are investigated white and natural bile in vitro. The qualitative changes were observed. Thus, at the bottom of the cell in which bile is not exposed to the laser radiation, the crystals are formed. In the irradiated bile gallstone has a thin layer of a homogeneous viscous colloidal liquid with very small, visible in polarized light crystalline formations was got. Irradiated laser bile's gallstone was covered evenly white deposit without surface defect unlike gallstone in bile without radiation exposure. A possible mechanism to explain the laser radiation action on the mineral formation in biological fluids and also practical application of this effect have been suggesting too.
NASA Astrophysics Data System (ADS)
Böbel, A.; Knapek, C. A.; Räth, C.
2018-05-01
Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes. It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results founded on a solid mathematical framework.
Murray, H W; Hariprashad, J; McDermott, D F; Stoeckle, M Y
1996-01-01
Euthymic C57BL/L ep/ep (pale ear [PE]) mice halt the visceral replication of intracellular Leishmania donovani but fail to properly resolve infection. A previous study identified an isolated defect in tissue granuloma formation in these mice; CD4+ and CD8+ cell number, gamma interferon (IFN-gamma) production, and macrophage antimicrobial activity in vitro were all intact. New in vivo results reported here suggest a considerably more complex immune defect, with evidence indicating (i) enhanced control over L. donovani after transfer of normal C57BL/6 spleen cells, (ii) a partially suppressive Th2 cell-associated response mediated by interleukin-4 (IL-4) but not reversed by CD4+ cell depletion, (iii) absent responses to endogenous Th1 cell lymphokines (IFN-gamma and IL-2) but preserved responsiveness to endogenous tumor necrosis factor alpha, (iv) absent responses to exogenous treatment with recognized antileishmanial cytokines (IFN-gamma, IL-2, IL-12, and granulocyte-macrophage colony-stimulating factor [GM-CSF]) not corrected by transfer of C57BL/6 spleen cells, and (v) a deficient response to antimony chemotherapy. Defective hepatic granuloma formation was not corrected by transfer of C57BL/6 spleen cells or by anti-IL-4 administration. While treatment with IL-2 and GM-CSF modified the tissue reaction and induced selected effector cells to encase tissue macrophages, no antileishmanial activity resulted. Together, these observations suggest that the failure of PE mice to resolve visceral L. donovani infection likely represents expression of multiple suboptimal immune responses and/or partial defects, probably involving a combination of T-cell dysfunction, a Th2 cell response, and target cell (macrophage) hyporesponsiveness. PMID:8557335
Functional reconstruction of complex tendo Achilles defect by free latissimus dorsi muscle flap
Upadhyaya, Divya N.; Khanna, Vaibhav; Kohli, Romesh; Tulsi, Satendar P. S.; Garg, Sandeep
2012-01-01
Managing the complex tendo Achilles defect involves reconstructing the Achilles tendon as well as providing soft tissue cover to the heel area. The advent of microsurgery has revolutionised the reconstruction of this difficult defect providing a number of options to the reconstructive surgeon. We present a case of complex tendo Achilles defect reconstructed by the latissimus dorsi free flap. PMID:23450740
Bryan, Chase D.; Chien, Chi-Bin; Kwan, Kristen M.
2016-01-01
The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1UW1) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1UW1 mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis. PMID:27339294
Zickler, D; de Lares, L; Moreau, P J; Leblon, G
1985-01-01
The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. - The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.
Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo
2017-01-01
DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. PMID:27679476
Density functional theory study of defects in unalloyed δ-Pu
Hernandez, S. C.; Freibert, F. J.; Wills, J. M.
2017-03-19
Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less
Density functional theory study of defects in unalloyed δ-Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, S. C.; Freibert, F. J.; Wills, J. M.
Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less
Walz, Felix H; Gibis, Monika; Schrey, Pia; Herrmann, Kurt; Reichert, Corina L; Hinrichs, Jörg; Weiss, Jochen
2017-10-01
This study aimed to prevent the phenomena of efflorescence formation on the surface of dry fermented sausages due to the complexation of efflorescence forming cations with phosphates. Efflorescence formation is a critical issue constituting a major quality defect, especially of dry fermented sausages. Different phosphates (di- and hexametaphosphate) were added (3.0g/kg) to the sausage batter. As a hypothesis, these additives should complex with one of the main efflorescence-causing substances such as magnesium. The formation of efflorescences was determined for dry fermented sausages without phosphate addition, with diphosphate, or hexametaphosphate addition during 8weeks of storage under modified atmosphere. The visual analyses of the sausage surface revealed high amounts of efflorescences for the control (42.2%) and for the sausages with added diphosphate (40.9%), whereas the sausages containing hexametaphosphate had significantly reduced amounts of efflorescence formation, showing only 11.9% efflorescences after 8weeks of storage. This inhibition was a result of strong complexation of hexametaphosphate with magnesium ions, thus preventing the diffusion of magnesium towards the sausage surface. This can be explained by the magnesium content on the sausage surface that increased by 163.9, 127.8, and 52.8% for the sausages without phosphate, diphosphate, and hexametaphosphate addition, respectively. The mass transport of lactate and creatine was not affected by phosphate addition. Isothermal titration calorimetry confirmed that, theoretically, 4.5g/kg of diphosphate or 2.8g/kg hexametaphosphate are required to complex 0.2g/kg magnesium ions naturally occurring in dry fermented sausages and, thus, the chosen overall phosphate concentration of 3.0g/kg was enough when adding hexametaphosphate, but not for diphosphate, to inhibit the efflorescence formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds.
Solchaga, Luis A; Temenoff, Johnna S; Gao, Jizong; Mikos, Antonios G; Caplan, Arnold I; Goldberg, Victor M
2005-04-01
The natural repair of osteochondral defects can be enhanced with biocompatible, biodegradable materials that support the repair process. It is our hypothesis that hyaluronan-based scaffolds are superior to synthetic scaffolds because they provide biological cues. We tested this thesis by comparing two hyaluronan-based scaffolds [auto cross-linked polysaccharide polymer (ACP) and HYAFF-11] to polyester-based scaffolds [poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA)] with similar pore size, porosity and degradation times. Fifty-four rabbits received bilateral osteochondral defects. One defect received a hyaluronan-based scaffold and the contralateral defect received the corresponding polyester-based scaffold. Rabbits were euthanized 4, 12 and 20 weeks after surgery and the condyles dissected and processed for histology. Only ACP-treated defects presented bone at the base of the defect at 4 weeks. At 12 weeks, only defects treated with rapidly dissolving implants (ACP and PLGA) presented bone reconstitution consistently, while bone was present in only one third of those treated with slowly dissolving scaffolds (HYAFF-11 and PLLA). After 20 weeks, the articular surface of PLGA-treated defects presented fibrillation more frequently than in ACP-treated defects. The surface of defects treated with slowly dissolving scaffolds presented more cracks and fissures. The degradation rate of the scaffolds is critical for the repair process. Slowly dissolving scaffolds sustain thicker cartilage at the surface but, it frequently presents cracks and discontinuities. These scaffolds also delay bone formation at the base of the defects. Hyaluronan-based scaffolds appear to allow faster cell infiltration leading to faster tissue formation. The degradation of ACP leads to rapid bone formation while the slow degradation of HYAFF-11 prolongs the presence of cartilage and delays endochondral bone formation.
Lozano-Carrascal, Naroa; Delgado-Ruiz, Rafael Arcesio; Gargallo-Albiol, Jordi; Maté-Sánchez, José Eduardo; Hernandez Alfaro, Federico; Calvo-Guirado, José Luis
2016-02-01
The aim of the study was to compare the effects of porcine xenografts (MP3(®)) with or without pamindronate for the healing of small and large defects of postextraction sockets. Six beagle dogs were used in the study; second premolars and first molars of the mandible were extracted, small defects (SD) and large defects (LD) were identified. Each defect was measured and randomly filled as follows: SC (small control defects filled with MP3(®) alone), ST (small test defects filled with MP3(®) modified with pamindronate), LC (large control defects filled with MP3(®) alone), LT (large test defects filled with MP3(®) modified with pamindronate). After 4 and 8 weeks, the animals were euthanized and the percentages of new bone formation (NB), residual graft (RG) and connective tissue (CT) were analysed by histology and histomorphometry of undecalcified samples. After 4 weeks, NB formation was higher for ST compared to all groups and for LT compared to LC (P < 0.05); RG was significantly higher in both control groups compared to tests (P < 0.05); and CT was higher in large defects (LC and LT) compared to small defects. After 8 weeks, NB formation was higher for test groups (ST and LT) compared to controls (P < 0.05); RG was significantly higher in both control groups compared to tests (P < 0.05); and CT was higher in large defects (LC and LT) compared to small defects (P < 0.05). Within the limitations of this experimental study, the findings suggest that porcine xenografts modified with pamindronate favours the new bone formation and increased the porcine xenograft substitution/replacement after 4 and 8 weeks of healing. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Olsen, Rikke K J; Olpin, Simon E; Andresen, Brage S; Miedzybrodzka, Zofia H; Pourfarzam, Morteza; Merinero, Begoña; Frerman, Frank E; Beresford, Michael W; Dean, John C S; Cornelius, Nanna; Andersen, Oluf; Oldfors, Anders; Holme, Elisabeth; Gregersen, Niels; Turnbull, Douglass M; Morris, Andrew A M
2007-08-01
Multiple acyl-CoA dehydrogenation deficiency (MADD) is a disorder of fatty acid, amino acid and choline metabolism that can result from defects in two flavoproteins, electron transfer flavoprotein (ETF) or ETF: ubiquinone oxidoreductase (ETF:QO). Some patients respond to pharmacological doses of riboflavin. It is unknown whether these patients have defects in the flavoproteins themselves or defects in the formation of the cofactor, FAD, from riboflavin. We report 15 patients from 11 pedigrees. All the index cases presented with encephalopathy or muscle weakness or a combination of these symptoms; several had previously suffered cyclical vomiting. Urine organic acid and plasma acyl-carnitine profiles indicated MADD. Clinical and biochemical parameters were either totally or partly corrected after riboflavin treatment. All patients had mutations in the gene for ETF:QO. In one patient, we show that the ETF:QO mutations are associated with a riboflavin-sensitive impairment of ETF:QO activity. This patient also had partial deficiencies of flavin-dependent acyl-CoA dehydrogenases and respiratory chain complexes, most of which were restored to control levels after riboflavin treatment. Low activities of mitochondrial flavoproteins or respiratory chain complexes have been reported previously in two of our patients with ETF:QO mutations. We postulate that riboflavin-responsive MADD may result from defects of ETF:QO combined with general mitochondrial dysfunction. This is the largest collection of riboflavin-responsive MADD patients ever reported, and the first demonstration of the molecular genetic basis for the disorder.
On a New Optimization Approach for the Hydroforming of Defects-Free Tubular Metallic Parts
NASA Astrophysics Data System (ADS)
Caseiro, J. F.; Valente, R. A. F.; Andrade-Campos, A.; Jorge, R. M. Natal
2011-05-01
In the hydroforming of tubular metallic components, process parameters (internal pressure, axial feed and counter-punch position) must be carefully set in order to avoid defects in the final part. If, on one hand, excessive pressure may lead to thinning and bursting during forming, on the other hand insufficient pressure may lead to an inadequate filling of the die. Similarly, an excessive axial feeding may lead to the formation of wrinkles, whilst an inadequate one may cause thinning and, consequentially, bursting. These apparently contradictory targets are virtually impossible to achieve without trial-and-error procedures in industry, unless optimization approaches are formulated and implemented for complex parts. In this sense, an optimization algorithm based on differentialevolutionary techniques is presented here, capable of being applied in the determination of the adequate process parameters for the hydroforming of metallic tubular components of complex geometries. The Hybrid Differential Evolution Particle Swarm Optimization (HDEPSO) algorithm, combining the advantages of a number of well-known distinct optimization strategies, acts along with a general purpose implicit finite element software, and is based on the definition of a wrinkling and thinning indicators. If defects are detected, the algorithm automatically corrects the process parameters and new numerical simulations are performed in real time. In the end, the algorithm proved to be robust and computationally cost-effective, thus providing a valid design tool for the conformation of defects-free components in industry [1].
Modeling of dislocation channel width evolution in irradiated metals
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
2017-11-08
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less
Modeling of dislocation channel width evolution in irradiated metals
NASA Astrophysics Data System (ADS)
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
2018-02-01
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.
Modeling of dislocation channel width evolution in irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less
Periodontal regeneration using a bilayered PLGA/calcium phosphate construct.
Carlo Reis, Emily C; Borges, Andréa P B; Araújo, Michel V F; Mendes, Vanessa C; Guan, Limin; Davies, John E
2011-12-01
The regeneration of tissues affected by periodontal disease is a complex process; it encompasses the formation of bone, cementum and periodontal ligament. We developed a semi-rigid PLGA (polylactide-co-glycolide acid)/CaP (calcium phosphate) bilayered biomaterial construct to promote periodontal regeneration, which has a continuous outer barrier membrane and an inner topographically complex component. Our experimental model compared periodontal prophylaxis alone with prophylaxis and biomaterial implantation in the treatment of class II furcation defects in dogs. Clinical evaluation, micro-computed tomography, histology and backscattered electron imaging were used for data analysis. Healing occurred uneventfully and bone volumetric values, trabecular number and trabecular thickness were all significantly greater in the treated group; while trabecular separation was significantly greater in the control group. New cementum, bone, and periodontal ligament with Sharpey fibre insertions were only seen in the treated group. Although periodontal regeneration has been reported elsewhere, the advantages of employing our bilayered PLGA + CaP construct are twofold: 1)it did not collapse into the defect; and, 2) its inner side was able to retain the blood clot throughout the buccal defect. The result was greater periodontal regeneration than has previously been reported with traditional flexible membranes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Carbon as a source for yellow luminescence in GaN: Isolated C{sub N} defect or its complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christenson, Sayre G.; Xie, Weiyu; Sun, Y. Y., E-mail: suny4@rpi.edu
2015-10-07
We study three carbon defects in GaN, isolated C{sub N} and its two complexes with donors C{sub N}–O{sub N}, and C{sub N}–Si{sub Ga}, as a cause of the yellow luminescence using accurate hybrid density functional calculation, which includes the semi-core Ga 3d electrons as valence electrons and uses a larger 300-atom supercell. We show that the isolated C{sub N} defect yields good agreement with experiment on the photoluminescence (PL) peak position, zero-phonon line, and thermodynamic defect transition level. We find that the defect state of the complexes that is involved in the PL process is the same as that ofmore » the C{sub N} defect. The role of the positively charged donors (O{sub N} or Si{sub Ga}) next to C{sub N} is to blue-shift the PL peak. Therefore, the complexes cannot be responsible for the same PL peak as isolated C{sub N}. Our detailed balance analysis further suggests that under thermal equilibrium at typical growth temperature, the concentration of isolated C{sub N} defect is orders of magnitude higher than the defect complexes, which is a result of the small binding energy in these complexes.« less
Hao le, Thi; Duy, Phan Q; An, Min; Talbot, Jared; Iyer, Chitra C; Wolman, Marc; Beattie, Christine E
2017-11-29
Motoneurons establish a critical link between the CNS and muscles. If motoneurons do not develop correctly, they cannot form the required connections, resulting in movement defects or paralysis. Compromised development can also lead to degeneration because the motoneuron is not set up to function properly. Little is known, however, regarding the mechanisms that control vertebrate motoneuron development, particularly the later stages of axon branch and dendrite formation. The motoneuron disease spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein leading to defects in vertebrate motoneuron development and synapse formation. Here we show using zebrafish as a model system that SMN interacts with the RNA binding protein (RBP) HuD in motoneurons in vivo during formation of axonal branches and dendrites. To determine the function of HuD in motoneurons, we generated zebrafish HuD mutants and found that they exhibited decreased motor axon branches, dramatically fewer dendrites, and movement defects. These same phenotypes are present in animals expressing low levels of SMN, indicating that both proteins function in motoneuron development. HuD binds and transports mRNAs and one of its target mRNAs, Gap43 , is involved in axonal outgrowth. We found that Gap43 was decreased in both HuD and SMN mutants. Importantly, transgenic expression of HuD in motoneurons of SMN mutants rescued the motoneuron defects, the movement defects, and Gap43 mRNA levels. These data support that the interaction between SMN and HuD is critical for motoneuron development and point to a role for RBPs in SMA. SIGNIFICANCE STATEMENT In zebrafish models of the motoneuron disease spinal muscular atrophy (SMA), motor axons fail to form the normal extent of axonal branches and dendrites leading to decreased motor function. SMA is caused by low levels of the survival motor neuron (SMN) protein. We show in motoneurons in vivo that SMN interacts with the RNA binding protein, HuD. Novel mutants reveal that HuD is also necessary for motor axonal branch and dendrite formation. Data also revealed that both SMN and HuD affect levels of an mRNA involved in axonal growth. Moreover, expressing HuD in SMN-deficient motoneurons can rescue the motoneuron development and motor defects caused by low levels of SMN. These data support that SMN:HuD complexes are essential for normal motoneuron development and indicate that mRNA handling is a critical component of SMA. Copyright © 2017 the authors 0270-6474/17/3711559-13$15.00/0.
Loss of the Mammalian DREAM Complex Deregulates Chondrocyte Proliferation
Forristal, Chantal; Henley, Shauna A.; MacDonald, James I.; Bush, Jason R.; Ort, Carley; Passos, Daniel T.; Talluri, Srikanth; Ishak, Charles A.; Thwaites, Michael J.; Norley, Chris J.; Litovchick, Larisa; DeCaprio, James A.; DiMattia, Gabriel; Holdsworth, David W.; Beier, Frank
2014-01-01
Mammalian DREAM is a conserved protein complex that functions in cellular quiescence. DREAM contains an E2F, a retinoblastoma (RB)-family protein, and the MuvB core (LIN9, LIN37, LIN52, LIN54, and RBBP4). In mammals, MuvB can alternatively bind to BMYB to form a complex that promotes mitotic gene expression. Because BMYB-MuvB is essential for proliferation, loss-of-function approaches to study MuvB have generated limited insight into DREAM function. Here, we report a gene-targeted mouse model that is uniquely deficient for DREAM complex assembly. We have targeted p107 (Rbl1) to prevent MuvB binding and combined it with deficiency for p130 (Rbl2). Our data demonstrate that cells from these mice preferentially assemble BMYB-MuvB complexes and fail to repress transcription. DREAM-deficient mice show defects in endochondral bone formation and die shortly after birth. Micro-computed tomography and histology demonstrate that in the absence of DREAM, chondrocytes fail to arrest proliferation. Since DREAM requires DYRK1A (dual-specificity tyrosine phosphorylation-regulated protein kinase 1A) phosphorylation of LIN52 for assembly, we utilized an embryonic bone culture system and pharmacologic inhibition of (DYRK) kinase to demonstrate a similar defect in endochondral bone growth. This reveals that assembly of mammalian DREAM is required to induce cell cycle exit in chondrocytes. PMID:24710275
Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.
Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan
2016-07-01
The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Kinetics of Schottky defect formation and annihilation in single crystal TlBr.
Bishop, Sean R; Tuller, Harry L; Kuhn, Melanie; Ciampi, Guido; Higgins, William; Shah, Kanai S
2013-07-28
The kinetics for Schottky defect (Tl and Br vacancy pair) formation and annihilation in ionically conducting TlBr are characterized through a temperature induced conductivity relaxation technique. Near room temperature, defect generation-annihilation was found to take on the order of hours before equilibrium was reached after a step change in temperature, and that mechanical damage imparted on the sample rapidly increases this rate. The rate limiting step to Schottky defect formation-annihilation is identified as being the migration of lower mobility Tl (versus Br), with an estimate for source-sink density derived from calculated diffusion lengths. This study represents one of the first investigations of Schottky defect generation-annihilation kinetics and demonstrates its utility in quantifying detrimental mechanical damage in radiation detector materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Xiao, H. Y.; Zhang, Y.
2014-05-19
Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recoverymore » process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.« less
NASA Astrophysics Data System (ADS)
Chen, Rongzhen; Persson, Clas
2017-05-01
Reducing or controlling cation disorder in Cu2ZnSnS4 is a major challenge, mainly due to low formation energies of the anti-site pair ( CuZn - + ZnCu +) and the compensated Cu vacancy ( VCu - + ZnCu +). We study the electronic and optical properties of Cu2XSnS4 (CXTS, with X = Be, Mg, Ca, Mn, Fe, and Ni) and the impact of defect pairs, by employing the first-principles method within the density functional theory. The calculations indicate that these compounds can be grown in either the kesterite or stannite tetragonal phase, except Cu2CaSnS4 which seems to be unstable also in its trigonal phase. In the tetragonal phase, all six compounds have rather similar electronic band structures, suitable band-gap energies Eg for photovoltaic applications, as well as good absorption coefficients α(ω). However, the formation of the defect pairs ( C u X + X Cu) and ( V Cu + X Cu) is an issue for these compounds, especially considering the anti-site pair which has formation energy in the order of ˜0.3 eV. The ( C u X + X Cu) pair narrows the energy gap by typically ΔEg ≈ 0.1-0.3 eV, but for Cu2NiSnS4, the complex yields localized in-gap states. Due to the low formation energy of ( C u X + X Cu), we conclude that it is difficult to avoid disordering from the high concentration of anti-site pairs. The defect concentration in Cu2BeSnS4 is however expected to be significantly lower (as much as ˜104 times at typical device operating temperature) compared to the other compounds, which is partly explained by larger relaxation effects in Cu2BeSnS4 as the two anti-site atoms have different sizes. The disadvantage is that the stronger relaxation has a stronger impact on the band-gap narrowing. Therefore, instead of trying to reduce the anti-site pairs, we suggest that one shall try to compensate ( C u X + X Cu) with ( V Cu + X Cu) or other defects in order to stabilize the gap energy.
Zander, Gesa; Kramer, Wilfried; Seel, Anika; Krebber, Heike
2017-11-01
Gle2/Rae1 is highly conserved from yeast to humans and has been described as an mRNA export factor. Additionally, it is implicated in the anaphase-promoting complex-mediated cell cycle regulation in higher eukaryotes. Here we identify an involvement for Saccharomyces cerevisiae Gle2 in septin organization, which is crucial for cell cycle progression and cell division. Gle2 genetically and physically interacts with components of the septin ring. Importantly, deletion of GLE2 leads to elongated buds, severe defects in septin-assembly and their cellular mislocalization. Septin-ring formation is triggered by the septin-regulating GTPase Cdc42, which establishes and maintains cell polarity. Additionally, activity of the master cell cycle regulator Cdc28 (Cdk1) is needed, which is, besides other functions, also required for G 2 /M-transition, and in yeast particularly responsible for initiating the apical-isotropic switch. We show genetic and physical interactions of Gle2 with both Cdc42 and Cdc28. Most importantly, we find that gle2∆ severely mislocalizes Cdc42, leading to defects in septin-complex formation and cell division. Thus, our findings suggest that Gle2 participates in the efficient organization of the septin assembly network, where it might act as a scaffold protein. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.
Apoptosis in Early Salivary Gland Duct Morphogenesis and Lumen Formation.
Teshima, T H N; Wells, K L; Lourenço, S V; Tucker, A S
2016-03-01
Salivary glands are essential for the maintenance of oral health by providing lubrication and antimicrobial protection to the mucosal and tooth surfaces. Saliva is modified and delivered to the oral cavity by a complex multifunctional ductal system. During development, these ducts form as solid tubes, which undergo cavitation to create lumens. Apoptosis has been suggested to play a role in this cavitation process along with changes in cell polarity. Here, we show that apoptosis occurs from the very earliest stages of mouse salivary gland development, much earlier than previously reported. Apoptotic cells were observed in the center of the first epithelial stalk at early-stage embryonic day 12.5 (E12.5) according to both TUNEL staining and cleaved caspase 3 immunofluorescence. The presumptive lumen space was highlighted by the colocalization of a predictive lumen marker, cytokeratin 7. At E14.5, as lumens start to form throughout the glands, apoptotic expression decreased while cytokeratin 7 remained positive. In vitro inhibition of all caspases in E12.5 and E13.5 salivary glands resulted in wider ducts, as compared with the controls, and a defect in lumen formation. In contrast, no such defect in lumen formation was observed at E14.5. Our data indicate that apoptosis is involved during early stages of gland formation (E12.5 onward) and appears important for shaping the forming ducts. © International & American Associations for Dental Research 2015.
Effects of Excess Carriers on Charged Defect Concentrations in Wide Bandgap Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberi, Kirstin M; Scarpulla, Michael A.
Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transitionmore » level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.« less
Effects of excess carriers on charged defect concentrations in wide bandgap semiconductors
NASA Astrophysics Data System (ADS)
Alberi, Kirstin; Scarpulla, Michael A.
2018-05-01
Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transition level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellner, Markus; Rohrmoser, Michaela; Forné, Ignasi
PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extendedmore » form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3′ end formation of 47S rRNA independently of the PeBoW-complex. - Highlights: • DEAD-box helicase DDX27 is a new constituent of the PeBoW-complex. • The N-terminal F×F motif of DDX27 interacts with the PeBoW components Pes1 and Bop1. • Nucleolar anchoring of DDX27 via its basic C-terminal domain is RNA dependent. • Knockdown of DDX27 induces a specific defect in 3′ end formation of 47S rRNA.« less
Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3
NASA Astrophysics Data System (ADS)
Buckeridge, J.; Taylor, F. H.; Catlow, C. R. A.
2016-04-01
Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U =4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol +U ) is most appropriate for studying structure versus spin state, while the local density approximation (LDA +U ) is most appropriate for determining accurate energetics for defect properties.
Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys
Hale, Lucas M.; Zimmerman, Jonathan A.; Wong, Bryan M.
2016-05-18
Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material’s structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of materialmore » defects, and we compare the material behavior displayed with expectations from experiment and theory. In conclusion, we also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations.« less
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4
Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu; ...
2018-01-08
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less
Male Fertility Defect Associated with Disrupted BRCA1-PALB2 Interaction in Mice*
Simhadri, Srilatha; Peterson, Shaun; Patel, Dharm S.; Huo, Yanying; Cai, Hong; Bowman-Colin, Christian; Miller, Shoreh; Ludwig, Thomas; Ganesan, Shridar; Bhaumik, Mantu; Bunting, Samuel F.; Jasin, Maria; Xia, Bing
2014-01-01
PALB2 links BRCA1 and BRCA2 in homologous recombinational repair of DNA double strand breaks (DSBs). Mono-allelic mutations in PALB2 increase the risk of breast, pancreatic, and other cancers, and biallelic mutations cause Fanconi anemia (FA). Like Brca1 and Brca2, systemic knock-out of Palb2 in mice results in embryonic lethality. In this study, we generated a hypomorphic Palb2 allele expressing a mutant PALB2 protein unable to bind BRCA1. Consistent with an FA-like phenotype, cells from the mutant mice showed hypersensitivity and chromosomal breakage when treated with mitomycin C, a DNA interstrand crosslinker. Moreover, mutant males showed reduced fertility due to impaired meiosis and increased apoptosis in germ cells. Interestingly, mutant meiocytes showed a significant defect in sex chromosome synapsis, which likely contributed to the germ cell loss and fertility defect. Our results underscore the in vivo importance of the PALB2-BRCA1 complex formation in DSB repair and male meiosis. PMID:25016020
Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys
NASA Astrophysics Data System (ADS)
Jin, Shuoxue; Cao, Xingzhong; Cheng, Guodong; Lian, Xiangyu; Zhu, Te; Zhang, Peng; Yu, Runsheng; Wang, Baoyi
2018-04-01
We have studied the effect of isothermal annealing on the evolution of the open-volume defect and the Cu precipitate in deformed Fe0.15Cu, Fe0.3Cu and Fe0.6Cu alloys. Using the coincidence Doppler broadening, positron annihilation lifetime and the S-W couples, the evolution of local electronic circumstance around the annihilation sites, open-volume defects and interaction between open-volume defects and Cu precipitates were measured as a function of the isothermal annealing temperatures. Cold rolling deformation induced an obvious increment in S parameters due to the formation of open-volume defects. Annealing not only resulted in gradual recovery of open-volume defects and Cu thermal precipitation, but also promoted the combination and interaction between defects and Cu precipitates. The interaction between open-volume defects and Cu precipitates was revealed clearly by the view point of S-W relationship. The S-W interaction for the different CumVn complexes was also calculated theoretically by MIKA-Doppler, which supports our experimental observations qualitatively. The results indicate that open-volume defects were formed first after cold rolling, followed by the Cu precipitation and recovery of open-volume defects, Cu precipitates recovered at the end. It is interesting that the trajectory of (S, W) points with increasing annealing temperature formed a similar closed "Parallelogram" shape. It is benefit for revealing the behavior of Cu thermal precipitation and their evolution in various Cu-bearing steels under thermal treatment. In addition, we also investigated the Cu content effect on the Cu precipitation in FeCu alloys, and the Cu precipitate phenomenon was enhanced in higher Cu content alloys.
Laham-Karam, Nihay; Selig, Sara; Ehrlich, Marcelo; Bacharach, Eran
2010-01-01
The p12 protein is a cleavage product of the Gag precursor of the murine leukemia virus (MLV). Specific mutations in p12 have been described that affect early stages of infection, rendering the virus replication-defective. Such mutants showed normal generation of genomic DNA but no formation of circular forms, which are markers of nuclear entry by the viral DNA. This suggested that p12 may function in early stages of infection but the precise mechanism of p12 action is not known. To address the function and follow the intracellular localization of the wt p12 protein, we generated tagged p12 proteins in the context of a replication-competent virus, which allowed for the detection of p12 at early stages of infection by immunofluorescence. p12 was found to be distributed to discrete puncta, indicative of macromolecular complexes. These complexes were localized to the cytoplasm early after infection, and thereafter accumulated adjacent to mitotic chromosomes. This chromosomal accumulation was impaired for p12 proteins with a mutation that rendered the virus integration-defective. Immunofluorescence demonstrated that intracellular p12 complexes co-localized with capsid, a known constituent of the MLV pre-integration complex (PIC), and immunofluorescence combined with fluorescent in situ hybridization (FISH) revealed co-localization of the p12 proteins with the incoming reverse transcribed viral DNA. Interactions of p12 with the capsid and with the viral DNA were also demonstrated by co-immunoprecipitation. These results imply that p12 proteins are components of the MLV PIC. Furthermore, a large excess of wt PICs did not rescue the defect in integration of PICs derived from mutant p12 particles, demonstrating that p12 exerts its function as part of this complex. Altogether, these results imply that p12 proteins are constituent of the MLV PIC and function in directing the PIC from the cytoplasm towards integration. PMID:21085616
Characterization and classification of zebrafish brain morphology mutants
Lowery, Laura Anne; De Rienzo, Gianluca; Gutzman, Jennifer H.; Sive, Hazel
2010-01-01
The mechanisms by which the vertebrate brain achieves its three-dimensional structure are clearly complex, requiring the functions of many genes. Using the zebrafish as a model, we have begun to define genes required for brain morphogenesis, including brain ventricle formation, by studying 16 mutants previously identified as having embryonic brain morphology defects. We report the phenotypic characterization of these mutants at several time-points, using brain ventricle dye injection, imaging, and immunohistochemistry with neuronal markers. Most of these mutants display early phenotypes, affecting initial brain shaping, while others show later phenotypes, affecting brain ventricle expansion. In the early phenotype group, we further define four phenotypic classes and corresponding functions required for brain morphogenesis. Although we did not use known genotypes for this classification, basing it solely on phenotypes, many mutants with defects in functionally related genes clustered in a single class. In particular, class 1 mutants show midline separation defects, corresponding to epithelial junction defects; class 2 mutants show reduced brain ventricle size; class 3 mutants show midbrain-hindbrain abnormalities, corresponding to basement membrane defects; and class 4 mutants show absence of ventricle lumen inflation, corresponding to defective ion pumping. Later brain ventricle expansion requires the extracellular matrix, cardiovascular circulation, and transcription/splicing-dependent events. We suggest that these mutants define processes likely to be used during brain morphogenesis throughout the vertebrates. PMID:19051268
NASA Astrophysics Data System (ADS)
Li, Yan; Kowalski, Piotr M.
2018-07-01
In order to get better understanding of the selective order-disorder transition in pyrochlore compounds, using ab initio methods we calculated the formation energies of coupled cation anti-site and anion Frenkel pair defects and the energy barriers for the oxygen migration for number of families of A2B2 O7 pyrochlore-type compounds. While these parameters have been previously computed with force field-based methods, the ab initio results provide more reliable values that can be confidently used in subsequent analysis. We found a fairly good correlation between the formation energies of the coupled defects and the stability field of pyrochlores. In line with previous studies, the compounds that crystallize in defect fluorite structure are found to have smaller values of coupled defect formation energies than those crystallizing in the pyrochlore phase, although the correlation is not that sharp as in the case of isolated anion Frenkel pair defect. The investigation of the energy barriers for the oxygen migration shows that it is not a good, sole indicator of the tendency of the order-disorder phase transition in pyrochlores. However, we found that the oxygen migration barrier is reduced in the presence of the cation antisite defect. This points at disordering-induced enhancement of oxygen diffusion in pyrochlore compounds.
Ocular abnormalities in mice lacking the immunoglobulin superfamily member Cdo.
Zhang, Wei; Mulieri, Philip J; Gaio, Ursula; Bae, Gyu-Un; Krauss, Robert S; Kang, Jong-Sun
2009-10-01
Vertebrate eye development requires a series of complex morphogenetic and inductive events to produce a lens vesicle centered within the bilayered optic cup and a posteriorly positioned optic stalk. Multiple congenital eye defects, including microphthalmia and coloboma, result from defects in early eye morphogenesis. Cdo is a multifunctional cell surface immunoglobulin superfamily member that interacts with and mediates signaling by cadherins and netrins to regulate myogenesis. In addition, Cdo plays an essential role in early forebrain development by functioning as coreceptor for sonic hedgehog. It is reported here that Cdo is expressed in a dynamic, but dorsally restricted, fashion during early eye development, and that mice lacking Cdo display multiple eye defects. Anomalies seen in Cdo(-/-) mice include coloboma (failure to close the optic fissure); failure to form a proper boundary between the retinal pigmented epithelium and optic stalk; defective lens formation, including failure to separate from the surface ectoderm; and microphthalmia. Consistent with this wide array of defects, developing eyes of Cdo(-/-) mice show altered expression of several regulators of dorsoventral eye patterning, including Pax6, Pax2, and Tbx5. Taken together, these findings show that Cdo is required for normal eye development and is required for normal expression of patterning genes in both the ventral and dorsal domains. The multiple eye development defects seen in Cdo(-/-) mice suggest that mutations in human Cdo could contribute to congenital eye anomalies, such as Jacobsen syndrome, which is frequently associated with ocular defects, including coloboma and Peters' anomaly.
Panteris, Emmanuel; Achlati, Theonymphi; Daras, Gerasimos; Rigas, Stamatis
2018-06-06
Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.
Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys
Shi, Shi; He, Mo-Rigen; Jin, Ke; ...
2018-01-10
Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported in this paper. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size andmore » fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. Finally, these dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.« less
Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shi; He, Mo-Rigen; Jin, Ke
Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported in this paper. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size andmore » fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. Finally, these dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khairallah, Saad A.; Anderson, Andrew T.; Rubenchik, Alexander
Our study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone.more » Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Finally, we discuss remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity.« less
Khairallah, Saad A.; Anderson, Andrew T.; Rubenchik, Alexander; ...
2016-02-23
Our study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone.more » Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Finally, we discuss remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity.« less
Hydrogen passivation of polycrystalline silicon thin films
NASA Astrophysics Data System (ADS)
Scheller, L.-P.; Weizman, M.; Simon, P.; Fehr, M.; Nickel, N. H.
2012-09-01
The influence of post-hydrogenation on the electrical and optical properties of solid phase crystallized polycrystalline silicon (poly-Si) was examined. The passivation of grain-boundary defects was measured as a function of the passivation time. The silicon dangling-bond concentration decreases with increasing passivation time due to the formation of Si-H complexes. In addition, large H-stabilized platelet-like clusters are generated. The influence of H on the electrical properties was investigated using temperature dependent conductivity and Hall-effect measurements. For poly-Si on Corning glass, the dark conductivity decreases upon hydrogenation, while it increases when the samples are fabricated on silicon-nitride covered Borofloat glass. Hall-effect measurements reveal that for poly-Si on Corning glass the hole concentration and the mobility decrease upon post-hydrogenation, while a pronounced increase is observed for poly-Si on silicon-nitride covered Borofloat glass. This indicates the formation of localized states in the band gap, which is supported by sub band-gap absorption measurments. The results are discussed in terms of hydrogen-induced defect passivation and generation mechanisms.
Role of RANKL (TNFSF11)-dependent osteopetrosis in the dental phenotype of Msx2 null mutant mice.
Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher; Berdal, Ariane; Lézot, Frédéric
2013-01-01
The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 (-/-)) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 (-/-) mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 (-/-) mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 (-/-) Rank(Tg) mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 (-/-) mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor.
Sequerra, Eduardo B; Goyal, Raman; Castro, Patricio A; Levin, Jacqueline B; Borodinsky, Laura N
2018-05-16
Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation. SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy. Copyright © 2018 the authors 0270-6474/18/384762-12$15.00/0.
Nanocarbon: Defect Architectures and Properties
NASA Astrophysics Data System (ADS)
Vuong, Amanda
The allotropes of carbon make its solid phases amongst the most diverse of any element. It can occur naturally as graphite and diamond, which have very different properties that make them suitable for a wide range of technological and commercial purposes. Recent developments in synthetic carbon include Highly Oriented Pyrolytic Graphite (HOPG) and nano-carbons, such as fullerenes, nanotubes and graphene. The main industrial application of bulk graphite is as an electrode material in steel production, but in purified nuclear graphite form, it is also used as a moderator in Advanced Gas-cooled Reactors across the United Kingdom. Both graphene and graphite are damaged over time when subjected to bombardment by electrons, neutrons or ions, and these have a wide range of effects on their physical and electrical properties, depending on the radiation flux and temperature. This research focuses on intrinsic defects in graphene and dimensional change in nuclear graphite. The method used here is computational chemistry, which complements physical experiments. Techniques used comprise of density functional theory (DFT) and molecular dynamics (MD), which are discussed in chapter 2 and chapter 3, respectively. The succeeding chapters describe the results of simulations performed to model defects in graphene and graphite. Chapter 4 presents the results of ab initio DFT calculations performed to investigate vacancy complexes that are formed in AA stacked bilayer graphene. In AB stacking, carbon atoms surrounding the lattice vacancies can form interlayer structures with sp2 bonding that are lower in energy compared to in-plane reconstructions. From the investigation of AA stacking, sp2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp2 bonded wormhole between the layers. Also, a new class of mezzanine structure characterised by sp3 interlayer bonding, resembling a prismatic vacancy loop has also been identified. The mezzanine, which is a V6 hexavacancy variant, where six sp3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA stacked layers. Chapter 5 presents the results of ab initio DFT calculations performed to investigate the wormhole and mezzanine defect that were identified in chapter 4 and the ramp defect discovered by Trevethan et al.. DFT calculations were performed on these defects in twisted bilayer graphene. From the investigation of vacancy complexes in twisted bilayer graphene, it is found that vacancy complexes are unstable in the twisted region and are more favourable in formation energy when the stacking arrangement is close to AA or AB stacking. It has also been discovered that the ramp defect is more stable in the twisted bilayer graphene compared to the mezzanine defect. Chapter 6 presents the results of ab initio DFT calculations performed to investigate a form of extending defect, prismatic edge dislocation. Suarez-Martinez et al.'s research suggest the armchair core is disconnected from any other layer, whilst the zigzag core is connected. In the investigation here, the curvature of the mezzanine defect allows it to swing between the armchair, zigzag and Klein in the AA stacking. For the AB stacking configuration, the armchair and zigzag core are connected from any other layer. Chapter 7 present results of MD simulations using the adaptive intermolecular reactive empirical bond order (AIREBO) potential to investigate the dimensional change of graphite due to the formation of vacancies present in a single crystal. It has been identified that there is an expansion along the c-axis, whilst a contraction along the a- and b- axes due to the coalescence of vacancy forming in-plane and between the layers. The results here are in good agreement with experimental studies of low temperature irradiation. The final chapter gives conclusions to this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, William, E-mail: william.hsu@utexas.edu; Kim, Taegon; Chou, Harry
2016-07-07
Although the diffusion control and dopant activation of Ge p-type junctions are straightforward when using B{sup +} implantation, the use of the heavier BF{sub 2}{sup +} ions or even BF{sup +} is still favored in terms of shallow junction formation and throughput—because implants can be done at higher energies, which can give higher beam currents and beam stability—and thus the understanding of the effect of F co-doping becomes important. In this work, we have investigated diffusion and end-of-range (EOR) defect formation for B{sup +}, BF{sup +}, and BF{sub 2}{sup +} implants in crystalline and pre-amorphized Ge, employing rapid thermal annealingmore » at 600 °C and 800 °C for 10 s. It is demonstrated that the diffusion of B is strongly influenced by the temperature, the presence of F, and the depth of amorphous/crystalline interface. The B and F diffusion profiles suggest the formation of B–F complexes and enhanced diffusion by interaction with point defects. In addition, the strong chemical effect of F is found only for B in Ge, while such an effect is vanishingly small for samples implanted with F alone, or co-implanted with P and F, as evidenced by the high residual F concentration in the B-doped samples after annealing. After 600 °C annealing for 10 s, interstitial-induced compressive strain was still observed in the EOR region for the sample implanted with BF{sup +}, as measured by X-ray diffraction. Further analysis by cross-sectional transmission electron microscopy showed that the {311} interstitial clusters are the majority type of EOR defects. The impact of these {311} defects on the electrical performance of Ge p{sup +}/n junctions formed by BF{sup +} implantation was evaluated.« less
Light-Induced Peroxide Formation in ZnO: Origin of Persistent Photoconductivity
Kang, Youngho; Nahm, Ho-Hyun; Han, Seungwu
2016-01-01
The persistent photoconductivity (PPC) in ZnO has been a critical problem in opto-electrical devices employing ZnO such as ultraviolet sensors and thin film transistors for the transparent display. While the metastable state of oxygen vacancy (VO) is widely accepted as the microscopic origin of PPC, recent experiments on the influence of temperature and oxygen environments are at variance with the VO model. In this study, using the density-functional theory calculations, we propose a novel mechanism of PPC that involves the hydrogen-zinc vacancy defect complex (2H-VZn). We show that a substantial amount of 2H-VZn can exist during the growth process due to its low formation energy. The light absorption of 2H-VZn leads to the metastable state that is characterized by the formation of (peroxide) around the defect, leaving the free carriers in the conduction band. Furthermore, we estimate the lifetime of photo-electrons to be ~20 secs, which is similar to the experimental observation. Our model also explains the experimental results showing that PPC is enhanced (suppressed) in oxygen-rich (low-temperature) conditions. By revealing a convincing origin of PPC in ZnO, we expect that the present work will pave the way for optimizing optoelectronic properties of ZnO. PMID:27748378
Highly Conductive Thin Uniform Gold-Coated DNA Nanowires.
Stern, Avigail; Eidelshtein, Gennady; Zhuravel, Roman; Livshits, Gideon I; Rotem, Dvir; Kotlyar, Alexander; Porath, Danny
2018-06-01
Over the past decades, DNA, the carrier of genetic information, has been used by researchers as a structural template material. Watson-Crick base pairing enables the formation of complex 2D and 3D structures from DNA through self-assembly. Various methods have been developed to functionalize these structures for numerous utilities. Metallization of DNA has attracted much attention as a means of forming conductive nanostructures. Nevertheless, most of the metallized DNA wires reported so far suffer from irregularity and lack of end-to-end electrical connectivity. An effective technique for formation of thin gold-coated DNA wires that overcomes these drawbacks is developed and presented here. A conductive atomic force microscopy setup, which is suitable for measuring tens to thousands of nanometer long molecules and wires, is used to characterize these DNA-based nanowires. The wires reported here are the narrowest gold-coated DNA wires that display long-range conductivity. The measurements presented show that the conductivity is limited by defects, and that thicker gold coating reduces the number of defects and increases the conductive length. This preparation method enables the formation of molecular wires with dimensions and uniformity that are much more suitable for DNA-based molecular electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q
2017-02-01
To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Flagellar motility is critical for Listeria monocytogenes biofilm formation.
Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto
2007-06-01
The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.
Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P
2016-06-29
The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.
Martineau, Céline N.; Beckerich, Jean-Marie; Kabani, Mehdi
2007-01-01
The yeast Saccharomyces cerevisiae has been used as a model for fungal biofilm formation due to its ability to adhere to plastic surfaces and to form mats on low-density agar petri plates. Mats are complex multicellular structures composed of a network of cables that form a central hub from which emanate multiple radial spokes. This reproducible and elaborate pattern is indicative of a highly regulated developmental program that depends on specific transcriptional programming, environmental cues, and possibly cell–cell communication systems. While biofilm formation and sliding motility were shown to be strictly dependent on the cell-surface adhesin Flo11p, little is known about the cellular machinery that controls mat formation. Here we show that Hsp70 molecular chaperones play key roles in this process with the assistance of the nucleotide exchange factors Fes1p and Sse1p and the Hsp40 family member Ydj1p. The disruption of these cofactors completely abolished mat formation. Furthermore, complex interactions among SSA genes were observed: mat formation depended mostly on SSA1 while minor defects were observed upon loss of SSA2; additional mutations in SSA3 or SSA4 further enhanced these phenotypes. Importantly, these mutations did not compromise invasive growth or Flo11p expression, suggesting that Flo11p-independent pathways are necessary to form mats. PMID:17947402
Mapping of interaction domains between human repair proteins ERCC1 and XPF.
de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H
1998-09-15
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1.
Mapping of interaction domains between human repair proteins ERCC1 and XPF.
de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H
1998-01-01
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1. PMID:9722633
Tbx5 Buffers Inherent Left/Right Asymmetry Ensuring Symmetric Forelimb Formation
Nishimoto, Satoko; Kucharska, Anna; Newbury-Ecob, Ruth; Logan, Malcolm P. O.
2016-01-01
The forelimbs and hindlimbs of vertebrates are bilaterally symmetric. The mechanisms that ensure symmetric limb formation are unknown but they can be disrupted in disease. In Holt-Oram Syndrome (HOS), caused by mutations in TBX5, affected individuals have left-biased upper/forelimb defects. We demonstrate a role for the transcription factor Tbx5 in ensuring the symmetric formation of the left and right forelimb. In our mouse model, bilateral hypomorphic levels of Tbx5 produces asymmetric forelimb defects that are consistently more severe in the left limb than the right, phenocopying the left-biased limb defects seen in HOS patients. In Tbx hypomorphic mutants maintained on an INV mutant background, with situs inversus, the laterality of defects is reversed. Our data demonstrate an early, inherent asymmetry in the left and right limb-forming regions and that threshold levels of Tbx5 are required to overcome this asymmetry to ensure symmetric forelimb formation. PMID:27992425
Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon
NASA Astrophysics Data System (ADS)
Trzynadlowski, Bart
The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source code for both models is included. A moment-based model for dislocation loop formation from {311} defects in ion-implanted silicon was also developed and validated against experimental data. Ab initio density functional theory calculations of stacking faults and edge dislocations were performed to extract energies and elastic properties. This allowed the effect of applied stress on the evolution of {311} defects and dislocation loops to be investigated.
Mammalian Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics
NASA Astrophysics Data System (ADS)
Anderson, Gregory Arthur
Cardiovascular development is a process that involves the timing of multiple molecular events, and numerous subtle three-dimensional conformational changes. Traditional developmental biology techniques have provided large quantities of information as to how these complex organ systems develop. However, the major drawback of the majority of current developmental biological imaging is that they are two-dimensional in nature. It is now well recognized that circulation of blood is required for normal patterning and remodeling of blood vessels. Normal blood vessel formation is dependent upon a complex network of signaling pathways, and genetic mutations in these pathways leads to impaired vascular development, heart failure, and lethality. As such, it is not surprising that mutant mice with aberrant cardiovascular patterning are so common, since normal development requires proper coordination between three systems: the heart, the blood, and the vasculature. This thesis describes the implementation of a three-dimensional imaging technique, optical projection tomography (OPT), in conjunction with a computer-based registration algorithm to statistically analyze developmental differences in groups of wild-type mouse embryos. Embryos that differ by only a few hours' gestational time are shown to have developmental differences in blood vessel formation and heart development progression that can be discerned. This thesis describes how we analyzed mouse models of cardiovascular perturbation by OPT to detect morphological differences in embryonic development in both qualitative and quantitative ways. Both a blood vessel specific mutation and a cardiac specific mutation were analyzed, providing evidence that developmental defects of these types can be quantified. Finally, we describe the implementation of OPT imaging to identify statistically significant phenotypes from three different mouse models of cardiovascular perturbation across a range of developmental time points. Image registration methods, combined with intensity- and deformation-based analyses are described and utilized to fully characterize myosin light chain 2a (Mlc2a), delta-like ligand 4 (Dll4), and Endoglin (Eng) mutant mouse embryos. We show that Eng mutant embryos are statistically similar to the Mlc2a phenotype, confirming that these mouse mutants suffer from a primary cardiac developmental defect. Thus, a loss of hemodynamic force caused by defective pumping of the heart is the primary developmental defect affecting these mice.
Liu, Na; Yam, ChiYung
2018-03-07
As an alternative to methylammonium lead triiodide (MAPbI 3 ), formamidinium lead triiodide (FAPbI 3 ) perovskites have recently attracted significant attention because of their higher stability and smaller band gaps. Here, based on first-principles calculations, we investigate systematically the intrinsic defects in FAPbI 3 . While methylammonium (MA)-related defects MA I and I MA in MAPbI 3 have high formation energies, we found that formamidinium (FA)-related defects V FA , FA I and I FA in FAPbI 3 have much lower formation energies. Antisites FA I and I FA create deep levels in the band gap, and they can act as recombination centers and result in reduced carrier lifetimes and low open circuit voltages in FAPbI 3 -based photovoltaic devices. We further demonstrate that through cation mixing of MA and FA in perovskites the formation of these defects can be substantially suppressed.
NASA Astrophysics Data System (ADS)
Chakrabarti, Debalay; Chakrabarti, Ajit Kumar; Roy, Sanat Kumar
2018-05-01
The causes of defect generation in Ag-7.5 wt% Cu coinage alloy billets and in rolled and polished blanks were evaluated in this paper. Microstructural and compositional study of the as-cast billets indicated that excessive formation of gas-porosity and shrinkage cavity was responsible for crack formation during rolling. Carbon pick-up from charcoal flux cover used during melting, formation of CuS inclusions due to high-S content and rapid work-hardening also contributed to cracking during rolling. In order to prevent the defect generation, several measures were adopted. Those measures significantly reduced the defect generation and improved the surface luster of the trial rolled strips.
Advanced EUV mask and imaging modeling
NASA Astrophysics Data System (ADS)
Evanschitzky, Peter; Erdmann, Andreas
2017-10-01
The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.
Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo
2017-01-09
DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel
NASA Astrophysics Data System (ADS)
Jin, Hyung-Ha; Kwon, Junhyun; Shin, Chansun
2014-01-01
The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.
Procoagulant expression in platelets and defects leading to clinical disorders.
Solum, N O
1999-12-01
Hemostasis is a result of interactions between fibrillar structures in the damaged vessel wall, soluble components in plasma, and cellular elements in blood represented mainly by platelets and platelet-derived material. During formation of a platelet plug at the damaged vessel wall, factors IXa and VIIIa form the "tenase" complex, leading to activation of factor X on the surface of activated platelets. Subsequently, factors Xa and Va form the "prothrombinase" complex, which catalyzes the formation of thrombin from prothrombin, leading to fibrin formation. An enhanced expression of negatively charged phosphatidylserine in the outer membrane leaflet resulting from a breakdown of the phospholipid asymmetry is essential for the formation of the procoagulant surface. An ATP-driven and inward-acting aminophospholipid "translocase" and a "floppase" counterbalancing this have been postulated to maintain the dynamic state of phospholipid asymmetry. A phospholipid-nonspecific "scramblase," believed to be responsible for the fast breakdown of the asymmetry during cell activation, has recently been isolated from erythrocytes, cloned, and characterized. An intracellular calcium-binding segment and one or more thioesterified fatty acids are probably of importance for calcium-induced activation of this transporter protein. Cytosolic calcium ions also activate the calcium-dependent protease calpain associated with shedding of microvesicles from the transformed platelet membrane. These are shed with a procoagulant surface and with surface-exposed P-selectin from the alpha-granules. Theoretically, therefore, microvesicles can be involved in both coagulation and inflammation. Scott syndrome is probably caused by a defect in the activation of an otherwise normal scramblase, resulting in a relatively severe bleeding tendency. In Stormorken syndrome, the patients demonstrate a spontaneous surface expression of aminophospholipids. Activated platelets and the presence of procoagulant microvesicles have been demonstrated in several clinical conditions, such as thrombotic and idiopathic thrombocytopenia, disseminated intravascular coagulation, and HIV-1 infection, and have been found to be associated with fibrin in thrombosis. Procoagulant microvesicles may also be formed from other cells as a result of apoptosis.
NASA Technical Reports Server (NTRS)
Becia, Piotr; Wiegel, Michaela E. K.
2004-01-01
A research carried out under Award Number NAG8-1487 was aimed at to the design, conduct and analysis of experiments directed at the identification and control of gravitational effects on crystal growth, segregation and defect formation in the Sillenite system: bismuth silicate (Bi(12)SiO(20)). Correlation analyses was conducted in order to establish the influence of gravity related defects introduced during crystal growth on critical, application specific properties. Achievement of the states objective was conducted during the period from Feb. 01, 1998 to Dec. 31, 2003 with the following anticipated milestones: 1. Establishment of capabilities for (a) reproducible Czochralski and Bridgman-type growth of BSO single crystals and (b) for comprehensive analysis of crystalline and chemical defects as well as for selective property characterization of grown crystals (year 1). 2. Design and execution of critical space growth experiment(s) based on analyses of prefatory space results (experiments aimed at establishing the viability of planned approaches and procedures) and on unresolved issues related to growth, segregation and defect formation associated with conventional growth in Bridgman geometries. Comparative analysis of growth under conventional and under mu-g conditions; identification of gravity related defect formation during conventional Bridgman growth and formulation of approaches for their control (years 2 and 3). Development of charge confinement system which permits growth interface demarcation (in a mu-g environment) as well as minimization of confinement related stress and contamination during growth; design of complementary mu-g growth experiments aimed at quantitative mu-g growth and segregation analyses (year 4). 3. Conduct of quantitative mu-g growth experiments directed at: (a) identification and control of gravity related crystalline and chemical defect formation during single crystal growth of Bi(12)SiO(20) and at (b) defect engineering -the development of approaches to the controlled generation during crystal growth of specified point defects in homogeneous distribution (year 5). The proposed research places focus on a class of materials which have outstanding electrical and optical properties but have so far failed to reach their potential, primarily because of our inability to control adequately their stoichiometry and crystal defect formation as well as confinement related contamination and lattice stress.
Effect of collagen sponge and fibrin glue on bone repair
SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz
2015-01-01
ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464
Masterson, Erin E; Fitzpatrick, Annette L; Enquobahrie, Daniel A; Mancl, Lloyd A; Eisenberg, Dan T A; Conde, Esther; Hujoel, Philippe P
2018-05-01
Bioarchaeological findings have linked defective enamel formation in preadulthood with adult mortality. We investigated how defective enamel formation in infancy and childhood is associated with risk factors for adult morbidity and mortality in adolescents. This cohort study of 349 Amerindian adolescents (10-17 years of age) related extent of enamel defects on the central maxillary incisors (none, less than 1/3, 1/3 to 2/3, more than 2/3) to adolescent anthropometrics (height, weight) and biomarkers (hemoglobin, glycated hemoglobin, white blood cell count, and blood pressure). Risk differences and 95% confidence intervals were estimated using multiple linear regression. Enamel defects and stunted growth were compared in their ability to predict adolescent health indicators using log-binomial regression and receiver operating characteristics (ROCs). Greater extent of defective enamel formation on the tooth surface was associated with shorter height (-1.35 cm, 95% CI: -2.17, -0.53), lower weight (-0.98 kg, 95% CI: -1.70, -0.26), lower hemoglobin (-0.36 g/dL, 95% CI: -0.59, -0.13), lower glycated hemoglobin (-0.04 %A 1c , 95% CI: -0.08, -0.00008), and higher white blood cell count (0.74 10 9 /L, 95% CI: 0.35, 1.14) in adolescence. Extent of enamel defects and stunted growth independently performed similarly as risk factors for adverse adolescent outcomes, including anemia, prediabetes/type II diabetes, elevated WBC count, prehypertension/hypertension, and metabolic health. Defective enamel formation in infancy and childhood predicted adolescent health outcomes and may be primarily associated with infection. Extent of enamel defects and stunted growth may be equally predictive of adverse adolescent health outcomes. © 2018 Wiley Periodicals, Inc.
Fused cerebral organoids model interactions between brain regions.
Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A
2017-07-01
Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.
Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects
NASA Astrophysics Data System (ADS)
Kaur, Sarbjit
Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting. A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation generated a range of viscosities. The chemically cured complex coacervate, with sodium (meta) periodate crosslinker, was tested in pig animal studies, showing promising results. The adhesive adhered to the fetal membrane tissue, with maximum strength of 473 +/- 82 KPa on aluminum substrates. The elastic modulus increased with increasing methacrylation on both the polyphosphate and polyamine within the coacervate. Photopolymerized complex coacervate adhesive was photocured using Eosin-Y and treiethanolamine photoinitiators, using a green laser diode. Soft substrate bond strength increased with increasing PEG-dA concentration to a maximum of ~90 kPa. The crosslinked complex coacervate adhesives with PEG networks swelled less than 5% over 30 days in physiological conditions. The sterile glue was nontoxic, deliverable through a fine cannula, and stable over a long time period. Preliminary animal studies show a novel innovative method to seal fetal membrane defects in humans, in utero.
Kaur, Harmanpreet; Corscadden, Kathryn; Ware, Jerry; Othman, Maha
2017-02-28
Platelet defects due to hyper-responsive GPIbα causing enhanced VWF interaction, counter-intuitively result in bleeding rather than thrombosis. The historical explanation of platelet/VWF clearance fails to explain mechanisms of impaired haemostasis particularly in light of reported poor platelet binding to fibrinogen. This study aimed to evaluate the defects of platelets with hyper-responsive GPIbα and their contribution to impaired in vivo thrombosis. Using the PT-VWD mouse model, platelets from the hTg G233V were compared to control hTg WT mice. Platelets' pro-coagulant capacity was evaluated using flowcytometry assessment of P-selectin and annexin V. Whole blood platelet aggregation in response to ADP, collagen and thrombin was tested. Clot kinetics using laser injury thrombosis model and the effect of GPIbα inhibition in vivo using 6B4; a monoclonal antibody, were evaluated. Thrombin-induced platelet P-selectin and PS exposure were significantly reduced in hTg G233V compared to hTg WT and not significantly different when compared to unstimulated platelets. The hTg G233V platelets aggregated normally in response to collagen, and had a delayed response to ADP and thrombin, when compared to hTg WT platelets. Laser injury showed significant impairment of in vivo thrombus formation in hTg G233V compared to hTg WT mice. There was a significant lag in in vitro clot formation in turbidity assay but no impairment in thrombin generation was observed using thromboelastography. The in vivo inhibition of GPIbα facilitated new - unstable - clot formation but did not improve the lag. We conclude platelets with hyper-responsive GPIbα have complex intrinsic defects beyond the previously described mechanisms. Abnormal signalling through GPIbα and potential therapy using inhibitors require further investigations.
Biochemical and genetic analysis of Leigh syndrome patients in Korea.
Chae, Jong-Hee; Lee, Jin Sook; Kim, Ki Joong; Hwang, Yong Seung; Hirano, Michio
2008-06-01
Sixteen Korean patients with Leigh syndrome were identified at the Seoul National University Children's Hospital in 2001-2006. Biochemical or molecular defects were identified in 14 patients (87.5%). Thirteen patients had respiratory chain enzyme defects; 9 had complex I deficiency, and 4 had combined defects of complex I+III+IV. Based on the biochemical defects, targeted genetic studies in 4 patients with complex I deficiency revealed two heteroplasmic mitochondrial DNA mutations in ND genes. One patient had the mitochondrial DNA T8993G point mutation. No mitochondrial DNA defects were identified in 11 (68.7%) of our LS patients, who probably have mutations in nuclear DNA. Although a limited study based in a single tertiary medical center, our findings suggest that isolated complex I deficiency may be the most common cause of Leigh syndrome in Korea.
Cardiac troponin T is necessary for normal development in the embryonic chick heart.
England, Jennifer; Pang, Kar Lai; Parnall, Matthew; Haig, Maria Isabel; Loughna, Siobhan
2016-09-01
The heart is the first functioning organ to develop during embryogenesis. The formation of the heart is a tightly regulated and complex process, and alterations to its development can result in congenital heart defects. Mutations in sarcomeric proteins, such as alpha myosin heavy chain and cardiac alpha actin, have now been associated with congenital heart defects in humans, often with atrial septal defects. However, cardiac troponin T (cTNT encoded by gene TNNT2) has not. Using gene-specific antisense oligonucleotides, we have investigated the role of cTNT in chick cardiogenesis. TNNT2 is expressed throughout heart development and in the postnatal heart. TNNT2-morpholino treatment resulted in abnormal atrial septal growth and a reduction in the number of trabeculae in the developing primitive ventricular chamber. External analysis revealed the development of diverticula from the ventricular myocardial wall which showed no evidence of fibrosis and still retained a myocardial phenotype. Sarcomeric assembly appeared normal in these treated hearts. In humans, congenital ventricular diverticulum is a rare condition, which has not yet been genetically associated. However, abnormal haemodynamics is known to cause structural defects in the heart. Further, structural defects, including atrial septal defects and congenital diverticula, have previously been associated with conduction anomalies. Therefore, to provide mechanistic insights into the effect that cTNT knockdown has on the developing heart, quantitative PCR was performed to determine the expression of the shear stress responsive gene NOS3 and the conduction gene TBX3. Both genes were differentially expressed compared to controls. Therefore, a reduction in cTNT in the developing heart results in abnormal atrial septal formation and aberrant ventricular morphogenesis. We hypothesize that alterations to the haemodynamics, indicated by differential NOS3 expression, causes these abnormalities in growth in cTNT knockdown hearts. In addition, the muscular diverticula reported here suggest a novel role for mutations of structural sarcomeric proteins in the pathogenesis of congenital cardiac diverticula. From these studies, we suggest TNNT2 is a gene worthy of screening for those with a congenital heart defect, particularly atrial septal defects and ventricular diverticula. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC
NASA Astrophysics Data System (ADS)
Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.
2018-05-01
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
Mattheij, Nadine J A; Braun, Attila; van Kruchten, Roger; Castoldi, Elisabetta; Pircher, Joachim; Baaten, Constance C F M J; Wülling, Manuela; Kuijpers, Marijke J E; Köhler, Ralf; Poole, Alastair W; Schreiber, Rainer; Vortkamp, Andrea; Collins, Peter W; Nieswandt, Bernhard; Kunzelmann, Karl; Cosemans, Judith M E M; Heemskerk, Johan W M
2016-02-01
Scott syndrome is a rare bleeding disorder, characterized by altered Ca(2+)-dependent platelet signaling with defective phosphatidylserine (PS) exposure and microparticle formation, and is linked to mutations in the ANO6 gene, encoding anoctamin (Ano)6. We investigated how the complex platelet phenotype of this syndrome is linked to defective expression of Anos or other ion channels. Mice were generated with heterozygous of homozygous deficiency in Ano6, Ano1, or Ca(2+)-dependent KCa3.1 Gardos channel. Platelets from these mice were extensively analyzed on molecular functions and compared with platelets from a patient with Scott syndrome. Deficiency in Ano1 or Gardos channel did not reduce platelet responses compared with control mice (P > 0.1). In 2 mouse strains, deficiency in Ano6 resulted in reduced viability with increased bleeding time to 28.6 min (control 6.4 min, P < 0.05). Platelets from the surviving Ano6-deficient mice resembled platelets from patients with Scott syndrome in: 1) normal collagen-induced aggregate formation (P > 0.05) with reduced PS exposure (-65 to 90%); 2) lowered Ca(2+)-dependent swelling (-80%) and membrane blebbing (-90%); 3) reduced calpain-dependent protein cleavage (-60%); and 4) moderately affected apoptosis-dependent PS exposure. In conclusion, mouse deficiency of Ano6 but not of other channels affects viability and phenocopies the complex changes in platelets from hemostatically impaired patients with Scott syndrome. © FASEB.
Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy
NASA Astrophysics Data System (ADS)
Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.
2001-10-01
The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.
Mishra, Swati; Choe, Youngshik; Pleasure, Samuel J.; Siegenthaler, Julie A.
2016-01-01
Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant’s complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations. PMID:27671872
Mishra, Swati; Choe, Youngshik; Pleasure, Samuel J; Siegenthaler, Julie A
2016-12-01
Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant's complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations. Copyright © 2016 Elsevier Inc. All rights reserved.
Generation and characterization of point defects in SrTiO3 and Y3Al5O12
NASA Astrophysics Data System (ADS)
Selim, F. A.; Winarski, D.; Varney, C. R.; Tarun, M. C.; Ji, Jianfeng; McCluskey, M. D.
Positron annihilation lifetime spectroscopy (PALS) was applied to characterize point defects in single crystals of Y3Al5O12 and SrTiO3 after populating different types of defects by relevant thermal treatments. In SrTiO3, PALS measurements identified Sr vacancy, Ti vacancy, vacancy complexes of Ti-O (vacancy) and hydrogen complex defects. In Y3Al5O12 single crystals the measurements showed the presence of Al-vacancy, (Al-O) vacancy and Al-vacancy passivated by hydrogen. These defects are shown to play the major role in defining the electronic and optical properties of these complex oxides.
NASA Astrophysics Data System (ADS)
Crespillo, M. L.; Agulló-López, F.; Zucchiatti, A.
2017-03-01
An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO3 crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.
Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, D.; Robson, J.D.; Withers, P.J.
2015-06-15
Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al{sub 8}Mn{sub 5} in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallicmore » phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets.« less
Bioprosthetics and repair of complex aerodigestive defects
Udelsman, Brooks; Mathisen, Douglas J.
2018-01-01
Aerodigestive defects involving the trachea, bronchi and esophagus are a result of prolonged intubation, operative complications, congenital defects, trauma, radiation and neoplastic disease. The vast majority of these defects may be repaired primarily. Rarely, due the size of the defect, underlying complexity, or unfavorable patient characteristics, primary repair is not possible. One alternative to primary repair is bioprosthetic repair. Materials such as acellular dermal matrix and aortic homograft have been used in a variety of applications, including closure of tracheal, bronchial and esophageal defects. Herein, we review the use of bioprosthetics in the repair of aerodigestive defects, along with the unique advantages and disadvantages of these repairs. PMID:29707507
Mundy, Christina; Yasuda, Tadashi; Kinumatsu, Takashi; Yamaguchi, Yu; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi; Koyama, Eiki; Pacifici, Maurizio
2011-03-01
Heparan sulfate proteoglycans (HSPGs) regulate a number of major developmental processes, but their roles in synovial joint formation remain unknown. Here we created conditional mouse embryo mutants lacking Ext1 in developing joints by mating Ext1(f/f) and Gdf5-Cre mice. Ext1 encodes a subunit of the Ext1/Ext2 Golgi-associated protein complex responsible for heparan sulfate (HS) synthesis. The proximal limb joints did form in the Gdf5-Cre;Ext1(f/f) mutants, but contained an uneven articulating superficial zone that expressed very low lubricin levels. The underlying cartilaginous epiphysis was deranged as well and displayed random patterns of cell proliferation and matrillin-1 and collagen IIA expression, indicative of an aberrant phenotypic definition of the epiphysis itself. Digit joints were even more affected, lacked a distinct mesenchymal interzone and were often fused likely as a result of local abnormal BMP and hedgehog activity and signaling. Interestingly, overall growth and lengthening of long bones were also delayed in the mutants. To test whether Ext1 function is needed for joint formation at other sites, we examined the spine. Indeed, entire intervertebral discs, normally composed by nucleus pulposus surrounded by the annulus fibrosus, were often missing in Gdf5-Cre;Ext1(f/f) mice. When disc remnants were present, they displayed aberrant organization and defective joint marker expression. Similar intervertebral joint defects and fusions occurred in Col2-Cre;β-catenin(f/f) mutants. The study provides novel evidence that local Ext1 expression and HS production are needed to maintain the phenotype and function of joint-forming cells and coordinate local signaling by BMP, hedgehog and Wnt/β-catenin pathways. The data indicate also that defects in joint formation reverberate on, and delay, overall long bone growth. Copyright © 2011 Elsevier Inc. All rights reserved.
CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations
NASA Astrophysics Data System (ADS)
Naik, Mit H.; Jain, Manish
2018-05-01
Charged point defects in materials are widely studied using Density Functional Theory (DFT) packages with periodic boundary conditions. The formation energy and defect level computed from these simulations need to be corrected to remove the contributions from the spurious long-range interaction between the defect and its periodic images. To this effect, the CoFFEE code implements the Freysoldt-Neugebauer-Van de Walle (FNV) correction scheme. The corrections can be applied to charged defects in a complete range of material shapes and size: bulk, slab (or two-dimensional), wires and nanoribbons. The code is written in Python and features MPI parallelization and optimizations using the Cython package for slow steps.
Impact of tool wear on cross wedge rolling process stability and on product quality
NASA Astrophysics Data System (ADS)
Gutierrez, Catalina; Langlois, Laurent; Baudouin, Cyrille; Bigot, Régis; Fremeaux, Eric
2017-10-01
Cross wedge rolling (CWR) is a metal forming process used in the automotive industry. One of its applications is in the manufacturing process of connecting rods. CWR transforms a cylindrical billet into a complex axisymmetrical shape with an accurate distribution of material. This preform is forged into shape in a forging die. In order to improve CWR tool lifecycle and product quality it is essential to understand tool wear evolution and the physical phenomena that change on the CWR process due to the resulting geometry of the tool when undergoing tool wear. In order to understand CWR tool wear behavior, numerical simulations are necessary. Nevertheless, if the simulations are performed with the CAD geometry of the tool, results are limited. To solve this difficulty, two numerical simulations with FORGE® were performed using the real geometry of the tools (both up and lower roll) at two different states: (1) before starting lifecycle and (2) end of lifecycle. The tools were 3D measured with ATOS triple scan by GOM® using optical 3D measuring techniques. The result was a high-resolution point cloud of the entire geometry of the tool. Each 3D point cloud was digitalized and converted into a STL format. The geometry of the tools in a STL format was input for the 3D simulations. Both simulations were compared. Defects of products obtained in simulation were compared to main defects of products found industrially. Two main defects are: (a) surface defects on the preform that are not fixed in the die forging operation; and (b) Preform bent (no longer straight), with two possible impacts: on the one hand that the robot cannot grab it to take it to the forging stage; on the other hand, an unfilled section in the forging operation.
Influence of annealing atmosphere on formation of electrically-active defects in rutile TiO2
NASA Astrophysics Data System (ADS)
Zimmermann, C.; Bonkerud, J.; Herklotz, F.; Sky, T. N.; Hupfer, A.; Monakhov, E.; Svensson, B. G.; Vines, L.
2018-04-01
Electronic states in the upper part of the bandgap of reduced and/or hydrogenated n-type rutile TiO2 single crystals have been studied by means of thermal admittance and deep-level transient spectroscopy measurements. The studies were performed at sample temperatures between 28 and 300 K. The results reveal limited charge carrier freeze-out even at 28 K and evidence the existence of dominant shallow donors with ionization energies below 25 meV. Interstitial atomic hydrogen is considered to be a major contributor to these shallow donors, substantiated by infrared absorption measurements. Three defect energy levels with positions of about 70 meV, 95 meV, and 120 meV below the conduction band edge occur in all the studied samples, irrespective of the sample production batch and the post-growth heat treatment used. The origin of these levels is discussed in terms of electron polarons, intrinsic point defects, and/or common residual impurities, where especially interstitial titanium atoms, oxygen vacancies, and complexes involving Al atoms appear as likely candidates. In contrast, no common deep-level defect, exhibiting a charge state transition in the 200-700 meV range below the conduction band edge, is found in different samples. This may possibly indicate a strong influence on deep-level defects by the post-growth heat treatments employed.
Chen, Changchun; Huang, Bo; Eliasson, Mattias; Rydén, Patrik; Byström, Anders S
2011-09-01
Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm⁵U₃₄), 5-methoxycarbonylmethyluridine (mcm⁵U₃₄), and 5-methoxycarbonylmethyl-2-thiouridine (mcm⁵s²U₃₄) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNA(Lys)(s²UUU), tRNA(Gln)(s²UUG), and tRNA(Glu)(s²UUC), which in a wild-type background contain the mcm⁵s²U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U₃₄. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm⁵s²U nucleoside in tRNA(Lys)(mcm⁵s²UUU), tRNA(Gln)(mcm⁵s²UUG), and tRNA(Glu)(mcm⁵s²UUC). These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U₃₄ are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants.
Chen, Changchun; Huang, Bo; Eliasson, Mattias; Rydén, Patrik; Byström, Anders S.
2011-01-01
Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm5U34), 5-methoxycarbonylmethyluridine (mcm5U34), and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNALys s2 UUU, tRNAGln s2 UUG, and tRNAGlu s2 UUC, which in a wild-type background contain the mcm5s2U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U34. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm5s2U nucleoside in tRNALys mcm5s2UUU, tRNAGln mcm5s2UUG, and tRNAGlu mcm5s2UUC. These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U34 are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants. PMID:21912530
Kattimani, Vivekanand S; Chakravarthi, Srinivas P; Neelima Devi, K Naga; Sridhar, Meka S; Prasad, L Krishna
2014-01-01
Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The aim of this study was to evaluate and compare bovine derived hydroxyapatite (BHA) and synthetic hydroxyapatite (SHA) graft material as bone graft substitute in maxillary cystic bony defects. Patients were analyzed by computerized densitometric study and digital radiography. In this study, 12 patients in each group were included randomly after clinical and radiological evaluation. The integration of hydroxyapatite was assessed with mean bone density, surgical site margin, and radiological bone formation characteristics, of the successful graft cases using computer densitometry and radio-visiograph. Statistical analysis was carried out using Mann-Whitney U-test, Wilcoxon matched pairs test and paired t-test. By the end of 24 th week, the grafted defects radiologically and statistically showed similar volumes of bone formation. However, the significant changes observed in the formation of bone and merging of material and surgical site margin at 1 st week to 1 st month. The results were significant and correlating with all the parameters showing the necessity of the grafting for early bone formation. However, the bone formation pattern is different in both BHA and SHA group at 3 rd month interval with significant P value. Both BHA and SHA graft materials are biocompatible for filling bone defects, showing less resorption and enhanced bone formation with similar efficacy. Our study showed maximum bone healing within 12 weeks of grafting of defects. The BHA is economical; however, price difference between the two is very nominal.
Vacancy Defects as Compensating Centers in Mg-Doped GaN
NASA Astrophysics Data System (ADS)
Hautakangas, S.; Oila, J.; Alatalo, M.; Saarinen, K.; Liszkay, L.; Seghier, D.; Gislason, H. P.
2003-04-01
We apply positron annihilation spectroscopy to identify VN-MgGa complexes as native defects in Mg-doped GaN. These defects dissociate in postgrowth annealings at 500 800 °C. We conclude that VN-MgGa complexes contribute to the electrical compensation of Mg as well as the activation of p-type conductivity in the annealing. The observation of VN-MgGa complexes confirms that vacancy defects in either the N or Ga sublattice are abundant in GaN at any position of the Fermi level during growth, as predicted previously by theoretical calculations.
Murakami, S; Takayama, S; Kitamura, M; Shimabukuro, Y; Yanagi, K; Ikezawa, K; Saho, T; Nozaki, T; Okada, H
2003-02-01
Several growth factors (or cytokines) have been recently investigated for their use as potential therapeutics for periodontal tissue regeneration. The objective of this study was to evaluate periodontal tissue regeneration, including new bone and cementum formation, following topical application of recombinant basic fibroblast growth factor (bFGF, FGF-2) to furcation class II defects. Twelve furcation class II bone defects were surgically created in six beagle dogs, then recombinant bFGF (30 micro g/site) + gelatinous carrier was topically applied to the bony defects. Six weeks after application, periodontal regeneration was analyzed. In all sites where bFGF was applied, periodontal ligament formation with new cementum deposits and new bone formation was observed histomorphometrically, in amounts greater than in the control sites. Basic FGF-applied sites exhibited significant regeneration as represented by the new bone formation rate (NBR) (83.6 +/- 14.3%), new trabecular bone formation rate (NTBR) (44.1 +/- 9.5%), and new cementum formation rate (NCR) (97.0 +/- 7.5%). In contrast, in the carrier-only sites, the NBR, NTBR, and NCR were 35.4 +/- 8.9%, 16.6 +/- 6.2%, and 37.2 +/- 15.1%, respectively. Moreover, no instances of epithelial down growth, ankylosis, or root resorption were observed in the bFGF-applied sites examined. The present results indicate that topical application of bFGF can enhance considerable periodontal regeneration in artificially created furcation class II bone defects of beagle dogs.
Ion-beam-induced damage formation in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rischau, C. W.; Schnohr, C. S.; Wendler, E.
2011-06-01
Damage formation in <111>- and <112>-oriented CdTe single crystals irradiated at room temperature and 15 K with 270 keV Ar or 730 keV Sb ions was investigated in situ using Rutherford backscattering spectroscopy (RBS) in channeling configuration. Defect profiles were calculated from the RBS spectra using the computer code DICADA and additional energy-dependent RBS measurements were performed to identify the type of defects. At both temperatures no formation of a buried amorphous layer was detected even after prolonged irradiation with several 10{sup 16} ions/cm{sup 2}. The fact that CdTe is not rendered amorphous even at 15 K suggests that themore » high resistance to amorphization is caused by the high ionicity of CdTe rather than thermal effects. The calculated defect profiles show the formation of a broad defect distribution that extends much deeper into the crystal than the projected range of the implanted ions at both temperatures. The post-range defects in CdTe thus do not seem to be of thermal origin either, but are instead believed to result from migration driven by the electronic energy loss.« less
Cellular and molecular defects in a patient with Hermansky-Pudlak syndrome type 5.
Stephen, Joshi; Yokoyama, Tadafumi; Tolman, Nathanial J; O'Brien, Kevin J; Nicoli, Elena-Raluca; Brooks, Brian P; Huryn, Laryssa; Titus, Steven A; Adams, David R; Chen, Dong; Gahl, William A; Gochuico, Bernadette R; Malicdan, May Christine V
2017-01-01
Hermansky-Pudlak syndrome (HPS) is a heterogeneous group of genetic disorders typically manifesting with tyrosinase-positive oculocutaneous albinism, bleeding diathesis, and pulmonary fibrosis, in some subtypes. Most HPS subtypes are associated with defects in Biogenesis of Lysosome-related Organelle Complexes (BLOCs), which are groups of proteins that function together in the formation and/or trafficking of lysosomal-related endosomal compartments. BLOC-2, for example, consists of the proteins HPS3, HPS5, and HPS6. Here we present an HPS patient with defective BLOC-2 due to a novel intronic mutation in HPS5 that activates a cryptic acceptor splice site. This mutation leads to the insertion of nine nucleotides in-frame and results in a reduced amount of HPS5 at the transcript and protein level. In studies using skin fibroblasts derived from the proband and two other individuals with HPS-5, we found a perinuclear distribution of acidified organelles in patient cells compared to controls. Our results suggest the role of HPS5 in the endo-lysosomal dynamics of skin fibroblasts.
Cliffe, Matthew J; Castillo-Martínez, Elizabeth; Wu, Yue; Lee, Jeongjae; Forse, Alexander C; Firth, Francesca C N; Moghadam, Peyman Z; Fairen-Jimenez, David; Gaultois, Michael W; Hill, Joshua A; Magdysyuk, Oxana V; Slater, Ben; Goodwin, Andrew L; Grey, Clare P
2017-04-19
We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf 12 O 8 (OH) 14 ), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.
CLOSURE OF LARYNGECTOMY DEFECTS IN THE AGE OF CHEMORADIATION THERAPY
Hanasono, Matthew M.; Lin, Derrick; Wax, Mark K.
2014-01-01
The use of chemoradiation therapy in laryngeal cancer has resulted in significant reconstructive challenges. Although reconstruction of salvage laryngectomy defects remains controversial, current literature supports aggressive management of these defects with vascularized tissue, even when there is sufficient pharyngeal tissue present for primary closure. Significant advancement in reconstructive techniques has permitted improved outcomes in patients with advanced disease who require total laryngopharyngectomy or total laryngoglossectomy. Use of enteric and fasciocutaneous flaps result in good patient outcomes. Finally, wound complication rates after salvage surgery approach 60% depending on comorbid conditions such as cardiac insufficiency, hypothyroidism, or extent of previous treatment. Neck dehiscence, great vessel exposure, fistula formation, or cervical skin necrosis results in complex wounds that can often be treated initially with negative pressure dressings followed by definitive reconstruction. The timing of repair and approach to the vessel-depleted neck also present challenges in this patient population. Currently, there is significant institutional bias in the management of the patient with postchemoradiation salvage laryngectomy. Future prospective multi-institutional studies are certainly needed to more clearly define optimal treatment of these difficult patients. PMID:21416549
NASA Astrophysics Data System (ADS)
Gillman, Edward; Rajantie, Arttu
2018-05-01
The Kibble Zurek mechanism in a relativistic ϕ4 scalar field theory in D =(1 +1 ) is studied using uniform matrix product states. The equal time two point function in momentum space G2(k ) is approximated as the system is driven through a quantum phase transition at a variety of different quench rates τQ. We focus on looking for signatures of topological defect formation in the system and demonstrate the consistency of the picture that the two point function G2(k ) displays two characteristic scales, the defect density n and the kink width dK. Consequently, G2(k ) provides a clear signature for the formation of defects and a well defined measure of the defect density in the system. These results provide a benchmark for the use of tensor networks as powerful nonperturbative nonequilibrium methods for relativistic quantum field theory, providing a promising technique for the future study of high energy physics and cosmology.
Deshpande, Girish; Calhoun, Gretchen; Schedl, Paul
2006-11-01
The FMR family of KH domain RNA-binding proteins is conserved from invertebrates to humans. In humans, inactivation of the X-linked FMR gene fragile X is the most common cause of mental retardation and leads to defects in neuronal architecture. While there are three FMR family members in humans, there is only a single gene, dfmr1, in flies. As in humans, inactivation of dfmr1 causes defects in neuronal architecture and in behavior. dfmr1 has other functions in the fly in addition to neurogenesis. Here we have analyzed its role during early embryonic development. We found that dfmr1 embryos display defects in the rapid nuclear division cycles that precede gastrulation in nuclear migration and in pole cell formation. While the aberrations in nuclear division are correlated with a defect in the assembly of centromeric/centric heterochromatin, the defects in pole cell formation are associated with alterations in the actin-myosin cytoskeleton.
An optimization method for defects reduction in fiber laser keyhole welding
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Jiang, Ping; Shao, Xinyu; Wang, Chunming; Li, Peigen; Mi, Gaoyang; Liu, Yang; Liu, Wei
2016-01-01
Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.
Santamaria, Eric; de la Concha, Erika
2016-10-01
Microsurgical reconstruction of complex midfacial and maxillectomy defects is among the most challenging procedures in plastic surgery, and it often requires composite flaps to improve functional and aesthetic results. Various factors have been identified as having influence in the outcome of microsurgical reconstruction. In this article, the authors present their experience with immediate and delayed reconstruction of complex maxillectomy defects in a tertiary center in Mexico. The authors present a total of 37 patients with microsurgical reconstruction of a complex maxillectomy defect; 13 patients had immediate and 24 had delayed reconstructions. The authors recommend doing immediate reconstruction when feasible. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Reddy, Pramod; Kaess, Felix; Tweedie, James; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko
2017-10-01
Compensating point defect reduction in wide bandgap semiconductors is possible by above bandgap illumination based defect quasi Fermi level (dQFL) control. The point defect control technique employs excess minority carriers that influence the dQFL of the compensator, increase the corresponding defect formation energy, and consequently are responsible for point defect reduction. Previous studies on various defects in GaN and AlGaN have shown good agreement with the theoretical model, but no direct evidence for the role of minority carriers was provided. In this work, we provide direct evidence for the role of minority carriers in reducing point defects by studying the predicted increase in work done against defect (CN-1) formation with the decrease in the Fermi level (free carrier concentration) in Si doped GaN at a constant illumination intensity. Comparative defect photoluminescence measurements on illuminated and dark regions of GaN show an excellent quantitative agreement with the theory by exhibiting a greater reduction in yellow luminescence attributed to CN-1 at lower doping, thereby providing conclusive evidence for the role of the minority carriers in Fermi level control-based point defect reduction.
2018-03-01
computational parameters needs to be established. We used density functional theory to compute defect formation energies of the neutral and charged hh... energies for the 3A to 3E transition (absorption, zero phonon lines, and emission), which is essential for optical initialization and read-out. We...PBE, defect formation energy , charge transition levels, absorption, zero phonon lines, emission 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
Lattice-Matched Epitaxial Graphene Grown on Boron Nitride.
Davies, Andrew; Albar, Juan D; Summerfield, Alex; Thomas, James C; Cheng, Tin S; Korolkov, Vladimir V; Stapleton, Emily; Wrigley, James; Goodey, Nathan L; Mellor, Christopher J; Khlobystov, Andrei N; Watanabe, Kenji; Taniguchi, Takashi; Foxon, C Thomas; Eaves, Laurence; Novikov, Sergei V; Beton, Peter H
2018-01-10
Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band gap but requires the formation of highly strained material and has not hitherto been realized. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and coexists with a topologically modified moiré pattern with regions of strained graphene which have giant moiré periods up to ∼80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell. The lattice-matched graphene has a lower conductance than both the Frenkel-Kontorova-type domain walls and also the topological defects where they terminate. We relate these results to theoretical models of band gap formation in graphene/boron nitride heterostructures.
NASA Astrophysics Data System (ADS)
Piccinini, M.; Ambrosini, F.; Ampollini, A.; Bonfigli, F.; Libera, S.; Picardi, L.; Ronsivalle, C.; Vincenti, M. A.; Montereali, R. M.
2015-04-01
Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 1011-1015 protons/cm2. The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F2 and F3+ photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences.
Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide
NASA Astrophysics Data System (ADS)
de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.
2018-05-01
Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.
Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects.
Callegari, Sylvie; Oeljeklaus, Silke; Warscheid, Bettina; Dennerlein, Sven; Thumm, Michael; Rehling, Peter; Dudek, Jan
2017-01-02
The E3 ubiquitin ligase PARK2 and the mitochondrial protein kinase PINK1 are required for the initiation of mitochondrial damage-induced mitophagy. Together, PARK2 and PINK1 generate a phospho-ubiquitin signal on outer mitochondrial membrane proteins that triggers recruitment of the autophagy machinery. This paper describes the detection of a defined 500-kDa phospho-ubiquitin-rich PARK2 complex that accumulates on mitochondria upon treatment with the membrane uncoupler CCCP. Formation of this complex is dependent on the presence of PINK1 and is absent in mutant forms of PARK2, whereby mitophagy is also arrested. These results signify a functional signaling complex that is essential for the progression of mitophagy. The visualization of the PARK2 signaling complex represents a novel marker for this critical step in mitophagy and can be used to monitor mitophagy progression in PARK2 mutants and to uncover additional upstream factors required for PARK2-mediated mitophagy signaling.
Computer-aided position planning of miniplates to treat facial bone defects
Wallner, Jürgen; Gall, Markus; Chen, Xiaojun; Schwenzer-Zimmerer, Katja; Reinbacher, Knut; Schmalstieg, Dieter
2017-01-01
In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon’s desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time. PMID:28817607
Computer-aided position planning of miniplates to treat facial bone defects.
Egger, Jan; Wallner, Jürgen; Gall, Markus; Chen, Xiaojun; Schwenzer-Zimmerer, Katja; Reinbacher, Knut; Schmalstieg, Dieter
2017-01-01
In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon's desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time.
Role of RANKL (TNFSF11)-Dependent Osteopetrosis in the Dental Phenotype of Msx2 Null Mutant Mice
Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher
2013-01-01
The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 −/−) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 −/− mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 −/− mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 −/− RankTg mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 −/− mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor. PMID:24278237
Reconstruction of maxillectomy and midfacial defects with free tissue transfer.
Santamaria, Eric; Cordeiro, Peter G
2006-11-01
The maxillary bones are part of the midfacial skeleton and are closely related to the eyeglobe, nasal airway, and oral cavity. Together with the overlying soft tissues, the two maxillae are responsible to a large extent for facial contour. Maxillectomy defects become more complex when critical structures such as the orbit, globe, and cranial base are resected, and reconstruction with distant tissues become essential. In this article, we describe a classification system and algorithm for reconstruction of these complex defects using various pedicled and free flaps. Most defects that involve resection of the maxilla and adjacent soft tissues may be classified into one of the following four types: Type I defects, Limited maxillectomy; Type II defects, Subtotal maxillectomy; Type III defects, Total maxillectomy; and Type IV defects, Orbitomaxillectomy. Using this classification, reconstruction of maxillectomy and midfacial defects may be approached considering the relationship between volume and surface area requirements, that is, addressing the bony defect first, followed by assessment of the associated soft tissue, skin, palate, and cheek-lining deficits. In our experience, most complex maxillectomy defects are best reconstructed using free tissue transfer. The rectus abdominis and radial forearm free flap in combination with immediate bone grafting or as an osteocutaneous flap reliably provide the best aesthetic and functional results. A temporalis muscle pedicled flap is used for reconstruction of maxillectomy defects only in those patients who are not candidates for a microsurgical procedure.
Lower urinary tract development and disease
Rasouly, Hila Milo; Lu, Weining
2013-01-01
Congenital Anomalies of the Lower Urinary Tract (CALUT) are a family of birth defects of the ureter, the bladder and the urethra. CALUT includes ureteral anomalies such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUV). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, bladder, and urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, bladder and urethra and associated gene mutations are also presented. As we are entering the post-genomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families. PMID:23408557
Topological Defects in a Living Nematic Ensnare Swimming Bacteria
NASA Astrophysics Data System (ADS)
Genkin, Mikhail M.; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.
2017-01-01
Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1 /2 topological defects and depletion of bacteria in the cores of -1 /2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.
Oubaha, Malika; Lin, Michelle I.; Margaron, Yoran; Filion, Dominic; Price, Emily N.; Zon, Leonard I.; Côté, Jean-François
2012-01-01
Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and β-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and β-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1–induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and β-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis. PMID:22936663
Zhang, Ling; Yang, Qinghua; Jiang, Haiyue; Liu, Ge; Huang, Wanlu; Dong, Weiwei
2015-09-01
Reconstruction of complex facial defects using cervical expanded flap prefabricated by temporoparietal fascia flap. Complex facial defects are required to restore not only function but also aesthetic appearance, so it is vital challenge for plastic surgeons. Skin grafts and traditional flap transfer cannot meet the reconstructive requirements of color and texture with recipient. The purpose of this sturdy is to create an expanded prefabricated temporoparietal fascia flap to repair complex facial defects. Two patients suffered severe burns on the face underwent complex facial resurfacing with prefabricated cervical flap. The vasculature of prefabricated flap, including the superficial temporal vessel and surrounding fascia, was used as the vascular carrier. The temporoparietal fascia flap was sutured underneath the cervical subcutaneous tissue, and expansion was begun in postoperative 1 week. After 4 to 6 months of expansion, the expander was removed, facial scars were excised, and cervical prefabricated flap was elevated and transferred to repair the complex facial defects. Two complex facial defects were repaired successfully by prefabricated temporoparietal fascia flap, and prefabricated flaps survived completely. On account of donor site's skin was thinner and expanded too fast, 1 expanded skin flap was rupture during expansion, but necrosis was not occurred after the 2nd operation. Venous congestion was observed in 1 patient, but after dressing, flap necrosis was not happened. Donor site was closed primarily. Postoperative follow-up 6 months, the color, texture of prefabricated flap was well-matched with facial skin. This method of expanded prefabricated flap may provide a reliable solution to the complex facial resurfacing.
Defect pair formation in fluorine and nitrogen codoped TiO2
NASA Astrophysics Data System (ADS)
Kordatos, A.; Kelaidis, N.; Chroneos, A.
2018-04-01
Titanium oxide is extensively investigated because of its high chemical stability and its photocatalytic properties; nevertheless, the large band gap limits its activity to a small portion of the solar spectrum. Nitrogen and fluorine codoping is an efficient defect engineering strategy to increase the photocatalytic activity of titanium oxide. In the present study, we apply density functional theory to investigate the interaction of nitrogen with fluorine and the formation of defect pairs. We show that in fluorine and nitrogen codoped titanium oxide, the FiNi, FONi, and FiNTi defects can form. Their impact on the electronic structure of titanium oxide is discussed.
Predictive modeling of synergistic effects in nanoscale ion track formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou
Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO 3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.
Predictive modeling of synergistic effects in nanoscale ion track formation
Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; ...
2015-08-05
Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO 3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.
2014-02-20
Density functional theory (DFT) is used to calculate the thermodynamic and kinetic properties of transmutant Mg in 3C-SiC due to high-energy neutron irradiation associated with the fusion nuclear environment. The formation and binding energies of intrinsic defects, Mg-related defects, and clusters in 3C-SiC are systematically calculated. The minimum energy paths and activation energies during point defect migration and small cluster evolution are studied using a generalized solid-state elastic band (G-SSNEB) method with DFT energy calculations. Stable defect structures and possible defect migration mechanisms are identified. The evolution of binding energies during Mg2Si formation demonstrates that the formation of Mg2Si needsmore » to overcome a critical nucleus size and nucleation barrier. It is also found that a compressive stress field exists around the Mg2Si nucleus. These data are important inputs in meso- and macro-scale modeling and experiments to understand and predict the impact of Mg on phase stability, microstructure evolution, and performance of SiC and SiC-based materials during long-term neutron exposures.« less
Structure Defect Property Relationships in Binary Intermetallics
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark
2015-03-01
Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).
Sandoval, Imelda T; Manos, Elizabeth J; Van Wagoner, Ryan M; Delacruz, Richard Glenn C; Edes, Kornelia; Winge, Dennis R; Ireland, Chris M; Jones, David A
2013-06-20
A major hurdle in using complex systems for drug screening is the difficulty of defining the mechanistic targets of small molecules. The zebrafish provides an excellent model system for juxtaposing developmental phenotypes with mechanism discovery using organism genetics. We carried out a phenotype-based screen of uncharacterized small molecules in zebrafish that produced a variety of chemically induced phenotypes with potential genetic parallels. Specifically, kalihinol F caused an undulated notochord, defects in pigment formation, hematopoiesis, and neural development. These phenotypes were strikingly similar to the zebrafish mutant, calamity, an established model of copper deficiency. Further studies into the mechanism of action of kalihinol F revealed a copper-chelating activity. Our data support this mechanism of action for kalihinol F and the utility of zebrafish as an effective system for identifying therapeutic and target pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ferromagnetism in two-dimensional hole-doped SnO
NASA Astrophysics Data System (ADS)
Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.
2018-05-01
Hole-doped monolayer SnO has been recently predicted to be a ferromagnetic material, for a hole density typically above 5x1013/cm2. The possibility to induce a hole-doped stable ferromagnetic order in this two-dimensional material, either by intrinsic or extrinsic defects, is theoretically studied, using first-principles simulations. Sn vacancies and Sn vacancy-hydrogen complexes are predicted to be shallow acceptors, with relatively low formation energies in SnO monolayers grown under O-rich conditions. These defects produce spin-polarized gap states near the valence band-edge, potentially stabilizing the ferromagnetic order in 2D SnO. Hole-doping resulting from substitutional doping is also investigated. Among the considered possible dopants, As, substituting O, is predicted to produce shallow spin-polarized gap states near the valence band edge, also potentially resulting in a stable ferromagnetic order in SnO monolayers.
Ziegler, Christopher M.; Eisenhauer, Philip; Bruce, Emily A.; Weir, Marion E.; King, Benjamin R.; Klaus, Joseph P.; Krementsov, Dimitry N.; Shirley, David J.; Ballif, Bryan A.; Botten, Jason
2016-01-01
Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. PMID:27010636
Jung, Goeh; Remmert, Kirsten; Wu, Xufeng; Volosky, Joanne M.; III, John A. Hammer
2001-01-01
Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the α and β subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH2-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end–directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans, Drosophila, mouse, and man, be named CARMIL proteins, for capping protein, Arp2/3, and myosin I linker. PMID:11425877
Point Defects and p -Type Doping in ScN from First Principles
NASA Astrophysics Data System (ADS)
Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu
2018-03-01
Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.
Silicide formation process of Er films with Ta and TaN capping layers.
Choi, Juyun; Choi, Seongheum; Kim, Jungwoo; Na, Sekwon; Lee, Hoo-Jeong; Lee, Seok-Hee; Kim, Hyoungsub
2013-12-11
The phase development and defect formation during the silicidation reaction of sputter-deposited Er films on Si with ∼20-nm-thick Ta and TaN capping layers were examined. TaN capping effectively prevented the oxygen incorporation from the annealing atmosphere, which resulted in complete conversion to the ErSi2-x phase. However, significant oxygen penetration through the Ta capping layer inhibited the ErSi2-x formation, and incurred the growth of several Er-Si-O phases, even consuming the ErSi2-x layer formed earlier. Both samples produced a number of small recessed defects at an early silicidation stage. However, large rectangular or square-shaped surface defects, which were either pitlike or pyramidal depending on the capping layer identity, were developed as the annealing temperature increased. The origin of different defect generation mechanisms was suggested based on the capping layer-dependent silicidation kinetics.
Defect imaging and detection of precipitates using a new scanning positron microbeam
NASA Astrophysics Data System (ADS)
Gigl, T.; Beddrich, L.; Dickmann, M.; Rienäcker, B.; Thalmayr, M.; Vohburger, S.; Hugenschmidt, C.
2017-12-01
We report on a newly developed scanning positron microbeam based on threefold moderation of positrons provided by the high intensity positron source NEPOMUC. For brightness enhancement a remoderation unit with a 100 nm thin Ni(100) foil and 9.6% efficiency is applied to reduce the area of the beam spot by a factor of 60. In this way, defect spectroscopy is enabled with a lateral resolution of 33 μm over a large scanning range of 19 × 19 mm2. Moreover, 2D defect imaging using Doppler broadening spectroscopy (DBS) is demonstrated to be performed within exceptional short measurement times of less than two minutes for an area of 1 × 1 mm2 (100 × 100 μm2) with a resolution of 250 μm (50 μm). We studied the defect structure in laser beam welds of the high-strength age-hardened Al alloy (AlCu6Mn, EN AW-2219 T87) by applying (coincident) DBS with unprecedented spatial resolution. The visualization of the defect distribution revealed a sharp transition between the raw material and the welded zone as well as a very small heat affected zone. Vacancy-like defects and Cu rich precipitates are detected in the as-received material and, to a lesser extent, in the transition zone of the weld. Most notably, in the center of the weld vacancies without forming Cu-vacancy complexes, and the dissolution of the Cu atoms in the crystal lattice, i.e. formation of a supersaturated solution, could be clearly identified.
Berns, Veronica M; Fredrickson, Daniel C
2014-10-06
Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.
Origin of reduced efficiency in high Ga concentration Cu(In,Ga)Se2 solar cell
NASA Astrophysics Data System (ADS)
Wei, S.-H.; Huang, B.; Deng, H.; Contreras, M. A.; Noufi, R.; Chen, S.; Wang, L. W.
2014-03-01
CuInSe2 (CIS) is one of the most attractive thin-film materials for solar cells. It is well know that alloying Ga into CIS forming Cu(In,Ga)Se2 (CIGS) alloy is crucial to achieve the high efficiency, but adding too much Ga will lead to a decline of the solar cell efficiency. The exact origin of this puzzling phenomenon is currently still under debate. Using first-principles method, we have systemically studied the structural and electronic properties of CIGS alloys. Our phase diagram calculations suggest that increasing growth temperature may not be a critical factor in enhancing the cell performance of CIGS under equilibrium growth condition. On the other hand, our defect calculations identify that high concentration of antisite defects MCu(M =In, Ga) rather than anion defects are the key deep-trap centers in CIGS. The more the Ga concentration in CIGS, the more harmful the deep-trap is. Self-compensation in CIGS, which forms 2VCu + MCudefect complexes, is found to be beneficial to quench the deep-trap levels induced by MCu in CIGS, especially at low Ga concentration. Unfortunately, the density of isolated MCu is quite high and cannot be largely converted into 2VCu + MCu complexes under thermal equilibrium condition. Thus, nonequilibrium growth conditions or low growth temperature that can suppress the formation of the deep-trap centers MCu may be necessary for improving the efficiency of CIGS solar cells with high Ga concentrations.
Heat-shock protein 60 is required for blastema formation and maintenance during regeneration
Makino, Shinji; Whitehead, Geoffrey G.; Lien, Ching-Ling; Kim, Soo; Jhawar, Payal; Kono, Akane; Kawata, Yasushi; Keating, Mark T.
2005-01-01
Zebrafish fin regeneration requires the formation and maintenance of blastema cells. Blastema cells are not derived from stem cells but behave as such, because they are slow-cycling and are thought to provide rapidly proliferating daughter cells that drive regenerative outgrowth. The molecular basis of blastema formation is not understood. Here, we show that heat-shock protein 60 (hsp60) is required for blastema formation and maintenance. We used a chemical mutagenesis screen to identify no blastema (nbl), a zebrafish mutant with an early fin regeneration defect. Fin regeneration failed in nbl due to defective blastema formation. nbl also failed to regenerate hearts. Positional cloning and mutational analyses revealed that nbl results from a V324E missense mutation in hsp60. This mutation reduced hsp60 function in binding and refolding denatured proteins. hsp60 expression is increased during formation of blastema cells, and dysfunction leads to mitochondrial defects and apoptosis in these cells. These data indicate that hsp60 is required for the formation and maintenance of regenerating tissue. PMID:16204379
Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.
Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid
2009-04-01
Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.
Singh, Pankaj Kumar; Singh, Sweta; Ganesh, Subramaniam
2012-02-01
Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.
Min, Jaewon; Wright, Woodring E.
2017-01-01
ABSTRACT Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae. Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer. PMID:28760773
Lykoudis, Efstathios G; Dimitrios, Pafilas; Alexandros, Beris E
2010-01-01
Complex midfoot defects represent a reconstructive challenge since midfoot plays a key role in standing and gait. We report the case of a 27-year-old patient with a complex midfoot defect due to a high-energy gun shot injury. The defect included the tarsometatarsal complex, all three arches of the foot, and the overlying dorsal skin of the foot. Reconstruction was achieved in a single stage with a free fibular osteocutaneous flap. The fibula was osteotomized into three segments, which were used to reconstruct the bone defects, while the skin paddle of the flap was used for stable soft tissue coverage of the reconstructed bony skeleton. Early and late postoperative periods were uneventful. Bone incorporation was radiographically evident at 12 weeks, and full weight bearing was possible at 6 months postop. Final follow up, at 2 years postop, showed a very good functional and esthetic outcome.
Pattern formation in rotating Bénard convection
NASA Astrophysics Data System (ADS)
Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.
1992-12-01
Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.
Reutter, Heiko; Bökenkamp, Arend; Ebert, Anne-Karolin; Rösch, Wolfgang; Boemers, Thomas M; Nöthen, Markus M; Ludwig, Michael
2009-07-01
In the past, several midline defects have been associated with Down syndrome (DS) on a regular basis, e.g. heart defects, cleft lip and palate, neural tube defects, omphalocele and anal atresia. The exstrophy-epispadias complex (EEC) represents a rare midline defect, rarely described in association with DS. Here, we report on the co-occurrence of DS and EEC in two, so far, unreported cases and present a review of the literature. We suggest that EEC represents a rare but inherent part in the spectrum of DS-associated midline defects.
Hoxb2 and hoxb4 act together to specify ventral body wall formation.
Manley, N R; Barrow, J R; Zhang, T; Capecchi, M R
2001-09-01
Three different alleles of the Hoxb4 locus were generated by gene targeting in mice. Two alleles contain insertions of a selectable marker in the first exon in either orientation, and, in the third, the selectable marker was removed, resulting in premature termination of the protein. Presence and orientation of the selectable marker correlated with the severity of the phenotype, indicating that the selectable marker induces cis effects on neighboring genes that influence the phenotype. Homozygous mutants of all alleles had cervical skeletal defects similar to those previously reported for Hoxb4 mutant mice. In the most severe allele, Hoxb4(PolII), homozygous mutants died either in utero at approximately E15.5 or immediately after birth, with a severe defect in ventral body wall formation. Analysis of embryos showed thinning of the primary ventral body wall in mutants relative to control animals at E11.5, before secondary body wall formation. Prior to this defect, both Alx3 and Alx4 were specifically down regulated in the most ventral part of the primary body wall in Hoxb4(PolII) mutants. Hoxb4(loxp) mutants in which the neo gene has been removed did not have body wall or sternum defects. In contrast, both the Hoxb4(PolII) and the previously described Hoxb2(PolII) alleles that have body wall defects have been shown to disrupt the expression of both Hoxb2 and Hoxb4 in cell types that contribute to body wall formation. Our results are consistent with a model in which defects in ventral body wall formation require the simultaneous loss of at least Hoxb2 and Hoxb4, and may involve Alx3 and Alx4. Copyright 2001 Academic Press.
A tungsten-rhenium interatomic potential for point defect studies
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
2018-05-28
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less
A tungsten-rhenium interatomic potential for point defect studies
NASA Astrophysics Data System (ADS)
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
2018-05-01
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).
A tungsten-rhenium interatomic potential for point defect studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less
Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation
Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L.; ...
2016-08-17
Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation withmore » a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. In addition, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He + irradiation and monovacancy (MV) defects for all other ion irradiations.« less
Characterization of V-shaped defects in 4H-SiC homoepitaxial layers
Zhang, Lihua; Su, Dong; Kisslinger, Kim; ...
2014-12-04
Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less
Characterization of V-shaped defects in 4H-SiC homoepitaxial layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lihua; Su, Dong; Kisslinger, Kim
Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less
NASA Astrophysics Data System (ADS)
Ma, Xiao; Li, Xinguo; Zheng, Xianxu; Li, Kewu; Hu, Qiushi; Li, Jianling
2017-11-01
In recent decades, the hot-spot theory of condensed-phase explosives has been a compelling focus of scientific investigation attracting many researchers. The defect in the polymeric binder of the polymer-bonded explosive is called the intergranular defect. In this study, the real polymeric binder was substituted by poly(methyl methacrylate) (PMMA) as it is transparent and has similar thermodynamic properties to some binders. A set of modified split Hopkinson pressure bars equipped with a time-resolved shadowgraph was used to study the process of crack initiation and potential hot-spot formation around a cylindrical defect in PMMA. The new and significant phenomenon that the opening-mode crack emerged earlier than the shearing-mode crack from the cylindrical defect has been published for the first time in this paper. Furthermore, a two-dimensional numerical simulation was performed to show the evolution of both the stress field and the temperature field. The simulation results were in good agreement with the experiment. Finally, the law of potential hot-spot formation is discussed in detail.
Ordered defect compounds in CuInSe{sub 2} for photovoltaic solar cell application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, K.; Katayama-Yoshida, H.
2014-02-21
Due to the complete compensation, defect complex (2V{sub Cu}+In{sub Cu}), namely two Cu vacancies and In located at Cu site, is stable in CuInSe{sub 2} (CIS). It is known that the series of ordered defect compounds (ODC) are constracted by ordering the defect complex. Based on the total energy calcalation by using the Korringa-Kohn-Rostoker coherent potential approxiamtion (KKR-CPA) method, we discuss phase separation of the CIS with the defect complexes into ODC and CIS. Since the band alignment between ODC and CIS is calculated to be type 2, effective electron-hole separation at the interface between ODC and CIS can bemore » expected. This causes the enhancement of conversion efficiency of CIS-based solar cell materials.« less
A numerical study of coarsening in the two-dimensional complex Ginzburg-Landau equation
NASA Astrophysics Data System (ADS)
Liu, Weigang; Tauber, Uwe
The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems: coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose-Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics. We employ a finite-difference method to numerically solve the noisy complex Ginzburg-Landau equation on a two-dimensional domain with the goal to investigate the coarsening dynamics following a quench from a strongly fluctuating defect turbulence phase to a long-range ordered phase. We start from a simplified amplitude equation, solve it numerically, and then study the spatio-temporal behavior characterized by the spontaneous creation and annihilation of topological defects (spiral waves). We check our simulation results against the known dynamical phase diagram in this non-equilibrium system, tentatively analyze the coarsening kinetics following sudden quenches, and characterize the ensuing aging scaling behavior. In addition, we aim to use Voronoi triangulation to study the cellular structure in the phase turbulence and frozen states. This research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-09ER46613.
NASA Technical Reports Server (NTRS)
Patterson, James D.
1996-01-01
We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.
Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong
2016-01-01
Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species.
Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong
2016-01-01
Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; ...
2016-12-14
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
Vital Roles of the Second DNA-binding Site of Rad52 Protein in Yeast Homologous Recombination*
Arai, Naoto; Kagawa, Wataru; Saito, Kengo; Shingu, Yoshinori; Mikawa, Tsutomu; Kurumizaka, Hitoshi; Shibata, Takehiko
2011-01-01
RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a “recombination mediator” to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing. PMID:21454474
Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori
2013-01-01
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex. PMID:23322785
Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori
2013-03-08
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.
NASA Astrophysics Data System (ADS)
Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing
2017-12-01
We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.
Theoretical study of native point defects in strained-layer superlattice systems
NASA Astrophysics Data System (ADS)
Krishnamurthy, S.; Yu, Zhi Gang
2018-04-01
We developed a theoretical approach that employs first-principles Hamiltonians, tight-binding Hamiltonians, and Green's function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and InAs-InAs1-xSbx strained layer superlattice (SLS) systems. In InAs and GaSb regions, we considered four types of NPDs—anion vacancy, cation vacancy, anion anti-site, and cation anti-site—as well as isoelectronic substitution at anion sites (Sb at the As site and As at the Sb site). Additionally, we considered three types of defects—the cation at the second anion site, the second anion at the cation site, and second anion vacancy—in the InAs1-xSbx alloy region of the SLS. For a selected few designs, we studied NPDs both in the bulk region and near the interfaces of the SLS. We have considered 12 designs of InAs-GaSb systems and two designs of InAs-InAs0.7Sb0.3 systems lattice-matched to the GaSb substrate. The calculated defect levels not only agreed well with available measurements, but also revealed the connection between mid-gap levels and specific NPDs. We further calculated defect formation energies both in compounds and in all superlattices considered above. Since the absolute value of defect formation energy depends considerably on growth conditions, we evaluated the formation energies in SLS with respect to their value in the corresponding bulk or alloy. The calculated defect formation energies, together with defect energy level results, allow us to identify a few promising SLS designs for high-performing photodetectors.
NASA Astrophysics Data System (ADS)
Rava, Paolo
In the present investigation the interstitial oxygen distribution in silicon has been measured on a microscale and correlated to the activation of thermal donors by 450(DEGREES)C heat treatment. Scanning IR absorption was used to measure the axyal oxygen microdistribution at different distances from the edge of the crystal. The free carrier microdistribution along the same locations was measured, after a 450(DEGREES)C heat treatment, using a spreading resistance probe. A comparison of the two microprofiles revealed direct correspondence in the general features, but no correlation between oxygen and thermal donor concentration in some areas; in particular, no activation of donors took place in some areas. After a 650(DEGREES)C heat treatment, all donors were annihilated; after subsequent 450(DEGREES)C heat treament, donors were activated again, but in a different pattern: the areas which were activated the first time now exhibited smaller densities of thermal donors and the areas which were not previously activated exhibited high donor concentration. The microdefect distribution was studied as a function of heat treatment time and compared to the activated donor microprofiles. A high density of B-defects was found in areas where no donor activation took place upon the first heat treatment at 450(DEGREES)C, whereas A-defects were present in areas where donors were activated. Upon 650(DEGREES)C heat treatment B-defects became large and less dense, approaching A-defects and allowing activation of donors upon further 450(DEGREES)C heat treatment. These results are qualitatively in agreement with the vacancy-oxygen model proposed for donor activation. According to this model, an oxygen atom can slip into a silicon vacancy and be bound to this site by bonding one of its electrons with another nearest neighbor vacancy; this complex can then be easily ionized by releasing the extra electron. A neighbor vacancy diffused at 650(DEGREES)C can trap this free electron to form an electrically inert complex. The presence of unactivated areas close to the crystal periphery was attributed to a lower concentration of available vacancies due to the presence of the B-defects (vacancy clusters); a 650(DEGREES)C heat treatment changed their structure, possibly releasing vacancies which then participated in donor formation. On the other hand, the areas activated the first time at 450(DEGREES)C have fewer vacancies available the second time for donor formation and therefore are less activated. It was shown that the vacancy-oxygen complex must be the first step in the formation of multivacancy or any multioxygen donor complexes. The role of a factor other than oxygen in donor activation can be revealed only by a microscale analysis such as the one presented here. In fact, the areas in which donor formation is enhanced by 650(DEGREES)C heat treatment are completely undetected in a macroscale analysis, which therefore would lead to a proportionality between oxygen concentration and activated donors. This work shows that the accepted premise that the concentration of oxygen donors is proportional to the oxygen concentration is not generally valid. Multiple p-n junctions have been prepared in b -doped Si through overcompensation near the oxygen periodic concentration maxima by thermal donors generated during an appropriate heat treatment at 450(DEGREES)C. Application of this structure to photovoltaic energy conversion has been investigated. A new solar cell structure based on multiple p-n junctions was developed and tested. An increase in short circuit current was achieved, but at the same time a degradation in open circuit voltage occurred. An interpretation of the experimental data in the light of the results of a computer simulation showed that an overall increase in efficiency can be achieved in this structure with a small and regular junction spacing. The effect of carrier density inhomogeneities in InP and GaAs samples was then investigated. The same scanning IR absorption technique employed in the first part of this study was used to measure free carrier microprofiles in order to determine the homogeneity of the samples. It was established that the presence of inhomogeneities can lead to a significant ambiguity in the determination on a macroscale of mobility, carrier concentration and absorption coefficient.
Challenges of nickel silicidation in CMOS technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breil, Nicolas; Lavoie, Christian; Ozcan, Ahmet
2015-04-01
In our paper, we review some of the key challenges associated with the Ni silicidation process in the most recent CMOS technologies. The introduction of new materials (e.g.SiGe), and of non-planar architectures bring some important changes that require fundamental investigation from a material engineering perspective. Following a discussion of the device architecture and silicide evolution through the last CMOS generations, we focus our study on a very peculiar defect, termed NiSi-Fangs. We describe a mechanism for the defect formation, and present a detailed material analysis that supports this mechanism. We highlight some of the possible metal enrichment processes of themore » nickel monosilicide such as oxidation or various RIE (Reactive Ion Etching) plasma process, leading to a metal source available for defect formation. Furthermore, we investigate the NiSi formation and re-formation silicidation differences between Si and SiGe materials, and between (1 0 0) and (1 1 1) orientations. Finally, we show that the thermal budgets post silicidation can lead to the formation of NiSi-Fangs if the structure and the processes are not optimized. Beyond the understanding of the defect and the discussion on the engineering solutions used to prevent its formation, the interest of this investigation also lies in the fundamental learning within the Ni–Pt–Si–Ge system and some additional perspective on Ni-based contacts to advanced microelectronic devices.« less
Role of the copper-oxygen defect in cadmium telluride solar cells
NASA Astrophysics Data System (ADS)
Corwine, Caroline R.
Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O. Photoluminescence on the sX samples revealed a unique transition at 1.456 eV, identical to the one seen in CSS thin-film CdTe, only when both Cu and O were introduced simultaneously. Theoretical calculations indicate that this PL line is likely a transition between the valence band and a Cui-OTe donor complex 150 meV below the conduction band. Formation of a Cui-OT, donor complex was expected to limit the performance of the CdS/CdTe solar cell. However, this was difficult to observe in the prepared devices, likely because other beneficial processes occurred simultaneously, such as formation of CUCd acceptors in the CdTe layer and improvement in the quality of the back contact by including Cu. It was possible to see the theoretical effects of this defect using AMPS--1D numerical simulations. The simulated J-V curves indicated that a donor level 150 meV from the conduction band would reduce the Voc, hence reducing the overall device efficiency. Therefore, despite the lack of direct experimental evidence, it is very plausible that the CU i-OTe defect observed with photoluminescence may serve to limit the possible attainable efficiency in CdS/CdTe solar cells.
Assembly of Slx4 signaling complexes behind DNA replication forks.
Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W
2015-08-13
Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. © 2015 The Authors.
Stephan, Raiko; Gohl, Christina; Fleige, Astrid; Klämbt, Christian; Bogdan, Sven
2011-01-01
A tight spatial-temporal coordination of F-actin dynamics is crucial for a large variety of cellular processes that shape cells. The Abelson interactor (Abi) has a conserved role in Arp2/3-dependent actin polymerization, regulating Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE). In this paper, we report that Abi exerts nonautonomous control of photoreceptor axon targeting in the Drosophila visual system through WAVE. In abi mutants, WAVE is unstable but restored by reexpression of Abi, confirming that Abi controls the integrity of the WAVE complex in vivo. Remarkably, expression of a membrane-tethered WAVE protein rescues the axonal projection defects of abi mutants in the absence of the other subunits of the WAVE complex, whereas cytoplasmic WAVE only slightly affects the abi mutant phenotype. Thus complex formation not only stabilizes WAVE, but also provides further membrane-recruiting signals, resulting in an activation of WAVE. PMID:21900504
Choo, Tina; Marino, Victor; Bartold, P Mark
2013-02-01
The aim of this investigation was to examine the effect of a combination of purified recombinant human platelet-derived growth factor (rhPDGF-BB) mixed with a synthetic beta-tricalcium phosphate (β-TCP) on bone healing around dental implants with critical size circumferential defects. Three critical size circumferential defects were prepared in the ilium of six sheep. Three dental implants were placed into the centre of each defect and the 3.25 mm circumferential gap was filled with (a) blood clot alone; (b) β-TCP; (c) rhPDGF-BB (0.3 mg/ml) with β-TCP. All the defects in each group were covered with a Bio-Gide(®) resorbable barrier membrane. The sheep were sacrificed at 2 and 4 weeks and histological and histomorphometric analyses were performed to determine the percentage of new mineralized bone formation and residual β-TCP graft particles in the defects. Defects filled with rhPDGF-BB/β-TCP showed the highest rate of bone formation after 2 and 4 weeks with limited degradation of the β-TCP particles over 4 weeks. Defects filled with β-TCP showed the least bone fill after 2 and 4 weeks, and faster degradation of the β-TCP particles over 4 weeks compared with defects filled with rhPDGF-BB/β-TCP. Percentage of new mineralized bone was comparable in defects to blood clot alone and β-TCP after 4 weeks of healing, but there was a collapse in the defect area in defects with blood clot alone. In comparison, the space was maintained when β-TCP was used in defects at 4 weeks. Defects which had β-TCP alone showed an inhibition in bone healing at 2 and 4 weeks; however, the combination of rhPDGF-BB with β-TCP enhanced bone regeneration in these peri-implant bone defects at the same time intervals. © 2011 John Wiley & Sons A/S.
Prevention of Neural Tube Defects. ARC Q&A #101-45.
ERIC Educational Resources Information Center
Arc, Arlington, TX.
This fact sheet uses a question-and-answer format to summarize issues related to the prevention of neural tube defects. Questions and answers address the following topics: what neural tube defects are and the most common types (spina bifida and anencephaly); occurrence of neural tube defects during the first month of pregnancy; the frequency of…
Sculean, Anton; Windisch, Peter; Chiantella, Giovanni Carlo
2004-08-01
The purpose of the present case report is to clinically and histologically evaluate the healing of one advanced intrabony defect following treatment with an enamel matrix protein derivative (EMD) combined with a bovine-derived xenograft (BDX) and guided tissue regeneration (GTR). One patient with generalized chronic periodontitis and one advanced intrabony defect was treated with EMD + BDX + GTR. Notches were placed in the root at the level of the calculus and alveolar crest to aid histologic identification of new periodontal tissues. Postoperative healing was uneventful. At the 7-month histologic examination, healing in the intrabony component of the defect was characterized by formation of new connective tissue attachment (new cellular cementum with inserting collagen fibers) and new bone in the intrabony component. The BDX particles were surrounded by bone-like tissue. No direct contact between the graft particles and root surface (cementum or dentin) was observed. Healing in the suprabony defect component occurred through epithelial downgrowth that stopped at the level of the coronal notch. The BDX particles were entirely encapsulated in dense connective tissue, without any signs of bone formation. The present case report shows formation of new attachment apparatus consisting of new bone, cementum, and periodontal ligament in the intrabony component of one human defect treated with EMD + BDX + GTR.
Engels, A C; Hoylaerts, M F; Endo, M; Loyen, S; Verbist, G; Manodoro, S; DeKoninck, P; Richter, J; Deprest, J A
2013-02-01
We aimed to demonstrate local thrombin generation by fetal membranes, as well as its ability to generate fibrin from fibrinogen concentrate. Furthermore, we aimed to investigate the efficacy of collagen plugs, soaked with plasma and fibrinogen, to seal iatrogenic fetal membrane defects. Thrombin generation by homogenized fetal membranes was measured by calibrated automated thrombography. To identify the coagulation caused by an iatrogenic membrane defect, we analyzed fibrin formation by optical densitometry, upon various concentrations of fibrinogen. The ability of a collagen plug soaked with fibrinogen and plasma was tested in an ex vivo model for its ability to seal an iatrogenic fetal membrane defect. Fetal membrane homogenates potently induced thrombin generation in amniotic fluid and diluted plasma. Upon the addition of fibrinogen concentrate, potent fibrin formation was triggered. Measured by densiometry, fibrin formation was optimal at 1250 µg/mL fibrinogen in combination with 4% plasma. A collagen plug soaked with fibrinogen and plasma sealed an iatrogenic membrane defect about 35% better than collagen plugs without these additives (P = 0.037). These in vitro experiments suggest that the addition of fibrinogen and plasma may enhance the sealing efficacy of collagen plugs in closing iatrogenic fetal membrane defects. © 2013 John Wiley & Sons, Ltd.
Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect.
Kwon, Doo Yeon; Park, Ji Hoon; Jang, So Hee; Park, Joon Yeong; Jang, Ju Woong; Min, Byoung Hyun; Kim, Wan-Doo; Lee, Hai Bang; Lee, Junhee; Kim, Moon Suk
2018-02-01
Recently, computer-designed three-dimensional (3D) printing techniques have emerged as an active research area with almost unlimited possibilities. In this study, we used a computer-designed 3D scaffold to drive new bone formation in a bone defect. Poly-L-lactide (PLLA) and bioactive β-tricalcium phosphate (TCP) were simply mixed to prepare ink. PLLA + TCP showed good printability from the micronozzle and solidification within few seconds, indicating that it was indeed printable ink for layer-by-layer printing. In the images, TCP on the surface of (and/or inside) PLLA in the printed PLLA + TCP scaffold looked dispersed. MG-63 cells (human osteoblastoma) adhered to and proliferated well on the printed PLLA + TCP scaffold. To assess new bone formation in vivo, the printed PLLA + TCP scaffold was implanted into a full-thickness cranial bone defect in rats. The new bone formation was monitored by microcomputed tomography and histological analysis of the in vivo PLLA + TCP scaffold with or without MG-63 cells. The bone defect was gradually spontaneously replaced with new bone tissues when we used both bioactive TCP and MG-63 cells in the PLLA scaffold. Bone formation driven by the PLLA + TCP30 scaffold with MG-63 cells was significantly greater than that in other experimental groups. Furthermore, the PLLA + TCP scaffold gradually degraded and matched well the extent of the gradual new bone formation on microcomputed tomography. In conclusion, the printed PLLA + TCP scaffold effectively supports new bone formation in a cranial bone defect. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Smart, Tyler J.; Ping, Yuan
2017-10-01
Hematite (α-Fe2O3) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe2O3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.
Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A
2014-09-01
The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.
Fetal anterior abdominal wall defects: prenatal imaging by magnetic resonance imaging.
Victoria, Teresa; Andronikou, Savvas; Bowen, Diana; Laje, Pablo; Weiss, Dana A; Johnson, Ann M; Peranteau, William H; Canning, Douglas A; Adzick, N Scott
2018-04-01
Abdominal wall defects range from the mild umbilical cord hernia to the highly complex limb-body wall syndrome. The most common defects are gastroschisis and omphalocele, and the rarer ones include the exstrophy complex, pentalogy of Cantrell and limb-body wall syndrome. Although all have a common feature of viscera herniation through a defect in the anterior body wall, their imaging features and, more important, postnatal management, differ widely. Correct diagnosis of each entity is imperative in order to achieve appropriate and accurate prenatal counseling and postnatal management. In this paper, we discuss fetal abdominal wall defects and present diagnostic pearls to aid with diagnosis.
NASA Astrophysics Data System (ADS)
Seeberger, Pia; Vidal, Julien
2017-08-01
Formation entropy of point defects is one of the last crucial elements required to fully describe the temperature dependence of point defect formation. However, while many attempts have been made to compute them for very complicated systems, very few works have been carried out such as to assess the different effects of finite size effects and precision on such quantity. Large discrepancies can be found in the literature for a system as primitive as the silicon vacancy. In this work, we have proposed a systematic study of formation entropy for silicon vacancy in its 3 stable charge states: neutral, +2 and -2 for supercells with size not below 432 atoms. Rationalization of the formation entropy is presented, highlighting importance of finite size error and the difficulty to compute such quantities due to high numerical requirement. It is proposed that the direct calculation of formation entropy of VSi using first principles methods will be plagued by very high computational workload (or large numerical errors) and finite size dependent results.
Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.
2015-01-01
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943
NASA Astrophysics Data System (ADS)
Verechagin, V.; Kris, R.; Schwarzband, I.; Milstein, A.; Cohen, B.; Shkalim, A.; Levy, S.; Price, D.; Bal, E.
2018-03-01
Over the years, mask and wafers defects dispositioning has become an increasingly challenging and time consuming task. With design rules getting smaller, OPC getting complex and scanner illumination taking on free-form shapes - the probability of a user to perform accurate and repeatable classification of defects detected by mask inspection tools into pass/fail bins is reducing. The critical challenging of mask defect metrology for small nodes ( < 30 nm) was reviewed in [1]. While Critical Dimension (CD) variation measurement is still the method of choice for determining a mask defect future impact on wafer, the high complexity of OPCs combined with high variability in pattern shapes poses a challenge for any automated CD variation measurement method. In this study, a novel approach for measurement generalization is presented. CD variation assessment performance is evaluated on multiple different complex shape patterns, and is benchmarked against an existing qualified measurement methodology.
Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso
2009-01-01
Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668
Stress generated modifications of epitaxial ferroelectric SrTiO3 films on sapphire
NASA Astrophysics Data System (ADS)
Hollmann, E.; Schubert, J.; Kutzner, R.; Wördenweber, R.
2009-06-01
The effect of lattice-mismatch induced stress upon the crystallographic structure, strain, strain relaxation, and the generation of different types of defects in heteroepitaxially grown SrTiO3 films on CeO2 buffered sapphire is examined. Depending on the thickness of the SrTiO3 layer, characteristic changes in the structural perfection of the layers, their crystallographic orientation with respect to the substrate system, and their strain is observed. For thin films misfit dislocations partially compensate the stress in the SrTiO3 layer, whereas cracks develop in thicker SrTiO3 films. The cracks are orientated along two predominant crystallographic orientations of the sapphire. The structural modifications and the formation of misfit defects and cracks are explained in a model based on lattice misfit induced stress, on the one hand, and energy considerations taking into account the stress release due to crack formation and the energy necessary for the formation of new surfaces at the crack, on the other hand. The impact of lattice misfit is discussed in two steps, i.e., intrinsic and thermal induced misfits during heteroepitaxial film growth at a given temperature and the subsequent cooling of the sample, respectively. The comparison of the theoretical predictions and the experimental observations demonstrate that intrinsic mismatch and thermal mismatch have to be considered in order to explain strain dependent effects in complex heteroepitaxial layer systems such as induced ferroelectricity of SrTiO3 on sapphire.
Hydronephrosis in the Wnt5a-ablated kidney is caused by an abnormal ureter-bladder connection.
Yun, Kangsun; Perantoni, Alan O
The Wnt5a null mouse is a complex developmental model which, among its several posterior-localized axis defects, exhibits multiple kidney phenotypes, including duplex kidney and loss of the medullary zone. We previously reported that ablation of Wnt5a in nascent mesoderm causes duplex kidney formation as a result of aberrant development of the nephric duct and abnormal extension of intermediate mesoderm. However, these mice also display a loss of the medullary region late in gestation. We have now genetically isolated duplex kidney formation from the medullary defect by specifically targeting the progenitors for both the ureteric bud and metanephric mesenchyme. The conditional mutants fail to form a normal renal medulla but no longer exhibit duplex kidney formation. Approximately 1/3 of the mutants develop hydronephrosis in the kidneys either uni- or bilaterally when using Dll1Cre. The abnormal kidney phenotype becomes prominent at E16.5, which approximates the time when urine production begins in the mouse embryonic kidney, and is associated with a dramatic increase in apoptosis only in mutant kidneys with hydronephrosis. Methylene blue dye injection and histologic examination reveal that aberrant cell death likely results from urine toxicity due to an abnormal ureter-bladder connection. This study shows that Wnt5a is not required for development of the renal medulla and that loss of the renal medullary region in the Wnt5a-deleted kidney is caused by an abnormal ureter-bladder connection. Published by Elsevier B.V.
Feliciano, David M; Lin, Tiffany V; Hartman, Nathaniel W; Bartley, Christopher M; Kubera, Cathryn; Hsieh, Lawrence; Lafourcade, Carlos; O'Keefe, Rachel A; Bordey, Angelique
2013-11-01
Tuberous sclerosis complex (TSC) is an autosomal dominant monogenetic disorder that is characterized by the formation of benign tumors in several organs as well as brain malformations and neuronal defects. TSC is caused by inactivating mutations in one of two genes, TSC1 and TSC2, resulting in increased activity of the mammalian Target of Rapamycin (mTOR). Here, we explore the cytoarchitectural and functional CNS aberrations that may account for the neurological presentations of TSC, notably seizures, hydrocephalus, and cognitive and psychological impairments. In particular, recent mouse models of brain lesions are presented with an emphasis on using electroporation to allow the generation of discrete lesions resulting from loss of heterozygosity during perinatal development. Cortical lesions are thought to contribute to epileptogenesis and worsening of cognitive defects. However, it has recently been suggested that being born with a mutant allele without loss of heterozygosity and associated cortical lesions is sufficient to generate cognitive and neuropsychiatric problems. We will thus discuss the function of mTOR hyperactivity on neuronal circuit formation and the potential consequences of being born heterozygous on neuronal function and the biochemistry of synaptic plasticity, the cellular substrate of learning and memory. Ultimately, a major goal of TSC research is to identify the cellular and molecular mechanisms downstream of mTOR underlying the neurological manifestations observed in TSC patients and identify novel therapeutic targets to prevent the formation of brain lesions and restore neuronal function. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.
First-principles Study of Hydrogen depassivation of Mg acceptor by Be in GaN
NASA Astrophysics Data System (ADS)
Zhang, Qiming; Wang, Xiao; Wang, Chihsiang
2010-03-01
The process of hydrogen depassivation of the acceptor by can convert the as-grown high-resistivity -doped into a - conducting material. A first-principles study on the process will be presented. The formation energies of various complex of impurities and point defects have been calculated and compared. The diffusion barriers of the hydrogen atom in the doped GaN have been obtained by the Nudge-Elastic-Band method. The results explain successfully the experimental observation that the hole concentration has been significantly enhanced in a Be-implanted Mg-doped GaN.
Simulation of a manual electric-arc welding in a working gas pipeline. 1. Formulation of the problem
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
Problems of mathematical simulation of the temperature stresses arising in the wall of a pipe of a cross-country gas pipeline in the process of electric-arc welding of defects in it have been considered. Mathematical models of formation of temperatures, deformations, and stresses in a gas pipe subjected to phase transformations have been developed. These models were numerically realized in the form of algorithms representing a part of an application-program package. Results of verification of the computational complex and calculation results obtained with it are presented.
A first-principles core-level XPS study on the boron impurities in germanium crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Jun; Yoshimoto, Yoshihide; Suwa, Yuji
2013-12-04
We systematically investigated the x-ray photoelectron spectroscopy (XPS) core-level shifts and formation energies of boron defects in germanium crystals and compared the results to those in silicon crystals. Both for XPS core-level shifts and formation energies, relationship between defects in Si and Ge is roughly linear. From the similarity in the formation energy, it is expected that the exotic clusters like icosahedral B12 exist in Ge as well as in Si.
Periodontal regeneration in gingival recession defects.
Trombelli, L
1999-02-01
Surgical treatment of gingival recession defects aims at obtaining soft tissue coverage of exposed root surfaces and/or augmentation of gingival tissue dimensions. A variety of protocols have been developed to manage these clinical problems. Since one goal of periodontal therapy is the regeneration of the lost attachment apparatus of the tooth, full restoration of defect should be accomplished following mucogingival procedures. This implies regeneration of all periodontal structures, including formation of new cementum with inserting connective tissue fibers, alveolar bone regeneration and recreation of a functional and aesthetic morphology of the mucogingival complex. Animal and human histological studies have shown that healing at gingiva-root interface following pedicle flaps or free soft tissue grafts generally includes a long junctional epithelium with varying amounts of a new connective tissue attachment in the most apical aspect of the covered root surface. Limited bone regeneration has been observed. Adjunctive use of root conditioning agents and cell excluding, wound-stabilizing devices may amplify regenerative outcomes. Changes in the amount of keratinized tissue, which can significantly affect the aesthetic outcome of treatment, have been shown to depend on the interactions among various tissues involved in the healing process and the selected surgical procedure.
Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.
Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J
2012-02-01
Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.
Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion
Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.
2012-01-01
Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354
A charge-optimized many-body potential for the U-UO2-O2 system
NASA Astrophysics Data System (ADS)
Li, Yangzhong; Liang, Tao; Sinnott, Susan B.; Phillpot, Simon R.
2013-12-01
Building on previous charge-optimized many-body (COMB) potentials for metallic α-U and gaseous O2, we have developed a new potential for UO2, which also allows the simulation of U-UO2-O2 systems. The UO2 lattice parameter, elastic constants and formation energies of stoichiometric and non-stoichiometric intrinsic defects are well reproduced. Moreover, this is the first rigid-ion potential that produces the correct deviation of the Cauchy relation, as well as the first classical interatomic potential that is able to determine the defect energies of non-stoichiometric intrinsic point defects in UO2 with an appropriate reference state. The oxygen molecule interstitial in the α-U structure is shown to decompose, with some U-O bonds approaching the natural bond length of perfect UO2. Finally, we demonstrate the capability of this COMB potential to simulate a complex system by performing a simulation of the α-U + O2 → UO2 phase transformation. We also identify a possible mechanism for uranium oxidation and the orientation of the resulting fluorite UO2 structure relative to the coordinate system of orthorhombic α-U.
Oxygen-related vacancy-type defects in ion-implanted silicon
NASA Astrophysics Data System (ADS)
Pi, X. D.; Burrows, C. P.; Coleman, P. G.; Gwilliam, R. M.; Sealy, B. J.
2003-10-01
Czochralski silicon samples implanted to a dose of 5 × 1015 cm-2 with 0.5 MeV O and to a dose of 1016 cm-2 with 1 MeV Si, respectively, have been studied by positron annihilation spectroscopy. The evolution of divacancies to vacancy (V)-O complexes is out-competed by V-interstitial (I) recombination at 400 and 500 °C in the Si- and O-implanted samples; the higher oxygen concentration makes the latter temperature higher. The defective region shrinks as the annealing temperature increases as interstitials are injected from the end of the implantation range (Rp). VmOn (m> n) are formed in the shallow region most effectively at 700 °C for both Si and O implantation. VxOy (x< y) are produced near Rp by the annealing. At 800 °C, implanted Si ions diffuse and reduce m and implanted O ions diffuse and increase n in VmOn. All oxygen-related vacancy-type defects appear to begin to dissociate at 950 °C, with the probable formation of oxygen clusters. At 1100 °C, oxygen precipitates appear to form just before Rp in O-implanted silicon.
2017-01-01
We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed “double cluster” (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal–organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal–organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials. PMID:28343394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliviero, E.; David, M. L.; Beaufort, M. F.
The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less
Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
Poor electronic conductivity of bulk lithium sulfide (Li 2S) is a critical challenge for the debilitating performance of the lithium–sulfur battery. In this study we focus on investigating the thermodynamic and kinetic properties of native defects in Li 2S based on a first-principles approach. It is found that the hole polaron p + can form in Li 2S by removing a 3p electron from an S 2– anion. The p + diffusion barrier is only 90 meV, which is much lower than the Li vacancy (V Li –) diffusion barrier. Hence p + has the potential to serve as amore » charge carrier in the discharge product. Once the vacancy–polaron complex (V Li -––2p +) forms, the charge transport will be hindered due to the relatively higher diffusion barrier of the complex. Heteroatom dopants, which can decrease the p + formation energy and increase V Li – formation energy, are expected to be introduced to the discharge product to improve the electronic conductivity.« less
Timms, Richard T; Tchasovnikarova, Iva A; Antrobus, Robin; Dougan, Gordon; Lehner, Paul J
2016-10-11
The histone methyltransferase SETDB1 plays a central role in repressive chromatin processes, but the functional requirement for its binding partner ATF7IP has remained enigmatic. Here, we show that ATF7IP is essential for SETDB1 stability: nuclear SETDB1 protein is degraded by the proteasome upon ablation of ATF7IP. As a result, ATF7IP is critical for repression that requires H3K9 trimethylation by SETDB1, including transgene silencing by the HUSH complex. Furthermore, we show that loss of ATF7IP phenocopies loss of SETDB1 in genome-wide assays. ATF7IP and SETDB1 knockout cells exhibit near-identical defects in the global deposition of H3K9me3, which results in similar dysregulation of the transcriptome. Overall, these data identify a critical functional role for ATF7IP in heterochromatin formation by regulating SETDB1 abundance in the nucleus. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
2017-07-24
Poor electronic conductivity of bulk lithium sulfide (Li 2S) is a critical challenge for the debilitating performance of the lithium–sulfur battery. In this study we focus on investigating the thermodynamic and kinetic properties of native defects in Li 2S based on a first-principles approach. It is found that the hole polaron p + can form in Li 2S by removing a 3p electron from an S 2– anion. The p + diffusion barrier is only 90 meV, which is much lower than the Li vacancy (V Li –) diffusion barrier. Hence p + has the potential to serve as amore » charge carrier in the discharge product. Once the vacancy–polaron complex (V Li -––2p +) forms, the charge transport will be hindered due to the relatively higher diffusion barrier of the complex. Heteroatom dopants, which can decrease the p + formation energy and increase V Li – formation energy, are expected to be introduced to the discharge product to improve the electronic conductivity.« less
MOCVD growth of gallium nitride with indium surfactant
NASA Astrophysics Data System (ADS)
Won, Dong Jin
In this thesis research, the effect of indium surfactant on Ga-polar and N-polar GaN films grown at 950 °C by MOCVD on various substrates such as Si-face SiC, bulk GaN, Si(111), and C-face SiC was studied to investigate the stress relaxation mechanism, structural, and optical properties of GaN films which were modified by the indium surfactant. The effect of indium surfactant on GaN films grown on SiC was studied first. In the 1.8 microm thick Ga-polar GaN films grown on lattice-mismatched Si-face SiC substrates utilizing indium surfactant at 950 °C, inverted hexagonal pyramid surface defects, so-called V-defects which consist of six (1011) planes, formed at threading dislocations on the GaN surface, which gave rise to the relaxation of compressive misfit stress in an elastic way. Simultaneously, enhanced surface mobility of Ga and N adatoms with indium surfactant lead to improved 2D growth, which may be contradictory to the formation of surface defects like V-defects. In order to find the driving force for V-defect formation in the presence of indium, a nucleation and growth model was developed, taking into consideration the strain, surface, and dislocation energies modified by indium surfactant. This model found that the V-defect formation can be energetically preferred since indium reduces the surface energy of the (1011) plane, which gives rise to the V-defect formation and growth that can overcome the energy barrier at the critical radius of the V-defect. These Ga-polar GaN films were found to be unintentionally doped with Si. Thus, an investigation into the effect of intentional Si doping at a constant TMIn flow rate on GaN films was also performed. Si turned out to be another important factor in the generation of V-defects because Si may be captured at the threading dislocation cores by forming Si -- N bonds, acting as a mask to locally prevent GaN growth. This behavior appeared to assist the initiation of the V-defect which enables V-defects to easily grow beyond the critical radius. Thus, introduction of indium surfactant and Si doping was found to be the most favorable conditions for V-defect formation in Ga-polar GaN films grown on Si-face SiC substrates. The nucleation and growth model predicted that V-defects may not form in homoepitaxy because the energy barrier for V-defect formation approaches infinity due to zero misfit stress. When indium surfactant and Si dopant were introduced simultaneously during the homoepitaxial growth, V-defects did not form in 1.8 microm thick Ga-polar GaN films grown at 950 °C on bulk GaN that had very low threading dislocation density, as predicted by the nucleation and growth model. Ga-polar GaN films grown on Si(111) substrates using indium surfactant showed that additional tensile stress was induced by indium with respect to the reference GaN. Since cracking is known to be a stress relaxation mechanism for tension, the In-induced additional tensile stress is thus detrimental to the GaN films which experience the tensile thermal stress associated with the difference in coefficient of thermal expansion between GaN and the substrate during cooling after growth. The generation of tensile stress by indium seemed correlated with a reduction of V-defects since a high density of V-defects formed under the initial compressive stress at the GaN nucleation stage and then V-defect density decreased as the film grew. Even though the initial misfit stress of the GaN film grown on Si(111) was lower than that of GaN grown on SiC, a high density of V-defects were created under the initial compressive stress. Therefore, the high density of threading dislocations was believed to strongly drive the V-defect formation under In-rich conditions. Consequently, without using high quality bulk GaN substrates, V-defects could not be avoided in Ga-polar GaN films grown on foreign substrates such as Si-face SiC and Si(111) in the presence of indium surfactant and Si dopants during growth. Thus, N-polar GaN films were investigated using vicinal C-face SiC substrates because a theoretical study utilizing first-principles calculations predicted that V-defects are not energetically favored on the N-face GaN. When indium surfactant and Si doping were used during N-polar GaN growth, V-defects did not form, as predicted by theory. This observation suggests that V-defect free N-polar InGaN alloys also can be achieved, which may enable stable green laser diodes with long lifetime to be fabricated using the high indium composition N-polar InGaN films. (Abstract shortened by UMI.)
Porous CaP/silk composite scaffolds to repair femur defects in an osteoporotic model
Cheng, Ning; Dai, Jing; Cheng, Xiangrong; Li, Shu’e; Miron, Richard J.; Wu, Tao; Chen, Wenli; Zhang, Yufeng
2018-01-01
The most common complication for patients with postmenopausal osteoporosis is bone-related defects and fractures. While routine medication has a high probability of undesirable side effects, new approaches have aimed to develop regeneration procedures that stimulate new bone formation while reversing bone loss. Recently, we have synthesized a new hybrid CaP/silk scaffold with a CaP-phase distribution and pore architecture better suited to facilitate cell differentiation and bone formation. The aim of the present study was to compare the involved remodeling process and therapeutic effect of porous CaP/silk composite scaffolds upon local implantation into osteoporotic defects. Wistar rats were used to induce postmenopausal osteoporotic model by bilateral ovariectomy. The pure silk and hybrid CaP/silk scaffolds were implanted into critical sized defects created in distal femoral epiphysis. After 14 and 28 days, the in vivo osteogenetic efficiency was evaluated by μCT analysis, hematoxylin and eosin staining, Safranin O staining, tartrate-resistant acid phosphatase staining, and immunohistochemical assessment. Animals with or without critical-sized defects were used as drill or blank controls, respectively. The osteoporotic defect model was well established with significantly decreased μCT parameters of BV/TV, Tb.N and increased Tb.Sp, porosity, combined with changes in histological observations. During the healing process, the critical-sized drill control defects failed to regenerate appreciable bone tissue, while more significantly increased bone formation and mineralization with dynamic scaffold degradation and decreased osteoclastic bone resorption could be detected within defects with hybrid CaP/silk scaffolds compared to pure silk scaffolds. PMID:23674058
Porous CaP/silk composite scaffolds to repair femur defects in an osteoporotic model.
Cheng, Ning; Dai, Jing; Cheng, Xiangrong; Li, Shu'e; Miron, Richard J; Wu, Tao; Chen, Wenli; Zhang, Yufeng; Shi, Bin
2013-08-01
The most common complication for patients with postmenopausal osteoporosis is bone-related defects and fractures. While routine medication has a high probability of undesirable side effects, new approaches have aimed to develop regeneration procedures that stimulate new bone formation while reversing bone loss. Recently, we have synthesized a new hybrid CaP/silk scaffold with a CaP-phase distribution and pore architecture better suited to facilitate cell differentiation and bone formation. The aim of the present study was to compare the involved remodeling process and therapeutic effect of porous CaP/silk composite scaffolds upon local implantation into osteoporotic defects. Wistar rats were used to induce postmenopausal osteoporotic model by bilateral ovariectomy. The pure silk and hybrid CaP/silk scaffolds were implanted into critical sized defects created in distal femoral epiphysis. After 14 and 28 days, the in vivo osteogenetic efficiency was evaluated by μCT analysis, hematoxylin and eosin staining, Safranin O staining, tartrate-resistant acid phosphatase staining, and immunohistochemical assessment. Animals with or without critical-sized defects were used as drill or blank controls, respectively. The osteoporotic defect model was well established with significantly decreased μCT parameters of BV/TV, Tb.N and increased Tb.Sp, porosity, combined with changes in histological observations. During the healing process, the critical-sized drill control defects failed to regenerate appreciable bone tissue, while more significantly increased bone formation and mineralization with dynamic scaffold degradation and decreased osteoclastic bone resorption could be detected within defects with hybrid CaP/silk scaffolds compared to pure silk scaffolds.
NASA Astrophysics Data System (ADS)
Materlik, Robin; Künneth, Christopher; Falkowski, Max; Mikolajick, Thomas; Kersch, Alfred
2018-04-01
III-valent dopants have shown to be most effective in stabilizing the ferroelectric, crystalline phase in atomic layer deposited, polycrystalline HfO2 thin films. On the other hand, such dopants are commonly used for tetragonal and cubic phase stabilization in ceramic HfO2. This difference in the impact has not been elucidated so far. The prospect is a suitable doping to produce ferroelectric HfO2 ceramics with a technological impact. In this paper, we investigate the impact of Al, Y, and La doping, which have experimentally proven to stabilize the ferroelectric Pca21 phase in HfO2, in a comprehensive first-principles study. Density functional theory calculations reveal the structure, formation energy, and total energy of various defects in HfO2. Most relevant are substitutional electronically compensated defects without oxygen vacancy, substitutional mixed compensated defects paired with a vacancy, and ionically compensated defect complexes containing two substitutional dopants paired with a vacancy. The ferroelectric phase is strongly favored with La and Y in the substitutional defect. The mixed compensated defect favors the ferroelectric phase as well, but the strongly favored cubic phase limits the concentration range for ferroelectricity. We conclude that a reduction of oxygen vacancies should significantly enhance this range in Y doped HfO2 thin films. With Al, the substitutional defect hardly favors the ferroelectric phase before the tetragonal phase becomes strongly favored with the increasing concentration. This could explain the observed field induced ferroelectricity in Al-doped HfO2. Further Al defects are investigated, but do not favor the f-phase such that the current explanation remains incomplete for Al doping. According to the simulation, doping alone shows clear trends, but is insufficient to replace the monoclinic phase as the ground state. To explain this fact, some other mechanism is needed.
NASA Astrophysics Data System (ADS)
Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe
2012-05-01
A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.
Impact of growth rate on graphene lattice-defect formation within a single crystalline domain.
Chin, Hao-Ting; Lee, Jian-Jhang; Hofmann, Mario; Hsieh, Ya-Ping
2018-03-06
Chemical vapor deposition (CVD) is promising for the large scale production of graphene and other two-dimensional materials. Optimization of the CVD process for enhancing their quality is a focus of ongoing effort and significant progress has been made in decreasing the defectiveness associated with grain boundaries and nucleation spots. However, little is known about the quality and origin of structural defects in the outgrowing lattice which are present even in single-crystalline material and represent the limit of current optimization efforts. We here investigate the formation kinetics of such defects by controlling graphene's growth rate over a wide range using nanoscale confinements. Statistical analysis of Raman spectroscopic results shows a clear trend between growth rate and defectiveness that is in quantitative agreement with a model where defects are healed preferentially at the growth front. Our results suggest that low growth rates are required to avoid the freezing of lattice defects and form high quality material. This conclusion is confirmed by a fourfold enhancement in graphene's carrier mobility upon optimization of the growth rate.
Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods
Hehr, Brian Douglas
2014-11-25
The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials.more » The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.« less
Light-induced defects in hybrid lead halide perovskite
NASA Astrophysics Data System (ADS)
Sharia, Onise; Schneider, William
One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.
Epitaxial growth mechanisms of graphene and effects of substrates
NASA Astrophysics Data System (ADS)
Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.
2012-06-01
The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.
Multi-modal STEM-based tomography of HT-9 irradiated in FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Eftink, Benjamin Paul; Saleh, Tarik A.
Under irradiation, point defects and defect clusters can agglomerate to form extended two and three dimensional (2D/3D) defects. The formation of defects can be synergistic in nature with one defect or defect-type influencing the formation and/or evolution of another. The resul is a need exists to perform advanced characterization where microstructures are accurately reproduced in 3D. Here, HT-9 neutron irradiated in the FFTF was used to evaluate the ability of multi-tilt STEM-based tomography to reproduce the fine-scale radiation-induced microstructure. High-efficiency STEM-EDS was used to provide both structural and chemical information during the 3D reconstruction. The results show similar results tomore » a previous two-tilt tomography study on the same material; the α' phase is denuded around the Ni-Si-Mn rich G-phase and cavities. It is concluded both tomography reconstruction techniques are readily viable and could add significant value to the advanced characterization capabilities for irradiated materials.« less
NASA Astrophysics Data System (ADS)
Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.
2017-08-01
Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.
Global Formation of Topological Defects in the Multiferroic Hexagonal Manganites
Meier, Q. N.; Lilienblum, M.; Griffin, S. M.; ...
2017-10-20
The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic length scales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding, e.g., its degree of universality. Here, we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburgmore » and mean field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm.« less
Effects of alloy composition and Si-doping on vacancy defect formation in (InxGa1-x)2O3 thin films
NASA Astrophysics Data System (ADS)
Prozheeva, V.; Hölldobler, R.; von Wenckstern, H.; Grundmann, M.; Tuomisto, F.
2018-03-01
Various nominally undoped and Si-doped (InxGa1-x)2O3 thin films were grown by pulsed laser deposition in a continuous composition spread mode on c-plane α-sapphire and (100)-oriented MgO substrates. Positron annihilation spectroscopy in the Doppler broadening mode was used as the primary characterisation technique in order to investigate the effect of alloy composition and dopant atoms on the formation of vacancy-type defects. In the undoped samples, we observe a Ga2O3-like trend for low indium concentrations changing to In2O3-like behaviour along with the increase in the indium fraction. Increasing indium concentration is found to suppress defect formation in the undoped samples at [In] > 70 at. %. Si doping leads to positron saturation trapping in VIn-like defects, suggesting a vacancy concentration of at least mid-1018 cm-3 independent of the indium content.
Global Formation of Topological Defects in the Multiferroic Hexagonal Manganites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Q. N.; Lilienblum, M.; Griffin, S. M.
The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic length scales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding, e.g., its degree of universality. Here, we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburgmore » and mean field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genkin, Mikhail Mikhailovich; Sokolov, Andrey; Lavrentovich, Oleg D.
Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement withmore » the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Lastly, our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.« less
Genkin, Mikhail Mikhailovich; Sokolov, Andrey; Lavrentovich, Oleg D.; ...
2017-03-08
Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement withmore » the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Lastly, our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.« less
Elementary defects in graphane
NASA Astrophysics Data System (ADS)
Podlivaev, A. I.; Openov, L. A.
2017-07-01
The main zero-dimensional defects in graphane, a completely hydrogenated single-layer graphene, having the chair-type conformation have been numerically simulated. The hydrogen and carbon-hydrogen vacancies, Stone-Wales defect, and "transmutation defect" resulting from the simultaneous hoppings of two hydrogen atoms between the neighboring carbon atoms have been considered. The energies of formations of these defects have been calculated and their effect on the electronic structure, phonon spectra, and Young modulus has been studied.
NASA Astrophysics Data System (ADS)
Jadan, M.; Chelyadinskii, A. R.; Odzhaev, V. B.
2013-02-01
The possibility to control the localization of implanted carbon in sites and interstices in silicon immediately during the implantation has been demonstrated. The formation of residual extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions has been shown. It has been found that the formation of residual defects can be suppressed due to annihilation of point defects at C atoms (the Watkins effect). The positive effect is attained if implanted carbon is localized over lattice sites, which is provided by its implantation with the effective current density of the scanning ion beam no lower than 1.0 μA cm-2.
Synthesis of photochromic nanoparticles and determination of the mechanism of photochromism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Shuhei, E-mail: shu18@hiroshima-u.ac.jp; Matsumura, Yukihiko; Kawamoto, Takahiro
2016-05-15
Photochromic nanoparticles of zinc-silicon oxide were synthesized using plasma enhanced chemical vapor deposition. These particles turned black upon irradiating with ultraviolet light. We investigated this phenomenon using density functional theory calculations. Silicon inclusions create trap levels and oxygen defects that reduce the ionization potential of ZnO. This forms a quantum potential between ZnO and zinc-silicon oxide, and the excited electron is stable. Because oxygen defects also increase the bond overlap population between the zinc atoms in a ZnO crystal, they introduce further defects and help in the formation of quantum potentials. Growth of a perfect crystal of ZnO prevents themore » formation of oxygen defects, which is not desirable for photochromism.« less
Effect of hydrogen adsorption on the formation and annealing of Stone-Wales defects in graphene
NASA Astrophysics Data System (ADS)
Podlivaev, A. I.; Openov, L. A.
2015-12-01
The heights of energy barriers preventing the formation and annealing of Stone-Wales defects in graphene with a hydrogen atom adsorbed on the defect or in its immediate vicinity have been calculated using the atomistic computer simulation. It has been shown that, in the presence of hydrogen, both barriers are significantly lower than those in the absence of hydrogen. Based on the analysis of the potential energy surface, the frequency factors have been calculated for two different paths of the Stone-Wales transformation, and the temperature dependences of the corresponding annealing times of the defects have been found. The results obtained have been compared with the first-principles calculations and molecular dynamics data.
Point defects in thorium nitride: A first-principles study
NASA Astrophysics Data System (ADS)
Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.
2016-11-01
Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.
Rupp, Ghislain M.; Fleig, Jürgen
2018-01-01
La0.6Sr0.4FeO3–δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to –600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions. PMID:29671421
Schmid, Alexander; Rupp, Ghislain M; Fleig, Jürgen
2018-05-03
La0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to -600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions.
DNA Repair Defects and Chromosomal Aberrations
NASA Technical Reports Server (NTRS)
Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.
2009-01-01
Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of the DNA repair-defective cell lines were smaller than those of normal cells, with the DNA-PK-deficient cells having RBEs near unity. To further investigate the sensitivity differences that were observed in ATM and NBS deficient cells, chromosomal aberrations were analyzed in normal lung fibroblast cells treated with KU-55933 (a specific ATM kinase inhibitor) or Mirin (an Mre11- Rad50-Nbs1 complex inhibitor involved in activation of ATM). We also performed siRNA knockdown of these proteins. Preliminary data indicate that chromosome exchanges increase in cells treated with the specific ATM inhibitor. Possible cytogenetic signatures of acute and low dose-rate gamma irradiation in ATM or nibrin deficient and suppressed cells will be discussed.
Regulatory Circuitry of the CsrA/CsrB and BarA/UvrY Systems of Escherichia coli
Suzuki, Kazushi; Wang, Xin; Weilbacher, Thomas; Pernestig, Anna-Karin; Melefors, Öjar; Georgellis, Dimitris; Babitzke, Paul; Romeo, Tony
2002-01-01
The global regulator CsrA (carbon storage regulator) is an RNA binding protein that coordinates central carbon metabolism, activates flagellum biosynthesis and motility, and represses biofilm formation in Escherichia coli. CsrA activity is antagonized by the untranslated RNA CsrB, to which it binds and forms a globular ribonucleoprotein complex. CsrA indirectly activates csrB transcription, in an apparent autoregulatory mechanism. In the present study, we elucidate the intermediate regulatory circuitry of this system. Mutations affecting the BarA/UvrY two-component signal transduction system decreased csrB transcription but did not affect csrA′-′lacZ expression. The uvrY defect was severalfold more severe than that of barA. Both csrA and uvrY were required for optimal barA expression. The latter observation suggests an autoregulatory loop for UvrY. Ectopic expression of uvrY suppressed the csrB-lacZ expression defects caused by uvrY, csrA, or barA mutations; csrA suppressed csrA or barA defects; and barA complemented only the barA mutation. Purified UvrY protein stimulated csrB-lacZ expression approximately sixfold in S-30 transcription-translation reactions, revealing a direct effect of UvrY on csrB transcription. Disruption of sdiA, which encodes a LuxR homologue, decreased the expression of uvrY′-′lacZ and csrB-lacZ fusions but did not affect csrA′-′lacZ. The BarA/UvrY system activated biofilm formation. Ectopic expression of uvrY stimulated biofilm formation by a csrB-null mutant, indicative of a CsrB-independent role for UvrY in biofilm development. Collectively, these results demonstrate that uvrY resides downstream from csrA in a signaling pathway for csrB and that CsrA stimulates UvrY-dependent activation of csrB expression by BarA-dependent and -independent mechanisms. PMID:12193630
NASA Astrophysics Data System (ADS)
Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin
2015-05-01
Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.
Evolutionary dynamics of cooperation in neutral populations
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Perc, Matjaž
2018-01-01
Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.
NASA Astrophysics Data System (ADS)
Sloan, Jeremy; Hutchison, John L.; Tenne, Reshef; Feldman, Yishay; Tsirlina, Tatyana; Homyonfer, Moshe
1999-04-01
Complex tungsten oxides, consisting of nonstoichiometric oxides of the form WO3-xand stoichiometric lamellar oxides of the form {001}RWnO3n-1(n=3 to 6) have been observed incorporated within 2H-WX2(X=S or Se) inorganic fullerene-like (IF) structures by HRTEM. These encapsulates were formed from a gas-solid reaction between H2Xand disordered WO3-xprecursors exhibiting a range of particle sizes and morphologies. The microstructures of most of the encapsulated oxides could be described in terms of {hkl}Rcrystallographic shear (CS) structures formed relative to an ReO3-type (R) substructure. Smaller spheroidal WO3-xencapsulates were frequently found to exhibit random {103}RCS defects of the Wadsley type, while larger, needle encapsulates were found to form exclusively {001}RWnO3n-1type lamellar structures that were predominantely ordered. Spheriodal encapsulates with randomly spaced {001}RCS planes were also observed encapsulated inside 2H-WSe2IF structures. The growth and morphologies of the encapsulating 2H-WX2shells were profoundly influenced by those of the precursor oxides used in their formation. Ordering mechanisms were proposed with respect to the formation of the ordered encapsulated oxides from the disordered precursors.
Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; ...
2018-01-01
Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm
Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less
Influence of native defects on structural and electronic properties of magnesium silicide
NASA Astrophysics Data System (ADS)
Hirayama, Naomi; Iida, Tsutomu; Nishio, Keishi; Kogo, Yasuo; Takarabe, Kenji; Hamada, Noriaki
2017-05-01
The narrow-gap semiconductor magnesium silicide (Mg2Si) is a promising candidate for mid-temperature (500-800 K) thermoelectric applications. Mg2Si exhibits intrinsic n-type conductivity because of its interstitial Mg defects and is generally doped with n-type dopants; however, the synthesis of p-type Mg2Si has proven difficult. In the present study, we examined several types of defects, such as vacancies and the insertion of constituent atoms (Mg and Si) into crystals, to elucidate their stability in Mg2Si and their influence on its electronic states. A first-principles calculation has revealed that the insertion of Mg into a cell is the most stable and causes n-type conductivity in terms of formation energy. In contrast, the vacancy of Mg produces hole doping although its formation energy per conventional unit cell is approximately 0.07 eV higher than that of the insertion of Mg, at their concentration of 1.04 at. %. Furthermore, the insertion and vacancy of Si atoms generate electrons with higher formation energies compared to the Mg-related defects. As these defects alter the carrier concentration, they can compensate for intentional doping because of the added impurity atoms.
Calvo-Guirado, José Luis; Garces, Miguel; Delgado-Ruiz, Rafael Arcesio; Ramirez Fernandez, Maria P; Ferres-Amat, Eduard; Romanos, Georgios E
2015-08-01
The aim of this study was to assess the bone regeneration of critical size defects in rabbit calvarias filled with β-TCP doped with silicon. Twenty-one New Zealand rabbits were used in this study. Two critical size defects were created in the parietal bones. Three experimental groups were evaluated: Test A (HA/β-TCP granules alone), Test B (HA/β-TCP granules plus 3% silicon), Control (empty defect). The animals were sacrificed at 8 and 12 weeks. Evaluation was performed by μCT analysis and histomorphometry. μCT evaluation showed higher volume reduction in Test A group compared with Test B (P < 0.05). The Test B group showed the highest values for cortical closure and bone formation around the particles, followed by Test A and controls (P < 0.05). Within the limitations of this animal study, it can be concluded that HA/β-TCP plus 3% silicon increases bone formation in critical size defects in rabbit calvarias, and the incorporation of 3% silicon reduces the resorption rate of the HA/β-TCP granules. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Han, Yong; Lii-Rosales, A.; Zhou, Y.; ...
2017-10-13
Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less
A Study of Defect Behavior in Almandine Garnet
NASA Astrophysics Data System (ADS)
Geiger, C. A.; Brearley, A. J.; Dachs, E.; Tipplet, G.; Rossman, G. R.
2016-12-01
Transport and diffusion in crystals are controlled by defects. However, a good understanding of the defect types in many silicates, including garnet, is not at hand. We undertook a study on synthetic almandine, ideal end-member Fe3Al2Si3O12, to better understand its precise chemical and physical properties and defect behavior. Crystals were synthesized at high pressures and temperatures under different fO2 conditions using various starting materials with H2O and without. The almandine obtained came in polycrystalline and single-crystal form. The synthetic reaction products and crystals were carefully characterized using X-ray powder diffraction, electron microprobe and TEM analysis and with 57Fe Mössbauer, UV/VIS single-crystal absorption and IR single-crystal spectroscopy. Various possible intrinsic defects, such as the Frenkel, Schottky and site-disorder types, along with Fe3+, in both synthetic and natural almandine crystals, were analyzed based on model defects expressed in Kröger-Vink notation. Certain types of minor microscopic- to macroscopic-sized precipitation or exsolution phases, including some that are nanosized, that are observed in synthetic almandine (e.g., magnetite), as well as in more compositionally complex natural crystals (e.g., magnetite, rutile, ilmenite), may result from defect reactions. An explanation for their origin through minor amounts of defects in garnet has certain advantages over other models that have been put forth in the literature that assume strict garnet stoichiometry for their formation and/or open-system atomic transport over relatively long length scales. Physical properties, including magnetic, electrical conductivity and diffusion behavior, as well as the color, of almandine are also analyzed in terms of various possible model defects. It is difficult, if not impossible, to synthesize stoichiometric end-member almandine, Fe3Al2Si3O12, in the laboratory, as small amounts of extrinsic OH- and/or Fe3+ defects, for example, are typically present depending on the synthesis route. The nature of possible nonstoichiometry in synthetic almandine and natural almandine-rich crystals is discussed and compared.
Zhang, Qin; Bai, Bao-Ling; Liu, Xiao-Zhen; Miao, Chun-Yue; Li, Hui-Li
2014-08-01
To explore the association of polymorphisms in folate metabolism genes, methionine synthase reductase (MTRR) gene and 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, with complex congenital abnormalities and to further investigate its association with complex congenital abnormalities derived from three germ layers. A total of 250 cases of birth defects (with complex congenital abnormalities including congenital heart disease, neural tube defects, and craniofacial anomalies) in Shanxi Province, China were included in the study. MTRR single nucleotide polymorphism (SNP) (rs1801394) and MTHFR SNP (rs1801133) were genotyped by the SNaPshot method, and the genotyping results were compared with those of controls (n=420). SNPs rs1801394 and rs1801133 were associated with multiple birth defects. For the recessive model, individuals with GG genotype at rs1801394 and CC genotype at rs1801133 had a relatively low risk of developing birth defects, so the two genotypes were protective factors against birth defects. The homozygous recessive genotype at rs1801133, which served as a protective factor, was associated with ectoderm- or endoderm-derived complex congenital abnormalities, while the homozygous recessive genotype at rs1801394, which served as a protective factor, was associated with ectoderm-, mesoderm- or endoderm-derived complex congenital abnormalities. Among the Chinese population in Shanxi Province, the SNPs in folate metabolism genes (MTRR and MTHFR) are associated with complex congenital abnormalities and related to ectoderm, mesoderm or endoderm development.
NASA Astrophysics Data System (ADS)
Sharifi, P.; Jamali, J.; Sadayappan, K.; Wood, J. T.
2018-05-01
A quantitative experimental study of the effects of process parameters on the formation of defects during solidification of high-pressure die cast magnesium alloy components is presented. The parameters studied are slow-stage velocity, fast-stage velocity, intensification pressure, and die temperature. The amount of various defects are quantitatively characterized. Multiple runs of the commercial casting simulation package, ProCAST™, are used to model the mold-filling and solidification events. Several locations in the component including knit lines, last-to-fill region, and last-to-solidify region are identified as the critical regions that have a high concentration of defects. The area fractions of total porosity, shrinkage porosity, gas porosity, and externally solidified grains are separately measured. This study shows that the process parameters, fluid flow and local solidification conditions, play major roles in the formation of defects during HPDC process.
Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo
Law, Ah-Lai; Vehlow, Anne; Kotini, Maria; Dodgson, Lauren; Soong, Daniel; Theveneau, Eric; Bodo, Cristian; Taylor, Eleanor; Navarro, Christel; Perera, Upamali; Michael, Magdalene; Dunn, Graham A.; Bennett, Daimark; Mayor, Roberto
2013-01-01
Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo. PMID:24247431
TAF11 assembles RISC loading complex to enhance RNAi efficiency
Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C.; Liu, Qinghua
2015-01-01
SUMMARY Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains Dicer-2(Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here, we identified the missing factor of RLC as TATA-binding protein associated factor 11 (TAF11) by genetic screen. Although an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11−/− ovary extract, we reconstituted the RLC in vitro using recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of Drosophila RLC and elucidate a novel cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. PMID:26257286
Keyamura, Kenji; Fujikawa, Norie; Ishida, Takuma; Ozaki, Shogo; Su’etsugu, Masayuki; Fujimitsu, Kazuyuki; Kagawa, Wataru; Yokoyama, Shigeyuki; Kurumizaka, Hitoshi; Katayama, Tsutomu
2007-01-01
Escherichia coli DiaA is a DnaA-binding protein that is required for the timely initiation of chromosomal replication during the cell cycle. In this study, we determined the crystal structure of DiaA at 1.8 Å resolution. DiaA forms a homotetramer consisting of a symmetrical pair of homodimers. Mutational analysis revealed that the DnaA-binding activity and formation of homotetramers are required for the stimulation of initiation by DiaA. DiaA tetramers can bind multiple DnaA molecules simultaneously. DiaA stimulated the assembly of multiple DnaA molecules on oriC, conformational changes in ATP–DnaA-specific initiation complexes, and unwinding of oriC duplex DNA. The mutant DiaA proteins are defective in these stimulations. DiaA associated also with ADP–DnaA, and stimulated the assembly of inactive ADP–DnaA–oriC complexes. Specific residues in the putative phosphosugar-binding motif of DiaA were required for the stimulation of initiation and formation of ATP–DnaA-specific–oriC complexes. Our data indicate that DiaA regulates initiation by a novel mechanism, in which DiaA tetramers most likely bind to multiple DnaA molecules and stimulate the assembly of specific ATP–DnaA–oriC complexes. These results suggest an essential role for DiaA in the promotion of replication initiation in a cell cycle coordinated manner. PMID:17699754
Tuning the formation of p-type defects by peroxidation of CuAlO2 films
NASA Astrophysics Data System (ADS)
Luo, Jie; Lin, Yow-Jon; Hung, Hao-Che; Liu, Chia-Jyi; Yang, Yao-Wei
2013-07-01
p-type conduction of CuAlO2 thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (VCu), and interstitial oxygen (Oi) was established. It is shown that peroxidation of CuAlO2 films may lead to the increased formation probability of acceptors (VCu and Oi), thus, increasing the hole concentration. The dependence of the VCu density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO2. Understanding the defect-related p-type conductivity of CuAlO2 is essential for designing optoelectronic devices and improving their performance.
High Molecular Weight Forms of Mammalian Respiratory Chain Complex II
Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef
2013-01-01
Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256
Yeh, Chung-Hsin; Kuo, Pao-Lin; Wang, Ya-Yun; Wu, Ying-Yu; Chen, Mei-Feng; Lin, Ding-Yen; Lai, Tsung-Hsuan; Chiang, Han-Sun; Lin, Ying-Hung
2015-01-01
Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to the SUN/LAMIN complexes during the formation of nuclear envelopes and are involved in the development of postmeiotic germ cells.
Sparks, Erin E; Perrien, Daniel S; Huppert, Kari A; Peterson, Todd E; Huppert, Stacey S
2011-05-01
Abnormal Notch signaling in humans results in Alagille syndrome, a pleiotropic disease characterized by a paucity of intrahepatic bile ducts (IHBDs). It is not clear how IHBD paucity develops as a consequence of atypical Notch signaling, whether by a developmental lack of bile duct formation, a post-natal lack of branching and elongation or an inability to maintain formed ducts. Previous studies have focused on the role of Notch in IHBD development, and demonstrated a dosage requirement of Notch signaling for proper IHBD formation. In this study, we use resin casting and X-ray microtomography (microCT) analysis to address the role of Notch signaling in the maintenance of formed IHBDs upon chronic loss or gain of Notch function. Our data show that constitutive expression of the Notch1 intracellular domain in bi-potential hepatoblast progenitor cells (BHPCs) results in increased IHBD branches at post-natal day 60 (P60), which are maintained at P90 and P120. By contrast, loss of Notch signaling via BHPC-specific deletion of RBP-J (RBP KO), the DNA-binding partner for all Notch receptors, results in progressive loss of intact IHBD branches with age. Interestingly, in RBP KO mice, we observed a reduction in bile ducts per portal vein at P60; no further reduction had occurred at P120. Thus, bile duct structures are not lost with age; instead, we propose a model in which BHPC-specific loss of Notch signaling results in an initial developmental defect resulting in fewer bile ducts being formed, and in an acquired post-natal defect in the maintenance of intact IHBD architecture as a result of irresolvable cholestasis. Our studies reveal a previously unappreciated role for Notch signaling in the post-natal maintenance of an intact communicating IHBD structure, and suggest that liver defects observed in Alagille syndrome patients might be more complex than bile duct paucity.
Sparks, Erin E.; Perrien, Daniel S.; Huppert, Kari A.; Peterson, Todd E.; Huppert, Stacey S.
2011-01-01
SUMMARY Abnormal Notch signaling in humans results in Alagille syndrome, a pleiotropic disease characterized by a paucity of intrahepatic bile ducts (IHBDs). It is not clear how IHBD paucity develops as a consequence of atypical Notch signaling, whether by a developmental lack of bile duct formation, a post-natal lack of branching and elongation or an inability to maintain formed ducts. Previous studies have focused on the role of Notch in IHBD development, and demonstrated a dosage requirement of Notch signaling for proper IHBD formation. In this study, we use resin casting and X-ray microtomography (microCT) analysis to address the role of Notch signaling in the maintenance of formed IHBDs upon chronic loss or gain of Notch function. Our data show that constitutive expression of the Notch1 intracellular domain in bi-potential hepatoblast progenitor cells (BHPCs) results in increased IHBD branches at post-natal day 60 (P60), which are maintained at P90 and P120. By contrast, loss of Notch signaling via BHPC-specific deletion of RBP-J (RBP KO), the DNA-binding partner for all Notch receptors, results in progressive loss of intact IHBD branches with age. Interestingly, in RBP KO mice, we observed a reduction in bile ducts per portal vein at P60; no further reduction had occurred at P120. Thus, bile duct structures are not lost with age; instead, we propose a model in which BHPC-specific loss of Notch signaling results in an initial developmental defect resulting in fewer bile ducts being formed, and in an acquired post-natal defect in the maintenance of intact IHBD architecture as a result of irresolvable cholestasis. Our studies reveal a previously unappreciated role for Notch signaling in the post-natal maintenance of an intact communicating IHBD structure, and suggest that liver defects observed in Alagille syndrome patients might be more complex than bile duct paucity. PMID:21282722
NASA Astrophysics Data System (ADS)
Žumer, Slobodan; Čančula, Miha; Čopar, Simon; Ravnik, Miha
2015-10-01
Geometrical constrains and intrinsic chirality in nematic mesophases enable formation of stable and metastable complex defect structures. Recently selected knotted and linked disclinations have been formed using laser manipulation of nematic braids entangling colloidal particles in nematic colloids [Tkalec et al., Science 2011; Copar et al., PNAS 2015]. In unwinded chiral nematic phases stable and metastable toron and hopfion defects have been implemented by laser tweezers [Smalyukh et al., Nature Materials 2010; Chen et al., PRL2013] and in chiral nematic colloids particles dressed by solitonic deformations [Porenta et al., Sci. Rep. 2014]. Modelling studies based on the numerical minimisation of the phenomenological free energy, supported with the adapted topological theory [Copar and Zumer, PRL 2011; Copar, Phys. Rep. 2014] allow describing the observed nematic defect structures and also predicting numerous structures in confined blue phases [Fukuda and Zumer, Nature Comms 2011 and PRL 2011] and stable knotted disclinations in cholesteric droplets with homeotropic boundary [Sec et al., Nature Comms 2014]. Coupling the modeling with finite difference time domain light field computation enables understanding of light propagation and light induced restructuring in these mesophases. The method was recently demonstrated for the description of low intensity light beam changes during the propagation along disclination lines [Brasselet et al., PRL 2009; Cancula et al., PRE 2014]. Allowing also high intensity light an order restructuring is induced [Porenta et al., Soft Matter 2012; Cancula et al., 2015]. These approaches help to uncover the potential of topological structures for beyond-display optical and photonic applications.
Pavelin, Jonathan; McCormick, Dominique; Chiweshe, Stephen; Ramachandran, Saranya; Lin, Yao-Tang
2017-01-01
Successful generation of virions from infected cells is a complex process requiring orchestrated regulation of host and viral genes. Cells infected with human cytomegalovirus (HCMV) undergo a dramatic reorganization of membrane organelles resulting in the formation of the virion assembly compartment, a process that is not fully understood. Here we show that acidification of vacuoles by the cellular v-ATPase is a crucial step in the formation of the virion assembly compartment and disruption of acidification results in mis-localization of virion components and a profound reduction in infectious virus levels. In addition, knockdown of ATP6V0C blocks the increase in nuclear size, normally associated with HCMV infection. Inhibition of the v-ATPase does not affect intracellular levels of viral DNA synthesis or gene expression, consistent with a defect in assembly and egress. These studies identify a novel host factor involved in virion production and a potential target for antiviral therapy. PMID:29093211
Costaglioli, Patricia; Barthe, Christophe; Claverol, Stephane; Brözel, Volker S; Perrot, Michel; Crouzet, Marc; Bonneu, Marc; Garbay, Bertrand; Vilain, Sebastien
2012-01-01
Bacterial biofilms are complex cell communities found attached to surfaces and surrounded by an extracellular matrix composed of exopolysaccharides, DNA, and proteins. We investigated the whole-genome expression profile of Pseudomonas aeruginosa sessile cells (SCs) present in biofilms developed on a glass wool substratum. The transcriptome and proteome of SCs were compared with those of planktonic cell cultures. Principal component analysis revealed a biofilm-specific gene expression profile. Our study highlighted the overexpression of genes controlling the anthranilate degradation pathway in the SCs grown on glass wool for 24 h. In this condition, the metabolic pathway that uses anthranilate for Pseudomonas quinolone signal production was not activated, which suggested that anthranilate was primarily being consumed for energy metabolism. Transposon mutants defective for anthranilate degradation were analyzed in a simple assay of biofilm formation. The phenotypic analyses confirmed that P. aeruginosa biofilm formation partially depended on the activity of the anthranilate degradation pathway. This work points to a new feature concerning anthranilate metabolism in P. aeruginosa SCs. PMID:23170231
Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel
2016-01-01
Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851
2002-09-01
seconds per minute that the runtime environment was up and running. Defect Categories. The labels of the 5 defect categories. 78 Cosmetic Defects...The name that corresponds to QSM’s cosmetic defects. Cosmetic defects can be described as deferred, such as errors in format of displays or...2002. [Fent00] Fenton , N. E. and Neil, M. Software Metrics: Roadmap. Proceedings of the Conference on the Future of Software Engineering, 2000, pp
Ming, Wenmei; Chen, Shiyou; East China Normal Univ.; ...
2016-10-13
Methylammonium (MA) lead triiodide (MAPbI 3) has recently emerged as a promising solar cell material. But, MAPbI3 is known to have chemical instability, i.e., MAPbI3 is prone to decomposition into MAI and PbI 2 even at moderate temperatures (e.g. 330 K). Here, we show that the chemical instability, as reflected by the calculated negligible enthalpy of formation of MAPbI 3 (with respect to MAI and PbI 2), has an unusual and important consequence for defect properties, i.e., defect formation energies in low-carrier-density MAPbI 3 are nearly independent of the chemical potentials of constituent elements and thus can be uniquely determined. This allows straightforward calculations of defect concentrations and the activation energy of ionic conductivity (the sum of the formation energy and the diffusion barrier of the charged mobile defect) in MAPbI 3. Furthermore, the calculated activation energy for ionic conductivity due to Vmore » $$+\\atop{1}$$ diffusion is in excellent agreement with the experimental values, which demonstrates unambiguously that V$$+\\atop{1}$$ is the dominant diffusing defect and is responsible for the observed ion migration and device polarization in MAPbI3 solar cells. The calculated low formation energy of a Frenkel pair (V$$+\\atop{1}$$ -I$$-\\atop{i}$$ and low diffusion barriers of V$$+\\atop{1}$$ and Image I$$-\\atop{i}$$ suggest that the iodine ion migration and the resulting device polarization may occur even in single-crystal devices and grain-boundary-passivated polycrystalline thin film devices (which were previously suggested to be free from ion-migration-induced device polarization), leading to device degradation. Moreover, the device polarization due to the Frenkel pair (which has a relatively low concentration) may take a long time to develop and thus may avoid the appearance of the current–voltage hysteresis at typical scan rates.« less
Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.
2015-01-01
Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336
Theoretical Study of Defect Signatures in III-V and II-VI Semiconductors
2006-03-01
collaboration with experimentalists at Linköpin University (Sweden), we identified the recently observed EPR signals in diluted GaPN to be Gallium ...the results from USPP calculations to all electron calculations. o Study NO-Zni complexes and other point defects in ZnO using USPP calculations...parameters for point defects in semiconductors. o Results on stability of NO-Zni complexes in ZnO and preliminary results on their electronic
NASA Astrophysics Data System (ADS)
Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman
2017-10-01
Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.
Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin
2015-11-01
The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.
Cortactin as a Target for FAK in the Regulation of Focal Adhesion Dynamics
Ghassemian, Majid; Schlaepfer, David D.
2012-01-01
Background Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear. Principal Findings Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin. Conclusions Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement. PMID:22952866
Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi
2018-06-15
The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Characterization of dental pulp defect and repair in a canine model.
Yildirim, Sibel; Can, Alp; Arican, Mustafa; Embree, Mildred C; Mao, Jeremy J
2011-12-01
To explore a relationship between the size of pulp chamber perforation and reparative dentin formation in a canine model. Pulp defects were created in the pulp chambers of maxillary and mandibular premolars (N = 64) in 17 healthy mongrel dogs in three different sizes (diameter/depth: 1/1, 2/1, and 2/2 mm3) with sterile round burs under general anesthesia. The perforations were immediately capped with hard-setting calcium hydroxide (CH) in the control group or sealed with Teflon membrane (TM) in the experimental group, followed by restoration with reinforced zinc oxide eugenol cement in vivo. Seven and 30 days after pulp chamber perforation and restoration all treated and control premolars were extracted and prepared for histomorphometric and statistical analyses. Reparative dentin formation was more pronounced for defect sizes up to 2/1 mm3 when treated with CH, and completely bridged the surgically created dentin defects only after 30 days. However, reparative dentin upon CH treatment failed to completely bridge pulp chamber exposure for 2/2 defects. By contrast, TM treatment only yielded mild reparative dentin bridging for defects up to 1/1, but not for either 2/1 or 2/2 defects at 30 days. Inflammatory responses of the exposed dental pulp tissue were more robust with the TM group than with the CH group. Thus, dental pulp tissue possesses a capacity for spontaneous repair by the formation of reparative dentin in this preclinical model, but only up to a defect size of -2 mm in diameter and 1 mm in depth. All observations are based on 30 days post-treatment in the canine model. These findings may serve as baseline for regenerative endodontic studies.
Selective turnover of p62/A170/SQSTM1 by autophagy.
Ichimura, Yoshinobu; Kominami, Eiki; Tanaka, Keiji; Komatsu, Masaaki
2008-11-01
Loss of autophagy causes liver injury, cardiomyopathy and neurodegeneration, associated with the formation of ubiquitin-positive inclusion bodies. However, the pathogenic mechanism and molecular machinery involved in inclusion formation are not fully understood. We recently identified a ubiquitin-binding protein, p62/A170/SQSTM1, as a molecule involved in inclusion formation. p62 interacts with LC3 which regulates autophagosome formation, through an 11 amino acid sequence rich in acidic and hydrophobic residues, named the LC3-recognition sequence (LRS), and the LC3-p62 complex is degraded by autophagy. Furthermore, structural analysis reveals an interaction of Trp-340 and Leu-343 of p62 with different hydrophobic pockets in the ubiquitin-fold of LC3. p62 mutants, defective in binding the LRS, escape efficient turnover by autophagy, forming ubiquitin- and p62-positive inclusions. Importantly, such ubiquitin- and p62-positive inclusions are identified in various human diseases, implying the involvement of autophagy in their pathogenic mechanisms. Our reports identify an important role for autophagy in the selective turnover of p62, and demonstrate that in addition to the essential role of LC3 in autophagosome formation, LC3 is also involved in sorting autophagy-specific substrate(s).
Ambient Carbon Dioxide Capture Using Boron-Rich Porous Boron Nitride: A Theoretical Study.
Li, Lanlan; Liu, Yan; Yang, Xiaojing; Yu, Xiaofei; Fang, Yi; Li, Qiaoling; Jin, Peng; Tang, Chengchun
2017-05-10
The development of highly efficient sorbent materials for CO 2 capture under ambient conditions is of great importance for reducing the impact of CO 2 on the environment and climate change. In this account, strong CO 2 adsorption on a boron antisite (B N ) in boron-rich porous boron nitrides (p-BN) was developed and studied. The results indicated that the material achieved larger adsorption energies of 2.09 eV (201.66 kJ/mol, PBE-D). The electronic structure calculations suggested that the introduction of B N in p-BN induced defect electronic states in the energy gap region, which strongly impacted the adsorption properties of the material. The bonding between the B N defect and the CO 2 molecule was clarified, and it was found that the electron donation first occurred from CO 2 to the B N double-acceptor state then, followed by electron back-donation from B N to CO 2 accompanied by the formation of a B N -C bond. The thermodynamic properties indicated that the adsorption of CO 2 on the B N defect to form anionic CO 2 δ- species was spontaneous at temperatures below 350 K. Both the large adsorption energies and the thermodynamic properties ensured that p-BN with a B N defect could effectively capture CO 2 under ambient conditions. Finally, to evaluate the energetic stability, the defect formation energies were estimated. The formation energy of the B N defects was found to strongly depend on the chemical environment, and the selection of different reactants (B or N sources) would achieve the goal of reducing the formation energy. These findings provided a useful guidance for the design and fabrication of a porous BN sorbent for CO 2 capture.
Nosouhian, Saied; Razavi, Mohammad; Jafari-Pozve, Nasim; Rismanchian, Mansour
2015-01-01
Many synthetic bone materials have been introduced for repairing bone defects. The aim of this study is to comparatively evaluate the efficacy of nano-hydroxyapatite (HA) and nano-bioglass bone materials with their traditional micro counterparts in repairing bone defects. In this prospective animal study, four healthy dogs were included. First to fourth premolars were extracted in each quadrant and five cavities in each quadrant were created using trephine. Sixteen cavities in each dog were filled by HA, nano-HA, bioglass, and nano-bioglass and four defects were left as the control group. All defects were covered by a nonrestorable membrane. Dogs were sacrificed after 15, 30, 45, and 60 days sequentially. All 20 samples were extracted by trephine #8 with a sufficient amount of surrounding bone. All specimens were investigated under an optical microscope and the percentage of total regenerated bone, lamellar, and woven bone were evaluated. Data analysis was carried out by SPSS Software ver. 15 and Mann-Whitney U-test (α =0.05). After 15 days, the bone formation percentage showed a significant difference between HA and nano-HA and between HA and bioglass (P < 0.001). The nano-HA group showed the highest rate of bone formation after 15 days. Nano-bioglass and bioglass and nano-HA and nano-bioglass groups represented a significant difference and nano-bioglass showed the highest rate of bone formation after 30 days (P = 0.01). After 45 days, the bone formation percentage showed a significant difference between nano-bioglass and bioglass and between nano-HA and nano-bioglass groups (P = 0.01). Nano-HA and nano-bioglass biomaterials showed promising results when compared to conventional micro-particles in the repair of bone defects.
Lima, L A; Anderson, G B; Wang, M M; Nasjleti, C E; Morrison, E C; Kon, S; Caffesse, R G
1997-03-01
The purpose of this study was to evaluate the importance of root canal therapy in the healing process of severe intrabony defects. Four beagle dogs were used and 32 interproximal intrabony defects, up to the apical third, were created. Wire ligatures were placed into these defects for plaque accumulation. Three weeks later, the ligatures were removed and 4 different treatment modalities were employed: group 1) scaling and root planing (SRP); group 2) modified Widman flap (MWF); group 3) modified Widman flap and root canal therapy performed at the same time (RCT/MWF); and group 4) modified Widman flap and root canal therapy performed 3 weeks after the surgical procedure (MWF + RCT). Postoperative oral hygiene was obtained by spraying a 0.12% chlorhexidine solution 3 times a week. The animals were sacrificed 7 weeks after treatment. Blocks were obtained and processed for routine histology. Results were expressed as a percentage of the total defect length (TDL). No differences were observed when SRP was compared to MWF. New bone formation (BF) presented better results for SRP (43.4%) and MWF (53.4%) when compared to RCT/MWF (15.5%). New cementum formation (CF) presented better results for SRP (59.8%) and MWF (64.6%) when compared to RCT/MWF (19.3%) and MWF + RCT (31.5%). Connective tissue repair (CTR) presented better results for SRP (72.4%) and MWF (74.2%) when compared to RCT/MWF (47.5%) and MWF + RCT (44.4%). Results were statistically significant at the level of 0.05. Within the limits of this study, it was concluded that root canal therapy performed simultaneously or 3 weeks after surgery modified the healing of intrabony defects, impairing new bone formation, new cementum formation and new attachment.
The Effect of Radiation "Memory" in Alkali-Halide Crystals
NASA Astrophysics Data System (ADS)
Korovkin, M. V.; Sal'nikov, V. N.
2017-01-01
The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.
Bioprosthetic tissue matrices in complex abdominal wall reconstruction.
Broyles, Justin M; Abt, Nicholas B; Sacks, Justin M; Butler, Charles E
2013-12-01
Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author's analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies.
Bioprosthetic Tissue Matrices in Complex Abdominal Wall Reconstruction
Broyles, Justin M.; Abt, Nicholas B.; Sacks, Justin M.
2013-01-01
Background: Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. Methods: We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author’s analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. Results: The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Conclusions: Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies. PMID:25289285
DOE Office of Scientific and Technical Information (OSTI.GOV)
He,X.; van Waardenburg, R.; Babaoglu, K.
2007-01-01
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the resolution of 3' and 5' phospho-DNA adducts. A defective mutant, associated with the recessive neurodegenerative disease SCAN1, accumulates Tdp1-DNA complexes in vitro. To assess the conservation of enzyme architecture, a 2.0 {angstrom} crystal structure of yeast Tdp1 was determined that is very similar to human Tdp1. Poorly conserved regions of primary structure are peripheral to an essentially identical catalytic core. Enzyme mechanism was also conserved, because the yeast SCAN1 mutant (H{sub 432}R) enhanced cell sensitivity to the DNA topoisomerase I (Top1) poison camptothecin. A more severe Top1-dependent lethality of Tdp1H{sub 432}N was drug-independent, coincidingmore » with increased covalent Top1-DNA and Tdp1-DNA complex formation in vivo. However, both H432 mutants were recessive to wild-type Tdp1. Thus, yeast H{sub 432} acts in the general acid/base catalytic mechanism of Tdp1 to resolve 3' phosphotyrosyl and 3' phosphoamide linkages. However, the distinct pattern of mutant Tdp1 activity evident in yeast cells, suggests a more severe defect in Tdp1H{sub 432}N-catalyzed resolution of 3' phospho-adducts.« less
A Bipartite Signal Regulates the Faithful Delivery of Apical Domain Marker Podocalyxin/Gp135
Yu, Chun-Ying; Chen, Jen-Yau; Lin, Yu-Yu; Shen, Kuo-Fang; Lin, Wei-Ling; Chien, Chung-Liang; ter Beest, Martin B.A.
2007-01-01
Podocalyxin/Gp135 was recently demonstrated to participate in the formation of a preapical complex to set up initial polarity in MDCK cells, a function presumably depending on the apical targeting of Gp135. We show that correct apical sorting of Gp135 depends on a bipartite signal composed of an extracellular O-glycosylation–rich region and the intracellular PDZ domain–binding motif. The function of this PDZ-binding motif could be substituted with a fusion construct of Gp135 with Ezrin-binding phosphoprotein 50 (EBP50). In accordance with this observation, EBP50 binds to newly synthesized Gp135 at the Golgi apparatus and facilitates oligomerization and sorting of Gp135 into a clustering complex. A defective connection between Gp135 and EBP50 or EBP50 knockdown results in a delayed exit from the detergent-resistant microdomain, failure of oligomerization, and basolateral missorting of Gp135. Furthermore, the basolaterally missorted EBP50-binding defective mutant of Gp135 was rapidly retrieved via a PKC-dependent mechanism. According to these findings, we propose a model by which a highly negative charged transmembrane protein could be packed into an apical sorting platform with the aid of its cytoplasmic partner EBP50. PMID:17332505
NASA Astrophysics Data System (ADS)
Tian, Yongshang; Li, Shuiyun; Sun, Shulin; Gong, Yansheng; Li, Tiantian; Yu, Yongshang; Jing, Qiangshan
2018-01-01
0.5Ba0.90Ca0.10TiO3-0.5BaTi0.88Zr0.12O3-0.1%CuO- xEu (BCT-BZT-Cu- xEu; x = 0-0.90%) lead-free ceramics were sintered at 1220°C with as-synthesized nanoparticles by a modified Pechini method. The structural characteristics and electrical properties of the ceramics that were influenced by varying europium-doping were investigated. All the ceramics featured high densification (relative density: ˜ 96%). X-ray powder diffraction results indicated the samples possessed pure orthorhombic phase. The maximum relative permittivity ( ɛ r, 10869) was found at x around 0.30%. Europium ions could dope on different substitution sites in the ABO3 lattice, which evidently influenced electrical properties with various volumes of oxygen vacancy. Moreover, the formation mechanisms of oxygen vacancy and defect electron complexes were stated. The piezoelectric properties were impacted by defect electron complexes, internal stress, ionic electronegativity, etc. The optimal electrical properties, i.e., d 33 = 384 pC/N, Q m = 92, and k p = 0.36, were detected at x = 0.45%.
NASA Astrophysics Data System (ADS)
Shemukhin, A. A.; Balaskshin, Yu. V.; Evseev, A. P.; Chernysh, V. S.
2017-09-01
As silicon is an important element in semiconductor devices, the process of defect formation under ion irradiation in it is studied well enough. Modern electronic components are made on silicon lattices (films) that are 100-300 nm thick (Chernysh et al., 1980; Shemukhin et al., 2012; Ieshkin et al., 2015). However, there are still features to be observed in the process of defect formation in silicon. In our work we investigate the effect of fluence and target temperature on the defect formation in films and bulk silicon samples. To investigate defect formation in the silicon films and bulk silicon samples we present experimental data on Si+ implantation with an energy of 200 keV, fluences range from 5 * 1014 to 5 * 1015 ion/cm2 for a fixed flux 1 μA/cm2 and the substrate temperatures from 150 to 350 K The sample crystallinity was investigated by using the Rutherford backscattering technique (RBS) in channeling and random modes. It is shown that in contrast to bulk silicon for which amorphization is observed at 5 × 1016 ion/cm2, the silicon films on sapphire amorphize at lower critical fluences (1015 ion/cm2). So the amorphization critical fluences depend on the target temperature. In addition it is shown that under similar implantation parameters, the disordering of silicon films under the action of the ion beam is stronger than the bulk silicon.
Martín, Miguel A; Blázquez, Alberto; Gutierrez-Solana, Luis G; Fernández-Moreira, Daniel; Briones, Paz; Andreu, Antoni L; Garesse, Rafael; Campos, Yolanda; Arenas, Joaquín
2005-04-01
Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families. To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene. Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect. The proband was a child who displayed the clinical features of LS. Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.
Párniczky, Andrea; Hegyi, Eszter; Tóth, Anna Zsófia; Szücs, Ákos; Szentesi, Andrea; Vincze, Áron; Izbéki, Ferenc; Németh, Balázs Csaba; Hegyi, Péter; Sahin-Tóth, Miklós
2016-12-20
Human chymotrypsin-like elastases 3A and 3B (CELA3A and CELA3B) are the products of gene duplication and share 92% identity in their primary structure. CELA3B forms stable complexes with procarboxypeptidases A1 and A2 whereas CELA3A binds poorly due to the evolutionary substitution of Ala241 with Gly in exon 7. Since position 241 is polymorphic both in CELA3A (p.G241A) and CELA3B (p.A241G), genetic analysis can directly assess whether individual variability in complex formation might alter risk for chronic pancreatitis. Here we sequenced exon 7 of CELA3A and CELA3B in a cohort of 225 subjects with chronic pancreatitis (120 alcoholic and 105 non-alcoholic) and 300 controls of Hungarian origin. Allele frequencies were 2.5% for CELA3A p.G241A and 1.5% for CELA3B p.A241G in controls, and no significant difference was observed in patients. Additionally, we identified six synonymous variants, two missense variants, a gene conversion event and ten variants in the flanking intronic regions. Variant c.643-7G>T in CELA3B showed an association with alcoholic chronic pancreatitis with a small protective effect (OR = 0.59, 95% CI = 0.39-0.89, p = 0.01). Functional analysis of missense variants revealed no major defects in secretion or activity. We conclude that variants affecting amino-acid position 241 in CELA3A and CELA3B are not associated with chronic pancreatitis, indicating that changes in complex formation between proelastases and procarboxypeptidases do not alter pancreatitis risk.
Jahanbin, Arezoo; Rashed, Roozbeh; Alamdari, Daryoush Hamidi; Koohestanian, Niloufar; Ezzati, Atefeh; Kazemian, Mojgan; Saghafi, Shadi; Raisolsadat, Mohammad Ali
2016-04-01
The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response in craniofacial abnormalities. The main aim of this study was to evaluate the regenerative potential of human dental pulp stem cells, isolated from deciduous teeth, for reconstructing maxillary alveolar defects in Wistar rats. Human deciduous dental pulp stem cells were isolated and stimulated to differentiate into osteoblasts in culture media. Maxillary alveolar defects were created in 60 Wistar rats by a surgical procedure. Then, on the basis of the type of graft used to repair the bone defect, the rats were divided into 6 equal groups: groups 1 and 2, transplantation of iliac bone graft; groups 3 and 4, transplantation of stem cells derived from deciduous dental pulp in addition to collagen matrix; groups 5 and 6, transplantation of just collagen matrix. Then, fetal bone formation, granulation tissue, fibrous tissue, and inflammatory tissue were evaluated by hematoxylin-eosin staining at 1 month (groups 1, 3, and 5) and 2 months (groups 2, 4, and 6) after surgery, and data were analyzed and compared using the Fisher exact test. Maximum fetal bone formation occurred in group 2, in which iliac bone graft was inserted into the defect area for 2 months; there also were significant differences among the groups for bone formation (P = .009). In the 1-month groups, there were no significant differences between the control and stem cell-plus-scaffold groups. There were significant differences between the 2-month groups for fetal bone formation only between the control and scaffold groups (P = .026). The study showed that human dental pulp stem cells are an additional cell resource for repairing maxillary alveolar defects in rats and constitute a promising model for reconstruction of human maxillary alveolar defects in patients with cleft lip and palate. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Polycystin-1 Binds Par3/aPKC and Controls Convergent Extension During Renal Tubular Morphogenesis
Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra
2013-01-01
Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis. PMID:24153433
Characterization of Cytokinetic Mutants Using Small Fluorescent Probes.
Smertenko, Andrei; Moschou, Panagiotis; Zhang, Laining; Fahy, Deirdre; Bozhkov, Peter
2016-01-01
Cytokinesis is a powerful paradigm for addressing fundamental questions of plant biology including molecular mechanisms of development, cell division, cell signaling, membrane trafficking, cell wall synthesis, and cytoskeletal dynamics. Genetics was instrumental in identification of proteins regulating cytokinesis. Characterization of mutant lines generated using forward or reverse genetics includes microscopic analysis for defects in cell division. Typically, failure of cytokinesis results in appearance of multinucleate cells, formation of cell wall stubs, and isotropic cell expansion in the root elongation zone. Small fluorescent probes served as a very effective tool for the detection of cytokinetic defects. Such probes stain living or formaldehyde-fixed specimens avoiding complex preparatory steps. Although resolution of the fluorescence probes is inferior to electron microscopy, the procedure is fast, easy, and does not require expensive materials or equipment. This chapter describes techniques for staining DNA with the probes DAPI and SYTO82, for staining membranes with FM4-64, and for staining cell wall with propidium iodide.
Katyal, Sachin; Lee, Youngsoo; Nitiss, Karin C; Downing, Susanna M; Li, Yang; Shimada, Mikio; Zhao, Jingfeng; Russell, Helen R; Petrini, John H J; Nitiss, John L; McKinnon, Peter J
2014-06-01
DNA damage is considered to be a prime factor in several spinocerebellar neurodegenerative diseases; however, the DNA lesions underpinning disease etiology are unknown. We observed the endogenous accumulation of pathogenic topoisomerase-1 (Top1)-DNA cleavage complexes (Top1ccs) in murine models of ataxia telangiectasia and spinocerebellar ataxia with axonal neuropathy 1. We found that the defective DNA damage response factors in these two diseases cooperatively modulated Top1cc turnover in a non-epistatic and ATM kinase-independent manner. Furthermore, coincident neural inactivation of ATM and DNA single-strand break repair factors, including tyrosyl-DNA phosphodiesterase-1 or XRCC1, resulted in increased Top1cc formation and excessive DNA damage and neurodevelopmental defects. Notably, direct Top1 poisoning to elevate Top1cc levels phenocopied the neuropathology of the mouse models described above. Our results identify a critical endogenous pathogenic lesion associated with neurodegenerative syndromes arising from DNA repair deficiency, indicating that genome integrity is important for preventing disease in the nervous system.
Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis.
Plo, Isabelle; Bellanné-Chantelot, Christine; Mosca, Matthieu; Mazzi, Stefania; Marty, Caroline; Vainchenker, William
2017-01-01
Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) activity ( MPL, JAK2, CALR ) and loss-of-function (LOF) activity of negative regulators ( CBL, LNK ) or the extrinsic MPL signaling by THPO GOF mutations leading to increased TPO synthesis. Alternatively, thrombocytosis may paradoxically result from mutations of MPL leading to an abnormal MPL trafficking, inducing increased TPO levels by alteration of its clearance. In contrast, thrombocytopenia can also result from LOF THPO or MPL mutations, which cause a complete defect in MPL trafficking to the cell membrane, impaired MPL signaling or stability, defects in the TPO/MPL interaction, or an absence of TPO production.
Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis
Plo, Isabelle; Bellanné-Chantelot, Christine; Mosca, Matthieu; Mazzi, Stefania; Marty, Caroline; Vainchenker, William
2017-01-01
Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) activity (MPL, JAK2, CALR) and loss-of-function (LOF) activity of negative regulators (CBL, LNK) or the extrinsic MPL signaling by THPO GOF mutations leading to increased TPO synthesis. Alternatively, thrombocytosis may paradoxically result from mutations of MPL leading to an abnormal MPL trafficking, inducing increased TPO levels by alteration of its clearance. In contrast, thrombocytopenia can also result from LOF THPO or MPL mutations, which cause a complete defect in MPL trafficking to the cell membrane, impaired MPL signaling or stability, defects in the TPO/MPL interaction, or an absence of TPO production. PMID:28955303
Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis
NASA Astrophysics Data System (ADS)
Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra
2013-10-01
Several organs, including the lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintenance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1, a large receptor of unknown function. Here we demonstrate that PC-1 has an essential role in the establishment of correct tubular diameter during nephron development. Polycystin-1 associates with Par3 favouring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a programme of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis, and in renal cyst formation. Our data define Polycystin-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.
2016-04-04
This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less
Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation.
Bouvrée, Karine; Brunet, Isabelle; Del Toro, Raquel; Gordon, Emma; Prahst, Claudia; Cristofaro, Brunella; Mathivet, Thomas; Xu, Yunling; Soueid, Jihane; Fortuna, Vitor; Miura, Nayoki; Aigrot, Marie-Stéphane; Maden, Charlotte H; Ruhrberg, Christiana; Thomas, Jean Léon; Eichmann, Anne
2012-08-03
The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.
NASA Astrophysics Data System (ADS)
Londos, C. A.; Andrianakis, A.; Sgourou, E. N.; Emtsev, V. V.; Ohyama, H.
2011-02-01
We report infrared absorption studies of oxygen-related defects in electron-irradiated Ge-doped Czochralski-Si. Our investigation was mainly focused on the reaction channel leading to the formation of VOn (1≤n≤6) defects. The VOn defects form mainly upon annealing, as a result of the successive aggregation of oxygen atoms in the initial VO defect produced by the irradiation: (VO+Oi→VO2+Oi→VO3+Oi→VO4,…). It was found that the ratio of the conversion of VOn to VOn+1 defects is sensitive to the Ge content of the material. In particular, the ratio of the conversion of the VO to the VO2 defects was found to decrease with the increase in Ge concentration of the samples, although the opposite trend was observed for the VO3 to VO4 conversion. However, the VO2 to VO3 conversion changes only slightly with Ge content, being practically unaffected for Ge concentrations up to 2×1020 cm-3. In the case of VO2 formation, the phenomenon was attributed to the elastic strains induced in the lattice due to the Ge presence which affects the balance between the reactions VO+Oi→VO2, VO+SiI→Oi, mainly involved in the decay of the VO and the growth of the VO2 defects. In the case of VO4 formation, the phenomenon was discussed by taking into account the enhancement of the diffusivity of the Oi atoms in the Ge-doped Si, which could lead to an enhancement of the rate of the reaction VO3+Oi→VO4. For the VO3 formation this effect is practically negligible due to the fact that at the temperatures of VO2 to VO3 conversion oxygen diffusivity is quite small. The exhibited behavior in the conversion of the VOn to VOn+1 defects (n=1,2,3) was similar in Ge-doped samples with low carbon content ([Cs]<2×1016 cm-3) and in Ge-doped samples with high carbon content ([Cs]≥1×1017 cm-3). The impact of C as well as its role in the conversion efficiency of VO to VO2 was studied by comparing the spectra in low carbon and high carbon Ge free Si material. Furthermore, a pair of bands at (1037,1051 cm-1) was attributed to the VO5 defect. The origin of another pair of bands (967,1005 cm-1) was discussed and tentatively correlated with a VOnCs structure. The role of Ge and C in the formation of the latter two pairs of bands was discussed.
Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...
2015-10-28
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less
NASA Astrophysics Data System (ADS)
Wang, Nan; Smith, Nathan; Provatas, Nikolas
2017-09-01
We study late-stage solidification and the associated formation of defects in alloy materials using a novel model based on the phase-field-crystal technique. It is shown that our model successfully captures several important physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence of gas pockets in confined liquid pools.
The effects of cation–anion clustering on defect migration in MgAl 2O 4
Zamora, Richard J.; Voter, Arthur F.; Perez, Danny; ...
2016-06-28
Magnesium aluminate spinel (MgAl 2O 4), like many other ceramic materials, offers a range of technological applications, from nuclear reactor materials to military body armor. For many of these applications, it is critical to understand both the formation and evolution of lattice defects throughout the lifetime of the material. We use the Speculatively Parallel Temperature Accelerated Dynamics (SpecTAD) method to investigate the effects of di-vacancy and di-interstitial formation on the mobility of the component defects. From long-time trajectories of the state-to-state dynamics, we characterize the migration pathways of defect clusters, and calculate their self-diffusion constants across a range of temperatures.more » We find that the clustering of Al and O vacancies drastically reduces the mobility of both defects, while the clustering of Mg and O vacancies completely immobilizes them. For interstitials, we find that the clustering of Mg and O defects greatly reduces O interstitial mobility, but has only a weak effect on Mg. Lastly, these findings illuminate important new details regarding defect kinetics relevant to the application of MgAl 2O 4 in extreme environments.« less
Sailasree, Purnima; Singh, Durgesh K.; Kameshwari, Duvurri B.; Shivaji, Sisinthy
2014-01-01
Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization. PMID:24852961
Defect-mediated spatial complexity and chaos in a phase-conjugate resonator
NASA Technical Reports Server (NTRS)
Indebetouw, Guy; Liu, Siuying R.
1992-01-01
We have studied the spatiotemporal dynamics of a phase-conjugate resonator. The cavity Fresnel number is used to vary the degree of transverse confinement of the system. The generation and subsequent motion of the phase defects in the wave front are seen to mediate the system's dynamics. The number of defects and the complexity of their motion increases as the confinement is relaxed, leading the system through a sequence of bifurcations and eventually to chaos.
Irradiation-induced damage evolution in concentrated Ni-based alloys
Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...
2017-06-06
Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less
Irradiation-induced damage evolution in concentrated Ni-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou
Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less
Identification of Complex Carbon Nanotube Structures
NASA Technical Reports Server (NTRS)
Han, Jie; Saini, Subhash (Technical Monitor)
1998-01-01
A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.
Ali, Aamir; Veeranki, Sailaja Naga; Chinchole, Akash; Tyagi, Shweta
2017-06-19
Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Point-Defect Nature of the Ultraviolet Absorption Band in AlN
NASA Astrophysics Data System (ADS)
Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.
2018-05-01
We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.
NASA Astrophysics Data System (ADS)
Kim, Yongseon
2015-11-01
The structural features related to the defects of LiMO2 (M = Ni, Co, Mn) cathode materials for lithium secondary batteries were investigated by a simulation of phase diagrams based on first-principle calculations. Crystal models with various types of point defects were designed and dealt with as independent phases, which enabled an examination of the thermodynamic stability of the defects. A perfect phase without defects appeared to be the most stable for LiCoO2, whereas the formation of Li vacancies, O vacancies, and antisites between Li and Ni was thermodynamically unavoidable for LiNiO2. The introduction of both Co and Mn in LiNiO2 was effective in reducing the formation of point defects, but increasing the relative amount of Mn was undesirable because the antisite defect remained stable with Mn doping. The simulation showed good agreement with the experimental data and previous reports. Therefore, the method and the results of this study are expected to be useful for examining the synthesis, structure and related properties of layer-structured cathode materials.
NASA Astrophysics Data System (ADS)
Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.
2012-08-01
Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.
Diameter Dependence of Planar Defects in InP Nanowires
Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.
2016-01-01
In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584
Diameter Dependence of Planar Defects in InP Nanowires.
Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C
2016-09-12
In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.
Protecting the proteome: Eukaryotic cotranslational quality control pathways
2014-01-01
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822
Ahonen-Siirtola, M; Nevala, T; Vironen, J; Kössi, J; Pinta, T; Niemeläinen, S; Keränen, U; Ward, J; Vento, P; Karvonen, J; Ohtonen, P; Mäkelä, J; Rautio, T
2018-06-07
The seroma rate following laparoscopic incisional ventral hernia repair (LIVHR) is up to 78%. LIVHR is connected to a relatively rare but dangerous complication, enterotomy, especially in cases with complex adhesiolysis. Closure of the fascial defect and extirpation of the hernia sack may reduce the risk of seromas and other hernia-site events. Our aim was to evaluate whether hybrid operation has a lower rate of the early complications compared to the standard LIVHR. This is a multicenter randomized-controlled clinical trial. From November 2012 to May 2015, 193 patients undergoing LIVHR for primary incisional hernia with fascial defect size from 2 to 7 cm were recruited in 11 Finnish hospitals. Patients were randomized to either a laparoscopic (LG) or to a hybrid (HG) repair group. The outcome measures were the incidence of clinically and radiologically detected seromas and their extent 1 month after surgery, peri/postoperative complications, and pain. Bulging was observed by clinical evaluation in 46 (49%) LG patients and in 27 (31%) HG patients (p = 0.022). Ultrasound examination detected more seromas (67 vs. 45%, p = 0.004) and larger seromas (471 vs. 112 cm 3 , p = 0.025) after LG than after HG. In LG, there were 5 (5.3%) enterotomies compared to 1 (1.1%) in HG (p = 0.108). Adhesiolysis was more complex in LG than in HG (26.6 vs. 13.3%, p = 0.028). Patients in HG had higher pain scores on the first postoperative day (VAS 5.2 vs. 4.3, p = 0.019). Closure of the fascial defect and extirpation of the hernia sack reduce seroma formation. In hybrid operations, the risk of enterotomy seems to be lower than in laparoscopic repair, which should be considered in cases with complex adhesions. NCT02542085.
NASA Astrophysics Data System (ADS)
Yong-jun, Zhang; Hui, Zhang; Jing-tao, Han
2017-05-01
The chemical composition, morphology, and microstructure of peeling defects formed on the surface of sheets from steel 2205 under hot rolling are studied. The microstructure of the surface is analyzed using scanning electron and light microscopy. The zones affected are shown to contain nonmetallic inclusions of types Al2O3 and CaO - SiO2 - Al2O3 - MgO in the form of streak precipitates and to have an unfavorable content of austenite, which causes decrease in the ductility of the area. The results obtained are used to derive a five-stage phenomenological model of formation of such defects.
Hydrogen-related defects in hydrogenated amorphous semiconductors
NASA Astrophysics Data System (ADS)
Jin, Shu; Ley, Lothar
1991-07-01
One of the key steps in the formation of glow-discharge-deposited (GD) a-Si:H or a-Ge:H films by plasma deposition from the gas phase is the elimination of excess hydrogen from the growth surface which is necessary for the cross linking of the Si or Ge network and the reduction of the defect density associated with the hydrogen-rich surface layer. The high defect density (~1018 cm-3) in a growing surface layer can, depending on preparation conditions, be either reduced (to ~1016 cm-3) or be trapped in the bulk upon subsequent growth, as evidenced by a great deal of data. However, little is known about its origin and implication. We have investigated the change in electronic structure related with this process using UHV-evaporated a-Ge as a model system, subjected to thermal hydrogenation, plasma hydrogenation, and various annealing cycles. The density of occupied states in the pseudogap of the a-Ge(:H) surface (probing depth ~50 Å) was determined with total-yield photoelectron spectroscopy. In this way, effects of thermal annealing, hydrogenation, and ion bombarding on the near-surface defect density could be studied. We identify in room-temperature (RT) hydrogenated a-Ge:H another defect at about Ev+0.45 eV in addition to the dangling-bond defect. This defect exists at the initial stage of hydrogen incorporation, decreases upon ~250 °C annealing, and is restored upon RT rehydrogenation. Therefore we suspect that this defect is hydrogen induced and concomitant with the formation of unexpected bondings [both multiply bonded XHx (X=Si or Ge and x=2 and 3) and polyhydride (XH2)n configurations] favored at RT hydrogenation. As a possible candidate we suggest the Ge-H-Ge three-center bond in which one electron is placed in a nonbonding orbital that gives rise to the paramagnetic state in the gap of a-Ge:H observed here. This defect also accounts for the large defect density at the growing surface in the optimized plasma chemical-vapor-deposition process, where the special bonding configurations mentioned above are the predominant species. The formation and annealing of this defect will be discussed.