NASA Astrophysics Data System (ADS)
Masuyama, Tomoya; Inoue, Katsumi; Yamanaka, Masashi; Kitamura, Kenichi; Saito, Tomoyuki
High load capacity of carburized gears originates mainly from the hardened layer and induced residual stress. On the other hand, surface decarburization, which causes a nonmartensitic layer, and inclusions such as oxides and segregation act as latent defects which considerably reduce fatigue strength. In this connection, the authors have proposed a formula of strength evaluation by separately quantifying defect influence. However, the principal defect which limits strength of gears with several different defects remains unclarified. This study presents a method of inferential identification of principal defects based on test results of carburized gears made of SCM420 clean steel, gears with both an artificial notch and nonmartensitic layer at the tooth fillet, and so forth. It clarifies practical uses of presented methods, and strength of carburized gears can be evaluated by focusing on principal defect size.
USDA-ARS?s Scientific Manuscript database
Background: Rodent models of human congenital birth defects have been instrumental for gene discovery and investigation of mechanisms of disease. However, these models are limited by their small size making practiced intervention or detailed anatomic evaluation difficult. Swine have similar anato...
Vision-related fitness to drive mobility scooters: A practical driving test.
Cordes, Christina; Heutink, Joost; Tucha, Oliver M; Brookhuis, Karel A; Brouwer, Wiebo H; Melis-Dankers, Bart J M
2017-03-06
To investigate practical fitness to drive mobility scooters, comparing visually impaired participants with healthy controls. Between-subjects design. Forty-six visually impaired (13 with very low visual acuity, 10 with low visual acuity, 11 with peripheral field defects, 12 with multiple visual impairment) and 35 normal-sighted controls. Participants completed a practical mobility scooter test-drive, which was recorded on video. Two independent occupational therapists specialized in orientation and mobility evaluated the videos systematically. Approximately 90% of the visually impaired participants passed the driving test. On average, participants with visual impairments performed worse than normal-sighted controls, but were judged sufficiently safe. In particular, difficulties were observed in participants with peripheral visual field defects and those with a combination of low visual acuity and visual field defects. People with visual impairment are, in practice, fit to drive mobility scooters; thus visual impairment on its own should not be viewed as a determinant of safety to drive mobility scooters. However, special attention should be paid to individuals with visual field defects with or without a combined low visual acuity. The use of an individual practical fitness-to-drive test is advised.
Modern materials in fabrication of scaffolds for bone defect replacement
NASA Astrophysics Data System (ADS)
Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Kirilova, I. A.; Sadovoy, M. A.
2016-08-01
The article defines the requirements for modern scaffold-forming materials and describes the main advantages and disadvantages of various synthetic materials. Osseointegration of synthetic scaffolds approved for use in medical practice is evaluated. Nylon 618 (certification ISO9001 1093-1-2009) is described as the most promising synthetic material used in medical practice. The authors briefly highlight the issues of individual bone grafting with the use of 3D printing technology. An example of contouring pelvis defect after removal of a giant tumor with the use of 3D models is provided.
A One-Versus-All Class Binarization Strategy for Bearing Diagnostics of Concurrent Defects
Ng, Selina S. Y.; Tse, Peter W.; Tsui, Kwok L.
2014-01-01
In bearing diagnostics using a data-driven modeling approach, a concern is the need for data from all possible scenarios to build a practical model for all operating conditions. This paper is a study on bearing diagnostics with the concurrent occurrence of multiple defect types. The authors are not aware of any work in the literature that studies this practical problem. A strategy based on one-versus-all (OVA) class binarization is proposed to improve fault diagnostics accuracy while reducing the number of scenarios for data collection, by predicting concurrent defects from training data of normal and single defects. The proposed OVA diagnostic approach is evaluated with empirical analysis using support vector machine (SVM) and C4.5 decision tree, two popular classification algorithms frequently applied to system health diagnostics and prognostics. Statistical features are extracted from the time domain and the frequency domain. Prediction performance of the proposed strategy is compared with that of a simple multi-class classification, as well as that of random guess and worst-case classification. We have verified the potential of the proposed OVA diagnostic strategy in performance improvements for single-defect diagnosis and predictions of BPFO plus BPFI concurrent defects using two laboratory-collected vibration data sets. PMID:24419162
A one-versus-all class binarization strategy for bearing diagnostics of concurrent defects.
Ng, Selina S Y; Tse, Peter W; Tsui, Kwok L
2014-01-13
In bearing diagnostics using a data-driven modeling approach, a concern is the need for data from all possible scenarios to build a practical model for all operating conditions. This paper is a study on bearing diagnostics with the concurrent occurrence of multiple defect types. The authors are not aware of any work in the literature that studies this practical problem. A strategy based on one-versus-all (OVA) class binarization is proposed to improve fault diagnostics accuracy while reducing the number of scenarios for data collection, by predicting concurrent defects from training data of normal and single defects. The proposed OVA diagnostic approach is evaluated with empirical analysis using support vector machine (SVM) and C4.5 decision tree, two popular classification algorithms frequently applied to system health diagnostics and prognostics. Statistical features are extracted from the time domain and the frequency domain. Prediction performance of the proposed strategy is compared with that of a simple multi-class classification, as well as that of random guess and worst-case classification. We have verified the potential of the proposed OVA diagnostic strategy in performance improvements for single-defect diagnosis and predictions of BPFO plus BPFI concurrent defects using two laboratory-collected vibration data sets.
Mahdavi, Hoda; Jabbari, Keyvan; Roayaei, Mahnaz
2016-01-01
Delivering radiotherapy to the postmastectomy chest wall can be achieved using matched electron fields. Surgical defects of the chest wall change the dose distribution of electrons. In this study, the improvement of dose homogeneity using simple, nonconformal techniques of thermoplastic bolus application on a defect is evaluated. The proposed phantom design improves the capability of film dosimetry for obtaining dose profiles of a patient's anatomical condition. A modeled electron field of a patient with a postmastectomy inward surgical defect was planned. High energy electrons were delivered to the phantom in various settings, including no bolus, a bolus that filled the inward defect (PB0), a uniform thickness bolus of 5 mm (PB1), and two 5 mm boluses (PB2). A reduction of mean doses at the base of the defect was observed by any bolus application. PB0 increased the dose at central parts of the defect, reduced hot areas at the base of steep edges, and reduced dose to the lung and heart. Thermoplastic boluses that compensate a defect (PB0) increased the homogeneity of dose in a fixed depth from the surface; adversely, PB2 increased the dose heterogeneity. This study shows that it is practical to investigate dose homogeneity profiles inside a target volume for various techniques of electron therapy. PMID:27051169
NASA Astrophysics Data System (ADS)
Glasser, Joshua; Pratt, Tim
2008-10-01
Programmed defect test masks serve the useful purpose of evaluating inspection system sensitivity and capability. It is widely recognized that when evaluating inspection system capability, it is important to understand the actual sensitivity of the inspection system in production; yet unfortunately we have observed that many test masks are a more accurate judge of theoretical sensitivity rather than real-world usable capability. Use of ineffective test masks leave the purchaser of inspection equipment open to the risks of over-estimating the capability of their inspection solution and overspecifying defect sensitivity to their customers. This can result in catastrophic yield loss for device makers. In this paper we examine some of the lithography-related technology advances which place an increasing burden on mask inspection complexity, such as MEEF, defect printability estimation, aggressive OPC, double patterning, and OPC jogs. We evaluate the key inspection system component contributors to successful mask inspection, including what can "go wrong" with these components. We designed and fabricated a test mask which both (a) more faithfully represents actual production use cases; and (b) stresses the key components of the inspection system. This mask's patterns represent 32nm, 36nm, and 45nm logic and memory technology including metal and poly like background patterns with programmed defects. This test mask takes into consideration requirements of advanced lithography, such as MEEF, defect printability, assist features, nearly-repetitive patterns, and data preparation. This mask uses patterns representative of 32nm, 36nm, and 45nm logic, flash, and DRAM technology. It is specifically designed to have metal and poly like background patterns with programmed defects. The mask is complex tritone and was designed for annular immersion lithography.
Ultrasound transducer function: annual testing is not sufficient.
Mårtensson, Mattias; Olsson, Mats; Brodin, Lars-Åke
2010-10-01
The objective was to follow-up the study 'High incidence of defective ultrasound transducers in use in routine clinical practice' and evaluate if annual testing is good enough to reduce the incidence of defective ultrasound transducers in routine clinical practice to an acceptable level. A total of 299 transducers were tested in 13 clinics at five hospitals in the Stockholm area. Approximately 7000-15,000 ultrasound examinations are carried out at these clinics every year. The transducers tested in the study had been tested and classified as fully operational 1 year before and since then been in normal use in the routine clinical practice. The transducers were tested with the Sonora FirstCall Test System. There were 81 (27.1%) defective transducers found; giving a 95% confidence interval ranging from 22.1 to 32.1%. The most common transducer errors were 'delamination' of the ultrasound lens and 'break in the cable' which together constituted 82.7% of all transducer errors found. The highest error rate was found at the radiological clinics with a mean error rate of 36.0%. There was a significant difference in error rate between two observed ways the clinics handled the transducers. There was no significant difference in the error rates of the transducer brands or the transducers models. Annual testing is not sufficient to reduce the incidence of defective ultrasound transducers in routine clinical practice to an acceptable level and it is strongly advisable to create a user routine that minimizes the handling of the transducers.
Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)
NASA Technical Reports Server (NTRS)
Walker, James L.
1998-01-01
The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.
Dark-field microscopic image stitching method for surface defects evaluation of large fine optics.
Liu, Dong; Wang, Shitong; Cao, Pin; Li, Lu; Cheng, Zhongtao; Gao, Xin; Yang, Yongying
2013-03-11
One of the challenges in surface defects evaluation of large fine optics is to detect defects of microns on surfaces of tens or hundreds of millimeters. Sub-aperture scanning and stitching is considered to be a practical and efficient method. But since there are usually few defects on the large aperture fine optics, resulting in no defects or only one run-through line feature in many sub-aperture images, traditional stitching methods encounter with mismatch problem. In this paper, a feature-based multi-cycle image stitching algorithm is proposed to solve the problem. The overlapping areas of sub-apertures are categorized based on the features they contain. Different types of overlapping areas are then stitched in different cycles with different methods. The stitching trace is changed to follow the one that determined by the features. The whole stitching procedure is a region-growing like process. Sub-aperture blocks grow bigger after each cycle and finally the full aperture image is obtained. Comparison experiment shows that the proposed method is very suitable to stitch sub-apertures that very few feature information exists in the overlapping areas and can stitch the dark-field microscopic sub-aperture images very well.
Defining defect specifications to optimize photomask production and requalification
NASA Astrophysics Data System (ADS)
Fiekowsky, Peter
2006-10-01
Reducing defect repairs and accelerating defect analysis is becoming more important as the total cost of defect repairs on advanced masks increases. Photomask defect specs based on printability, as measured on AIMS microscopes has been used for years, but the fundamental defect spec is still the defect size, as measured on the photomask, requiring the repair of many unprintable defects. ADAS, the Automated Defect Analysis System from AVI is now available in most advanced mask shops. It makes the use of pure printability specs, or "Optimal Defect Specs" practical. This software uses advanced algorithms to eliminate false defects caused by approximations in the inspection algorithm, classify each defect, simulate each defect and disposition each defect based on its printability and location. This paper defines "optimal defect specs", explains why they are now practical and economic, gives a method of determining them and provides accuracy data.
USE OF BIOCERAMICS IN FILLING BONE DEFECTS
Garrido, Carlos Antõnio; Sampaio, Tania Clarete Fonseca Vieira Sales
2015-01-01
Objective: To present the results from using biological ceramics for filling bone defects resulting from post-traumatic or orthopedic injuries. Methods: Thirty-six patients with bone defects caused by trauma or orthopedic injury were evaluated. Nineteen patients were male (52.8%) and 17 were female (47.2%). Their ages ranged from 19 to 84 years, with a mean of 45.7 years and median of 37 years. Only patients with defects that required at least five grams of biological ceramic were included. Eighteen cases were classified as orthopedic: bone defects were observed in 11 cases of total hip arthroplasty; one case of primary total hip arthroplasty, due to coxarthrosis; five cases of femoral or tibial open wedge osteotomy; and one case of tarsal arthrodesis. There were 18 cases of trauma-related defects; uninfected pseudarthrosis, eight cases; recent fractures of the tibial plateau with compression of the spongy bone, three cases; and exposed fractures treated with external fixators, seven cases. The surgical technique consisted of curetting and debriding the injury until bone suitable for grafting was found. Biological ceramic was then used to fill the defect and some kind of fixation was applied. Results: Among the 36 patients evaluated, it was seen that 35 (97.2%) presented integration of the biological ceramic, while one case of open fracture treated with external fixation had poor integration of the biological ceramic. Conclusion: Treatment of bone defects of orthopedic or post-traumatic etiology using a phosphocalcium ceramic composed of hydroxyapatite was shown to be a practical, effective and safe method. PMID:27022576
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao
2018-06-09
"Perfect" and defective models of CL-20/TNT cocrystal explosive were established. Molecular dynamics methods were introduced to determine the structures and predict the comprehensive performances, including stabilities, sensitivity, energy density and mechanical properties, of the different models. The influences of crystal defects on the properties of these explosives were investigated and evaluated. The results show that, compared with the "perfect" model, the rigidity and toughness of defective models are decreased, while the ductility, tenacity and plastic properties are enhanced. The binding energies, interaction energy of the trigger bond, and the cohesive energy density of defective crystals declined, thus implying that stabilities are weakened, the explosive molecule is activated, trigger bond strength is diminished and safety is worsened. Detonation performance showed that, owing to the influence of crystal defects, the density is lessened, detonation pressure and detonation velocity are also declined, i.e., the power of defective explosive is decreased. In a word, the crystal defects may have a favorable effect on the mechanical properties, but have a disadvantageous influence on sensitivity, stability and energy density of CL-20/TNT cocrystal explosive. The results could provide theoretical guidance and practical instructions to estimate the properties of defective crystal models.
Vision-based in-line fabric defect detection using yarn-specific shape features
NASA Astrophysics Data System (ADS)
Schneider, Dorian; Aach, Til
2012-01-01
We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.
Hirschfeldova, Katerina; Florianova, Martina; Kebrdlova, Vera; Urbanova, Marketa; Stekrova, Jitka
2017-02-01
Heterozygous aberrations of SHOX gene have been reported to be responsible for Léri-Weill dyschondrosteosis (LWD) and small portion of idiopathic short stature. The study was established to assess effectiveness of using phenotype 'scoring form' in patients indicated for SHOX gene defect analysis. The submitted study is based on a retrospective group of 352 unrelated patients enrolled as a part of the routine diagnostic practice and analyzed for aberrations affecting the SHOX gene. All participants were scanned for deletion/duplication within the main pseudoautosomal region (PAR1) using the multiplex ligation-dependent probe amplification (MLPA) method. The phenotype 'scoring form' is used in our laboratory practice to preselect patients for subsequent mutation analysis of SHOX gene-coding sequences. The overall detection rate was 11.1% but there was a significant increase in frequency of SHOX gene defect positive with increasing achieved score (P<0.0001). The most frequent aberration was a causal deletion within PAR1. In three probands, MLPA analysis indicated a more complex rearrangement. Madelung deformity or co-occurrence of disproportionate short stature, short forearm and muscular hypertrophy had represented the most potent markers to determine the likelihood of SHOX gene defect detection. We conclude that appliance of phenotype 'scoring form' had saved excessive sample analysis and enabled effective routine diagnostic testing.
Artificial intelligence and signal processing for infrastructure assessment
NASA Astrophysics Data System (ADS)
Assaleh, Khaled; Shanableh, Tamer; Yehia, Sherif
2015-04-01
The Ground Penetrating Radar (GPR) is being recognized as an effective nondestructive evaluation technique to improve the inspection process. However, data interpretation and complexity of the results impose some limitations on the practicality of using this technique. This is mainly due to the need of a trained experienced person to interpret images obtained by the GPR system. In this paper, an algorithm to classify and assess the condition of infrastructures utilizing image processing and pattern recognition techniques is discussed. Features extracted form a dataset of images of defected and healthy slabs are used to train a computer vision based system while another dataset is used to evaluate the proposed algorithm. Initial results show that the proposed algorithm is able to detect the existence of defects with about 77% success rate.
Valesky, E M; Kaufmann, R; Meissner, M
2015-11-01
The plastic reconstruction of the ear after microscopically controlled tumor surgery is a particular challenge. The chondrocutaneous helix rim advancement flap (CHRAF) is perfectly suited for the repair of different defects of the helix and even defects beyond. Here, we describe two known and two new modifications of the CHRAF that enlarge the scope of application in tumor surgery of the ear. We demonstrate the different techniques and practical application of the repair and evaluate the benefits and limitations. The CHRAF and its modifications is an excellent method for repair of various defects of the helical region of the ear. The CHRAF and its modifications proves to be an good alternative to other methods of closure by preserving the anatomical contour and mechanical and acoustic functions in a single-staged procedure with excellent aesthetic results. The two new modifications we introduced here, enlarge the known armentarium for very large defects of the upper pole and the mid-helix of the ear. © 2014 European Academy of Dermatology and Venereology.
Identification of internal defects of hardfacing coatings in regeneration of machine parts
NASA Astrophysics Data System (ADS)
Józwik, Jerzy; Dziedzic, Krzysztof; Pashechko, Mykhalo; Łukasiewicz, Andrzej
2017-10-01
The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.
A new BP Fourier algorithm and its application in English teaching evaluation
NASA Astrophysics Data System (ADS)
Pei, Xuehui; Pei, Guixin
2017-08-01
BP neural network algorithm has wide adaptability and accuracy when used in complicated system evaluation, but its calculation defects such as slow convergence have limited its practical application. The paper tries to speed up the calculation convergence of BP neural network algorithm with Fourier basis functions and presents a new BP Fourier algorithm for complicated system evaluation. First, shortages and working principle of BP algorithm are analyzed for subsequent targeted improvement; Second, the presented BP Fourier algorithm adopts Fourier basis functions to simplify calculation structure, designs new calculation transfer function between input and output layers, and conducts theoretical analysis to prove the efficiency of the presented algorithm; Finally, the presented algorithm is used in evaluating university English teaching and the application results shows that the presented BP Fourier algorithm has better performance in calculation efficiency and evaluation accuracy and can be used in evaluating complicated system practically.
Maternal occupation and the risk of neural tube defects in offspring.
Kim, Jihye; Langlois, Peter H; Mitchell, Laura E; Agopian, A J
2017-07-19
We evaluated the association between maternal occupation and the risk of neural tube defects (NTDs) in offspring. Data for 491 nonsyndromic cases were obtained from the Texas Birth Defects Registry for deliveries between 1999 and 2009. We randomly selected 2,291 controls among all live births in Texas during this time. Maternal occupations were classified using automated software and manual assignment. Multivariable logistic regression analyses were used to examine the relationship between maternal occupation and risk for any NTD, adjusting for maternal race/ethnicity, any diabetes, and maternal body mass index. These analyses were repeated for spina bifida specifically. Some maternal occupations, particularly those related to business/finance, health care practice, and cleaning/maintenance, were significantly associated with increased risk of spina bifida and/or any NTD. Further research is needed to identify the specific occupational exposures related to NTD risk.
NASA Technical Reports Server (NTRS)
Waller, Jess; Saulsberry, Regor
2012-01-01
NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing and Materials (ASTM) Committee E07 on Nondestructive Testing. Similarly, in 2006 the NASA Engineering and Safety Center (NESC) recommended that nondestructive evaluation methods that can predict composite failure in COPVs should be developed and verified, and integrated into the damage control plan for these vessels
Dvoránková, Barbora; Holíková, Zuzana; Vacík, Jirí; Königová, Radana; Kapounková, Zuzana; Michálek, Jirí; Prádn, Martin; Smetana, Karel
2003-03-01
Extensive wound coverage still represents a challenge for contemporary medicine. We demonstrate the results of a clinical trial of the grafting of cultured keratinocytes directly on a polymer cultivation support in the treatment of skin defects in seriously burned patients and in patients with trophic ulcers. Wound closure was evaluated clinically. The morphology and phenotypic pattern of the reconstructed epidermis, including the basal lamina, as well as the presence of Langerhans cells, were evaluated immunocytochemically using a panel of monoclonal antibodies. All layers of the reconstructed epidermis were normally differentiated (cytokeratin immunocytochemistry). The basal lamina contained collagen type IV and laminin. The reconstructed epidermis was extensively colonized by Langerhans cells. The results of the described technology are encouraging, especially in patients after a burn injury. The described procedure is suitable for the treatment of skin defects in clinical practice.
A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)
NASA Astrophysics Data System (ADS)
Li, Minghui; Hayward, Gordon
2017-02-01
The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.
Perception of olive oils sensory defects using a potentiometric taste device.
Veloso, Ana C A; Silva, Lucas M; Rodrigues, Nuno; Rebello, Ligia P G; Dias, Luís G; Pereira, José A; Peres, António M
2018-01-01
The capability of perceiving olive oils sensory defects and intensities plays a key role on olive oils quality grade classification since olive oils can only be classified as extra-virgin if no defect can be perceived by a human trained sensory panel. Otherwise, olive oils may be classified as virgin or lampante depending on the median intensity of the defect predominantly perceived and on the physicochemical levels. However, sensory analysis is time-consuming and requires an official sensory panel, which can only evaluate a low number of samples per day. In this work, the potential use of an electronic tongue as a taste sensor device to identify the defect predominantly perceived in olive oils was evaluated. The potentiometric profiles recorded showed that intra- and inter-day signal drifts could be neglected (i.e., relative standard deviations lower than 25%), being not statistically significant the effect of the analysis day on the overall recorded E-tongue sensor fingerprints (P-value = 0.5715, for multivariate analysis of variance using Pillai's trace test), which significantly differ according to the olive oils' sensory defect (P-value = 0.0084, for multivariate analysis of variance using Pillai's trace test). Thus, a linear discriminant model based on 19 potentiometric signal sensors, selected by the simulated annealing algorithm, could be established to correctly predict the olive oil main sensory defect (fusty, rancid, wet-wood or winey-vinegary) with average sensitivity of 75 ± 3% and specificity of 73 ± 4% (repeated K-fold cross-validation variant: 4 folds×10 repeats). Similarly, a linear discriminant model, based on 24 selected sensors, correctly classified 92 ± 3% of the olive oils as virgin or lampante, being an average specificity of 93 ± 3% achieved. The overall satisfactory predictive performances strengthen the feasibility of the developed taste sensor device as a complementary methodology for olive oils' defects analysis and subsequent quality grade classification. Furthermore, the capability of identifying the type of sensory defect of an olive oil may allow establishing helpful insights regarding bad practices of olives or olive oils production, harvesting, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.
In-service inspection methods for graphite-epoxy structures on commercial transport aircraft
NASA Technical Reports Server (NTRS)
Phelps, M. L.
1981-01-01
In-service inspection methods for graphite-epoxy composite structures on commercial transport aircraft are determined. Graphite/epoxy structures, service incurred defects, current inspection practices and concerns of the airline and manufacturers, and other related information were determind by survey. Based on this information, applicable inspection nondestructive inspection methods are evaluated and inspection techniques determined. Technology is developed primarily in eddy current inspection.
NASA Astrophysics Data System (ADS)
Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing
2016-11-01
The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.
[Restoration of speech function in oncological patients with maxillary defects].
Matiakin, E G; Chuchkov, V M; Akhundov, A A; Azizian, R I; Romanov, I S; Chuchkov, M V; Agapov, V V
2009-01-01
Speech quality was evaluated in 188 patients with acquired maxillary defects. Prosthetic treatment of 29 patients was preceded by pharmacopsychotherapy. Sixty three patients had lessons with a logopedist and 66 practiced self-tuition based on the specially developed test. Thirty patients were examined for the quality of speech without preliminary preparation. Speech quality was assessed by auditory and spectral analysis. The main forms of impaired speech quality in the patients with maxillary defects were marked rhinophonia and impaired articulation. The proposed analytical tests were based on a combination of "difficult" vowels and consonants. The use of a removable prostheses with an obturator failed to correct the affected speech function but created prerequisites for the formation of the correct speech stereotype. Results of the study suggest the relationship between the quality of speech in subjects with maxillary defects and their intellectual faculties as well as the desire to overcome this drawback. The proposed tests are designed to activate the neuromuscular apparatus responsible for the generation of the speech. Lessons with a speech therapist give a powerful emotional incentive to the patients and promote their efforts toward restoration of speaking ability. Pharmacopsychotherapy and self-control are another efficacious tools for the improvement of speech quality in patients with maxillary defects.
Jiang, H; Cui, Y; Ma, K; Gong, M; Chang, D; Wang, T
2016-01-01
The defect of esophagus after surgical excision in patients is usually replaced by autologous stomach, jejunum, or colon. The operation brings severe trauma and complications. Using artificial esophagus to replace the defect in situ can reduce the operative trauma, simplify the operative procedures, and decrease the influence to digestive function. A variety of experiments have been designed for developing a practical artificial esophagus. Nevertheless, a safe and reliable artificial esophagus is not yet available. The objective is to evaluate the possibility of the artificial esophagus made of non-degradable polyurethane materials being used in reconstruction of the segmental defect of cervical esophagus in beagles, observe the regeneration of esophageal tissue, and gather experience for future study. The cervical esophageal defects in 13 beagles were designed to 2-cm long and were constructed by the artificial esophagus made of non-degradable polyurethane materials. Nutrition supports were given after the operation. The operative mortality, anastomotic leakage, migration of artificial esophagus, and dysphagia were followed up. The regeneration of the esophageal tissues was evaluated by histopathology and immunohistochemical labeled streptavidin-biotin method. The surgical procedures were successfully completed in all beagles, and 12-month follow-ups were done. Only one beagle died of severe infection, and all others survived until being killed. The anastomotic leakage occurred in nine beagles, most of them (8/9) were cured after supportive therapy. The migration of artificial esophagus occurred in all 12 surviving beagles, and one artificial esophagus stayed in situ after migration. All 12 surviving beagles showed dysphagia with taking only fluid or soft food. No beagle died of malnutrition. The neo-esophagus was composed of granulation tissue, and the inner surface was covered by epithelium in 2-3 months completely. But the inner surface of neo-esophagus with artificial esophagus staying in situ after migration was not covered by epithelium, and the granulation tissue was infiltrated by a great deal of inflammatory cells. Antibodies against cytokeratin were positively expressed in epithelium of neo-esophagus. Up to 12 months after operation, antibodies against smooth muscle actin and desmin were both negatively expressed in neo-esophagus. The artificial esophagus made of non-degradable polyurethane reconstructing cervical esophageal defect is practicable. Although there are some problems, including anastomotic leakage, migration, and dysphagia, they are not lethal following good supportive therapy. The esophageal epithelium can regenerate with the supporting role of artificial esophagus. In the future, deformable artificial esophagus should be improved, and a much longer follow-up will be performed to evaluate whether the esophageal gland and skeletal muscle can regenerate. © 2014 International Society for Diseases of the Esophagus.
NASA Astrophysics Data System (ADS)
Castel, J. G.; Husarek, V.
1987-06-01
The usefulness of a portable microprocessor-controlled ultrasound device for the periodic assessment of aircraft parts made of composite materials is shown. The performance of the device is demonstrated with the examples of a metallic honeycomb with a carbon-fiber skin, a phenolic honeycomb with a carbon skin, and a phenolic honeycomb with a Kevlar skin. Also considered are assessments of homogeneous carbon-fiber parts, including the study of artificial defects consisting of 1-2 mm diameter holes, and the assessment of the behavior of a carbon-titanium interface with separated zones. Advantages of the device include ease of adjustment, automated evaluation of the depth of defects, and the nearly-absolute reproducibility of adjustments.
2013-01-01
Background: Microvascular reconstruction for oncologic defects is a challenging and rewarding endeavor, and successful outcomes are dependent on a multitude of factors. This study represents lessons learned from a personal prospective experience with 100 consecutive free flaps. Methods: All patients’ medical records were reviewed for demographics, operative notes, and complications. Results: Overall 100 flaps were performed in 84 consecutive patients for reconstruction of breast, head and neck, trunk, and extremity defects. Nineteen patients underwent free flap breast reconstruction with 10 patients undergoing bilateral reconstruction and 2 patients receiving a bipedicle flap for reconstruction of a unilateral breast defect. Sixty-five free flaps were performed in 61 patients with 3 patients receiving 2 free flaps for reconstruction of extensive head and neck defects and 1 patient who required a second flap for partial flap loss. Trunk and extremity reconstruction was less common with 2 free flaps performed in each group. Overall, 19 patients (22.6%) developed complications and 14 required a return to the operating room. There were no flap losses in this cohort. Thorough preoperative evaluation and workup, meticulous surgical technique and intraoperative planning, and diligent postoperative monitoring and prompt intervention are critical for flap success. Conclusions: As a young plastic surgeon embarking in reconstructive plastic surgery at an academic institution, the challenges and dilemmas presented in the first year of practice have been daunting but also represent opportunities for learning and improvement. Skills and knowledge acquired from time, experience, and mentors are invaluable in optimizing outcomes in microvascular free flap reconstruction. PMID:25289221
21 CFR 110.110 - Natural or unavoidable defects in food for human use that present no health hazard.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Natural or unavoidable defects in food for human... PRACTICE IN MANUFACTURING, PACKING, OR HOLDING HUMAN FOOD Defect Action Levels § 110.110 Natural or... natural or unavoidable defects to the lowest level currently feasible. (d) The mixing of a food containing...
Prospect of EUV mask repair technology using e-beam tool
NASA Astrophysics Data System (ADS)
Kanamitsu, Shingo; Hirano, Takashi; Suga, Osamu
2010-09-01
Currently, repair machines used for advanced photomasks utilize principle method like as FIB, AFM, and EB. There are specific characteristic respectively, thus they have an opportunity to be used in suitable situation. But when it comes to EUV generation, pattern size is so small highly expected as under 80nm that higher image resolution and repair accuracy is needed for its machines. Because FIB machine has intrinsic damage problem induced by Ga ion and AFM machine has critical tip size issue, those machines are basically difficult to be applied for EUV generation. Consequently, we focused on EB repair tool for research work. EB repair tool has undergone practical milestone about MoSi based masks. We have applied same process which is used for MoSi to EUV blank and confirmed its reaction. Then we found some severe problems which show uncontrollable feature due to its enormously strong reaction between etching gas and absorber material. Though we could etch opaque defect with conventional method and get the edge shaped straight by top-down SEM viewing, there were problems like as sidewall undercut or local erosion depending on defect shape. In order to cope with these problems, the tool vender has developed a new process and reported it through an international conference [1]. We have evaluated the new process mentioned above in detail. In this paper, we will bring the results of those evaluations. Several experiments for repair accuracy, process stability, and other items have been done under estimation of practical condition assuming diversified size and shape defects. A series of actual printability tests will be also included. On the basis of these experiments, we consider the possibility of EB-repair application for 20nm pattern.
An assessment of maintainability of elevator system to improve facilities management knowledge-base
NASA Astrophysics Data System (ADS)
Siti, N. A.; Asmone, A. S.; Chew, M. Y. L.
2018-02-01
Elevator system is a highly specialized machinery that requires technicians that have a wider array of knowledge in maintaining the system to be safe and reliable. While attaining reliable data of elevator malfunction become challenges, this study has filled the gap by gathering the management-maintenance issues and operational defects of elevator system. Forty-three types of operation defects were found and the consequence defects and their possible causes of occurrences were discussed. To respond to the prime challenges of maintaining elevator system provided by the industry players’ perspective, a theoretical framework is established as a recommendation to improve knowledge base of defects in elevator system which comprises good practices, and solutions to rectify each defects found. Hence, this research paper has theoretically improved the knowledge base of maintainability of elevator system and provide meaningful guidelines in practical senses to the industry professionals.
NASA Astrophysics Data System (ADS)
Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.
We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.
Hyperspectral range imaging for transportation systems evaluation
NASA Astrophysics Data System (ADS)
Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.
2016-04-01
Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.
Four Pillars for Improving the Quality of Safety-Critical Software-Reliant Systems
2013-04-01
Studies of safety-critical software-reliant systems developed using the current practices of build-then-test show that requirements and architecture ... design defects make up approximately 70% of all defects, many system level related to operational quality attributes, and 80% of these defects are
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, A; Mirkarimi, P; Stearns, D G
2002-05-22
EUV mask blanks are fabricated by depositing a reflective Mo/Si multilayer film onto super-polished substrates. Small defects in this thin film coating can significantly alter the reflected field and introduce defects in the printed image. Ideally one would want to produce defect-free mask blanks; however, this may be very difficult to achieve in practice. One practical way to increase the yield of mask blanks is to effectively repair multilayer defects, and to this effect they present two complementary defect repair strategies for use on multilayer-coated EUVL mask blanks. A defect is any area on the mask which causes unwanted variationsmore » in EUV dose in the aerial image obtained in a printing tool, and defect repair is correspondingly defined as any strategy that renders a defect unprintable during exposure. The term defect mitigation can be adopted to describe any strategy which renders a critical defect non-critical when printed, and in this regard a non-critical defect is one that does not adversely affect device function. Defects in the patterned absorber layer consist of regions where metal, typically chrome, is unintentionally added or removed from the pattern leading to errors in the reflected field. There currently exists a mature technology based on ion beam milling and ion beam assisted deposition for repairing defects in the absorber layer of transmission lithography masks, and it is reasonable to expect that this technology will be extended to the repair of absorber defects in EUVL masks. However, techniques designed for the repair of absorber layers can not be directly applied to the repair of defects in the mask blank, and in particular the multilayer film. In this paper they present for the first time a new technique for the repair of amplitude defects as well as recent results on the repair of phase defects.« less
1993-10-01
sealant was determined by noting the type and number of defects each sealant incurred. Figure 4 provides a sample evaluation sheet used dur- ing the field...was conducted by visually inspect- ing the mater~al for defects . If any defects were noted, the type of defect was described and the quant~ty of that... defect was measured. The quantity of the defect was dividted by the total quantity of sealant and the result reported as percent defect . Adhesion and
Olson, S A; Bay, B K; Pollak, A N; Sharkey, N A; Lee, T
1996-01-01
The indications for open reduction and internal fixation of posterior wall acetabular fractures associated with a clinically stable hip joint are unclear. In previous work a large posterior wall defect (27% articular surface area) resulted in significant alteration of load transmission across the hip; specifically, there was a transition from evenly distributed loading along the acetabular articular surface to loading concentrated mainly in the superior portion of the articular surface during simulated single leg stance. However, the majority of posterior wall fractures involve a smaller amount of the articular surface. Posterior wall acetabular fractures not associated with instability of the hip are commonly treated nonoperatively. This practice does not account for the size of the posterior wall fracture. To study the biomechanical consequences of variably sized articular defects, a laboratory experiment was conducted evaluating three progressively larger posterior wall defects of the acetabulum during simulated single leg stance using superlow Fuji prescale film (Itochu International, New York): (a) 1/3 articular surface width through a 50 degrees arc along the posterior wall of the acetabulum, (b) 2/3, and (c) 3/3 articular width defects through the same 50 degrees arc along the posterior wall of the acetabulum. In the intact acetabulum, 48% of the total articular contact was located in the superior acetabulum. Twenty-eight percent of articular contact was in the anterior wall region of the acetabulum and 24% in the posterior wall region. After the 1/3 width posterior wall defect, 64% of the articular contact was located in the superior acetabulum (p = 0.0011). The 2/3 width posterior wall defect resulted in 71% of articular contact area being located in the superior acetabulum (p = 0.0006). After the 3/3 width posterior wall defect, 77% of articular contact was located in the superior acetabulum, significantly greater than the intact condition (p < 0.0001) and 1/3 width defect (p = 0.0222). The total absolute contact areas for all defect conditions were significantly less than the intact conditions. The results of this study reconfirm the observation that posterior wall fractures of the acetabulum significantly alter the articular contact characteristics in the hip during single leg stance. The relationship between defect size and changes in joint contact showed that the smallest defect resulted in the greatest alteration in joint contact areas, whereas larger defects resulted in minor increments of change in contact area. This finding is of concern because the clinical practice of managing acetabular fractures nonoperatively if the hip joint is stable is based on the supposition that the joint retains enough integrity to function without undue risk of late posttraumatic osteoarthritis. A better understanding of the natural history of stable posterior wall acetabular fractures is needed to ascertain whether some of these fractures merit operative repair.
Intentional defect array wafers: their practical use in semiconductor control and monitoring systems
NASA Astrophysics Data System (ADS)
Emami, Iraj; McIntyre, Michael; Retersdorf, Michael
2003-07-01
In the competitive world of semiconductor manufacturing today, control of the process and manufacturing equipment is paramount to success of the business. Consistent with the need for rapid development of process technology, is a need for development wiht respect to equipment control including defect metrology tools. Historical control methods for defect metrology tools included a raw count of defects detected on a characterized production or test wafer with little or not regard to the attributes of the detected defects. Over time, these characterized wafers degrade with multiple passes on the tools and handling requiring the tool owner to create and characterize new samples periodically. With the complex engineering software analysis systems used today, there is a strong reliance on the accuracy of defect size, location, and classification in order to provide the best value when correlating the in line to sort type of data. Intentional Defect Array (IDA) wafers were designed and manufacturered at International Sematech (ISMT) in Austin, Texas and is a product of collaboration between ISMT member companies and suppliers of advanced defect inspection equipment. These wafers provide the use with known defect types and sizes in predetermined locations across the entire wafer. The wafers are designed to incorporate several desired flows and use critical dimensions consistent with current and future technology nodes. This paper briefly describes the design of the IDA wafer and details many practical applications in the control of advanced defect inspection equipment.
NASA Astrophysics Data System (ADS)
Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric
2018-01-01
Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.
NASA Astrophysics Data System (ADS)
Delachat, F.; Phillipe, J.-C.; Larrey, V.; Fournel, F.; Bos, S.; Teyssèdre, H.; Chevalier, Xavier; Nicolet, Célia; Navarro, Christophe; Cayrefourcq, Ian
2018-03-01
In this work, an evaluation of various ASL processes for 200 mm wafer scale in the HERCULES® NIL equipment platform available at the CEA-Leti through the INSPIRE program is reported. The surface and adherence energies were correlated to the AFM and defectivity results in order to select the most promising ASL process for high resolution etch mask applications. The ASL performances of the selected process were evaluated by multiple working stamp fabrication using unpatterned and patterned masters though defectivity monitoring on optical based-inspection tools. Optical and SEM defect reviews were systematically performed. Multiple working stamps fabrication without degradation of the master defectivity was witnessed. This evaluation enabled to benchmark several ASL solutions based on the grafted technology develop by ARKEMA in order to reduce and optimize the soft stamp defectivity prior to its replication and therefore considerably reduce the final imprint defectivity for the Smart NIL process.
Key Questions in Building Defect Prediction Models in Practice
NASA Astrophysics Data System (ADS)
Ramler, Rudolf; Wolfmaier, Klaus; Stauder, Erwin; Kossak, Felix; Natschläger, Thomas
The information about which modules of a future version of a software system are defect-prone is a valuable planning aid for quality managers and testers. Defect prediction promises to indicate these defect-prone modules. However, constructing effective defect prediction models in an industrial setting involves a number of key questions. In this paper we discuss ten key questions identified in context of establishing defect prediction in a large software development project. Seven consecutive versions of the software system have been used to construct and validate defect prediction models for system test planning. Furthermore, the paper presents initial empirical results from the studied project and, by this means, contributes answers to the identified questions.
The Implications of Parental Consanguinity on the Care of Neonates.
Ng, Diana
2016-08-01
Approximately 6% of births worldwide, 7.9 million children, are born with a serious genetic congenital abnormality each year. A factor thought to increase the prevalence of birth defects is parental consanguinity, which is a social custom practiced in at least 20% of the world's population. The purpose of this article is to explore the relationship between consanguinity and congenital defects. This article also aims to enhance neonatal healthcare practitioners' comprehension of its implications for practice and research. A review of literature was compiled from a search of the online databases Cumulative Index of Nursing and Allied Health (CINAHL), PubMed, EBSCO MegaFILE, and Google Scholar. Literature pertinent to this topic primarily consists of research studies that examine the inbreeding depression phenomenon through comparison of the prevalence of birth defects among the offspring of consanguineous and nonconsanguineous couples. Current studies indicate that the progeny of consanguineous couples are at an increased risk of congenital defects compared with those of nonconsanguineous couples. Consanguinity is one risk factor among many that can lead to a major birth defect. Relationships between consanguineous populations and neonatal healthcare practitioners such as registered nurses, advanced practice nurses, and physicians could significantly alter neonatal health outcomes. Specific recommendations such as genetic counseling and therapeutic communication are discussed. Further studies need to investigate the connection between consanguinity and birth defects while controlling for nongenetic variables. Moreover, a focus on consanguineous communities in the United States would prove beneficial.
Damage Tolerance of Large Shell Structures
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Chamis, C. C.
1999-01-01
Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.
Sports participation in adults with congenital heart disease.
Opić, Petra; Utens, Elisabeth M W J; Cuypers, Judith A A E; Witsenburg, Maarten; van den Bosch, Annemien; van Domburg, Ron; Bogers, Ad J J C; Boersma, Eric; Pelliccia, Antonio; Roos-Hesselink, Jolien W
2015-01-01
It is unclear whether sports participation in adults with repaired congenital heart disease is safe and has benefits. Congenital heart disease (ConHD) patients who underwent corrective surgery for Atrial Septal Defect, Ventricular Septal Defect, Pulmonary Stenosis, Tetralogy of Fallot or Transposition of the Great Arteries in our center between 1968 and 1980 were included, and participated in our longitudinal follow-up study with serial evaluations in 2001 and 2011. At both time points patients filled in questionnaires on sports participation, subjective physical functioning and quality of life. Exercise testing, echocardiogram and 24-hour continuous ambulatory ECG-monitoring were performed in both 2001 and 2011. All clinical events (re-intervention, arrhythmia, heart failure) were prospectively recorded. No relationship was found between practicing sports and the occurrence of sudden death, PVCs or SVTs. Patients with moderate/complex forms of ConHD practiced fewer hours of sports compared with the general Dutch normative population. Patients with both simple and moderate/complex ConHD who practiced sports showed a higher exercise capacity. More favorable subjective physical functioning was found for moderate/complex patients who practiced sports. Adults with repaired ConHD are less often involved in sports than the Dutch general population. The patients that were engaged in sports show a higher exercise capacity than those who did not. Sports participation in patients with ConHD was not associated with an increased incidence of adverse cardiac events. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sirikham, Adisorn; Zhao, Yifan; Mehnen, Jörn
2017-11-01
Thermography is a promising method for detecting subsurface defects, but accurate measurement of defect depth is still a big challenge because thermographic signals are typically corrupted by imaging noise and affected by 3D heat conduction. Existing methods based on numerical models are susceptible to signal noise and methods based on analytical models require rigorous assumptions that usually cannot be satisfied in practical applications. This paper presents a new method to improve the measurement accuracy of subsurface defect depth through determining the thermal wave reflection coefficient directly from observed data that is usually assumed to be pre-known. This target is achieved through introducing a new heat transfer model that includes multiple physical parameters to better describe the observed thermal behaviour in pulsed thermographic inspection. Numerical simulations are used to evaluate the performance of the proposed method against four selected state-of-the-art methods. Results show that the accuracy of depth measurement has been improved up to 10% when noise level is high and thermal wave reflection coefficients is low. The feasibility of the proposed method in real data is also validated through a case study on characterising flat-bottom holes in carbon fibre reinforced polymer (CFRP) laminates which has a wide application in various sectors of industry.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hideshi; Soeda, Takeshi
2015-03-01
A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.
Simulation of the evolution of fused silica's surface defect during wet chemical etching
NASA Astrophysics Data System (ADS)
Liu, Taixiang; Yang, Ke; Li, Heyang; Yan, Lianghong; Yuan, Xiaodong; Yan, Hongwei
2017-08-01
Large high-power-laser facility is the basis for achieving inertial confinement fusion, one of whose missions is to make fusion energy usable in the near future. In the facility, fused silica optics plays an irreplaceable role to conduct extremely high-intensity laser to fusion capsule. But the surface defect of fused silica is a major obstacle limiting the output power of the large laser facility and likely resulting in the failure of ignition. To mitigate, or event to remove the surface defect, wet chemical etching has been developed as a practical way. However, how the surface defect evolves during wet chemical etching is still not clearly known so far. To address this problem, in this work, the three-dimensional model of surface defect is built and finite difference time domain (FDTD) method is developed to simulate the evolution of surface defect during etching. From the simulation, it is found that the surface defect will get smooth and result in the improvement of surface quality of fused silica after etching. Comparatively, surface defects (e.g. micro-crack, scratch, series of pinholes, etc.) of a typical fused silica at different etching time are experimentally measured. It can be seen that the simulation result agrees well with the result of experiment, indicating the FDTD method is valid for investigating the evolution of surface defect during etching. With the finding of FDTD simulation, one can optimize the treatment process of fused silica in practical etching or even to make the initial characterization of surface defect traceable.
NASA Astrophysics Data System (ADS)
Yang, Yongying; Chai, Huiting; Li, Chen; Zhang, Yihui; Wu, Fan; Bai, Jian; Shen, Yibing
2017-05-01
Digitized evaluation of micro sparse defects on large fine optical surfaces is one of the challenges in the field of optical manufacturing and inspection. The surface defects evaluation system (SDES) for large fine optical surfaces is developed based on our previously reported work. In this paper, the electromagnetic simulation model based on Finite-Difference Time-Domain (FDTD) for vector diffraction theory is firstly established to study the law of microscopic scattering dark-field imaging. Given the aberration in actual optical systems, point spread function (PSF) approximated by a Gaussian function is introduced in the extrapolation from the near field to the far field and the scatter intensity distribution in the image plane is deduced. Analysis shows that both diffraction-broadening imaging and geometrical imaging should be considered in precise size evaluation of defects. Thus, a novel inverse-recognition calibration method is put forward to avoid confusion caused by diffraction-broadening effect. The evaluation method is applied to quantitative evaluation of defects information. The evaluation results of samples of many materials by SDES are compared with those by OLYMPUS microscope to verify the micron-scale resolution and precision. The established system has been applied to inspect defects on large fine optical surfaces and can achieve defects inspection of surfaces as large as 850 mm×500 mm with the resolution of 0.5 μm.
2015-10-01
practical examination of current methods,” J. Biomech., Oct. 2015. [8] R. J. Nesbitt, S . T. Herfat, D. V. Boguszewski, A . J. Engel, M . T. Galloway, and J... a Sheep Model 5b. GRANT NUMBER W81XWH-13-1-0324 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Christopher H. Evans, Ph.D. 5d. PROJECT NUMBER...interfragmentary movement ( IFM ) through the separated bone cortices (fracture gap). In research funded by a CDMRP Idea Development Award, we used a
Quality Enhancement of Ultrasonic TOFD Signals from Carbon Steel Weld Pad with Notches.
Manjula, K; Vijayarekha, K; Venkatraman, B
2018-03-01
Welding is an integral part of component fabrication in industry. Even though the science and art of welding are more than 100 years old, defects continue to occur during welding. Codes of practice require that the welds be tested and evaluated. Conventionally ultrasonic testing has been widely applied in industry for the detection and evaluation of the flaws/defects in the weldments. With advances in sensor and signal analysis technologies, the last two decades have seen extensive developments in the field of ultrasonic testing. We have advanced techniques such as Time of Flight Diffraction (TOFD) which has better probability of detection for linear defects. A major irritant during the application of TOFD, especially for the testing of carbon steel weldments, is the presence of noise. A variety of approaches has been used internationally for the suppression of such noise and each has its own merits and demerits. This paper focuses on a method of enhancing the TOFD A-scan signals in carbon steel weldments by suppressing the noise from them using the discrete wavelet transform (DWT). The analysis clearly indicates that the DWT gives better signal-to-noise ratio improvement using higher-order wavelet filters with 4-level DWT decomposition. However the computational cost of this signal enhancement depends on the wavelet filter chosen along with the chosen level of DWT decomposition. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Harvey, David M.
2012-03-01
Various signal processing techniques have been used for the enhancement of defect detection and defect characterisation. Cross-correlation, filtering, autoregressive analysis, deconvolution, neural network, wavelet transform and sparse signal representations have all been applied in attempts to analyse ultrasonic signals. In ultrasonic nondestructive evaluation (NDE) applications, a large number of materials have multilayered structures. NDE of multilayered structures leads to some specific problems, such as penetration, echo overlap, high attenuation and low signal-to-noise ratio. The signals recorded from a multilayered structure are a class of very special signals comprised of limited echoes. Such signals can be assumed to have a sparse representation in a proper signal dictionary. Recently, a number of digital signal processing techniques have been developed by exploiting the sparse constraint. This paper presents a review of research to date, showing the up-to-date developments of signal processing techniques made in ultrasonic NDE. A few typical ultrasonic signal processing techniques used for NDE of multilayered structures are elaborated. The practical applications and limitations of different signal processing methods in ultrasonic NDE of multilayered structures are analysed.
Reconstructive microsurgical approach for the treatment of pyoderma gangrenosum.
Schwaiger, Karl; Russe, Elisabeth; Kholosy, Hassan; Hladik, Michaela; Heinrich, Klemens; Weitgasser, Laurenz; Schoeller, Thomas; Wechselberger, Gottfried
2018-01-01
Pyoderma gangrenosum (PG) is a rare type of autoimmune disease that results in progressive ulcers with or without previous trauma. However, PG is not well understood to date, and its treatment therefore remains a challenge. Because of the disease's systemic characteristic and the unpredictability of the clinical course, no gold standard treatment is available, especially concerning the surgical procedures to treat pyodermic lesions. Often, PG is not recognized during routine clinical practice, and standard ulcer treatment (conservative wound care, debridement, skin grafting, and local flap coverage) is initiated; this induces an autoinflammatory response, resulting in disastrous ulcers, thereby making free flap coverage necessary. The purpose of this study was to assess the outcome of microvascular free-tissue transfer as a treatment option for extended soft-tissue defects resulting from PG. We retrospectively evaluated 8 cases in 5 patients suffering from PG of the lower extremity who received defect closure with a microvascular free-tissue transfer under immunosuppressive and corticosteroid therapy. The average patient age was 60 years; three were male, and two were female. Seven defects were covered with free gracilis muscle flap. One patient received an anterolateral thigh flap. The average defect size was 93 cm 2 . No flap loss was observed during follow-up. All patients received broad-spectrum antibiotic treatment and corticosteroids. Two patients also received infliximab. PG once diagnosed is not a contraindication for microvascular free-tissue transfer. Multidisciplinary evaluation of each case is fundamental. All surgical treatments should be performed only with sufficient protective immunosuppression therapy. If the defect requires free flap coverage, it should be considered as a surgical option despite the potential risk of a pathergic response in PG and was a safe treatment option in all our cases. In conclusion, we share our experience regarding preoperative, intraoperative, and postoperative care of patients with PG receiving free flap surgery. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
PCB Fault Detection Using Image Processing
NASA Astrophysics Data System (ADS)
Nayak, Jithendra P. R.; Anitha, K.; Parameshachari, B. D., Dr.; Banu, Reshma, Dr.; Rashmi, P.
2017-08-01
The importance of the Printed Circuit Board inspection process has been magnified by requirements of the modern manufacturing environment where delivery of 100% defect free PCBs is the expectation. To meet such expectations, identifying various defects and their types becomes the first step. In this PCB inspection system the inspection algorithm mainly focuses on the defect detection using the natural images. Many practical issues like tilt of the images, bad light conditions, height at which images are taken etc. are to be considered to ensure good quality of the image which can then be used for defect detection. Printed circuit board (PCB) fabrication is a multidisciplinary process, and etching is the most critical part in the PCB manufacturing process. The main objective of Etching process is to remove the exposed unwanted copper other than the required circuit pattern. In order to minimize scrap caused by the wrongly etched PCB panel, inspection has to be done in early stage. However, all of the inspections are done after the etching process where any defective PCB found is no longer useful and is simply thrown away. Since etching process costs 0% of the entire PCB fabrication, it is uneconomical to simply discard the defective PCBs. In this paper a method to identify the defects in natural PCB images and associated practical issues are addressed using Software tools and some of the major types of single layer PCB defects are Pattern Cut, Pin hole, Pattern Short, Nick etc., Therefore the defects should be identified before the etching process so that the PCB would be reprocessed. In the present approach expected to improve the efficiency of the system in detecting the defects even in low quality images
Mohseni, Mahmoud; Jahandideh, Alireza; Abedi, Gholamreza; Akbarzadeh, Abolfazl; Hesaraki, Saeed
2018-03-01
Bone regeneration is an important objective in clinical practice and has been used for different applications. The aim of this study was to evaluate the effectiveness of nanocomposite tricalcium phosphate (TCP)/collagen scaffolds combined with hydroxyapatite scaffold for bone healing in surgery of femoral defects in rabbits. In this study, 45 mature male New Zealand white rabbits between 6 and 8 months old and weighting between 3 and 3.5 kg were examined. Rabbits were divided into three groups. Surgical procedures were performed after intramuscular injection of Ketamine 10% (ketamine hydrochloride, 50 mg/kg) and Rompun 5% (xylazine, 5 mg/kg). Then an approximately 6 mm diameter-5 mm cylinder bone defect was created in the femur of one of the hind limbs. After inducing the surgical wound, all rabbits were coloured and randomly divided into three experimental groups of 15 animals each. Group 1 received pure medical nanocomposite TCP/collagen granules, group 2 received hydroxyapatite, and third group was a control group which received no treatment. Histopathological evaluation was performed on days 15, 30, and 45 after surgery. On days 15, 30, and 45 after surgery, the quantity and the velocity of stages of bone formation at the healing site in nanocomposite TCP/collagen group were better than HA and control groups and the quantity of newly formed lamellar bone at the healing site in nanocomposite TCP/collagen group were better than onward compared with HA and control groups. In conclusion, it seems that TCP/collagen nanocomposite has a significant role in the reconstruction of bone defects and can be used as scaffold in bone fractures.
Gordan, Valeria V.
2012-01-01
Clinical studies are of paramount importance for testing and translation of the research findings to the community. Despite the existence of clinical studies, a significant delay exists between the generation of new knowledge and its application into the medical/dental community and their patients. One example is the repair of defective dental restorations. About 75% of practitioners in general dental practices do not consider the repair of dental restorations as a viable alternative to the replacement of defective restorations. Engaging and partnering with health practitioners in the field on studies addressing everyday clinical research questions may offer a solution to speed up the translation of the research findings. Practice-based research (PBR) offers a unique opportunity for practitioners to be involved in the research process, formulating clinical research questions. Additionally, PBR generates evidence-based knowledge with a broader spectrum that can be more readily generalized to the public. With PBR, clinicians are involved in the entire research process from its inception to its dissemination. Early practitioner interaction in the research process may result in ideas being more readily incorporated into practice. This paper discusses PBR as a mean to speed up the translation of research findings to clinical practice. It also reviews repair versus replacement of defective restorations as one example of the delay in the application of research findings to clinical practice. PMID:22889478
Carlisle, Patricia L; Guda, Teja; Silliman, David T; Lien, Wen; Hale, Robert G; Brown Baer, Pamela R
2016-02-01
To validate a critical-size mandibular bone defect model in miniature pigs. Bilateral notch defects were produced in the mandible of dentally mature miniature pigs. The right mandibular defect remained untreated while the left defect received an autograft. Bone healing was evaluated by computed tomography (CT) at 4 and 16 weeks, and by micro-CT and non-decalcified histology at 16 weeks. In both the untreated and autograft treated groups, mineralized tissue volume was reduced significantly at 4 weeks post-surgery, but was comparable to the pre-surgery levels after 16 weeks. After 16 weeks, CT analysis indicated that significantly greater bone was regenerated in the autograft treated defect than in the untreated defect (P=0.013). Regardless of the treatment, the cortical bone was superior to the defect remodeled over 16 weeks to compensate for the notch defect. The presence of considerable bone healing in both treated and untreated groups suggests that this model is inadequate as a critical-size defect. Despite healing and adaptation, the original bone geometry and quality of the pre-injured mandible was not obtained. On the other hand, this model is justified for evaluating accelerated healing and mitigating the bone remodeling response, which are both important considerations for dental implant restorations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... quality levels (AQLs) for leaks and visual defects observed during FDA testing of medical gloves. The CPG... practices regulation (21 CFR 10.115). The CPG represents FDA's current thinking on the criteria for direct...
7 CFR 51.652 - Classification of defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Classification of defects. 51.652 Section 51.652 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.652 - Classification of defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of defects. 51.652 Section 51.652 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.1877 - Classification of defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Classification of defects. 51.1877 Section 51.1877 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.652 - Classification of defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Classification of defects. 51.652 Section 51.652 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.713 - Classification of defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Classification of defects. 51.713 Section 51.713 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.713 - Classification of defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Classification of defects. 51.713 Section 51.713 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.652 - Classification of defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Classification of defects. 51.652 Section 51.652 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.713 - Classification of defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of defects. 51.713 Section 51.713 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.713 - Classification of defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification of defects. 51.713 Section 51.713 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.1877 - Classification of defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification of defects. 51.1877 Section 51.1877 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.1877 - Classification of defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Classification of defects. 51.1877 Section 51.1877 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.713 - Classification of defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Classification of defects. 51.713 Section 51.713 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.1877 - Classification of defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Classification of defects. 51.1877 Section 51.1877 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
7 CFR 51.652 - Classification of defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification of defects. 51.652 Section 51.652 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL...
Thiering, Gergő; Londero, Elisa; Gali, Adam
2014-10-21
Fluorescent nanodiamonds constitute an outstanding alternative to semiconductor quantum dots and dye molecules for in vivo biomarker applications, where the fluorescence comes from optically active point defects acting as color centers in the nanodiamonds. For practical purposes, these color centers should be photostable as a function of the laser power or the surface termination of nanodiamonds. Furthermore, they should exhibit a sharp and nearly temperature-independent zero-phonon line. In this study, we show by hybrid density functional theory calculations that nickel doped nanodiamonds exhibit the desired properties, thus opening the avenue to practical applications. In particular, harnessing the strong quantum confinement effect in molecule-sized nanodiamonds is very promising for achieving multicolor imaging by single nickel-related defects.
NASA Astrophysics Data System (ADS)
Thiering, Gergő; Londero, Elisa; Gali, Adam
2014-09-01
Fluorescent nanodiamonds constitute an outstanding alternative to semiconductor quantum dots and dye molecules for in vivo biomarker applications, where the fluorescence comes from optically active point defects acting as color centers in the nanodiamonds. For practical purposes, these color centers should be photostable as a function of the laser power or the surface termination of nanodiamonds. Furthermore, they should exhibit a sharp and nearly temperature-independent zero-phonon line. In this study, we show by hybrid density functional theory calculations that nickel doped nanodiamonds exhibit the desired properties, thus opening the avenue to practical applications. In particular, harnessing the strong quantum confinement effect in molecule-sized nanodiamonds is very promising for achieving multicolor imaging by single nickel-related defects.
Buie, Helen R; Bosma, Nick A; Downey, Charlene M; Jirik, Frank R; Boyd, Steven K
2013-11-01
Bone defects can occur in various forms and present challenges to performing a standard micro-CT evaluation of bone quality because most measures are suited to homogeneous structures rather than ones with spatially focal abnormalities. Such defects are commonly associated with pain and fragility. Research involving bone defects requires quantitative approaches to be developed if micro-CT is to be employed. In this study, we demonstrate that measures of inter-microarchitectural bone spacing are sensitive to the presence of focal defects in the proximal tibia of two distinctly different mouse models: a burr-hole model for fracture healing research, and a model of osteolytic bone metastases. In these models, the cortical and trabecular bone compartments were both affected by the defect and were, therefore, evaluated as a single unit to avoid splitting the defects into multiple analysis regions. The burr-hole defect increased mean spacing (Sp) by 27.6%, spacing standard deviation (SpSD) by 113%, and maximum spacing (Spmax) by 72.8%. Regression modeling revealed SpSD (β=0.974, p<0.0001) to be a significant predictor of the defect volume (R(2)=0.949) and Spmax (β=0.712, p<0.0001) and SpSD (β=0.271, p=0.022) to be significant predictors of the defect diameter (R(2)=0.954). In the mice with osteolytic bone metastases, spacing parameters followed similar patterns of change as reflected by other imaging technologies, specifically bioluminescence data which is indicative of tumor burden. These data highlight the sensitivity of spacing measurements to bone architectural abnormalities from 3D micro-CT data and provide a tool for quantitative evaluation of defects within a bone. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Study on on-machine defects measuring system on high power laser optical elements
NASA Astrophysics Data System (ADS)
Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin
2017-10-01
The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.
NASA Technical Reports Server (NTRS)
Taber, William; Port, Dan
2014-01-01
At the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory we make use of finite exponential based defect models to aid in maintenance planning and management for our widely used critical systems. However a number of pragmatic issues arise when applying defect models for a post-release system in continuous use. These include: how to utilize information from problem reports rather than testing to drive defect discovery and removal effort, practical model calibration, and alignment of model assumptions with our environment.
Toward Intelligent Software Defect Detection
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2011-01-01
Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.
NASA Technical Reports Server (NTRS)
Cusano, C.; Wedeven, L. D.
1981-01-01
The effects of artificially produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact were investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, were held stationary at various locations within and in the vicinity of the contact region while the disk was rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.
Application of the automated spatial surveillance program to birth defects surveillance data.
Gardner, Bennett R; Strickland, Matthew J; Correa, Adolfo
2007-07-01
Although many birth defects surveillance programs incorporate georeferenced records into their databases, practical methods for routine spatial surveillance are lacking. We present a macroprogram written for the software package R designed for routine exploratory spatial analysis of birth defects data, the Automated Spatial Surveillance Program (ASSP), and present an application of this program using spina bifida prevalence data for metropolitan Atlanta. Birth defects surveillance data were collected by the Metropolitan Atlanta Congenital Defects Program. We generated ASSP maps for two groups of years that correspond roughly to the periods before (1994-1998) and after (1999-2002) folic acid fortification of flour. ASSP maps display census tract-specific spina bifida prevalence, smoothed prevalence contours, and locations of statistically elevated prevalence. We used these maps to identify areas of elevated prevalence for spina bifida. We identified a large area of potential concern in the years following fortification of grains and cereals with folic acid. This area overlapped census tracts containing large numbers of Hispanic residents. The potential utility of ASSP for spatial disease monitoring was demonstrated by the identification of areas of high prevalence of spina bifida and may warrant further study and monitoring. We intend to further develop ASSP so that it becomes practical for routine spatial monitoring of birth defects. (c) 2007 Wiley-Liss, Inc.
Color defective vision and the recognition of aviation color signal light flashes.
DOT National Transportation Integrated Search
1971-06-01
A previous study reported on the efficiency with which various tests of color defective vision can predict performance during daylight conditions on a practical test of ability to discriminate aviation signal red, white, and green. In the current stu...
7 CFR 51.2659 - Condition defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Condition defects. 51.2659 Section 51.2659 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...
7 CFR 51.2659 - Condition defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Condition defects. 51.2659 Section 51.2659 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...
7 CFR 51.2659 - Condition defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Condition defects. 51.2659 Section 51.2659 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...
7 CFR 51.2659 - Condition defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Condition defects. 51.2659 Section 51.2659 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...
7 CFR 51.2659 - Condition defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Condition defects. 51.2659 Section 51.2659 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...
Bois, Aaron J; Fening, Stephen D; Polster, Josh; Jones, Morgan H; Miniaci, Anthony
2012-11-01
Glenoid support is critical for stability of the glenohumeral joint. An accepted noninvasive method of quantifying glenoid bone loss does not exist. To perform independent evaluations of the reliability and accuracy of standard 2-dimensional (2-D) and 3-dimensional (3-D) computed tomography (CT) measurements of glenoid bone deficiency. Descriptive laboratory study. Two sawbone models were used; one served as a model for 2 anterior glenoid defects and the other for 2 anteroinferior defects. For each scapular model, predefect and defect data were collected for a total of 6 data sets. Each sample underwent 3-D laser scanning followed by CT scanning. Six physicians measured linear indicators of bone loss (defect length and width-to-length ratio) on both 2-D and 3-D CT and quantified bone loss using the glenoid index method on 2-D CT and using the glenoid index, ratio, and Pico methods on 3-D CT. The intraclass correlation coefficient (ICC) was used to assess agreement, and percentage error was used to compare radiographic and true measurements. With use of 2-D CT, the glenoid index and defect length measurements had the least percentage error (-4.13% and 7.68%, respectively); agreement was very good (ICC, .81) for defect length only. With use of 3-D CT, defect length (0.29%) and the Pico(1) method (4.93%) had the least percentage error. Agreement was very good for all linear indicators of bone loss (range, .85-.90) and for the ratio linear and Pico surface area methods used to quantify bone loss (range, .84-.98). Overall, 3-D CT results demonstrated better agreement and accuracy compared to 2-D CT. None of the methods assessed in this study using 2-D CT was found to be valid, and therefore, 2-D CT is not recommended for these methods. However, the length of glenoid defects can be reliably and accurately measured on 3-D CT. The Pico and ratio techniques are most reliable; however, the Pico(1) method accurately quantifies glenoid bone loss in both the anterior and anteroinferior locations. Future work is required to implement valid imaging techniques of glenoid bone loss into clinical practice. This is one of the only studies to date that has investigated both the reliability and accuracy of multiple indicators and quantification methods that evaluate glenoid bone loss in anterior glenohumeral instability. These data are critical to ensure valid methods are used for preoperative assessment and to determine when a glenoid bone augmentation procedure is indicated.
Detection of defects in formed sheet metal using medial axis transformation
NASA Astrophysics Data System (ADS)
Murmu, Naresh C.; Velgan, Roman
2003-05-01
In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.
Public Health Practice of Population-Based Birth Defects Surveillance Programs in the United States.
Mai, Cara T; Kirby, Russell S; Correa, Adolfo; Rosenberg, Deborah; Petros, Michael; Fagen, Michael C
2016-01-01
Birth defects remain a leading cause of infant mortality in the United States and contribute substantially to health care costs and lifelong disabilities. State population-based surveillance systems have been established to monitor birth defects, yet no recent systematic examination of their efforts in the United States has been conducted. To understand the current population-based birth defects surveillance practices in the United States. The National Birth Defects Prevention Network conducted a survey of US population-based birth defects activities that included questions about operational status, case ascertainment methodology, program infrastructure, data collection and utilization, as well as priorities and challenges for surveillance programs. Birth defects contacts in the United States, including District of Columbia and Puerto Rico, received the survey via e-mail; follow-up reminders via e-mails and telephone were used to ensure a 100% response rate. Forty-three states perform population-based surveillance for birth defects, covering approximately 80% of the live births in the United States. Seventeen primarily use an active case-finding approach and 26 use a passive case-finding approach. These programs all monitor major structural malformations; however, passive case-finding programs more often monitor a broader list of conditions, including developmental conditions and newborn screening conditions. Active case-finding programs more often use clinical reviewers, cover broader pregnancy outcomes, and collect more extensive information, such as family history. More than half of the programs (24 of 43) reported an ability to conduct follow-up studies of children with birth defects. The breadth and depth of information collected at a population level by birth defects surveillance programs in the United States serve as an important data source to guide public health action. Collaborative efforts at the state and national levels can help harmonize data collection and increase utility of birth defects programs.
Wu, Hao-Hua; Patel, Kushal R; Caldwell, Amber M; Coughlin, R Richard; Hansen, Scott L; Carey, Joseph N
The burden of complex orthopedic trauma in low- and middle-income countries (LMICs) is exacerbated by soft-tissue injuries, which can often lead to amputations. This study's purpose was to create and evaluate the Surgical Management and Reconstruction Training (SMART) course to help orthopedic surgeons from LMICs manage soft-tissue defects and reduce the rate of amputations. In this prospective observational study, orthopedic surgeons from LMICs were recruited to attend a 2-day SMART course taught by plastic surgery faculty in San Francisco. Before the course, participants were asked to assess the burden of soft-tissue injury and amputation encountered at their respective sites of practice. A survey was then given immediately and 1-year postcourse to evaluate the quality of instructional materials and the course's effect in reducing the burden of amputation, respectively. Fifty-one practicing orthopedic surgeons from 25 countries attended the course. No participant reported previously attempting a flap reconstruction procedure to treat a soft-tissue defect. Before the course, participants cumulatively reported 580-970 amputations performed annually as a result of soft-tissue defects. Immediately after the course, participants rated the quality and effectiveness of training materials to be a mean of ≥4.4 on a Likert scale of 5 (Excellent) in all 14 instructional criteria. Of the 34 (66.7%) orthopedic surgeons who completed the 1-year postcourse survey, 34 (100%, P < 0.01) reported performing flaps learned at the course to treat soft-tissue defects. Flap procedures prevented 116 patients from undergoing amputation; 554 (93.3%) of the cumulative 594 flaps performed by participants 1 year after the course were reported to be successful. Ninety-seven percent of course participants taught flap reconstruction techniques to colleagues or residents, and a self-reported estimate of 28 other surgeons undertook flap reconstruction as a result of information dissemination by 1 year postcourse. The SMART Course can give orthopedic surgeons in LMICs the skills and knowledge to successfully perform flaps, reducing the self-reported incidence of amputations. Course participants were able to disseminate flap reconstructive techniques to colleagues at their home institution. While this course offers a collaborative, sustainable approach to reduce global surgical disparities in amputation, future investigation into the viability of teaching the SMART course in LMICs is warranted. Copyright © 2016. Published by Elsevier Inc.
Asthana, Geeta; Kapadwala, Marsrat I; Parmar, Girish J
2016-01-01
The aim of this study was to evaluate defects caused by torsional fatigue in used hand and rotary nickel-titanium (Ni-Ti) instruments by stereomicroscopic examination. One hundred five greater taper Ni-Ti instruments were used including Protaper universal hand (Dentsply Maillefer, Ballaigues, Switzerland), Protaper universal rotary (Dentsply Maillefer, Ballaigues, Switzerland), and Revo-S rotary (MicroMega, Besançon, France) files. Files were used on lower anterior teeth. After every use, the files were observed with both naked eyes and stereomicroscope at 20× magnification (Olympus, Shinjuku, Tokyo, Japan) to evaluate defects caused by torsional fatigue. Scoring was assigned to each file according to the degree of damage. The results were statistically analyzed using the Mann-Whitney U test and the Kruskal-Wallis test. A greater number of defects were seen under the stereomicroscope than on examining with naked eyes. However, the difference in methods of evaluation was not statistically significant. Revo-S files showed minimum defects, while Protaper universal hand showed maximum defects. The intergroup comparison of defects showed that the bend in Protaper universal hand instruments was statistically significant. Visible defects in Ni-Ti files due to torsional fatigue were seen by naked eyes as well as by stereomicroscope. This study emphasizes that all the files should be observed before and after every instrument cycle to minimize the risk of separation.
Congenital Heart Defects in Adults : A Field Guide for Cardiologists
Romfh, Anitra; Pluchinotta, Francesca Romana; Porayette, Prashob; Valente, Anne Marie; Sanders, Stephen P.
2013-01-01
Advances in cardiology and cardiac surgery allow a large proportion of patients with congenital heart defects to survive into adulthood. These patients frequently develop complications characteristic of the defect or its treatment. Consequently, adult cardiologists participating in the care of these patients need a working knowledge of the more common defects. Occasionally, patients with congenital heart defects such as atrial septal defect, Ebstein anomaly or physiologically corrected transposition of the great arteries present for the first time in adulthood. More often patients previously treated in pediatric cardiology centers have transitioned to adult congenital heart disease centers for ongoing care. Some of the more important defects in this category are tetralogy of Fallot, transposition of the great arteries, functionally single ventricle defects, and coarctation. Through this field guide, we provide an overview of the anatomy of selected defects commonly seen in an adult congenital practice using pathology specimens and clinical imaging studies. In addition, we describe the physiology, clinical presentation to the adult cardiologist, possible complications, treatment options, and outcomes. PMID:24294540
Color defective vision and day and night recognition of aviation color signal light flashes.
DOT National Transportation Integrated Search
1971-07-01
A previous study reported on the efficiency with which various tests of color defective vision can predict performance during daylight conditions on a practical test of ability to discriminate aviation signal red, white, and green. In the current stu...
Csermely, Gyula; Susánszky, Éva; Czeizel, Andrew E; Veszprémi, Béla
2014-08-01
In epidemiological studies at the estimation of risk factors in the origin of specified congenital abnormalities in general birth order (parity) is considered as confounder. The aim of this study was to analyze the possible association of first and high (four or more) birth order with the risk of congenital abnormalities in a population-based case-matched control data set. The large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities included 21,494 cases with different isolated congenital abnormality and their 34,311 matched controls. First the distribution of birth order was compared of 24 congenital abnormality groups and their matched controls. In the second step the possible association of first and high birth order with the risk of congenital abnormalities was estimated. Finally some subgroups of neural-tube defects, congenital heart defects and abdominal wall's defects were evaluated separately. A higher risk of spina bifida aperta/cystica, esophageal atresia/stenosis and clubfoot was observed in the offspring of primiparous mothers. Of 24 congenital abnormality groups, 14 had mothers with larger proportion of high birth order. Ear defects, congenital heart defects, cleft lip± palate and obstructive defects of urinary tract had a linear trend from a lower proportion of first born cases to the larger proportion of high birth order. Birth order showed U-shaped distribution of neural-tube defects and clubfoot, i.e. both first and high birth order had a larger proportion in cases than in their matched controls. Birth order is a contributing factor in the origin of some isolated congenital abnormalities. The higher risk of certain congenital abnormalities in pregnant women with first or high birth order is worth considering in the clinical practice, e.g. ultrasound scanning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Studer, S; Naef, R; Schärer, P
1997-12-01
Esthetically correct treatment of a localized alveolar ridge defect is a frequent prosthetic challenge. Such defects can be overcome not only by a variety of prosthetic means, but also by several periodontal surgical techniques, notably soft tissue augmentations. Preoperative classification of the localized alveolar ridge defect can be greatly useful in evaluating the prognosis and technical difficulties involved. A semiquantitative classification, dependent on the severity of vertical and horizontal dimensional loss, is proposed to supplement the recognized qualitative classification of a ridge defect. Various methods of soft tissue augmentation are evaluated, based on initial volumetric measurements. The roll flap technique is proposed when the problem is related to ridge quality (single-tooth defect with little horizontal and vertical loss). Larger defects in which a volumetric problem must be solved are corrected through the subepithelial connective tissue technique. Additional mucogingival problems (eg, insufficient gingival width, high frenum, gingival scarring, or tattoo) should not be corrected simultaneously with augmentation procedures. In these cases, the onlay transplant technique is favored.
Hoffmann, Susanne; Frei, Irena Anna
2017-01-01
Background: Analysing adverse events is an effective patient safety measure. Aim: We show, how clinical nurse specialists have been enabled to analyse adverse events with the „Learning from Defects-Tool“ (LFD-Tool). Method: Our multi-component implementation strategy addressed both, the safety knowledge of clinical nurse specialists and their attitude towards patient safety. The culture of practice development was taken into account. Results: Clinical nurse specialists relate competency building on patient safety due to the application of the LFD-tool. Applying the tool, fosters the reflection of adverse events in care teams. Conclusion: Applying the „Learning from Defects-Tool“ promotes work-based learning. Analysing adverse events with the „Learning from Defects-Tool“ contributes to the safety culture in a hospital.
Chiral photonic crystals with an anisotropic defect layer.
Gevorgyan, A H; Harutyunyan, M Z
2007-09-01
In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.
Schröen, Ola; Sahrmann, Philipp; Roos, Malgorzata; Attin, Thomas; Schmidlin, Patrick R
2011-01-01
This survey aimed to evaluate the common practice of regenerative periodontal surgery with special regard to the use of enamel matrix derivatives (EMD, Emdogain® ) by board-certified specialists in periodontology and non-certified, but active members of the Swiss Society of Periodontology (SSP). A cross-sectional postal survey of 533 dentists, representing all members of the SSP practising in Switzerland, was conducted. The questionnaire consisted of three sections, assessing: 1) general personal information regarding the practice setting and education, 2) general questions regarding periodontal surgery practices and 3) specific questions regarding the use of EMD. The information obtained was compared and differences between specialists and non-specialists were calculated. P-values smaller than 5% were considered significant. Sixty-nine percent of the specialists answered the questionnaire, compared to only 37.4% of the non-specialists (overall: 42.4%). In general, specialists performed surgeries more frequently, and presented a significantly higher percentage of EMD users than the non-specialists. The application guidelines were followed in general. Some differences were observed in application and selection criteria. The subjective perception of clinical success varied greatly among clinicians. Residual pockets were reported to be present in approximately one third of the defects after therapy. In conclusion, this survey revealed that EMD was used on a regular basis by dentists performing periodontal therapy. In addition, the answers by both groups generally corresponded well with the current available literature.
Stereomicroscopic evaluation of dentinal defects induced by new rotary system: "ProTaper NEXT".
Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Baig, Arshia R; Kubde, Rajesh; Makade, Chetana; Pandey, Swapnil
2015-01-01
The objective of this study was to evaluate dentinal defects formed by new rotary system - Protaper next™ (PTN). Sixty single-rooted premolars were selected. All specimens were decoronated and divided into four groups, each group having 15 specimens. Group I specimens were prepared by Hand K-files (Mani), Group II with ProTaper Universal (PT; Dentsply Maillefer), Group III with Hero Shaper (HS; Micro-Mega, Besancon, France), and Group IV with PTN (Dentsply Maillefer). Roots of each specimen were sectioned at 3, 6, and 9mm from the apex and were then viewed under a stereomicroscope to evaluate presence or absence of dentinal defects. In roots prepared with hand files (HFs) showed lowest percentage of dentinal defects (6.7%); whereas in roots prepared with PT, HS, and PTN it was 40, 66.7, and 26.7%, respectively. There was significant difference between the HS group and the PTN group (P < 0.05). All rotary files induced defects in root dentin, whereas the hand instruments induced minimal defects.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... announced below concerns Birth Defects Study to Evaluate Pregnancy exposureS (BD-STEPS), FOA DD13-003... evaluation of applications received in response to ``Birth Defects Study to Evaluate Pregnancy exposureS (BD...
DOT National Transportation Integrated Search
2015-11-01
The objectives were to evaluate the ability of different NDE methods to detect and quantify : defects associated with corrosion of steel reinforcement and grout defects in post-tensioning : applications; and to evaluate the effectiveness of selected ...
Hyperspectral imaging for nondestructive evaluation of tomatoes
USDA-ARS?s Scientific Manuscript database
Machine vision methods for quality and defect evaluation of tomatoes have been studied for online sorting and robotic harvesting applications. We investigated the use of a hyperspectral imaging system for quality evaluation and defect detection for tomatoes. Hyperspectral reflectance images were a...
Asthana, Geeta; Kapadwala, Marsrat I.; Parmar, Girish J.
2016-01-01
Objective: The aim of this study was to evaluate defects caused by torsional fatigue in used hand and rotary nickel-titanium (Ni-Ti) instruments by stereomicroscopic examination. Materials and Methods: One hundred five greater taper Ni-Ti instruments were used including Protaper universal hand (Dentsply Maillefer, Ballaigues, Switzerland), Protaper universal rotary (Dentsply Maillefer, Ballaigues, Switzerland), and Revo-S rotary (MicroMega, Besançon, France) files. Files were used on lower anterior teeth. After every use, the files were observed with both naked eyes and stereomicroscope at 20× magnification (Olympus, Shinjuku, Tokyo, Japan) to evaluate defects caused by torsional fatigue. Scoring was assigned to each file according to the degree of damage. Statistics: The results were statistically analyzed using the Mann-Whitney U test and the Kruskal-Wallis test. Results: A greater number of defects were seen under the stereomicroscope than on examining with naked eyes. However, the difference in methods of evaluation was not statistically significant. Revo-S files showed minimum defects, while Protaper universal hand showed maximum defects. The intergroup comparison of defects showed that the bend in Protaper universal hand instruments was statistically significant. Conclusion: Visible defects in Ni-Ti files due to torsional fatigue were seen by naked eyes as well as by stereomicroscope. This study emphasizes that all the files should be observed before and after every instrument cycle to minimize the risk of separation. PMID:27099415
Amirouche, Farid; Solitro, Giovanni F; Walia, Amit; Gonzalez, Mark; Bobko, Aimee
2017-08-01
Management of segmental rim defects and bone mineral density (BMD) loss in the elderly prior to total hip replacement is unclear within classification systems for acetabular bone loss. In this study, our objectives were (1) to understand how a reduction in BMD in the elderly affects the oversizing of a press-fit cup for primary fixation and (2) to evaluate whether the location of the segmental defect affected cup fixation. A finite element (FE) model was used to simulate and evaluate cup insertion and fixation in the context of segmental rim defects. We focused on the distribution of patients over age 70 and used BMD (estimated from CT) as a proxy for aging's implications on THR and used probabilistic FE analysis to understand how BMD loss affects oversizing of a press-fit cup. A cup oversized by 1.10 ± 0.28 mm provides sufficient fixation and lower stresses at the cup-bone interface for elderly patients. Defects in the anterior column and posterior column both required the same mean insertion force for cup seating of 84% (taken as an average of 2 anterior column and 2 posterior column defects) compared to the control configuration, which was 5% greater than the insertion force for a superior rim defect and 12% greater than the insertion force for an inferior rim defect. A defect along the superior or inferior rim had a minimal effect on cup fixation, while a defect in the columns created cup instability and increased stress at the defect location.
Chakka, N V Murali Krishna; Ratnakar, P; Das, Sanjib; Bagchi, Anandamy; Sudhir, Sudhir; Anumula, Lavanya
2012-11-01
Visual and microscopic evaluation of defects caused by torsional fatigue in hand and rotary nickel titanium (NiTi) instruments. Ninety-six NiTi greater taper instruments which were routinely used for root canal treatment only in anterior teeth were selected for the study. The files taken include ProTaper for hand use, ProTaper Rotary files and Endowave rotary files. After every use, the files were observed visually and microscopically (Stereomicroscope at 10×) to evaluate the defects caused by torsional fatigue. Scoring was given according to a new classification formulated which gives an indication of the severity of the defect or damage. Data was statistically analyzed using KruskallWallis and Mann-Whitney U test. Number of files showing defects were more under stereomicroscope than visual examination. But, the difference in the evaluation methods was not statistically significant. The different types of defects observed were bent instrument, straightening/stretching of twist contour and partial reverse twisting. Endowave files showed maximum number of defects followed by ProTaper for hand use and least in ProTaper Rotary. Visible defects due to torsional fatigue do occur in NiTi instruments after clinical use. Both visual and microscopic examinations were efficient in detecting defects caused due to torsional fatigue. This study emphasizes that all files should be observed for any visible defects before and after every instrumentation cycle to minimize the risk of instrument separation and failure of endodontic therapy.
Evaluation of articulation simulation system using artificial maxillectomy models.
Elbashti, M E; Hattori, M; Sumita, Y I; Taniguchi, H
2015-09-01
Acoustic evaluation is valuable for guiding the treatment of maxillofacial defects and determining the effectiveness of rehabilitation with an obturator prosthesis. Model simulations are important in terms of pre-surgical planning and pre- and post-operative speech function. This study aimed to evaluate the acoustic characteristics of voice generated by an articulation simulation system using a vocal tract model with or without artificial maxillectomy defects. More specifically, we aimed to establish a speech simulation system for maxillectomy defect models that both surgeons and maxillofacial prosthodontists can use in guiding treatment planning. Artificially simulated maxillectomy defects were prepared according to Aramany's classification (Classes I-VI) in a three-dimensional vocal tract plaster model of a subject uttering the vowel /a/. Formant and nasalance acoustic data were analysed using Computerized Speech Lab and the Nasometer, respectively. Formants and nasalance of simulated /a/ sounds were successfully detected and analysed. Values of Formants 1 and 2 for the non-defect model were 675.43 and 976.64 Hz, respectively. Median values of Formants 1 and 2 for the defect models were 634.36 and 1026.84 Hz, respectively. Nasalance was 11% in the non-defect model, whereas median nasalance was 28% in the defect models. The results suggest that an articulation simulation system can be used to help surgeons and maxillofacial prosthodontists to plan post-surgical defects that will be facilitate maxillofacial rehabilitation. © 2015 John Wiley & Sons Ltd.
An optimization method for defects reduction in fiber laser keyhole welding
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Jiang, Ping; Shao, Xinyu; Wang, Chunming; Li, Peigen; Mi, Gaoyang; Liu, Yang; Liu, Wei
2016-01-01
Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.
Surgery for doubly committed ventricular septal defects.
Shamsuddin, Ahmad Mahir; Chen, Yen Chuan; Wong, Abdul Rahim; Le, Trong-Phi; Anderson, Robert H; Corno, Antonio F
2016-08-01
Doubly committed ventricular septal defects (VSDs) account for up to almost one-third of isolated ventricular septal defects in Asian countries, compared with only 1/20th in western populations. In our surgical experience, this type of defect accounted for almost three-quarters of our practice. To date, patch closure has been considered the gold standard for surgical treatment of these lesions. Our objectives are to evaluate the indications and examine the outcomes of surgery for doubly committed VSDs. Between October 2013, when our service of paediatric cardiac surgery was opened, and December 2014, 24 patients were referred for surgical closure of VSDs. Among them, 17 patients (71%), with the median age of 6 years, ranging from 2 to 9 years, and with a median body weight of 19 kg, ranging from 11 to 56 kg, underwent surgical repair for doubly committed defects. In terms of size, the defect was considered moderate in 4 and large in 13. Aortic valvular regurgitation (AoVR) was present in 11 patients (65%) preoperatively, with associated malformations found in 14 (82%), with 5 patients (29%) having two or more associated defects. After surgery, there was trivial residual shunting in 2 patients (12%). AoVR persisted in 6 (35%), reducing to trivial in 5 (29%) and mild in 1 (6%). Mean stays in the intensive care unit and hospital were 2.6 ± 1.2 days, ranging from 2 to 7 days, and 6.8 ± 0.8 days, ranging from 6 to 9 days, respectively. The mean follow-up was 14 ± 4 months, ranging from 6 to 20 months, with no early or late deaths and without clinical deterioration. The incidence of doubly committed lesions is high in our experience, frequently associated with AoVR and other associated malformation. Early detection is crucial to prevent further progression of the disease. Patch closure remains the gold standard in management, not least since it allows simultaneous repair of associated intracardiac defects. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Zhao, Lin; Zhao, Junli; Yu, Jiajia; Sun, Rui; Zhang, Xiaofeng; Hu, Shuhua
2017-04-01
The aim of the study was to evaluate the efficacy of tissue-engineered periosteum (TEP) in repairing allogenic bone defects in the long term. TEP was biofabricated with osteoinduced rabbit bone marrow mesenchymal stem cells and porcine small intestinal submucosa (SIS). A total of 24 critical sized defects were created bilaterally in radii of 12 New Zealand White rabbits. TEP/SIS was implanted into the defect site. Bone defect repair was evaluated with radiographic and histological examination at 4, 8 and 12 weeks. Bone defects were structurally reconstructed in the TEP group with mature cortical bone and medullary canals, however this was not observed in the SIS group at 12 weeks. The TEP approach can effectively restore allogenic critical sized defects, and achieve maturity of long-bone structure in 12 weeks in rabbit models.
A clinical evaluation of resorbable hydroxylapatite for the repair of human intra-osseous defects.
Corsair, A
1990-01-01
One of the goals of periodontal therapy is actual hard- and soft-tissue regeneration or at least the functional repair of periodontal defects. Alloplastic materials used in the past included dense hydroxylapatite grafts which were non-resorbable and often exfoliated. A new resorbable hydroxylapatite biomaterial [OsteoGen (HA RESORB)] was used during flap surgery. After the usual initial therapy, full-thickness flaps were elevated. A through debridement of the roots and osseous defects was accomplished. The defects were measured and then filled with OsteoGen. The mean initial bone defect depth was 4.47 mm. These defects were re-evaluated by the probing of bone levels after a 4-6-month healing period. A mean of 2.26 mm of new bone fill was obtained. This represents an average fill of 51%. Seventeen of the 22 defects had 42% or more actual new bone fill. No foreign body reaction or exfoliation occurred.
[Birth defects in Rio de Janeiro, Brazil: an evaluation through birth certificates (2000-2004)].
Guerra, Fernando Antônio Ramos; Llerena, Juan Clinton; Gama, Silvana Granado Nogueira da; Cunha, Cynthia Braga da; Theme Filha, Mariza Miranda
2008-01-01
To evaluate the occurrence of birth defects in the city of Rio de Janeiro, Brazil, using the Live Birth Information System (SINASC), we performed a cross-sectional study on all live newborns with birth defects from January 1, 2000, to December 31, 2004. The variables referred to birth defects (presence and system affected), type of health service, mothers, gestations, live births, and deliveries. Prevalence of birth defects was 83/10,000 live births. The most frequent birth defects involved the musculoskeletal system, central nervous system, cleft lip and palate, and chromosomal anomalies. The majority of cases were born in public (municipal) and private maternity hospitals, with the highest prevalence in the Fernandes Figueira Insitute, Oswaldo Cruz Foundation. Older women and those with less schooling had more live born infants with birth defects. The proportion of reports with missing information was high, reaching 21% in some institutions. Wider dissemination of SINASC data on birth defects should be encouraged. Reliability studies are recommended for better use of these reports.
Effect of Casting Defect on Mechanical Properties of 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Kim, Jong-Yup; Lee, Joon-Hyun; Nahm, Seung-Hoon
Damage and integrity evaluation techniques should be developed steadily in order to ensure the reliability and the economic efficiency of gas turbine engines. Casting defects may exist in most casting components of gas turbine engines, and the defects could give serious effect on mechanical properties and fracture toughness. Therefore, it is very important to understand the effect of casting defects on the above properties in order to predict the safety and life of components. In this study, specimens with internal casting defects, made from 17-4PH stainless steel, were prepared and evaluated and characterized based on the volume fraction of defects. The relation between mechanical properties such as tensile, low cycle fatigue and fracture toughness and volume fraction of defect has been investigated. As a result of the analysis, the mechanical properties of 17-4PH decreased as the defect volume fraction increased with very good linearity. The mechanical properties also showed an inversely proportional relationship to electrical resistivity.
Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit
2014-01-28
Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikora, R.; Chady, T.; Baniukiewicz, P.
2010-02-22
Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Twomore » weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.« less
NASA Astrophysics Data System (ADS)
Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.
2010-02-01
Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.
Integral ceramic superstructure evaluation using time domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-02-01
Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.
Nonequivalent lanthanide defects: Energy level modeling
NASA Astrophysics Data System (ADS)
Joos, Jonas J.; Poelman, Dirk; Smet, Philippe F.
2016-11-01
Empirical charge-state transition level schemes are popular tools to model the properties of lanthanide-doped materials and their construction has become standard practice. Typically, it is implicitly assumed that all lanthanide ions form isostructural defects. However, in practice, multiple nonequivalent defects related to the same lanthanide can occur or different lanthanides can even incorporate in different ways. The consequences of these complications on the impurity energy levels are discussed in this article. It seems that small structural differences around the lanthanide dopant can give rise to important spectral differences in its emission. These are not always clearly reproduced by the charge-state transition level schemes. Improvements to the existing procedure are suggested and applied to the lanthanide ions in the well-studied host crystals SrAl2O4, Sr2Si5N8 and SrGa2S4.
Feasibility and Accuracy of Digitizing Edentulous Maxillectomy Defects: A Comparative Study.
Elbashti, Mahmoud E; Hattori, Mariko; Patzelt, Sebastian Bm; Schulze, Dirk; Sumita, Yuka I; Taniguchi, Hisashi
The aim of this study was to evaluate the feasibility and accuracy of using an intraoral scanner to digitize edentulous maxillectomy defects. A total of 20 maxillectomy models with two defect types were digitized using cone beam computed tomography. Conventional and digital impressions were made using silicone impression material and a laboratory optical scanner as well as a chairside intraoral scanner. The 3D datasets were analyzed using 3D evaluation software. Two-way analysis of variance revealed no interaction between defect types and impression methods, and the accuracy of the impression methods was significantly different (P = .0374). Digitizing edentulous maxillectomy defect models using a chairside intraoral scanner appears to be feasible and accurate.
NASA Technical Reports Server (NTRS)
Jellison, J.
1986-01-01
This work is an illustrated handbook containing the rationale and procedure for the evaluation of multilayer printed wiring board construction integrity with respect to plated-through holes in accordance with the requirements of MIL-P-55110D, Printed Wiring Boards. It is intended as a practical aid for those concerned with determining the construction integrity of multilayer boards for high reliability applications. Photomicrographs of cross sectioned holes illustrate defect types, acceptable and unacceptable conditions, and methods of measurement. A procedure for specimen preparation is given, and appropriate paragraphs of the military specification are included and explained.
Visual field defects may not affect safe driving.
Dow, Jamie
2011-10-01
In Quebec a driver whose acquired visual field defect renders them ineligible for a driver's permit renewal may request an exemption from the visual field standard by demonstrating safe driving despite the defect. For safety reasons it was decided to attempt to identify predictors of failure on the road test in order to avoid placing driving evaluators in potentially dangerous situations when evaluating drivers with visual field defects. During a 4-month period in 2009 all requests for exemptions from the visual field standard were collected and analyzed. All available medical and visual field data were collated for 103 individuals, of whom 91 successfully completed the evaluation process and obtained a waiver. The collated data included age, sex, type of visual field defect, visual field characteristics, and concomitant medical problems. No single factor, or combination of factors, could predict failure of the road test. All 5 failures of the road test had cognitive problems but 6 of the successful drivers also had known cognitive problems. Thus, cognitive problems influence the risk of failure but do not predict certain failure. Most of the applicants for an exemption were able to complete the evaluation process successfully, thereby demonstrating safe driving despite their handicap. Consequently, jurisdictions that have visual field standards for their driving permit should implement procedures to evaluate drivers with visual field defects that render them unable to meet the standard but who wish to continue driving.
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai
2015-01-01
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators. PMID:26584670
SEMATECH produces defect-free EUV mask blanks: defect yield and immediate challenges
NASA Astrophysics Data System (ADS)
Antohe, Alin O.; Balachandran, Dave; He, Long; Kearney, Patrick; Karumuri, Anil; Goodwin, Frank; Cummings, Kevin
2015-03-01
Availability of defect-free reflective mask has been one of the most critical challenges to extreme ultraviolet lithography (EUVL). To mitigate the risk, significant progress has been made on defect detection, pattern shifting, and defect repair. Clearly such mitigation strategies are based on the assumption that defect counts and sizes from incoming mask blanks must be below practical levels depending on mask specifics. The leading industry consensus for early mask product development is that there should be no defects greater than 80 nm in the quality area, 132 mm x 132 mm. In addition less than 10 defects smaller than 80 nm may be mitigable. SEMATECH has been focused on EUV mask blank defect reduction using Veeco Nexus TM IBD platform, the industry standard for mask blank production, and assessing if IBD technology can be evolved to a manufacturing solution. SEMATECH has recently announced a breakthrough reduction of defects in the mask blank deposition process resulting in the production of two defect-free EUV mask blanks at 54 nm inspection sensitivity (SiO2 equivalent). This paper will discuss the dramatic reduction of baseline EUV mask blank defects, review the current deposition process run and compare results with previous process runs. Likely causes of remaining defects will be discussed based on analyses as characterized by their compositions and whether defects are embedded in the multilayer stack or non-embedded.
Gordan, Valeria V; Riley, Joseph; Geraldeli, Saulo; Williams, O. Dale; Spoto, Joseph C; Gilbert, Gregg H
2014-01-01
Objectives To evaluate how restoration characteristics are associated with the decision to repair or replace an existing restoration. The following hypotheses were studied: Dentists who placed the original restoration are more likely to repair instead of replace restorations (H1) that are in molar teeth; (H2) that are in the upper arch; (H3) that have amalgam restorative material; (H4) if a fracture is not the primary reason for the defect; and (H5) when the restoration comprises more than one surface. Methods This cross-sectional study used a consecutive patient/restoration recruitment design. 194 dentists members of a dental practice-based research network recorded data on restorations in permanent teeth that needed repair or replacement. Results For 6,623 of the 8,770 defective restorations in 6,643 patients, the treatment was provided by the dentist who had not placed the original restoration (75%). The 2-way interaction revealed that dentists who had placed the original restoration often chose to repair when the defective restoration was in a molar, relative to premolar or anterior teeth (OR = 2.2, p < .001); and chose to replace when the restoration had amalgam (OR = 0.5, p < .001), and when it was a fracture compared to another reason (OR = 0.8, p = 001). Conclusion Most dentists are not conservative when they revisit a restoration that they originally placed regardless of type of failure, number of surfaces or material used. However, dentists who had placed the original restoration were significantly more likely to repair it when the defective restoration was in a molar tooth. PMID:25223822
NASA Astrophysics Data System (ADS)
Hueh, Low Peh; Abdullah, Johari Yap; Abdullah, Abdul Manaf; Yahya, Suzana; Idris, Zamzuri; Mohamad, Dasmawati
2016-12-01
Autologous cranioplasty using a patient's original bone flap remain the commonest practice nowadays. However, partial bone flap defect is commonly encountered. Replacing the bone flap with pre-moulded synthetic bone flap is costly and not affordable to many patients. Hence most of the small to medium size defect was topped up with alloplastic material on a free hand basis intra-operatively which often resulted in inaccurate implant approximation with unsatisfactory cosmetic result. This study aims to evaluate implant accuracy and cosmetic outcome of cranioplasty candidates who underwent partial bone flap reconstruction utilising computer assisted 3D modelling. 3D images of the skull were obtained from post-craniectomy axial 1-mm spiral computed tomography (CT) scans and a virtual 3D model was generated using the Materialise Mimics software. The Materialise 3-Matic was then utilised to design a patient-specific implant. Prefabrication of the implant was performed by the 3D Objet printer, and a negative gypsum mold was created with the prefabricated cranial implant. Intraoperatively, a hybrid polymethyl methacrylate (PMMA)-autologous cranial implant was produced using the gypsum mold, and fit into the cranial defect. This study is still ongoing at the moment. To date, two men has underwent partial bone flap reconstruction utilising this technique and both revealed satisfactory implant alignment with favourable cosmesis. Mean implant size was 12cm2, and the mean duration of intraoperative reconstruction for the partial bone flap defect was 40 minutes. No significant complication was reported. As a conclusion, this new technique and approach resulted in satisfactory implant alignment and favourable cosmetic outcome. However, more study samples are needed to increase the validity of the study results.
Osseocutaneous radial forearm free tissue transfer for repair of complex midfacial defects.
Chepeha, Douglas B; Moyer, Jeffrey S; Bradford, Carol R; Prince, Mark E; Marentette, Lawrence; Teknos, Theodoros N
2005-06-01
To evaluate the resulting aesthetics, function, and donor site morbidity of the osseocutaneous radial forearm free flap (OCRFFF) used for midface reconstruction. Prospective case series and a retrospective review of results. Ten patients from an academic practice who underwent reconstruction at the University of Michigan Hospitals between 1995 and 2001. All patients had maxillectomy defects in which the entire infraorbital rim was reconstructed with an OCRFFF. Of the 10 patients included in the study, 3 underwent a total maxillectomy with orbital exenteration, 4 had a total maxillectomy without orbital exenteration, and 3 had a limited maxillectomy that did not involve the palate. Patients with palatal defects underwent reconstruction with a prosthetic palatal obturator. Facial contour and aesthetic results, speech understandability, ability to eat solid foods, oronasal separation, socializing outside the home, and return-to-work status. Flap success, donor site morbidity, and orbital complications were also studied. Mean +/- SEM follow-up was 23.2 +/- 5.0 months. A modified Funk facial deformity scale was used, and 7 of the 10 patients had either no deformity or minimal deformity. The mean aesthetic score for these reconstructions was 2.1 +/- 0.3 on a scale of 1 to 4, with 1 representing no deformity and 4 representing a severe deformity. All patients returned to a solid diet and had understandable speech, although patients who had an orbital exenteration trended to poorer scores. All patients socialized either frequently or occasionally outside the home, and all patients not retired or disabled prior to surgery returned to work. The OCRFFF reconstruction of the infraorbital rim in patients with total maxillectomy defects and obturator of the palatal defect controls orbital complications and optimizes aesthetic outcome while achieving nearly normal palatal function.
Flatz, K M; Glaser, C; Flatz, W H; Reiser, M F; Matis, U
2014-01-01
The aim of our study was to implement and test an imaging protocol for the detection and evaluation of standardised cartilage defects using high-field magnetic resonance imaging (MRI) and to determine its limitations. A total of 84 cartilage defects were created in the femoral condyles of euthanized dogs with a minimum body mass of 25 kg. The cartilage defects had a depth of 0.3 to 1.0 mm and a diameter of 1 to 5 mm. T1-FLASH-3D-WE-sequences with an isotropic voxel size of 0.5 x 0.5 x 0.5 mm and an anisotropic voxel size of 0.3 x 0.3 x 0.8 mm were used. In addition to quantitative evaluation of the cartilage defects, the sig- nal intensities, signal-to-noise ratios and contrast-to-noise ratios of the cartilage were determined. Of special interest were the limita- tions in identifying and delineating the standardised cartilage defects. With the anisotropic voxel size, more cartilage defects were detectable. Our results demonstrated that cartilage defects as small as 3.0 mm in diameter and 0.4 mm in depth were reliably detected using anisotropic settings. Cartilage defects below this size were not reliably detected. We found that for optimal delineation of the joint cartilage and associated defects, a higher in-plane resolution with a larger slice thickness should be used, corresponding to the anisotropic settings employed in this study. For the delineation of larger cartilage defects, both the anisotropic and isotropic imaging methods can be used.
Wolke, Julia; Herrmann, Diem Anh; Krannich, Alexander; Scheibel, Markus
2016-05-01
Recurrent anteroinferior shoulder dislocations are often associated with bony glenoid and humeral defects. The influence of those bony lesions on the postoperative outcomes after arthroscopic shoulder stabilization procedures has been the subject of many studies. Little is known about the influence of those lesions on preoperative function. To evaluate the influence of glenoid and humeral bony defects on preoperative shoulder function in recurrent anteroinferior shoulder instability. Cross-sectional study; Level of evidence, 3. Included in the study were 90 patients (70 men, 20 women; mean age, 27.1 years; 24 patients with prior failed stabilization) with posttraumatic recurrent anteroinferior shoulder instability who underwent preoperative computed tomography (CT) of both shoulders. The glenoid index was used to measure glenoid defect on a 3-dimensional CT. Humeral head defect was measured on a 2-dimensional CT with evaluation of the Hill-Sachs quotient, product, sum, and difference. Preoperative evaluation also included the Rowe score, Constant score, Walch-Duplay score, Melbourne Instability Shoulder Score (MISS), Western Ontario Shoulder Instability Index (WOSI), and Subjective Shoulder Value (SSV). There was a weak but significant correlation of the Hill-Sachs quotient and the glenoid index with the Rowe score (P = .03, r = -0.22 and P = .03, r = 0.23, respectively). Furthermore, the Hill-Sachs product significantly correlated with the WOSI (P = .02); in particular, the physical symptoms subscore showed a significant correlation (P = .04). The glenoid index showed a significant correlation with the SSV (P < .01). No significant correlation was found between the Walch-Duplay score, Constant score, or MISS and bony defects. The results of this study show that objective and subjective scoring systems correlate significantly with the clinical condition of patients with recurrent shoulder instability and associated bony defects. It is recommended that clinicians use the Rowe score, WOSI, and SSV for the clinical evaluation of patients with recurrent anteroinferior shoulder instability and associated bony defects. These evaluation systems may provide an early clinical indication of bony defects. Furthermore, very poor results on these evaluations could underline the necessity of a CT scan for the diagnosis of bony defects in recurrent shoulder instability and might be helpful for decision making concerning the indication of a CT. © 2016 The Author(s).
Solid State Lighting Program (Falcon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeks, Steven
2012-06-30
Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.« less
Mental Images and the Modification of Learning Defects.
ERIC Educational Resources Information Center
Patten, Bernard M.
Because human memory and thought involve extremely complex processes, it is possible to employ unusual modalities and specific visual strategies for remembering and problem-solving to assist patients with memory defects. This three-part paper discusses some of the research in the field of human memory and describes practical applications of these…
Zellner, Johannes; Grechenig, Stephan; Pfeifer, Christian G; Krutsch, Werner; Koch, Matthias; Welsch, Goetz; Scherl, Madeleine; Seitz, Johannes; Zeman, Florian; Nerlich, Michael; Angele, Peter
2017-11-01
Large osteochondral defects of the knee are a challenge for regenerative treatment. While matrix-guided autologous chondrocyte transplantation (MACT) represents a successful treatment for chondral defects, the treatment potential in combination with bone grafting by cancellous bone or bone block augmentation for large and deep osteochondral defects has not been evaluated. To evaluate 1- to 3-year clinical outcomes and radiological results on magnetic resonance imaging (MRI) after the treatment of large osteochondral defects of the knee with bone augmentation and MACT. Special emphasis is placed on different methods of bone grafting (cancellous bone grafting or bone block augmentation). Case series; Level of evidence, 4. Fifty-one patients were included. Five patients were lost to follow-up. This left 46 patients (mean age, 28.2 years) with a median follow-up time of 2 years. The 46 patients had 47 deep, large osteochondral defects of the knee joint (1 patient with bilateral defects; mean defect size, 6.7 cm 2 ). The origin of the osteochondral defects was osteochondritis dissecans (n = 34), osteonecrosis (n = 8), or subchondral cysts (n = 5). Depending on the depth, all defects were treated by cancellous bone grafting (defect depth ≤10 mm; n = 16) or bone block augmentation (defect depth >10 mm; n = 31) combined with MACT. Clinical outcomes were followed at 3 months, 6 months, 1 year, 2 years, and 3 years and evaluated using the International Knee Documentation Committee (IKDC) score and Cincinnati score. A magnetic resonance imaging (MRI) evaluation was performed at 1 and 2 years, and the magnetic resonance observation of cartilage repair tissue (MOCART) score with additional specific subchondral bone parameters (bone regeneration, bone signal quality, osteophytes, sclerotic areas, and edema) was analyzed. The clinical outcome scores revealed a significant increase at follow-up (6 months to 3 years) compared with the preclinical results. The median IKDC score increased from 42.6 preoperatively to 75.3 at 1 year, 79.7 at 2 years, and 84.3 at 3 years. The median Cincinnati score significantly increased from 39.8 preoperatively to 72.0 at 1 year, 78.0 at 2 years, and 80.3 at 3 years. The MRI evaluation revealed a MOCART score of 82.6 at 1 year without a deterioration at the later follow-up time point. Especially, the subchondral bone analysis showed successful regeneration. All bone blocks and cancellous bone grafts were integrated in the bony defects, and no chondrocyte transplant failure could be detected throughout the follow-up. Large and deep osteochondral defects of the knee joint can be treated successfully with bone augmentation and MACT. The treatment of shallow bony defects with cancellous bone grafting and deep bony defects with bone block augmentation shows promising results.
The Effect of Penetration Depth on Thermal Contrast of NDT by Thermography
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip; DiGregorio, Anthony; Russell, Samuel S.
1999-01-01
Nondestructive evaluation by Thermography (TNDE) is generally classified into two categories, the passive approach and the active approach. The passive approach is usually performed by measuring the natural temperature difference between the ambient and the material or structure to be tested. The active approach, on the other hand, requires the application of an external energy source to stimulate the material for inspection. A laser, a heater, a hot air blower, a high power thermal pulse, mechanical, or electromagnetic energy may provide the energy sources. For the external heating method to inspect materials for defects and imperfection at ambient temperature, a very short burst of heat can be introduced to one of the surfaces or slow heating of the side opposite to the side being observed. Due to the interruption of the heat flow through the defects, the thermal images will reveal the defective area by contrasting against the surrounding good materials. This technique is called transient Thermography, pulse video Thermography, or thermal wave imaging. As an empirical rule, the radius of the smallest defect should be at least one to two times larger than its depth under the surface. Thermography is being used to inspect void, debond, impact damage, and porosity in composite materials. It has been shown that most of the defects and imperfection can be detected. However, the current method of inspection using thermographic technique is more of an art than a practical scientific and engineering approach. The success rate of determining the defect location and defect type is largely depend on the experience of the person who operates thermography system and performs the inspection. The operator has to try different type of heat source, different duration of its application time, as well as experimenting with the thermal image acquisition time and interval during the inspection process. Further-more, the complexity of the lay-up and structure of composites makes it more difficult to determine the optimal operating condition for revealing the defects. In order to develop an optimal thermography inspection procedure, we must understand the thermal behavior inside the material subjected to transient heat in order to interpret the thermal images correctly. Fabrication of finite element models of characteristic defects in composite materials subjected to transient heat will enable the development of appropriate procedure for thermography inspection. Design of phantom defects could be modeled and behavior characterized prior to physically building these test parts. Since production of phantom test parts can be very time consuming and laborious, it is important to design good representative defects.
Ramachandran, Rajoo; Babu, Sellappan Rajamanickam; Ilanchezhian, Subramanian; Radhakrishnan, Prabhu Radhan
2015-01-01
DiGeorge syndrome is a congenital genetic disorder that affects the endocrine system, mainly the thymus and parathyroid glands. The syndrome produces different symptoms, which vary in severity and character between patients. It manifests with craniofacial dysmorphism and defects in the heart, parathyroid, and thymus. Patients can present with a palatal deformity and nasal speech. This rare entity is caused mainly due to deletion of chromosome 22q11.2. Radiographic evaluation of DiGeorge syndrome is necessary to define aberrant anatomy, evaluate central nervous system, craniofacial abnormalities, musculoskeletal system, and cardiothoracic contents. It also helps in planning surgical procedures and surgical reconstructions. We report a case of DiGeorge syndrome in a 4-month-old neonate and discuss the clinical, imaging, and cytogenetic findings that helped in the diagnosis of this rare entity.
Health hazard evaluation report HETA 80-008-1546, BASF Wyandotte Corporation, Rensselaer, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, J.E.; Taylor, P.; Hearn, S.
A health hazard evaluation at BASF Wyandotte Corporation (SIC-2810, SIC-2820, SIC-2880, SIC-2870), Rensselaer, New York was conducted. The evaluation was requested by a union representative because of adverse pregnancy outcomes among workers involved in the manufacture of 3,5-dinitro-N-4N-4-dipropylsulfanilamide (19044883) (oryzalin). All persons employed from January 1, 1972 through December 31, 1980 were identified from company records. Birth, fetal, and death records were obtained from the State of New York. The authors conclude that workers who were involved in manufacturing oryzalin sired offspring having an unusual cluster of birth defects, especially those of the heart. Whether these were the result ofmore » occupational exposure cannot be decisively determined. Implementing proper engineering and work practice controls is recommended.« less
Fetal Bovine Dermal Repair Scaffold Used for the Treatment of Difficult-to- Heal Complex Wounds.
Strauss, Neil H; Brietstein, Richard J
2012-11-01
Introduction. Treating difficult-to-heal wounds with complexities, including those with exposed tendon/bone or infection, is a challenge that regularly confronts practitioners in a variety of clinical environments. The purpose of this study was to review the effectiveness of an acellular fetal bovine dermal repair scaffold (PriMatrix Dermal Repair Scaffold, TEI Biosciences, Inc, Boston, MA) used to treat complex difficult-to-heal wounds presenting in the authors' practice. A retrospective chart review was conducted of a single practice with multiple practicing physicians between 2008 and 2010. Over this time period, 70 patients with 83 wounds were treated with the acellular fetal bovine dermis following surgical debridement of the wound. Forty-nine patients (58 wounds) met established inclusion/exclusioncriteria and were critically evaluated. Wounds treated with the acellular fetal bovine dermis included chronic diabetic wounds, venous wounds, and pressure ulcers, as well as wounds caused by trauma and surgery. Additionally, the patients treated had comorbidities commonly associated with recalcitrant wounds. Of the wounds evaluated in this study, 75.9% successfully healed; 63.8% reepithelialized, and 12.1% were closed with a skin graft subsequent to treatment. Notably, the majority (58.6%) of the wounds reepithelialized by 12 weeks following a single application of the dermal repair scaffold. In the subset of challenging wounds with exposed tendon/bone, 80.8% of the wounds were treated successfully (61.5% reepithelialized, and 19.3% were skin grafted), indicating the successful regeneration and reepithelialization of new vascularized tissue by fetal dermal collagen in relatively avascular wound defects. The acellular fetal bovine dermal repair scaffold can be used as part of an effective treatment regimen to heal complex wounds with exposed tendon/bone caused by varying etiologies. The product actively participates in the generation of a new, vascularized tissue capable of reepithelializing, or successfully supporting, a split-thickness skin graft in defects where initial grafting or living skin substitutes are not viable options. .
Karimi, Mohammad H; Asemani, Davud
2014-05-01
Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Stereomicroscopic evaluation of dentinal defects induced by new rotary system: “ProTaper NEXT”
Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Baig, Arshia R; Kubde, Rajesh; Makade, Chetana; Pandey, Swapnil
2015-01-01
Introduction: The objective of this study was to evaluate dentinal defects formed by new rotary system — Protaper next™ (PTN). Materials and Methods: Sixty single-rooted premolars were selected. All specimens were decoronated and divided into four groups, each group having 15 specimens. Group I specimens were prepared by Hand K-files (Mani), Group II with ProTaper Universal (PT; Dentsply Maillefer), Group III with Hero Shaper (HS; Micro-Mega, Besancon, France), and Group IV with PTN (Dentsply Maillefer). Roots of each specimen were sectioned at 3, 6, and 9mm from the apex and were then viewed under a stereomicroscope to evaluate presence or absence of dentinal defects. Results: In roots prepared with hand files (HFs) showed lowest percentage of dentinal defects (6.7%); whereas in roots prepared with PT, HS, and PTN it was 40, 66.7, and 26.7%, respectively. There was significant difference between the HS group and the PTN group (P < 0.05). Conclusion: All rotary files induced defects in root dentin, whereas the hand instruments induced minimal defects. PMID:26069406
Photomask quality evaluation using lithography simulation and multi-detector MVM-SEM
NASA Astrophysics Data System (ADS)
Ito, Keisuke; Murakawa, Tsutomu; Fukuda, Naoki; Shida, Soichi; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hagiwara, Kazuyuki; Hara, Daisuke
2013-06-01
The detection and management of mask defects which are transferred onto wafer becomes more important day by day. As the photomask patterns becomes smaller and more complicated, using Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO) with Optical Proximity Correction (OPC). To evaluate photomask quality, the current method uses aerial imaging by optical inspection tools. This technique at 1Xnm node has a resolution limit because small defects will be difficult to detect. We already reported the MEEF influence of high-end photomask using wide FOV SEM contour data of "E3630 MVM-SEM®" and lithography simulator "TrueMask® DS" of D2S Inc. in the prior paper [1]. In this paper we evaluate the correlation between our evaluation method and optical inspection tools as ongoing assessment. Also in order to reduce the defect classification work, we can compose the 3 Dimensional (3D) information of defects and can judge whether repairs of defects would be required. Moreover, we confirm the possibility of wafer plane CD measurement based on the combination between E3630 MVM-SEM® and 3D lithography simulation.
Assessment of body posture in 12- and 13-year-olds attending primary schools in Pabianice.
Motylewski, Sławomir; Zientala, Aleksandra; Pawlicka-Lisowska, Agnieszka; Poziomska-Piątkowska, Elżbieta
2015-12-01
of study was to estimate the body posture in children finishing primary schools. This is the last moment to make any improvement in body posture needed, because after the end of the child's growth the correction of postural defects is practically impossible. The study was conducted on 236 pupils aged 12-13 years attending primary schools number 3, 5 and 17 in Pabianice. To evaluate body posture Kasperczyk's points method was used. It is a commonly applied method for screening purposes. Over 50% of studied children had poor body posture and just under 6% of pupils' posture was assessed as very good. In the study population of children finishing primary schools the occurrence of faulty posture was shown to be very high. The most common defect in body posture among pupils was an uneven alignment of shoulders and shoulder blades. The results obtained in this study indicate the need to undertake action reducing the occurrence of faulty posture among children in Pabianice. © 2015 MEDPRESS.
Structural impact response for assessing railway vibration induced on buildings
NASA Astrophysics Data System (ADS)
Kouroussis, Georges; Mouzakis, Harris P.; Vogiatzis, Konstantinos E.
2018-03-01
Over the syears, the rapid growth in railway infrastructure has led to numerous environmental challenges. One such significant issue, particularly in urban areas, is ground-borne vibration. A common source of ground-borne vibration is caused by local defects (e.g. rail joints, switches, turnouts, etc.) that generate large amplitude excitations at isolated locations. Modelling these excitation sources is particularly challenging and requires the use of complex and extensive computational efforts. For some situations, the use of experiments and measured data offers a rapid way to estimate the effect of such defects and to evaluate the railway vibration levels using a scoping approach. In this paper, the problem of railway-induced ground vibrations is presented along with experimental studies to assess the ground vibration and ground borne noise levels, with a particular focus on the structural response of sensitive buildings. The behaviour of particular building foundations is evaluated through experimental data collected in Brussels Region, by presenting the expected frequency responses for various types of buildings, taking into account both the soil-structure interaction and the tramway track response. A second study is dedicated to the Athens metro, where transmissibility functions are used to analyse the effect of various Athenian building face to metro network trough comprehensive measurement campaigns. This allows the verification of appropriate vibration mitigation measures. These benchmark applications based on experimental results have been proved to be efficient to treat a complex problem encountered in practice in urban areas, where the urban rail network interacts with important local defects and where the rise of railway ground vibration problems has clearly been identified.
NASA Astrophysics Data System (ADS)
Shahriari, D.; Zolfaghari, A.; Masoumi, F.
2011-01-01
Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.
Orientational order of motile defects in active nematics
DeCamp, Stephen J.; Redner, Gabriel S.; Baskaran, Aparna; ...
2015-08-17
The study of equilibrium liquid crystals has led to fundamental insights into the nature of ordered materials, as well as many practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, which are driven away from equilibrium by the autonomous motion of their constituent rodlike particles. This internally-generated activity powers the continuous creation and annihilation of topological defects, leading to complex streaming flows whose chaotic dynamics appear to destroy long-range order. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimeter distances in microtubule-basedmore » active nematics, we identify a non-equilibrium phase characterized by system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Lastly, similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.« less
Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects
Liu, Yuanyue; Xiao, Hai; Goddard, William A.
2016-04-21
Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX 2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gapmore » states. Here, we show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX 2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.« less
Ranjbartoreh, A R; Su, D; Wang, G
2012-06-01
Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.
Xu, Weiguo; Ganz, Cornelia; Weber, Ulf; Adam, Martin; Holzhüter, Gerd; Wolter, Daniel; Frerich, Bernhard; Vollmar, Brigitte; Gerber, Thomas
2011-01-01
In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS) was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising. PMID:21845044
Four-square. Practice profitability stands on four foundations.
Mefford, Daniel D
2003-09-01
A medical practice's profitability stands on four legs: physician productivity, accounts receivable, overhead costs and ancillary revenue. The author describes where weakness can occur in each of these foundations and how to remedy such structural defects.
Synthetic Defects for Vibrothermography
NASA Astrophysics Data System (ADS)
Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.
2010-02-01
Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.
NASA Technical Reports Server (NTRS)
Schwartzberg, F. R.; Toth, C., Jr.; King, R. G.; Todd, P. H., Jr.
1979-01-01
The technique for inspection of railroad rails containing transverse fissure defects was discussed. Both pulse-echo and pitch-catch inspection techniques were used. The pulse-echo technique results suggest that a multiple-scan approach using varying angles of inclination, three-surface scanning, and dual-direction traversing may offer promise of characterization of transverse defects. Because each scan is likely to produce a reflection indicating only a portion of the defect, summing of the individual reflections must be used to obtain a reasonably complete characterization of the defect. The ability of the collimated pitch-catch technique to detect relatively small amounts of flaw growth was shown. The method has a problem in characterizing the portions of the defect near the top surface or web intersection. The work performed was a preliminary evaluation of the prospects for automated mapping of rail flaws.
Actinic imaging and evaluation of phase structures on EUV lithography masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin
2010-09-28
The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less
Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi
2015-06-01
Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons.
Hoang, Thanh T; Agopian, A J; Mitchell, Laura E
2018-01-15
Several studies have assessed potential associations between use of weight loss products in the periconceptional period and neural tube defects (NTDs). However, the individual studies are inconclusive and there has not been a systematic review of this literature. We conducted a systematic search, using Ovid MEDLINE and PubMed, to identify studies that evaluated the association between products used for weight loss and the risk of NTDs. Because many studies of birth defects only evaluate a composite birth defect outcome, we evaluated studies that defined the outcome as "any major birth defect" or as NTDs. We abstracted data on study design, exposure definition, outcome definition, covariates and effect size estimates from each article that met our inclusion criteria. For studies that evaluated a composite birth defect outcome, we also abstracted the number of NTD cases included in the composite outcome. We used a modified version of the Newcastle-Ottawa Scale to assess the quality of each article. We screened 865 citations and identified nine articles that met our inclusion criteria. The majority of studies reported positive associations between maternal use of weight loss products and birth defects (overall and NTDs). However, there were few significant associations and there was considerable heterogeneity in the specific exposures assessed across the nine studies. Our systematic review of weight loss products and NTDs indicates that the literature on this topic is sparse. Because several studies reported modest, positive associations between risk and use of weight loss products, additional studies are warranted. Birth Defects Research 110:48-55, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Mechanical evaluation of anastomotic tension and patency in arteries.
Zhang, F; Lineaweaver, W C; Buntic, R; Walker, R
1996-02-01
This study quantified arterial anastomotic tension, evaluated subsequent patency rates, and examined the degree of tension reduction with vessel mobilization. The study was divided into two components. In part I, a mechanical analysis was undertaken to evaluate tension, based on the determination of the force required to deflect a cable (vessel) laterally, and its resulting lateral displacement. Six Sprague-Dawley rats with 12 femoral arteries were divided into two subgroups: 1) no mobilization; and 2) axial mobilization by ligation and transection of superficial epigastric and gracilis muscular branches. The tension of femoral arterial anastomoses was calculated in vessels with no segmental defect and with 1.5-, 3-, 4.5-, 6-, and 7.5-mm defects. In part II, patency was evaluated. Fifty-five rats with 110 femoral arteries were divided into two sub-groups as defined in part I: 1) no mobilization; and 2) axial mobilization by ligation and transection of superficial epigastric and gracilis muscular branches. Microvascular anastomoses were performed with no segmental defect and with 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-mm segmental vessel defects. Patency was evaluated 24 hr postoperatively. Part I of the study revealed that anastomotic tension gradually increased along with an increase in the length of the vessel defect, from 1.9 to 11.34 g in the no-mobilization group and from 1.97 to 8.44 g in the axial-mobilization group. Comparison of tension linear regression coefficient showed a significant difference between the two groups (p < 0.05). In part II of the study, the maximum length of femoral artery defects still able to maintain 100 percent patency of anastomoses was 4 mm (tension approximately 6 g) in the no-mobilization group and 6 mm in the axial-mobilization group (tension approximately 6.48 g). Microanastomotic tension was related to the size of the vessel defect, with increasing tension leading to thrombosis. Axial mobilization significantly reduced the tension in vessels with segmental defects and decreased thrombosis rates.
Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene
O'Hern, Sean C.; Jang, Doojoon; Bose, Suman; ...
2015-04-27
Monolayer nanoporous graphene represents an ideal membrane for molecular separations, but its practical realization is impeded by leakage through defects in the ultrathin graphene. Here, we report a multiscale leakage-sealing process that exploits the nonpolar nature and impermeability of pristine graphene to selectively block defects, resulting in a centimeter-scale membrane that can separate two fluid reservoirs by an atomically thin layer of graphene. After introducing subnanometer pores in graphene, the membrane exhibited rejection of multivalent ions and small molecules and water flux consistent with prior molecular dynamics simulations. The results indicate the feasibility of constructing defect-tolerant monolayer graphene membranes formore » nanofiltration, desalination, and other separation processes.« less
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang
2015-11-20
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH 3NH 3PbI 3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less
NASA Astrophysics Data System (ADS)
Guo, Hualing; Zheng, Bin; Liu, Hui
2017-11-01
In the present research, the mechanism governing the interaction between laser-generated ultrasonic wave and the micro-defects on an aluminum plate has been studied by virtue of numerical simulation as well as practical experiments. Simulation results indicate that broadband ultrasonic waves are caused mainly by surface waves, and that the surface waves produced by micro-defects could be utilized for the detection of micro-defects because these waves reflect as much information of the defects as possible. In the research, a laser-generated ultrasonic wave testing system with a surface wave probe has been established for the detection of micro-defects, and the surface waves produced by the defects with different depths on an aluminum plate have been tested by using the system. The interaction between defect depth and the maximum amplitude of the surface wave and that between defect depth and the center frequency of the surface wave have also been analyzed in detail. Research results indicate that, when the defect depth is less than half of the wavelength of the surface wave, the maximum amplitude and the center frequency of the surface wave are in linear proportion to the defect depth. Sound consistency of experimental results with theoretical simulation indicates that the system as established in the present research could be adopted for the quantitative detection of micro-defects.
Painful lumbar spondylolysis among pediatric sports players: a pilot MRI study.
Sairyo, Koichi; Sakai, Toshinori; Mase, Yasuyoshi; Kon, Tamiyo; Shibuya, Isao; Kanamori, Yasuo; Kosugi, Tatsuo; Dezawa, Akira
2011-11-01
For children and adolescents who are very active athletes, fresh lumbar spondylolysis is the main pathologic cause of lower back pain (LBP). However, regarding the terminal-stage spondylolysis (pars defect), there have been few studies to clarify the pathomechanism of LBP. The purpose of this study is to clarify the cause of LBP associated with pars defects in athletes. This is the first report showing a possible pathomechanism of LBP in active athletes with painful pars defect. Six pediatric athletes (5 boys and 1 girl) below 18 years old with painful bilateral lumbar spondylolysis were evaluated. In all cases, spondylolysis was identified as terminal stage (pseudoarthrosis) on CT scan. To evaluate the inflammation around the pars defects, short time inversion recovery (STIR) MRI was performed along with the sagittal section. Fluid collection, which is an indicator of inflammatory events, was evaluated in 12 pars defects as well as in 12 cranial and caudal adjoining facet joints. Inflammation (i.e., fluid collection) was observed in all 12 pars defects in six subjects at the pseudoarthrotic pars defects. In terms of facet joints, 7 of 12 (58%) pars defects showed fluid collection at the cranial and/or caudal adjoining joints on STIR MRI. The present study showed that inflammation was always present at the pars defects and in some cases at the adjoining facet joints. Thus, it is not difficult to understand how, during sports activity, inflammation may first occur at the pseudoarthrotic site and then spread to the adjoining facet joints. This mechanism could cause LBP associated with terminal-stage (pseudoarthrotics) spondylolysis in athletes.
Combining DFT, Cluster Expansions, and KMC to Model Point Defects in Alloys
NASA Astrophysics Data System (ADS)
Modine, N. A.; Wright, A. F.; Lee, S. R.; Foiles, S. M.; Battaile, C. C.; Thomas, J. C.; van der Ven, A.
In an alloy, defect energies are sensitive to the occupations of nearby atomic sites, which leads to a distribution of defect properties. When radiation-induced defects diffuse from their initially non-equilibrium locations, this distribution becomes time-dependent. The defects can become trapped in energetically favorable regions of the alloy leading to a diffusion rate that slows dramatically with time. Density Functional Theory (DFT) allows the accurate determination of ground state and transition state energies for a defect in a particular alloy environment but requires thousands of processing hours for each such calculation. Kinetic Monte-Carlo (KMC) can be used to model defect diffusion and the changing distribution of defect properties but requires energy evaluations for millions of local environments. We have used the Cluster Expansion (CE) formalism to ``glue'' together these seemingly incompatible methods. The occupation of each alloy site is represented by an Ising-like variable, and products of these variables are used to expand quantities of interest. Once a CE is fit to a training set of DFT energies, it allows very rapid evaluation of the energy for an arbitrary configuration, while maintaining the accuracy of the underlying DFT calculations. These energy evaluations are then used to drive our KMC simulations. We will demonstrate the application of our DFT/MC/KMC approach to model thermal and carrier-induced diffusion of intrinsic point defects in III-V alloys. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE.
[The use of negative pressure wound therapy in the fixation of split-thickness skin grafts].
Ulianko, J; Janek, J; Laca, Ľ
2017-01-01
Negative pressure wound therapy is one of the latest methods of dealing with complicated healing wounds. It promotes granulation, mechanically attracts the edges of the wound, removes secretions, reduces the number of bacteria in the wound and reduces swelling. In addition to its use to start and enhance the healing process, this method is also important in the fixation of split-thickness skin grafts in non-ideal conditions. The goal of this article is to establish basic indications for negative pressure fixation of meshed split-thickness skin grafts in non-ideal conditions in the wound and to assess the impact of contamination of wounds on engraftment using vacuum therapy. Additional goals are to verify the use of this method of fixation in defects of various etiologies (trauma, ischemia), to optimize and determine the advantages and disadvantages of fixation of grafts using this method in clinical practice, and to evaluate the effectiveness of fixation of meshed split-thickness skin grafts. Set of 89 operated patients of both sexes, various ages, etiologies of defects, in non-ideal conditions; statistical evaluation of the percentage of engraftment, depending on the etiology of the defect, microbial contamination and location of the defect. Measured in vivo using a centimeter measure at the point of maximum length and width. Our set of 100% engraftments of StSG included 68 persons, 65 males and 24 females, in the following age groups: up to 30 years 11 persons; 3050 years 19 persons; 5070 years 38 persons; and above 70 years 21 persons, with negative microbial contamination of the defect in 20 cases, contamination with one germ in 33 cases, contamination with two germs in 22 cases and contamination with three germs in 14 cases. We obtained 100% engraftment in 68 cases, 9099% engraftment in 7 cases, 8089% engraftment in 5 cases, 7079% engraftment in 7 cases, and the 6069% and 5059% sets of engraftment were combined because of the low number of patients in this set. 51 of the patients had a traumatic origin of their defect, 22 had an ischemic origin of their defect and 16 had a different origin of their defect. We found a significant relationship between contamination and the percentage of engraftment, as well as dependence between patient age and the percentage of engraftment. Negative pressure fixation of meshed split-thickness skin grafts seems to be a convenient method of fixation in patients with defects of various origins in non-ideal conditions; this method increases the percentage of engraftment and apparently reduces the time required for fixation of the graft and the length of hospitalisation. We obtained 100% engraftment of StSG using negative pressure fixation. We concluded that traumatic origin had no effect on the percentage of engraftment, while ischemic origin had a significant effect on engraftment. Also, negative contamination of the defect had a positive effect on StSG engraftment, and contamination wit three microbial germs had a significant negative effect on the percentage of StSG engraftment using negative pressure fixation.Key words: negative pressure therapy - NPWT plastic surgery skin grafts complicated wounds.
Nondestructive Methods for Detecting Defects in Softwood Logs
Kristin C. Schad; Daniel L. Schmoldt; Robert J. Ross
1996-01-01
Wood degradation and defects, such as voids and knots, affect the quality and processing time of lumber. The ability to detect internal defects in the log can save mills time and processing costs. In this study, we investigated three nondestructive evaluation techniques for detecting internal wood defects. Sound wave transmission, x-ray computed tomography, and impulse...
NASA Technical Reports Server (NTRS)
Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.
1979-01-01
The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.
Feature selection from hyperspectral imaging for guava fruit defects detection
NASA Astrophysics Data System (ADS)
Mat Jafri, Mohd. Zubir; Tan, Sou Ching
2017-06-01
Development of technology makes hyperspectral imaging commonly used for defect detection. In this research, a hyperspectral imaging system was setup in lab to target for guava fruits defect detection. Guava fruit was selected as the object as to our knowledge, there is fewer attempts were made for guava defect detection based on hyperspectral imaging. The common fluorescent light source was used to represent the uncontrolled lighting condition in lab and analysis was carried out in a specific wavelength range due to inefficiency of this particular light source. Based on the data, the reflectance intensity of this specific setup could be categorized in two groups. Sequential feature selection with linear discriminant (LD) and quadratic discriminant (QD) function were used to select features that could potentially be used in defects detection. Besides the ordinary training method, training dataset in discriminant was separated in two to cater for the uncontrolled lighting condition. These two parts were separated based on the brighter and dimmer area. Four evaluation matrixes were evaluated which are LD with common training method, QD with common training method, LD with two part training method and QD with two part training method. These evaluation matrixes were evaluated using F1-score with total 48 defected areas. Experiment shown that F1-score of linear discriminant with the compensated method hitting 0.8 score, which is the highest score among all.
Control of surface thermal scratch of strip in tandem cold rolling
NASA Astrophysics Data System (ADS)
Chen, Jinshan; Li, Changsheng
2014-07-01
The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.
Wang, Dean; Jayakar, Rohit G; Leong, Natalie L; Leathers, Michael P; Williams, Riley J; Jones, Kristofer J
2017-04-01
Objective Patients commonly use the Internet to obtain their health-related information. The purpose of this study was to investigate the quality, accuracy, and readability of online patient resources for the management of articular cartilage defects. Design Three search terms ("cartilage defect," "cartilage damage," "cartilage injury") were entered into 3 Internet search engines (Google, Bing, Yahoo). The first 25 websites from each search were collected and reviewed. The quality and accuracy of online information were independently evaluated by 3 reviewers using predetermined scoring criteria. The readability was evaluated using the Flesch-Kincaid (FK) grade score. Results Fifty-three unique websites were evaluated. Quality ratings were significantly higher in websites with a FK score >11 compared to those with a score of ≤11 ( P = 0.021). Only 10 websites (19%) differentiated between focal cartilage defects and diffuse osteoarthritis. Of these, 7 (70%) were elicited using the search term "cartilage defect" ( P = 0.038). The average accuracy of the websites was high (11.7 out of maximum 12), and the average FK grade level (13.4) was several grades higher than the recommended level for readable patient education material (eighth grade level). Conclusions The quality and readability of online patient resources for articular cartilage defects favor those with a higher level of education. Additionally, the majority of these websites do not distinguish between focal chondral defects and diffuse osteoarthritis, which can fail to provide appropriate patient education and guidance for available treatment. Clinicians should help guide patients toward high-quality, accurate, and readable online patient education material.
Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke
2016-01-01
Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium-strontium (Mg-Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg-Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg-Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg-Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg-Sr alloy with coating is potential to be used for bone substitute alternative. Copyright © 2015 Elsevier B.V. All rights reserved.
Kitamura, Nobuto; Yasuda, Kazunori; Ogawa, Munehiro; Arakaki, Kazunobu; Kai, Shuken; Onodera, Shin; Kurokawa, Takayuki; Gong, Jian Ping
2011-06-01
A double-network (DN) gel, which was composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) and poly-(N,N'-dimetyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. To establish the efficacy of a therapeutic strategy for an articular cartilage defect using a DN gel. Controlled laboratory study. A 4.3-mm-diameter osteochondral defect was created in rabbit trochlea. A DN gel plug was implanted into the defect of the right knee so that a defect 2 mm in depth remained after surgery. An untreated defect of the left knee provided control data. The osteochondral defects created were examined by histological and immunohistochemical evaluations, surface assessment using confocal laser scanning microscopy, and real-time polymerase chain reaction (PCR) analysis at 4 and 12 weeks. Samples were quantitatively evaluated with 2 scoring systems reported by Wayne et al and O'Driscoll et al. The DN gel-implanted defect was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type 2 collagen. Quantitative evaluation using the grading scales revealed a significantly higher score in the DN gel-implanted defects compared with the untreated control at each period (P < .0001). The mean relative values of type 2 collagen mRNAs in the regenerated tissue were obviously higher in the DN gel-implanted defect than in the untreated control at each period. The mean surface roughness of the untreated control was significantly higher than the normal cartilage at 12 weeks (P = .0106), while there was no statistical difference between the DN gel-implanted and normal knees. This study using the mature rabbit femoral trochlea osteochondral defect model demonstrated that DN gel implantation is an effective treatment to induce cartilage regeneration in vivo without any cultured cells or mammalian-derived scaffolds. This study has prompted us to develop a potential innovative strategy to repair cartilage lesions in the field of joint surgery.
Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.
2012-01-01
The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.
Thermal conductivity of graphene with defects induced by electron beam irradiation
NASA Astrophysics Data System (ADS)
Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.
2016-07-01
We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management. Electronic supplementary information (ESI) available: Additional thermal conductivity measurements data. See DOI: 10.1039/c6nr03470e
Value of Defect Information in Automated Hardwood Edger and Trimmer Systems
Carmen Regalado; D. Earl Kline; Philip A. Araman
1992-01-01
Due to the limited capability of board defect scanners, not all defect information required to make the best edging and trimming decision can be scanned for use in an automated system. The objective of the study presented in this paper was to evaluate the lumber value obtainable from edging and trimming optimization using varying levels of defect information as input....
Conrad, E A; Fine, B; Hecht, B R; Pergament, E
1996-01-01
To determine how the screening practices of commercial semen banks vary from published guidelines, which factors influence cryobanks to exclude prospective semen donors for genetic reasons, and the current role of clinical geneticists/genetic counselors in evaluating prospective semen donors. The genetic screening of prospective donors by commercial semen banks was evaluated using written questionnaires completed by bank directors. Responses were analyzed to determine exclusion criteria, adherence to published guidelines, and contribution of genetic professionals. Semen banks were selected on the basis of membership in the American Association of Tissue Banks and commercial use of semen for artificial insemination by donor. Semen bank practices as reported by commercial semen bank directors. Of 37 eligible banks, 16 responded. All screen prospective donors by medical/family history and physical examination, 94% have upper age limits; 63% examine for minor physical defects; 56% routinely karyotype; 81% screen men of ethnic groups at risk for Tay Sachs disease, sickle cell disease and thalassemia; 19% screen all donors; 25% screen all donors for cystic fibrosis and 50% only screen if family history positive. Donor rejection was based on three criteria: mode of inheritance of familial disorder, severity of disease, and availability of carrier/confirmatory testing of donor genotype. Ten of 16 banks have no genetic professional on staff. Commercial semen banks primarily rely on family history as the major exclusion criterion in genetic screening of donors. Considerable differences exist among semen bank practices in accordance with guidelines published by national agencies. Genetic professionals have a minimal effect overall on evaluation of semen donors.
Chambrone, Leandro; Tatakis, Dimitris N
2015-02-01
This paper aims to create a "bridge" between research and practice by developing a practical, extensive, and clinically relevant study that translates evidence-based findings on soft tissue root coverage (RC) of recession-type defects to daily clinical practice. This review is prepared in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement based on the proposed focused questions. A literature search with no restrictions regarding status or the language of publication was performed for MEDLINE and EMBASE databases up to and including June 2013. Systematic reviews (SRs), randomized clinical trials, controlled clinical trials, case series, and case reports evaluating recession areas that were treated by means of RC procedures were considered eligible for inclusion through the three parts of the study (part I, an overview of the base of SRs; part II, an alternative random-effects meta-analyses on mean percentage of RC and sites exhibiting complete RC; and part III, an SR of non-randomized trials exploring other conditions not extensively evaluated by previous SRs). Data on Class I, II, III, and IV recessions, type of histologic attachment achieved with treatment, recipient- and donor-site anatomic characteristics, smoking-related outcomes, root surface conditions, tooth type and location, long-term effectiveness outcomes, unusual conditions that may be reported during conventional daily practice, and patient-centered outcomes were assessed as well. Of the 2,456 potentially eligible trials, 234 were included. Data on Class I, II, III, and IV gingival recessions, histologic attachment achieved after treatment, recipient- and donor-site anatomic characteristics, smoking-related outcomes, root surface conditions/biomodification, tooth type and location, long-term effectiveness outcomes and unusual conditions that may be reported during conventional daily practice, and patient-centered outcomes (i.e., esthetic, visual analog scale, complications, hypersensitivity, patients perceptions) were assessed. Subepithelial connective tissue (CT)-based procedures and coronally advanced flap plus acellular dermal matrix grafts, enamel matrix derivative, or collagen matrix led to the best improvements of recession depth, clinical attachment level (CAL) gain, and keratinized tissue (KT). Some conditions, such as smoking and use of magnification, may affect RC outcomes. All RC procedures can provide significant reduction in recession depth and CAL gain for Miller Class I and II recession-type defects. Subepithelial CT graft-based procedures provided the best outcomes for clinical practice because of their superior percentages of mean and complete RC, as well as significant increase of KT.
Evaluation of risk factors for thrombophilia in patients with cerebral venous thrombosis.
Yokuş, Osman; Şahin Balçık, Özlem; Albayrak, Murat; Ceran, Funda; Dağdaş, Simten; Yılmaz, Mesude; Özet, Gülsüm
2010-09-05
The increased risk for thrombosis is known as hypercoagulability or thrombophilia. In our study, we aimed to compare the frequency of the identified defects for thrombophilia in patients with central venous thrombosis and under the age of 50 years, with the findings in the current literature. Forty-three patients (16-50 years old) were retrospectively evaluated. Thrombophilia investigation included determinations of protein C, protein S, antithrombin, and activated protein C resistance, factor V Leiden (FVL), prothrombin 20210A (PT 20210) and methylene tetrahydrofolate reductase (MTHFR) C677T mutations, antiphospholipid antibodies (APA), factor VIII levels, and homocysteine levels. We detected a single thrombophilic defect in 67.4%, two defects in 27.9% and three defects in 4.7% of our patients. The most common thrombophilic defect was mutation in the MTHFR gene (41.8%), and this was followed by the FVL mutation (34.9%). Since the prevalence of individual thrombophilic defects varies in each population, ethnic group and geographical location, screening for thrombophilic defects in patients presenting with cerebral venous thrombosis should primarily investigate the most frequent thrombophilia risk factors.
Study on clinical application of nano-hydroxyapatite bone in bone defect repair.
Zhu, Weimin; Wang, Daping; Xiong, Jianyi; Liu, Jianquan; You, Wei; Huang, Jianghong; Duan, Li; Chen, Jielin; Zeng, Yanjun
2015-01-01
To study the clinical effect of bone defect treated with nano-hydroxyapatite(Nano-HA) artificial bone. From September 2009 to June 2012, 27 cases of bone defect were analyzed retrospectively. The position of bone defect included humerus, radius, ulna, femur, tibia and calcaneus. The range of bone defect was from 0.3 × 1.0 cm to 3 × 6.5 cm. Among them, there were 22 cases with fractures and 5 cases with tumors. All patients were treated with Nano-HA artificial bone. The ability of bone defect repair was evaluated by X-ray exams performed preoperatively and postoperatively. HSS scores were adopted for final evaluation at the latest follow-up. The patients were followed up from 11 to 26 months (average of 18.5 months). No general side effects occurred. X-ray photo showed an integrity interface between Nano-HA and bone. Primary healing was obtained in all cases without any complication. The Nano-HA artificial bone had a good biocompatibility and could be an ideal artificial bone in the reconstruction of bone defect.
Gupta, Swyeta Jain; Jhingran, Rajesh; Gupta, Vivek; Bains, Vivek Kumar; Madan, Rohit; Rizvi, Iram
2014-07-01
To evaluate and compare the efficacy of platelet-rich fibrin (PRF) with enamel matrix derivative (EMD; Emdogain) in the treatment of periodontal intrabony defects in patients with chronic periodontitis, six months after surgery. Forty-four (44) intrabony defects in 30 patients (15 males) were randomly allocated into two treatment groups: EMD (n = 22) and PRF (n = 22). Measurement of the defects was done using clinical and cone beam computed tomography at baseline and 6 months. Clinical and radiographic parameters such as probing depth, clinical attachment level, intrabony defect depth and defect angle, were recorded at baseline and 6 months post-operatively. Within group change was evaluated using the Wilcoxon signed rank test. Intergroup comparisons were made using the Mann-Whitney U test. Postsurgical measurements revealed that there was an equal reduction in probing depth and a greater but statistically non-significant attachment gain for the Emdogain group when compared to the platelet-rich fibrin group. The Emdogain group presented with significantly greater percentage defect resolution (43.07% ± 12.21) than did the platelet-rich fibrin group (32.41% ± 14.61). Post-operatively the changes in defect width and defect angle were significant in both groups, but upon intergroup comparison they were found to be statistically non-significantly different. Both Emdogain and platelet-rich fibrin were effective in the regeneration of intrabony defects. Emdogain was significantly superior in terms of percentage defect resolution.
The effect of defect cluster size and interpolation on radiographic image quality
NASA Astrophysics Data System (ADS)
Töpfer, Karin; Yip, Kwok L.
2011-03-01
For digital X-ray detectors, the need to control factory yield and cost invariably leads to the presence of some defective pixels. Recently, a standard procedure was developed to identify such pixels for industrial applications. However, no quality standards exist in medical or industrial imaging regarding the maximum allowable number and size of detector defects. While the answer may be application specific, the minimum requirement for any defect specification is that the diagnostic quality of the images be maintained. A more stringent criterion is to keep any changes in the images due to defects below the visual threshold. Two highly sensitive image simulation and evaluation methods were employed to specify the fraction of allowable defects as a function of defect cluster size in general radiography. First, the most critical situation of the defect being located in the center of the disease feature was explored using image simulation tools and a previously verified human observer model, incorporating a channelized Hotelling observer. Detectability index d' was obtained as a function of defect cluster size for three different disease features on clinical lung and extremity backgrounds. Second, four concentrations of defects of four different sizes were added to clinical images with subtle disease features and then interpolated. Twenty observers evaluated the images against the original on a single display using a 2-AFC method, which was highly sensitive to small changes in image detail. Based on a 50% just-noticeable difference, the fraction of allowed defects was specified vs. cluster size.
Lozano-Carrascal, Naroa; Satorres-Nieto, Marta; Delgado-Ruiz, Rafael; Maté-Sánchez de Val, José Eduardo; Gehrke, Sergio Alexandre; Gargallo-Albiol, Jorge; Calvo-Guirado, José Luis
2017-01-01
The aim of the present study was to evaluate the feasibility of SEM and EDX microanalysis on evaluating the effect of porcine xenografts (MP3 ® ) supplemented with pamidronate during socket healing. Mandibular second premolars (P2) and first molars (M1) were extracted from six Beagle dogs. P2 were categorized as small defects (SD) and M1 as large defects (LD). Four random groups were created: SC (small control defects with MP3 ® ), ST (small test defects MP3 ® +pamidronate), LC (large control defects with MP3 ® ), and LT (large test defects MP3 ® +pamidronate). At four and eight weeks of healing the samples were evaluated fisically through scanning electron microscopy (SEM), and chemical element mapping was carried out by Energy dispersive X-ray spectroscopy (EDX). After four weeks of healing, SEM and EDX analysis revealed more mineralized bone in ST and LT groups compared with control groups (p<0.05). After eight weeks, Ca/P ratios were slightly higher for small defects (groups SC and ST); in SEM description, in both control and test groups, trabecular bone density was similar to the adjacent mineralized cortical bone. Within the limitations of this experimental study, SEM description and EDX elemental microanalysis have demonstrated to be useful techniques to assess bone remodelling of small and large defects. Both techniques show increased bone formation in test groups (MP3 ® modified with pamidronate) after four and eight weeks of healing. Copyright © 2016 Elsevier GmbH. All rights reserved.
Magnetic resonance imaging at a high field strength of ventricular septal defects in infants.
Baker, E J; Ayton, V; Smith, M A; Parsons, J M; Ladusans, E J; Anderson, R H; Maisey, M N; Tynan, M; Fagg, N L; Deverall, P B
1989-10-01
Magnetic resonance imaging at a high field strength has potential benefits for the study of the heart in infants, which is when most congenital heart disease presents. Seventeen infants with various anatomical types of ventricular septal defect were studied by this technique. Good quality, high resolution, images were obtained in every case. There were no major practical problems. The morphology of the defects in all 17 hearts was displayed in great detail. In some instances, the interpretation of the images resembled that of equivalent images from cross sectional echocardiography. But this new technique allowed imaging in planes that cannot be obtained by echocardiography. One particularly valuable plane gave a face on view of the inlet and trabecular components of the septum. This allowed very precise localisation of defects in these areas. The relation between the defects and the atrioventricular and arterial valves was exceptionally well shown in various different imaging planes. One patient in the series had multiple trabecular defects that were clearly shown. Magnetic resonance imaging gives detailed morphological information about ventricular septal defects.
Light-induced defects in hybrid lead halide perovskite
NASA Astrophysics Data System (ADS)
Sharia, Onise; Schneider, William
One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.
NASA Astrophysics Data System (ADS)
Santospirito, S. P.; Słyk, Kamil; Luo, Bin; Łopatka, Rafał; Gilmour, Oliver; Rudlin, John
2013-05-01
Detection of defects in Laser Powder Deposition (LPD) produced components has been achieved by laser thermography. An automatic in-process NDT defect detection software system has been developed for the analysis of laser thermography to automatically detect, reliably measure and then sentence defects in individual beads of LPD components. A deposition path profile definition has been introduced so all laser powder deposition beads can be modeled, and the inspection system has been developed to automatically generate an optimized inspection plan in which sampling images follow the deposition track, and automatically control and communicate with robot-arms, the source laser and cameras to implement image acquisition. Algorithms were developed so that the defect sizes can be correctly evaluated and these have been confirmed using test samples. Individual inspection images can also be stitched together for a single bead, a layer of beads or multiple layers of beads so that defects can be mapped through the additive process. A mathematical model was built up to analyze and evaluate the movement of heat throughout the inspection bead. Inspection processes were developed and positional and temporal gradient algorithms have been used to measure the flaw sizes. Defect analysis is then performed to determine if the defect(s) can be further classified (crack, lack of fusion, porosity) and the sentencing engine then compares the most significant defect or group of defects against the acceptance criteria - independent of human decisions. Testing on manufactured defects from the EC funded INTRAPID project has successful detected and correctly sentenced all samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuanyue; Xiao, Hai; Goddard, William A.
Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX 2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gapmore » states. Here, we show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX 2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.« less
Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition
NASA Astrophysics Data System (ADS)
Bollmann, Joachim; Venter, Andre
2018-04-01
A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.
Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data
2017-01-01
Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects. PMID:28984823
Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data.
Falque, Raphael; Vidal-Calleja, Teresa; Miro, Jaime Valls
2017-10-06
Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects.
NASA Technical Reports Server (NTRS)
Tiede, D. A.
1972-01-01
A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.
40 CFR 1068.501 - How do I report emission-related defects?
Code of Federal Regulations, 2010 CFR
2010-07-01
... methods for tracking, investigating, reporting, and correcting emission-related defects. In your request... aggregate in tracking, identifying, investigating, evaluating, reporting, and correcting potential and... it is actually defective. Note that this paragraph (b)(2) does not require data-tracking or recording...
Mellonig, James T; Valderrama, Pilar; Cochran, David L
2010-04-01
This study evaluated the clinical and histologic results of a calcium phosphate bone cement in the treatment of human periodontal intraosseous defects. Four patients with chronic advanced periodontitis in whom treatment with complete dentures was planned were recruited. The cement was implanted in one defect per subject with a presurgical probing depth of at least 7 mm and a radiographic bone defect of 4 mm or more. Patients were seen every 2 weeks for periodontal maintenance. At 6 months, clinical measurements were repeated and the tooth was removed en bloc for histologic processing. Results demonstrated that all defects resulted in probing depth reduction and, at three of the four defects, in clinical attachment level gain. However, no site showed periodontal regeneration. There was no new bone formation. New cementum and connective tissue were limited to 0.2 mm or less. Large deposits of the bone cement were noted encapsulated in connective tissue.
Coating defect evaluation based on stimulated thermography
NASA Astrophysics Data System (ADS)
Palumbo, Davide; Tamborrino, Rosanna; Galietti, Umberto
2017-05-01
Thermal Barrier Coatings are used to protect the materials from severe temperature and chemical environments. In particular, these materials are used in the engineering fields where high temperatures, corrosive environments and high mechanical stress are required. Defects present between substrate material and coating, as detachments may cause the break of coating and the consequent possibility to exposure the substrate material to the environment conditions. The capability to detect the defect zones with non-destructive techniques could allow the maintenance of coated components with great advantages in terms of costs and prediction of fatigue life. In this work, two different heat sources and two different thermographic techniques have been used to detect the adhesion defects among the base material and the coating. Moreover, an empirical thermographic method has been developed to evaluate the thickness of the thermal coating and to discriminate between an unevenness of the thickness and a defect zone. The study has been conducted on circular steel specimens with simulated adhesion defect and on specimens prepared with different thicknesses of thermal barrier coating.
Is bone transplantation the gold standard for repair of alveolar bone defects?
Raposo-Amaral, Cassio Eduardo; Bueno, Daniela Franco; Almeida, Ana Beatriz; Jorgetti, Vanda; Costa, Cristiane Cabral; Gouveia, Cecília Helena; Vulcano, Luiz Carlos; Fanganiello, Roberto D; Passos-Bueno, Maria Rita; Alonso, Nivaldo
2014-01-01
New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.
Rabbit Calvarial Defect Model for Customized 3D-Printed Bone Grafts.
Lee, Kang-Gon; Lee, Kang-Sik; Kang, Yu-Jeoung; Hwang, Jong-Hyun; Lee, Se-Hwan; Park, Sang-Hyug; Park, Yongdoo; Cho, Young-Sam; Lee, Bu-Kyu
2018-05-01
Bone graft materials are commonly used to regenerate various bone defects, but their application is often limited because of the complex defect shape in various clinical conditions. Hence, customized bone grafts using three-dimensional (3D) printing techniques have been developed. However, conventional simple bone defect models are limited for evaluating the benefits and manufacturing accuracy of 3D-printed customized bone grafts. Thus, the aim of the present study was to develop a complex-shaped bone defect model. We designed an 8-shaped bony defect that consists of two simple circles attached to the rabbit calvarium. To determine the critical-sized defect (CSD) of the 8-shaped defects, 5.6- and 7-mm-diameter trephine burs were tested, and the 7-mm-diameter bur could successfully create a CSD, which was easily reproducible on the rabbit calvarium. The rate of new bone formation was 28.65% ± 8.63% at 16 weeks following creation of the defect. To confirm its efficacy for clinical use, the 8-shaped defect was created on a rabbit calvarium and 3D computed tomography (CT) was performed. A stereolithography file was produced using the CT data, and a 3D-printed polycaprolactone graft was fabricated. Using our 8-shaped defect model, we were able to modify the tolerances of the bone graft and calvarial defect to fabricate a more precise bone graft. Customized characteristics of the bone graft were then used to improve the accuracy of the bone graft. In addition, we confirmed the fitting ability of the 3D-printed graft during implantation of the graft. Our 8-shaped defect model on the rabbit calvarium using a 7.0-mm trephine bur may be a useful CSD model for evaluating 3D-printed graft materials.
Arciero, Robert A; Parrino, Anthony; Bernhardson, Andrew S; Diaz-Doran, Vilmaris; Obopilwe, Elifho; Cote, Mark P; Golijanin, Petr; Mazzocca, Augustus D; Provencher, Matthew T
2015-06-01
Bone loss in anterior glenohumeral instability occurs on both the glenoid and the humerus; however, existing biomechanical studies have evaluated glenoid and humeral head defects in isolation. Thus, little is known about the combined effect of these bony lesions in a clinically relevant model on glenohumeral stability. The purpose of this study was to determine the biomechanical efficacy of a Bankart repair in the setting of bipolar (glenoid and humeral head) bone defects determined via computer-generated 3-dimensional (3D) modeling of 142 patients with recurrent anterior shoulder instability. The null hypothesis was that adding a bipolar bone defect will have no effect on glenohumeral stability after soft tissue Bankart repair. Controlled laboratory study. A total of 142 consecutive patients with recurrent anterior instability were analyzed with 3D computed tomography scans. Two Hill-Sachs lesions were selected on the basis of volumetric size representing the 25th percentile (0.87 cm(3); small) and 50th percentile (1.47 cm(3); medium) and printed in plastic resin with a 3D printer. A total of 21 cadaveric shoulders were evaluated on a custom shoulder-testing device permitting 6 degrees of freedom, and the force required to translate the humeral head anteriorly 10 mm at a rate of 2.0 mm/s with a compressive load of 50 N was determined at 60° of glenohumeral abduction and 60° of external rotation. All Bankart lesions were made sharply from the 2- to 6-o'clock positions for a right shoulder. Subsequent Bankart repair with transosseous tunnels using high-strength suture was performed. Hill-Sachs lesions were made in the cadaver utilizing a plastic mold from the exact replica off the 3D printer. Testing was conducted in the following sequence for each specimen: (1) intact, (2) posterior capsulotomy, (3) Bankart lesion, (4) Bankart repair, (5) Bankart lesion with 2-mm glenoid defect, (6) Bankart repair, (7) Bankart lesion with 2-mm glenoid defect and Hill-Sachs lesion, (8) Bankart repair, (9) Bankart lesion with 4-mm glenoid defect and Hill-Sachs lesion, (10) Bankart repair, (11) Bankart lesion with 6-mm glenoid defect and Hill-Sachs lesion, and (12) Bankart repair. All sequences were used first for a medium Hill-Sachs lesion (10 specimens) and then repeated for a small Hill-Sachs lesion (11 specimens). Three trials were performed in each condition, and the mean value was used for data analysis. A statistically significant and progressive reduction in load to translation was observed after a Bankart lesion was created and with the addition of progressive glenoid defects for each humeral head defect. For medium (50th percentile) Hill-Sachs lesions, there was a 22%, 43%, and 58% reduction in stability with a 2-, 4-, and 6-mm glenoid defect, respectively. For small (25th percentile) Hill-Sachs lesions, there was an 18%, 27%, and 42% reduction in stability with a 2-, 4-, and 6-mm glenoid defect, respectively. With a ≥2-mm glenoid defect, the medium Hill-Sachs group demonstrated significant reduction in translation force after Bankart repair (P < .01), and for the small Hill-Sachs group, a ≥4-mm glenoid defect was required to produce a statistical decrease (P < .01) in reduction force after repair. Combined glenoid and humeral head defects have an additive and negative effect on glenohumeral stability. As little as a 2-mm glenoid defect with a medium-sized Hill-Sachs lesion demonstrated a compromise in soft tissue Bankart repair, while small-sized Hill-Sachs lesions showed compromise of soft tissue repair with ≥4-mm glenoid bone loss. Bipolar bony lesions of the glenoid and humeral head occur frequently together in clinical practice. Surgeons should be aware that the combined defects and glenoid bone loss of 2 to 4 mm or approximately 8% to 15% of the glenoid could compromise Bankart repair and thus may require surgical strategies in addition to traditional Bankart repair alone to optimize stability. © 2015 The Author(s).
Anal sphincter trauma and anal incontinence in urogynecological patients.
Guzmán Rojas, R A; Kamisan Atan, I; Shek, K L; Dietz, H P
2015-09-01
To determine the prevalence of evidence of residual obstetric anal sphincter injury, to evaluate its association with anal incontinence (AI) and to establish minimal diagnostic criteria for significant (residual) external anal sphincter (EAS) trauma. This was a retrospective analysis of ultrasound volume datasets of 501 patients attending a tertiary urogynecological unit. All patients underwent a standardized interview including determination of St Mark's score for those presenting with AI. Tomographic ultrasound imaging (TUI) was used to evaluate the EAS and the internal anal sphincter (IAS). Among a total of 501 women, significant EAS and IAS defects were found in 88 and 59, respectively, and AI was reported by 69 (14%). Optimal prediction of AI was achieved using a model that included four abnormal slices of the EAS on TUI. IAS defects were found to be less likely to be associated with AI. In a multivariable model controlling for age and IAS trauma, the presence of at least four abnormal slices gave an 18-fold (95% CI, 9-36; P < 0.0001) increase in the likelihood of AI, compared with those with fewer than four abnormal slices. Using receiver-operating characteristics curve statistics, this model yielded an area under the curve of 0.86 (95% CI, 0.80-0.92). Both AI and significant EAS trauma are common in patients attending urogynecological units, and are strongly associated with each other. Abnormalities of the IAS seem to be less important in predicting AI. Our data support the practice of using, as a minimal criterion, defects present in four of the six slices on TUI for the diagnosis of significant EAS trauma. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
In vivo monitoring of urea cycle activity with (13)C-acetate as a tracer of ureagenesis.
Opladen, Thomas; Lindner, Martin; Das, Anibh M; Marquardt, Thorsten; Khan, Aneal; Emre, Sukru H; Burton, Barbara K; Barshop, Bruce A; Böhm, Thea; Meyburg, Jochen; Zangerl, Kathrin; Mayorandan, Sebene; Burgard, Peter; Dürr, Ulrich H N; Rosenkranz, Bernd; Rennecke, Jörg; Derbinski, Jens; Yudkoff, Marc; Hoffmann, Georg F
2016-01-01
The hepatic urea cycle is the main metabolic pathway for detoxification of ammonia. Inborn errors of urea cycle function present with severe hyperammonemia and a high case fatality rate. Long-term prognosis depends on the residual activity of the defective enzyme. A reliable method to estimate urea cycle activity in-vivo does not exist yet. The aim of this study was to evaluate a practical method to quantify (13)C-urea production as a marker for urea cycle function in healthy subjects, patients with confirmed urea cycle defect (UCD) and asymptomatic carriers of UCD mutations. (13)C-labeled sodium acetate was applied orally in a single dose to 47 subjects (10 healthy subjects, 28 symptomatic patients, 9 asymptomatic carriers). The oral (13)C-ureagenesis assay is a safe method. While healthy subjects and asymptomatic carriers did not differ with regards to kinetic variables for urea cycle flux, symptomatic patients had lower (13)C-plasma urea levels. Although the (13)C-ureagenesis assay revealed no significant differences between individual urea cycle enzyme defects, it reflected the heterogeneity between different clinical subgroups, including male neonatal onset ornithine carbamoyltransferase deficiency. Applying the (13)C-urea area under the curve can differentiate between severe from more mildly affected neonates. Late onset patients differ significantly from neonates, carriers and healthy subjects. This study evaluated the oral (13)C-ureagenesis assay as a sensitive in-vivo measure for ureagenesis capacity. The assay has the potential to become a reliable tool to differentiate UCD patient subgroups, follow changes in ureagenesis capacity and could be helpful in monitoring novel therapies of UCD. Copyright © 2015 Elsevier Inc. All rights reserved.
A comprehensive defect data bank for no. 2 common oak lumber
Edwin L. Lucas; Leathern R.R. Catron; Leathern R.R. Catron
1973-01-01
Computer simulation of rough mill cut-up operations allows lowcost evaluation of furniture rough mill cut-up procedures. The defect data bank serves as input to such simulation programs. The data bank contains a detailed accounting of defect data taken from 637 No. 2 Common oak boards. Included is a description of each defect (location, size, and type), as well as the...
Oporto V, Gonzalo H; Fuentes, Ramón; Borie, Eduardo; del Sol, Mariano; Orsi, Iara Augusta; Engelke, Wilfried
2014-01-01
Regeneration of resorbed edentulous sites can be induced by bone grafts from the subject himself and/or by the use of biomaterials. At present, there has been an extensive search for biomaterials that are evaluated by artificially creating one or more critical defects. The aim of this work was to clinically and radiographically analyze bone formation by the use of some biomaterials in artificially created defects in the parietal bone of rabbits. Six rabbits were used, creating defects of 8 mm in diameter in parietal bones. One defect was maintained with coagulum only, and in others, freeze-dried bone allograft (FDBA), autologous bone, and a combination of autologous bone with FDBA respectively, were added. Animals were sacrificed at 15-90 days with 2 weeks interval each, and calvaria were analyzed macroscopically, measuring by digital caliper the lack of filling at the surface of defects, identifying limits at anteroposterior and coronal view, realizing a digital photograph register of their external surfaces. This was subsequently evaluated radiographically by occlusal film radiography used to quantify its density through software. In conclusion, autologous bone showed the best behavior, clinically as well as radiographically. However, FDBA is a good option as an alternative to autologous bone as its behavior was slightly lower over time. The combination of autologous bone and FDBA in the same defect showed results considerably inferior to grafts used separately. Low radiopacity and clear limits were observed through time for the control coagulum filled defect. PMID:25126163
NASA Astrophysics Data System (ADS)
Derusova, D. A.; Vavilov, V. P.; Pawar, S. S.
2015-04-01
Low velocity impact is a frequently observed event during the operation of an aircraft composite structure. This type of damage is aptly called as “blind-side impact damage” as it is barely visible as a dent on the impacted surface, but may produce extended delaminations closer to the rear surface. One-sided thermal nondestructive testing is considered as a promising technique for detecting impact damage but because of diffusive nature of optical thermal signals there is drop in detectability of deeper subsurface defects. Ultrasonic Infrared thermography is a potentially attractive nondestructive evaluation technique used to detect the defects through observation of vibration-induced heat generation. Evaluation of the energy released by such defects is a challenging task. In this study, the thin delaminations caused by impact damage in composites and which are subjected to ultrasonic excitation are considered as local heat sources. The actual impact damage in a carbon epoxy composite which was detected by applying a magnetostrictive ultrasonic device is then modeled as a pyramid-like defect with a set of delaminations acting as an air-filled heat sources. The temperature rise expected on the surface of the specimen was achieved by varying energy contribution from each delamination through trial and error. Finally, by comparing the experimental temperature elevations in defective area with the results of temperature simulations, we estimated the energy generated by each defect and defect power of impact damage as a whole. The results show good correlation between simulations and measurements, thus validating the simulation approach.
Wang, Yong; Ding, Xiao-Hong; Yao, Li-Li; Huang, Zhong-Suo; Bian, Hua-Qin
2005-02-01
To evaluate the clinical effect of the teeth with subgingivally involved defect which were conserved by crown lengthening surgery. 62 teeth, with defect subgingivally from 1.5 mm to 4 mm, mobility degree(MD)= I degree, appropriate proportion between crown and root, underwent crown lengthening surgery by combining flap surgery and osteoectomy, and restored 4 weeks after operation and followed-up for one year. The parameters of MD, sulcus bleeding index (SBI) and maximal defect probing depth (PD) at different times were measured respectively. 46 anterior teeth were divided into two groups based on PD of pre-operation. The groups were as follows: minor defect group (<2.5mm) and major defect group (2.5 to 4mm). The results were evaluated by student's t test. The overall effective rate was 83.9%. PD and SBI demonstrated a significant improvement (P<0.01), but MD showed an increasing trend after operation (P<0.01). No significant difference about MD of anterior teeth in two groups was found before operation (P>0.05), but a significant increase about MD occurred in the major defect group one year after restoration (P<0.01), and there was significant correlation between MD of each stage after operation and PD of pre-operation in anterior teeth (r=0.489, 0.526, 0.531, P<0.01). According to the biological width principle, crown lengthening surgery may conserve these teeth with subgingivally involved defect, and has a good, long-time clinical effect. But MD showed an increasing trend after operation and significant cor.
NASA Astrophysics Data System (ADS)
Bocz, Péter; Vinkó, Ákos; Posgay, Zoltán
2018-03-01
This paper presents an automatic method for detecting vertical track irregularities on tramway operation using acceleration measurements on trams. For monitoring of tramway tracks, an unconventional measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs. Accelerations are processed to obtain the vertical track irregularities to determine whether the track needs to be repaired. The automatic detection algorithm is based on time-frequency distribution analysis and determines the defect locations. Admissible limits (thresholds) are given for detecting moderate and severe defects using statistical analysis. The method was validated on frequented tram lines in Budapest and accurately detected severe defects with a hit rate of 100%, with no false alarms. The methodology is also sensitive to moderate and small rail surface defects at the low operational speed.
Long bone reconstruction using multilevel lengthening of bone defect fragments.
Borzunov, Dmitry Y
2012-08-01
This paper presents experimental findings to substantiate the use of multilevel bone fragment lengthening for managing extensive long bone defects caused by diverse aetiologies and shows its clinical introduction which could provide a solution for the problem of reducing the total treatment time. Both experimental and clinical multilevel lengthening to bridge bone defect gaps was performed with the use of the Ilizarov method only. The experimental findings and clinical outcomes showed that multilevel defect fragment lengthening could provide sufficient bone formation and reduction of the total osteosynthesis time in one stage as compared to traditional Ilizarov bone transport. The method of multilevel regeneration enabled management of critical-size defects that measured on average 13.5 ± 0.7 cm in 78 patients. The experimental and clinical results proved the efficiency of the Ilizarov non-free multilevel bone plasty that can be recommended for practical use.
NASA Astrophysics Data System (ADS)
Park, Byeongjin; Sohn, Hoon
2018-04-01
The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.
Factors associated with birth defects in the region of Corpus Christi, Texas
In recent years, the Birth Defects Epidemiology & Surveillance Branch of the Texas Department of State Health Services (DSHS) has documented a high prevalence of certain birth defects in the Corpus Christi, TX region. We conducted a case-control study to evaluate associations...
Defect Detectability Improvement for Conventional Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hill, Chris
2013-01-01
This research was conducted to evaluate the effects of defect detectability via phased array ultrasound technology in conventional friction stir welds by comparing conventionally prepped post weld surfaces to a machined surface finish. A machined surface is hypothesized to improve defect detectability and increase material strength.
Müller, Rainer; Höhlein, Andreas; Wolf, Annette; Markwardt, Jutta; Schulz, Matthias C; Range, Ursula; Reitemeier, Bernd
2013-01-01
Ablative surgery of oropharyngeal tumors frequently leads to defects in the speech organs, resulting in impairment of speech up to the point of unintelligibility. The aim of the present study was the assessment of selected parameters of speech with and without resection prostheses. The speech sounds of 22 patients suffering from maxillary and mandibular defects were recorded using a digital audio tape (DAT) recorder with and without resection prostheses. Evaluation of the resonance and the production of the sounds /s/, /sch/, and /ch/ was performed by 2 experienced speech therapists. Additionally, the patients completed a non-standardized questionnaire containing a linguistic self-assessment. After prosthesis supply, the number of patients with rhinophonia aperta decreased from 7 to 2 while the number of patients with intelligible speech increased from 2 to 20. Correct production of the sounds /s/, /sch/, and /ch/ increased from 2 to 13 patients. A significant improvement of the evaluated parameters could be observed only in patients with maxillary defects. The linguistic self-assessment showed a higher satisfaction in patients with maxillary defects. In patients with maxillary defects due to ablative tumor surgery, an increase in speech performance and intelligibility is possible by supplying resection prostheses. © 2013 S. Karger GmbH, Freiburg.
NASA Astrophysics Data System (ADS)
Varanasi, Rao; Mesawich, Michael; Connor, Patrick; Johnson, Lawrence
2017-03-01
Two versions of a specific 2nm rated filter containing filtration medium and all other components produced from high density polyethylene (HDPE), one subjected to standard cleaning, the other to specialized ultra-cleaning, were evaluated in terms of their cleanliness characteristics, and also defectivity of wafers processed with photoresist filtered through each. With respect to inherent cleanliness, the ultraclean version exhibited a 70% reduction in total metal extractables and 90% reduction in organics extractables compared to the standard clean version. In terms of particulate cleanliness, the ultraclean version achieved stability of effluent particles 30nm and larger in about half the time required by the standard clean version, also exhibiting effluent levels at stability almost 90% lower. In evaluating defectivity of blanket wafers processed with photoresist filtered through either version, initial defect density while using the ultraclean version was about half that observed when the standard clean version was in service, with defectivity also falling more rapidly during subsequent usage of the ultraclean version compared to the standard clean version. Similar behavior was observed for patterned wafers, where the enhanced defect reduction was primarily of bridging defects. The filter evaluation and actual process-oriented results demonstrate the extreme value in using filtration designed possessing the optimal intrinsic characteristics, but with further improvements possible through enhanced cleaning processes
Banjar, Arwa Ahmed; Mealey, Brian L
2013-01-01
The goal of this study was to evaluate the effectiveness of demineralized bone matrix (DBM) putty, consisting of demineralized human bone allograft matrix in a carrier of bovine collagen and alginate, for the treatment of periodontal defects in humans. Twenty subjects with at least one site having a probing depth ≥ 6 mm and radiographic evidence of bony defect depth > 3 mm were included. The infrabony defects were grafted with DBM putty bone graft. The following clinical parameters were assessed at baseline and 6 months posttreatment: probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). Bone fill was evaluated using transgingival probing and standardized radiographs taken at baseline and 6 months posttreatment. The 6-month evaluation showed a significant PD reduction of 3.27 ± 1.67 mm and clinical attachment gain of 2.27 ± 1.74 mm. Bone sounding measurements showed a mean clinical bone defect fill of 2.93 ± 1.87 mm and a mean radiographic bone fill of 2.55 ± 2.31 mm. The use of DBM putty was effective for treatment of periodontal bony defects in humans. Significant improvement in CAL, PD, and bone fill was observed at 6 months compared to baseline.
Platelet rich fibrin: A new covering material for oral mucosal defects.
Mohanty, Sujata; Pathak, Himani; Dabas, Jitender
2014-01-01
In the current oral and maxillofacial surgery practice, the use of PRF membrane is limited to bony lesions and gingival defects. We have used it for reconstruction of benign hyperkeratotic lesion of oral mucosa in a healthy adult male and have found good healing clinically. It is suggested that the use of PRF membrane could be tried for various other superficial oral mucosal lesions.
Shibuya, Toru; Kato, Kyouichi; Eshima, Hidekazu; Sumi, Shinichirou; Kubo, Tadashi; Ishida, Hideki; Nakazawa, Yasuo
2012-01-01
In order to provide a precise radiography for diagnosis, it is required that we avoid radiography with defects by having enough evaluation. Conventionally, evaluation was performed only by observation of a radiological technologist (RT). The evaluation support system was developed for providing a high quality assurance without depending on RT observation only. The evaluation support system, called as the Image Quality Assurance Support System (IQASS), is characterized in that "image recognition technology" for the purpose of diagnostic radiography of chest and abdomen areas. The technique of the system used in this study. Of the 259 samples of posterior-anterior (AP) chest, lateral chest, and upright abdominal x-rays, the sensitivity and specificity was 93.1% and 91.8% in the chest AP, 93.3% and 93.6% in the chest lateral, and 95.0% and 93.8% in the upright abdominal x-rays. In the light of these results, it is suggested that AIQAS could be applied to practical usage for the RT.
A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing
Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun
2017-01-01
Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes. PMID:28475141
Lygidakis, N A; Wong, F; Jälevik, B; Vierrou, A-M; Alaluusua, S; Espelid, I
2010-04-01
The European Academy of Paediatric Dentistry (EAPD) has long recognised the necessity of promoting further research and knowledge regarding the dental defect described as molar-incisor-hypomineralisation (MIH). Following the establishment by EAPD of the defect diagnostic criteria in 2003, the publication of various papers and a whole issue assigned to the defect in the European Archives of Paediatric Dentistry (2008), an Interim Seminar and Workshop on MIH was organized in Helsinki in 2009. The outcome of this event is the present consensus paper on the prevalence, diagnosis, aetiology and treatment for children and adolescents presenting with MIH. A clear diagnostic proposal and a treatment decision-making guide are presented together with suggestions on aetiology and guidance for future research. MIH is an important clinical problem that often concerns both the general dental and specialist paediatric dentists; the present 'best clinical practice guidance' aims to further help clinicians dealing with the condition.
A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing.
Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun
2017-05-05
Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes.
The intra-umbilical approach in umbilical hernia.
Arslan, Sukru; Korkut, Ercan
2014-02-01
To investigate the "intra-umbilical incision", a smaller incision compared to classic incisions, in cases of umbilical hernia, and which we believe will contribute to patient satisfaction in aesthetic terms, and also the practicability of such operations. The umbilical margins of eight patients with an umbilical hernia were marked between the levels of 6 and 12 o'clock, and a median intra-umbilical skin incision was performed between these two points. In some cases, where exploration could not be performed sufficiently, the incision was extended horizontally from 6 or 12 o'clock. Hernia repair and mesh placement was then performed using an intra-umbilical approach. Patients were investigated according to the defect size and requirement for intra-umbilical incision extension. No requirement for intra-umbilical incision was encountered in six patients with a facial defect diameter smaller than 4 cm, while the incision had to be extended in two patients with defects greater than 4 cm. The intra-umbilical approach in umbilical hernia surgery is aesthetically superior to classical approaches and is a practicable technique.
Automated evaluation of AIMS images: an approach to minimize evaluation variability
NASA Astrophysics Data System (ADS)
Dürr, Arndt C.; Arndt, Martin; Fiebig, Jan; Weiss, Samuel
2006-05-01
Defect disposition and qualification with stepper simulating AIMS tools on advanced masks of the 90nm node and below is key to match the customer's expectations for "defect free" masks, i.e. masks containing only non-printing design variations. The recently available AIMS tools allow for a large degree of automated measurements enhancing the throughput of masks and hence reducing cycle time - up to 50 images can be recorded per hour. However, this amount of data still has to be evaluated by hand which is not only time-consuming but also error prone and exhibits a variability depending on the person doing the evaluation which adds to the tool intrinsic variability and decreases the reliability of the evaluation. In this paper we present the results of an MatLAB based algorithm which automatically evaluates AIMS images. We investigate its capabilities regarding throughput, reliability and matching with handmade evaluation for a large variety of dark and clear defects and discuss the limitations of an automated AIMS evaluation algorithm.
Human cartilage repair with a photoreactive adhesive-hydrogel composite.
Sharma, Blanka; Fermanian, Sara; Gibson, Matthew; Unterman, Shimon; Herzka, Daniel A; Cascio, Brett; Coburn, Jeannine; Hui, Alexander Y; Marcus, Norman; Gold, Garry E; Elisseeff, Jennifer H
2013-01-09
Surgical options for cartilage resurfacing may be significantly improved by advances and application of biomaterials that direct tissue repair. A poly(ethylene glycol) diacrylate (PEGDA) hydrogel was designed to support cartilage matrix production, with easy surgical application. A model in vitro system demonstrated deposition of cartilage-specific extracellular matrix in the hydrogel biomaterial and stimulation of adjacent cartilage tissue development by mesenchymal stem cells. For translation to the joint environment, a chondroitin sulfate adhesive was applied to covalently bond and adhere the hydrogel to cartilage and bone tissue in articular defects. After preclinical testing in a caprine model, a pilot clinical study was initiated where the biomaterials system was combined with standard microfracture surgery in 15 patients with focal cartilage defects on the medial femoral condyle. Control patients were treated with microfracture alone. Magnetic resonance imaging showed that treated patients achieved significantly higher levels of tissue fill compared to controls. Magnetic resonance spin-spin relaxation times (T(2)) showed decreasing water content and increased tissue organization over time. Treated patients had less pain compared with controls, whereas knee function [International Knee Documentation Committee (IKDC)] scores increased to similar levels between the groups over the 6 months evaluated. No major adverse events were observed over the study period. With further clinical testing, this practical biomaterials strategy has the potential to improve the treatment of articular cartilage defects.
Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan; ...
2016-11-10
Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan
Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less
Observer POD for radiographic testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanzler, Daniel, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de; Ewert, Uwe, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de; Müller, Christina, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de
2015-03-31
The radiographic testing (RT) is a non-destructive testing (NDT) method capable of finding volumetric and open planar defects depending on their orientation. The radiographic contrast is higher for larger penetrated length of the defect in a component. Even though, the detectability of defects does not only depend on the contrast, but also on the noise, the defect area and the geometry of the defect. The currently applied Probability of Detection (POD) approach uses a detection threshold that is only based on a constant noise level or on a constant contrast threshold. This does not reflect accurately the results of evaluationsmore » by human observers. A new approach is introduced, using the widely applied POD evaluation and additionally a detection threshold depending on the lateral area and shape of the indication. This work shows the process of calculating the POD curves with simulated data by the modeling software aRTist and with artificial reference data of different defect types, such as ASTM E 476 EPS plates, flat bottom holes and notches. Additional experiments with different operators confirm that the depth of a defect, the lateral area and shape of its indication contribute with different weight to the detectability of the defect if evaluated by human operators on monitors.« less
NASA Astrophysics Data System (ADS)
Soares, Luiz Guilherme P.; Marques, Aparecida M. C.; Aciole, Jouber Mateus S.; Trindade, Renan; Santos, Jean N.; Pinheiro, Antônio Luiz B.
2014-02-01
Beside of biomaterials, Laser phototherapy has shown positive results as auxiliary therapy on bone repair. The aim of this study was to evaluate, through histological analysis, the influence of Laser phototherapy in the process of repair of bone defects grafted or not with Hydroxyapatite. Forty rats were divided into 4 groups each subdivided into 2 subgroups according to the time of sacrifice. Surgical bone defects were made on femur of each animal with a trephine drill. On animals of group Clot the defect was filled only by blood, on group Laser the defect filled with the clot and further irradiated. In group Biomaterial the defect was filled with HA + β-TCP graft. In group Laser + Biomaterial, the defect was filled with biomaterial and further irradiated. The irradiation protocols were performed every 48 hours during for 15 days. Animal death occurred after 15 and 30 days. The specimens were routinely processed and evaluated by light microscopy. Qualitative analysis showed that group Laser + Biomaterial was in a more advanced stage of repair at the end of the experimental time. It was concluded that the Laser irradiation improved the repair of bone defects grafted or not.
Ma, Li; Mattheos, Nikos; Sun, Yan; Liu, Xi Ling; Yip Chui, Ying; Lang, Niklaus Peter
2015-08-01
The aim of the present study was to evaluate and compare the wound-healing process following osteotomies performed with either conventional rotary burs or piezoelectric surgery in a rabbit model. Two types of osteotomy window defects of the nasal cavities were prepared on the nasal bone of 16 adult New Zealand white rabbits with either a conventional rotary bur or piezo surgery. The defects were covered with a resorbable membrane. Four animals were killed at 1, 2, 3, and 5 weeks after the surgical procedure, respectively. Histological and morphometric evaluations were performed to assess the volumetric density of various tissue components: the blood clot, vascularized structures, provisional matrix, osteoid, mineralized bone, bone debris, residual tissue, and old bone. Significantly more bone debris was found at 1 week in the conventionally-prepared defects compared to the piezo surgically-prepared defects. At 2 and 3 weeks, a newly-formed hard tissue bridge, mainly composed of woven bone, was seen; however, no statistically-significant differences were observed. At 5 weeks, the defects were completely filled with newly-formed bone. The defects prepared by piezo surgery showed a significantly decreased proportion of bone debris at 1 week, compared to conventional rotary bur defect. © 2014 Wiley Publishing Asia Pty Ltd.
Yassine, Kalbaza Ahmed; Mokhtar, Benchohra; Houari, Hemida; Karim, Amara; Mohamed, Melizi
2017-01-01
Aim: Finding an ideal bone substitute to treat large bone defects, delayed union and nonunions remain a challenge for orthopedic surgeons and researchers. Several studies have been conducted on bone regeneration; each has its own advantages and disadvantages. The aim of this study was to evaluate the effect of a combination of hydroxyapatite (HA) powder with autologous bone marrow (BM) aspirate on the repair of segmental radial defect in a rabbit model. Materials and Methods: A total of 36 male and adult New Zealand rabbit with a mean weight of 2.25 kg were used in this study. Approximately, 5 mm defect was created in the mid-shaft of the radius to be filled with HA powder in the control group “HA” (n=18) and with a combination of HA powder and autologous BM aspirate in the test group “HA+BM” (n=18). Animals were observed daily for healing by inspection of the surgical site, and six rabbits of each group were sacrificed at 30, 60, and 90 post-operative days to perform a radiographic evaluation of defect site. Results: Obtained results revealed a better and more rapid bone regeneration in the test group: Since the defect was rapidly and completely filled with mature bone tissue after 90 days. Conclusion: Based on these findings, we could infer that adding a BM aspirate to HA is responsible of a better regeneration process leading to a complete filling of the defect. PMID:28831217
Healing of damaged metal by a pulsed high-energy electromagnetic field
NASA Astrophysics Data System (ADS)
Kukudzhanov, K. V.; Levitin, A. L.
2018-04-01
The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.
Space-time windowing of angle-beam wavefield data to characterize scattering from defects
NASA Astrophysics Data System (ADS)
Weng, Yu; Michaels, Jennifer E.
2018-04-01
The primary focus of ultrasonic nondestructive evaluation is defect detection and characterization. In particular, fatigue cracks emanating from fastener holes are commonly found in aerospace structures. Therefore, scattering of ultrasonic waves from crack-like notches is of practical interest. Here, angle-beam shear waves are used to interrogate notches in aluminum plates. In prior work, notch-scattering was characterized and quantified in the frequency-wavenumber domain, which has the undesirable effect of lumping all scattered shear wave energy from notches into a single energy curve. This present work focuses on developing space-time windowing methods to quantify notch-scattered energy directly in the time-space domain. Two strategies are developed. The first is to indirectly characterize notch-scattering via the change in scattering as compared to the undamaged through-hole. The second strategy is to directly track notch-scattered waves in the time-space domain and then quantify scattered energy by constructing energy-versus-direction curves. Both strategies provide a group of energy difference curves, which show how notch-scattering evolves as time progresses. Notch-scattering quantification results for different notch lengths are shown and discussed.
Single and tandem Fabry-Perot etalons as solar background filters for lidar.
McKay, J A
1999-09-20
Atmospheric lidar is difficult in daylight because of sunlight scattered into the receiver field of view. In this research methods for the design and performance analysis of Fabry-Perot etalons as solar background filters are presented. The factor by which the signal to background ratio is enhanced is defined as a measure of the performance of the etalon as a filter. Equations for evaluating this parameter are presented for single-, double-, and triple-etalon filter systems. The role of reflective coupling between etalons is examined and shown to substantially reduce the contributions of the second and third etalons to the filter performance. Attenuators placed between the etalons can improve the filter performance, at modest cost to the signal transmittance. The principal parameter governing the performance of the etalon filters is the etalon defect finesse. Practical limitations on etalon plate smoothness and parallelism cause the defect finesse to be relatively low, especially in the ultraviolet, and this sets upper limits to the capability of tandem etalon filters to suppress the solar background at tolerable cost to the signal.
NASA Astrophysics Data System (ADS)
Su, Zhongqing; Ye, Lin
2004-08-01
The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.
NASA Astrophysics Data System (ADS)
Rajagopal, P.; Drozdz, M.; Lowe, M. J. S.
2009-03-01
A solution to the problem of improving the finite element (FE) modeling of elastic wave-defect interaction is sought by reconsidering the conventional opinion on meshing strategy. The standard approach using uniform square elements imposes severe limitations in representing complex defect outlines but this is thought to improve when the mesh is made finer. Free meshing algorithms available widely in commercial packages of late can cope with difficult features well but they are thought to cause scattering by the irregular mesh itself. This paper examines whether the benefits offered by free meshing in representing defects better outweigh the inaccuracies due to mesh scattering. If using the standard mesh, the questions whether mesh refinement leads to improved results and whether a practical strategy can be constructed are considered.
Dose-response studies and 'no-effect-levels' of N-nitroso compounds: some general aspects.
Preussmann, R
1980-01-01
One major problem in the evaluation of potential carcinogenic food additives and contaminants is that of thresholds or, better, of 'no-adverse-effect-levels'. Arguments in favor of the postulated 'irreversibility' of carcinogenic effects are based on dose-response studies, single dose and multigeneration experiments as well as on the concept of somatic mutation as the first step in carcinogenesis with subsequent transmittance of induced defects during cell replication. The problem of extrapolation of results of animal experiments using high doses to low exposure and low incidences in man is not yet solved satisfactorily. Possible practical consequences include zero tolerance, acceptable thresholds at low risk and safety factors. Acceptable intakes should never be considered constants but should be changeable as soon as new facts in regard to the safety evaluation are available.
An investigation of squeeze-cast alloy 718
NASA Technical Reports Server (NTRS)
Gamwell, W. R.
1993-01-01
Alloy 718 billets produced by the squeeze-cast process have been evaluated for use as potential replacements for propulsion engine components which are normally produced from forgings. Alloy 718 billets were produced using various processing conditions. Structural characterizations were performed on 'as-cast' billets. As-cast billets were then homogenized and solution treated and aged according to conventional heat-treatment practices for this alloy. Mechanical property evaluations were performed on heat-treated billets. As-cast macrostructures and microstructures varied with squeeze-cast processing parameters. Mechanical properties varied with squeeze-cast processing parameters and heat treatments. One billet exhibited a defect free, refined microstructure, with mechanical properties approaching those of wrought alloy 718 bar, confirming the feasibility of squeeze-casting alloy 718. However, further process optimization is required, and further structural and mechanical property improvements are expected with process optimization.
Li, Xue; Xu, Chang-peng; Cui, Zhuang; Jiang, Nan; Jia, Jun-jie; Yu, Bin
2014-01-01
Objective Current medical practice for the treatment of articular cartilage lesions remains a clinical challenge due to the limited self-repair ability of articular cartilage. Both experimental and clinical researches show that moderate exercise can improve articular cartilage repair process. However, optimal timing of moderate exercise is unclear. We aimed to evaluate the effect of timing of moderate treadmill exercise on repair of full-thickness defects of articular cartilage. Design Full-thickness cartilage defects were drilled in the patellar groove of bilateral femoral condyles in a total of 40 male SD rats before they were randomly assigned into four even groups. In sedentary control (SED) group, no exercise was given; in 2-week (2W), 4-week (4W) and 8-week groups, moderate treadmill exercise was initiated respectively two, four and eight weeks after operation. Half of the animals were sacrificed at week 10 after operation and half at week 14 after operation. Femoral condyles were harvested for gross observation and histochemical measurement by O'Driscoll scoring system. Collagen type II was detected by immunohistochemistry and mRNA expressions of aggrecan and collagen type II cartilage by RT-PCR. Results Both 10 and 14 weeks post-operation, the best results were observed in 4W group and the worst results appeared in 2W group. The histochemistry scores and the expressions of collagen type II and aggrecan were significantly higher in 4W group than that in other three groups (P<0.05). Conclusions Moderate exercise at a selected timing (approximately 4 weeks) after injury can significantly promote the healing of cartilage defects but may hamper the repair process if performed too early while delayed intervention by moderate exercise may reduce its benefits in repair of the defects. PMID:24595327
Kanzow, Philipp; Wiegand, Annette; Göstemeyer, Gerd; Schwendicke, Falk
2018-02-01
Repair instead of complete replacement is recommended to manage partially defective restorations. It is unclear if and why such treatment is taught at dental schools or practiced by dentists. We aimed to identify barriers and facilitators for repairs using a systematic review and meta- and qualitative analysis. Electronic databases (PubMed, CENTRAL, Embase, PsycINFO) were searched. Quantitative studies reporting on the proportion of (1) dentists stating to perform repairs, (2) dental schools teaching repairs, (3) failed restorations having been repaired were included. We also included qualitative studies on barriers/facilitators for repairs. Random-effects meta-analyses, meta-regression and a thematic analysis using the theoretical domains framework were conducted. 401 articles were assessed and 29, mainly quantitative, studies included. 7228 dentists and 276 dental schools had been surveyed, and treatment data of 30,172 restorations evaluated. The mean (95% CI) proportion of dentists stating to perform repairs was 71.5% (49.7-86.4%). 83.3% (73.6-90.0%) of dental schools taught repairs. 31.3% (26.3-36.7%) of failed restorations had been repaired. More recent studies reported significantly more dentists to repair restorations (p=0.004). Employment in public health practices and being the dentist who placed the original restoration were facilitators for repairs. Amalgam restorations were repaired less often, and financial aspects and regulations came as barriers. While most dentists state to perform repairs and the vast majority of dental schools teach repairs, the proportion of truly repaired restorations was low. A number of interventions to implement repair in dental practice can be deduced from our findings. Partially defective restorations are common in dental practice. While repairs are taught and dentists are aware of the recommendation towards repairs, the actually performed proportion of repairs seems low. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lorvidhaya, Peem; Mendoza, Ivan; Sehli, Sharmila; Atalay, Michael K; Kim, Michael H
2013-11-01
Lead insulation defects with externalization of the conductors exist in Riata defibrillator leads. Cinefluoroscopy is currently the gold standard to detect such defects. Prospective evaluation of alternative screening options such as chest radiography (CXR), which has been recommended by the FDA, is not well described. Patients with Riata leads underwent cinefluoroscopy, CXR, and device interrogation. Leads were classified as abnormal (clear cable separation), borderline, or normal by independent evaluation of cinefluoroscopy and CXR. CXR evaluation was done in two ways as follows: (1) routine CXR read by daily staff radiologists for lead screening and (2) CXR evaluation by a radiologist educated about the lead defect. One hundred two patients were evaluated at our institution. Cinefluoroscopy showed externalized conductors in 33 patients (32 %). Twenty-five of 33 patients (76 %) who had abnormal cinefluoroscopic findings had abnormal CXR findings on blinded review by the educated radiologist. All 25 patients with abnormal CXR had abnormal findings on cinefluoroscopy. Daily staff radiologists without direct education other than prompts for lead screening detected CXR abnormalities in only 8 out of 102 (8 %) cases. Cinefluoroscopy appears to be more sensitive than CXR for the detection of Riata cable extrusion. Interpretation of CXR by a radiologist with education in lead defects correlates highly with cinefluoroscopy with very high specificity. Depending on available resources for screening, CXR may be a reasonable alternative to cinefluoroscopy. Multidisciplinary collaboration across specialties (radiology and electrophysiology) can lead to improved diagnostic capability and thus the potential for enhanced quality of care.
On the impact of self-clearing on electroactive polymer (EAP) actuators
NASA Astrophysics Data System (ADS)
Ahmed, Saad; Ounaies, Zoubeida; Lanagan, Michael T.
2017-10-01
Electroactive polymer (EAP)-based actuators have large potential for a wide array of applications; however, their practical implementation is still a challenge because of the requirement of high driving voltage, which most often leads to premature defect-driven electrical breakdown. Polymer-based capacitors have the ability to clear defects with partial electrical breakdown and subsequent removal of a localized electrode section near the defect. In this study, this process, which is known as self-clearing, is adopted for EAP technologies. We report a methodical approach to self-clear an EAP, more specifically P(VDF-TrFE-CTFE) terpolymer, to delay premature defect-driven electrical breakdown of the terpolymer actuators at high operating electric fields. Breakdown results show that electrical breakdown strength is improved up to 18% in comparison to a control sample after self-clearing. Furthermore, the electromechanical performance in terms of blocked force and free displacement of P(VDF-TrFE-CTFE) terpolymer-based bending actuators are examined after self-clearing and precleared samples show improved blocked force, free displacement and maximum sustainable electric field compared to control samples. The study demonstrates that controlled self-clearing of EAPs improves the breakdown limit and reliability of the EAP actuators for practical applications without impeding their electromechanical performance.
Examining the influence of grain size on radiation tolerance in the nanocrystalline regime
Barr, Christopher M.; Li, Nan; Boyce, Brad L.; ...
2018-05-01
Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less
Thermal conductivity of graphene with defects induced by electron beam irradiation.
Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L; Mulchandani, Ashok; Lake, Roger K; Balandin, Alexander A
2016-08-14
We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2) the thermal conductivity decreases from ∼(1.8 ± 0.2) × 10(3) W mK(-1) to ∼(4.0 ± 0.2) × 10(2) W mK(-1) near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ∼400 W mK(-1). The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.
Examining the influence of grain size on radiation tolerance in the nanocrystalline regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Christopher M.; Li, Nan; Boyce, Brad L.
Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefferkoetter, Joshua, E-mail: dnrjds@nus.edu.sg; Ouyang, Jinsong; Rakvongthai, Yothin
2014-06-15
Purpose: A study was designed to investigate the impact of time-of-flight (TOF) and point spread function (PSF) modeling on the detectability of myocardial defects. Methods: Clinical FDG-PET data were used to generate populations of defect-present and defect-absent images. Defects were incorporated at three contrast levels, and images were reconstructed by ordered subset expectation maximization (OSEM) iterative methods including ordinary Poisson, alone and with PSF, TOF, and PSF+TOF. Channelized Hotelling observer signal-to-noise ratio (SNR) was the surrogate for human observer performance. Results: For three iterations, 12 subsets, and no postreconstruction smoothing, TOF improved overall defect detection SNR by 8.6% as comparedmore » to its non-TOF counterpart for all the defect contrasts. Due to the slow convergence of PSF reconstruction, PSF yielded 4.4% less SNR than non-PSF. For reconstruction parameters (iteration number and postreconstruction smoothing kernel size) optimizing observer SNR, PSF showed larger improvement for faint defects. The combination of TOF and PSF improved mean detection SNR as compared to non-TOF and non-PSF counterparts by 3.0% and 3.2%, respectively. Conclusions: For typical reconstruction protocol used in clinical practice, i.e., less than five iterations, TOF improved defect detectability. In contrast, PSF generally yielded less detectability. For large number of iterations, TOF+PSF yields the best observer performance.« less
Periodontal repair in dogs: examiner reproducibility in the supraalveolar periodontal defect model.
Koo, Ki-Tae; Polimeni, Giuseppe; Albandar, Jasim M; Wikesjö, Ulf M E
2004-06-01
Histometric assessments are routinely used to evaluate biologic events ascertained in histologic sections acquired from animal and human studies. The objective of this study was to evaluate the intra- and inter-examiner reproducibility of histometric assessments in the supraalveolar periodontal defect model. Histometric analysis using incandescent and polarized light microscopy, an attached digital camera system, and a PC-based image analysis system including a custom program for the supraalveolar periodontal defect model was performed on histologic sections acquired from one jaw quadrant in each of 12 dogs. The animals had received an experimental protocol including implantation of a coral biomaterial and guided tissue regeneration (GTR) barrier devices, and were evaluated following a 4-week healing interval. Histometric parameters were recorded and repeated within a 3-month interval by two examiners following brief training. Intra- and inter-examiner reproducibility was assessed using the intra-class correlation coefficient (ICC). Most parameters showed high intra-examiner ICCs. Parameters including defect height, connective tissue repair, bone regeneration (height/area), formation of a junctional epithelium, positioning of the GTR device, ankylosis, root resorption, and defect area yielded an ICC> or 0..9. The ICCs for bone density and biomaterial density were somewhat lower (0.8 and 0.7, respectively). The inter-examiner reproducibility was somewhat lower compared to the intra-examiner reproducibility. Nevertheless, the ICCs were generally high (ICC range: 0.6-0.9). Histometric evaluations in the supraalveolar periodontal defect model yield highly reproducible results, in particular when a single examiner performs the histometric measurements, even when the examiner was exposed to limited training.
Araki, Susumu; Imai, Shinji; Ishigaki, Hirohito; Mimura, Tomohiro; Nishizawa, Kazuya; Ueba, Hiroaki; Kumagai, Kousuke; Kubo, Mitsuhiko; Mori, Kanji; Ogasawara, Kazumasa; Matsusue, Yoshitaka
2015-01-01
Background and purpose Integration of repaired cartilage with surrounding native cartilage is a major challenge for successful tissue-engineering strategies of cartilage repair. We investigated whether incorporation of mesenchymal stem cells (MSCs) into the collagen scaffold improves integration and repair of cartilage defects in a cynomolgus macaque model. Methods Cynomolgus macaque bone marrow-derived MSCs were isolated and incorporated into type-I collagen gel. Full-thickness osteochondral defects (3 mm in diameter, 5 mm in depth) were created in the patellar groove of 36 knees of 18 macaques and were either left untreated (null group, n = 12), had collagen gel alone inserted (gel group, n = 12), or had collagen gel incorporating MSCs inserted (MSC group, n = 12). After 6, 12, and 24 weeks, the cartilage integration and tissue response were evaluated macroscopically and histologically (4 null, 4 gel, and 4 MSC knees at each time point). Results The gel group showed most cartilage-rich reparative tissue covering the defect, owing to formation of excessive cartilage extruding though the insufficient subchondral bone. Despite the fact that a lower amount of new cartilage was produced, the MSC group had better-quality cartilage with regular surface, seamless integration with neighboring naïve cartilage, and reconstruction of trabecular subchondral bone. Interpretation Even with intensive investigation, MSC-based cell therapy has not yet been established in experimental cartilage repair. Our model using cynomolgus macaques had optimized conditions, and the method using MSCs is superior to other experimental settings, allowing the possibility that the procedure might be introduced to future clinical practice. PMID:25175660
Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.
Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu
2017-11-24
The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.
Spahn, G; Wittig, R; Kahl, E; Klinger, H M; Mückley, T; Hofmann, G O
2007-05-01
The study was aimed to evaluate the validity of clinical, radiological and MRI examination for cartilage defects of the knee compared with arthroscopic finding. Seven-hundred seventy-two patients who were suffering from knee pain over more than 3 months were evaluated clinical (grinding-sign) and with radiography and magnetic resonance imaging (MRI) and subsequent arthroscopy. The grinding sign had a sensitivity of 0.39. The association of a positive grinding test with high grade cartilage defects was significant (p<0.000). In 97.4% an intact chondral surface correlated with a normal radiological finding. Subchondral sclerosis, exophytes and a joint space narrowing was significantly associated with high grade cartilage defects (p<0.000). The accuracy of MRI was 59.5%. The MRI resulted in an overestimation in 36.6% and an underestimation in 3.9%. False-positive results were significant more often assessed in low-grade cartilage defects (p<0.000). Clinical signs, x-ray imaging and MRI correlate with arthroscopic findings in cases of deep cartilage lesions. In intact or low-grade degenerated cartilage often results an overestimating of these findings.
Calvo-Guirado, José Luis; Garces, Miguel; Delgado-Ruiz, Rafael Arcesio; Ramirez Fernandez, Maria P; Ferres-Amat, Eduard; Romanos, Georgios E
2015-08-01
The aim of this study was to assess the bone regeneration of critical size defects in rabbit calvarias filled with β-TCP doped with silicon. Twenty-one New Zealand rabbits were used in this study. Two critical size defects were created in the parietal bones. Three experimental groups were evaluated: Test A (HA/β-TCP granules alone), Test B (HA/β-TCP granules plus 3% silicon), Control (empty defect). The animals were sacrificed at 8 and 12 weeks. Evaluation was performed by μCT analysis and histomorphometry. μCT evaluation showed higher volume reduction in Test A group compared with Test B (P < 0.05). The Test B group showed the highest values for cortical closure and bone formation around the particles, followed by Test A and controls (P < 0.05). Within the limitations of this animal study, it can be concluded that HA/β-TCP plus 3% silicon increases bone formation in critical size defects in rabbit calvarias, and the incorporation of 3% silicon reduces the resorption rate of the HA/β-TCP granules. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Khomenko, Anton; Cloud, Gary Lee; Haq, Mahmoodul
2015-12-01
Multilayered transparent composites having laminates with polymer interlayers and backing sheets are commonly used in a wide range of applications where visibility, transparency, impact resistance, and safety are essential. Manufacturing flaws or damage during operation can seriously compromise both safety and performance. Most fabrication defects are not discernible until after the entire multilayered transparent composite assembly has been completed, and in-the-field inspection for damage is a problem not yet solved. A robust and reliable nondestructive evaluation (NDE) technique is needed to evaluate structural integrity and identify defects that result from manufacturing issues as well as in-service damage arising from extreme environmental conditions in addition to normal mechanical and thermal loads. Current optical techniques have limited applicability for NDE of such structures. This work presents a technique that employs a modified interferometer utilizing a laser diode or femtosecond fiber laser source to acquire in situ defect depth location inside a thin or thick multilayered transparent composite, respectively. The technique successfully located various defects inside examined composites. The results show great potential of the technique for defect detection, location, and identification in multilayered transparent composites.
Tuo, Honglian; Yang, Guangdong; Ling, Dan; Ma, Gang
2010-04-01
To Discuss nasolabial pedicle flap in the repair of facial malignant asal nasi resection defect after clinical practicality and feasibility. Eleven cases of patients with asal nasi surgery in patients with malignant tumor resection. And in accordance with the characteristics of the blood supply of the nasolabial fold area and the size of design defects to be repaired region length. angle and size, design nasolabial flaps pedicled flap face. Go through the nasal alar defect repair defects. All patients were I wound healing, skins all survived, good blood circulation, good color and no obvious scar area. One year postoperative follow-up to 5 years without recurrence of the tumor, the effect of external nose satisfied with the cosmetic restoration. The nasolabial flap pedicled facial blood rich and easy to survive, organizations can provide sufficient volume to the repair of larger nasal defects, vascular pedicle length, the transfer of a flexible, easy to operate and no obvious scar area. Nasolabial pedicle flap to repair the face of larger asal nasi defects after resection of malignant tumors can choose the best skin.
Taywade, Sameer K; Ramaiah, Vijayaraghavan L; Basavaraja, Harish; Venkatasubramaniam, Parameswaran R; Selvakumar, Job
2017-04-01
Myocardial perfusion scintigraphy (MPS) is a valuable, noninvasive imaging modality in the evaluation of patients with coronary artery disease. Adenosine stress may occasionally be associated with ECG changes. This study evaluated the strength of association between adenosine stress-related ECG changes and perfusion defects on Tc-MPS. 117 (mean age: 61.25±9.27 years; sex: men 87, women 30) patients with known/suspected coronary artery disease underwent adenosine stress MPS. ECG was monitored continuously during adenosine stress for ST-depression. On the basis of the summed difference score, reversible perfusion defects were categorized as follows: normal: less than 4, mild: 4-8, moderate: 9-13, and severe: more than 13. ST-depression was observed in 27/117 (23.1%) and reversible perfusion defects were observed in 18/27 (66.66%) patients. 2/27, 6/27, and 10/27 patients had mild, moderate, and severe ischemia, respectively. 9/27 patients had normal perfusion. ECG changes and perfusion defects showed a moderate strength of association (correlation coefficient r=0.35, P=0.006). The sensitivity, specificity, positive predictive value, and negative predictive value of ECG findings for prediction of ischemia were 35.29, 86.36, 67.67, and 63.33%, respectively. ECG changes during adenosine stress are not uncommon. It shows a moderate strength of association with reversible perfusion defects. ECG changes during adenosine merit critical evaluation of MPS findings.
Improved Method of Locating Defects in Wiring Insulation
NASA Technical Reports Server (NTRS)
Greulich, Owen R.
2004-01-01
An improved method of locating small breaches in insulation on electrical wires combines aspects of the prior dielectric withstand voltage (DWV) and time-domain reflectometry (TDR) methods. The method was invented to satisfy a need for reliably and quickly locating insulation defects in spacecraft, aircraft, ships, and other complex systems that contain large amounts of wiring, much of it enclosed in structures that make it difficult to inspect. In the DWV method, one applies a predetermined potential (usually 1.5 kV DC) to the wiring and notes whether the voltage causes any arcing between the wiring and ground. The DWV method does not provide an indication of the location of the defect (unless, in an exceptional case, the arc happens to be visible). In addition, if there is no electrically conductive component at ground potential within about 0.010 in. (approximately equal to 0.254 mm) of the wire at the location of an insulation defect, then the DWV method does not provide an indication of the defect. Moreover, one does not have the option to raise the potential in an effort to increase the detectability of such a defect because doing so can harm previously undamaged insulation. In the TDR method as practiced heretofore, one applies a pulse of electricity having an amplitude of less than 25 V to a wire and measures the round-trip travel time for the reflection of the pulse from a defect. The distance along the wire from the point of application of the pulse to the defect is then calculated as the product of half the round-trip travel time and the characteristic speed of a propagation of an electromagnetic signal in the wire. While the TDR method as practiced heretofore can be used to locate a short or open circuit, it does not ordinarily enable one to locate a small breach in insulation because the pulse voltage is too low to cause arcing and thus too low to induce an impedance discontinuity large enough to generate a measurable reflection. The present improved method overcomes the weaknesses of both the prior DWV and the prior TDR method.
Xu, He-Yang; Yang, Meng-Yi; Zhang, Xuyin; Wang, Qing; Yi, Xiao-Fang; Ding, Jing-Xin; Hua, Ke-Qin
2017-11-01
Caesarean scar defect (CSD) can cause postmenstrual bleeding. Defect repair is an effective technique to improve this symptom, but there are still a few patients getting little improvement. This retrospective study evaluates the efficacy of scar repair and explores the factors associated with poor effect. In total, 123 patients were involved in the final analysis. All of them complained about menstruation period >7 days due to postmenstrual bleeding. Before surgery, 87.8% of patients had a menstruation period more than 10 days and 20.3% had a period more than 15 days. After surgery, a normal menstruation period (< =7 days) was achieved in 46.3% (95%CI 37.3%-55.6%) of patients and a menstruation period lasting no more than 10 days was achieved in 74.8% (95%CI 66.2%-82.2%). Through multivariate logistic analysis, four factors were found dependently associated with poor effect (defined as menstruation period >10 days after surgery): repeated caesarean section (OR 9.75, 95%CI 2.30-41.36, 0.002) was a risk factor, while defect volume >600 mm 3 (OR 0.14, 95%CI 0.03-0.56, 0.006), interval from caesarean section to symptom emerging >3 months (OR 0.25, 95%CI 0.07-0.94, 0.041) and straight or retroflexed uterus (OR 0.19, 95%CI 0.05-0.79, 0.022) were protective factors. Impact statement What is already known on this subject? Caesarean scar defect can cause postmenstrual bleeding. Defect repair can improve this symptom, but there are still a few patients getting little improvement after surgery. What do the results of this study add? Defect volume >600 mm 3 , interval from caesarean section to symptom emerging >3 months and straight or retroflexed uterus are protective factors of poor effect (defined as menstruation period >10 days after surgery), and repeated caesarean section is a risk factor. What are the implications of these findings for clinical practice and/or further research? These findings may help in counselling the patients and in medical decision. Further researches are needed to explore other factors associated with surgical effect and build prediction models.
Green, Christopher F; Crawford, Victoria; Bresnen, Gaynor; Rowe, Philip H
2015-02-01
This study used a 'Lean' technique, the 'waste walk' to evaluate the activities of clinical pharmacists with reference to the seven wastes described in 'Lean' including 'defects', 'unnecessary motion', 'overproduction', 'transport of products or material', 'unnecessary waiting', 'unnecessary inventory' and 'inappropriate processing'. The objectives of the study were to categorise the activities of ward-based clinical pharmacists into waste and non-waste, provide detail around what constitutes waste activity and quantify the proportion of time attributed to each category. This study was carried out in a district general hospital in the North West of England. Staff were observed using work-sampling techniques, to categorise activity into waste and non-waste, with waste activities being allocated to each of the seven wastes described earlier and subdivided into recurrent themes. Twenty different pharmacists were observed for 1 h on two separate occasions. Of 1440 observations, 342 (23.8%) were categorised as waste with 'defects' and 'unnecessary motion' accounting for the largest proportions of waste activity. Observation of clinical pharmacists' activities has identified that a significant proportion of their time could be categorised as 'waste'. There are practical steps that could be implemented in order to ensure their time is used as productively as possible. Given the challenges facing the UK National Health Service, the adoption of 'Lean' techniques provides an opportunity to improve quality and productivity while reducing costs. © 2014 Royal Pharmaceutical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Backly, Rania M.; IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova; Faculty of Dentistry, Alexandria University, Alexandria
The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX{sup ®}) membranemore » was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX{sup ®}) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.« less
Patel, Sandeep; Kubavat, Ajay; Ruparelia, Brijesh; Agarwal, Arvind; Panda, Anup
2012-01-01
The aim of periodontal surgery is complete regeneration. The present study was designed to evaluate and compare clinically soft tissue changes in form of probing pocket depth, gingival shrinkage, attachment level and hard tissue changes in form of horizontal and vertical bone level using resorbable membranes. Twelve subjects with bilateral class 2 furcation defects were selected. After initial phase one treatment, open debridement was performed in control site while freezedried dura mater allograft was used in experimental site. Soft and hard tissue parameters were registered intrasurgically. Nine months reentry ensured better understanding and evaluation of the final outcome of the study. Guided tissue regeneration is a predictable treatment modality for class 2 furcation defect. There was statistically significant reduction in pocket depth as compared to control (p < 0.01). There is statistically significant increase in periodontal attachment level within control and experimental sites showed better results (p < 0.01). For hard tissue parameter, significant defect fill resulted in experimental group, while in control group, less significant defect fill was found in horizontal direction and nonsignificant defect fill was found in vertical direction. The results showed statistically significant improvement in soft and hard tissue parameters and less gingival shrinkage in experimental sites compared to control site. The use of FDDMA in furcation defects helps us to achieve predictable results. This cross-linked collagen membrane has better handling properties and ease of procurement as well as economic viability making it a logical material to be used in regenerative surgeries.
Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair.
Mouser, Vivian H M; Dautzenberg, Noël M M; Levato, Riccardo; van Rijen, Mattie H P; Dhert, Wouter J A; Malda, Jos; Gawlitta, Debby
2018-01-01
The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process. To reduce animal experiments, an ex vivo osteochondral plug model was used and evaluated. The role of the delivered and endogenous cells in the repair process was investigated. Full thickness cartilage defects were created in equine osteochondral plugs. Defects were filled with (A) chondrocytes at the bottom of the defect, covered with a cell-free hydrogel, (B) chondrocytes homogeneously encapsulated in a hydrogel, and (C, D) combinations of A and B with different cell densities. Plugs were cultured for up to 57 days, after which the cartilage and repair tissues were characterized and compared to baseline samples. Additionally, at day 21, the origin of cells in the repair tissue was evaluated. Best outcomes were obtained with conditions C and D, which resulted in well-integrated cartilage-like tissue that completely filled the defect, regardless of the initial cell density. A critical role of the spatial chondrocyte distribution in the repair process was observed. Moreover, the osteochondral plugs stimulated cartilage formation in the hydrogels when cultured in the defects. The resulting repair tissue originated from the delivered cells. These findings confirm the potential of the osteochondral plug model for the optimization of the composition of cartilage implants and for studying repair mechanisms.
Sehdev, Bhumika; Bhongade, Manohar Laxmanrao; Ganji, Kiran Kumar
2016-01-01
Background: The combination of biomaterials, bone graft substitutes along with guided tissue regeneration (GTR) has been shown to be an effective modality of periodontal regenerative therapy for infrabony defects. Therefore, the present randomized controlled clinical study was undertaken to evaluate the effectiveness of hyaluronic acid (HA) in combination with bioresorbable membrane for the treatment of human infrabony defects. Materials and Methods: Twenty four infrabony defects in 20 systemically healthy patients were randomly assigned to test (HA in combination with bioresorbable membrane) and control (bioresorbable membrane alone) treatment groups. Probing pocket depth (PPD), relative attachment level, and relative gingival margin level were measured with a computerized Florida disc probe at baseline and at 6 months follow-up. Radiographic measurements were also evaluated at baseline and at 6 months of postsurgery. Results: At 6 months, the mean reduction in PPD in test group and control group was 4.52 mm and 2.97 mm, respectively. Significantly higher clinical attachment level with a gain of 2.20 mm was found in the test group as compared to control group. In addition, statistically significant greater reduction of radiographic defect depth was observed in the test group. Conclusion: Regenerative approach using hyaloss in combination with GTR for the treatment of human infrabony defects resulted in a significant added benefit in terms of CAL gains, PPD reductions and radiographic defect fill, as well as LBG, compared to the GTR alone. PMID:27041838
Nishida, Ayumu; Naganuma, Tsuyoshi; Kanazawa, Takanori; Takashima, Yuuki; Yamada, Masaki; Okada, Hiroaki
2011-07-29
Aqueous preparations of silk protein (sericin) films were prepared to evaluate their biodegradation properties. In the absence of trypsin, sericin film swelled rapidly, kept its shape, and remained unaltered for 28 days or longer due to form β-sheet structures. In the presence of trypsin, sericin film gradually degraded; since the rate depended on the concentration of trypsin, the films likely underwent enzymatic hydrolysis. Sericin film incorporating the model protein drug fluorescein isothiocyanate-albumin (FA) also gradually degraded in the presence of trypsin and resulted in the sustained release of FA for 2 weeks or longer; in contrast, FA release was quite slow in the absence of trypsin. It is expected that sericin film has potential as a biodegradable and drug-releasing carrier. To evaluate the practical applicability of sericin film for the repair of defective tissues, fibroblast growth factor-2 (FGF-2) was incorporated into sericin films and the films were implanted on skull defects in rats. Whereas FGF-2 release was suppressed in the absence of trypsin in vitro, it appears that FGF-2, immobilized by ionic interactions between sericin and FGF-2, can be sustained-released in vivo from films incorporating 2500 or 250 ng of FGF-2 to support the growth of tissue around wounds. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, Jesse
2011-02-24
The presence of workmanship defects at the Kansas City Plant (KCP) is not a new problem nor is it an easy one to remedy. The lack of well defined parameters, subjective evaluations, and operator dependency makes this problem difficult to analyze. At the time of project assignment, workmanship defects comprised approximately 50% of all non-conformance reports for internally produced products. Not all of these non-conformances result in product rejections, thus inferring that inconsistency in evaluations were present. The purpose of this study was to identify a method for evaluating an operator’s ability to properly characterize subjective defects. Since the scopemore » of the project was limited to no funding, scratch depth was selected as the only criteria to evaluate. It was determined that the introduction of a reference standard coupled with a predefined gate-sorting technique approved by the customer can statistically improve an operators ability to perform subjective evaluations.« less
James P. Wacker; Christopher Adam Senalik; Xiping Wang; Frank Jalinoos
2016-01-01
Several nondestructive evaluation (NDE) technologies were studied to determine their efficacy as scanning devices to detect internal moisture and artificial decay pockets. Large bridge-sized test specimens, including sawn timber and glued-laminated timber members, were fabricated with various internal defects. NDE Technologies evaluated in this research were ground...
Correlated resistive/capacitive state variability in solid TiO2 based memory devices
NASA Astrophysics Data System (ADS)
Li, Qingjiang; Salaoru, Iulia; Khiat, Ali; Xu, Hui; Prodromakis, Themistoklis
2017-05-01
In this work, we experimentally demonstrated the correlated resistive/capacitive switching and state variability in practical TiO2 based memory devices. Based on filamentary functional mechanism, we argue that the impedance state variability stems from the randomly distributed defects inside the oxide bulk. Finally, our assumption was verified via a current percolation circuit model, by taking into account of random defects distribution and coexistence of memristor and memcapacitor.
ERIC Educational Resources Information Center
Berkowitz, J. H.
1920-01-01
Competent authorities seem to agree as to the causes of eye strain in school children other than congenital defects. Standard works on diseases of the eye are practically unanimous in declaring that myopia results from the protracted and unhygienic use of the eyes in near work. Most of the factors tending to cause eye strain exist in the schools.…
Analysis of defects of overhead facade systems and other light thin-walled structures
NASA Astrophysics Data System (ADS)
Endzhievskiy, L.; Frolovskaia, A.; Petrova, Y.
2017-04-01
This paper analyzes the defects and the causes of contemporary design solutions with an example of overhead facade systems with ventilated air gaps and light steel thin-walled structures on the basis of field experiments. The analysis is performed at all stages of work: design, manufacture, including quality, construction, and operation. Practical examples are given. The main causes of accidents and the accident rate prediction are looked upon and discussed.
Defect-sensitivity analysis of an SEU immune CMOS logic family
NASA Technical Reports Server (NTRS)
Ingermann, Erik H.; Frenzel, James F.
1992-01-01
Fault testing of resistive manufacturing defects is done on a recently developed single event upset immune logic family. Resistive ranges and delay times are compared with those of traditional CMOS logic. Reaction of the logic to these defects is observed for a NOR gate, and an evaluation of its ability to cope with them is determined.
Lumber defect detection abilities of furniture rough mill employees
Henry A. Huber; Charles W. McMillin; John P. McKinney
1985-01-01
To cut parts from boards, rough mill employees must be able to see defects, calculate the proper location of cuts, manually position the board, and remain alert. The objective of this study was to evaluate how well rough mill employees perform the task of recognizing, locating, and identifying surface defects independent of the calculation and positioning process....
Effects of Casting Conditions on End Product Defects in Direct Chill Casted Hot Rolling Ingots
NASA Astrophysics Data System (ADS)
Yorulmaz, Arda; Yüksel, Çağlar; Erzi, Eraz; Dispinar, Derya
Direct chill casting is a reliable casting process for almost any wrought aluminum alloy for subsequent deformation via hot rolling to supply vital industries such as aerospace, automotive, construction, packaging and maritime. While some defects occur during casting, like hot tearing, some others like surface defect causing blisters, appear after hot rolling process or annealing after final cold rolling steps. It was found that some of these defects are caused by melt impurities formed from entrained folded aluminum oxides or bifilms. A study in a hot rolling casting facility was carried out with different melt cleaning practices, launder and molten metal transferring designs. Bifilm index and reduced pressure test were used for determining melt cleanliness measurement. It was found that porous plug gas diffusons for degassing are more effective than lance type degassers and a design towards less turbulent molten metal flow from furnace to mould cavity are necessary for reducing defects caused by bifilms.
Failure Analysis Study and Long-Term Reliability of Optical Assemblies with End-Face Damage
NASA Technical Reports Server (NTRS)
Kichak, Robert A.; Ott, Melanie N.; Leidecker, Henning W.; Chuska, Richard F.; Greenwell, Christopher J.
2008-01-01
In June 2005, the NESC received a multi-faceted request to determine the long term reliability of fiber optic termini on the ISS that exhibited flaws not manufactured to best workmanship practices. There was a lack of data related to fiber optic workmanship as it affects the long term reliability of optical fiber assemblies in a harsh environment. A fiber optic defect analysis was requested which would find and/or create various types of chips, spalls, scratches, etc., that were identified by the ISS personnel. Once the defects and causes were identified the next step would be to perform long term reliability testing of similar assemblies with similar defects. The goal of the defect analysis would be for the defects to be observed and documented for deterioration of fiber optic performance. Though this report mostly discusses what has been determined as evidence of poor manufacturing processes, it also concludes the majority of the damage could have been avoided with a rigorous process in place.
Niwa, Masahiro; Hiraishi, Yasuhiro
2014-01-30
Tablets are the most common form of solid oral dosage produced by pharmaceutical industries. There are several challenges to successful and consistent tablet manufacturing. One well-known quality issue is visible surface defects, which generally occur due to insufficient physical strength, causing breakage or abrasion during processing, packaging, or shipping. Techniques that allow quantitative evaluation of surface strength and the risk of surface defect would greatly aid in quality control. Here terahertz pulsed imaging (TPI) was employed to evaluate the surface properties of core tablets with visible surface defects of varying severity after film coating. Other analytical methods, such as tensile strength measurements, friability testing, and scanning electron microscopy (SEM), were used to validate TPI results. Tensile strength and friability provided no information on visible surface defect risk, whereas the TPI-derived unique parameter terahertz electric field peak strength (TEFPS) provided spatial distribution of surface density/roughness information on core tablets, which helped in estimating tablet abrasion risk prior to film coating and predicting the location of the defects. TPI also revealed the relationship between surface strength and blending condition and is a nondestructive, quantitative approach to aid formulation development and quality control that can reduce visible surface defect risk in tablets. Copyright © 2013 Elsevier B.V. All rights reserved.
Neubauer, Jakob; Benndorf, Matthias; Lang, Hannah; Lampert, Florian; Kemna, Lars; Konstantinidis, Lukas; Neubauer, Claudia; Reising, Kilian; Zajonc, Horst; Kotter, Elmar; Langer, Mathias; Goerke, Sebastian M
2015-08-01
To compare the visualization of cortical fractures, cortical defects, and orthopedic screws in a dedicated extremity flat-panel computed tomography (FPCT) scanner and a multidetector computed tomography (MDCT) scanner.We used feet of European roe deer as phantoms for cortical fractures, cortical defects, and implanted orthopedic screws. FPCT and MDCT scans were performed with equivalent dose settings. Six observers rated the scans according to number of fragments, size of defects, size of defects opposite orthopedic screws, and the length of different screws. The image quality regarding depiction of the cortical bone was assessed. The gold standard (real number of fragments) was evaluated by autopsy.The correlation of reader assessment of fragments, cortical defects, and screws with the gold standard was similar for FPCT and MDCT. Three readers rated the subjective image quality of the MDCT to be higher, whereas the others showed no preferences.Although the image quality was rated higher in the MDCT than in the FPCT by 3 out of 6 observers, both modalities proved to be comparable regarding the visualization of cortical fractures, cortical defects, and orthopedic screws and of use to musculoskeletal radiology regarding fracture detection and postsurgical evaluation in our experimental setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moulin, D.; Chapuliot, S.; Drubay, B.
For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach ofmore » fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.« less
2015-10-01
IFM ) through the separated bone cortices (fracture gap). In research funded by a CDMRP Idea Development Award, we used a rat segmental defect...491, 2011. [3] V. Glatt, M . Miller, a Ivkovic, F. Liu, N. Parry, D. Griffin, M . Vrahas, and C. Evans, “Improved healing of large segmental defects...2012. [4] M . Mehta, S . Checa, J. Lienau, D. Hutmacher, and G. N. Duda, “In vivo tracking of segmental bone defect healing reveals that callus
Birth Defects among Infants Born to Women Who Received Anthrax Vaccine in Pregnancy
2008-07-02
Department of Defense Birth Defects Registry: overview of a new surveillance system. Teratology 2001;64(suppl 1):S26–9. 22. National Birth Defects... Teratology 2002;66:326–30. 29. Ryan MAK, Gumbs GR, Conlin AMS, et al. Evaluation of preterm births and birth defects in liveborn infants of US military...fetal malformations. Teratology 2000;62:413–19. 39. Yitzhakie D, Torchinsky A, Savion S, et al. Maternal immu- nopotentiation affects the teratogenic
Costs and prevention of patient defection.
Clarke, R N
2001-01-01
Although other industries have recognized that increased customer loyalty brings increased revenues and profitability, few medical practices have sought even to measure patient retention or loyalty. When patients leave a practice, new patients must be attracted to replace lost ones at significant cost, often invisible to and underestimated by physicians. Understanding the lifetime value of a patient may be one route that leads to better patient loyalty practices and enhanced profitability.
Huang, Chih-Hao; Brunsvold, Michael A
2006-01-01
Maxillary sinusitis may develop from the extension of periodontal disease. In this case, reconstructed three-dimensional images from multidetector spiral computed tomographs were helpful in evaluating periodontal bony defects and their relationship with the maxillary sinus. A 42-year-old woman in good general health presented with a chronic deep periodontal pocket on the palatal and interproximal aspects of tooth #14. Probing depths of the tooth ranged from 2 to 9 mm, and it exhibited a Class 1 mobility. Radiographs revealed a close relationship between the root apex and the maxillary sinus. The patient's periodontal diagnosis was localized severe chronic periodontitis. Treatment of the tooth consisted of cause-related therapy, surgical exploration, and bone grafting. A very deep circumferential bony defect at the palatal root of tooth #14 was noted during surgery. After the operation, the wound healed without incidence, but 10 days later, a maxillary sinusitis and periapical abscess developed. To control the infection, an evaluation of sinus and alveolus using computed tomographs was performed, systemic antibiotics were prescribed, and endodontic treatment was initiated. Two weeks after surgical treatment, the infection was relieved with the help of antibiotics and endodontic treatment. Bilateral bony communications between the maxillary sinus and periodontal bony defect of maxillary first molars were shown on three-dimensional computed tomographs. The digitally reconstructed images added valuable information for evaluating the periodontal defects. Three-dimensional images from spiral computed tomographs (CT) aided in evaluating and treating the close relationship between maxillary sinus disease and adjacent periodontal defects.
D'lima, Johnson Prakash; Paul, Jose; Palathingal, Plato; Varma, Brr; Bhat, Mahalinga; Mohanty, Mira
2014-09-01
The present study was to evaluate histologically and histometrically the efficacy of Chitra granules in the regeneration of alveolar bone and to compare it with that of OsteoGenR (HA Resorb)(TM) in iatrogenically created alveolar bone defects in mongrel dogs. Four dogs (16 sites) were used for this split-mouth study. The animals were divided randomly into two groups of two animals. Same animals were used as control and test. Each dog had four implantation sites. The periodontal defects were prepared by acute defect model. Animals were sacrificed at 3 months (n=2), 6 months (n=2) and histologic and histometric evaluation was carried out. The data was analysed using statistical package Graph pad Software. Comparison of the hard and soft tissue parameters in the two groups was done using the Wilcoxan (Man Whitney), two tailed t-test. A p-value less than 0.05 were considered significant. Maturing bone with immature periodontal ligament fibers were observed at three months and advanced osteogenesis at six months with both the types of bone graft materials. The mean values showed that amount of new bone formed with OsteoGenR (HA Resorb)(TM) was slightly more than that obtained by Chitra granules in histometric evaluation. Histological study showed similar healing pattern with both the types of bone graft materials with maturing bone at 3 months and advanced osteogenesis at six months in experimental intraosseous periodontal defects in dogs. However, histological evaluation for longer period is necessary to determine the time taken for complete replacement of the bone graft materials with new bone.
NASA Astrophysics Data System (ADS)
Li, Y.; Robertson, C.
2018-06-01
The influence of irradiation defect dispersions on plastic strain spreading is investigated by means of three-dimensional dislocation dynamics (DD) simulations, accounting for thermally activated slip and cross-slip mechanisms in Fe-2.5%Cr grains. The defect-induced evolutions of the effective screw dislocation mobility are evaluated by means of statistical comparisons, for various defect number density and defect size cases. Each comparison is systematically associated with a quantitative Defect-Induced Apparent Straining Temperature shift (or «ΔDIAT»), calculated without any adjustable parameters. In the investigated cases, the ΔDIAT level associated with a given defect dispersion closely replicates the measured ductile to brittle transition temperature shift (ΔDBTT) due to the same, actual defect dispersion. The results are further analyzed in terms of dislocation-based plasticity mechanisms and their possible relations with the dose-dependent changes of the ductile to brittle transition temperature.
First-principles engineering of charged defects for two-dimensional quantum technologies
NASA Astrophysics Data System (ADS)
Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan
2017-12-01
Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.
Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto
2017-09-19
Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.
The Intra-Umbilical Approach in Umbilical Hernia
Arslan, Sukru; Korkut, Ercan
2014-01-01
Objective: To investigate the “intra-umbilical incision”, a smaller incision compared to classic incisions, in cases of umbilical hernia, and which we believe will contribute to patient satisfaction in aesthetic terms, and also the practicability of such operations. Materials and Methods: The umbilical margins of eight patients with an umbilical hernia were marked between the levels of 6 and 12 o’clock, and a median intra-umbilical skin incision was performed between these two points. In some cases, where exploration could not be performed sufficiently, the incision was extended horizontally from 6 or 12 o’clock. Hernia repair and mesh placement was then performed using an intra-umbilical approach. Results: Patients were investigated according to the defect size and requirement for intra-umbilical incision extension. No requirement for intra-umbilical incision was encountered in six patients with a facial defect diameter smaller than 4 cm, while the incision had to be extended in two patients with defects greater than 4 cm. Conclusion: The intra-umbilical approach in umbilical hernia surgery is aesthetically superior to classical approaches and is a practicable technique. PMID:25610291
Gurgel, Bruno César de Vasconcelos; Gonçalves, Patrícia Furtado; Pimentel, Suzana Peres; Nociti, Francisco Humberto; Sallum, Enilson Antonio; Sallum, Antonio Wilson; Casati, Marcio Zaffalon
2008-07-01
The aim of the present study was to histometrically evaluate bone healing in the absence of bone defects and in the presence of surgically created bone defects treated by guided bone regeneration at oxidized and turned implant surfaces. Three months after dental extractions, standardized buccal dehiscence defects (height: 5 mm; width: 4 mm) were surgically created following implant site preparation in the mandible of 10 dogs. Oxidized-surface implants (OSI) and turned-surface implants (TSI) were inserted bilaterally, and the bone defects were treated by guided bone regeneration. After 3 months of healing, the animals were sacrificed, blocks were dissected, and undecalcified sections were obtained and processed for histometric analysis. The percentage of bone-to-implant contact (BIC) and bone density (BD) was evaluated inside the threads on the buccal (regenerated bone) and lingual sides (pristine bone) of the implants. Data were evaluated using two-way analysis of variance (P <0.05). New bone formation could be observed in OSI and TSI in the region of the defect creation. The BIC values observed in OSI for pristine and regenerated bone were 57.03% +/- 21.86% and 40.86% +/- 22.73%, respectively. TSI showed lower values of BIC in pristine bone (37.39% +/- 23.33%) and regenerated bone (3.52% +/- 4.87%). The differences between OSI and TSI were statistically significant. BD evaluation showed no statistically significant differences between OSI and TSI in pristine and regenerated bone. The oxidized implant surface promoted a higher level of BIC than the turned implant surface at pristine and regenerated bone.
A case–control study of maternal bathing habits and risk for birth defects in offspring
2013-01-01
Background Nearly all women shower or take baths during early pregnancy; however, bathing habits (i.e., shower and bath length and frequency) may be related to the risk of maternal hyperthermia and exposure to water disinfection byproducts, both of which are suspected to increase risk for multiple types of birth defects. Thus, we assessed the relationships between bathing habits during pregnancy and the risk for several nonsyndromic birth defects in offspring. Methods Data for cases with one of 13 types of birth defects and controls from the National Birth Defects Prevention Study delivered during 2000–2007 were evaluated. Logistic regression analyses were conducted separately for each type of birth defect. Results There were few associations between shower frequency or bath frequency or length and risk for birth defects in offspring. The risk for gastroschisis in offspring was increased among women who reported showers lasting ≥15 compared to <15 minutes (adjusted odds ratio: 1.43, 95% confidence interval: 1.18-1.72). In addition, we observed modest increases in the risk for spina bifida, cleft lip with or without cleft palate, and limb reduction defects in offspring of women who showered ≥15 compared to <15 minutes. The results of comparisons among more specific categories of shower length (i.e., <15 minutes versus 15–19, 20–29, and ≥ 30 minutes) were similar. Conclusions Our findings suggest that shower length may be associated with gastroschisis, but the modest associations with other birth defects were not supported by analyses of bath length or bath or shower frequency. Given that showering for ≥15 minutes during pregnancy is very common, further evaluation of the relationship between maternal showering habits and birth defects in offspring is worthwhile. PMID:24131571
Brogly, Susan B.; Abzug, Mark J.; Watts, D. Heather; Cunningham, Coleen K.; Williams, Paige L.; Oleske, James; Conway, Daniel; Sperling, Rhoda S.; Spiegel, Hans; Van Dyke, Russell B.
2010-01-01
Background Some studies have detected associations between in utero antiretroviral therapy (ARV) exposure and birth defects but evidence is inconclusive. Methods 2,202 HIV-exposed children enrolled in the Pediatric AIDS Clinical Trials Group 219 and 219C protocols before one year of age were included. Birth defects were classified using the Metropolitan Atlanta Congenital Defects Program (MACDP) coding. Logistic regression models were used to evaluate associations between first trimester in utero ARV exposure and birth defects. Results 117 live-born children had birth defects for a prevalence of 5.3% (95% CI: 4.4, 6.3). Prevalence did not differ by HIV infection status or overall ARV exposure; rates were 4.8% (95% CI: 3.7, 6.1) and 5.8% (95% CI: 4.2, 7.8) in children without and with first trimester ARV exposure, respectively. The defect rate was higher among children with first trimester efavirenz exposure (5/32, 15.6%) versus children without first trimester efavirenz exposure [adjusted odds ratio (aOR)=4.31 (95% CI: 1.56, 11.86)]. Protective effects of first trimester zidovudine exposure on musculoskeletal defects were detected [aOR=0.24 (95% CI: 0.08, 0.69)], while a higher risk of heart defects was found [aOR=2.04 (95% CI: 1.03, 4.05)]. Conclusion The prevalence of birth defects was higher in this cohort of HIV-exposed children than in other pediatric cohorts. There was no association with overall ARV exposure, but there were some associations with specific agents including efavirenz. Additional studies are needed to rule out confounding and to evaluate newer ARV agents. PMID:20539252
Rapkin, Rachel B; Creinin, Mitchell D
2011-10-01
Neural tube defects are the second most common congenital anomaly in the United States, although their incidence may be decreased by periconception folic acid supplementation. A new oral contraceptive containing drospirenone and ethinyl estradiol plus levomefolate calcium was formulated to decrease the risk of neural tube defects in pregnancies conceived while taking or shortly after discontinuing this pill. Because of its novelty, very few studies have been performed to evaluate the efficacy, side effects and safety related to contraception, premenstrual dysphoric disorder and acne; therefore, literature evaluating similar contraceptives without levomefolate is reviewed. Additionally, we review studies evaluating the addition of levomefolate calcium to oral contraceptives containing 3 mg drospirenone and either 20 or 30 μg ethinyl estradiol. To date, no study has been performed to evaluate the effect this new oral contraceptive has on reducing the incidence of neural tube defects. This new pill has similar contraceptive efficacy, side effect, safety and benefits profile to other drospirenone-containing contraceptives. While also approved to prevent neural tube defects, no studies validate this claim and physician time is better spent counseling women, regardless of contraceptive choice, on the importance of folic acid supplementation during the child-bearing years.
Study of amended reports to evaluate and improve surgical pathology processes.
Meier, Frederick A; Varney, Ruan C; Zarbo, Richard J
2011-09-01
: Amended surgical pathology reports record defects in the process of transforming tissue specimens into diagnostic information. : Systematic study of amended reports tests 2 hypotheses: (a) that tracking amendment frequencies and the distribution of amendment types reveals relevant aspects of quality in surgical pathology's daily transformation of specimens into diagnoses and (b) that such tracking measures the effect, or lack of effect, of efforts to improve surgical pathology processes. : We applied a binary definition of altered reports as either amendments or addenda and a taxonomy of defects that caused amendments as misidentifications, specimen defects, misinterpretations, and report defects. During the introduction of a LEAN process improvement approach-the Henry Ford Productions System-we followed trends in amendment rates and defect fractions to (a) evaluate specific interventions, (b) sort case-by-case root causes of misidentifications, specimen defects, and misinterpretations, and (c) audit the ongoing accuracy of the classification of changed reports. LEAN is the management and production system of the Toyota Motor Corporation that promotes continuous improvement; it considers wasted resources expended for purposes other than creating value for end customers and targets such expenditures for elimination. : Introduction of real-time editing of amendments saw annual amendment rates increase from 4.8/1000 to 10.1/1000 and then decrease in an incremental manner to 5.6/1000 as Henry Ford Productions System-specific interventions were introduced. Before introduction of HFPS interventions, about a fifth of the amendments were due to misidentifications, a 10th were due to specimen defects, a quarter due to misinterpretation, and almost half were due to report defects. During the period of the initial application of HFPS, the fraction of amendments due to misidentifications decreased as those due to report defects increased, in a statistically linked manner. As HFPS interventions took hold, misidentifications fell from 16% to 9%, specimen defect rates remained variable, ranging between 2% and 11%, and misinterpretations fell from 18% to 3%. Reciprocally, report defects rose from 64% to 83% of all amendment-causing defects. A case-by-case study of misidentifications, specimen defects, and misinterpretations found that (a) intervention at the specimen collection level had disappointingly little effect on patient misidentifications; (b) standardization of specimen accession and gross examination reduced only specimen defects surrounding ancillary testing; but (c) a double review of breast and prostate cases was associated with drastically reduced misinterpretation defects. Finally, audit of both amendments and addenda demonstrated that 10% of the so-called addenda actually qualified as amendments. : Monitored by the consistent taxonomy, rates of amended reports first rose, then fell. Examining specific defect categories provided information for evaluating specific LEAN interventions. Tracking the downward trend of amendment rates seemed to document the overall success of surgical pathology quality improvement efforts. Process improvements modestly decreased fractions of misidentifications and markedly decreased misinterpretation fractions. Classification integrity requires real time, independent editing of both amendments (changed reports) and addenda (addition to reports).
NASA Astrophysics Data System (ADS)
Sun, Qianlai; Wang, Yin; Sun, Zhiyi
2018-05-01
For most surface defect detection methods based on image processing, image segmentation is a prerequisite for determining and locating the defect. In our previous work, a method based on singular value decomposition (SVD) was used to determine and approximately locate surface defects on steel strips without image segmentation. For the SVD-based method, the image to be inspected was projected onto its first left and right singular vectors respectively. If there were defects in the image, there would be sharp changes in the projections. Then the defects may be determined and located according sharp changes in the projections of each image to be inspected. This method was simple and practical but the SVD should be performed for each image to be inspected. Owing to the high time complexity of SVD itself, it did not have a significant advantage in terms of time consumption over image segmentation-based methods. Here, we present an improved SVD-based method. In the improved method, a defect-free image is considered as the reference image which is acquired under the same environment as the image to be inspected. The singular vectors of each image to be inspected are replaced by the singular vectors of the reference image, and SVD is performed only once for the reference image off-line before detecting of the defects, thus greatly reducing the time required. The improved method is more conducive to real-time defect detection. Experimental results confirm its validity.
Reliability of CBCT as an assessment tool for mandibular molars furcation defects
NASA Astrophysics Data System (ADS)
Marinescu, Adrian George; Boariu, Marius; Rusu, Darian; Stratul, Stefan-Ioan; Ogodescu, Alexandru
2014-01-01
Introduction. In numerous clinical situations it is not possible to have an exact clinical evaluation of the furcation defects. Recently the use of CBCT in periodontology has led to an increased precision in diagnostic. Aim. To determine the accuracy of CBCT as diagnostic tool of the furcation defects. Material and method. 19 patients with generalised advanced chronic periodontitis were included in this study, presenting a total of 25 lower molars with different degrees of furcation defects. Clinical and digital measurements (in mm) were performed on all the molars involved. The data obtained has been compared and statistically analysed. Results. The analysis of primary data has demonstrated that all the furcation grade II and III defects were revealed using the CBCT technique. Regarding the incipient defects (grade I Hamp < 3mm), the dimensions measured on CBCT images were slightly bigger. The results have shown that 84% of the defects detected by CBCT have been confirmed by clinical measurements. These data are similar to those revealed by other studies1. Conclusions. The use of CBCT technique in evaluation and diagnosis of human mandibular furcation defects can provide many important information regarding the size and aspect of the interradicular defect, efficiently and noninvasively. CBCT technique is used more effectively in detection of advanced furcation degree compared to incipient ones. However, the CBCT examination cannot replace, at least in this stage of development, the clinical measurements, especially the intraoperative ones, which are considered to represent the „golden standard" in this domain.
Torque test measurement in segmental bone defects using porous calcium phosphate cement implants.
Kroese-Deutman, Henriette C; Wolke, Joop G C; Spauwen, Paul H M; Jansen, John A
2010-10-01
This study was performed to assess the bone healing supporting characteristics of porous calcium phosphate (Ca-P) cement when implanted in a rabbit segmental defect model as well as to determine the reliability of torque testing as a method to verify bone healing. The middiaphyseal radius was chosen as the area to create bilaterally increasing defect sizes (5, 10, and 15 mm), which were either filled with porous Ca-P cement or left open as a control. After 12 weeks of implantation, torque test measurements as well as histological and radiographic evaluation were performed. In two of the open 15 mm control defects, bone bridging was visible at the radiographic and histological evaluation. Bone was observed to be present in all porous Ca-P cement implants (5, 10, and 15 mm defects) after 12 weeks. No significant differences in torque measurements were observed between the 5 and 10 mm filled and open control defects using a t-test. In addition, the mechanical strength of all operated specimens was similar compared with nonoperated bone samples. The torsion data for the 15 mm open defect appeared to be lower compared with the filled 15 mm defect, but no significant difference could be proven. Within the limitation of the study design, porous Ca-P cement implants demonstrated osteoconductive properties and confirmed to be a suitable scaffold material in a weight-bearing situation. Further, the used torque testing method was found to be unreliable for testing the mechanical properties of the healed bone defect.
NASA Astrophysics Data System (ADS)
Findeis, Dirk; Gryzagoridis, Jasson; Musonda, Vincent
2008-09-01
Digital Shearography and Infrared Thermography (IRT) techniques were employed to test non-destructively samples from aircraft structures of composite material nature. Background information on the techniques is presented and it is noted that much of the inspection work reviewed in the literature has focused on qualitative evaluation of the defects rather than quantitative. There is however, need to quantify the defects if the threshold rejection criterion of whether the component inspected is fit for service has to be established. In this paper an attempt to quantify induced defects on a helicopter main rotor blade and Unmanned Aerospace Vehicle (UAV) composite material is presented. The fringe patterns exhibited by Digital Shearography were used to quantify the defects by relating the number of fringes created to the depth of the defect or flaw. Qualitative evaluation of defects with IRT was achieved through a hot spot temperature indication above the flaw on the surface of the material. The results of the work indicate that the Shearographic technique proved to be more sensitive than the IRT technique. It should be mentioned that there is "no set standard procedure" tailored for testing of composites. Each composite material tested is more likely to respond differently to defect detection and this depends generally on the component geometry and a suitable selection of the loading system to suit a particular test. The experimental procedure that is reported in this paper can be used as a basis for designing a testing or calibration procedure for defects detection on any particular composite material component or structure.
Using parallel computing methods to improve log surface defect detection methods
R. Edward Thomas; Liya Thomas
2013-01-01
Determining the size and location of surface defects is crucial to evaluating the potential yield and value of hardwood logs. Recently a surface defect detection algorithm was developed using the Java language. This algorithm was developed around an earlier laser scanning system that had poor resolution along the length of the log (15 scan lines per foot). A newer...
Nondestructive evaluation of defects in wood pallet parts by ultrasonic scanning
M. Firoz Kabir; Philip A. Araman
2003-01-01
Ultrasonic scanning experiments were conducted for detecting defects in wood pallet parts using rolling transducers. The characterization of defects is important for sorting and grading pallet parts, as well as for manufacturing quality and durable pallets. This paper reports the scanning results for stringers and deckboards â the two main components of pallet for red...
Effects of log defects on lumber recovery.
James M. Cahill; Vincent S. Cegelka
1989-01-01
The impact of log defects on lumber recovery and the accuracy of cubic log scale deductions were evaluated from log scale and product recovery data for more than 3,000 logs. Lumber tally loss was estimated by comparing the lumber yield of sound logs to that of logs containing defects. The data were collected at several product recovery studies; they represent most of...
NASA Astrophysics Data System (ADS)
Malyshev, A. V.; Petrova, A. B.; Sokolovskiy, A. N.; Surzhikov, A. P.
2018-06-01
The method for evaluating the integral defects level and chemical homogeneity of ferrite ceramics based on temperature dependence analysis of initial permeability is suggested. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is relation of two parameters correlating with elastic stress value in a material. An indicator of structural perfection can be a maximum value of initial permeability close to Curie point as well. The temperature dependences of initial permeability have analyzed for samples sintered in laboratory conditions and for the ferrite industrial product. The proposed method allows controlling integral defects level of the soft ferrite products and has high sensitivity compare to typical X-ray methods.
Application of metal magnetic memory technology on defects detection of jack-up platform
NASA Astrophysics Data System (ADS)
Xu, Changhang; Cheng, Liping; Xie, Jing; Yin, Xiaokang; Chen, Guoming
2016-02-01
Metal magnetic memory test (MMMT), which is an effective way in evaluating early damages of ferrimagnets, can determine the existence of material stresses concentration and premature defects. As one of offshore oil exploration and development equipment, jack-up platform always generate stress concentration during its life-cycle due to complicated loading condition and the hash marine environment, which will decline the bearing capacity and cause serious consequences. The paper conducts in situ experiments of defects detection on some key structural components of jack-up platform using MMMT. The signals acquired by MMM-System are processed for feature extraction to evaluate the severity of structure stress concentration. The results show that the method presented in this paper based on MMMT can provide an effective and convenient way of defect detection and structural health monitoring for Jack-up Platform.
Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation.
Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser
2017-05-01
Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.
Optimization and evaluation of metal injection molding by using X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shidi; Zhang, Ruijie; Qu, Xuanhui, E-mail: quxh@ustb.edu.cn
2015-06-15
6061 aluminum alloy and 316L stainless steel green bodies were obtained by using different injection parameters (injection pressure, speed and temperature). After injection process, the green bodies were scanned by X-ray tomography. The projection and reconstruction images show the different kinds of defects obtained by the improper injection parameters. Then, 3D rendering of the Al alloy green bodies was used to demonstrate the spatial morphology characteristics of the serious defects. Based on the scanned and calculated results, it is convenient to obtain the proper injection parameters for the Al alloy. Then, reasons of the defect formation were discussed. During moldmore » filling, the serious defects mainly formed in the case of low injection temperature and high injection speed. According to the gray value distribution of projection image, a threshold gray value was obtained to evaluate whether the quality of green body can meet the desired standard. The proper injection parameters of 316L stainless steel can be obtained efficiently by using the method of analyzing the Al alloy injection. - Highlights: • Different types of defects in green bodies were scanned by using X-ray tomography. • Reasons of the defect formation were discussed. • Optimization of the injection parameters can be simplified greatly by the way of X-ray tomography. • Evaluation standard of the injection process can be obtained by using the gray value distribution of projection image.« less
Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature.
Morad, Golnaz; Kheiri, Lida; Khojasteh, Arash
2013-12-01
This review of literature was aimed to assess in vivo experiments which have evaluated the efficacy of dental pulp stem cells (DPSCs) for bone regeneration. An electronic search of English-language papers was conducted on PubMed database. Studies that assessed the use of DPSCs in bone regeneration in vivo were included and experiments evaluating regeneration of hard tissues other than bone were excluded. The retrieved articles were thoroughly reviewed according to the source of stem cell, cell carrier, the in vivo experimental model, defect type, method of evaluating bone regeneration, and the obtained results. Further assessment of the results was conducted by classifying the studies based on the defect type. Seventeen papers formed the basis of this systematic review. Sixteen out of 17 experiments were performed on animal models with mouse and rat being the most frequently used animal models. Seven out of 17 animal studies, contained subcutaneous pockets on back of the animal for stem cell implantation. In only one study hard tissue formation was not observed. Other types of defects used in the retrieved studies, included cranial defects and mandibular bone defects, in all of which bone formation was reported. When applied in actual bone defects, DPSCs were capable of regenerating bone. Nevertheless, a precise conclusion regarding the efficiency of DPSCs for bone regeneration is yet to be made, considering the limited number of the in vivo experiments and the heterogeneity within their methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guskuma, Marcos Heidy; Hochuli-Vieira, Eduardo; Pereira, Flávia Priscila; Rangel-Garcia, Idelmo; Okamoto, Roberta; Okamoto, Tetuo; Filho, Osvaldo Magro
2014-06-01
The purpose of this study was to evaluate the expression of proteins that participate in the osteoinduction stage (VEGF, BMP2 and CBFA1) of the process of bone regeneration of defects created in rat calvariae and filled with autogenous bone block grafts. 10 adult male rats (Rattus norvegicus albinus, Wistar) were used, who received two bone defects measuring 5 mm each in the calvariae. The bone defects constituted two experimental groups (n = 10): Control Group (CONT) (defects filled with a coagulum); Graft Group (GR) (defects filled with autogenous bone removed from the contralateral defect). The animals were submitted to euthanasia at 7 and 30 days post-operatively. Quantitative analysis demonstrated significantly greater bone formation in Group GR, but the presence of the studied proteins was significantly greater in the CONT Group in both time intervals of observation. It was not possible in this study in cortical bone block groups to detect the osteoinductive proteins in a significant amount during the repair process. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Henrionnet, Christel; Dumas, Dominique; Hupont, Sébastien; Stoltz, Jean François; Mainard, Didier; Gillet, Pierre; Pinzano, Astrid
2017-01-01
In tissue engineering approaches, the quality of substitutes is a key element to determine its ability to treat cartilage defects. However, in clinical practice, the evaluation of tissue-engineered cartilage substitute quality is not possible due to the invasiveness of the standard procedure, which is to date histology. The aim of this work was to validate a new innovative system performed from two-photon excitation laser adapted to an optical macroscope to evaluate at macroscopic scale the collagen network in cartilage tissue-engineered substitutes in confrontation with gold standard histologic techniques or immunohistochemistry to visualize type II collagen. This system permitted to differentiate the quality of collagen network between ITS and TGF-β1 treatments. Multiscale large field imaging combined to multimodality approaches (SHG-TCSPC) at macroscopical scale represent an innovative and non-invasive technique to monitor the quality of collagen network in cartilage tissue-engineered substitutes before in vivo implantation.
Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo
Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; ...
2015-04-28
We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less
Optimization of one-dimensional photonic crystals with double layer magneto-active defect
NASA Astrophysics Data System (ADS)
Mikhailova, T. V.; Berzhansky, V. N.; Shaposhnikov, A. N.; Karavainikov, A. V.; Prokopov, A. R.; Kharchenko, Yu. M.; Lukienko, I. M.; Miloslavskaya, O. V.; Kharchenko, M. F.
2018-04-01
Success of practical implementation of one-dimensional photonic crystals with magneto-active layers is evaluated in high values of magneto-optical (MO) quality factor Q and figure of merit F. The article relates to optimization of one-dimensional photonic crystals with double layer magneto-active (MA) defect of composition Bi1.0Y0.5Gd1.5Fe4.2Al0.8O12/Bi2.8Y0.2Fe5O12 located between the nongarnet dielectric Bragg mirrors. The structure design was performed by changing the number of layer pairs in Bragg mirrors m and the optical thickness of MA defect lM to achieve high values of MO characteristics. Theoretical predictions were confirmed by experimental investigation of eight synthesized configurations with m = 4 and m = 7. We have demonstrated the maximum Q = 15.1 deg and F = 7.5% at 624 nm for structure with m = 4 and lM = (2.5·λ0/2), where λ0 = 690 nm is the photonic band gap center. Configurations with m = 3 can also provide their effectiveness in realization. Maximum MO activity was achieved for configurations with m = 7. The structures with lM = (0.8·λ0/2) and lM = (2.5·λ0/2) showed respectively the specific Faraday rotation -113 deg/μm (that exceeds in 62 times the Faraday rotation of MA double layer film) at 654 nm and absolute Faraday rotation -20.6 deg at 626 nm.
NASA Astrophysics Data System (ADS)
Reddy, Pramod; Washiyama, Shun; Kaess, Felix; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko
2017-12-01
A theoretical framework that provides a quantitative relationship between point defect formation energies and growth process parameters is presented. It enables systematic point defect reduction by chemical potential control in metalorganic chemical vapor deposition (MOCVD) of III-nitrides. Experimental corroboration is provided by a case study of C incorporation in GaN. The theoretical model is shown to be successful in providing quantitative predictions of CN defect incorporation in GaN as a function of growth parameters and provides valuable insights into boundary phases and other impurity chemical reactions. The metal supersaturation is found to be the primary factor in determining the chemical potential of III/N and consequently incorporation or formation of point defects which involves exchange of III or N atoms with the reservoir. The framework is general and may be extended to other defect systems in (Al)GaN. The utility of equilibrium formalism typically employed in density functional theory in predicting defect incorporation in non-equilibrium and high temperature MOCVD growth is confirmed. Furthermore, the proposed theoretical framework may be used to determine optimal growth conditions to achieve minimum compensation within any given constraints such as growth rate, crystal quality, and other practical system limitations.
HDTS 2017.1 Testing and Verification Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, T.
2017-12-01
This report is a continuation of the series of Hunter Dose Tracking System (HDTS) Quality Assurance documents including (Foley and Powell, 2010; Dixon, 2012; Whiteside, 2017b). In this report we have created a suite of automated test cases and a system to analyze the results of those tests as well as documented the methodology to ensure the field system performs within specifications. The software test cases cover all of the functions and interactions of functions that are practical to test. With the developed framework, if software defects are discovered, it will be easy to create one or more test casesmore » to reproduce the defect and ensure that code changes correct the defect.« less
Oryan, Ahmad; Alidadi, Soodeh; Bigham-Sadegh, Amin; Moshiri, Ali
2016-10-01
Gelatin and chitosan are natural polymers that have extensively been used in tissue engineering applications. The present study aimed to evaluate the effectiveness of chitosan and gelatin or combination of the two biopolymers (chitosan-gelatin) as bone scaffold on bone regeneration process in an experimentally induced critical sized radial bone defect model in rats. Fifty radial bone defects were bilaterally created in 25 Wistar rats. The defects were randomly filled with chitosan, gelatin and chitosan-gelatin and autograft or left empty without any treatment (n = 10 in each group). The animals were examined by radiology and clinical evaluation before euthanasia. After 8 weeks, the rats were euthanized and their harvested healing bone samples were evaluated by radiology, CT-scan, biomechanical testing, gross pathology, histopathology, histomorphometry and scanning electron microscopy. Gelatin was biocompatible and biodegradable in vivo and showed superior biodegradation and biocompatibility when compared with chitosan and chitosan-gelatin scaffolds. Implantation of both the gelatin and chitosan-gelatin scaffolds in bone defects significantly increased new bone formation and mechanical properties compared with the untreated defects (P < 0.05). Combination of the gelatin and chitosan considerably increased structural and functional properties of the healing bones when compared to chitosan scaffold (P < 0.05). However, no significant differences were observed between the gelatin and gelatin-chitosan groups in these regards (P > 0.05). In conclusion, application of the gelatin alone or its combination with chitosan had beneficial effects on bone regeneration and could be considered as good options for bone tissue engineering strategies. However, chitosan alone was not able to promote considerable new bone formation in the experimentally induced critical-size radial bone defects.
NASA Astrophysics Data System (ADS)
Kuo, Chung-Feng Jeffrey; Lai, Chun-Yu; Kao, Chih-Hsiang; Chiu, Chin-Hsun
2018-05-01
In order to improve the current manual inspection and classification process for polarizing film on production lines, this study proposes a high precision automated inspection and classification system for polarizing film, which is used for recognition and classification of four common defects: dent, foreign material, bright spot, and scratch. First, the median filter is used to remove the impulse noise in the defect image of polarizing film. The random noise in the background is smoothed by the improved anisotropic diffusion, while the edge detail of the defect region is sharpened. Next, the defect image is transformed by Fourier transform to the frequency domain, combined with a Butterworth high pass filter to sharpen the edge detail of the defect region, and brought back by inverse Fourier transform to the spatial domain to complete the image enhancement process. For image segmentation, the edge of the defect region is found by Canny edge detector, and then the complete defect region is obtained by two-stage morphology processing. For defect classification, the feature values, including maximum gray level, eccentricity, the contrast, and homogeneity of gray level co-occurrence matrix (GLCM) extracted from the images, are used as the input of the radial basis function neural network (RBFNN) and back-propagation neural network (BPNN) classifier, 96 defect images are then used as training samples, and 84 defect images are used as testing samples to validate the classification effect. The result shows that the classification accuracy by using RBFNN is 98.9%. Thus, our proposed system can be used by manufacturing companies for a higher yield rate and lower cost. The processing time of one single image is 2.57 seconds, thus meeting the practical application requirement of an industrial production line.
A Study on the Effects of Ball Defects on the Fatigue Life in Hybrid Bearings
NASA Technical Reports Server (NTRS)
Tang, Ching-Yao; Foerster, Chad E.; O'Brien, Michael J.; Hardy, Brian S.; Goyal, Vinay K.; Nelson, Benjamin A.; Robinson, Ernest Y.; Ward, Peter C.; Hilton, Michael R.
2014-01-01
Hybrid ball bearings using silicon nitride ceramic balls with steel rings are increasingly being used in space mechanism applications due to their high wear resistance and long rolling contact fatigue life. However, qualitative and quantitative reports of the effects of ball defects that cause early fatigue failure are rare. We report on our approach to study these effects. Our strategy includes characterization of defects encountered in use, generation of similar defects in a laboratory setting, execution of full-scale bearing tests to obtain lifetimes, post-test characterization, and related finite-element modeling to understand the stress concentration of these defects. We have confirmed that at least one type of defect of appropriate size can significantly reduce fatigue life. Our method can be used to evaluate other defects as they occur or are encountered.
Endoanal ultrasonography in fecal incontinence: Current and future perspectives.
Albuquerque, Andreia
2015-06-10
Fecal incontinence has a profound impact in a patient's life, impairing quality of life and carrying a substantial economic burden due to health costs. It is an underdiagnosed condition because many affected patients are reluctant to report it and also clinicians are usually not alert to it. Patient evaluation with a detailed clinical history and examination is very important to indicate the type of injury that is present. Endoanal ultrasonography is currently the gold standard for sphincter evaluation in fecal incontinence and is a simple, well-tolerated and non-expensive technique. Most studies revealed 100% sensitivity in identifying sphincter defect. It is better than endoanal magnetic resonance imaging for internal anal sphincter defects, equivalent for the diagnosis of external anal sphincter defects, but with a lower capacity for assessment of atrophy of this sphincter. The most common cause of fecal incontinence is anal sphincter injury related to obstetric trauma. Only a small percentage of women are diagnosed with sphincter tears immediately after vaginal delivery, but endoanal ultrasonography shows that one third of these women have occult sphincter defects. Furthermore, in patients submitted to primary repair of these tears, ultrasound revealed a high frequency of persistent sphincter defects after surgery. Three-dimensional endoanal ultrasonography is currently largely used and accepted for sphincter evaluation in fecal incontinence, improving diagnostic accuracy and our knowledge of physiologic and pathological sphincters alterations. Conversely, there is currently no evidence to support the use of elastography in fecal incontinence evaluation.
Grover, Vishakha; Kapoor, Anoop; Malhotra, Ranjan; Sachdeva, Sonia
2012-01-01
Background: Gingival recession is a common occurrence and patients often report to dental clinic with associated problems such as root surface hypersensitivity, esthetic concerns, cervical root abrasions, and root caries that make it a concern for patients. Based upon the fact that gingival recession is an enigma for clinicians because of multitude of etiological factors and plethora of treatment modalities present for its treatment, a survey was conducted to assess knowledge as well as opinion about most common etiology, classification, and preferred treatment of gingival recession and to evaluate the interest and satisfaction of dentists in practicing periodontics. Materials and Methods: Study design consisted of a cross-sectional online survey, conducted among dentists practicing in state of Punjab, India, in the month of April 2011. A structured online questionnaire consisting of 17 questions evaluating the interest of dentists in periodontics based on knowledge about gingival recession (most of them giving the possibility of multiple choices of answers) was sent to about 300 dentists. Pearson Chi-Square and Mann-Whitney U tests were used for statistical analysis of data collected. P ≤ 0.05 was considered as statistically significant and P ≤ 0.01 considered as highly significant. Results: A greater proportion of periodontists had better knowledge about etiology (P = 0.07), classification (P = 0.000), and treatment of gingival recession (P = 0.000). A greater number of periodontists opted for the surgical modalities to correct the defects produced by gingival recession as compared to non-periodontists and had better interest (P = 0.000) and satisfaction (P = 0.000) in practicing periodontics. Conclusion: The results elucidated that periodontists had better interest and satisfaction in practicing periodontics, and were more inclined towards surgical correction of gingival recession as compared to non-periodontists. PMID:23162580
Grover, Vishakha; Kapoor, Anoop; Malhotra, Ranjan; Sachdeva, Sonia
2012-07-01
Gingival recession is a common occurrence and patients often report to dental clinic with associated problems such as root surface hypersensitivity, esthetic concerns, cervical root abrasions, and root caries that make it a concern for patients. Based upon the fact that gingival recession is an enigma for clinicians because of multitude of etiological factors and plethora of treatment modalities present for its treatment, a survey was conducted to assess knowledge as well as opinion about most common etiology, classification, and preferred treatment of gingival recession and to evaluate the interest and satisfaction of dentists in practicing periodontics. Study design consisted of a cross-sectional online survey, conducted among dentists practicing in state of Punjab, India, in the month of April 2011. A structured online questionnaire consisting of 17 questions evaluating the interest of dentists in periodontics based on knowledge about gingival recession (most of them giving the possibility of multiple choices of answers) was sent to about 300 dentists. Pearson Chi-Square and Mann-Whitney U tests were used for statistical analysis of data collected. P ≤ 0.05 was considered as statistically significant and P ≤ 0.01 considered as highly significant. A greater proportion of periodontists had better knowledge about etiology (P = 0.07), classification (P = 0.000), and treatment of gingival recession (P = 0.000). A greater number of periodontists opted for the surgical modalities to correct the defects produced by gingival recession as compared to non-periodontists and had better interest (P = 0.000) and satisfaction (P = 0.000) in practicing periodontics. The results elucidated that periodontists had better interest and satisfaction in practicing periodontics, and were more inclined towards surgical correction of gingival recession as compared to non-periodontists.
Inflammatory Bowel Disease in Primary Immunodeficiencies.
Kelsen, Judith R; Sullivan, Kathleen E
2017-08-01
Inflammatory bowel disease is most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. There is, however, increasing recognition of single gene defects that underlie a subset of patients with inflammatory bowel disease, particularly those with early-onset disease, and this review focuses on the primary immunodeficiencies associated with early-onset inflammatory bowel disease. The advent of next-generation sequencing has led to an improved recognition of single gene defects underlying some cases of inflammatory bowel disease. Among single gene defects, immune response genes are the most frequent category identified. This is also true of common genetic variants associated with inflammatory bowel disease, supporting a pivotal role for host responses in the pathogenesis. This review focuses on practical aspects related to diagnosis and management of children with inflammatory bowel disease who have underlying primary immunodeficiencies.
Electronic excitations and defects in fluoroperovskite LiBaF3
NASA Astrophysics Data System (ADS)
Springis, Maris; Brikmane, Liga; Tale, Ivar; Kulis, Peteris
2003-08-01
A survey of the present situation with respect to knowledge of lattice defects, electronic excitations, such as excitons and localized excitons, as well as energy storage and transfer phenomena in LiBaF3 crystals is given. Both phenomenological models and experimental interpretations of optical absorption bands, tentatively associated with F-type (electron) centers created by X-ray or electron irradiation, is reviewed. Interpretation of three radiative processes (super-fast core-valence transitions, slow trapped exciton luminescence and luminescence of structure defects) observed in undoped LiBaF3 crystals is analyzed with respect to practical application. Attention is paid to the behavior of ultraviolet emission so far ascribed to self-trapped exciton luminescence and also observed as a result of electron recombination with localized hole at various temperatures (even at room temperature), depending on crystal purity and growth conditions. Finally, some aspects of ionic processes in thermal relaxation of defects are pointed to.
Predicting Defects Using Information Intelligence Process Models in the Software Technology Project
Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy
2015-01-01
A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%–80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects. PMID:26495427
Predicting Defects Using Information Intelligence Process Models in the Software Technology Project.
Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy
2015-01-01
A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%-80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects.
Talbot effect of the defective grating in deep Fresnel region
NASA Astrophysics Data System (ADS)
Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei
2015-02-01
Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.
The association between major birth defects and preterm birth.
Honein, Margaret A; Kirby, Russell S; Meyer, Robert E; Xing, Jian; Skerrette, Nyasha I; Yuskiv, Nataliya; Marengo, Lisa; Petrini, Joann R; Davidoff, Michael J; Mai, Cara T; Druschel, Charlotte M; Viner-Brown, Samara; Sever, Lowell E
2009-03-01
To evaluate the association between preterm birth and major birth defects by maternal and infant characteristics and specific types of birth defects. We pooled data for 1995-2000 from 13 states with population-based birth defects surveillance systems, representing about 30% of all U.S. births. Analyses were limited to singleton, live births from 24-44 weeks gestational age. Overall, birth defects were more than twice as common among preterm births (24-36 weeks) compared with term births (37-41 weeks gestation) (prevalence ratio [PR] = 2.65, 95% confidence interval [CI] 2.62-2.68), and approximately 8% of preterm births had a birth defect. Birth defects were over five times more likely among very preterm births (24-31 weeks gestation) compared with term births (PR = 5.25, 95% CI 5.15-5.35), with about 16% of very preterm births having a birth defect. Defects most strongly associated with very preterm birth included central nervous system defects (PR = 16.23, 95% CI 15.49-17.00) and cardiovascular defects (PR = 9.29, 95% CI 9.03-9.56). Birth defects contribute to the occurrence of preterm birth. Research to identify shared causal pathways and risk factors could suggest appropriate interventions to reduce both preterm birth and birth defects.
NASA Astrophysics Data System (ADS)
Wei-Li, Ma, Weiping; Pan-Qi, Wen-jiao, Dou; Yuan, Xin'an; Yin, Xiaokang
2018-04-01
Stainless steel is widely used in nuclear power plants, such as various high-radioactive pool, tools storage and fuel transportation channel, and serves as an important barrier to stop the leakage of high-radioactive material. NonDestructive Evaluation (NDE) methods, eddy current testing (ET), ultrasonic examination (UT), penetration testing (PT) and hybrid detection method, etc., have been introduced into the inspection of a nuclear plant. In this paper, the Alternating Current Field Measurement (ACFM) was fully applied to detect and evaluate the defects in the welds of the stainless steel. Simulations were carried out on different defect types, crack lengths, and orientation to reveal the relationship between the signals and dimensions to determine whether methods could be validated by the experiment. A 3-axis ACFM probe was developed and three plates including 16 defects, which served in nuclear plant before, were examined by automatic detection equipment. The result shows that the minimum detectable crack length on the surface is 2mm and ACFM shows excellent inspection results for a weld in stainless steel and gives an encouraging prospect of broader application.
Park, Su A.; Lee, Hyo-Jung; Kim, Keun-Suh; Lee, Jung-Tae; Kim, Sung-Yeol; Chang, Na-Hee
2018-01-01
Insufficient bone volume is one of the major challenges encountered by dentists after dental implant placement. This study aimed to evaluate the efficacy of a customized three-dimensional polycaprolactone (3D PCL) scaffold implant fabricated with a 3D bio-printing system to facilitate rapid alveolar bone regeneration. Saddle-type bone defects were surgically created on the healed site after extracting premolars from the mandibles of four beagle dogs. The defects were radiologically examined using computed tomography for designing a customized 3D PCL scaffold block to fit the defect site. After fabricating 3D PCL scaffolds using rapid prototyping, the scaffolds were implanted into the alveolar bone defects along with β-tricalcium phosphate powder. In vivo analysis showed that the PCL blocks maintained the physical space and bone conductivity around the defects. In addition, no inflammatory infiltrates were observed around the scaffolds. However, new bone formation occurred adjacent to the scaffolds, rather than directly in contact with them. More new bone was observed around PCL blocks with 400/1200 lattices than around blocks with 400/400 lattices, but the difference was not significant. These results indicated the potential of 3D-printed porous PCL scaffolds to promote alveolar bone regeneration for defect healing in dentistry. PMID:29401707
Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko
2015-07-01
The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhanced capture rate for haze defects in production wafer inspection
NASA Astrophysics Data System (ADS)
Auerbach, Ditza; Shulman, Adi; Rozentsvige, Moshe
2010-03-01
Photomask degradation via haze defect formation is an increasing troublesome yield problem in the semiconductor fab. Wafer inspection is often utilized to detect haze defects due to the fact that it can be a bi-product of process control wafer inspection; furthermore, the detection of the haze on the wafer is effectively enhanced due to the multitude of distinct fields being scanned. In this paper, we demonstrate a novel application for enhancing the wafer inspection tool's sensitivity to haze defects even further. In particular, we present results of bright field wafer inspection using the on several photo layers suffering from haze defects. One way in which the enhanced sensitivity can be achieved in inspection tools is by using a double scan of the wafer: one regular scan with the normal recipe and another high sensitivity scan from which only the repeater defects are extracted (the non-repeater defects consist largely of noise which is difficult to filter). Our solution essentially combines the double scan into a single high sensitivity scan whose processing is carried out along two parallel routes (see Fig. 1). Along one route, potential defects follow the standard recipe thresholds to produce a defect map at the nominal sensitivity. Along the alternate route, potential defects are used to extract only field repeater defects which are identified using an optimal repeater algorithm that eliminates "false repeaters". At the end of the scan, the two defect maps are merged into one with optical scan images available for all the merged defects. It is important to note, that there is no throughput hit; in addition, the repeater sensitivity is increased relative to a double scan, due to a novel runtime algorithm implementation whose memory requirements are minimized, thus enabling to search a much larger number of potential defects for repeaters. We evaluated the new application on photo wafers which consisted of both random and haze defects. The evaluation procedure involved scanning with three different recipe types: Standard Inspection: Nominal recipe with a low false alarm rate was used to scan the wafer and repeaters were extracted from the final defect map. Haze Monitoring Application: Recipe sensitivity was enhanced and run on a single field column from which on repeating defects were extracted. Enhanced Repeater Extractor: Defect processing included the two parallel routes: a nominal recipe for the random defects and the new high sensitive repeater extractor algorithm. The results showed that the new application (recipe #3) had the highest capture rate on haze defects and detected new repeater defects not found in the first two recipes. In addition, the recipe was much simpler to setup since repeaters are filtered separately from random defects. We expect that in the future, with the advent of mask-less lithography and EUV lithography, the monitoring of field and die repeating defects on the wafer will become a necessity for process control in the semiconductor fab.
Reliability-based management of buried pipelines considering external corrosion defects
NASA Astrophysics Data System (ADS)
Miran, Seyedeh Azadeh
Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub-system. Sensitivity analysis is also performed to determine to which incorporated parameter(s) in the growth models reliability of the studied pipeline is most sensitive. The reliability analysis results suggest that newly generated defects should be considered in calculating failure probability, especially for prediction of long-term performance of the pipeline and also, impact of the statistical uncertainty in the model parameters is significant that should be considered in the reliability analysis. Finally, with the evaluated time-dependent failure probabilities, a life cycle-cost analysis is conducted to determine optimal inspection interval of studied pipeline. The expected total life-cycle costs consists construction cost and expected costs of inspections, repair, and failure. The repair is conducted when failure probability from any described failure mode exceeds pre-defined probability threshold after each inspection. Moreover, this study also investigates impact of repair threshold values and unit costs of inspection and failure on the expected total life-cycle cost and optimal inspection interval through a parametric study. The analysis suggests that a smaller inspection interval leads to higher inspection costs, but can lower failure cost and also repair cost is less significant compared to inspection and failure costs.
Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel
NASA Astrophysics Data System (ADS)
Jin, Hyung-Ha; Kwon, Junhyun; Shin, Chansun
2014-01-01
The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.
Determination of volatile marker compounds of common coffee roast defects.
Yang, Ni; Liu, Chujiao; Liu, Xingkun; Degn, Tina Kreuzfeldt; Munchow, Morten; Fisk, Ian
2016-11-15
Coffee beans from the same origin were roasted using six time-temperature profiles, in order to identify volatile aroma compounds associated with five common roast coffee defects (light, scorched, dark, baked and underdeveloped). Thirty-seven volatile aroma compounds were selected on the basis that they had previously been identified as potent odorants of coffee and were also identified in all coffee brew preparations; the relative abundance of these aroma compounds was then evaluated using gas chromatography mass spectrometry (GC-MS) with headspace solid phase micro extraction. Some of the 37 key aroma compounds were significantly changed in each coffee roast defect and changes in one marker compound was chosen for each defect type, that is, indole for light defect, 4-ethyl-2-methoxyphenol for scorched defect, phenol for dark defect, maltol for baked defect and 2,5-dimethylfuran for underdeveloped defect. The association of specific changes in aroma profiles for different roast defects has not been shown previously and could be incorporated into screening tools to enable the coffee industry quickly identify if roast defects occur during production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers
Ren, Ming; Song, Bo; Dong, Ming
2017-01-01
Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring. PMID:29125544
Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers.
Ren, Ming; Zhou, Jierui; Song, Bo; Zhang, Chongxing; Dong, Ming; Albarracín, Ricardo
2017-11-10
Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring.
NASA Astrophysics Data System (ADS)
Shen, Chien-wen
2009-01-01
During the processes of TFT-LCD manufacturing, steps like visual inspection of panel surface defects still heavily rely on manual operations. As the manual inspection time of TFT-LCD manufacturing could range from 4 hours to 1 day, the reliability of time forecasting is thus important for production planning, scheduling and customer response. This study would like to propose a practical and easy-to-implement prediction model through the approach of Bayesian networks for time estimation of manual operated procedures in TFT-LCD manufacturing. Given the lack of prior knowledge about manual operation time, algorithms of necessary path condition and expectation-maximization are used for structural learning and estimation of conditional probability distributions respectively. This study also applied Bayesian inference to evaluate the relationships between explanatory variables and manual operation time. With the empirical applications of this proposed forecasting model, approach of Bayesian networks demonstrates its practicability and prediction accountability.
Utilization of Additive Manufacturing in Evaluating the Performance of Internally Defected Materials
NASA Astrophysics Data System (ADS)
Mourad, A.-H. I.; Ghazal, A. M.; Syam, M. M.; Qadi, O. D. Al; Jassmi, H. Al
2018-05-01
The elimination of internal defects in a material present in the raw material or generated during the manufacturing or service is difficult. The inclusions of the defects have an adverse effect on the load bearing capacity. The presence of the cracks subjected to a specific orientation in materials or machinery can cause devastating unexpected failure during operation. Analysis of the failure in the components with cracks is more confined to analytical and numerical evaluation. The experimental evaluation has been tedious due to the complexity of replicating the actual defected component. The potential of additive manufacturing in developing user-defined components with cracks for the experimental evaluation is explored in this research. The present research investigated the effect of the internal elliptical cracks aligned at different orientations on the mechanical performance of polylactic acid (Green filament). The Fusion Deposition Method was utilized for the development of the standard tensile specimens with internal elliptical crack oriented at 0°, 45° and 90° using UltiMaker 2. The results proved that there is a considerable reduction in the load bearing capacity due to the presence of the cracks. The maximum load bearing capacity decreased by 15.01% for the specimen with crack inclined at 0° to the lateral axis compared to crack- free specimen. The nature of the fracture and the stress-strain graph evidently showcase the brittle nature of the material. The SEM image of the fractured region proved the phenomenal characteristics such as strong adhesion between the layers and the proper material flow. In the light of the results of this work, it can be concluded that the 3-D printing methodology is effective for evaluating the mechanical performance of the internally defected material.
Paul, Jose; Palathingal, Plato; Varma, BRR; Bhat, Mahalinga; Mohanty, Mira
2014-01-01
Aim: The present study was to evaluate histologically and histometrically the efficacy of Chitra granules in the regeneration of alveolar bone and to compare it with that of OsteoGenR (HA Resorb)TM in iatrogenically created alveolar bone defects in mongrel dogs. Materials and Methods: Four dogs (16 sites) were used for this split-mouth study. The animals were divided randomly into two groups of two animals. Same animals were used as control and test. Each dog had four implantation sites. The periodontal defects were prepared by acute defect model. Animals were sacrificed at 3 months (n=2), 6 months (n=2) and histologic and histometric evaluation was carried out. Statistical Analysis: The data was analysed using statistical package Graph pad Software. Comparison of the hard and soft tissue parameters in the two groups was done using the Wilcoxan (Man Whitney), two tailed t-test. A p-value less than 0.05 were considered significant. Results: Maturing bone with immature periodontal ligament fibers were observed at three months and advanced osteogenesis at six months with both the types of bone graft materials. The mean values showed that amount of new bone formed with OsteoGenR (HA Resorb)TM was slightly more than that obtained by Chitra granules in histometric evaluation. Conclusion: Histological study showed similar healing pattern with both the types of bone graft materials with maturing bone at 3 months and advanced osteogenesis at six months in experimental intraosseous periodontal defects in dogs. However, histological evaluation for longer period is necessary to determine the time taken for complete replacement of the bone graft materials with new bone. PMID:25386523
... with further research. Until researchers can identify the exact gene causing cardiomyopathy, there is no known way ... that it is not a practical or reasonable solution since it would involve removing a defective protein ...
Calvo-Guirado, José Luis; Aguilar-Salvatierra, Antonio; Ramírez-Fernández, Maria P; Maté Sánchez de Val, José E; Delgado-Ruiz, Rafael Arcesio; Gómez-Moreno, Gerardo
2016-08-01
This study aimed to carry out the evaluation of bone response of new bone formation to two different xenografts (bovine and porcine) biomaterials inserted in rabbit tibiae. The study used a total of 20 male New Zealand albino rabbits. They received a total of 40 grafts in the proximal metaphyseal areas of both tibiae. Two biomaterials were evaluated: 20 porcine xenografts, as a bone granulate (OsteoBiol(®) MP3(®) ; Tecnoss srl, Giaveno, Italy), were placed in the proximal metaphyseal area of the right tibia, 20 anorganic bovine bone mineral grafting (4BONE(™) XBM, MIS Implants Inc., BARLEV, Israel) were placed in the left tibia. Following graft insertion, the animals were sacrificed in two groups of 10 animals, after 1 and 4 months, respectively. For each group, biomaterials were analyzed: newly formed bone, residual graft materials and the connective tissue. Histomorphometric, EDX analysis and element mapping were performed at 1 and 4 months after graft insertion. At 4 months after treatment, the bone defects displayed radiological images that showed complete repair of osseous defects. Histomorphometric evaluation showed that for the porcine xenograft, the study averages for newly formed bone represented 84.23 ± 2.9%, while bovine matrix was 79.34 ± 2.1%. For residual graft material, the porcine biomaterial had 11.23 ± 1.7% and the bovine graft 31.56 ± 2.3%. Finally, the connective tissue for MP3 was 10.33 ± 1.8%, while for the 4BONE(™) XBM we obtained 14.34 ± 2.9%. Element analysis revealed higher percentages of Ca (54 ± 9%) and P (35 ± 6%) in the group B than group A and control group (P < 0.05). Defects of a critical size in a rabbit tibia model can be sealed using a bovine porous biphasic calcium phosphate and MP3 material; this supports new bone formation, creates a bridge between borders, and facilitates bone ingrowth in both biomaterials. Furthermore, this study observed partial dissolution of the mineral phase of four bone graft and complete resorption of porcine MP3 biomaterial and its incorporation into the surrounding bone. Depending on clinical needs, each biomaterial could be useful in daily clinical practice. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bulk Diffusion via a ``kick-out'' method for Lithium in the decomposition reaction LiAlH4/Li3AlH6
NASA Astrophysics Data System (ADS)
Rolih, Biljana; Ozolins, Vidvuds; Ozolins Team
2013-03-01
In the pursuit to find a practical system for hydrogen storage, complex metal hydrides have long been considered as viable candidates due to their high hydrogen content. However, some of the challenges faced with these types of systems are poor thermodynamics or kinetics. The underlying mechanisms, and their limiting processes, for the decomposition of these materials need to be understood. From experimental work on the decomposition of hydrogen storage materials, it has been suggested that bulk diffusion of metal species is the bottleneck for hydrogen release. In this work is the dehydrogenation we investigated the system LiAlH4 LiAlH6 with favorable hydrogen release (5.3 wt %), at moderate temperatures. Using first-principles density functional theory we found the defects facilitating mass transport by calculating individual formation energies, highest concentrations, and activation barriers for defect mobility. The mass transport of Lithium is found to be mediated by a ``kick-out'' mechanism. The results are used to further our understanding of the fundamental mechanism of mass transport and evaluate the possibility of kinetics as the limiting process in this reaction.
Knowledge-based verification of clinical guidelines by detection of anomalies.
Duftschmid, G; Miksch, S
2001-04-01
As shown in numerous studies, a significant part of published clinical guidelines is tainted with different types of semantical errors that interfere with their practical application. The adaptation of generic guidelines, necessitated by circumstances such as resource limitations within the applying organization or unexpected events arising in the course of patient care, further promotes the introduction of defects. Still, most current approaches for the automation of clinical guidelines are lacking mechanisms, which check the overall correctness of their output. In the domain of software engineering in general and in the domain of knowledge-based systems (KBS) in particular, a common strategy to examine a system for potential defects consists in its verification. The focus of this work is to present an approach, which helps to ensure the semantical correctness of clinical guidelines in a three-step process. We use a particular guideline specification language called Asbru to demonstrate our verification mechanism. A scenario-based evaluation of our method is provided based on a guideline for the artificial ventilation of newborn infants. The described approach is kept sufficiently general in order to allow its application to several other guideline representation formats.
Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites.
Martínez-Orozco, R D; Rosu, H C; Lee, Soo-Wohn; Rodríguez-González, V
2013-12-15
Nanocomposites of graphene oxide (GO) and silver nanoparticles (AgNPs) were synthetized using a practical photochemical silver functionalization. Their photocatalytic activities were evaluated with two dyes, Rhodamine B and Indigo Carmine, under visible-light irradiation. The prepared nanocomposites were characterized by HRTEM, FESEM, XRD, Raman, FTIR and UV-vis absorption spectroscopy. These nanocomposites present new defect domains of sp(3) type in combination with several graphitic functional groups that act as nucleation sites for anchoring AgNPs, while the sp(2)-sp(3) edge defects domains of GO generate the photoactivity. Furthermore, their photocatalytic performances are governed by their large adsorption capacity, and strong interaction with dye chromophores. A comprehensive photocatalytic way underlying the importance of adsorption is suggested to explain the low visible-light responsive photoactivity of the AgNPs-GO nanocomposites and the possible binding-site saturation. Then, the usage of H2SO4 allows the production of ionic species and helps to confirm the strong adsorption of both dyes. The ability to synthesize AgNPs-GO nanocomposites with extensive adsorptive capacity is certainly of interest for the efficient removal of hazardous materials. Copyright © 2013 Elsevier B.V. All rights reserved.
Robotic Inspection System for Non-Destructive Evaluation (nde) of Pipes
NASA Astrophysics Data System (ADS)
Mackenzie, L. D.; Pierce, S. G.; Hayward, G.
2009-03-01
The demand for remote inspection of pipework in the processing cells of nuclear plant provides significant challenges of access, navigation, inspection technique and data communication. Such processing cells typically contain several kilometres of densely packed pipework whose actual physical layout may be poorly documented. Access to these pipes is typically afforded through the radiation shield via a small removable concrete plug which may be several meters from the actual inspection site, thus considerably complicating practical inspection. The current research focuses on the robotic deployment of multiple NDE payloads for weld inspection along non-ferritic steel pipework (thus precluding use of magnetic traction options). A fully wireless robotic inspection platform has been developed that is capable of travelling along the outside of a pipe at any orientation, while avoiding obstacles such as pipe hangers and delivering a variety of NDE payloads. An eddy current array system provides rapid imaging capabilities for surface breaking defects while an on-board camera, in addition to assisting with navigation tasks, also allows real time image processing to identify potential defects. All sensor data can be processed by the embedded microcontroller or transmitted wirelessly back to the point of access for post-processing analysis.
2014-10-01
spacer placed at the time of the “Pre-Procedure”. Autogenous Cancellous Bone Graft (ACBG harvested from the sternum at the time of the treatment...will receive more specialized training and orientation to microCT analysis, both on a theoretical and practical level. He will work with raw CT...adjacent to the PMMA) composed of mononuclear cells and exhibited extensive, diffuse fibrous connective tissue. Performed histology on goat autogenous
Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint
NASA Astrophysics Data System (ADS)
Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar
2015-11-01
Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.
NASA Astrophysics Data System (ADS)
Gallagher, H. G.; Sherwood, J. N.; Vrcelj, R. M.
2017-10-01
An examination has been made of the defect structure of crystals of the energetic material β-cyclotetramethylene-tetranitramine (HMX) using both Laboratory (Lang method) and Synchrotron (Bragg Reflection and Laue method) techniques. The results of the three methods are compared with particular attention to the influence of potential radiation damage caused to the samples by the latter, more energetic, technique. The comparison shows that both techniques can be confidently used to evaluate the defect structures yielding closely similar results. The results show that, even under the relatively casual preparative methods used (slow evaporation of unstirred solutions at constant temperature), HMX crystals of high perfection can be produced. The crystals show well defined bulk defect structures characteristic of organic materials in general: growth dislocations, twins, growth sector boundaries, growth banding and solvent inclusions. The distribution of the defects in specific samples is correlated with the morphological variation of the grown crystals. The results show promise for the further evaluation and characterisation of the structure and properties of dislocations and other defects and their involvement in mechanical and energetic processes in this material.
Textural defect detect using a revised ant colony clustering algorithm
NASA Astrophysics Data System (ADS)
Zou, Chao; Xiao, Li; Wang, Bingwen
2007-11-01
We propose a totally novel method based on a revised ant colony clustering algorithm (ACCA) to explore the topic of textural defect detection. In this algorithm, our efforts are mainly made on the definition of local irregularity measurement and the implementation of the revised ACCA. The local irregular measurement defined evaluates the local textural inconsistency of each pixel against their mini-environment. In our revised ACCA, the behaviors of each ant are divided into two steps: release pheromone and act. The quantity of pheromone released is proportional to the irregularity measurement; the actions of the ants to act next are chosen independently of each other in a stochastic way according to some evaluated heuristic knowledge. The independency of ants implies the inherent parallel computation architecture of this algorithm. We apply the proposed method in some typical textural images with defects. From the series of pheromone distribution map (PDM), it can be clearly seen that the pheromone distribution approaches the textual defects gradually. By some post-processing, the final distribution of pheromone can demonstrate the shape and area of the defects well.
Doyle, Heather; Lohfeld, Stefan; Dürselen, Lutz; McHugh, Peter
2015-04-01
Computational model geometries of tibial defects with two types of implanted tissue engineering scaffolds, β-tricalcium phosphate (β-TCP) and poly-ε-caprolactone (PCL)/β-TCP, are constructed from µ-CT scan images of the real in vivo defects. Simulations of each defect under four-point bending and under simulated in vivo axial compressive loading are performed. The mechanical stability of each defect is analysed using stress distribution analysis. The results of this analysis highlights the influence of callus volume, and both scaffold volume and stiffness, on the load-bearing abilities of these defects. Clinically-used image-based methods to predict the safety of removing external fixation are evaluated for each defect. Comparison of these measures with the results of computational analyses indicates that care must be taken in the interpretation of these measures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Perception of risk from automobile safety defects.
Slovic, P; MacGregor, D; Kraus, N N
1987-10-01
Descriptions of safety engineering defects of the kind that compel automobile manufacturers to initiate a recall campaign were evaluated by individuals on a set of risk characteristic scales that included overall vehicle riskiness, manufacturer's ability to anticipate the defect, importance for vehicle operation, severity of consequences and likelihood of compliance with a recall notice. A factor analysis of the risk characteristics indicated that judgments could be summarized in terms of two composite scales, one representing the uncontrollability of the damage the safety defect might cause and the other representing the foreseeability of the defect by the manufacturer. Motor vehicle defects were found to be highly diverse in terms of the perceived qualities of their risks. Location of individual defects within the factor space was closely associated with perceived riskiness, perceived likelihood of purchasing another car from the same manufacturer, perceived likelihood of compliance with a recall notice, and actual compliance rates.
Assessment of rail long-pitch corrugation
NASA Astrophysics Data System (ADS)
Valehrach, Jan; Guziur, Petr; Riha, Tomas; Plasek, Otto
2017-09-01
The paper focuses on defects of the running surface of the rail, namely the rail corrugation defect and specifically long-pitch corrugation in curves of small radii. These defects cause a shorter life of the rails, greater maintenance costs and increase the noise and vibration pollution. Therefore, it is very important to understand the formation and development of the imperfection of the rails. In the paper, various sections of railway tracks in the Czech Republic are listed, each of them completed with comparison of defect development, the particular track superstructure, rolling stock, axle load, traffic load etc. Based on performed measurements, defect development has been proved as different on sections with similar (or even same) parameters. The paper assumes that a train velocity is the significant circumstance for defect development rates. Assessment of track section with under sleeper pads, which are expected to be the one of the possible ways to suppress the corrugation defect development, is included in evaluation.
Final project report for NEET pulsed ion beam project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucheyev, S. O.
The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurementmore » of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.« less
Platelet rich fibrin in jaw defects
NASA Astrophysics Data System (ADS)
Nica, Diana; Ianes, Emilia; Pricop, Marius
2016-03-01
Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.
3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.
Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L
2017-01-01
The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.
3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration
Nyberg, Ethan L.; Farris, Ashley L.; Hung, Ben P.; Dias, Miguel; Garcia, Juan R.; Dorafshar, Amir H.; Grayson, Warren L.
2016-01-01
The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are 3 key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects. PMID:27295184
Nanoparticles-Based Systems for Osteochondral Tissue Engineering.
Oliveira, Isabel; Vieira, Sílvia; Oliveira, J Miguel; Reis, Rui L
2018-01-01
Osteochondral lesions represent one of the major causes of disabilities in the world. These defects are due to degenerative or inflammatory arthritis, but both affect the articular cartilage and the underlying subchondral bone. Defects from trauma or degenerative pathology frequently cause severe pain, joint deformity, and loss of joint motion. Osteochondral defects are a significant challenge in orthopedic surgery, due to the cartilage complexity and unique structure, as well as its exposure to high pressure and motion. Although there are treatments routinely performed in the clinical practice, they present several limitations. Tissue engineering can be a suitable alternative for osteochondral defects since bone and cartilage engineering had experienced a notable advance over the years. Allied with nanotechnology, osteochondral tissue engineering (OCTE) can be leveled up, being possible to create advanced structures similar to the OC tissue. In this chapter, the current strategies using nanoparticles-based systems are overviewed. The results of the studies herein considered confirm that advanced nanomaterials will undoubtedly play a crucial role in the design of strategies for treatment of osteochondral defects in the near future.
Giacomelli, Roberto; Di Cesare, Ernesto; Cipriani, Paola; Ruscitti, Piero; Di Sibio, Alessandra; Liakouli, Vasiliki; Gennarelli, Antonio; Carubbi, Francesco; Splendiani, Alessandra; Berardicurti, Onorina; Di Benedetto, Paola; Ciccia, Francesco; Guggino, Giuliana; Radchenko, Ganna; Triolo, Giovanni; Masciocchi, Carlo
2017-09-01
To evaluate occult cardiac involvement in asymptomatic systemic sclerosis (SSc) patients by pharmacological stress, rest perfusion and delayed enhancement cardiac magnetic resonance (CMR), for a very early identification of patients at higher risk of cardiac-related mortality. Sixteen consecutive patients with definite SSc, fulfilling the American College of Rheumatology/European League Against Rheumatism 2013 classification criteria in less than 1 year from the onset of Raynaud's phenomenon, underwent pharmacological stress, rest perfusion and delayed enhancement CMR. At enrollment, no patient showed signs and/or symptoms suggestive for cardiac involvement. No patient showed traditional cardiovascular risk factors. Both the 12-lead electrocardiogram examination and echocardiographic evaluation did not show any alterations in our cohort. Stress perfusion defects of left ventricle were detected in six out of 16 (37.5%) patients and these defects did not match with the coronary flow distribution. The results showed the presence of two different patterns of stress perfusion defects: sub-endocardial and/or a midmyocardial. The presence of stress perfusion defects did not correlate with any clinical feature of enrolled patients. Myocardial stress perfusion defects may be detected early by pharmacological stress perfusion CMR, a reliable and sensitive technique for the noninvasive evaluation of SSc heart disease, in patients with SSc of recent onset. These defects seem to be independent from traditional risk factors and associated comorbidities, suggesting they are a specific hallmark of the disease. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
Thin-film limit formalism applied to surface defect absorption.
Holovský, Jakub; Ballif, Christophe
2014-12-15
The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.
Filling defects in the pancreatic duct on endoscopic retrograde pancreatography.
Taylor, A J; Carmody, T J; Schmalz, M J; Wiedmeyer, D A; Stewart, E T
1992-12-01
Filling defects in the pancreatic duct are a frequent finding during endoscopic retrograde pancreatography (ERP) and have a variety of causes. Some filling defects may be artifactual or related to technical factors and, once their origin is recognized, can be disregarded. Others may be due to acute changes of pancreatitis and should prompt more careful injection of contrast material into the duct. Intraluminal masses may represent calculi or a neoplasm, either of which may require surgery or endoscopic intervention. The exact nature of these filling defects may not be apparent on radiographs, and other studies may be needed. This article reviews our approach to the evaluation of filling defects in the pancreatic duct.
Scheuerle, Angela
2011-01-01
Public health birth defect surveillance registries rely on health care provider diagnosis and definition of congenital anomalies. Major anomalies are likely to have consistent diagnoses across providers; however, definition of some more common, often minor, defects can be problematic. Of particular frustration are the transient neonatal heart findings: patent ductus arteriosus, patent foramen ovale, and pulmonary artery branch stenosis. Under certain circumstances these findings may be considered true anomalies-patent foramen ovale (PFO) as a clinical finding overlaps significantly with atrial septal defect (ASD) of secundum type, the latter being considered a true congenital malformation. Some criteria must be established to separate these conditions in case ascertainment. It is therefore helpful to understand the clinical definitions of patent foramen ovale and secundum atrial septal defect. Pediatric cardiologists in the greater Dallas, Texas metropolitan area were surveyed by telephone, fax, and/or email and asked what criteria they use to distinguish a PFO from a secundum ASD. This was an open-ended question. No baseline parameters were suggested or introduced by the interviewer. Pediatric cardiology fellowship training was identified for each physician to examine the hypothesis that graduates of a given program would use the same diagnostic criteria. Responses were obtained from 22 of 23 pediatric cardiologists. Four measurement criteria were identified: size of the opening, presence or absence of a flap of septal tissue, appearance of the defect on echocardiogram and presence/absence/amount of blood shunting across through the opening. Though there was overlap, diagnostic criteria differentiating PFO and secundum ASD varied among pediatric cardiologists. Two fellowship programs were well represented by the respondent population. Eight respondents were trained at Fellowship 1 and 5 at Fellowship 2. Place of fellowship training was not a strong indicator of which diagnostic criteria were used, even when graduates were in practice together. Physicians in private practice were more likely to report objective measurements as bases for their diagnostic decision. The pronounced variability in clinical definitions will be a problem for birth defect surveillance and research based upon the resultant database. When different physicians use different diagnostic criteria for borderline defects, it is impossible to know whether a defect ascertained and coded with a standard protocol is the same across the population. Since it is unlikely that consistent diagnostic criteria can be put in place, the surveillance program is burdened with compensating for the variability.
Olesova, V N; Amkhadova, M A; Simakova, T G; Mirgazizov, M Z; Pozharitskaya, M M
2017-03-01
For evaluation of the efficiency of bone substitute, nanostructurized Gamalant-paste-FORTEPlus was placed into a mandibular defect in rats. Bone tissue reparation was evaluated after 30 days by histological methods under a microscope. Use of bone substitute in experimental mandibular defect ensured more complete and rapid restructuring of the bone tissue in comparison with the control (natural healing).
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
2016-01-01
Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Conclusions Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils. PMID:27658310
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils.
Comparison of Diagnostic Accuracy between Octopus 900 and Goldmann Kinetic Visual Fields
Rowe, Fiona J.; Rowlands, Alison
2014-01-01
Purpose. To determine diagnostic accuracy of kinetic visual field assessment by Octopus 900 perimetry compared with Goldmann perimetry. Methods. Prospective cross section evaluation of 40 control subjects with full visual fields and 50 patients with known visual field loss. Comparison of test duration and area measurement of isopters for Octopus 3, 5, and 10°/sec stimulus speeds. Comparison of test duration and type of visual field classification for Octopus versus Goldmann perimetry. Results were independently graded for presence/absence of field defect and for type and location of defect. Statistical evaluation comprised of ANOVA and paired t test for evaluation of parametric data with Bonferroni adjustment. Bland Altman and Kappa tests were used for measurement of agreement between data. Results. Octopus 5°/sec perimetry had comparable test duration to Goldmann perimetry. Octopus perimetry reliably detected type and location of visual field loss with visual fields matched to Goldmann results in 88.8% of results (K = 0.775). Conclusions. Kinetic perimetry requires individual tailoring to ensure accuracy. Octopus perimetry was reproducible for presence/absence of visual field defect. Our screening protocol when using Octopus perimetry is 5°/sec for determining boundaries of peripheral isopters and 3°/sec for blind spot mapping with further evaluation of area of field loss for defect depth and size. PMID:24587983
Ye, Hongqiang; Ma, Qijun; Hou, Yuezhong; Li, Man; Zhou, Yongsheng
2017-12-01
Digital techniques are not clinically applied for 1-piece maxillary prostheses containing an obturator and removable partial denture retained by the remaining teeth because of the difficulty in obtaining sufficiently accurate 3-dimensional (3D) images. The purpose of this pilot clinical study was to generate 3D digital casts of maxillary defects, including the defective region and the maxillary dentition, based on multisource data registration and to evaluate their effectiveness. Twelve participants with maxillary defects were selected. The maxillofacial region was scanned with spiral computer tomography (CT), and the maxillary arch and palate were scanned using an intraoral optical scanner. The 3D images from the CT and intraoral scanner were registered and merged to form a 3D digital cast of the maxillary defect containing the anatomic structures needed for the maxillary prosthesis. This included the defect cavity, maxillary dentition, and palate. Traditional silicone impressions were also made, and stone casts were poured. The accuracy of the digital cast in comparison with that of the stone cast was evaluated by measuring the distance between 4 anatomic landmarks. Differences and consistencies were assessed using paired Student t tests and the intraclass correlation coefficient (ICC). In 3 participants, physical resin casts were produced by rapid prototyping from digital casts. Based on the resin casts, maxillary prostheses were fabricated by using conventional methods and then evaluated in the participants to assess the clinical applicability of the digital casts. Digital casts of the maxillary defects were generated and contained all the anatomic details needed for the maxillary prosthesis. Comparing the digital and stone casts, a paired Student t test indicated that differences in the linear distances between landmarks were not statistically significant (P>.05). High ICC values (0.977 to 0.998) for the interlandmark distances further indicated the high degree of consistency between the digital and stone casts. The maxillary prostheses showed good clinical effectiveness, indicating that the corresponding digital casts met the requirements for clinical application. Based on multisource data from spiral CT and the intraoral scanner, 3D digital casts of maxillary defects were generated using the registration technique. These casts were consistent with conventional stone casts in terms of accuracy and were suitable for clinical use. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
[Research and application of computer-aided technology in restoration of maxillary defect].
Cheng, Xiaosheng; Liao, Wenhe; Hu, Qingang; Wang, Qian; Dai, Ning
2008-08-01
This paper presents a new method of designing restoration model of maxillectomy defect through Computer aided technology. Firstly, 3D maxillectomy triangle mesh model is constructed from Helical CT data. Secondly, the triangle mesh model is transformed into initial computer-aided design (CAD) model of maxillectomy through reverse engineering software. Thirdly, the 3D virtual restoration model of maxillary defect is obtained after designing and adjusting the initial CAD model through CAD software according to the patient's practical condition. Therefore, the 3D virtual restoration can be fitted very well with the broken part of maxilla. The exported design data can be manufactured using rapid prototyping technology and foundry technology. Finally, the result proved that this method is effective and feasible.
Interproximal periodontal defect model in dogs: a pilot study.
Jung, U-W; Chang, Y-Y; Um, Y-J; Kim, C-S; Cho, K-S; Choi, S-H
2011-01-01
This study aimed to evaluate the validity of a surgically created interproximal periodontal defect in dogs. Surgery was performed in the interproximal area between the maxillary second and third premolars in two beagle dogs. Following an incision and reflection of the gingival flap, a 3-mm wide and 5-mm high defect was prepared surgically at the interproximal area. A thorough root planing was performed and the flap was coronally positioned and sutured. The contra-lateral area was served as the control with no surgical intervention. After 8 weeks of healing, the animals were killed and the defect was analysed histometrically and radiographically. The interproximal periodontal defect resembled a naturally occurring defect and mimicked a clinical situation. After healing, the defect showed limited bone (0.89±0.02mm) and cementum regeneration (1.50± 0.48mm). Within the limitations of this pilot study, the interproximal periodontal defect showed limited bone and cementum regeneration. Thus, it can be considered as a standardized, reproducible defect model for testing new biomaterials. © 2010 John Wiley & Sons A/S.
Precise annealing of focal plane arrays for optical detection
Bender, Daniel A.
2015-09-22
Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.
Precise annealing of focal plane arrays for optical detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Daniel A.
2017-10-17
Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.
A provisional fixed partial denture that simulates gingival tissue at the pontic-site defect.
Haj-Ali, Reem; Walker, Mary P
2002-03-01
A technique is presented for the fabrication of an esthetic, provisional fixed partial denture that compensates for a pontic-site ridge defect. This provisional restoration enables both the dentist and the patient to evaluate whether this prosthetic approach will adequately camouflage the pontic-site defect or whether surgical correction of the pontic site should also be considered. Copyright 2002 by The American College of Prosthodontists.
A Performance Evaluation of a Lean Reparable Pipeline in Various Demand Environments
2004-03-23
of defects (Dennis, 2002:90). Shingo espoused the true goal should be zero defects and to this end, invented the poka - yoke , or a simple, inexpensive...92). Despite the inability to eliminate human errors, poka - yoke devices can still enable the elimination of production defects (Dennis, 2002:91... Poka - yoke devices are essentially foolproofing mechanisms which incorporate automatic inspection into the production process. Despite the fact
Lee, Jung-Seok; Park, Weon-Yeong; Cha, Jae-Kook; Jung, Ui-Won; Kim, Chang-Sung; Lee, Yong-Keun
2012-01-01
Purpose This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. Methods A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral 4×4×5 mm (buccolingual width×mesiodistal width×depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Results Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. Conclusions In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation. PMID:22586523
Sculean, Anton; Windisch, Peter; Chiantella, Giovanni Carlo
2004-08-01
The purpose of the present case report is to clinically and histologically evaluate the healing of one advanced intrabony defect following treatment with an enamel matrix protein derivative (EMD) combined with a bovine-derived xenograft (BDX) and guided tissue regeneration (GTR). One patient with generalized chronic periodontitis and one advanced intrabony defect was treated with EMD + BDX + GTR. Notches were placed in the root at the level of the calculus and alveolar crest to aid histologic identification of new periodontal tissues. Postoperative healing was uneventful. At the 7-month histologic examination, healing in the intrabony component of the defect was characterized by formation of new connective tissue attachment (new cellular cementum with inserting collagen fibers) and new bone in the intrabony component. The BDX particles were surrounded by bone-like tissue. No direct contact between the graft particles and root surface (cementum or dentin) was observed. Healing in the suprabony defect component occurred through epithelial downgrowth that stopped at the level of the coronal notch. The BDX particles were entirely encapsulated in dense connective tissue, without any signs of bone formation. The present case report shows formation of new attachment apparatus consisting of new bone, cementum, and periodontal ligament in the intrabony component of one human defect treated with EMD + BDX + GTR.
Restoring speech perception with cochlear implants by spanning defective electrode contacts.
Frijns, Johan H M; Snel-Bongers, Jorien; Vellinga, Dirk; Schrage, Erik; Vanpoucke, Filiep J; Briaire, Jeroen J
2013-04-01
Even with six defective contacts, spanning can largely restore speech perception with the HiRes 120 speech processing strategy to the level supported by an intact electrode array. Moreover, the sound quality is not degraded. Previous studies have demonstrated reduced speech perception scores (SPS) with defective contacts in HiRes 120. This study investigated whether replacing defective contacts by spanning, i.e. current steering on non-adjacent contacts, is able to restore speech recognition to the level supported by an intact electrode array. Ten adult cochlear implant recipients (HiRes90K, HiFocus1J) with experience with HiRes 120 participated in this study. Three different defective electrode arrays were simulated (six separate defective contacts, three pairs or two triplets). The participants received three take-home strategies and were asked to evaluate the sound quality in five predefined listening conditions. After 3 weeks, SPS were evaluated with monosyllabic words in quiet and in speech-shaped background noise. The participants rated the sound quality equal for all take-home strategies. SPS with background noise were equal for all conditions tested. However, SPS in quiet (85% phonemes correct on average with the full array) decreased significantly with increasing spanning distance, with a 3% decrease for each spanned contact.
Lee, Jung-Seok; Park, Weon-Yeong; Cha, Jae-Kook; Jung, Ui-Won; Kim, Chang-Sung; Lee, Yong-Keun; Choi, Seong-Ho
2012-04-01
This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral 4×4×5 mm (buccolingual width×mesiodistal width×depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation.
Machine vision based quality inspection of flat glass products
NASA Astrophysics Data System (ADS)
Zauner, G.; Schagerl, M.
2014-03-01
This application paper presents a machine vision solution for the quality inspection of flat glass products. A contact image sensor (CIS) is used to generate digital images of the glass surfaces. The presented machine vision based quality inspection at the end of the production line aims to classify five different glass defect types. The defect images are usually characterized by very little `image structure', i.e. homogeneous regions without distinct image texture. Additionally, these defect images usually consist of only a few pixels. At the same time the appearance of certain defect classes can be very diverse (e.g. water drops). We used simple state-of-the-art image features like histogram-based features (std. deviation, curtosis, skewness), geometric features (form factor/elongation, eccentricity, Hu-moments) and texture features (grey level run length matrix, co-occurrence matrix) to extract defect information. The main contribution of this work now lies in the systematic evaluation of various machine learning algorithms to identify appropriate classification approaches for this specific class of images. In this way, the following machine learning algorithms were compared: decision tree (J48), random forest, JRip rules, naive Bayes, Support Vector Machine (multi class), neural network (multilayer perceptron) and k-Nearest Neighbour. We used a representative image database of 2300 defect images and applied cross validation for evaluation purposes.
Maternal butalbital use and selected defects in the national birth defects prevention study.
Browne, Marilyn L; Van Zutphen, Alissa R; Botto, Lorenzo D; Louik, Carol; Richardson, Sandra; Druschel, Charlotte M
2014-01-01
Butalbital is a barbiturate contained in combination products with caffeine and an analgesic prescribed for the treatment of migraine and tension-type headaches. Controversy exists as to whether butalbital should continue to be prescribed in the United States because of the potential for abuse, overuse headache, and withdrawal syndromes. Butalbital crosses the placenta but there is limited information about potential teratogenicity. To evaluate associations between butalbital and a wide range of specific birth defects. The National Birth Defects Prevention Study is an ongoing, case-control study of nonsyndromic, major birth defects conducted in 10 states. The detailed case classification and large number of cases in the National Birth Defects Prevention Study allowed us to examine the association between maternal self-reported butalbital use and specific birth defects. We conducted an analysis of 8373 unaffected controls and 21,090 case infants with estimated dates of delivery between 1997 and 2007; included were birth defects with 250 or more cases. An exploratory analysis examined groups with 100 to 249 cases. Seventy-three case mothers and 15 control mothers reported periconceptional butalbital use. Of 30 specific defect groups evaluated, adjusted odds ratios for maternal periconceptional butalbital use were statistically significant for 3 congenital heart defects: tetralogy of Fallot (adjusted odds ratio = 3.04; 95% confidence interval = 1.07-8.62), pulmonary valve stenosis (adjusted odds ratio = 5.73; 95% confidence interval = 2.25-14.62), and secundum-type atrial septal defect (adjusted odds ratio = 3.06; 95% confidence interval = 1.07-8.79). In the exploratory analysis, an elevated odds ratio was detected for 1 congenital heart defect, single ventricle. We observed relationships between maternal periconceptional butalbital use and certain congenital heart defects. These associations have not been reported before, and some may be spurious. Butalbital use was rare and despite the large size of the National Birth Defects Prevention Study, the number of exposed case and control infants was small. However, if confirmed in additional studies, our findings will be useful in weighing the risks and benefits of butalbital for the treatment of migraine and tension-type headaches. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Improvement in defect classification efficiency by grouping disposition for reticle inspection
NASA Astrophysics Data System (ADS)
Lai, Rick; Hsu, Luke T. H.; Chang, Peter; Ho, C. H.; Tsai, Frankie; Long, Garrett; Yu, Paul; Miller, John; Hsu, Vincent; Chen, Ellison
2005-11-01
As the lithography design rule of IC manufacturing continues to migrate toward more advanced technology nodes, the mask error enhancement factor (MEEF) increases and necessitates the use of aggressive OPC features. These aggressive OPC features pose challenges to reticle inspection due to high false detection, which is time-consuming for defect classification and impacts the throughput of mask manufacturing. Moreover, higher MEEF leads to stricter mask defect capture criteria so that new generation reticle inspection tool is equipped with better detection capability. Hence, mask process induced defects, which were once undetectable, are now detected and results in the increase of total defect count. Therefore, how to review and characterize reticle defects efficiently is becoming more significant. A new defect review system called ReviewSmart has been developed based on the concept of defect grouping disposition. The review system intelligently bins repeating or similar defects into defect groups and thus allows operators to review massive defects more efficiently. Compared to the conventional defect review method, ReviewSmart not only reduces defect classification time and human judgment error, but also eliminates desensitization that is formerly inevitable. In this study, we attempt to explore the most efficient use of ReviewSmart by evaluating various defect binning conditions. The optimal binning conditions are obtained and have been verified for fidelity qualification through inspection reports (IRs) of production masks. The experiment results help to achieve the best defect classification efficiency when using ReviewSmart in the mask manufacturing and development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maciaszek, M.; Zabierowski, P.
2016-06-07
In this contribution, we investigated by means of numerical simulations the influence of relaxation processes related to metastable defects on electrical characteristics of Cu(In,Ga)Se{sub 2}. In particular, we analyzed the relaxation of a metastable state induced by illumination at a fixed temperature as well as the dependence of the hole concentration on the temperature during cooling. The knowledge of these two relaxation processes is crucial in the evaluation of the hole concentration in the relaxed state and after light soaking. We have shown that the distribution of the metastable defects can be considered frozen below 200 K. The hole capture crossmore » section was estimated as ∼3 × 10{sup −15} cm{sup 2}. It was shown that the usually used cooling rates may lead to relevant changes of the hole concentration. We calculated the lower limit of the hole concentration after cooling, and we presented how it depends on densities of shallow acceptors and metastable defects. Moreover, we proposed a method which allows for the evaluation of shallow acceptor and metastable defect densities from two capacitance-voltage profiles measured in the relaxed and light soaking states. Finally, we indicated experimental conditions in which the influence of relaxation processes on the accuracy of this method is the smallest.« less
Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E
2017-07-01
Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.
García-Rey, R M; García-Olmo, J; De Pedro, E; Quiles-Zafra, R; Luque de Castro, M D
2005-06-01
The potential of visible and near infrared spectroscopy to predict texture and colour of dry-cured ham samples was investigated. Sensory evaluation was performed on 117 boned and cross-sectioned dry-cured ham samples. Slices of approximate thickness 4cm were cut, vacuum-packaged and kept under frozen storage until spectral analysis. Then, Biceps femoris muscle from the thawed slices was taken and scanned (400-2200nm) using a fiber optic probe. The exploratory analysis using principal component analysis shows that there are two ham groups according to the appearance or not of defects. Then, a K nearest neighbours was used to classify dry-cured hams into defective or no defective classes. The overall accuracy of the classification as a function of pastiness was 88.5%; meanwhile, according to colour was 79.7%. Partial least squares regression was used to formulate prediction equations for pastiness and colour. The correlation coefficients of calibration and cross-validation were 0.97 and 0.86 for optimal equation predicting pastiness, and 0.82 and 0.69 for optimal equation predicting colour. The standard error of cross-validation for predicting pastiness and colour is between 1 and 2 times the standard deviation of the reference method (the error involved in the sensory evaluation by the experts). The magnitude of this error demonstrates the good precision of the methods for predicting pastiness and colour. Furthermore, the samples were classified into defective or no defective classes, with a correct classification of 94.2% according to pasty texture evaluation and 75.7% as regard to colour evaluation.
Investigation on size tolerance of pore defect of girth weld pipe.
Li, Yan; Shuai, Jian; Xu, Kui
2018-01-01
Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects.
Effect of point defects and disorder on structural phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toulouse, J.
1997-06-01
Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods tomore » study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.« less
Investigation on size tolerance of pore defect of girth weld pipe
Shuai, Jian; Xu, Kui
2018-01-01
Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects. PMID:29364986
Reducing Risks of Birth Defects
... Physicians Contact Us My ACOG ACOG Departments Donate Shop Career Connection Home Clinical Guidance & Publications Practice Management ... its website: www.aa.org . How can recreational drug use affect my pregnancy? Using substances—including heroin, ...
O'Byrne, Michael L; Kennedy, Kevin F; Rome, Jonathan J; Glatz, Andrew C
2018-02-01
Practice variation is a potentially important measure of healthcare quality. The IMPACT registry provides a representative national sample with which to study practice variation in trans-catheter interventions for congenital heart disease. We studied cases for closure of atrial septal defect (ASD) and patent ductus arteriosus (PDA) in IMPACT between January 1, 2011, and September 30, 2015, using hierarchical multivariate models studying (1) the distribution of indications for closure and (2) in patients whose indication for closure was left (LVVO) or right ventricular volume overload (RVVO), the factors influencing probability of closure of a small defect (either in size or in terms of the magnitude of shunt). Over the study period, 5233 PDA and 4459 ASD cases were performed at 77 hospitals. The indications for ASD closure were RVVO in 84% and stroke prevention in 13%. Indications for PDA closure were LVVO in 57%, endocarditis prevention in 36%, and pulmonary hypertension in 7%. There was statistically significant variability in indications between hospitals for PDA and ASD procedures (median rate ratio (MRR): 1.3 and 1.1; both P<.001). The proportion of cases for volume overload with a Qp:Qs <1.5:1 decreased with increasing PDA and ASD procedural volume (P=.04 and 0.05). For ASD, the proportion was higher at hospitals with a larger proportion of adult cases (P=.0007). There was significant variation in practice in the risk of closing PDA <2 mm for LVVO (MRR: 1.4, P<.001). There is measurable variation in transcatheter closure of PDA and ASD. Further research is necessary to study whether this affects outcomes or resource utilization. Copyright © 2017 Elsevier Inc. All rights reserved.
Laser Cooling of 2-6 Semiconductors
2016-08-12
practical optical refrigeration . The challenge is the stoichiometric defect in bulk crystal which introduces mid-gap states that manifest as broad-band...cooling in semiconductor has stimulated strong interest in further scaling up towards practical optical refrigeration . The challenge is the...energy. The upconversion process is facilitated by the annihilation of phonons and leads to cooling of the matter. The concept of optical refrigeration
NASA Astrophysics Data System (ADS)
Londos, C. A.; Andrianakis, A.; Sgourou, E. N.; Emtsev, V. V.; Ohyama, H.
2011-02-01
We report infrared absorption studies of oxygen-related defects in electron-irradiated Ge-doped Czochralski-Si. Our investigation was mainly focused on the reaction channel leading to the formation of VOn (1≤n≤6) defects. The VOn defects form mainly upon annealing, as a result of the successive aggregation of oxygen atoms in the initial VO defect produced by the irradiation: (VO+Oi→VO2+Oi→VO3+Oi→VO4,…). It was found that the ratio of the conversion of VOn to VOn+1 defects is sensitive to the Ge content of the material. In particular, the ratio of the conversion of the VO to the VO2 defects was found to decrease with the increase in Ge concentration of the samples, although the opposite trend was observed for the VO3 to VO4 conversion. However, the VO2 to VO3 conversion changes only slightly with Ge content, being practically unaffected for Ge concentrations up to 2×1020 cm-3. In the case of VO2 formation, the phenomenon was attributed to the elastic strains induced in the lattice due to the Ge presence which affects the balance between the reactions VO+Oi→VO2, VO+SiI→Oi, mainly involved in the decay of the VO and the growth of the VO2 defects. In the case of VO4 formation, the phenomenon was discussed by taking into account the enhancement of the diffusivity of the Oi atoms in the Ge-doped Si, which could lead to an enhancement of the rate of the reaction VO3+Oi→VO4. For the VO3 formation this effect is practically negligible due to the fact that at the temperatures of VO2 to VO3 conversion oxygen diffusivity is quite small. The exhibited behavior in the conversion of the VOn to VOn+1 defects (n=1,2,3) was similar in Ge-doped samples with low carbon content ([Cs]<2×1016 cm-3) and in Ge-doped samples with high carbon content ([Cs]≥1×1017 cm-3). The impact of C as well as its role in the conversion efficiency of VO to VO2 was studied by comparing the spectra in low carbon and high carbon Ge free Si material. Furthermore, a pair of bands at (1037,1051 cm-1) was attributed to the VO5 defect. The origin of another pair of bands (967,1005 cm-1) was discussed and tentatively correlated with a VOnCs structure. The role of Ge and C in the formation of the latter two pairs of bands was discussed.
Automatic thermographic image defect detection of composites
NASA Astrophysics Data System (ADS)
Luo, Bin; Liebenberg, Bjorn; Raymont, Jeff; Santospirito, SP
2011-05-01
Detecting defects, and especially reliably measuring defect sizes, are critical objectives in automatic NDT defect detection applications. In this work, the Sentence software is proposed for the analysis of pulsed thermography and near IR images of composite materials. Furthermore, the Sentence software delivers an end-to-end, user friendly platform for engineers to perform complete manual inspections, as well as tools that allow senior engineers to develop inspection templates and profiles, reducing the requisite thermographic skill level of the operating engineer. Finally, the Sentence software can also offer complete independence of operator decisions by the fully automated "Beep on Defect" detection functionality. The end-to-end automatic inspection system includes sub-systems for defining a panel profile, generating an inspection plan, controlling a robot-arm and capturing thermographic images to detect defects. A statistical model has been built to analyze the entire image, evaluate grey-scale ranges, import sentencing criteria and automatically detect impact damage defects. A full width half maximum algorithm has been used to quantify the flaw sizes. The identified defects are imported into the sentencing engine which then sentences (automatically compares analysis results against acceptance criteria) the inspection by comparing the most significant defect or group of defects against the inspection standards.
Stringheta, Carolina Pessoa; Pelegrine, Rina Andréa; Kato, Augusto Shoji; Freire, Laila Gonzales; Iglecias, Elaine Faga; Gavini, Giulio; Bueno, Carlos Eduardo da Silveira
2017-12-01
The objective of this study was to compare the methods of micro-computed tomography (micro-CT) and cross-sectioning followed by stereomicroscopy in assessing dentinal defects after instrumentation with different mechanized systems. Forty mesial roots of mandibular molars were scanned and divided into 4 groups (n = 10): Group R, Reciproc; Group PTN, ProTaper Next; Group WOG, WaveOne Gold; Group PDL, ProDesign Logic. After instrumentation, the roots were once again submitted to a micro-CT scan, and then sectioned at 3, 6, and 9 mm from the apex, and assessed for the presence of complete and incomplete dentinal defects under a stereomicroscope. The nonparametric Kruskal-Wallis, Friedman, and Wilcoxon tests were used in the statistical analysis. The study used a significance level of 5%. The total number of defects observed by cross-sectioning followed by stereomicroscopy was significantly higher than that observed by micro-CT, in all of the experimental groups (P ≤ .05). All of the defects identified in the postoperative period were already present in the corresponding preoperative period. There was no significant difference among the instrumentation systems as to the median numbers of defects, for either cross-sectioning followed by stereomicroscopy or micro-CT, at all the root levels (P > .05). In the micro-CT analysis, no significant difference was found between the median numbers of pre- and postinstrumentation defects, regardless of the instrumentation system (P > .05). None of the evaluated instrumentation systems led to the formation of new dentin defects. All of the defects identified in the stereomicroscopic analysis were already present before instrumentation, or were absent at both time points in the micro-CT analysis, indicating that the formation of new defects resulted from the sectioning procedure performed before stereomicroscopy and not from instrumentation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Kobayashi, Yasukazu; Yasuda, Kazunori; Kondo, Eiji; Katsura, Taro; Tanabe, Yoshie; Kimura, Masashi; Tohyama, Harukazu
2010-04-01
Concerning meniscal tissue regeneration, many investigators have studied the development of a tissue-engineered meniscus. However, the utility still remains unknown. Implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect may significantly enhance fibrocartilage regeneration in vivo in the defect. Controlled laboratory study. Seventy-five mature rabbits were used in this study. In each animal, an anterior one-third of the right medial meniscus was resected. Then, the animals were divided into the following 3 groups of 25 rabbits each: In group 1, no treatment was applied to the meniscal defect. In group 2, the defect was covered with a fascia sheath. In group 3, after the resected meniscus was fragmented into small pieces, the fragments were grafted into the defect. Then, the defect with the meniscal fragments was covered with a fascia sheath. In each group, 5 rabbits were used for histological evaluation at 3, 6, and 12 weeks after surgery, and 5 rabbits were used for biomechanical evaluation at 6 and 12 weeks after surgery. Histologically, large round cells in group 3 were scattered in the core portion of the meniscus-shaped tissue, and the matrix around these cells was positively stained by safranin O and toluisin blue at 12 weeks. The histological score of group 3 was significantly higher than that of group 1 and group 2. Biomechanically, the maximal load and stiffness of group 3 were significantly greater than those of groups 1 and 2. This study clearly demonstrated that implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect significantly enhanced fibrocartilage regeneration in vivo in the defect at 12 weeks after implantation in the rabbit. This study proposed a novel strategy to treat a large defect after a meniscectomy.
Advanced repair solution of clear defects on HTPSM by using nanomachining tool
NASA Astrophysics Data System (ADS)
Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu
2015-10-01
As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.
Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites
NASA Astrophysics Data System (ADS)
Juarez, Peter; Leckey, Cara A. C.
2018-04-01
Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.
ERIC Educational Resources Information Center
Weininger, Jean; Briggs, George M.
1978-01-01
Reviews current nutrition research areas with important practical applications. Topics include hypertension, preventable birth defects, phenylketonuria and genetic diseases, new molecular genetics techniques, and saccharin and sweetners. Entries are brief and a 65-reference list is given. (MA)
Agopian, A J; Evans, Jane A; Lupo, Philip J
2018-01-15
It is estimated that 20 to 30% of infants with birth defects have two or more birth defects. Among these infants with multiple congenital anomalies (MCA), co-occurring anomalies may represent either chance (i.e., unrelated etiologies) or pathogenically associated patterns of anomalies. While some MCA patterns have been recognized and described (e.g., known syndromes), others have not been identified or characterized. Elucidating these patterns may result in a better understanding of the etiologies of these MCAs. This article reviews the literature with regard to analytic methods that have been used to evaluate patterns of MCAs, in particular those using birth defect registry data. A popular method for MCA assessment involves a comparison of the observed to expected ratio for a given combination of MCAs, or one of several modified versions of this comparison. Other methods include use of numerical taxonomy or other clustering techniques, multiple regression analysis, and log-linear analysis. Advantages and disadvantages of these approaches, as well as specific applications, were outlined. Despite the availability of multiple analytic approaches, relatively few MCA combinations have been assessed. The availability of large birth defects registries and computing resources that allow for automated, big data strategies for prioritizing MCA patterns may provide for new avenues for better understanding co-occurrence of birth defects. Thus, the selection of an analytic approach may depend on several considerations. Birth Defects Research 110:5-11, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Yilmaz, Ayca; Helvacioglu-Yigit, Dilek; Gur, Cansu; Ersev, Handan; Kiziltas Sendur, Gullu; Avcu, Egemen; Baydemir, Canan; Abbott, Paul Vincent
2017-01-01
The purpose of this study was to compare the incidence and longitudinal propagation of dentin defects after gutta-percha removal with hand and rotary instruments using microcomputed tomography. Twenty mandibular incisors were prepared using the balanced-force technique and scanned in a 19.9 μ m resolution. Following filling with the lateral compaction technique, gutta-percha was removed with ProTaper Universal Retreatment (PTUR) or hand instruments. After rescanning, a total of 24,120 cross-sectional images were analyzed. The numbers, types, and longitudinal length changes of defects were recorded. Defects were observed in 36.90% of the cross sections. A total of 73 defects were comprised of 87.67% craze lines, 2.73% partial cracks, and 9.58% fractures. No significant difference in terms of new defect formation was detected between the retreatment groups. The apical and middle portions of the roots had more dentin defects than the coronal portions. Defects in three roots of the PTUR instrument group increased in length. Under the conditions of this in vitro study, gutta-percha removal seemed to not increase the incidence of dentin defect formation, but the longitudinal defect propagation finding suggests possible cumulative dentinal damage due to additional endodontic procedures. Hand and rotary instrumentation techniques caused similar dentin defect formation during root canal retreatment.
Silveira-Neto, Nicolau; Flores, Mateus Ericson; De Carli, João Paulo; Costa, Max Dória; Matos, Felipe de Souza; Paranhos, Luiz Renato; Linden, Maria Salete Sandini
2017-11-01
This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone - A, B and E (control group) - to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3). In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey's test (α=0.05). The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.
Scratch and dig analysis for Metis mirrors surfaces defects evaluation
NASA Astrophysics Data System (ADS)
Špína, M.; Procháska, F.; Melich, R.
2016-11-01
The presented paper aims to theoretically analyze the possibilities, advantages and drawbacks of standard methods used for the assessment of optical surface defects (the so-called Scratch and Dig analysis). Based on the acquired knowledge, we design and apply a process of SaD analysis suitable for the evaluation of optical surfaces of mirrors of the space coronagraph Metis, whose manufacturing was successfully implemented within the Centre Toptec in the past period.
Injectable Reactive Biocomposites For Bone Healing In Critical-Size Rabbit Calvarial Defects
2012-03-29
defects (i.e. be conformable), provide temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of...temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of biologics. In this study, we evaluated the...complex defects (i.e. be conformable), harden to provide temporary protection until tissue remodels (i.e. be settable), and enhance tissue regeneration
Xu, Y Q; Li, Z Y; Li, J
2000-11-01
To investigate the clinical effect of free vascularized thoracoumbilical flap with reversal flow in repairing the soft tissue defect in leg with tibia exposure. Forty-four casting mould specimens of leg arteries were studied firstly. Then 25 cases with soft tissue defect and tibia exposure in the proximal-middle segment of leg were adopted in this study. Among them, 18 cases had long distance thrombosis of the anterior tibial vessels or posterior tibial vessels due to traumatic lesion. The maximal size of defect was 28 cm x 11 cm and the minimal size of defect was 11 cm x 9 cm. In operation, the thoracoumbilical flap which was based on the inferior epigastric vessels was anastomosed to the distal end of the anterior tibial vessels or posterior tibial vessels. Anterior tibial artery, posterior tibial artery and fibular artery had rich communication branches in foot and ankle. All the flaps survived, the color and cosmetic result of them were good. The free vascularized thoracoumbilical flap with reversed flow is practical in repairing the soft tissue defect of leg with tibia exposure. Either the anterior tibial vessels or the posterior tibial vessels is normal, and the distal end of injured blood vessels is available, this technique can be adopted.
Nanosecond multiple pulse measurements and the different types of defects
NASA Astrophysics Data System (ADS)
Wagner, Frank R.; Natoli, Jean-Yves; Beaudier, Alexandre; Commandré, Mireille
2017-11-01
Laser damage measurements with multiple pulses at constant fluence (S-on-1 measurements) are of high practical importance for design and validation of high power photonic instruments. Using nanosecond lasers, it has been recognized long ago that single pulse laser damage is linked to fabrication related defects. Models describing the laser damage probability as the probability of encounter between the high fluence region of the laser beam and the fabrication related defects are thus widely used to analyze the measurements. Nanosecond S-on-1 tests often reveal the "fatigue effect", i.e. a decrease of the laser damage threshold with increasing pulse number. Most authors attribute this effect to cumulative material modifications operated by the first pulses. In this paper we discuss the different situations that are observed upon nanosecond S-on-1 measurements of several different materials using different wavelengths and speak in particular about the defects involved in the laser damage mechanism. These defects may be fabrication-related or laser-induced, stable or evolutive, cumulative or of short lifetime. We will show that the type of defect that is dominating an S-on-1 experiment depends on the wavelength and the material under test and give examples from measurements of nonlinear optical crystals, fused silica and oxide mixture coatings.
Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan
2014-01-01
Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429
One-Sided Measurement Approach on Ultrasonic Beam Path Analysis in CFRP Composite Laminates
NASA Astrophysics Data System (ADS)
Im, K. H.; Hsu, D. K.; Kim, H. J.; Song, S. J.; Dayal, V.; Barnard, D.; Park, J. W.; Lee, K. S.; Yang, Y. J.; Yang, I. Y.
2008-02-01
Composite materials are attractive for a wide range of applications because of high performance engineering structures. In particular, the importance of carbon-fiber reinforced plastics (CFRP) has been generally recognized in both space and civil aircraft industries; so, CFRP composite laminates are widely used. It is very important to detect defects in composite laminates because they cause the mechanical properties (stiffness, strength) of the laminate to be reduced. As well known for ultrasonic technique for evaluating the defect of CFRP composite laminates, a pitch-catch technique was found to be more practical than normal incidence backwall echo of longitudinal wave to arbitrary flaws in the composite, including fiber orientation, low level porosity, ply waviness, and cracks. The measurement depth using Rayleigh probes can be increased by increasing the separation distance of the transmitting and receiving probes. Also, with the aid of the automatic scanner, the one-sided pitch-catch probe was used to produce C-scan images for mapping out the images with beam profiles. Especially pitch-catch beam path was nondestructively characterized for the specimens when measuring a peak-to-peak amplitude and time-of-flight in order to build the beam profile modeling in the unidirectional CFRP composite laminates. Also, the pitch-catch simulation was performed to predict the beam profile trend of wave propagation in the unidirectional CF/Epoxy composite laminates. Therefore, it is found that the experimentally Rayleigh wave variation of pitch-catch ultrasonic signal was consistent with simulated results and one-side ultrasonic measurement might be very useful to detect the defects in CFRP composites.
OCT for early quality evaluation of tooth-composite bond in clinical trials.
Haak, Rainer; Schmidt, Patrick; Park, Kyung-Jin; Häfer, Matthias; Krause, Felix; Ziebolz, Dirk; Schneider, Hartmut
2018-06-19
To evaluate early quality of composite restorations with a universal adhesive in different application modes clinically and with optical coherence tomography (OCT). 22 patients with four non-carious cervical lesions each received composite restorations (Filtek Supreme TM XTE, 3 M). The universal adhesive Scotchbond Universal TM (SBU, 3 M) was applied with three etching protocols: self-etch (SE), selective-enamel-etch (SEE) and etch-and-rinse (ER). The etch-and-rinse adhesive OptiBond TM FL (OFL, Kerr) served as a control. Restorations were imaged by OCT (Thorlabs) directly after application (t 0 ). After 14 days (t 1 ) and 6 month (t 2 ) OCT imaging (interfacial adhesive defects) was repeated combined with clinical assessment (FDI criteria). Groups were compared by Friedman-/Wilcoxon- and McNemar-Test. No differences were seen clinically between groups (p i ≥ 0.500). OCT assessment revealed more adhesive defects at the enamel interface with SBU/SE at t 0- t 2 compared to all groups (p i ≤ 0.016). OFL showed more defects than SBU/ER (t 1 : p = 0.01; t 2 : p = 0.083). At dentin/cementum interface OFL exhibited more adhesive defects than SBU with all conditioning modes (t 0 , t 1 , p i ≤ 0.003) and at t 2 to SBU/SE and SBU/ER (p < 0.001). Since t 1 defects with SBU were detected more frequently in the SE and SEE modes compared to ER (p i ≤ 0.037). In contrast to SBU defects increased with OFL up to t 2 (p i ≤ 0.007). In contrast to clinical evaluation, OCT revealed subtle adhesive defects directly after application that might interfere with clinical success. It was demonstrated that ER doesn't decrease initial adhesion of SBU to dentin. Copyright © 2018. Published by Elsevier Ltd.
Vergis, Nikhil; Khamri, Wafa; Beale, Kylie; Sadiq, Fouzia; Aletrari, Mina O; Moore, Celia; Atkinson, Stephen R; Bernsmeier, Christine; Possamai, Lucia A; Petts, Gemma; Ryan, Jennifer M; Abeles, Robin D; James, Sarah; Foxton, Matthew; Hogan, Brian; Foster, Graham R; O'Brien, Alastair J; Ma, Yun; Shawcross, Debbie L; Wendon, Julia A; Antoniades, Charalambos G; Thursz, Mark R
2017-03-01
In order to explain the increased susceptibility to serious infection in alcoholic hepatitis, we evaluated monocyte phagocytosis, aberrations of associated signalling pathways and their reversibility, and whether phagocytic defects could predict subsequent infection. Monocytes were identified from blood samples of 42 patients with severe alcoholic hepatitis using monoclonal antibody to CD14. Phagocytosis and monocyte oxidative burst (MOB) were measured ex vivo using flow cytometry, luminometry and bacterial killing assays. Defects were related to the subsequent development of infection. Intracellular signalling pathways were investigated using western blotting and PCR. Interferon-γ (IFN-γ) was evaluated for its therapeutic potential in reversing phagocytic defects. Paired longitudinal samples were used to evaluate the effect of in vivo prednisolone therapy. MOB, production of superoxide and bacterial killing in response to Escherichia coli were markedly impaired in patients with alcoholic hepatitis. Pretreatment MOB predicted development of infection within two weeks with sensitivity and specificity that were superior to available clinical markers. Accordingly, defective MOB was associated with death at 28 and 90 days. Expression of the gp91 phox subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was reduced in patients with alcoholic hepatitis demonstrating defective MOB. Monocytes were refractory to IFN-γ stimulation and showed high levels of a negative regulator of cytokine signalling, suppressor of cytokine signalling-1. MOB was unaffected by 7 days in vivo prednisolone therapy. Monocyte oxidative burst and bacterial killing is impaired in alcoholic hepatitis while bacterial uptake by phagocytosis is preserved. Defective MOB is associated with reduced expression of NADPH oxidase in these patients and predicts the development of infection and death. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Reitemeier, Bernd; Hänsel, Kristina; Kastner, Christian; Weber, Anke; Walter, Michael H
2013-03-01
Metal ceramic restorations are widely used in prosthodontics, but long-term data on their clinical performance in private practice settings based on prospective trials are sparse. This clinical trial was designed to provide realistic long-term survival rates for different outcomes related to tooth loss, crown loss, and metal ceramic defect. Ninety-five participants were provided with 190 noble metal ceramic single crowns and 138 participants with 276 fixed dental prosthesis retainer crowns on vital posterior teeth. Follow-up examinations were scheduled 2 weeks after insertion, annually up to 8 years, and after 10 years. Kaplan-Meier survival analyses, Mantel-Cox logrank tests, and Cox regression analyses were conducted. Because of variations in the time of the last examinations, the maximum observation period was 12.1 years. For the primary outcome 'loss of crown or tooth', the Kaplan-Meier survival rate was 94.3% ±1.8% (standard error) at 8.0 years (last outcome event) for single crowns and 94.4% ±1.5% at 11.0 years for fixed dental prosthesis retainer crowns. The difference between the survival functions was not significant (P>.05). For the secondary outcome 'metal ceramic defect', the survival rate was 88.8% ±3.2% at 11.0 years for single crowns and 81.7% ±3.5% at 11.0 years for fixed dental prosthesis retainer crowns. In Cox regression models, the only significant covariates for the outcome event 'metal ceramic defect' were bruxism in the medical history (single crowns) and signs and symptoms of bruxism (fixed dental prosthesis retainer crowns) with hazard ratios of 3.065 (95% CI 1.063 - 8.832) and 2.554 (95% CI 1.307 - 4.992). Metal ceramic crowns provided in private practice settings show good longevity. Bruxism appears to indicate a risk for metal ceramic defects. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Kattimani, Vivekanand S; Chakravarthi, Srinivas P; Neelima Devi, K Naga; Sridhar, Meka S; Prasad, L Krishna
2014-01-01
Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The aim of this study was to evaluate and compare bovine derived hydroxyapatite (BHA) and synthetic hydroxyapatite (SHA) graft material as bone graft substitute in maxillary cystic bony defects. Patients were analyzed by computerized densitometric study and digital radiography. In this study, 12 patients in each group were included randomly after clinical and radiological evaluation. The integration of hydroxyapatite was assessed with mean bone density, surgical site margin, and radiological bone formation characteristics, of the successful graft cases using computer densitometry and radio-visiograph. Statistical analysis was carried out using Mann-Whitney U-test, Wilcoxon matched pairs test and paired t-test. By the end of 24 th week, the grafted defects radiologically and statistically showed similar volumes of bone formation. However, the significant changes observed in the formation of bone and merging of material and surgical site margin at 1 st week to 1 st month. The results were significant and correlating with all the parameters showing the necessity of the grafting for early bone formation. However, the bone formation pattern is different in both BHA and SHA group at 3 rd month interval with significant P value. Both BHA and SHA graft materials are biocompatible for filling bone defects, showing less resorption and enhanced bone formation with similar efficacy. Our study showed maximum bone healing within 12 weeks of grafting of defects. The BHA is economical; however, price difference between the two is very nominal.
Nosouhian, Saied; Razavi, Mohammad; Jafari-Pozve, Nasim; Rismanchian, Mansour
2015-01-01
Many synthetic bone materials have been introduced for repairing bone defects. The aim of this study is to comparatively evaluate the efficacy of nano-hydroxyapatite (HA) and nano-bioglass bone materials with their traditional micro counterparts in repairing bone defects. In this prospective animal study, four healthy dogs were included. First to fourth premolars were extracted in each quadrant and five cavities in each quadrant were created using trephine. Sixteen cavities in each dog were filled by HA, nano-HA, bioglass, and nano-bioglass and four defects were left as the control group. All defects were covered by a nonrestorable membrane. Dogs were sacrificed after 15, 30, 45, and 60 days sequentially. All 20 samples were extracted by trephine #8 with a sufficient amount of surrounding bone. All specimens were investigated under an optical microscope and the percentage of total regenerated bone, lamellar, and woven bone were evaluated. Data analysis was carried out by SPSS Software ver. 15 and Mann-Whitney U-test (α =0.05). After 15 days, the bone formation percentage showed a significant difference between HA and nano-HA and between HA and bioglass (P < 0.001). The nano-HA group showed the highest rate of bone formation after 15 days. Nano-bioglass and bioglass and nano-HA and nano-bioglass groups represented a significant difference and nano-bioglass showed the highest rate of bone formation after 30 days (P = 0.01). After 45 days, the bone formation percentage showed a significant difference between nano-bioglass and bioglass and between nano-HA and nano-bioglass groups (P = 0.01). Nano-HA and nano-bioglass biomaterials showed promising results when compared to conventional micro-particles in the repair of bone defects.
PAN, FEI; SWANSON, WILLIAM H.; DUL, MITCHELL W.
2006-01-01
Purpose. The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. Methods. The two-stage neural model of Swanson et al.1 was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43° in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco’s areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10° to 21° selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. Results. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Conclusions. Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect. PMID:16840874
Pan, Fei; Swanson, William H; Dul, Mitchell W
2006-07-01
The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. The two-stage neural model of Swanson et al. was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43 degrees in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco's areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10 degrees to 21 degrees selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect.
Feldon, Steven E
2004-01-01
ABSTRACT Purpose To validate a computerized expert system evaluating visual fields in a prospective clinical trial, the Ischemic Optic Neuropathy Decompression Trial (IONDT). To identify the pattern and within-pattern severity of field defects for study eyes at baseline and 6-month follow-up. Design Humphrey visual field (HVF) change was used as the outcome measure for a prospective, randomized, multi-center trial to test the null hypothesis that optic nerve sheath decompression was ineffective in treating nonarteritic anterior ischemic optic neuropathy and to ascertain the natural history of the disease. Methods An expert panel established criteria for the type and severity of visual field defects. Using these criteria, a rule-based computerized expert system interpreted HVF from baseline and 6-month visits for patients randomized to surgery or careful follow-up and for patients who were not randomized. Results A computerized expert system was devised and validated. The system was then used to analyze HVFs. The pattern of defects found at baseline for patients randomized to surgery did not differ from that of patients randomized to careful follow-up. The most common pattern of defect was a superior and inferior arcuate with central scotoma for randomized eyes (19.2%) and a superior and inferior arcuate for nonrandomized eyes (30.6%). Field patterns at 6 months and baseline were not different. For randomized study eyes, the superior altitudinal defects improved (P = .03), as did the inferior altitudinal defects (P = .01). For nonrandomized study eyes, only the inferior altitudinal defects improved (P = .02). No treatment effect was noted. Conclusions A novel rule-based expert system successfully interpreted visual field defects at baseline of eyes enrolled in the IONDT. PMID:15747764
NASA Astrophysics Data System (ADS)
Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.
With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.
One-stop shop assessment for atrial septal defect closure using 256-slice coronary CT angiography.
Yamasaki, Yuzo; Nagao, Michinobu; Kawanami, Satoshi; Kamitani, Takeshi; Sagiyama, Koji; Yamanouchi, Torahiko; Sakamoto, Ichiro; Yamamura, Kenichiro; Yabuuchi, Hidetake; Honda, Hiroshi
2017-02-01
To investigate the feasibility and accuracy of measurement of the pulmonary to systemic blood flow ratio (Qp/Qs) and defect and rim sizes in secundum atrial septal defects (ASDs) using 256-slice CT, compared to the reference transoesophageal echocardiography (TEE) and right heart catheterization (RHC) measurements. Twenty-three consecutive adult patients with secundum ASDs who underwent retrospective ECG-gated coronary CT angiography (CCTA), TEE and RHC were enrolled in this study. Right ventricular (RV) and left ventricular (LV) stroke volumes (SV) were calculated by biventricular volumetry of CCTA. Qp/Qs-CT was defined as RVSV/LVSV. The sizes of the defect and rim were measured by multi-planar reconstruction CT images. Correlations between Qp/Qs-CT and Qp/Qs-RHC and between the defect diameter obtained by CT and TEE were analyzed by Pearson's coefficient analysis. Rim sizes by CT and TEE were compared by paired t-test. Qp/Qs-CT was significantly correlated with Qp/Qs-RHC (r = 0.83, p < 0.0001), and the defect diameter by CT was significantly correlated with that by TEE (r = 0.95, p < 0.0001). There was no significant difference between CT and TEE in measurements of rim size. 256-slice CCTA allows measuring Qp/Qs and size of defects and rims in patients with secundum ASDs, accomplishing pretreatment evaluation non-invasively and comprehensively. • Quantification of left-to-right shunting can be performed reliably and accurately by CT. • The sizes of defects and rims can be measured accurately using 256-slice CT. • 256-slice CT permits pretreatment evaluation of ASD non-invasively and comprehensively.
NASA Astrophysics Data System (ADS)
Murakami, Yuki; Dong, Wei; Oshita, Hideki; Suzuki, Shuichi; Tsutsumi, Tomoaki
In this study, to evaluate flexural strength and shear strength with def ective anchorages due to corrosion of reinforcemen t, the bending test of the RC beams r eceived damage in the anchorage region due to corrosion was carried out. As a result, it is se ems that the residual shear strength of RC beams with defective anchorages depends on shear span ratio in addition to the anchorage performance. Furthermore, the authors propose an evaluation model for an shear strength of RC beams with defective anchorages on the basis of these experimental results and analy tical result. The value of residual shear strength calculated using this model corresponds to the test results in the past.
Identification of Surface and Near Surface Defects and Damage Evaluation by Laser Speckle Techniques
NASA Technical Reports Server (NTRS)
Gowda, Chandrakanth H.
2001-01-01
As a part of the grant activity, a laboratory was established within the Department of Electrical Engineering for the study for measurements of surface defects and damage evaluation. This facility has been utilized for implementing several algorithms for accurate measurements of defects. Experiments were conducted using simulated images and multiple images were fused to achieve accurate measurements. During the nine months of the grants when the principal investigator was transferred in my name, experiments were conducted using simulated synthetic aperture radar (SAR) images. This proved useful when several algorithms were used on images of smooth objects with minor deformalities. Given the time constraint, the derived algorithms could not be applied to actual images of smooth objects with minor abnormalities.
Liu, Chang; Dobson, Jacob; Cawley, Peter
2017-03-01
Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an installed monitoring system and to show whether it is capable of detecting particular damage growth at any given location. It will enable monitoring results to be evaluated rigorously and will be valuable in the development of safety cases.
Dobson, Jacob; Cawley, Peter
2017-01-01
Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an installed monitoring system and to show whether it is capable of detecting particular damage growth at any given location. It will enable monitoring results to be evaluated rigorously and will be valuable in the development of safety cases. PMID:28413339
An investigation on defect-generation conditions in immersion lithography
NASA Astrophysics Data System (ADS)
Tomita, Tadatoshi; Shimoaoki, Takeshi; Enomoto, Masashi; Kyoda, Hideharu; Kitano, Junichi; Suganaga, Toshifumi
2006-03-01
As a powerful candidate for a lithography technique that can accommodate the scaling-down of semiconductors, 193-nm immersion lithography-which realizes a high numerical aperture (NA) and uses deionized water as the medium between the lens and wafer in the exposure system-has been developing at a rapid pace and has reached the stage of practical application. In regards to defects that are a cause for concern in the case of 193-nm immersion lithography, however, many components are still unclear and many problems remain to be solved. It has been pointed out, for example, that in the case of 193-nm immersion lithography, immersion of the resist film in deionized water during exposure causes infiltration of moisture into the resist film, internal components of the resist dissolve into the deionized water, and residual water generated during exposure affects post-processing. Moreover, to prevent this influence of directly immersing the resist in de-ionized water, application of a protective film is regarded as effective. However, even if such a film is applied, it is still highly likely that the above-mentioned defects will still occur. Accordingly, to reduce these defects, it is essential to identify the typical defects occurring in 193-nm immersion lithography and to understand the condition for generation of defects by using some kinds of protective films and resist materials. Furthermore, from now onwards, with further scaling down of semiconductors, it is important to maintain a clear understanding of the relation between defect-generation conditions and critical dimensions (CD). Aiming to extract typical defects occurring in 193-nm immersion lithography, the authors carried out a comparative study with dry exposure lithography, thereby confirming several typical defects associated with immersion lithography. We then investigated the conditions for generation of defects in the case of some kinds of protective films. In addition to that, by investigating the defect-generation conditions and comparing the classification data between wet and dry exposure, we were able to determine the origin of each particular defect involved in immersion lithography. Furthermore, the comparison of CD for wet and dry processing could indicate the future defectivity levels to be expected with shrinking immersion process critical dimensions.
A novel inspection system for cosmetic defects
NASA Astrophysics Data System (ADS)
Hazra, S.; Roy, R.; Williams, D.; Aylmore, R.; Hollingdale, D.
2013-12-01
The appearance of automotive skin panels creates desirability for a product and differentiates it from the competition. Because of the importance of skin panels, considerable care is taken in minimizing defects such as the 'hollow' defect that occur around door-handle depressions. However, the inspection process is manual, subjective and time-consuming. This paper describes the development of an objective and inspection scheme for the 'hollow' defect. In this inspection process, the geometry of a panel is captured using a structured lighting system. The geometry data is subsequently analyzed by a purpose-built wavelet-based algorithm to identify the location of any defects that may be present and to estimate the perceived severity of the defects without user intervention. This paper describes and critically evaluates the behavior of this physically-based algorithm on an ideal and real geometry and compares its result to an actual audit. The results show that the algorithm is capable of objectively locating and classifying 'hollow' defects in actual panels.
Radiographic detection of artificial intra-bony defects in the edentulous area.
Van Assche, N; Jacobs, R; Coucke, W; van Steenberghe, D; Quirynen, M
2009-03-01
Since intra-bony pathologies might jeopardize implant outcome, their preoperative detection is crucial. In sixteen human cadaver bloc sections from upper and lower jaws, artificial defects with progressively increasing size (n=7) have been created. From each respective defect, analogue and digital intra-oral radiographs were taken, the latter processed via a periodontal filter and afterwards presented in black-white as well as in colour, resulting in three sets of 7 images per bloc section. Eight observers were asked to diagnosis an eventual defect on randomly presented radiographs, and at another occasion to rank each set based on the defect size. The clinicians were only able to identify a defect, when the junctional area was involved, except for bony pieces with a very homogeneous structure. For longitudinal evaluation of healing bone (e.g. after tooth extraction), colour digital images can be recommended. These observations indicate that intra-oral radiographs are not always reliable for the detection of any intra-bony defect.
Human vision-based algorithm to hide defective pixels in LCDs
NASA Astrophysics Data System (ADS)
Kimpe, Tom; Coulier, Stefaan; Van Hoey, Gert
2006-02-01
Producing displays without pixel defects or repairing defective pixels is technically not possible at this moment. This paper presents a new approach to solve this problem: defects are made invisible for the user by using image processing algorithms based on characteristics of the human eye. The performance of this new algorithm has been evaluated using two different methods. First of all the theoretical response of the human eye was analyzed on a series of images and this before and after applying the defective pixel compensation algorithm. These results show that indeed it is possible to mask a defective pixel. A second method was to perform a psycho-visual test where users were asked whether or not a defective pixel could be perceived. The results of these user tests also confirm the value of the new algorithm. Our "defective pixel correction" algorithm can be implemented very efficiently and cost-effectively as pixel-dataprocessing algorithms inside the display in for instance an FPGA, a DSP or a microprocessor. The described techniques are also valid for both monochrome and color displays ranging from high-quality medical displays to consumer LCDTV applications.
On-line defect detection of aluminum coating using fiber optic sensor
NASA Astrophysics Data System (ADS)
Patil, Supriya S.; Shaligram, A. D.
2015-03-01
Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metallization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.
Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO₂.
Zhang, Daoyu; Yang, Minnan; Dong, Shuai
2015-11-21
Titanium dioxide materials have been studied intensively and extensively for photocatalytic applications. A long-standing open question is the energy band alignment of rutile and anatase TiO2 phases, which can affect the photocatalytic process in the composite system. There are basically two contradictory viewpoints about the alignment of these two TiO2 phases supported by the respective experiments: (1) straddling type and (2) staggered type. In this work, our DFT plus U calculations show that the perfect rutile(110) and anatase(101) surfaces have the straddling type band alignment, whereas the surfaces with defects can turn the band alignment into the staggered type. The electric dipoles induced by defects are responsible for the reversal of band alignment. Thus the defects introduced during the preparation and post-treatment processes of materials are probably the answer to the above open question regarding the band alignment, which can be considered in real practice to tune the photocatalytic activity of materials.
Pneumaticos, Spyros G; Triantafyllopoulos, Georgios K; Basdra, Efthimia K; Papavassiliou, Athanasios G
2010-01-01
Abstract Several conditions in clinical orthopaedic practice can lead to the development of a diaphyseal segmental bone defect, which cannot heal without intervention. Segmental bone defects have been traditionally treated with bone grafting and/or distraction osteogenesis, methods that have many advantages, but also major drawbacks, such as limited availability, risk of disease transmission and prolonged treatment. In order to overcome such limitations, biological treatments have been developed based on specific pathways of bone physiology and healing. Bone tissue engineering is a dynamic field of research, combining osteogenic cells, osteoinductive factors, such as bone morphogenetic proteins, and scaffolds with osteoconductive and osteoinductive attributes, to produce constructs that could be used as bone graft substitutes for the treatment of segmental bone defects. Scaffolds are usually made of ceramic or polymeric biomaterials, or combinations of both in composite materials. The purpose of the present review is to discuss in detail the molecular and cellular basis for the development of bone tissue engineering constructs. PMID:20345845
[Periodontal guided tissue regeneration with a rubber dam: short term clinical study].
D'Archivio, D; Di Placido, G; Tumini, V; Paolantonio, M
1998-03-01
The guided regeneration of periodontal tissues demonstrated to represent a therapeutical technique with predictable results. It has been observed that different materials, used as regenerative membranes, offer very similar results. Unconventional materials too, like the rubber dam, seem to be useful in the guided tissues regeneration technique. The object of the present study has been to comparatively evaluate the effectiveness of Gore-Tex and rubber dam-made membranes in the therapy of intra-osseous periodontal defects. Six patients with two similar intra-osseous defects, participated in the study; one defect has been treated using, during the surgical intervention, a Gore-Tex membrane, while the other has received, a fragment of sterile rubber dam membranes. The principal clinical parameters of the periodontal health (probing depth -PD- and attachment loss -AL-) has been evaluated in both the defects before and 6 months after the periodontal surgery. The results have showed that there are not statistically significant differences (p > 0.05) in the healing of the intra-osseous defects treated by rubber dam or Gore-Tex. The conclusion is drawn that the rubber dam can represent a valid and cheap alternative to the materials traditionally used in the regenerative surgery of the periodontal tissues.
Evaluation of a new composite prosthesis for the repair of abdominal wall defects.
Losi, Paola; Munaò, Antonella; Spiller, Dario; Briganti, Enrica; Martinelli, Ilaria; Scoccianti, Marco; Soldani, Giorgio
2007-10-01
The degree of integration of biomaterials used in the repair of abdominal wall defects seems to depend upon the structure of the prosthesis. The present investigation evaluates the behaviour in terms of adhesion formation and integration of a new composite prosthesis that could be employed in this clinical application. Full-thickness abdominal wall defects (7 x 5 cm) were created in 16 anaesthetized New Zealand white rabbits and the prosthesis were placed in direct contact with the visceral peritoneum during the experiment. The defects were repaired with a composite prosthesis or pure polypropylene mesh to establish two study groups (n = 8 each). The composite device was constituted by a polypropylene mesh physically attached to a poly(ether)urethane-polydimethylsiloxane laminar sheet. Animals were sacrificed 7, 14, 21 and 30 days after implant and prosthesis/surrounding tissue specimens subjected to light and electron microscopy. Firm adhesions were detected in the polypropylene implants, while they were not present in the composite implants. The excellent behaviour of the composite prosthesis shown in this study warrants further investigation on its use for the repair of abdominal wall defects when a prosthetic device needs to be placed in contact with the intestinal loops.
New-style defect inspection system of film
NASA Astrophysics Data System (ADS)
Liang, Yan; Liu, Wenyao; Liu, Ming; Lee, Ronggang
2002-09-01
An inspection system has been developed for on-line detection of film defects, which bases on combination of photoelectric imaging and digital image processing. The system runs in high speed of maximum 60m/min. Moving film is illuminated by LED array which emits even infrared (peak wavelength λp=940nm), and infrared images are obtained with a high quality and high speed CCD camera. The application software based on Visual C++6.0 under Windows processes images in real time by means of such algorithms as median filter, edge detection and projection, etc. The system is made up of four modules, which are introduced in detail in the paper. On-line experiment results shows that the inspection system can recognize defects precisely in high speed and run reliably in practical application.
Pullout Performances of Grouted Rockbolt Systems with Bond Defects
NASA Astrophysics Data System (ADS)
Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan
2018-03-01
This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.
Osteochondral Repair Using Porous Three-dimensional Nanocomposite Scaffolds in a Rabbit Model
ŻYLIŃSKA, BEATA; STODOLAK-ZYCH, EWA; SOBCZYŃSKA-RAK, ALEKSANDRA; SZPONDER, TOMASZ; SILMANOWICZ, PIOTR; ŁAŃCUT, MIROSŁAW; JAROSZ, ŁUKASZ; RÓŻAŃSKI, PAWEŁ; POLKOWSKA, IZABELA
2017-01-01
Aim: To evaluate the utility of a novel nanocomposite biomaterial consisting of poly-L/D-lactide, and hydroxyapatite bioceramics, enriched with sodium alginate in articular cartilage defect treatment. Materials and Methods: The biomaterial was prepared using the method of solvent casting and particle leaching. The study was conducted on 20 New Zealand White rabbits. Experimental osteochondral defects were created in the femoral trochlear grooves and filled with biomaterials. In control groups, the defects were left to spontaneously heal. The quality of newly-formed tissue was evaluated on the basis of macroscopic and histological assessment. Additionally the level of osteogenic and cartilage degradation markers were measured. Results: The majority of the defects from the treatment group were covered with tissue similar in structure and colour to healthy cartilage, whereas in the control group, tissue was uneven, and not integrated into the surrounding cartilage. Conclusion: The results obtained validate the choice of biomaterial used in this study as well as the method of its application. PMID:28882956
Research study on materials processing in space, M566 experiment
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Galasso, F. S.
1974-01-01
Specimens of the aluminum-33 wt% copper eutectic partially melted and resolidified in the low effective gravity of the orbiting Skylab were examined and characterized with respect to microstructural defects and thermal conductivity values. The results obtained were compared with similar evaluations of ground-based simulation melt-resolidification experiments and as-prepared unidirectionally solidified specimens. Thermal conductivity data and electrical resistivity data at temperatures from 25 C to 400 C did not show significant differences between ground and space processed specimens. A methology of evaluating the defects in the Al-Al2Cu structure was implemented. A specimen from Skylab 3 showed signs of instability in growth and several grains were found in the ingot. The specimen from Skylab 4 did not show such marked instability in growth and was found to contain fewer defects than the ground-processed specimens. This agrees with data from Georgia Institute of Technology which showed that there were fewer defects in both their Skylab 3 and 4 specimens than in ground processed specimens.
A support vector machine approach for classification of welding defects from ultrasonic signals
NASA Astrophysics Data System (ADS)
Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming
2014-07-01
Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.
Persistence time of charge carriers in defect states of molecular semiconductors.
McMahon, David P; Troisi, Alessandro
2011-06-07
Charge carriers in organic crystals are often trapped in point defects. The persistence time of the charge in these defect states is evaluated by computing the escape rate from this state using non-adiabatic rate theory. Two cases are considered (i) the hopping between separate identical defect states and (ii) the hopping between a defect state and the bulk (delocalized) states. We show that only the second process is likely to happen with realistic defect concentrations and highlight that the inclusion of an effective quantum mode of vibration is essential for accurate computation of the rate. The computed persistence time as a function of the trap energy indicates that trap states shallower than ∼0.3 eV cannot be effectively investigated with some slow spectroscopic techniques such as THz spectroscopy or EPR commonly used to study the nature of excess charge in semiconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodin, L.; Rouby, J.J.; Viars, P.
1988-07-01
Fifty five patients suffering from blunt chest trauma were studied to assess the diagnosis of myocardial contusion using thallium 201 myocardial scintigraphy. Thirty-eight patients had consistent scintigraphic defects and were considered to have a myocardial contusion. All patients with scintigraphic defects had paroxysmal arrhythmias and/or ECG abnormalities. Of 38 patients, 32 had localized ST-T segment abnormalities; 29, ST-T segment abnormalities suggesting involvement of the same cardiac area as scintigraphic defects; 21, echocardiographic abnormalities. Sixteen patients had segmental hypokinesia involving the same cardiac area as the scintigraphic defects. Fifteen patients had clinical signs suggestive of myocardial contusion and scintigraphic defects. Almostmore » 70 percent of patients with blunt chest trauma had scintigraphic defects related to areas of myocardial contusion. When thallium 201 myocardial scintigraphy directly showed myocardial lesion, two-dimensional echocardiography and standard ECG detected related functional consequences of cardiac trauma.« less
Color vision defects in school going children.
Shrestha, R K; Joshi, M R; Shakya, S; Ghising, R
2010-01-01
Color vision defect can be observed in various diseases of optic nerve and retina and also a significant number of people suffer from the inherited condition of red and green color defect. A cross-sectional descriptive study was designed with purposive sampling of students from various schools of Kathmandu Valley. All children were subjected to color vision evaluation using Ishihara Isochromatic color plates along with other examination to rule out any other causes for color deficiency. A total of 2001 students were examined, 1050 male students and 951 females with mean age of 10.35 (+/- 2.75) and 10.54 (+/- 2.72) respectively. Among the total students examined, 2.1% had some form of color vision defects. Of the male population, 3.9% had color vision defects while none of the female was found with the deficiency. The prevalence of color vision defect in Nepal is significant and comparable with the prevalence quoted in studies from different countries.
Catheter closure of secundum atrial septal defects.
O'Laughlin, M P
1997-01-01
Catheter occlusion of atrial septal defects has its roots in the 1950s, with early devices being implanted during closed-heart surgery without cardiopulmonary bypass. For the past 20 years, various catheter-delivered devices have undergone testing and refinement. Designs have included single- and double-disk prostheses, with a variety of materials, delivery systems, and techniques. In this monograph, the history of atrial septal defect occluders and their evaluation, results, and prognoses will be outlined. The early work of King and Mills has been advanced in the forms of the Rashkind and Lock-USCI Clamshell occluders (USCI; Billerica, Mass), the "buttoned" device (custom made by E.B. Sideris), the Babic atrial septal defect occlusion system (Osypka, GmbH; Grenzach-Wyhlen, Germany), the Das-Angel Wings atrial septal defect occlusion device (Microvena Corporation; White Bear Lake, Minn), and others. The future holds promise for approved devices in the treatment of selected secundum atrial septal defects.
Validation of TMJ osteoarthritis synthetic defect database via non-rigid registration
NASA Astrophysics Data System (ADS)
Paniagua, Beatriz; Pera, Juliette; Budin, Francois; Gomes, Liliane; Styner, Martin; Lucia, Cevidanes; Nguyen, Tung
2015-03-01
Temporomandibular joint (TMJ) disorders are a group of conditions that cause pain and dysfunction in the jaw joint and the muscles controlling jaw movement. However, diagnosis and treatment of these conditions remain controversial. To date, there is no single sign, symptom, or test that can clearly diagnose early stages of osteoarthritis (OA). Instead, the diagnosis is based on a consideration of several factors, including radiological evaluation. The current radiological diagnosis scores of TMJ pathology are subject to misdiagnosis. We believe these scores are limited by the acquisition procedures, such as oblique cuts of the CT and head positioning errors, and can lead to incorrect diagnoses of flattening of the head of the condyle, formation of osteophytes, or condylar pitting. This study consists of creating and validating a methodological framework to simulate defects in CBCT scans of known location and size, in order to create synthetic TMJ OA database. User-generated defects were created using a non-rigid deformation protocol in CBCT. All segmentation evaluation, surface distances and linear distances from the user-generated to the simulated defects showed our methodological framework to be very precise and within a voxel (0.5 mm) of magnitude. A TMJ OA synthetic database will be created next, and evaluated by expert radiologists, and this will serve to evaluate how sensitive the current radiological diagnosis tools are.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Davis, Jason; Farrington, Seth; Walker, James
2007-01-01
Low density polyurethane foam has been an important insulation material for space launch vehicles for several decades. The potential for damage from foam breaking away from the NASA External Tank was not realized until the foam impacts on the Columbia Orbiter vehicle caused damage to its Leading Edge thermal protection systems (TPS). Development of improved inspection techniques on the foam TPS is necessary to prevent similar occurrences in the future. Foamed panels with drilled holes for volumetric flaws and Teflon inserts to simulate debonded conditions have been used to evaluate and calibrate nondestructive testing (NDT) methods. Unfortunately the symmetric edges and dissimilar materials used in the preparation of these simulated flaws provide an artificially large signal while very little signal is generated from the actual defects themselves. In other words, the same signal are not generated from the artificial defects in the foam test panels as produced when inspecting natural defect in the ET foam TPS. A project to create more realistic voids similar to what actually occurs during manufacturing operations was began in order to improve detection of critical voids during inspections. This presentation describes approaches taken to create more natural voids in foam TPS in order to provide a more realistic evaluation of what the NDT methods can detect. These flaw creation techniques were developed with both sprayed foam and poured foam used for insulation on the External Tank. Test panels with simulated defects have been used to evaluate NDT methods for the inspection of the External Tank. A comparison of images between natural flaws and machined flaws generated from backscatter x-ray radiography, x-ray laminography, terahertz imaging and millimeter wave imaging show significant differences in identifying defect regions.
Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.
The efficacy of a novel mobile phone application for goldmann ptosis visual field interpretation.
Maamari, Robi N; D'Ambrosio, Michael V; Joseph, Jeffrey M; Tao, Jeremiah P
2014-01-01
To evaluate the efficacy of a novel mobile phone application that calculates superior visual field defects on Goldmann visual field charts. Experimental study in which the mobile phone application and 14 oculoplastic surgeons interpreted the superior visual field defect in 10 Goldmann charts. Percent error of the mobile phone application and the oculoplastic surgeons' estimates were calculated compared with computer software computation of the actual defects. Precision and time efficiency of the application were evaluated by processing the same Goldmann visual field chart 10 repeated times. The mobile phone application was associated with a mean percent error of 1.98% (95% confidence interval[CI], 0.87%-3.10%) in superior visual field defect calculation. The average mean percent error of the oculoplastic surgeons' visual estimates was 19.75% (95% CI, 14.39%-25.11%). Oculoplastic surgeons, on average, underestimated the defect in all 10 Goldmann charts. There was high interobserver variance among oculoplastic surgeons. The percent error of the 10 repeated measurements on a single chart was 0.93% (95% CI, 0.40%-1.46%). The average time to process 1 chart was 12.9 seconds (95% CI, 10.9-15.0 seconds). The mobile phone application was highly accurate, precise, and time-efficient in calculating the percent superior visual field defect using Goldmann charts. Oculoplastic surgeon visual interpretations were highly inaccurate, highly variable, and usually underestimated the field vision loss.
[Feasibility of sonography in the diagnosis of congenital heart diseases in dogs].
Schneider, M; Schneider, I; Neu, H
1998-05-01
In ultrasound examination of the heart it is useful to combine the following techniques: echocardiography (in 2D and M-mode) gives information about morphology and motion of the heart. By using Doppler echocardiography (black and white or preferably colour) it is possible to evaluate bloodstreams and with contrast echocardiography shunts in the heart can be demonstrated. In our study (1994-1996) the following congenital heart defects were the most common in dogs: subaortic stenosis (SAS, 41%), pulmonic stenosis (PS, 19%), patent ductus arteriosus (PDA, 11%) and the combination of subaortic stenosis with pulmonic stenosis (11%). Echocardiography allows the morphologic evaluation of the primary defect in detail, for example the differentiation between aortic valve stenosis and subaortic stenosis. However the exact identification of the patent ductus arterious and of the morphology in pulmonic stenosis can remain difficult, especially in patients showing dyspnoe. In heart sonography quantitative measurements are available to graduate the defects, but guidelines for these measurements are not yet defined. The demonstration of secondary and combined defects, which are important for therapy is easily possible with heart ultrasound examination. Secondary insufficiencies are often seen at the mitral valve because of primary subaortic stenosis or patent ductus arteriosus and at the tricuspid valve because of pulmonic stenosis. For differentiation of combined heart defects (SAS with PS; SAS with PDA; PS with atrium septum defect) heart ultrasound is extremely valuable.
Chondral defect repair after the microfracture procedure: a nonhuman primate model.
Gill, Thomas J; McCulloch, Patrick C; Glasson, Sonya S; Blanchet, Tracey; Morris, Elizabeth A
2005-05-01
The extent and time course of chondral defect healing after microfracture in humans are not well described. Although most physicians recommend a period of activity and weightbearing restriction to protect the healing cartilage, there are limited data on which to base decisions regarding the duration of such restrictions. Evaluation of the status of chondral defect repair at different time points after microfracture in a primate model may provide a rationale for postoperative activity recommendations. Descriptive laboratory study. Full-thickness chondral defects created on the femoral condyles and trochlea of 12 cynomolgus macaques were treated with microfracture and evaluated by gross and histologic examination at 6 and 12 weeks. At 6 weeks, there was limited chondral repair and ongoing resorption of subchondral bone. By 12 weeks, the defects were completely filled and showed more mature cartilage and bone repair. In the primate animal model, significant improvements in the extent and quality of cartilage repair were observed from the 6- to 12-week time points after microfracture. The poor status of the defect repair at 6 weeks and the ongoing healing observed from the 6- to 12-week time points may indicate that the repair is vulnerable during this initial postoperative period. Assuming the goal of postoperative weightbearing and activity restriction in patients after microfracture is to protect immature repair tissue, this study lends support to extending such recommendations longer than 6 weeks.
Mental Condition Requirement in Competency to Stand Trial Assessments.
Reisner, Andrew D; Piel, Jennifer L
2018-03-01
In Ohio, a criminal defendant is incompetent to stand trial only if "a present mental condition" renders him unable to understand the nature and objectives of the proceedings against him or to assist in his defense. Some forensic mental health evaluators have treated the mental-condition requirement as synonymous with, or similar to, the psychiatric condition required in the state's insanity criteria, which requires a "severe mental disease or defect." Yet the term mental condition does not appear in other areas of the state's criminal code or in the state's definition of a mental illness for purposes of civil commitment. Moreover, Ohio's adjudicative competency statute does not explain what conditions or symptoms constitute a mental condition sufficient to render a defendant incompetent. This article is a review of the mental condition requirement in competence to stand trial laws, using Ohio as an example, and how this term has been interpreted (or misinterpreted) by mental health evaluators and the legal system. Suggestions for practicing forensic evaluators are offered. © 2018 American Academy of Psychiatry and the Law.
Kohal, Ralf Joachim; Straub, Lisa Marie; Wolkewitz, Martin; Bächle, Maria; Patzelt, Sebastian Berthold Maximilian
2015-10-01
To evaluate the potential of two bone substitute materials and the influence of different healing periods in guided bone regeneration therapy of osseous defects around implants. Twenty-four edentulous patients received implants in the region of the lost lower incisors. Around two standardized osseous defects were created, treated either with a 50:50 mixture of PepGen P-15® and OsteoGraf®/N-700 (test group) or with BioOss® (control group), and covered with titanium membranes. After healing periods of 2, 4, 6, or 9 months, the implants were removed together with the surrounding bone and subsequently prepared for histological evaluations. Defect depths in both groups showed a clinical reduction after intervention. The histologically measured distance from the implant shoulder to the first point of bone-implant contact (BIC) after treatment did not differ between the two groups. The healing time influenced the level of the first point of BIC, with a longer healing period producing a more coronal first point of BIC. A greater percentage BIC and a higher fraction of mineralized bone were found in the pristine bone area compared with the augmented defect area. It can be concluded that in the treatment of osseous defects around oral implants, both materials were equally effective bone substitute materials when used in combination with guided bone regeneration. © 2014 Wiley Periodicals, Inc.
Alternative acceptance criteria of girth weld defects in cross country pipelines. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Lefevre, T.
1997-06-01
The failure behaviour of defective girth welds in large diameter pipe lines was assessed using radiographic and mechanised ultrasonic inspection, small scale (tensile, hardness, Charpy and CTOD) and wide plate tests. The specimens were taken from girth welds in API 5LX70 pipe of 1219 mm (48 inches) in diameter by 8,0 mm (0,323 inch) and 13,3 mm (0,524 inch) wall. The test welds were made with the SMAW (8 welds) and GMAW (9 welds) welding processes. Upon completion of the non-destructive tests, 96 curved wide plate specimens were tested to destruction under tensile load. Testing was performed at low temperaturemore » (-50{degrees}C/-58{degrees}F). Defect type, defect position and size were determined from photographs of the fracture face and macro sections (defect characterisation and sizing). In total, 290 typical surface breaking and embedded defects in SMAW or GMAW girth welds have been evaluated. The vast majority of these defects were grossly out of tolerance with respect to current weld quality (workmanship) acceptance levels. To allow the defect tolerance to be determined, the failure strains and stresses were correlated with a defect length determined for an equivalent 3 mm (0, 118 inch) deep defect. This target depth was chosen to represent the average height of one weld pass. The results of this approach have been compared to wall thickness, current workmanship and the EPRG Tier 2 defect limit for planar defects. The defect lengths were derived for rectangular, parabolic and elliptical defect representations.« less
Polariton Local States in Periodic Bragg Multiple Quantum Well Structures
NASA Astrophysics Data System (ADS)
Deych, Lev; Yamilov, Alexey; Lisyansky, Alexander
2000-11-01
We analytically study defect polariton states in Bragg MQW structures, and defect induced changes in transmission and reflection spectra. Defect layers can differ from the host layers in three different ways: in the exciton-light coupling strength, in the exciton resonance frequency, and in interwell spacing. We show that a single defect leads to two local polariton modes in the photonic band gap. These modes lead to peculiarities in reflection and transmission spectra. Each type of defect can be reproduced experimentally, and we show that each of them play distinctly different roles in the optical properties of the system. We obtain closed analytical expressions for respective local frequencies, as well as for reflection and transmission coefficients. On the basis of the results obtained, we give practical recommendation for experimental observation of the studied effects in samples used in Refs. [1,2]. [1] M.Hübner, J. Kuhl, T. Stroucken, A. Knorr, S.W. Koch, R. Hey, K. Ploog, Phys. Rev. Lett. 76, 4199 (1996). [2] M.Hübner, J.P. Prineas, C. Ell, P. Brick, E.S. Lee, G. Khitrova, H.M. Gibbs, S.W. Koch, Phys. Rev. Lett. 83, 2841 (1999).
NASA Astrophysics Data System (ADS)
Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter
2016-05-01
At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts printability of defects at wafer level and automates the process of defect dispositioning from images captured using high resolution inspection machine. It first eliminates false defects due to registration, focus errors, image capture errors and random noise caused during inspection. For the remaining real defects, actual mask-like contours are generated using the Calibre® ILT solution [1][2], which is enhanced to predict the actual mask contours from high resolution defect images. It enables accurate prediction of defect contours, which is not possible from images captured using inspection machine because some information is already lost due to optical effects. Calibre's simulation engine is used to generate images at wafer level using scanner optical conditions and mask-like contours as input. The tool then analyses simulated images and predicts defect printability. It automatically calculates maximum CD variation and decides which defects are severe to affect patterns on wafer. In this paper, we assess the printability of defects for the mask of advanced technology nodes. In particular, we will compare the recovered mask contours with contours extracted from SEM image of the mask and compare simulation results with AIMSTM for a variety of defects and patterns. The results of printability assessment and the accuracy of comparison are presented in this paper. We also suggest how this method can be extended to predict printability of defects identified on EUV photomasks.
Defect recognition in CFRP components using various NDT methods within a smart manufacturing process
NASA Astrophysics Data System (ADS)
Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe
2018-04-01
The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.
Lead Apron Inspection Using Infrared Light: A Model Validation Study.
McKenney, Sarah E; Otero, Hansel J; Fricke, Stanley T
2018-02-01
To evaluate defect detection in radiation protective apparel, typically called lead aprons, using infrared (IR) thermal imaging. The use of IR lighting eliminates the need for access to x-ray-emitting equipment and radiation dose to the inspector. The performance of radiation workers was prospectively assessed using both a tactile inspection and the IR inspection with a lead apron phantom over a 2-month period. The phantom was a modified lead apron with a series of nine holes of increasing diameter ranging from 2 to 35 mm in accordance with typical rejection criteria. Using the tactile method, a radiation worker would feel for the defects in the lead apron. For the IR inspection, a 250-W IR light source was used to illuminate the lead apron phantom; an IR camera detected the transmitted radiation. The radiation workers evaluated two stills from the IR camera. From the 31 participants inspecting the lead apron phantom with the tactile method, only 2 participants (6%) correctly discovered all 9 holes and 1 participant reported a defect that was not there; 10 of the 20 participants (50%) correctly identified all 9 holes using the IR method. Using a weighted average, 5.4 defects were detected with the tactile method and 7.5 defects were detected with the IR method. IR light can penetrate an apron's protective outer fabric and illuminate defects below the current standard rejection size criteria. The IR method improves defect detectability as compared with the tactile method. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Ajwani, Himanshu; Shetty, Sharath; Gopalakrishnan, Dharmarajan; Kathariya, Rahul; Kulloli, Anita; Dolas, R S; Pradeep, A R
2015-01-01
Background: Platelet-rich concentrates are the most widely used regenerative biomaterials. Stimulation and acceleration of soft and hard tissue healing are due to local and continuous delivery of growth factors and proteins, mimicking the needs of the physiological wound healing and reparative tissue processes. This article aims to evaluate the clinical efficacy of open flap debridement (OFD) with or without platelet-rich fibrin (PRF) in the treatment of intrabony defects. Materials and Methods: Twenty subjects with forty intrabony defects were treated with either autologous PRF with open-flap debridement (test, n = 20) or open-flap debridement alone (control, n = 20). Soft tissue parameters included: Plaque index, sulcus bleeding index, probing depth, relative attachment level and gingival marginal level (GML). The hard tissue parameters included-distances from: Cement enamel junction to the base of the defect (CEJ-BOD): Alveolar crest to the base of the defect (AC-BOD): And CEJ to AC. The parameters were recorded at baseline and at 9 months postoperatively calculated using standardized radiographs by image-analysis software. Results: Statistically significant (0.005*) intragroup improvements were seen with all the hard and soft parameters in both test and control groups, except for GML. Statistically significant improvements were seen with the mean defect fill (CEJ-BOD and AC-BOD) (P = 0.003*) when intergroup comparisons were made. Conclusions: Adjunctive use of PRF with OFD significantly improves defect fill when compared to OFD alone. PRF has consistently been showing regenerative potential; it is simple, easy and inexpensive biomaterial compared with bone grafts. PMID:25954068
Hontoir, Fanny; Nisolle, Jean-François; Meurisse, Hubert; Simon, Vincent; Tallier, Max; Vanderstricht, Renaud; Antoine, Nadine; Piret, Joëlle; Clegg, Peter; Vandeweerd, Jean-Michel
2014-01-01
Articular cartilage defects are prevalent in metacarpo/metatarsophalangeal (MCP/MTP) joints of horses. The aim of this study was to determine and compare the sensitivity and specificity of 3-Tesla magnetic resonance imaging (3-T MRI) and computed tomography arthrography (CTA) to identify structural cartilage defects in the equine MCP/MTP joint. Forty distal cadaver limbs were imaged by CTA (after injection of contrast medium) and by 3-T MRI using specific sequences, namely, dual-echo in the steady-state (DESS), and sampling perfection with application-optimised contrast using different flip-angle evolutions (SPACE). Gross anatomy was used as the gold standard to evaluate sensitivity and specificity of both imaging techniques. CTA sensitivity and specificity were 0.82 and 0.96, respectively, and were significantly higher than those of MRI (0.41 and 0.93, respectively) in detecting overall cartilage defects (no defect vs. defect). The intra and inter-rater agreements were 0.96 and 0.92, respectively, and 0.82 and 0.88, respectively, for CT and MRI. The positive predictive value for MRI was low (0.57). CTA was considered a valuable tool for assessing cartilage defects in the MCP/MTP joint due to its short acquisition time, its specificity and sensitivity, and it was also more accurate than MRI. However, MRI permits assessment of soft tissues and subchondral bone and is a useful technique for joint evaluation, although clinicians should be aware of the limitations of this diagnostic technique, including reduced accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Helvacioglu-Yigit, Dilek; Aydemir, Seda; Yilmaz, Ayca
2015-01-01
The purpose of this study was to evaluate the presence of dentinal defects after root canal preparation with hand instruments and two different reciprocating instruments. Sixty freshly extracted mandibular incisor teeth were selected for this in vitro study. On the basis of root length, mesiodistal and buccolingual dimensions, the teeth were allocated into three identical experimental groups (n = 15) and one control group (n = 15). The teeth in the control group were left unprepared. The other groups were: stainless steel hand instruments, WaveOne® Primary instruments and RECIPROC® R25 instruments. The reciprocating instruments were used with a reciprocating gentle in-and-out motion in a torque-limited electric motor at the appropriate preset mode. Horizontal sections were made 3, 6 and 9 mm from the apex. Samples were stained with methylene blue and viewed through a stereomicroscope. The presence of dentinal defects (fractures, incomplete cracks and craze lines) and their locations were investigated by two endodontists. These data were analysed statistically by Fisher's exact and chi-square tests. No defects were observed in the unprepared group. All instruments caused dentinal defects, with no significant differences between the instrument systems. All experimental groups demonstrated significantly more defects at the 3-mm level in comparison with the unprepared group (p = 0.032). At the other levels, there was no significant difference between the experimental groups and the control group. The use of hand or reciprocating instruments could induce the formation of dentinal defects during root canal preparation. PMID:26019654
Debelle, Aurelien; Boulle, Alexandre; Chartier, Alain; ...
2014-11-25
We present a combination of experimental and computational evaluations of disorder level and lattice swelling in ion-irradiated materials. Information obtained from X-ray diffraction experiments is compared to X-ray diffraction data generated using atomic-scale simulations. The proposed methodology, which can be applied to a wide range of crystalline materials, is used to study the amorphization process in irradiated SiC. Results show that this process can be divided into two steps. In the first step, point defects and small defect clusters are produced and generate both large lattice swelling and high elastic energy. In the second step, enhanced coalescence of defects andmore » defect clusters occurs to limit this increase in energy, which rapidly leads to complete amorphization.« less
7 CFR 97.100 - Examination of applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS... if there are fundamental defects in the application, as determined by the examiner, the examination...
7 CFR 51.1877 - Classification of defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND...
Heitzinger, Kristen; Thoroughman, Douglas A; Porter, Kimberly A
2018-06-01
Because infection with Zika virus during pregnancy can cause microcephaly and other birth defects, women of childbearing age are an important population for targeting of Zika-related public health messaging. To improve Zika-related communication and outreach in Kentucky, we conducted a survey to assess Zika knowledge, attitudes, and practices among all women of childbearing age who received a negative Zika test result from the state public health laboratory during February to July 2016. Although >90% of the 55 respondents knew the virus could be transmitted by mosquitoes and caused birth defects, just 56% (31/55) knew the virus could be sexually transmitted. These findings underscore the importance of continued efforts by CDC and state and local health departments to educate female travelers of childbearing age about risks for and prevention of Zika virus infection, particularly emphasizing use of condoms and abstinence to prevent transmission.
Ramaswamy, Shankaran; Hovis, Jeffery K
2004-01-01
Color codes in VDT displays often contain sets of colors that are confusing to individuals with color-vision deficiencies. The purpose of this study is to determine whether individuals with color-vision deficiencies (color defectives) can perform as well as individuals without color-vision deficiencies (color normals) on a colored VDT display used in the railway industry and to determine whether clinical color-vision tests can predict their performance. Of the 52 color defectives, 58% failed the VDT test. The kappa coefficients of agreement for the Farnsworth D-15, Adams desaturated D-15, and Richmond 3rd Edition HRR PIC diagnostic plates were significantly greater than chance. In particular, the D-15 tests have a high probability of predicting who fails the practical test. However, all three tests had an unacceptably high false-negative rate (9.5-35%); so that a practical test is still needed.
Healing of rabbit calvarial critical-sized defects using autogenous bone grafts and fibrin glue.
Lappalainen, Olli-Pekka; Korpi, Riikka; Haapea, Marianne; Korpi, Jarkko; Ylikontiola, Leena P; Kallio-Pulkkinen, Soili; Serlo, Willy S; Lehenkari, Petri; Sándor, George K
2015-04-01
This study aimed to evaluate ossification of cranial bone defects comparing the healing of a single piece of autogenous calvarial bone representing a bone flap as in cranioplasty compared to particulated bone slurry with and without fibrin glue to represent bone collected during cranioplasty. These defect-filling materials were then compared to empty control cranial defects. Ten White New Zealand adult male rabbits had bilateral critical-sized calvarial defects which were left either unfilled as control defects or filled with a single full-thickness piece of autogenous bone, particulated bone, or particulated bone combined with fibrin glue. The defects were left to heal for 6 weeks postoperatively before termination. CT scans of the calvarial specimens were performed. Histomorphometric assessment of hematoxylin-eosin- and Masson trichrome-stained specimens was used to analyze the proportion of new bone and fibrous tissue in the calvarial defects. There was a statistically significant difference in both bone and soft tissue present in all the autogenous bone-grafted defect sites compared to the empty negative control defects. These findings were supported by CT scan findings. While fibrin glue combined with the particulated bone seemed to delay ossification, the healing was more complete compared to empty control non-grafted defects. Autogenous bone grafts in various forms such as solid bone flaps or particulated bone treated with fibrin glue were associated with bone healing which was superior to the empty control defects.
Nondestructive Integrity Evaluation of PC Pile Using Wigner-Ville Distribution Method
NASA Astrophysics Data System (ADS)
Ni, Sheng-Huoo; Lo, Kuo-Feng; Huang, Yan-Hong
Nondestructive evaluation (NDE) techniques have been used for years to provide a quality control of the construction for both drilled shafts and driven concrete piles. This trace is typically made up of transient pulses reflected from structural features of the pile or changes in its surrounding environment. It is often analyzed in conjunction with the spectral response, mobility curve, arrival time, etc. The Wigner-Ville Distribution is a new numerical analysis tool for signal process technique in the time-frequency domain and it can offer assistance and enhance signal characteristics for better resolution both easily and quickly. In this study, five single pre-cast concrete piles have been tested and evaluated by both sonic echo method and Wigner-Ville distribution (WVD). Furthermore, two difficult problems in nondestructive evaluation problems are discussed and solved: the first one is with a pile with slight defect, whose necking area percentage is less than 10%, and the other is a pile with multiple defects. The results show that WVD can not only recognize the characteristics easily, but also locate the defects more clearly than the traditional pile integrity testing method.
Histologic Evaluation of a Polylactic Acid Confluent Sheet in the Treatment of Osseous Defects,
1992-01-01
Cobb, DDS, PhD * John C. Reed, DDS + Caesar E. Solano, DMD + W. Robert Hiatt, DDS + • Departments of Periodontics and Oral Biology, University of...may be employed as a matrix for osseous grafting, for the occlusion of large bony defects, for soft tissue contour defects, and also as a bone plating...trabecular bone. Further, the periosteum regenerated as a confluent layer of fibrous connective tissue covering the superior aspect of the implant material
Early Evaluation of the Fetal Heart.
Hernandez-Andrade, Edgar; Patwardhan, Manasi; Cruz-Lemini, Mónica; Luewan, Suchaya
2017-01-01
Evaluation of the fetal heart at 11-13 + 6 weeks of gestation is indicated for women with a family history of congenital heart defects (CHD), a previous child with CDH, or an ultrasound finding associated with cardiac anomalies. The accuracy for early detection of CHD is highly related to the experience of the operator. The 4-chamber view and outflow tracts are the most important planes for identification of an abnormal heart, and can be obtained in the majority of fetuses from 11 weeks of gestation onward. Transvaginal ultrasound is the preferred route for fetal cardiac examination prior to 12 weeks of gestation, whereas, after 12 weeks, the fetal heart can be reliably evaluated by transabdominal ultrasound. Cardiac defects, such as ventricular septal defects, tetralogy of Fallot, Ebstein's anomaly, or cardiac tumors, are unlikely to be identified at ≤14 weeks of gestation. Additional ultrasound techniques such as spatiotemporal image correlation and the evaluation of volumes by a fetal-heart expert can improve the detection of congenital heart disease. The evaluation of the fetal cardiac function at 11-13 + 6 weeks of gestation can be useful for early identification of fetuses at risk of anemia due to hemoglobinopathies, such as hemoglobin Bart's disease. © 2017 S. Karger AG, Basel.
In Vivo Defection of Thrombi with Indium-111-Labeled Platelets
NASA Astrophysics Data System (ADS)
Price, David C.; Lipton, Martin J.; Lusby, Robert J.; Engelstad, Barry L.; Stoney, Ronald J.; Prager, Robert J.; Hartmeyer, James A.; Holly, Anne S.
1982-06-01
The use of Indium-111-oxine labeled autologous platelets has been explored in a dog-catheter model, as well as in a variety of clinical disorders in man. Newly forming experimental thrombi in dogs label well during the first 45-90 minutes, then lose both label and thrombus mass in a manner consistent with fibrinolysis. Thrombus weight is linearly related to In-111 activity, so that in vivo scintigraphy will be a practical method to evaluate various thrombotic stimuli and anti-thrombotic interventions experimentally. Preformed thrombus, however, labels poorly and cannot be detected by imaging in this dog model. Initial clinical experience with a variety of arterial, venous and cardiac thrombotic states is reviewed, indicating some of the strengths and same of the potential weaknesses of this new scintigraphic technique.
Riley, Joseph L.; Hudak-Boss, Susan; Fellows, Jeffery L.; Rindal, Brad; Gilbert, Gregg H.
2014-01-01
Objectives This study examined the dentist’s view of the patient’s experience and concordance with the patient’s rating of satisfaction. Methods Practitioners from 197 practices in the National Dental Practice-Based Research Network recruited consecutively seen patients who had defective restorations that were replaced or repaired. At the end of the treatment visit, the treating dentist and 5,879 patients completed and returned a survey that asked about the patient’s satisfaction. Results Dentists viewed their patients as satisfied with their treatment experience (89% n=4,719) and that they had been perceived as friendly (97%, n=5,136). Dentists had less strong feelings about whether patients had a preference for the restorative material (43%, n=2,271) or an interest in information about the procedure (33%, n=1,757). Overall, patients were satisfied, and most of the time dentists correctly predicted this. Among patients who were less than satisfied, there was a substantial subset of cases where dentists were not aware. Conclusion For improved patient-centered care, patient desires, expectations and perception of the dental care experience need to be assessed by the dentist and then managed or corrected as needed. Practice implications By taking a patient-centered approach, dentists should seek to understand how patients evaluate and rate the service provided, thereby enabling themselves to focus on what each patient values most. PMID:24686969
Totañes, Francis Isidore G.; Macatangay, Bernard J. C.; Belizario, Vicente Y.
2014-01-01
The World Health Organization recommends anthelminthic treatment for pregnant women after the first trimester in soil-transmitted helminth (STH) endemic regions to prevent adverse maternal-fetal consequences. Although studies have shown the high prevalence of infection in the Philippines, no research has evaluated deworming practices. We hypothesized that pregnant women are not receiving deworming treatment and we aimed to identify barriers to World Health Organization guideline implementation. We conducted key informant interviews with local Department of Health (DOH) administrators, focus group discussions with nurses, midwives, and health care workers, and knowledge, attitudes, and practices surveys with women of reproductive age to elicit perspectives about deworming during pregnancy. Key informant interviews revealed that healthcare workers were not deworming pregnant women due to inadequate drug supply, infrastructure and personnel as well as fear of teratogenicity. Focus group discussions showed that healthcare workers similarly had not implemented guidelines due to infrastructure challenges and concerns for fetal malformations. The majority of local women believed that STH treatment causes side effects (74.8%) as well as maternal harm (67.3%) and fetal harm (77.9%). Women who were willing to take anthelminthics while pregnant had significantly greater knowledge as demonstrated by higher Treatment Scores (mean rank 146.92 versus 103.1, z = −4.40, p<0.001) and higher Birth Defect Scores (mean rank 128.09 versus 108.65, z = −2.43, p = 0.015). This study concludes that World Health Organization guidelines are not being implemented in the Philippines. Infrastructure, specific protocols, and education for providers and patients regarding anthelminthic treatment are necessary for the successful prevention of STH morbidity and mortality among pregnant women. PMID:24586245
Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.
Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo
2017-09-01
In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.
30 CFR 35.9 - Certificates of approval.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Certificates of approval. 35.9 Section 35.9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... details of the defect(s), with a view to possible correction. MSHA will not disclose, except to the...
Physical-Mechanisms Based Reliability Analysis For Emerging Technologies
2017-05-05
irradiation is great- ly enhanced by biasing the...devices during irradiation and/or applying high field stress be- fore irradiation . The resulting defect energy distributions were evaluated after... irradiation and/or high field stress via low-frequency noise measurements. Significant increases were observed in acceptor densities for defects with
Whyte, Graeme P; McGee, Alan; Jazrawi, Laith; Meislin, Robert
2016-05-01
To evaluate the fixation integrity at time zero of a type I/III collagen patch secured to a chondral defect in the porcine knee using methods typically employed in autologous chondrocyte implantation (ACI) and matrix-assisted chondrocyte implantation. Twenty-four porcine knee specimens underwent a medial parapatellar arthrotomy. A prefabricated template was used to create cartilage defects of 2 cm(2) in the medial femoral condyle. A size-matched collagen patch was fashioned. Four methods of fixation to the chondral defect were analyzed: group 1-saline, group 2-fibrin glue around the periphery of the patch, group 3-fibrin glue applied to the base of the defect and around the periphery of the patch, group 4-6-0 vicryl suture and fibrin glue around the periphery of the patch. Collagen patch fixation was assessed at intervals of 60, 300, 600, 900, and 1,200 cycles from full extension to 90° of flexion, performed manually without application of axial force. Patch fixation was evaluated by 2 independent observers using a customized scoring scale. Mean peripheral detachment of the patch and chondral defect uncovering remained less than 25% for all groups. Area of defect uncovering was significantly increased in group 2 compared with group 4 after 900 and 1,200 cycles (P = .0014 and P = .0025, respectively). Fibrin glue applied to the base of the defect, or suturing of the patch, reduced deformation significantly after 900 cycles. Suture increases the stability of fixation of a type I/III collagen patch to a chondral defect better than fibrin glue alone in the porcine knee after repetitive cycling, with respect to patch detachment and chondral defect uncovering. Application of fibrin glue to the base of the defect, or securing the patch with suture, decreases collagen patch deformation. In cases where minimally invasive techniques do not allow suture fixation of the collagen patch, scaffold fixation may be compromised during articular motion protocols typically used after second- and third-generation ACI procedures. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Repair of full-thickness cartilage defects with cells of different origin in a rabbit model.
Yan, Hui; Yu, Changlong
2007-02-01
The purpose of this study was to evaluate the repaired tissues formed in full-thickness cartilage defects in a rabbit model implanted with 4 types of chondrogenic cells, including chondrocytes, mesenchymal stem cells (MSCs) and fibroblasts from rabbit, and human umbilical cord blood (hUCB) stem cells. Chondrocytes, MSCs, and fibroblasts were isolated from 6-week-old New Zealand rabbits; hUCB stem cells were isolated from the umbilical cord blood of newborn children. These 4 types of cells were cultured in vitro and embedded in polylactic acid (PLA) matrices. Full-thickness defects were produced in the femoral trochlear grooves of both knees in 36 adult New Zealand White rabbits. Cell/PLA composites were transplanted into cartilage defects. A total of 5 groups were formed according to implanted cell type: Group A, chondrocytes; Group B, MSCs; Group C, fibroblasts; Group D, hUCB stem cells; and Group E, no cells (control group). Repaired tissues were evaluated grossly, histologically, and immunohistochemically at 6 weeks and 12 weeks after implantation. In Groups A and B, defects were repaired with hyaline-like cartilage. In Group C, defects were repaired with fibrous tissue. In Group D, defects were repaired primarily with fibrous tissue and scattered chondrocytes; in some specimens, defects were repaired with a thin layer of hyaline-like cartilage at 12 weeks. In Group E, defects were repaired with fibrous tissue. Histologic scores in Groups A and B were significantly higher than those in Groups C, D, and E at 6 and 12 weeks after transplantation. Full-thickness cartilage defects treated with chondrocyte or MSC transplantation were repaired with hyaline-like cartilage tissue, and repair was significantly better than in tissues treated with fibroblasts and hUCB stem cells, as well as in the control group. Repaired tissues treated with MSCs appeared to have better cell arrangement, subchondral bone remodeling, and integration with surrounding cartilage than did repaired tissues generated by chondrocyte implantation. MSCs might be the most suitable cell source for cartilage repair. Further investigation into hUCB stem cell transplantation is needed. In our study of rabbits, MSCs supplied the most promising cell source for cartilage repair.
Low temperature setting polymer-ceramic composites for bone tissue engineering
NASA Astrophysics Data System (ADS)
Sethuraman, Swaminathan
Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo study of these novel bone cements in a 5mm unicortical defect in New Zealand white rabbits showed that the implants were osteoconductive, and osteointegrative. In conclusion, the various studies that have been carried out in this thesis to study the feasibility of a bone cement system have shown that these materials are promising candidates for various orthopaedic applications. Overall I believe that these next generation bone cements are promising bone graft substitutes in the armamentarium to treat bone defects.
Vukasović, Andreja; Ivković, Alan; Jezek, Davor; Cerovecki, Ivan; Vnuk, Drazen; Kreszinger, Mario; Hudetz, Damir; Pećina, Marko
2011-01-01
Articular cartilage is an avascular and aneural tissue lacking lymph drainage, hence its inability of spontaneous repair following injury. Thus, it offers an interesting model for scientific research. A number of methods have been suggested to enhance cartilage repair, but none has yet produced significant success. The possible application of the aforementioned methods has brought about the necessity to evaluate their results. The objective of this study was to analyze results of a study of the effects of the use of TGF-beta gene transduced bone marrow clot on articular cartilage defects using ICRS visual histological assessment scale. The research was conducted on 28 skeletally mature sheep that were randomly assigned to four groups and surgically inflicted femoral chondral defects. The articular surfaces were then treated with TGF-beta1 gene transduced bone marrow clot (TGF group), GFP transduced bone marrow clot (GFP group), untransduced bone marrow clot (BM group) or left untreated (NC group). The analysis was performed by visual examination of cartilage samples and results were obtained using ICRS visual histological assessment scale. The results were subsequently subjected to statistical assessment using Kruskal-Wallis and Mann-Whitney tests. Kruskal-Wallis test yielded statistically significant difference with respect to cell distribution. Mann-Whitney test showed statistically significant difference between TGF and NC groups (P = 0.002), as well as between BM and NC groups (P = 0.002 with Bonferroni correction). Twenty-six of the twenty-eight samples were subjected to histologic and subsequent statistical analysis; two were discarded due to faulty histology technique. Our results indicated a level of certainty as to the positive effect of TGF-beta1 gene transduced bone marrow clot in restoration of articular cartilage defects. However, additional research is necessary in the field. One of the significant drawbacks on histologic assessment of cartilage samples were the errors in histologic preparation, for which some samples had to be discarded and significantly impaired the analytical quality of the others. Defects of structures surrounding the articular cartilage, e.g., subchondral bone or connective tissue, might also impair the quality of histologic analysis. Additional analyses, i.e. polarizing microscopy should be performed to determine the degree of integration of the newly formed tissue with the surrounding cartilage. The semiquantitative ICRS scale, although of great practical value, has limitations as to the objectivity of the assessment, taking into account the analytical ability of the evaluator, as well as the accuracy of semiquantitative analysis in comparison to the methods of quantitative analysis. Overall results of histologic analysis indicated that the application of TGF-beta1 gene transduced bone marrow clot could have measurable clinical effects on articular cartilage repair. The ICRS visual histological assessment scale is a valuable analytical method for cartilage repair evaluation. In this respect, further analyses of the method value would be of great importance.
A Stereological Method for the Quantitative Evaluation of Cartilage Repair Tissue
Nyengaard, Jens Randel; Lind, Martin; Spector, Myron
2015-01-01
Objective To implement stereological principles to develop an easy applicable algorithm for unbiased and quantitative evaluation of cartilage repair. Design Design-unbiased sampling was performed by systematically sectioning the defect perpendicular to the joint surface in parallel planes providing 7 to 10 hematoxylin–eosin stained histological sections. Counting windows were systematically selected and converted into image files (40-50 per defect). The quantification was performed by two-step point counting: (1) calculation of defect volume and (2) quantitative analysis of tissue composition. Step 2 was performed by assigning each point to one of the following categories based on validated and easy distinguishable morphological characteristics: (1) hyaline cartilage (rounded cells in lacunae in hyaline matrix), (2) fibrocartilage (rounded cells in lacunae in fibrous matrix), (3) fibrous tissue (elongated cells in fibrous tissue), (4) bone, (5) scaffold material, and (6) others. The ability to discriminate between the tissue types was determined using conventional or polarized light microscopy, and the interobserver variability was evaluated. Results We describe the application of the stereological method. In the example, we assessed the defect repair tissue volume to be 4.4 mm3 (CE = 0.01). The tissue fractions were subsequently evaluated. Polarized light illumination of the slides improved discrimination between hyaline cartilage and fibrocartilage and increased the interobserver agreement compared with conventional transmitted light. Conclusion We have applied a design-unbiased method for quantitative evaluation of cartilage repair, and we propose this algorithm as a natural supplement to existing descriptive semiquantitative scoring systems. We also propose that polarized light is effective for discrimination between hyaline cartilage and fibrocartilage. PMID:26069715
A Stereological Method for the Quantitative Evaluation of Cartilage Repair Tissue.
Foldager, Casper Bindzus; Nyengaard, Jens Randel; Lind, Martin; Spector, Myron
2015-04-01
To implement stereological principles to develop an easy applicable algorithm for unbiased and quantitative evaluation of cartilage repair. Design-unbiased sampling was performed by systematically sectioning the defect perpendicular to the joint surface in parallel planes providing 7 to 10 hematoxylin-eosin stained histological sections. Counting windows were systematically selected and converted into image files (40-50 per defect). The quantification was performed by two-step point counting: (1) calculation of defect volume and (2) quantitative analysis of tissue composition. Step 2 was performed by assigning each point to one of the following categories based on validated and easy distinguishable morphological characteristics: (1) hyaline cartilage (rounded cells in lacunae in hyaline matrix), (2) fibrocartilage (rounded cells in lacunae in fibrous matrix), (3) fibrous tissue (elongated cells in fibrous tissue), (4) bone, (5) scaffold material, and (6) others. The ability to discriminate between the tissue types was determined using conventional or polarized light microscopy, and the interobserver variability was evaluated. We describe the application of the stereological method. In the example, we assessed the defect repair tissue volume to be 4.4 mm(3) (CE = 0.01). The tissue fractions were subsequently evaluated. Polarized light illumination of the slides improved discrimination between hyaline cartilage and fibrocartilage and increased the interobserver agreement compared with conventional transmitted light. We have applied a design-unbiased method for quantitative evaluation of cartilage repair, and we propose this algorithm as a natural supplement to existing descriptive semiquantitative scoring systems. We also propose that polarized light is effective for discrimination between hyaline cartilage and fibrocartilage.
NASA Astrophysics Data System (ADS)
Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang
2016-10-01
Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.
Multi-Scale Stochastic Resonance Spectrogram for fault diagnosis of rolling element bearings
NASA Astrophysics Data System (ADS)
He, Qingbo; Wu, Enhao; Pan, Yuanyuan
2018-04-01
It is not easy to identify incipient defect of a rolling element bearing by analyzing the vibration data because of the disturbance of background noise. The weak and unrecognizable transient fault signal of a mechanical system can be enhanced by the stochastic resonance (SR) technique that utilizes the noise in the system. However, it is challenging for the SR technique to identify sensitive fault information in non-stationary signals. This paper proposes a new method called multi-scale SR spectrogram (MSSRS) for bearing defect diagnosis. The new method considers the non-stationary property of the defective bearing vibration signals, and treats every scale of the time-frequency distribution (TFD) as a modulation system. Then the SR technique is utilized on each modulation system according to each frequencies in the TFD. The SR results are sensitive to the defect information because the energy of transient vibration is distributed in a limited frequency band in the TFD. Collecting the spectra of the SR outputs at all frequency scales then generates the MSSRS. The proposed MSSRS is able to well deal with the non-stationary transient signal, and can highlight the defect-induced frequency component corresponding to the impulse information. Experimental results with practical defective bearing vibration data have shown that the proposed method outperforms the former SR methods and exhibits a good application prospect in rolling element bearing fault diagnosis.
Validity and reliability of the Paprosky acetabular defect classification.
Yu, Raymond; Hofstaetter, Jochen G; Sullivan, Thomas; Costi, Kerry; Howie, Donald W; Solomon, Lucian B
2013-07-01
The Paprosky acetabular defect classification is widely used but has not been appropriately validated. Reliability of the Paprosky system has not been evaluated in combination with standardized techniques of measurement and scoring. This study evaluated the reliability, teachability, and validity of the Paprosky acetabular defect classification. Preoperative radiographs from a random sample of 83 patients undergoing 85 acetabular revisions were classified by four observers, and their classifications were compared with quantitative intraoperative measurements. Teachability of the classification scheme was tested by dividing the four observers into two groups. The observers in Group 1 underwent three teaching sessions; those in Group 2 underwent one session and the influence of teaching on the accuracy of their classifications was ascertained. Radiographic evaluation showed statistically significant relationships with intraoperative measurements of anterior, medial, and superior acetabular defect sizes. Interobserver reliability improved substantially after teaching and did not improve without it. The weighted kappa coefficient went from 0.56 at Occasion 1 to 0.79 after three teaching sessions in Group 1 observers, and from 0.49 to 0.65 after one teaching session in Group 2 observers. The Paprosky system is valid and shows good reliability when combined with standardized definitions of radiographic landmarks and a structured analysis. Level II, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence.
Held, Manuel; Rahmanian-Schwarz, Afshin; Schiefer, Jennifer; Rath, Rebekka; Werner, Jan-Ole; Rahmanian, Shahab; Schaller, Hans-Eberhard; Petersen, Wiebke
2016-06-01
Today, autologous skin transplantation is frequently used for full-thickness skin defects. There is still a high demand for new wound-healing products to replace autologous skin transplantation. In this context, the effect of a new collagen-gelatin scaffold on full-thickness skin defects was evaluated. Four full-thickness skin defects were created surgically on the dorsum of 6 Göttingen minipigs. Three wounds were randomly treated with a novel collagen-gelatin scaffold in different thicknesses, whereas the fourth wound was left untreated and served as a control wound. During the experimental period of 21 days, a close-up photographic documentation was performed. Afterwards, the areas of the initial wounds were excised and examined histologically. The systematic evaluation of 24 wounds showed that treatment with the new collagen-gelatin scaffold led to an accelerated wound repair of 1.1 days. Compared to control wounds, it also demonstrated improved skin quality in regard to epidermal thickness. The new collagen-gelatin scaffold supports and accelerates dermal wound repair compared to untreated control wounds. Nevertheless, wound treatment with the scaffold was only performed on the first day. In further studies, the impact of multiple scaffold applications on full-thickness skin defects should be investigated.
Role of nuclear cardiology in evaluating the total ischemic burden in coronary artery disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beller, G.A.
1987-03-09
Goals of exercise radionuclide imaging are to: enhance sensitivity, specificity and predictive value of coronary artery disease (CAD) detection; noninvasively assess extent and severity of functionally significant CAD; determine prognosis so that specific therapeutic strategies can be more rationally implemented; detect silent ischemia in asymptomatic subjects or in patients with known CAD with a higher degree of specificity than can be accomplished by electrocardiogram stress testing alone; evaluate the response to therapeutic interventions aimed at enhancing coronary blood flow. Two major radionuclide techniques are currently used in evaluating the total ischemic burden in patients with CAD. These are myocardial perfusionmore » imaging with either thallium-201 or rubidium-82, and radionuclide angiography performed after administration of technetium-99m. Areas of diminished thallium-201 activity on early postexercise images are abnormal and represent either areas of stress-induced ischemia or myocardial scar. To differentiate between the two, delayed images are obtained to determine if the initial postexercise defect either persists or demonstrates redistribution. Defects demonstrating redistribution represent transient ischemia, whereas areas of previous infarction or scar usually appear as persistent defects. Patients with left main or 3-vessel CAD usually show multiple thallium-201 redistribution defects in more than 1 vascular supply region, a phenomenon often associated with abnormal lung thallium-201 uptake.« less
NASA Astrophysics Data System (ADS)
Malfense Fierro, Gian Piero; Meo, Michele
2017-04-01
Currently there are numerous phased array techniques such as Full Matrix Capture (FMC) and Total Focusing Method (TFM) that provide good damage assessment for composite materials. Although, linear methods struggle to evaluate and assess low levels of damage, while nonlinear methods have shown great promise in early damage detection. A sweep and subtraction evaluation method coupled with a constructive nonlinear array method (CNA) is proposed in order to assess damage specific nonlinearities, address issues with frequency selection when using nonlinear ultrasound imaging techniques and reduce equipment generated nonlinearities. These methods were evaluated using multiple excitation locations on an impacted composite panel with a complex damage (barely visible impact damage). According to various recent works, damage excitation can be accentuated by exciting at local defect resonance (LDR) frequencies; although these frequencies are not always easily determinable. The sweep methodology uses broadband excitation to determine both local defect and material resonances, by assessing local defect generated nonlinearities using a laser vibrometer it is possible to assess which frequencies excite the complex geometry of the crack. The dual effect of accurately determining local defect resonances, the use of an image subtraction method and the reduction of equipment based nonlinearities using CNA result in greater repeatability and clearer nonlinear imaging (NIM).
Nakagawa, Motoo; Ozawa, Yoshiyuki; Nomura, Norikazu; Inukai, Sachiko; Tsubokura, Satoshi; Sakurai, Keita; Shimohira, Masashi; Ogawa, Masaki; Shibamoto, Yuta
2016-04-01
We evaluated the ability of dual source CT (DSCT) with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to depict the morphological features of ventricles in pediatric patients with congenital heart defects (CHD). Between July 2013 and April 2015, 78 pediatric patients with CHD (median age 4 months) were examined using DSCT with the Flash Spiral Cardio mode. The types of ventricular abnormalities were ventricular septal defect (VSD) in 42 (the malaligned type in 11, perimembranous type in 23, supracristal type in 2, atrioventricular type in 2, and muscular type in 4), single ventricle (SV) in 11, and congenital corrected transposition of the great arteries (ccTGA) in 4. We evaluated the accuracy of the diagnosis of the VSD type. In cases of SV and ccTGA, we assessed the detectability of the anatomical features of both ventricles for a diagnosis of ventricular situs. DSCT confirmed the diagnoses for all VSDs. The type of defect was precisely diagnosed for all patients. The anatomical features of both ventricles were also depicted and ventricular situs of SV and ccTGA was correctly diagnosed. The results suggest that DSCT has the ability to clearly depict the configuration of ventricles.
Oliveira, Priscila H A; Souza, Beatriz S; Pacheco, Eimi N; Menegazzo, Michele S; Corrêa, Ivan S; Zen, Paulo R G; Rosa, Rafael F M; Cesa, Claudia C; Pellanda, Lucia C; Vilela, Manuel A P
2018-01-01
Numerous genetic syndromes associated with heart disease and ocular manifestations have been described. However, a compilation and a summarization of these syndromes for better consultation and comparison have not been performed yet. The objective of this work is to systematize available evidence in the literature on different syndromes that may cause congenital heart diseases associated with ocular changes, focusing on the types of anatomical and functional changes. A systematic search was performed on Medline electronic databases (PubMed, Embase, Cochrane, Lilacs) of articles published until January 2016. Eligibility criteria were case reports or review articles that evaluated the association of ophthalmic and cardiac abnormalities in genetic syndrome patients younger than 18 years. The most frequent genetic syndromes were: Down Syndrome, Velo-cardio-facial / DiGeorge Syndrome, Charge Syndrome and Noonan Syndrome. The most associated cardiac malformations with ocular findings were interatrial communication (77.4%), interventricular communication (51.6%), patent ductus arteriosus (35.4%), pulmonary artery stenosis (25.8%) and tetralogy of Fallot (22.5%). Due to their clinical variability, congenital cardiac malformations may progress asymptomatically to heart defects associated with high morbidity and mortality. For this reason, the identification of extra-cardiac characteristics that may somehow contribute to the diagnosis of the disease or reveal its severity is of great relevance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Y; Waxweiler, T; Diot, Q
Purpose: 4DCT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Because 4DCTs are acquired as part of routine care, calculating 4DCT-ventilation allows for lung function evaluation without additional cost or inconvenience to the patient. Development of a clinical trial is underway at our institution to use 4DCT-ventilation for thoracic functional avoidance with the idea that preferential sparing of functional lung regions can decrease pulmonary toxicity. The purpose of our work was to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial including: 1.assessing patient eligibility 2.developing trial inclusion criteria and 3.developing treatment planningmore » and dose-function evaluation strategies. Methods: 96 stage III lung cancer patients from 2 institutions were retrospectively reviewed. 4DCT-ventilation maps were calculated using the patient’s 4DCTs, deformable image registrations, and a density-change-based algorithm. To assess patient eligibility and develop trial inclusion criteria we used an observer-based binary end point noting the presence or absence of a ventilation defect and developed an algorithm based on the percent ventilation in each lung third. Functional avoidance planning integrating 4DCT-ventilation was performed using rapid-arc and compared to the patient’s clinically used plan. Results: Investigator-determined clinical ventilation defects were present in 69% of patients. Our regional/lung-thirds ventilation algorithm identified that 59% of patients have lung functional profiles suitable for functional avoidance. Compared to the clinical plan, functional avoidance planning was able to reduce the mean dose to functional lung by 2 Gy while delivering comparable target coverage and cord/heart doses. Conclusions: 4DCT-ventilation functional avoidance clinical trials have great potential to reduce toxicity, and our data suggest that 59% of lung cancer patients have lung function profiles suitable for functional avoidance. Our study used a retrospective evaluation of a large lung cancer patient database to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial. (R.C., E.C., T.G.), NIH Research Scientist Development Award K01-CA181292 (R.C.), and State of Colorado Advanced Industries Accelerator Grant (Y.V.)« less
Weyer, Peter J; Brender, Jean D; Romitti, Paul A; Kantamneni, Jiji R; Crawford, David; Sharkey, Joseph R; Shinde, Mayura; Horel, Scott A; Vuong, Ann M; Langlois, Peter H
2014-12-01
Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997-2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers' overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Martin, J.T.
1995-02-01
Modern pipeline standards contain alternative methodologies for determining the acceptable defect size in pipeline welds. Through the use of fracture mechanics and plastic collapse assessments, the mechanical and toughness properties of the defective region relate to the applied stress at the defect and defect geometry. The assumptions made in these methodologies are not always representative of the situation accurring in pipeline girth welds. To determine the effect of the various input parameters on acceptable defect size, The Welding Supervisory Committee of the American Gas Association commenced in 1990, in collaboration with the Laboratorium Soete of the University Gent, Belgium, amore » series of small scale (Charpy V impact and CTOD) and large scale (fatigue pre-cracked wide plate) tests. All the experimental investigations were intended to evaluate the effects of weld metal mis-match, temperature, defect size, defect type, defect interaction, pipe wall thickness and yield to tensile ratio on girth weld fracture behaviour. The aim of this report was to determine how weld metal yield strength overmatching or undermatching influences girth weld defect size prediction. A further analysis was conducted using the newly revised PD6493:1991 to provide a critical analysis with the objective of explaining the behaviour of the wide plate tests.« less
Hendrickx, A G; Cukierski, M; Prahalada, S; Janos, G; Rowland, J
1985-10-01
Cynomolgus monkeys, rhesus monkeys and baboons were administered 10 to 40 times the human dose equivalent of Bendectin throughout the major period of organogenesis (22(+/-3)-50 days of gestation). In animals examined prenatally (100 +/- 2 days gestation) the total incidence of ventricular septal defects (VSD) was 40% in cynomolgus monkeys, 18% in rhesus monkeys, and 23% in baboons. The majority of VSD involved the muscular portion of the septum. No dose response was evident and there were no other cardiac or extracardiac defects found except for one baboon fetus with multiple defects. No defects were observed in cynomolgus monkeys administered Bendectin for 4-day periods between 22 and 41 days of gestation. There was no association of Bendectin treatment with any noncardiac defect. In cynomolgus and rhesus monkeys examined at term there was one mitral valve defect and no incidence of VSD. The increased incidence of VSD observed prenatally in all three species and the absence of defects in macaques at term suggests a delay in closure of the ventricular septum in treated animals. The Bendectin-treated monkey may be a suitable model for the study of the pathogenesis of VSD and the mechanism of spontaneous closure of the defect.
NASA Astrophysics Data System (ADS)
Ozawa, Ken; Komizo, Tooru; Ohnuma, Hidetoshi
2002-07-01
An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a single-trench type with undercut for ArF exposure, with programmed phase defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM193 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topographies of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors, are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated bump defect identified by the alt-PSM of a single-trench type with undercut for ArF exposure are 300 nm in bottom dimension and 74 degrees in height (phase) for the real shape, where the depth of wet-etching is 100 nm and the CD error limit is +/- 5 percent.
NASA Astrophysics Data System (ADS)
Ozawa, Ken; Komizo, Tooru; Kikuchi, Koji; Ohnuma, Hidetoshi; Kawahira, Hiroichi
2002-07-01
An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a dual-trench type for KrF exposure, with programmed quartz defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM100 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topography of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated defect identified by the alt-PSM of a single-trench type for ArF exposure are 240 nm in bottom diameter and 50 degrees in height (phase) for the cylindrical shape and 240 nm in bottom diameter and 90 degrees in height (phase) for the rotating trapezoidal shape, where the CD error limit is +/- 5%.
Hruschka, Veronika; Tangl, Stefan; Ryabenkova, Yulia; Heimel, Patrick; Barnewitz, Dirk; Möbus, Günter; Keibl, Claudia; Ferguson, James; Quadros, Paulo; Miller, Cheryl; Goodchild, Rebecca; Austin, Wayne; Redl, Heinz; Nau, Thomas
2017-01-01
Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study. PMID:28233833
Weyer, Peter J.; Brender, Jean D.; Romitti, Paul A.; Kantamneni, Jiji R.; Crawford, David; Sharkey, Joseph R.; Shinde, Mayura; Horel, Scott A.; Vuong, Ann M.; Langlois, Peter H.
2016-01-01
Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997–2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers’ overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS. PMID:25473985
Zeri, F; Livi, S; Maffioletti, S
2011-04-01
To evaluate sport professionals' attitudes towards visual correction in sport. A questionnaire was handed out in schools, gyms, sports centres and universities, to coaches, physical education teachers and final year students of motor science. The questionnaire was given to one group of sport physicians prior to a 1-day scientific update course on the benefits of contact lenses (CLs) in sport. At the end of the course, certain questions from the questionnaire were given out again in order to evaluate the effect of the update on their opinions. A total of 245 questionnaires were collected. The interviewees stated that correcting a vision defect during sports practice was important, but their propensity to suggest CLs for sport, though still rather high in value, showed a statistically significant drop. This drop did not occur if the CLs were recommended for competitive sports. This trend remained unchanged if a specific judgement was requested for the adolescent category. The tendency to suggest CLs was higher in CL wearers as compared to non-wearers. The sport with the lowest recommendation of CLs was swimming. In the sample of sports physicians, a specific education on the subject of CLs increased the propensity to adopt CLs in sports. The main "actors" in the sports sector regard correcting a vision defect during sport to be important. Nevertheless, their tendency to suggest CLs is significantly lower. Works that make these categories aware of the benefits of CLs in sport can certainly help to fill this gap. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Rentmeester, Shelby T; Pringle, Johanna; Hogue, Carol R
2017-11-01
Objectives Each year in the U.S., approximately 7200 infants are born with a critical congenital heart defect (CCHD). The Georgia Department of Public Health (DPH) mandated routine screening for CCHD starting January 2015. The current study evaluated hospital performance of the mandated CCHD screenings in Georgia. Methods Utilizing the DPH newborn screening surveillance system, data from 6 months before and after the mandate were analyzed for reports submitted and positive CCHD screening results. Chi square tests of independence were performed to examine the association between reporting of results for CCHD screening after the mandate and hospital nursery level [level I (well-baby/newborn); level II (special care); level III (neonatal intensive care unit-NICU)] and NICU submissions. Results In the 6 months following implementation, reports of the screening increased, but the DPH had not received information for approximately 40% of newborns. Hospitals with level III nurseries had poorer reporting rates compared to hospitals with level I or II nurseries. Newborn screening (NBS) cards submitted by NICUs were less likely to contain the CCHD screening results compared to cards submitted by regular Labor and Delivery units. Conclusions for Practice Further attention should focus on improving both CCHD screening and reporting of screening results within hospitals with level III nurseries and from NICUs at all hospital levels. Identifying and addressing the root of the issue, whether it be hospital compliance with CCHD screening or reporting of the results, will help to improve screening rates for all newborns, especially those most vulnerable.
Determining casting defects in near-net shape casting aluminum parts by computed tomography
NASA Astrophysics Data System (ADS)
Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter
2018-03-01
Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.
Electromagnetic pulsed thermography for natural cracks inspection
NASA Astrophysics Data System (ADS)
Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing
2017-02-01
Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).
Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs.
Marlovits, Stefan; Mamisch, Tallal Charles; Vekszler, György; Resinger, Christoph; Trattnig, Siegfried
2008-04-01
Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.
Demos, Stavros G; Ehrmann, Paul R; Qiu, S Roger; Schaffers, Kathleen I; Suratwala, Tayyab I
2014-11-17
We investigate defects forming in Ce³⁺-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions.
Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anoop Krishnan, N. M., E-mail: anoopnm@civil.iisc.ernet.in; Ghosh, Debraj
2014-07-28
The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation ofmore » failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.« less
NASA Astrophysics Data System (ADS)
Duke, P. J.; Montufar-Solis, D.; Nguyen, H. C.; Cody, D. D.
2008-06-01
Using cartilage to replace/repair bone is advantageous as no scaffolding is required to form the implant which disappears as bone is formed during the endochondral process. Previously, we demonstrated that cartilage spheroids, grown in a rotating bioreactor, (Synthecon, Inc.) and implanted into a 2 mm skull defect, contributed to healing of the defect. In this report, skulls with or without implants were subjected to microCT scans, and sections from these scans were compared to histological sections of the defect region of demineralized skulls from the same experiment. The area of the defect staining for bone in histological sections of demineralized skulls was the same region shown as mineralized in CT sections. Defects without implants were shown in serial CT sections and histological sections, to be incompletely healed. This study demonstrates that microCT scans are an important corollary to histological studies evaluating the use of implants in healing of bony defects. Supported in part by NIH/NIDCR Training Grant T35 DE07252 and by Cancer Center Support Grant (CA-16672).
Pradeep, Avani R; Patnaik, Kaushik; Nagpal, Kanika; Karvekar, Shruti; Ramamurthy, Bhaskar L; Naik, Savitha B; Suke, Deepak; Singh, Priyanka; Raju, Arjun
2016-08-01
Metformin (MF), used for the treatment of type 2 diabetes mellitus, has shown to possess properties favoring osteoblastic proliferation. The present study was designed to investigate the effectiveness of MF 1% gel as an adjunct to scaling and root planing in the treatment of intrabony defects in patients with chronic periodontitis. The study comprised 65 individuals divided into two groups: 1% MF with SRP and placebo gel with SRP. Clinical parameters were evaluated at baseline, 3 months, and 6 months; they included plaque index, modified sulcus bleeding index, probing depth (PD), and clinical attachment level (CAL). Intrabony defect depth (IBD) was evaluated at the end of 6 months using computer-aided software. The mean PD reduction, CAL gain, and IBD depth reduction were found to be greater in the MF group than in the placebo group at all visits. The percentage of defect depth reduction was significantly greater in the MF group (26.8 ± 5.52%) than in the placebo sites (4.79 ± 2.30%, P < 0.001). One percent MF was found to significantly improve clinical and radiographic parameters in intrabony defects in patients with chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.
Prototyped grafting plate for reconstruction of mandibular defects.
Zhou, Libin; Wang, Peilin; Han, Haolun; Li, Baowei; Wang, Hongnan; Wang, Gang; Zhao, Jinlong; Liu, Yanpu; Wu, Wei
2014-12-01
To esthetically and functionally restore a 40-mm canine mandibular discontinuity defect using a custom-made titanium bone-grafting plate in combination with autologous iliac bone grafts. Individualized titanium bone-grafting plates were manufactured using a series of techniques, including reverse engineering, computer aided design, rapid prototyping and titanium casting. A 40-mm discontinuous defect in the right mandibular body was created in 9 hybrid dogs. The defect was restored immediately using the customized plate in combination with autologous cancellous iliac blocks. Sequential radionuclide bone imaging was performed to evaluate the bone metabolism and reconstitution of the grafts. The specimens were evaluated by biomechanical testing, 3-dimensional microcomputed tomographic scanning, and histological examination. The results revealed that the symmetry of the mandibles was reconstructed using the customized grafting plate, and the bony continuity of the mandibles was restored. By 12 weeks after the operation, the cancellous iliac grafts became a hard bone block, which was of comparable strength to native mandibles. A fibrous tissue intermediate was found between the remodelled bone graft and the titanium plate. The results indicate that the prototyped grafting plate can be used to restore mandibular discontinuous defects, and satisfactory aesthetical and functional reconstruction can be achieved. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Evaluation of a New Scoring System for Retinal Nerve Fiber Layer Photography Using HRA1 in 964 Eyes
Hong, Samin; Moon, Jong Wook; Ha, Seung Joo; Kim, Chan Yun; Seong, Gong Je
2007-01-01
Purpose To evaluate retinal nerve fiber layer (RNFL) defect by a new scoring system for RNFL photography using the Heidelberg Retina Angiograph 1 (HRA1). Methods This retrospective study included 128 healthy eyes and 836 primary open-angle glaucoma eyes. The RNFL photography using HRA1 was interpreted using a new scoring system, and correlated with visual field indices of standard automated perimetry (SAP). Using the presence of RNFL defect, darkness, width, and location, we established the new scoring system of RNFL photos. Results The mean RNFL defect score I in the early, moderate, severe, and control groups were 7.3, 9.2, 10.4, and 3.6, respectively. The mean RNFL defect score II in the early, moderate, severe, and control groups were 14.5, 28.5, 43.4, and 3.4, respectively. Correlations between the RNFL defect score II and the mean deviation of SAP was the strongest of the various combinations (r=-0.675, P<.001). Conclusions Using a new scoring system, we propose a method for semi-quantitative interpretation of RNFL photographs. This scoring system may be helpful to distinguish between normal and glaucomatous eyes, and the score is associated with the severity of visual field loss. PMID:18063886
Emon, Selin Tural; Orakdogen, Metin; Uslu, Serap; Somay, Hakan
2015-01-01
Many more additives have been introduced with the development of processed foods. Neural tube defects are congenital malformations of the central nervous system. More than 300 000 children are born with neural tube defects every year and surviving children remain disabled for life. Sodium benzoate is used intensively in our daily lives. We therefore aimed to evaluate the effects of sodium benzoate on neural tube defects in chicken embryos. Fertile, specific pathogen-free eggs were used. The study was conducted on five groups. After 30 hours of incubation, the eggs were opened under 4x optical magnification. The embryonic disc was identified and sodium benzoate solution was injected. Eggs were closed with sterile adhesive strips and incubation was continued till the end of the 72nd hour. All eggs were then reopened and embryos were dissected from embryonic membranes and evaluated histopathologically. We found that the development of all embryos was consistent with the stage. We detected neural tube obstruction in one embryo. Neural tube defects were not detected in any embryos. This study showed that sodium benzoate as one of the widely used food preservatives has no effect to neural tube defect development in chicken embryos even at high doses.
Lunate chondromalacia: evaluation of routine MRI sequences.
Bordalo-Rodrigues, Marcelo; Schweitzer, Mark; Bergin, Diane; Culp, Randall; Barakat, Mohamed S
2005-05-01
Chondromalacia is a commonly encountered abnormality at arthroscopy and may be responsible for significant clinical symptoms and disability. In the wrist, the most common location for chondromalacia is the lunate bone. Consequently, we sought to study the accuracy of clinical MRI in the assessment of lunate articular cartilage. MR images of 34 patients who underwent arthroscopy and had an MRI examination within 1 month of surgery were evaluated by two reviewers for the presence and location of lunate cartilage defects and subchondral edema. Lunate cartilage defects were seen on MRI in 10 of the 13 patients with chondromalacia, but these defects were also incorrectly noted in three of 21 of patients without chondromalacia. The visible locations for cartilage defects were the ulnar aspect of the proximal lunate bone (n = 3), radial aspect of the proximal lunate bone (n = 4), ulnar aspect of the distal lunate bone (n = 2), and radial aspect of the distal lunate bone (n = 1). Subchondral marrow edema was observed in six of the 10 patients with chondromalacia seen on MRI; in all six patients, the edema was seen in the same quadrant as the cartilage defect. Marrow edema was detected in one patient without chondromalacia. We conclude that lunate chondromalacia can be accurately assessed using routine MRI sequences, although there are occasional false-positive interpretations.
In-line inspection of unpiggable buried live gas pipes using circumferential EMAT guided waves
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Xin, Junjun
2018-04-01
Unpiggable buried gas pipes need to be inspected to ensure their structural integrity and safe operation. The CIRRIS XITM robot, developed and operated by ULC Robotics, conducts in-line nondestructive inspection of live gas pipes. With the no-blow launching system, the inspection operation has reduced disruption to the public and by eliminating the need to dig trenches, has minimized the site footprint. This provides a highly time and cost effective solution for gas pipe maintenance. However, the current sensor on the robot performs a point-by-point measurement of the pipe wall thickness which cannot cover the whole volume of the pipe in a reasonable timeframe. The study of ultrasonic guided wave technique is discussed to improve the volume coverage as well as the scanning speed. Circumferential guided wave is employed to perform axial scanning. Mode selection is discussed in terms of sensitivity to different defects and defect characterization capability. To assist with the mode selection, finite element analysis is performed to evaluate the wave-defect interaction and to identify potential defect features. Pulse-echo and through-transmission mode are evaluated and compared for their pros and cons in axial scanning. Experiments are also conducted to verify the mode selection and detect and characterize artificial defects introduced into pipe samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orzali, Tommaso, E-mail: tommaso.orzali@sematech.org; Vert, Alexey; O'Brien, Brendan
2015-09-14
The Aspect Ratio Trapping technique has been extensively evaluated for improving the quality of III-V heteroepitaxial films grown on Si, due to the potential for terminating defects at the sidewalls of SiO{sub 2} patterned trenches that enclose the growth region. However, defects propagating along the trench direction cannot be effectively confined with this technique. We studied the effect of the trench bottom geometry on the density of defects of GaAs fins, grown by metal-organic chemical vapor deposition on 300 mm Si (001) wafers inside narrow (<90 nm wide) trenches. Plan view and cross sectional Scanning Electron Microscopy and Transmission Electron Microscopy, togethermore » with High Resolution X-Ray Diffraction, were used to evaluate the crystal quality of GaAs. The prevalent defects that reach the top surface of GaAs fins are (111) twin planes propagating along the trench direction. The lowest density of twin planes, ∼8 × 10{sup 8 }cm{sup −2}, was achieved on “V” shaped bottom trenches, where GaAs nucleation occurs only on (111) Si planes, minimizing the interfacial energy and preventing the formation of antiphase boundaries.« less
Li, Y; Zheng, G; Lin, H
2014-12-18
To develop a new kind of dental radiographic image quality indicator (IQI) for internal quality of casting metallic restoration to influence on its usage life. Radiographic image quality indicator method was used to evaluate the depth of the defects region and internal quality of 127 casting metallic restoration and the accuracy was compared with that of conventional callipers method. In the 127 cases of casting metallic restoration, 9 were found the thickness less than 0.7 mm and the thinnest thickness only 0.2 mm in 26 casting metallic crowns or bridges' occlusal defects region. The data measured by image quality indicator were consistent with those measured by conventional gauging. Two metal inner crowns were found the thickness less than 0.3 mm in 56 porcelain crowns or bridges. The thickness of casting removable partial denture was more than 1.0 mm, but thinner regions were not found. It was found that in a titanium partial denture, the X-ray image of clasp was not uniform and there were internal porosity defects in the clasp. Special dental image quality indicator can solve the visual error problems caused by different observing backgrounds and estimate the depth of the defects region in the casting.
Frequency of operative trauma to anal sphincters: evaluation with endoanal ultrasound.
Stamatiadis, Apostolos; Konstantinou, Evangelos; Theodosopoulou, Eleni; Mamoura, Konstantinia
2002-01-01
Sphincter trauma after anorectal surgery is usually asymptomatic. Frequency of trauma cannot be established with the clinical examination only. The frequency of operative sphincter defects and their correlation with disorders of continence was evaluated with the endoanal ultrasound. This study includes 123 subjects who had undergone anorectal surgery in the past and were examined with endoanal ultrasound for various indications such as continence disorders, recurrent fistula, idiopathic perineal pain, or simple postoperative follow-up. No subjects had isolated external anal sphincter defects. Nineteen of 123 patients (15%) had minor or major continence disorders, 55 patients (45%) had no sphincter defects, 42 (34%) had only internal anal sphincter (IAS) defects, and 26 (21%) had simultaneously external and internal anal sphincter (EAS) defects. The incidence of IAS and EAS trauma after Milligan-Morgan hemorrhoidectomy was 1/18 (5.5%) and 0/18 respectively; after fistula repair, 24/42 (57%) and 12/42 (29%); and after anal dilatation, 13/17 (76%) and 4/17 (24%). Sixteen of 26 patients (62%) with EAS trauma and 51/68 patients (75%) with IAS trauma did not report any disorders of continence. In patients with two or more operations, the frequency of IAS trauma was 74%, 30% for EAS trauma, and 26% for continence disorders.
Cui, Xu; Huang, Wenhai; Zhang, Yadong; Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting; Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping; Pan, Haobo; Rahaman, Mohamed N
2017-04-01
There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8±2MPa to 31±2MPa) as the ratio of glass particles to chitosan solution increased (from 1.0gml -1 to 2.5gml -1 ). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.
2017-09-01
We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.
Ostrzenski, Adam
2014-01-01
A vaginal introital defect case and its symptomatology have never been published before. The objective of this presentation was to describe symptoms associated with an acquired sensation of wide vagina and to present a new surgical treatment for anterior vaginal introital defects. A 42-year-old, Caucasian woman, G4P4013, presented with a sensation of wide vagina at the vaginal opening and a history of colpoperineoplasty, without mesh, for the same condition 4 years prior. Clinical evaluation documented anterior vaginal introital defects and the absence of vaginal site-specific defects. Reconstruction of a vaginal introital defect was completed without complications. Surgical resolution of symptoms and signs of this condition were noted. Anterior vaginal introitoplasty can assist in the management of an acquired sensation of wide vagina.
Bürklein, Sebastian; Tsotsis, Polymnia; Schäfer, Edgar
2013-04-01
The purpose of this study was to evaluate the incidence of dentinal defects after root canal preparation with reciprocating instruments (Reciproc and WaveOne) and rotary instruments. One hundred human central mandibular incisors were randomly assigned to 5 groups (n = 20 teeth per group). The root canals were instrumented by using the reciprocating single-file systems Reciproc and WaveOne and the full-sequence rotary Mtwo and ProTaper instruments. One group was left unprepared as control. Roots were sectioned horizontally at 3, 6, and 9 mm from the apex and evaluated under a microscope by using 25-fold magnification. The presence of dentinal defects (complete/incomplete cracks and craze lines) was noted and analyzed by using the chi-square test. No defects were observed in the controls. All canal preparation created dentinal defects. Overall, instrumentation with Reciproc was associated with more complete cracks than the full-sequence files (P = .021). Although both reciprocating files produced more incomplete cracks apically (3 mm) compared with the rotary files (P = .001), no statistically significant differences were obtained concerning the summarized values of all cross sections (P > .05). Under the conditions of this study, root canal preparation with both rotary and reciprocating instruments resulted in dentinal defects. At the apical level of the canals, reciprocating files produced significantly more incomplete dentinal cracks than full-sequence rotary systems (P < .05). Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Santosh Kumar, B B; Aruna, D R; Gowda, Vinayak S; Galagali, Sushama R; Prashanthy, R; Navaneetha, H
2013-09-01
Recently, there has been interest in non-mammalian collagen sources such as fish collagen in periodontal regeneration. In the present study, collagen barrier membrane of fish origin was assessed in the treatment of periodontal intrabony defects. Ten systemically healthy chronic periodontitis patients having a paired osseous defect in the mandibular posterior teeth were selected and randomly assigned to receive a collagen membrane (test) or open flap debridement (control) in a split mouth design. Clinical parameters such as Plaque index, Gingival bleeding index, Probing pocket depth, Relative attachment level, and Recession were recorded at baseline, 3, 6, and at 9 months, while radiographic evaluation was done to assess alveolar crestal bone level and percentage of defect fill at 6 and 9 months using autoCAD 2007 software. Student's t test (two-tailed, dependent) was used to find the significance of study parameters on continuous scale. Significance was set at 5% level of significance. Wilcoxon signed rank test was used to find the significance of percentage change of defect fill. The comparison between the two groups did not show any statistically significant differences in the parameters assessed (P > 0.05) but, within each group, clinical parameters showed statistically significant differences from baseline to 9 months (P < 0.05). Within the limits of the study, it can be inferred that no significant differences were found either by using collagen membrane of fish origin or open flap debridement in the treatment of periodontal intrabony defects.
Auersvald, Caroline Moreira; Santos, Felipe Rychuv; Nakano, Mayara Mytie; Leoni, Graziela Bianchi; de Sousa Neto, Manoel Damião; Scariot, Rafaela; Giovanini, Allan Fernando; Deliberador, Tatiana Miranda
2017-07-01
To evaluate the effect of a single-dose local administration of PTH on bone healing in rat calvarial bone defects by means of micro-computed tomography, histological and histomorphometric analysis. Critical-size cranial osteotomy defects were created in 42 male rats. The animals were randomly divided into 3 groups. In the C Group, the bone defect was only filled with a blood clot. In the S Group, it was filled with a collagen sponge and covered with bovine cortical membrane. In the PTH Group, the defect was filled with a collagen sponge soaked with PTH and covered with bovine cortical membrane. The groups were further split in two for euthanasia 15 and 60days post-surgery. Data was statistically analyzed with t-tests for independent samples or the nonparametric Mann-Whitney test when applicable. Intragroup comparisons were analyzed with paired t-tests (p<0.05). Micro-CT analysis results did not demonstrate statistically significant intergroup differences. At 15days post-surgery, the histomorphometric analysis showed that the PTH Group exhibited a significantly higher percentage of bone formation compared with the S Group. At 60days post-surgery, a higher percentage of new bone was observed in the PTH group. The results suggest that the local administration of PTH encouraged the bone healing in critical-size calvarial defects in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.
New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.
Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane
2017-09-01
Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.
Afifi, Marwa M; Kotry, Gehan S; El-Kimary, Gillan I; Youssef, Hayat A
2018-06-06
Management of furcation defects is still a challenging subject in periodontal therapy. Drynaria fortunei (Df) is a common type of traditional Chinese herb in the area of orthopedics and traumatology. In- vitro and tissue engineering studies have shown that Df induces osteoblastic proliferation and promotes the differentiation of human periodontal ligament cells. This study investigated the management of grade II furcation defects in dogs using guided tissue regeneration (GTR) and Df granules mixed with β- tri-calcium phosphate alloplast (β- TCP). Sixteen grade II critical -sized furcation defects were surgically created in four mongrel dogs: Eight defects were treated with GTR and Df granules mixed with (β- TCP) alloplast served as the experimental group, while the other eight were managed with GTR and alloplast, served as control. Dogs were sacrificed at four and eight weeks and the premolars were processed for the evaluation of treatment outcome including; osteoblastic count (OC), cementum layer thickness (CLT), percentage of collagen in bone matrix (CBM), and alkaline phosphatase (ALP) immunoreaction. Experimental group treated with Df showed a significant increase (P < 0.001) in the values of OC, CLT, CBM, and ALP immunoreacitivity when compared to control at four and eight weeks after treatment. Df demonstrated increased regeneration and bone-formation when used in the treatment of furcation defects in a canine model. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Juvenile Swine Surgical Alveolar Cleft Model to Test Novel Autologous Stem Cell Therapies
Caballero, Montserrat; Morse, Justin C.; Halevi, Alexandra E.; Emodi, Omri; Pharaon, Michael R.; Wood, Jeyhan S.
2015-01-01
Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation. Five-week-old pigs (n=6) underwent surgically created maxillary (alveolar) defects to determine critical-sized defect and the quality of treatment outcomes with rib, iliac crest cancellous bone, and tissue-engineered scaffolds. Pigs were sacrificed at 1 month. Computed tomography scans were obtained at days 0 and 30, at the time of euthanasia. Histological evaluation was performed on newly formed bone within the surgical defect. A 1 cm surgically created defect healed with no treatment, the 2 cm defect did not heal. A subsequently created 1.7 cm defect, physiologically similar to a congenitally occurring alveolar cleft in humans, from the central incisor to the canine, similarly did not heal. Rib graft treatment did not incorporate into adjacent normal bone; cancellous bone and the tissue-engineered graft healed the critical-sized defect. This work establishes a juvenile swine alveolar cleft model with critical-sized defect approaching 1.7 cm. Both cancellous bone and tissue engineered graft generated bridging bone formation in the surgically created alveolar cleft defect. PMID:25837453
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-01-01
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112
Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin
2014-11-01
Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.
Huffer, William E; Benedict, James J; Turner, A S; Briest, Arne; Rettenmaier, Robert; Springer, Marco; Walboomers, X F
2007-08-01
COLLOSS and COLLOSS E are osteoinductive bone void fillers consisting of bone collagen and noncollagenous proteins from bovine and equine bone, respectively. The aim of this study was to compare COLLOSS, COLLOSS E, iliac bone autograft, sintered beta tricalcium phosphate (beta-TCP; OSSAPLAST), and COLLOSS E plus OSSAPLAST. Materials were placed for 4, 8, or 24 weeks in 5-mm cortical bone defects in sheep long bones. Histological sections in a plane perpendicular to the long axis of the bone were used to measure the total repair area (original defect plus callus) and the area of bone within the total repair area. The incidence of defect union was also evaluated. At 4 and 8 weeks, defects treated with COLLOSS and COLLOSS E with or without OSSAPLAST had total repair and bone areas equivalent to autograft, and larger than OSSAPLAST-treated defects. At 8 weeks, the incidence of defect union was higher in defects treated with autograft or COLLOSS E plus OSSAPLAST than in untreated defects. At 24 weeks, the incidence of union was 100% in all treatment groups and 0% in untreated defects. The incidence of union was related to the degree of remodeling between 8 and 24 weeks. This was greater in all treated than nontreated defects. In conclusion, COLLOSS and COLLOSS E were equivalent to each other and to autograft, and superior to beta-TCP, in this study model.
Stavropoulos, Andreas; Wikesjö, Ulf M E
2010-06-01
To evaluate the influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a deproteinized bovine bone/collagen matrix under provisions for guided tissue regeneration. Contra-lateral one-wall intrabony [6 x 6 mm (wide/deep) versus 4 x 4 mm (narrow/shallow)] periodontal defects were surgically created at the edentulated mesial aspect of the mandibular first molars in three Labradors, i.e., three defects in each category. The defects were implanted with the bovine bone/collagen matrix and covered with a collagen membrane. Histologic/histometric analysis followed an 18-month healing interval. New cementum encompassed the entire intrabony component in both wide/deep (5.6 +/- 0.5 mm) and narrow/shallow (4.2 +/- 0.1 mm) defects; bone formation amounted to 5.6 +/- 0.6 and 4.0 +/- 0.8 mm, respectively. Mineralized bone encompassed 57.5%versus 65% and the bone biomaterial 11.6%versus 13.1% of the defect space. A periodontal ligament with a width and composition similar to that of the resident periodontal ligament encompassing the entire aspect of the defects was observed. Root resorption/ankylosis was rare. Both wide/deep and narrow/shallow intrabony defects showed a substantial potential for periodontal regeneration in this pre-clinical model. The contribution of the bovine bone/collagen matrix and guided tissue regeneration to this regenerative potential is not clear.
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-05-07
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances.
DUTRA, Bernardo Carvalho; OLIVEIRA, Alcione Maria Soares Dutra; OLIVEIRA, Peterson Antônio Dutra; MANZI, Flavio Ricardo; CORTELLI, Sheila Cavalca; COTA, Luís Otávio de Miranda; COSTA, Fernando Oliveira
2017-01-01
Abstract Background and objectives Few studies have evaluated the effect of the topical application of sodium alendronate (ALN) on the treatment of intrabuccal bone defects, especially those caused by periodontitis. This 6-month randomized placebo controlled clinical trial aimed at evaluating the effect of non-surgical periodontal treatment associated with the use of 1% ALN, through clinical evaluations and cone-beam computed tomography (CBCT). Material and Methods Twenty individuals with chronic periodontitis underwent periodontal examination at the baseline as well as 3 and 6 months after periodontal treatment, registering clinical attachment level (CAL), periodontal probing depth (PPD), and bleeding on probing (BOP) as the clinical outcomes. After manual scaling and root planing, 40 bilateral sites with interproximal vertical bone defects were randomly treated with either 1% ALN gel or a placebo. Bone defects were evaluated through CBCT at the baseline and 6 months post-treatment. The clinical and CBCT parameters were compared using the Wilcoxon and Friedman tests (p<0.05). Results Although ALN produced a greater CAL gain when compared to the placebo at 6 months post-treatment (p=0.021), both treatments produced similar effects on the PPD, BOP, and bone height. Significant differences in bone fill were observed only in patients of the ALN group (4.5 to 3.8 mm; p=0.003) at 6 months post-treatment. Conclusions Topical application of 1% ALN might be a beneficial adjuvant to non-surgical periodontal therapy. PMID:28678950
Automatic classification of blank substrate defects
NASA Astrophysics Data System (ADS)
Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati
2014-10-01
Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.