Sample records for defects oeis complex

  1. Multi-armed poly(L-glutamic acid)-graft-oligoethylenimine copolymers as efficient nonviral gene delivery vectors.

    PubMed

    Chen, Lei; Tian, Huayu; Chen, Jie; Chen, Xuesi; Huang, Yubin; Jing, Xiabin

    2010-01-01

    The application of polyethylenimine (PEI) in gene delivery has been severely limited by significant cytotoxicity that results from a nondegradable methylene backbone and high cationic charge density. It is therefore necessary to develop novel biodegradable PEI derivates for low-toxic, highly efficient gene delivery. A series of novel cationic copolymers with various charge density were designed and synthesized by grafting different kinds of oligoethylenimine (OEI) onto a determinate multi-armed poly(L-glutamic acid) backbone. The molecular structures of multi-armed poly(L-glutamic acid)-graft-OEI (MP-g-OEI) copolymers were characterized using nuclear magnetic resonance, viscosimetry and gel permeation chromatography. Moreover, the MP-g-OEI/DNA complexes were measured by a gel retardation assay, dynamic light scattering and atomic force microscopy to determine DNA binding ability, particle size, zeta potential, complex formation and shape, respectively. MP-g-OEI copolymers were also evaluated in Chinese hamster ovary and human embryonic kidney-293 cells for their cytotoxicity and transfection efficiency. The particle sizes of MP-g-OEI/DNA complexes were in a range of 109.6-182.6 nm and the zeta potentials were in a range of 29.2-44.5 mV above the N/P ratio of 5. All the MP-g-OEI copolymers exhibited lower cytotoxicity and higher gene transfection efficiency than PEI25k in the absence and presence of serum with different cell lines. Importantly, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that the cytotoxicity of MP-g-OEI copolymers varied with their molecular weight and charge density, and two of MP-g-OEI copolymers (OEI600-MP and OEI1800-MP) could achieve optimal transfection efficiency at a similar low N/P ratio as that for PEI25k. MP-g-OEI copolymers demonstrated considerable potential as nonviral vectors for gene therapy. Copyright 2009 John Wiley & Sons, Ltd.

  2. 76 FR 55653 - Notice of Intent To Prepare an Environmental Impact Statement/Overseas Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...Pursuant to section 102(2)(c) of the National Environmental Policy Act of 1969, as implemented by the Council on Environmental Quality Regulations (40 Code of Federal Regulations parts 1500-1508), and Executive Order 12114, the Department of the Navy (DoN) announces its intent to prepare an Environmental Impact Statement (EIS)/Overseas Environmental Impact Statement (OEIS) to evaluate the potential environmental effects associated with maintaining military readiness training and research, development, testing, and evaluation (hereafter referred to as ``training and testing'') activities conducted in the Mariana Islands Training and Testing (MITT) EIS/OEIS Study Area. The MITT Study Area includes the existing Mariana Islands Range Complex (MIRC), additional areas on the high seas, and a general transit corridor between Hawaii to MITT where training and testing activities may occur. The MIRC is the only major Navy range complex in the Study Area. The DoN is preparing this EIS/OEIS to renew current regulatory permits and authorizations, address current training and testing not covered under existing permits and authorizations, and to obtain those permits and authorizations necessary to support force structure changes and emerging and future training and testing requirements including those associated with new platforms and weapons systems within the MITT Study Area, starting in 2015, thereby ensuring critical Department of Defense (DoD) requirements are met. The DoN will invite the National Marine Fisheries Service, United States (U.S.) Fish and Wildlife Service (Pacific Islands Fish and Wildlife Office), and U.S. Air Force, to be cooperating agencies in preparation of the EIS/OEIS.

  3. Prenatal diagnosis and postnatal outcome of fetal spinal defects without Arnold-Chiari II malformation.

    PubMed

    Hüsler, Margaret R; Danzer, Enrico; Johnson, Mark P; Bebbington, Michael; Sutton, Leslie; Adzick, N Scott; Wilson, R Douglas

    2009-11-01

    To determine the prenatal evolution/natural history and postnatal outcome of fetuses diagnosed with a neural tube defect (NTD) lacking the Arnold-Chiari-II malformation (ACM II). This retrospective study reviewed 16 fetuses evaluated with ultrasound (US) and MRI at a single referral center from 1/2000 to 8/2007. Follow-up studies and available postnatal outcomes were reviewed. Postpartum diagnosis was terminal myelocystoceles 7/16 (44%); myelomeningoceles (MMCs) 3/16 (19%); lipomyelomeningoceles 2/16(13%); and thoracic myelocystocele 1/16 (6%). Three patients (19%) were lost to follow-up or termination of pregnancy. Two prenatally diagnosed 'closed' NTD were postnatally found to be MMCs. Three of the myelocystoceles had additional omphalocele, bladder extrophy, imperforate anus and spinal defect (OEIS complex). For the total cohort, impaired lower extremity function was seen in 38%, impaired bladder function in 64%, and ventriculoperitoneal shunting in 8%. Four fetuses with a myelocystocele developed hindbrain herniation in the third trimester of pregnancy. The preterm delivery rate was 38%. Five of eight (63%) neonates with postnatally diagnosed myelocystoceles had mothers with a body mass index over 30. Prenatal differentiation between closed and open NTD is not always possible. Postnatal outcome of isolated myelocystocele and MMC seems to be more favorable than for an NTD with ACM II (shunt requirement). Incontinence is the major childhood morbidity. Maternal obesity may be a risk factor for closed NTDs.

  4. Fiscal Year 2012 Office of Environmental Information (OEI) Tribal Accomplishments Report

    EPA Pesticide Factsheets

    This report is a compilation of EPA’s Office of Environmental Information tribal accomplishments that details efforts and activities conducted in support of the OEI Tribal Strategy during fiscal year (FY) 2012.

  5. Fiscal Year 2013 Office of Environmental Information (OEI) Tribal Accomplishments Report

    EPA Pesticide Factsheets

    This report is a compilation of EPA’s Office of Environmental Information tribal accomplishments that details efforts and activities conducted in support of the OEI Tribal Strategy during fiscal year (FY) 2013.

  6. OEI and OPA Issue a Joint Memorandum of Understanding (2002 Memo)

    EPA Pesticide Factsheets

    This MOU delineates certain interdependent functions, oversight responsibilities, and joint initiatives of the Office of Public Affairs (OPA) and the Office of Environmental Information (OEI) for the Agency's public Web site.

  7. The incidence of malignant neoplasms in individuals working in areas of ionizing radiation in hospitals.

    PubMed

    Milacic, S

    2008-01-01

    To assess the radiation risk of carcinogenesis in individuals professionally exposed to low-level ionizing radiation in a longitudinal cohort study. Analysed were the incidence and mortality induced by malignant neoplasms in a cohort of 1,560 occupationally exposed individuals (OEI) working in areas of ionizing radiation during 1992-2002 (study group). Assessment of exposure to radiation was recorded by personal thermoluminescent dosimeters (TLD), regular periodic health checkups, and bio-dosimetric data (chromosomal aberrations). Incidence and mortality were calculated using conventional epidemiological methods. The same methodology was applied in 5,480,408 individuals from the general population of central Serbia (PCS), not professionally exposed to ionizing radiation (control group). The annual incidence rate of malignancies was 163 for males and 282 for females, per 100,000 OEI and mortality 44 for males and 11 for females. For general PCS the annual incidence rate of malignancies was 374 for males and 347 for females per 100,000, while mortality was 267 for males and 191 for females. Solid malignant neoplasms prevailed in OEI. The frequency of chromosomal aberrations in the group of OEI with malignant neoplasms was 0.33%, compared with 0.20-0.50% of the general population. The incidence of pharyngeal carcinomas in the group of occupationally exposed males was 5-fold higher than in males of the general PCS. In females of OEI the risk of malignant neoplasms such as uterus, ovary, bone marrow, lymphomas, thyroid, larynx and breast was increased compared with the general PCS. The incidence rate of malignancies in the group of OEI to low-level ionizing radiation was not significantly different from the incidence rates of malignant diseases in the general PCS. The same applied for mortality. Differences were observed between the OEI and the general PCS in the localization of malignant neoplasms and sex.

  8. Error Tracking System

    EPA Pesticide Factsheets

    Error Tracking System is a database used to store & track error notifications sent by users of EPA's web site. ETS is managed by OIC/OEI. OECA's ECHO & OEI Envirofacts use it. Error notifications from EPA's home Page under Contact Us also uses it.

  9. 77 FR 7005 - Airworthiness Directives; Eurocopter Deutschland GMBH Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... delivered fuel flow than the engine fuel flow demand needed to achieve the OEI rating at high altitude. They...-engine-inoperative (OEI) rating at altitudes above 10,000 feet. This condition could result in high... AD would require installing a placard that corresponds to the maximum permissible flight altitude...

  10. 77 FR 32884 - Airworthiness Directives; Eurocopter Deutschland GMBH Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... than the engine fuel flow demand needed to achieve the OEI rating at high altitude. They state that... above 10,000 feet. This condition could result in high altitude operations when full OEI engine power is... installing a placard that corresponds to the maximum permissible flight altitude, amending the Rotorcraft...

  11. Office of Environmental Information (OEI) Tribal Strategy: Partnership to Support Environmental Information and Decision-Making in Indian Country and Alaska Native Villages

    EPA Pesticide Factsheets

    This draft strategy provides a description of goals OEI seeks to accomplish to support tribal information and environmental decision-making. States objectives to facilitate and strengthen tribal capacity to collect, analyze and share data.

  12. 78 FR 56682 - Notice of Public Meetings for the Draft Environmental Impact Statement/Overseas Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... U.S. Postal Service to Naval Facilities Engineering Command Pacific, Attention: MITT EIS/OEIS... project Web site ( www.MITT-EIS.com ). All comments, oral or written, submitted during the public review... Facilities Engineering Command Pacific, Attention: MITT EIS/OEIS Project Manager, 258 Makalapa Drive, Suite...

  13. 76 FR 38150 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... ID No. EPA-HQ-OEI- 2011-0096, to (1) EPA online using http://www.regulations.gov (our preferred... a public docket for this ICR under Docket ID No. EPA-HQ-OEI-2011-0096, which is available for online..., technology-neutral framework for electronic reporting across all EPA programs; allow EPA programs to offer...

  14. 78 FR 3408 - Notice of Intent to Prepare a Supplement to the Gulf of Alaska Navy Training Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... revised analyses where appropriate. The SEIS/OEIS will also analyze data using an acoustic model not... preparation of this SEIS/OEIS pursuant to 40 CFR Sec. 1501.6. Dates and Addresses: Given that the DoN's..., new available scientific data, and modeling results will include, but are not limited to, marine...

  15. Dehalogenation of chloroalkanes by nickel(i) porphyrin derivatives, a computational study.

    PubMed

    Szatkowski, L; Hall, M B

    2016-11-14

    The nickel(i) octaethylisobacteriochlorin anion ([OEiBCh-Ni (I) ] - ) is commonly used as a synthetic model of cofactor F 430 from Methyl-Coenzyme M Reductase. In this regard, experimental studies show that [OEiBCh-Ni (I) ] - can catalyze dehalogenation of aliphatic halides in DMF solution by a highly efficient S N 2 reaction. To better understand this process, we constructed theoretical models of the dehalogenation of chloromethane by a simple nickel(i) isobacteriochlorin anion and compared its reactivity with that of similar Ni (I) complexes with other porphyrin-derived ligands: porphyrin, chlorin, bactreriochlorin, hexahydroporphyrin and octahydroporphyrin. Our calculations predict that all of the porphyrin derivative's model reactions proceed through low-spin complexes. Relative to the energy of the separate reactants the theoretical activation energies (free-energy barriers with solvation corrections) for the dehalogenation of chloromethane are similar for all of the porphyrin derivatives and range for the different functionals from 10-15 kcal mol -1 for B3LYP to 5-10 kcal mol -1 for M06-L and to 13-18 kcal mol -1 for ωB97X-D. The relative free energies of the products of the dehalogenation step, L-Ni-Me adducts, have a range from -5 to -40 kcal mol -1 for all functionals; generally becoming more negative with increasing saturation of the porphyrin ligand. Moreover, no significant differences in the theoretical chlorine kinetic isotope effect were discernable with change of porphyrin ligand.

  16. Optimal Trajectories and Control Strategies for the Helicopter in One-Engine-Inoperative Terminal-Area Operations

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Zhao, Yi-Yuan; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Engine failure represents a major safety concern to helicopter operations, especially in the critical flight phases of takeoff and landing from/to small, confined areas. As a result, the JAA and FAA both certificate a transport helicopter as either Category-A or Category-B according to the ability to continue its operations following engine failures. A Category-B helicopter must be able to land safely in the event of one or all engine failures. There is no requirement, however, for continued flight capability. In contrast, Category-A certification, which applies to multi-engine transport helicopters with independent engine systems, requires that they continue the flight with one engine inoperative (OEI). These stringent requirements, while permitting its operations from rooftops and oil rigs and flight to areas where no emergency landing sites are available, restrict the payload of a Category-A transport helicopter to a value safe for continued flight as well as for landing with one engine inoperative. The current certification process involves extensive flight tests, which are potentially dangerous, costly, and time consuming. These tests require the pilot to simulate engine failures at increasingly critical conditions, Flight manuals based on these tests tend to provide very conservative recommendations with regard to maximum takeoff weight or required runway length. There are very few theoretical studies on this subject to identify the fundamental parameters and tradeoff factors involved. Furthermore, a capability for real-time generation of OEI optimal trajectories is very desirable for providing timely cockpit display guidance to assist the pilot in reducing his workload and to increase safety in a consistent and reliable manner. A joint research program involving NASA Ames Research Center, the FAA, and the University of Minnesota is being conducted to determine OEI optimal control strategies and the associated optimal,trajectories for continued takeoff (CTO), rejected takeoff (RTO), balked landing (BL), and continued landing (CL) for a twin engine helicopter in both VTOL and STOL terminal-area operations. This proposed paper will present the problem formulation, the optimal control solution methods, and the key results of the trajectory optimization studies for both STOL and VTOL OEI operations. In addition, new results concerning the recently developed methodology, which enable a real-time generation of optimal OEI trajectories, will be presented in the paper. This new real-time capability was developed to support the second piloted simulator investigation on cockpit displays for Category-A operations being scheduled for the NASA Ames Vertical Motion Simulator in June-August of 1995. The first VMS simulation was conducted in 1994 and reported.

  17. Report: EPA Needs to Improve Oversight of Its Information Technology Projects

    EPA Pesticide Factsheets

    Report #2005-P-00023, September 14, 2005. EPA’s Office of Environmental Information (OEI) did not sufficiently oversee information technology projects to ensure they met planned budgets and schedules.

  18. Checklist for Reviewing EPA Quality Management Plans

    EPA Pesticide Factsheets

    This checklist will be used to review the Quality Management Plans (QMPs) that are submitted to the Quality Staff of the Office of Environmental Information (OEI) for Agency review under EPA Order 5360.1 A2.

  19. The Response of Tropical Tropospheric Ozone to ENSO

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Ziemke, J. R.; Douglass, A. R.; Waugh, D. W.; Lang, C.; Rodriguez, J. M.; Nielsen, J. E.

    2011-01-01

    We have successfully reproduced the Ozone ENSO Index (OEI) in the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) forced by observed sea surface temperatures over a 25-year period. The vertical ozone response to ENSO is consistent with changes in the Walker circulation. We derive the sensitivity of simulated ozone to ENSO variations using linear regression analysis. The western Pacific and Indian Ocean region shows similar positive ozone sensitivities from the surface to the upper troposphere, in response to positive anomalies in the Nino 3.4 Index. The eastern and central Pacific region shows negative sensitivities with the largest sensitivity in the upper troposphere. This vertical response compares well with that derived from SHADOZ ozonesondes in each region. The OEI reveals a response of tropospheric ozone to circulation change that is nearly independent of changes in emissions and thus it is potentially useful in chemistry-climate model evaluation.

  20. Reducing environmental impact of dairy cattle: a Czech case study.

    PubMed

    Havlikova, Martina; Kroeze, Carolien

    2010-07-01

    We analyze options to reduce the future environmental impact of dairy cattle production, using an optimization model (DAIRY) applied to the Czech Republic. The DAIRY model can be used to calculate the overall environmental impact (OEI). We show that aquatic eutrophication and global warming are the 2 most important problems caused by dairy cattle. These problems are largely caused by nitrate leaching and emissions from animal housing. The DAIRY model indicates that the costs of reducing the OEI in 2020 by 20% are 12 MEuro. It is most cost effective to achieve this reduction by improving the efficiency of animal manure used as fertilizer. We tested the sensitivity of the model to assumptions about the following: 1) the relative importance of environmental problems as expressed in weighting factors, and 2) future cattle numbers and milk yield per milking cow. The first case indicates that disagreement on which problem is most urgent need not lead to disagreement about policies to be undertaken. Regardless of the weighting factors used, aquatic eutrophication and global warming are the most important problems. However, the overall costs of reducing the OEI differ with alternative sets of weighting factors, because the costs of emission reduction differ among pollutants. The second case shows that the DAIRY model results are more sensitive to changes in cattle numbers than to changes in milk yield. This study is the first integrated assessment of dairy cattle production for a Central European country and illustrates how systematic analyses may help to find optimal solutions. (c) 2010 SETAC.

  1. 14 CFR 33.85 - Calibration tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... conditions for the endurance test specified § 33.87. The results of the power characteristics calibration... OEI ratings, measurements taken during the applicable endurance test prescribed in § 33.87(f) (1.... 33-18, 61 FR 31328, June 19, 1996] ...

  2. 78 FR 54889 - Proposed Information Collection Request; Comment Request; Confidentiality Rules (Renewal)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OEI-2013-0565; FRL -9535-9] Proposed Information Collection Request; Comment Request; Confidentiality Rules (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency is planning to submit an...

  3. Report: Improvements Needed in EPA’s Network Traffic Management Practices

    EPA Pesticide Factsheets

    Report #11-P-0159, March 14, 2011. OEI does not have consistent, repeatable intrusion detection system monitoring practices in place, which inhibits EPA’s ability to monitor unusual network activity and thus protect Agency systems and associated data.

  4. ADVANCED REMOTE SENSING MONITORING OF MINE WASTE

    EPA Science Inventory

    The OEI-EAD and NERL-ESD have been cooperating on development of monitoring technologies and research to better use remote sensor-derived information and to ultimately disseminate that information to users. This work has focused on NASA'S airborne advanced remote sensor systems ...

  5. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    PubMed

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  6. 78 FR 71606 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ..., unless the comment includes profanity, threats, information claimed to be Confidential Business... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OAR-2013-0437; FRL 9903-41-OEI] Information Collection... information collection request (ICR), Emission Control System Performance Warranty Regulations and Voluntary...

  7. 75 FR 41163 - Notice of Intent To Prepare an Environmental Impact Statement and Overseas Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... channels. The AFTT study area does not include the Arctic. This EIS and OEIS is being prepared to renew and... following the 2nd Fleet area of responsibility (except for the Arctic). The AFTT study area covers...

  8. 14 CFR 27.87 - Height-speed envelope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... selected by the applicant for each altitude covered by paragraph (a)(1) of this section. For helicopters...— (1) For single-engine helicopters, full autorotation; (2) For multiengine helicopters, OEI (where... altitude or the maximum altitude capability of the helicopter, whichever is less, and (3) For other...

  9. 14 CFR 27.87 - Height-speed envelope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... selected by the applicant for each altitude covered by paragraph (a)(1) of this section. For helicopters...— (1) For single-engine helicopters, full autorotation; (2) For multiengine helicopters, OEI (where... altitude or the maximum altitude capability of the helicopter, whichever is less, and (3) For other...

  10. 14 CFR 27.87 - Height-speed envelope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... selected by the applicant for each altitude covered by paragraph (a)(1) of this section. For helicopters...— (1) For single-engine helicopters, full autorotation; (2) For multiengine helicopters, OEI (where... altitude or the maximum altitude capability of the helicopter, whichever is less, and (3) For other...

  11. 78 FR 49510 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Montana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9900-04-OEI] Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Montana AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70 FR 59848) and...

  12. Report: EPA Should Improve Management Practices and Security Controls for Its Network Directory Service System and Related Servers

    EPA Pesticide Factsheets

    Report #12-P-0836, September 20, 2012. EPA's OEI is not managing key system management documentation, system administration functions, the granting and monitoring of privileged accounts, and the application of security controls associated with its DSS.

  13. 78 FR 59659 - Correction to the Final Environmental Impact Statement/Overseas Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... Statement/Overseas Environmental Impact Statement for Hawaii-Southern California Training and Testing AGENCY... Final Environmental Impact Statement (EIS)/Overseas EIS (OEIS) for Hawaii- Southern California Training.... Navy Training and Testing Activities in the Hawaii- Southern California Training and Testing Study Area...

  14. Watershed Central: An Integrated Watershed Assessment and Management Website (Columbus, OH workshop).

    EPA Science Inventory

    The U.S.EPA’s Office of Water (OW), Office of Research and Development (ORD), and Office of Environmental Information (OEI) have teamed together with other Federal Agencies, state and local agencies, tribal agencies, and non-government organizations, to develop an integrated fram...

  15. Watershed Central: An Integrated Watershed Assessment and Management Website (MO presentation)

    EPA Science Inventory

    The U.S. EPA’s Office of Water (OW), Office of Research and Development (ORD), and Office of Environmental Information (OEI) have teamed together with other Federal Agencies, state and local agencies, tribal agencies, and non-government organizations, to develop an integrated fra...

  16. 78 FR 73522 - Agency Information Collection Activities: Submission to OMB for Review and Approval; State Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OECA-2010-0291; FRL- 9903-87-OEI] Agency Information Collection Activities: Submission to OMB for Review and Approval; State Review Framework; EPA ICR Number 2185.05 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In compliance with the...

  17. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  18. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  19. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  20. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  1. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  2. 78 FR 67140 - Office of Environmental Information; Pause the Development of the Draft Quality Standard for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9902-70-OEI] Office of Environmental Information; Pause the... (External) Organizations and Two Associated QA Handbooks AGENCY: Environmental Protection Agency (EPA... Environmental Data Collection, Production, and Use by Non-EPA (External) Organizations and two associated QA...

  3. 76 FR 12342 - Notice of Availability of Record of Decision for the Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Final Environmental Impact Statement/Overseas Environmental Impact Statement for Gulf of Mexico Range... set forth in Alternative 2, described in the Final Environmental Impact Statement (EIS)/Overseas Environmental Impact Statement (OEIS) as the Preferred Alternative. The purpose for the proposed action is to...

  4. 14 CFR 27.67 - Climb: one engine inoperative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... For multiengine helicopters, the steady rate of climb (or descent), at V y (or at the speed for... and the remaining engines at either— (1) Maximum continuous power and, for helicopters for which... power for helicopters for which certification for the use of continuous OEI power is requested. (Secs...

  5. 14 CFR 27.67 - Climb: one engine inoperative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... For multiengine helicopters, the steady rate of climb (or descent), at V y (or at the speed for... and the remaining engines at either— (1) Maximum continuous power and, for helicopters for which... power for helicopters for which certification for the use of continuous OEI power is requested. (Secs...

  6. 14 CFR 27.67 - Climb: one engine inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... For multiengine helicopters, the steady rate of climb (or descent), at V y (or at the speed for... and the remaining engines at either— (1) Maximum continuous power and, for helicopters for which... power for helicopters for which certification for the use of continuous OEI power is requested. (Secs...

  7. 77 FR 70776 - Draft Integrated Science Assessment for Lead

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... certain pollutants which, among other things, ``cause or contribute to air pollution, which may reasonably... available only in hard copy. Publicly available docket materials are available either electronically in www.regulations.gov or in hard copy at the OEI Docket in the EPA Headquarters Docket Center. Dated: September 28...

  8. 78 FR 77121 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9904-29-OEI] Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of New York AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was published in...

  9. 78 FR 73523 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NSPS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OECA-2013-0310; FRL-9903-74-OEI] Information Collection... (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental... Office of Management and Budget (OMB) for review and approval in accordance with the Paperwork Reduction...

  10. 76 FR 38429 - Notice of Availability of Final Programmatic Environmental Impact Statement/Overseas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... marine geophysical scientific research using seismic surveys that are funded by NSF or conducted by the... Statement/Overseas Environmental Impact Statement (PEIS/OEIS) for Marine Seismic Research Funded by the National Science Foundation (NSF) or Conducted by the U.S. Geological Survey (USGS) AGENCY: National...

  11. 75 FR 62433 - Notice of Public Hearings and the Availability of a Draft Programmatic Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... NATIONAL SCIENCE FOUNDATION Notice of Public Hearings and the Availability of a Draft Programmatic Environmental Impact Statement/Overseas Environmental Impact Statement (PEIS/OEIS) AGENCY: National Science... Seismic Research Funded by the National Science Foundation (NSF) or Conducted by the U.S. Geological...

  12. 75 FR 19319 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Analysis Division, Office of Information Analysis and Access (2842T), Environmental Protection Agency, 1200.... Martin, Acting Director, Office of Information Analysis and Access. [FR Doc. 2010-8527 Filed 4-13-10; 8... comments. E-mail: [email protected] . Mail: Office of Environmental Information (OEI) Docket...

  13. Optimal Trajectories for the Helicopter in One-Engine-Inoperative Terminal-Area Operations

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Chen, Robert T. N.

    1996-01-01

    This paper presents a summary of a series of recent analytical studies conducted to investigate One-Engine-Inoperative (OEI) optimal control strategies and the associated optimal trajectories for a twin engine helicopter in Category-A terminal-area operations. These studies also examine the associated heliport size requirements and the maximum gross weight capability of the helicopter. Using an eight states, two controls, augmented point-mass model representative of the study helicopter, Continued TakeOff (CTO), Rejected TakeOff (RTO), Balked Landing (BL), and Continued Landing (CL) are investigated for both Vertical-TakeOff-and-Landing (VTOL) and Short-TakeOff-and-Landing (STOL) terminal-area operations. The formulation of the nonlinear optimal control problems with considerations for realistic constraints, solution methods for the two-point boundary-value problem, a new real-time generation method for the optimal OEI trajectories, and the main results of this series of trajectory optimization studies are presented. In particular, a new balanced- weight concept for determining the takeoff decision point for VTOL Category-A operations is proposed, extending the balanced-field length concept used for STOL operations.

  14. Tales of volcanoes and El-Niño southern oscillations with the oxygen isotope anomaly of sulfate aerosol

    PubMed Central

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L.; McCabe, Justin; Savarino, Joel; Thiemens, Mark H.

    2013-01-01

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth’s system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980–2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher ∆17O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and ∆17O = 3.3‰, OEI = 11 and ∆17O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that ∆17O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567

  15. 75 FR 75672 - Proposed Settlement Agreement, Clean Air Act Citizen Suit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...: Jan Tierney, Air and Radiation Law Office (2344A), Office of General Counsel, U.S. Environmental... with the Court in LEAN v. Jackson (civil action no. 1:09-01333) a motion pursuant to Fed. R. Civ. P. 41... available for public viewing at the Office of Environmental Information (OEI) Docket in the EPA Docket...

  16. 75 FR 69858 - Airworthiness Directives; Eurocopter France (Eurocopter) Model AS332L2 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... MCAI AD states that a hard landing occurred during in-flight engine failure (one engine inoperative (OEI)) training. An examination revealed the failure of the right-hand main reduction gear module... freewheel unit. In case of a freewheel unit failure on one of the two MGB inputs, either inadvertently or as...

  17. The Potential of Elicited Imitation for Oral Output Practice in German L2

    ERIC Educational Resources Information Center

    Cornillie, Frederik; Baten, Kristof; De Hertog, Dirk

    2017-01-01

    This paper reports on the potential of Oral Elicited Imitation (OEI) as a format for output practice, building on an analysis of picture-matching and spoken data collected from 36 university-level learners of German as a second language (L2) in a web-based assessment task inspired by Input Processing (VanPatten, 2004). The design and development…

  18. Organizational Effectiveness Information System (OEIS) User’s Manual

    DTIC Science & Technology

    1986-09-01

    SUBJECT CODES B-l C. LISTING OF VALID RESOURCE SYSTEM CODES C-l »TflerÄ*w»fi*%f*fc**v.nft; ^’.A/.V. A y.A/.AAA«•.*-A/. AAV ...the valid codes used la the Implementation and Design System. MACOM 01 COE 02 DARCOM 03 EUSA 04 FORSCOM 05 HSC 06 HQDA 07 INSCOM 08 MDW 09

  19. 75 FR 7027 - Airworthiness Directives; Turbomeca Arriel 2S1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... operating in manual control mode. The loss of full automatic control of engine 1 was caused by loss of steps... control of engine 1 was caused by loss of steps of the stepper motor controlling the fuel metering valve... engine induced by the loss of steps of the stepper motor during acceleration up to OEI 30-second rating...

  20. Healthy Weight: Community Outreach Initiative. Strategy Development Workshop Report (Bethesda, Maryland, February 17-18, 2004)

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Institute, 2005

    2005-01-01

    The National Heart, Lung, and Blood Institute (NHLBI) Obesity Education Initiative (OEI) convened a two-day meeting to help develop a national public education outreach initiative to help reduce and prevent overweight and obesity in the United States. This Strategy Development Workshop, held on February 17-18, 2004, convened more that 70 public…

  1. 78 FR 14088 - Creation of a New System of Records Notice: Telework Application and Agreement Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... audits. DATES: Persons wishing to comment on this system of records notice must do so by April 15, 2013... ENVIRONMENTAL PROTECTION AGENCY [FRL-9786-9; EPA-HQ-OEI-2012-0481] Creation of a New System of... proposes to create a new system of records pursuant to the provisions of the Privacy Act of 1974 (5 U.S.C...

  2. 76 FR 2677 - Request Facilities To Report Toxics Release Inventory Information Electronically or Complete Fill...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... through Friday, excluding legal holidays. The EPA Docket Center Public Reading Room is open from 8:30 a.m... Reading Room is (202) 566-1744, and the telephone number for the OEI Docket is (202) 566-1752. 2... data faster than when the data are submitted on hard-copy forms. In light of the features and tools TRI...

  3. 77 FR 18245 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ..., which is available for online viewing at www.regulations.gov , or in person viewing at the OEI Docket in the EPA Docket Center (EPA/DC), EPA West, Room 3334, 1301 Constitution Ave. NW., Washington, DC. The EPA/DC Public Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal...

  4. 14 CFR Appendix C to Part 27 - Criteria for Category A

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... 29.64—Climb: General. 29.65(a)—Climb: AEO. 29.67(a)—Climb: OEI. 29.75—Landing: General. 29.77—Landing decision point: Category A. 29.79—Landing: Category A. 29.81—Landing distance (Ground level sites): Category A. 29.85—Balked landing: Category A. 29.87(a)—Height-velocity envelope. 29.547(a) and (b)—Main and...

  5. Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor

    DTIC Science & Technology

    2010-01-01

    Rotor MCP Maximum Continuous Power MRP Maximum Rated Power (take-off power) NDARC NASA Design and Analysis of Rotorcraft OEI One Engine Inoperative...OGE Out of Ground Effect SFC Specific Fuel Consumption SNI Simultaneous Non-Interfering approach STOL Short Takeoff and Landing VTOL Vertical...that are assembled into a complete aircraft model. NDARC is designed for high computational efficiency. Performance is calculated with physics- based

  6. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  7. EPA Facilities and Regional Boundaries Download Package, US, 2012, US EPA, SEGS

    EPA Pesticide Factsheets

    This downloadable package contains the following layers: EPA facility points, EPA region boundary polygons and EPA region boundary polygons extended to the 200nm Exclusive Economic Zone (EEZ). Included in this package are a file geodatabase (v. 10.0), Esri ArcMap map document (v. 10.0) and XML files for this record and the layer level metadata. This SEGS dataset was produced by EPA Office of Environmental Information (OEI).

  8. EPA Facility Locations and Regional Boundaries - National Geospatial Data Asset (NGDA)

    EPA Pesticide Factsheets

    This downloadable package contains the following layers: EPA facility points, EPA region boundary polygons and EPA region boundary polygons extended to the 200nm Exclusive Economic Zone (EEZ). Included in this package are a file geodatabase (v. 10.0), Esri ArcMap map document (v. 10.0) and XML files for this record and the layer level metadata. This dataset was produced by EPA Office of Environmental Information (OEI).

  9. Performance Optimization of the NASA Large Civil Tiltrotor

    DTIC Science & Technology

    2008-07-01

    Continuous Power MRP Maximum Rated Power (take-off power) OEI One Engine Inoperative OGE Out of Ground Effect SFC Specific Fuel Consumption SLS Sea...for the LCTR2 based on a service entry date of 2018. Table 1 summarizes the nominal mission, and Table 2 lists key design values (the initial values...Aeroflightdynamics Directorate (AFDD), RDECOM (Ref. 4). RC designs are based upon a physics- based synthesis process calibrated to a database of

  10. Socioeconomic impacts of outer continental shelf oil and gas development; a bibliography

    USGS Publications Warehouse

    Pattison, Malka L.

    1977-01-01

    The bibliography lists reports which are concerned primarily with the socioeconomic impacts of OCS oil and gas development or which, although not primarily concerned with such impacts, include sections that contain significant discussion of them. Several of the cited reports do not address socioeconomic issues directly, but have been included because of their value in providing a broad picture of OCS oil and gas development and the associated terminology and/or techical aspects. (Sinha - OEIS)

  11. Invisible defects in complex crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it; Della Valle, Giuseppe

    2013-07-15

    We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out tomore » be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.« less

  12. Tuning to the band gap by complex defects engineering: insights from hybrid functional calculations in CuInS2

    NASA Astrophysics Data System (ADS)

    Yang, Pei; Shi, Li-Jie; Zhang, Jian-Min; Liu, Gui-Bin; Yang, Shengyuan A.; Guo, Wei; Yao, Yugui

    2018-01-01

    Tuning band gaps of semiconductors in terms of defect control is essential for the optical and electronic properties of photon emission or photon harvesting devices. By using first-principles calculations, we study the stability condition of bulk CuInS2 and formation energies of point and complex defects in CuInS2 with hybrid exchange-correlation functionals. We find that at Cu-rich and In-poor conditions, 2Cui  +  CuIn is the main complex defect, while InCu  +  2VCu is the main complex defect at In-rich and Cu-poor conditions. Such stable complex defects provide the feasibility of tuning band gaps by varying the [Cu]/[In] molar ratios. These results present how the off-stoichiometry CuInS2 crystal structures, and electronic and optical properties can be optimized by tuning the [Cu]/[In] ratio and Fermi level, and highlight the importance of complex defects in achieving better photoelectric performance in CuInS2. Such band gap tuning in terms of complex defect engineering is a general approach and thus applicable to other photo-harvest or light-emission semiconductors.

  13. Functional reconstruction of complex tendo Achilles defect by free latissimus dorsi muscle flap

    PubMed Central

    Upadhyaya, Divya N.; Khanna, Vaibhav; Kohli, Romesh; Tulsi, Satendar P. S.; Garg, Sandeep

    2012-01-01

    Managing the complex tendo Achilles defect involves reconstructing the Achilles tendon as well as providing soft tissue cover to the heel area. The advent of microsurgery has revolutionised the reconstruction of this difficult defect providing a number of options to the reconstructive surgeon. We present a case of complex tendo Achilles defect reconstructed by the latissimus dorsi free flap. PMID:23450740

  14. Density functional theory study of defects in unalloyed δ-Pu

    DOE PAGES

    Hernandez, S. C.; Freibert, F. J.; Wills, J. M.

    2017-03-19

    Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less

  15. Density functional theory study of defects in unalloyed δ-Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, S. C.; Freibert, F. J.; Wills, J. M.

    Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less

  16. Carbon as a source for yellow luminescence in GaN: Isolated C{sub N} defect or its complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christenson, Sayre G.; Xie, Weiyu; Sun, Y. Y., E-mail: suny4@rpi.edu

    2015-10-07

    We study three carbon defects in GaN, isolated C{sub N} and its two complexes with donors C{sub N}–O{sub N}, and C{sub N}–Si{sub Ga}, as a cause of the yellow luminescence using accurate hybrid density functional calculation, which includes the semi-core Ga 3d electrons as valence electrons and uses a larger 300-atom supercell. We show that the isolated C{sub N} defect yields good agreement with experiment on the photoluminescence (PL) peak position, zero-phonon line, and thermodynamic defect transition level. We find that the defect state of the complexes that is involved in the PL process is the same as that ofmore » the C{sub N} defect. The role of the positively charged donors (O{sub N} or Si{sub Ga}) next to C{sub N} is to blue-shift the PL peak. Therefore, the complexes cannot be responsible for the same PL peak as isolated C{sub N}. Our detailed balance analysis further suggests that under thermal equilibrium at typical growth temperature, the concentration of isolated C{sub N} defect is orders of magnitude higher than the defect complexes, which is a result of the small binding energy in these complexes.« less

  17. Meeting the Challenge: A 1986 History of the Naval Surface Weapons Center

    DTIC Science & Technology

    1987-05-29

    8217GClK JACK lMUITRIUXER DIG Iot I ---, , SUpFt S COMPUTER ’ HEL DE Osi cOeiTROLPRiOCESSO HIGM SPEED ATA BUS OM SWR AU VAGKTtC BIBS11 Closed-Loop...appear. HVAC designers think it can determine if closures need to be installed on ventilation inlets to prevent the ingress of exhaust gases from...and fuze timing errors. If the fuze could be caused to actuate based on target position rather than a predicted time of flight, these errors could be

  18. Plasmon Lasers: Coherent Light Source at Molecular Scales

    DTIC Science & Technology

    2012-01-01

    Y . S . Oei, R . Nötzel, C.-Z. Ning, and M.K. Smit, Opt. Express 17, 11107–11112 (2009). [8] M.A. Noginov...Kang, C. Seassal, S .-K. Kim, P. Regreny, Y .-H. Lee, C.M. Lieber, and H.-G. Park Nano, Lett. 10, 3679–3683 (2010). [11] R.M.Ma, R . F. Oulton, V. J... R . T. Hill, J. J. Mock, Y . Urzhumov, D. S . Sebba, S . J. Olden- burg, S .- Y . Chen, A. Lazarides, A. Chilkoti, and D. R . Smith, Nano Lett. 10,

  19. Defect interactions in GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.

  20. OEI, GTTP and Adventurers of the Universe: training teachers and disseminating science in the South of Brazil

    NASA Astrophysics Data System (ADS)

    Pavani, D. B.; Saraiva, M. F. O.; Dottori, H.

    2014-10-01

    Itinerant Educative Observatory (OEI) is a permanent program of our Department of Astronomy since 1999. It aims to lecture Astronomy to teachers of fundamental and middle levels, using attractive resources such as telescopic observations, audiovisuals, and multimedia. The training courses are requested by different cities of Rio Grande do Sul and nearby states and are organized by a local committee of the requesting city. In 2014, with federal funds, we are uniting efforts with other extension project: the Galileo Teacher Training Program (GTTP). This is an international program developed to train teachers in the effective use of astronomy education tools and resources in their science classes. The program, that is a legacy of IYA2009, aims to create a worldwide network of Galileo Ambassadors the promoters of the training workshops and Galileo Teachers the teachers who bring the learned methodologies into classroom. To supplement these activities, we initiated a new program in 2012 called Adventurers of the Universe. University professors, undergraduates students and teachers of high-school and elementary school of social vulnerable communities develop transdiciplinary didactic sequences where Astronomy is the central focus to motivate different processes of teaching and learning, considering different learning levels, designed for direct use in the classroom. The objective of the program is to contribute to the didactic transposition through the discussion about how to relate astronomy with other science and non-science disciplines. In 2012 we collaborated with 20 teachers of one school, and 900 students. In 2013, the collaborations were expanded to include teachers and students of 3 other schools.

  1. Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedraza, D.F.; Mansur, L.K.

    1985-01-01

    A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less

  2. Biochemical and genetic analysis of Leigh syndrome patients in Korea.

    PubMed

    Chae, Jong-Hee; Lee, Jin Sook; Kim, Ki Joong; Hwang, Yong Seung; Hirano, Michio

    2008-06-01

    Sixteen Korean patients with Leigh syndrome were identified at the Seoul National University Children's Hospital in 2001-2006. Biochemical or molecular defects were identified in 14 patients (87.5%). Thirteen patients had respiratory chain enzyme defects; 9 had complex I deficiency, and 4 had combined defects of complex I+III+IV. Based on the biochemical defects, targeted genetic studies in 4 patients with complex I deficiency revealed two heteroplasmic mitochondrial DNA mutations in ND genes. One patient had the mitochondrial DNA T8993G point mutation. No mitochondrial DNA defects were identified in 11 (68.7%) of our LS patients, who probably have mutations in nuclear DNA. Although a limited study based in a single tertiary medical center, our findings suggest that isolated complex I deficiency may be the most common cause of Leigh syndrome in Korea.

  3. Generation and characterization of point defects in SrTiO3 and Y3Al5O12

    NASA Astrophysics Data System (ADS)

    Selim, F. A.; Winarski, D.; Varney, C. R.; Tarun, M. C.; Ji, Jianfeng; McCluskey, M. D.

    Positron annihilation lifetime spectroscopy (PALS) was applied to characterize point defects in single crystals of Y3Al5O12 and SrTiO3 after populating different types of defects by relevant thermal treatments. In SrTiO3, PALS measurements identified Sr vacancy, Ti vacancy, vacancy complexes of Ti-O (vacancy) and hydrogen complex defects. In Y3Al5O12 single crystals the measurements showed the presence of Al-vacancy, (Al-O) vacancy and Al-vacancy passivated by hydrogen. These defects are shown to play the major role in defining the electronic and optical properties of these complex oxides.

  4. Defect states of complexes involving a vacancy on the boron site in boronitrene

    NASA Astrophysics Data System (ADS)

    Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.

    2011-12-01

    First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.

  5. Bioprosthetics and repair of complex aerodigestive defects

    PubMed Central

    Udelsman, Brooks; Mathisen, Douglas J.

    2018-01-01

    Aerodigestive defects involving the trachea, bronchi and esophagus are a result of prolonged intubation, operative complications, congenital defects, trauma, radiation and neoplastic disease. The vast majority of these defects may be repaired primarily. Rarely, due the size of the defect, underlying complexity, or unfavorable patient characteristics, primary repair is not possible. One alternative to primary repair is bioprosthetic repair. Materials such as acellular dermal matrix and aortic homograft have been used in a variety of applications, including closure of tracheal, bronchial and esophageal defects. Herein, we review the use of bioprosthetics in the repair of aerodigestive defects, along with the unique advantages and disadvantages of these repairs. PMID:29707507

  6. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  7. Vacancy Defects as Compensating Centers in Mg-Doped GaN

    NASA Astrophysics Data System (ADS)

    Hautakangas, S.; Oila, J.; Alatalo, M.; Saarinen, K.; Liszkay, L.; Seghier, D.; Gislason, H. P.

    2003-04-01

    We apply positron annihilation spectroscopy to identify VN-MgGa complexes as native defects in Mg-doped GaN. These defects dissociate in postgrowth annealings at 500 800 °C. We conclude that VN-MgGa complexes contribute to the electrical compensation of Mg as well as the activation of p-type conductivity in the annealing. The observation of VN-MgGa complexes confirms that vacancy defects in either the N or Ga sublattice are abundant in GaN at any position of the Fermi level during growth, as predicted previously by theoretical calculations.

  8. Lessons Learned from Delayed Versus Immediate Microsurgical Reconstruction of Complex Maxillectomy and Midfacial Defects: Experience in a Tertiary Center in Mexico.

    PubMed

    Santamaria, Eric; de la Concha, Erika

    2016-10-01

    Microsurgical reconstruction of complex midfacial and maxillectomy defects is among the most challenging procedures in plastic surgery, and it often requires composite flaps to improve functional and aesthetic results. Various factors have been identified as having influence in the outcome of microsurgical reconstruction. In this article, the authors present their experience with immediate and delayed reconstruction of complex maxillectomy defects in a tertiary center in Mexico. The authors present a total of 37 patients with microsurgical reconstruction of a complex maxillectomy defect; 13 patients had immediate and 24 had delayed reconstructions. The authors recommend doing immediate reconstruction when feasible. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Influence of Alternative Engine Concepts on LCTR2 Sizing and Mission Profile

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Snyder, Christopher A.

    2012-01-01

    The Large Civil Tiltrotor (LCTR) was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nm at 300 knots, with vertical takeoff and landing. This paper examines the impact of advanced propulsion system concepts on LCTR2 sizing. Two concepts were studied: an advanced, single-speed engine with a conventional power turbine layout (Advanced Conventional Engine, or ACE), and a variable-speed power turbine engine (VSPT). The ACE is the lighter engine, but requires a multi-speed (shifting) gearbox, whereas the VSPT uses a lighter, fixed-ratio gearbox. The NASA Design and Analysis of Rotorcraft (NDARC) design code was used to study the trades between rotor and engine efficiency and weight. Rotor performance was determined by Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II), and engine performance was estimated with the Numerical Propulsion System Simulation (NPSS). Design trades for the ACE vs. VSPT are presented in terms of vehicle weight empty for variations in mission altitude and range; the effect of different One Engine Inoperative (OEI) criteria are also examined. Because of its strong effect on gearbox weight and on both rotor and engine efficiency, rotor speed was chosen as the reference design variable for comparing design trades. The two propulsion concepts had nearly identical vehicle weights and mission fuel consumption, and their relative advantages varied little with cruise altitude, mission range, or OEI criteria; high cruise altitude and low cruise tip speed were beneficial for both concepts.

  10. Reconstruction of maxillectomy and midfacial defects with free tissue transfer.

    PubMed

    Santamaria, Eric; Cordeiro, Peter G

    2006-11-01

    The maxillary bones are part of the midfacial skeleton and are closely related to the eyeglobe, nasal airway, and oral cavity. Together with the overlying soft tissues, the two maxillae are responsible to a large extent for facial contour. Maxillectomy defects become more complex when critical structures such as the orbit, globe, and cranial base are resected, and reconstruction with distant tissues become essential. In this article, we describe a classification system and algorithm for reconstruction of these complex defects using various pedicled and free flaps. Most defects that involve resection of the maxilla and adjacent soft tissues may be classified into one of the following four types: Type I defects, Limited maxillectomy; Type II defects, Subtotal maxillectomy; Type III defects, Total maxillectomy; and Type IV defects, Orbitomaxillectomy. Using this classification, reconstruction of maxillectomy and midfacial defects may be approached considering the relationship between volume and surface area requirements, that is, addressing the bony defect first, followed by assessment of the associated soft tissue, skin, palate, and cheek-lining deficits. In our experience, most complex maxillectomy defects are best reconstructed using free tissue transfer. The rectus abdominis and radial forearm free flap in combination with immediate bone grafting or as an osteocutaneous flap reliably provide the best aesthetic and functional results. A temporalis muscle pedicled flap is used for reconstruction of maxillectomy defects only in those patients who are not candidates for a microsurgical procedure.

  11. Reconstruction of Complex Facial Defects Using Cervical Expanded Flap Prefabricated by Temporoparietal Fascia Flap.

    PubMed

    Zhang, Ling; Yang, Qinghua; Jiang, Haiyue; Liu, Ge; Huang, Wanlu; Dong, Weiwei

    2015-09-01

    Reconstruction of complex facial defects using cervical expanded flap prefabricated by temporoparietal fascia flap. Complex facial defects are required to restore not only function but also aesthetic appearance, so it is vital challenge for plastic surgeons. Skin grafts and traditional flap transfer cannot meet the reconstructive requirements of color and texture with recipient. The purpose of this sturdy is to create an expanded prefabricated temporoparietal fascia flap to repair complex facial defects. Two patients suffered severe burns on the face underwent complex facial resurfacing with prefabricated cervical flap. The vasculature of prefabricated flap, including the superficial temporal vessel and surrounding fascia, was used as the vascular carrier. The temporoparietal fascia flap was sutured underneath the cervical subcutaneous tissue, and expansion was begun in postoperative 1 week. After 4 to 6 months of expansion, the expander was removed, facial scars were excised, and cervical prefabricated flap was elevated and transferred to repair the complex facial defects. Two complex facial defects were repaired successfully by prefabricated temporoparietal fascia flap, and prefabricated flaps survived completely. On account of donor site's skin was thinner and expanded too fast, 1 expanded skin flap was rupture during expansion, but necrosis was not occurred after the 2nd operation. Venous congestion was observed in 1 patient, but after dressing, flap necrosis was not happened. Donor site was closed primarily. Postoperative follow-up 6 months, the color, texture of prefabricated flap was well-matched with facial skin. This method of expanded prefabricated flap may provide a reliable solution to the complex facial resurfacing.

  12. Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.

    PubMed

    Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid

    2009-04-01

    Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.

  13. One-stage reconstruction of the complex midfoot defect with a multiple osteotomized free fibular osteocutaneous flap: case report and literature review.

    PubMed

    Lykoudis, Efstathios G; Dimitrios, Pafilas; Alexandros, Beris E

    2010-01-01

    Complex midfoot defects represent a reconstructive challenge since midfoot plays a key role in standing and gait. We report the case of a 27-year-old patient with a complex midfoot defect due to a high-energy gun shot injury. The defect included the tarsometatarsal complex, all three arches of the foot, and the overlying dorsal skin of the foot. Reconstruction was achieved in a single stage with a free fibular osteocutaneous flap. The fibula was osteotomized into three segments, which were used to reconstruct the bone defects, while the skin paddle of the flap was used for stable soft tissue coverage of the reconstructed bony skeleton. Early and late postoperative periods were uneventful. Bone incorporation was radiographically evident at 12 weeks, and full weight bearing was possible at 6 months postop. Final follow up, at 2 years postop, showed a very good functional and esthetic outcome.

  14. Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Malinverni, Marco; Martin, Denis

    Vacancy-type defects in Mg-doped GaN were probed using a monoenergetic positron beam. GaN films with a thickness of 0.5–0.7 μm were grown on GaN/sapphire templates using ammonia-based molecular beam epitaxy and characterized by measuring Doppler broadening spectra. Although no vacancies were detected in samples with a Mg concentration [Mg] below 7 × 10{sup 19 }cm{sup −3}, vacancy-type defects were introduced starting at above [Mg] = 1 × 10{sup 20 }cm{sup −3}. The major defect species was identified as a complex between Ga vacancy (V{sub Ga}) and multiple nitrogen vacancies (V{sub N}s). The introduction of vacancy complexes was found to correlate with a decreasemore » in the net acceptor concentration, suggesting that the defect introduction is closely related to the carrier compensation. We also investigated Mg-doped GaN layers grown using In as the surfactant. The formation of vacancy complexes was suppressed in the subsurface region (≤80 nm). The observed depth distribution of defects was attributed to the thermal instability of the defects, which resulted in the introduction of vacancy complexes during the deposition process.« less

  15. Possible association of Down syndrome and exstrophy-epispadias complex: report of two new cases and review of the literature.

    PubMed

    Reutter, Heiko; Bökenkamp, Arend; Ebert, Anne-Karolin; Rösch, Wolfgang; Boemers, Thomas M; Nöthen, Markus M; Ludwig, Michael

    2009-07-01

    In the past, several midline defects have been associated with Down syndrome (DS) on a regular basis, e.g. heart defects, cleft lip and palate, neural tube defects, omphalocele and anal atresia. The exstrophy-epispadias complex (EEC) represents a rare midline defect, rarely described in association with DS. Here, we report on the co-occurrence of DS and EEC in two, so far, unreported cases and present a review of the literature. We suggest that EEC represents a rare but inherent part in the spectrum of DS-associated midline defects.

  16. Native defects in Tl 6SI 4: Density functional calculations

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2015-05-05

    In this study, Tl 6SI 4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl 6SI 4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl 6SI 4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl 6SI 4more » gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.« less

  17. Integer sequence discovery from small graphs

    PubMed Central

    Hoppe, Travis; Petrone, Anna

    2015-01-01

    We have exhaustively enumerated all simple, connected graphs of a finite order and have computed a selection of invariants over this set. Integer sequences were constructed from these invariants and checked against the Online Encyclopedia of Integer Sequences (OEIS). 141 new sequences were added and six sequences were extended. From the graph database, we were able to programmatically suggest relationships among the invariants. It will be shown that we can readily visualize any sequence of graphs with a given criteria. The code has been released as an open-source framework for further analysis and the database was constructed to be extensible to invariants not considered in this work. PMID:27034526

  18. Ordered defect compounds in CuInSe{sub 2} for photovoltaic solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, K.; Katayama-Yoshida, H.

    2014-02-21

    Due to the complete compensation, defect complex (2V{sub Cu}+In{sub Cu}), namely two Cu vacancies and In located at Cu site, is stable in CuInSe{sub 2} (CIS). It is known that the series of ordered defect compounds (ODC) are constracted by ordering the defect complex. Based on the total energy calcalation by using the Korringa-Kohn-Rostoker coherent potential approxiamtion (KKR-CPA) method, we discuss phase separation of the CIS with the defect complexes into ODC and CIS. Since the band alignment between ODC and CIS is calculated to be type 2, effective electron-hole separation at the interface between ODC and CIS can bemore » expected. This causes the enhancement of conversion efficiency of CIS-based solar cell materials.« less

  19. Mineralization Induction of Gingival Fibroblasts and Construction of a Sandwich Tissue-Engineered Complex for Repairing Periodontal Defects

    PubMed Central

    Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng

    2018-01-01

    Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454

  20. Vacancy clustering and its dissociation process in electroless deposited copper films studied by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.

    2012-05-01

    Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.

  1. Analyzing the defect structure of CuO-doped PZT and KNN piezoelectrics from electron paramagnetic resonance.

    PubMed

    Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A

    2014-09-01

    The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.

  2. Fetal anterior abdominal wall defects: prenatal imaging by magnetic resonance imaging.

    PubMed

    Victoria, Teresa; Andronikou, Savvas; Bowen, Diana; Laje, Pablo; Weiss, Dana A; Johnson, Ann M; Peranteau, William H; Canning, Douglas A; Adzick, N Scott

    2018-04-01

    Abdominal wall defects range from the mild umbilical cord hernia to the highly complex limb-body wall syndrome. The most common defects are gastroschisis and omphalocele, and the rarer ones include the exstrophy complex, pentalogy of Cantrell and limb-body wall syndrome. Although all have a common feature of viscera herniation through a defect in the anterior body wall, their imaging features and, more important, postnatal management, differ widely. Correct diagnosis of each entity is imperative in order to achieve appropriate and accurate prenatal counseling and postnatal management. In this paper, we discuss fetal abdominal wall defects and present diagnostic pearls to aid with diagnosis.

  3. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    PubMed Central

    Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-01-01

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943

  4. Automated mask and wafer defect classification using a novel method for generalized CD variation measurements

    NASA Astrophysics Data System (ADS)

    Verechagin, V.; Kris, R.; Schwarzband, I.; Milstein, A.; Cohen, B.; Shkalim, A.; Levy, S.; Price, D.; Bal, E.

    2018-03-01

    Over the years, mask and wafers defects dispositioning has become an increasingly challenging and time consuming task. With design rules getting smaller, OPC getting complex and scanner illumination taking on free-form shapes - the probability of a user to perform accurate and repeatable classification of defects detected by mask inspection tools into pass/fail bins is reducing. The critical challenging of mask defect metrology for small nodes ( < 30 nm) was reviewed in [1]. While Critical Dimension (CD) variation measurement is still the method of choice for determining a mask defect future impact on wafer, the high complexity of OPCs combined with high variability in pattern shapes poses a challenge for any automated CD variation measurement method. In this study, a novel approach for measurement generalization is presented. CD variation assessment performance is evaluated on multiple different complex shape patterns, and is benchmarked against an existing qualified measurement methodology.

  5. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4

    PubMed Central

    Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso

    2009-01-01

    Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Anh, Le, E-mail: letheanh@jaist.ac.jp; Lam, Pham Tien; Manoharan, Muruganathan

    We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs withmore » P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies.« less

  7. Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion

    NASA Astrophysics Data System (ADS)

    Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe

    2012-05-01

    A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.

  8. [Association of folate metabolism genes MTRR and MTHFR with complex congenital abnormalities among Chinese population in Shanxi Province, China].

    PubMed

    Zhang, Qin; Bai, Bao-Ling; Liu, Xiao-Zhen; Miao, Chun-Yue; Li, Hui-Li

    2014-08-01

    To explore the association of polymorphisms in folate metabolism genes, methionine synthase reductase (MTRR) gene and 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, with complex congenital abnormalities and to further investigate its association with complex congenital abnormalities derived from three germ layers. A total of 250 cases of birth defects (with complex congenital abnormalities including congenital heart disease, neural tube defects, and craniofacial anomalies) in Shanxi Province, China were included in the study. MTRR single nucleotide polymorphism (SNP) (rs1801394) and MTHFR SNP (rs1801133) were genotyped by the SNaPshot method, and the genotyping results were compared with those of controls (n=420). SNPs rs1801394 and rs1801133 were associated with multiple birth defects. For the recessive model, individuals with GG genotype at rs1801394 and CC genotype at rs1801133 had a relatively low risk of developing birth defects, so the two genotypes were protective factors against birth defects. The homozygous recessive genotype at rs1801133, which served as a protective factor, was associated with ectoderm- or endoderm-derived complex congenital abnormalities, while the homozygous recessive genotype at rs1801394, which served as a protective factor, was associated with ectoderm-, mesoderm- or endoderm-derived complex congenital abnormalities. Among the Chinese population in Shanxi Province, the SNPs in folate metabolism genes (MTRR and MTHFR) are associated with complex congenital abnormalities and related to ectoderm, mesoderm or endoderm development.

  9. Studies of Point Defects and Defect Interactions in Metals Using Perturbed Gamma Gamma Angular Correlations

    NASA Astrophysics Data System (ADS)

    Shropshire, Steven Leslie

    Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of interstitial species in the flux were determined. Deformation of Au was found to produce only mono- and di-interstitial fluxes in a 1:2 ratio. Cross-sections increased rapidly with the number of vacancies, which is attributed to the amount of relaxation of lattice strains around solute-vacancy complexes.

  10. Analysis of the defect clusters in congruent lithium tantalate

    NASA Astrophysics Data System (ADS)

    Vyalikh, Anastasia; Zschornak, Matthias; Köhler, Thomas; Nentwich, Melanie; Weigel, Tina; Hanzig, Juliane; Zaripov, Ruslan; Vavilova, Evgenia; Gemming, Sibylle; Brendler, Erica; Meyer, Dirk C.

    2018-01-01

    A wide range of technological applications of lithium tantalate (LT) is closely related to the defect chemistry. In literature, several intrinsic defect models have been proposed. Here, using a combinational approach based on DFT and solid-state NMR, we demonstrate that distribution of electric field gradients (EFGs) can be employed as a fingerprint of a specific defect configuration. Analyzing the distribution of 7Li EFGs, the FT-IR and electron spin resonance (ESR) spectra, and the 7Li spin-lattice relaxation behavior, we have found that the congruent LT samples provided by two manufacturers show rather different defect concentrations and distributions although both were grown by the Czochralski method. After thermal treatment hydrogen out-diffusion and homogeneous distribution of other defects have been observed by ESR, NMR, and FT-IR. The defect structure in one of two congruent LT crystals after annealing has been identified and proved by defect formation energy considerations, whereas the more complex defect configuration, including the presence of extrinsic defects, has been suggested for the other LT sample. The approach of searching the EFG fingerprints from DFT calculations in NMR spectra can be applied for identifying the defect clusters in other complex oxides.

  11. Penetrator Impact Studies of Soil/Concrete

    DTIC Science & Technology

    1977-11-01

    JATINS OF MOTION OL1 ,O4 T01 oll , .’APOIMO ,ci • • di 010@m •’e - Cal ted X .Expa tal . . .... . .... . ... . • - -- ---- 007M6 iti (1 /7 x 01" IME...F4W*3,# TimVerO Deth f Pat~ton, m Sot N. 7 (C N.41 w - - - - -- . -# rTCEM~nyNM4c VCHICLI C@JltIs or "OttON 5.0 VEPINIO4 ?Oil I - Cale ted X Exper...os04𔃾--- ,oeiJ rig~W 2. i TIMu Vemsis U)pth of POUetwati~9Or Sho t, X. -󈨘. (Cp ww4.) so, TERRADYNAMIC VVHICLE f(kTI" Or MOTIO OL ESO Tl a -- Calcul ted

  12. Theoretical Study of Defect Signatures in III-V and II-VI Semiconductors

    DTIC Science & Technology

    2006-03-01

    collaboration with experimentalists at Linköpin University (Sweden), we identified the recently observed EPR signals in diluted GaPN to be Gallium ...the results from USPP calculations to all electron calculations. o Study NO-Zni complexes and other point defects in ZnO using USPP calculations...parameters for point defects in semiconductors. o Results on stability of NO-Zni complexes in ZnO and preliminary results on their electronic

  13. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-07-01

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  14. Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene.

    PubMed

    Martín, Miguel A; Blázquez, Alberto; Gutierrez-Solana, Luis G; Fernández-Moreira, Daniel; Briones, Paz; Andreu, Antoni L; Garesse, Rafael; Campos, Yolanda; Arenas, Joaquín

    2005-04-01

    Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families. To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene. Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect. The proband was a child who displayed the clinical features of LS. Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.

  15. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    DOE PAGES

    Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...

    2015-10-28

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less

  16. Defect-mediated spatial complexity and chaos in a phase-conjugate resonator

    NASA Technical Reports Server (NTRS)

    Indebetouw, Guy; Liu, Siuying R.

    1992-01-01

    We have studied the spatiotemporal dynamics of a phase-conjugate resonator. The cavity Fresnel number is used to vary the degree of transverse confinement of the system. The generation and subsequent motion of the phase defects in the wave front are seen to mediate the system's dynamics. The number of defects and the complexity of their motion increases as the confinement is relaxed, leading the system through a sequence of bifurcations and eventually to chaos.

  17. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE PAGES

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...

    2017-06-06

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  18. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  19. Identification of Complex Carbon Nanotube Structures

    NASA Technical Reports Server (NTRS)

    Han, Jie; Saini, Subhash (Technical Monitor)

    1998-01-01

    A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.

  20. Protecting the proteome: Eukaryotic cotranslational quality control pathways

    PubMed Central

    2014-01-01

    The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822

  1. Actinic imaging and evaluation of phase structures on EUV lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin

    2010-09-28

    The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less

  2. Vacancy-hydrogen complexes in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.

    2014-10-01

    We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.

  3. Insights into dynamic processes of cations in pyrochlores and other complex oxides

    DOE PAGES

    Uberuaga, Blas Pedro; Perriot, Romain

    2015-08-26

    Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in onemore » class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.« less

  4. Extension of optical lithography by mask-litho integration with computational lithography

    NASA Astrophysics Data System (ADS)

    Takigawa, T.; Gronlund, K.; Wiley, J.

    2010-05-01

    Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.

  5. Propeller facial artery perforator flap as first reconstructive option for nasolabial and perinasal complex defects.

    PubMed

    Ruiz-Moya, A; Lagares-Borrego, A; Infante-Cossío, P

    2015-04-01

    Facial cutaneous oncological pathology often involves more than one esthetic unit due to their close boundaries. The reconstruction of both the nasolabial and perinasal regions may be especially complex and challenging for the surgeon. Traditionally, these defects have been reconstructed with local random flaps based on the vascularization provided by the superficial musculoaponeurotic system. In this article, we present our experience in the reconstruction of the aforementioned defects using the propeller facial artery perforator (FAP) flap. A propeller FAP flap was performed for reconstruction in 12 patients with nasolabial or perinasal complex defects after tumoral resection between the years 2011 and 2013. The flap was designed parallel to the nasolabial fold in all cases for achieving direct closure and an aesthetically pleasing outcome. In one of the cases, a paramedian forehead flap was performed simultaneously. Nine patients healed uneventfully, with good functional and esthetic outcomes. One of the flaps developed partial necrosis of the distal end, and another developed temporary postoperative venous congestion, lymphedema, and, finally, trapdoor deformity. The latter complication also occurred in one more flap. The propeller FAP flap is reliable and versatile, with few complications, and it is especially useful when reconstructing complex defects that involve the nasolabial and perinasal regions; therefore, it should be considered as one of the first reconstructive options for the described defects. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: Prevention with folic acid

    PubMed Central

    Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875

  7. Synthetic Defects for Vibrothermography

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  8. Surface current observatons--Beaufort Sea, 1972

    USGS Publications Warehouse

    Barnes, Peter; Garlow, Richard

    1975-01-01

    Sediment transport via water and ice in the Beaufort Sea off northern Alaska is related to the movement of the surficial waters. As development proceeds along the north slope of alaska, a knowledge of the potential drift trajectories of water, ice, sediment and pollutants will be needed. In an attempt to better define the probable paths and rates of transport, 4200 surface drift cards were dropped during the U.S. Coast Guard WEBSEC cruise of August and September, 1972. The results of this release are the subject of this report. Because the data presented here will be used primarily by those interested in solving problems of transport, the emphasis has been placed on data presentation rather than a detailed analysis of the circulation. (Sinha-OEIS)

  9. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease

    PubMed Central

    Alfadhel, Majid; Nashabat, Marwan; Ali, Qais Abu; Hundallah, Khalid

    2017-01-01

    Iron–sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications. PMID:28064324

  10. A fast button surface defects detection method based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran

    2018-01-01

    Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.

  11. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  12. The capability of lithography simulation based on MVM-SEM® system

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shingo; Fujii, Nobuaki; Kanno, Koichi; Imai, Hidemichi; Hayano, Katsuya; Miyashita, Hiroyuki; Shida, Soichi; Murakawa, Tsutomu; Kuribara, Masayuki; Matsumoto, Jun; Nakamura, Takayuki; Matsushita, Shohei; Hara, Daisuke; Pang, Linyong

    2015-10-01

    The 1Xnm technology node lithography is using SMO-ILT, NTD or more complex pattern. Therefore in mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask feature. One key Technology of mask manufacture is defect verification to use aerial image simulator or other printability simulation. AIMS™ Technology is excellent correlation for the wafer and standards tool for defect verification however it is difficult for verification over hundred numbers or more. We reported capability of defect verification based on lithography simulation with a SEM system that architecture and software is excellent correlation for simple line and space.[1] In this paper, we use a SEM system for the next generation combined with a lithography simulation tool for SMO-ILT, NTD and other complex pattern lithography. Furthermore we will use three dimension (3D) lithography simulation based on Multi Vision Metrology SEM system. Finally, we will confirm the performance of the 2D and 3D lithography simulation based on SEM system for a photomask verification.

  13. Dynamic defect correlations dominate activated electronic transport in SrTiO 3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  14. Impurity-defect complexes in non-implanted aluminum

    NASA Astrophysics Data System (ADS)

    Pedersen, F. T.; Grann, H.; Weyer, G.

    1986-02-01

    The formation of impurity-defect complexes in ion-implanted aluminum has been studied in the temperature interval 100 400K. Radioactive119In isotopes have been implanted. Mössbauer spectra have been measured for the 24 keV γ-radiation emitted after the decay to119Sn. The spectra could be analysed satisfactorily with two lines, one of which is known to be due to substitutional Sn. A second line, which has a higher isomer shift and lower Debye temperature, is tentatively assigned to vacancy-associated Sn, formed by trapping of thermally mobile (multi-)vacancies. Comparison to similar DPAC experiments suggests that cubic Sn-V4 complexes are formed. Some indication (˜15%) for an athermal formation of impurity defects below 175K is obtained.

  15. New mixed valence defect dicubane cobalt(II)/cobalt(III) complex: Synthesis, crystal structure, photoluminescence and magnetic properties

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin

    2018-02-01

    A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.

  16. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects.

    PubMed

    Lui, Y F; Ip, W Y

    2016-01-01

    Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation.

  17. Characterization of oxygen defects in diamond by means of density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Thiering, Gergő; Gali, Adam

    2016-09-01

    Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.

  18. Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A.

    PubMed

    Ravera, Silvia; Vaccaro, Daniele; Cuccarolo, Paola; Columbaro, Marta; Capanni, Cristina; Bartolucci, Martina; Panfoli, Isabella; Morelli, Alessandro; Dufour, Carlo; Cappelli, Enrico; Degan, Paolo

    2013-10-01

    Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Defect charge states in Si doped hexagonal boron-nitride monolayer

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Molepo, M. P.; Andrew, R. C.; Chetty, N.

    2016-02-01

    We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q  =  -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.

  20. Slow positron beam study of hydrogen ion implanted ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  1. The Nucleosome Remodeling and Deacetylase (NuRD) Complex in Development and Disease

    PubMed Central

    Basta, Jeannine; Rauchman, Michael

    2014-01-01

    The Nucleosome Remodeling and Deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis and accelerated ageing. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer. PMID:24880148

  2. Nanoscale interfacial defect shedding in a growing nematic droplet.

    PubMed

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  3. Defect phase diagram for doping of Ga2O3

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  4. Topological defects in liquid crystals and molecular self-assembly (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abbott, Nicholas L.

    2017-02-01

    Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerizations, leading to a range of elastomers and gels with complex mechanical and optical properties. However, little is understood about molecular-level assembly processes within defects. This presentation will describe an experimental study that reveals that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, key signatures of molecular self-assembly of amphiphilic molecules in topological defects are observed - including cooperativity, reversibility, and controlled growth of the molecular assemblies. By using polymerizable amphiphiles, we also demonstrate preservation of molecular assemblies templated by defects, including nanoscopic "o-rings" synthesized from "Saturn-ring" disclinations. Our results reveal that topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly in a manner that is strongly analogous to other classes of macromolecular templates (e.g., polymer—surfactant complexes). Opportunities for the design of exquisitely responsive soft materials will be discussed using bacterial endotoxin as an example.

  5. Towards Improved Finite Element Modelling of the Interaction of Elastic Waves with Complex Defect Geometries

    NASA Astrophysics Data System (ADS)

    Rajagopal, P.; Drozdz, M.; Lowe, M. J. S.

    2009-03-01

    A solution to the problem of improving the finite element (FE) modeling of elastic wave-defect interaction is sought by reconsidering the conventional opinion on meshing strategy. The standard approach using uniform square elements imposes severe limitations in representing complex defect outlines but this is thought to improve when the mesh is made finer. Free meshing algorithms available widely in commercial packages of late can cope with difficult features well but they are thought to cause scattering by the irregular mesh itself. This paper examines whether the benefits offered by free meshing in representing defects better outweigh the inaccuracies due to mesh scattering. If using the standard mesh, the questions whether mesh refinement leads to improved results and whether a practical strategy can be constructed are considered.

  6. Rabbit Calvarial Defect Model for Customized 3D-Printed Bone Grafts.

    PubMed

    Lee, Kang-Gon; Lee, Kang-Sik; Kang, Yu-Jeoung; Hwang, Jong-Hyun; Lee, Se-Hwan; Park, Sang-Hyug; Park, Yongdoo; Cho, Young-Sam; Lee, Bu-Kyu

    2018-05-01

    Bone graft materials are commonly used to regenerate various bone defects, but their application is often limited because of the complex defect shape in various clinical conditions. Hence, customized bone grafts using three-dimensional (3D) printing techniques have been developed. However, conventional simple bone defect models are limited for evaluating the benefits and manufacturing accuracy of 3D-printed customized bone grafts. Thus, the aim of the present study was to develop a complex-shaped bone defect model. We designed an 8-shaped bony defect that consists of two simple circles attached to the rabbit calvarium. To determine the critical-sized defect (CSD) of the 8-shaped defects, 5.6- and 7-mm-diameter trephine burs were tested, and the 7-mm-diameter bur could successfully create a CSD, which was easily reproducible on the rabbit calvarium. The rate of new bone formation was 28.65% ± 8.63% at 16 weeks following creation of the defect. To confirm its efficacy for clinical use, the 8-shaped defect was created on a rabbit calvarium and 3D computed tomography (CT) was performed. A stereolithography file was produced using the CT data, and a 3D-printed polycaprolactone graft was fabricated. Using our 8-shaped defect model, we were able to modify the tolerances of the bone graft and calvarial defect to fabricate a more precise bone graft. Customized characteristics of the bone graft were then used to improve the accuracy of the bone graft. In addition, we confirmed the fitting ability of the 3D-printed graft during implantation of the graft. Our 8-shaped defect model on the rabbit calvarium using a 7.0-mm trephine bur may be a useful CSD model for evaluating 3D-printed graft materials.

  7. Chimeric anterolateral thigh free flap for reconstruction of complex cranio-orbito-facial defects after skull base cancers resection.

    PubMed

    Cherubino, Mario; Turri-Zanoni, Mario; Battaglia, Paolo; Giudice, Marco; Pellegatta, Igor; Tamborini, Federico; Maggiulli, Francesca; Guzzetti, Luca; Di Giovanna, Danilo; Bignami, Maurizio; Calati, Carolina; Castelnuovo, Paolo; Valdatta, Luigi

    2017-01-01

    Complex cranio-orbito-facial defects after skull base cancers resection entail a functional and esthetic reconstruction. The introduction of endoscopic assisted techniques for excision surgery with the advances in reconstructive surgery and anesthesiology allowed to improve the management of such critical patients. We report a series of chimeric anterolateral thigh (ALT) flaps used to reconstruct complex cranio-orbital-facial defects after skull base surgery. A retrospective review of patients that underwent cranio-orbito-facial reconstruction using a chimeric ALT flap from March 2013 to October 2015 at a single tertiary care referral Institute was performed. All patients were affected by locally-advanced malignant tumor and the resulting defects involved the skull base in all cases. The ALT flaps were perforator-based flaps with different components: fascia, skin and muscle. The different flap territories had independent vascular supply and were independent of any physical interconnection except where linked by a common source vessel. Ten patients were included in the study. Three patients underwent adjuvant radiotherapy and to chemotherapy. The mean hospitalization time was 21 days (range, 8-24 days). One failure was observed. After a mean follow-up of 12.4 months, 3 patients died of the disease, 2 are alive with disease, while 5 patients (50%) are currently alive without evidence of disease. Chimeric ALT flap is a reliable and versatile reconstructive option for complex cranio-orbito-facial defects resulting from skull base surgery. The chimeric flap composed of different territories proved to be adequate for a patient-tailored three-dimensional reconstruction of the defects as well as able to resist to the postoperative adjuvant treatments. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. The two gap transitions in Ge1 -xSnx : Effect of non-substitutional complex defects

    NASA Astrophysics Data System (ADS)

    Querales-Flores, J. D.; Ventura, C. I.; Fuhr, J. D.; Barrio, R. A.

    2016-09-01

    The existence of non-substitutional β-Sn defects in Ge1 -xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1 -xSnx , including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1 -xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.

  9. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation.

    PubMed

    Madruga, Santiago; Riecke, Hermann; Pesch, Werner

    2006-02-24

    We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non-Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscillations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.

  10. Reconstruction of large cranial defects in the presence of heavy radiation damage and infection utilizing tissue transferred by microvascular anastomoses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robson, M.C.; Zachary, L.S.; Schmidt, D.R.

    1989-03-01

    Six cases of large defects of the scalp, skull, and dura following tumor ablation and radiation are presented. Each was accompanied by chronic infection in the irradiated defect. Efforts to reconstruct the resulting defects with local flaps were not successful. One-stage reconstruction was then accomplished in each case utilizing a latissimus dorsi musculocutaneous or myo-osteocutaneous free flap transferred by microvascular anastomoses. The versatility of the latissimus dorsi musculocutaneous and/or osseous flap allows single-stage reconstruction of these complex defects.

  11. Drosophila Lin-52 Acts in Opposition to Repressive Components of the Myb-MuvB/dREAM Complex

    PubMed Central

    Lewis, Peter W.; Sahoo, Debashis; Geng, Cuiyun; Bell, Maren

    2012-01-01

    The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner. PMID:22688510

  12. Acceptor Type Vacancy Complexes In As-Grown ZnO

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.

    The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less

  14. Multiple-digit resurfacing using a thin latissimus dorsi perforator flap.

    PubMed

    Kim, Sang Wha; Lee, Ho Jun; Kim, Jeong Tae; Kim, Youn Hwan

    2014-01-01

    Traumatic digit defects of high complexity and with inadequate local tissue represent challenging surgical problems. Recently, perforator flaps have been proposed for reconstructing large defects of the hand because of their thinness and pliability and minimal donor site morbidity. Here, we illustrate the use of thin latissimus dorsi perforator flaps for resurfacing multiple defects of distal digits. We describe the cases of seven patients with large defects, including digits, circumferential defects and multiple-digit defects, who underwent reconstruction with thin latissimus dorsi perforator flaps between January 2008 and March 2012. Single-digit resurfacing procedures were excluded. The mean age was 56.3 years and the mean flap size was 160.4 cm(2). All the flaps survived completely. Two patients had minor complications including partial flap loss and scar contracture. The mean follow-up period was 11.7 months. The ideal flap for digit resurfacing should be thin and amenable to moulding, have a long pedicle for microanastomosis and have minimal donor site morbidity. Thin flaps can be harvested by excluding the deep adipose layer, and their high pliability enables resurfacing without multiple debulking procedures. The latissimus dorsi perforator flap may be the best flap for reconstructing complex defects of the digits, such as large, multiple-digit or circumferential defects, which require complete wrapping of volar and dorsal surfaces. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Defect phase diagram for doping of Ga 2O 3

    DOE PAGES

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  16. Nitrogen vacancy complexes in nitrogen irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, A. van; Westerduin, K.T.; Schut, H.

    1996-12-31

    Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed bymore » helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons.« less

  17. Defect phase diagram for doping of Ga 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  18. Carbon, oxygen and intrinsic defect interactions in germanium-doped silicon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sgourou, E. N.; Chroneos, A.; Emtsev, V. V.

    2011-10-01

    Production and annealing of oxygen-vacancy (VO) and oxygen-carbon (CiOi, CiOiI) defects in germanium-doped Czochralski-grown silicon (Cz-Si) containing carbon are investigated. All the samples were irradiated with 2 MeV fast electrons. Radiation-produced defects are studied using infrared spectroscopy by monitoring the relevant bands in optical spectra. For the VO defects, it is established that the doping with Ge affects the thermal stability of VO (830 cm-1) defects as well as their fraction converted to VO2 (888 cm-1) defects. In Ge-free samples containing carbon, it was found that carbon impurity atoms do not affect the thermal stability of VO defects, although they affect the fraction of VO defects that is converted to VO2 complexes. Considering the oxygen-carbon complexes, it is established that the annealing of the 862 cm-1 band associated with the CiOi defects is accompanied with the emergence of the 1048 cm-1 band, which has earlier been assigned to the CsO2i center. The evolution of the CiOiI bands is also traced. Ge doping does not seem to affect the thermal stability of the CiOi and CiOiI defects. Density functional theory (DFT) calculations provide insights into the stability of the defect clusters (VO, CiOi, CiOiI) at an atomic level. Both experimental and theoretical results are consistent with the viewpoint that Ge affects the stability of the VO but does not influence the stability of the oxygen-carbon clusters. DFT calculations demonstrate that C attracts both Oi and VO pairs predominately forming next nearest neighbor clusters in contrast to Ge where the interactions with Oi and VO are more energetically favorable at nearest neighbor configurations.

  19. Enhanced Mass Defect Filtering To Simplify and Classify Complex Mixtures of Lignin Degradation Products.

    PubMed

    Dier, Tobias K F; Egele, Kerstin; Fossog, Verlaine; Hempelmann, Rolf; Volmer, Dietrich A

    2016-01-19

    High resolution mass spectrometry was utilized to study the highly complex product mixtures resulting from electrochemical breakdown of lignin. As most of the chemical structures of the degradation products were unknown, enhanced mass defect filtering techniques were implemented to simplify the characterization of the mixtures. It was shown that the implemented ionization techniques had a major impact on the range of detectable breakdown products, with atmospheric pressure photoionization in negative ionization mode providing the widest coverage in our experiments. Different modified Kendrick mass plots were used as a basis for mass defect filtering, where Kendrick mass defect and the mass defect of the lignin-specific guaiacol (C7H7O2) monomeric unit were utilized, readily allowing class assignments independent of the oligomeric state of the product. The enhanced mass defect filtering strategy therefore provided rapid characterization of the sample composition. In addition, the structural similarities between the compounds within a degradation sequence were determined by comparison to a tentatively identified product of this compound series. In general, our analyses revealed that primarily breakdown products with low oxygen content were formed under electrochemical conditions using protic ionic liquids as solvent for lignin.

  20. Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velişa, G.; Wendler, E.; Zhao, S.

    A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.

  1. Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys

    DOE PAGES

    Velişa, G.; Wendler, E.; Zhao, S.; ...

    2017-12-17

    A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.

  2. Defect-mediated turbulence in ribbons of viscoelastic Taylor-Couette flow.

    PubMed

    Latrache, Noureddine; Abcha, Nizar; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-04-01

    Transition to defect-mediated turbulence in the ribbon patterns observed in a viscoelastic Taylor-Couette flow is investigated when the rotation rate of the inner cylinder is increased while the outer cylinder is fixed. In four polymer solutions with different values of the elasticity number, the defects appear just above the onset of the ribbon pattern and trigger the appearance of disordered oscillations when the rotation rate is increased. The flow structure around the defects is determined and the statistical properties of these defects are analyzed in the framework of the complex Ginzburg-Landau equation.

  3. Defect Complex Effect in Nb Doped TiO2 Ceramics with Colossal Permittivity

    NASA Astrophysics Data System (ADS)

    Li, Fuchao; Shang, Baoqiang; Liang, Pengfei; Wei, Lingling; Yang, Zupei

    2016-10-01

    Donor-doped Nb x Ti1- x O2 ( x = 1%, 2%, 4%, 6%, and 8%) ceramics with giant permittivity (>104) and a very low dielectric loss (˜0.05) were sintered under flowing N2 at 1400°C for 10 h. By increasing Nb doping concentration, two different dielectric responses were evidenced in the frequency dependence of dielectric properties of Nb doped TiO2 ceramics, which corresponded to the space charge polarization and the electron-pinned defect-dipoles effect, respectively. Especially, combined with the x-ray photoelectron spectroscopy results, the electron-pinned defect-dipoles induced by the 2({Nb}^{5 + } )_{{Ti}}^{ bullet } to 4({Ti}^{3 + } )^'_{{Ti}} leftarrow {V}_{{o}}^{ bullet bullet } defect complex were further confirmed to give rise to both their high ɛr and low tan δ in the high frequency range for the Nb x Ti1- x O2 ceramics with x > 4%.

  4. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2.

    PubMed

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-08

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  5. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  6. The first defective extended chromium atom chain complex with amine ligand containing naphthyridine and pyrazine

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Zhen; Geng, Shu-Bo; Liu, Shuang; Zhao, Dan; Jia, Xin-Gang; Wei, Hai-Long; Ismayilov, Rayyat H.; Yeh, Chen-Yu; Lee, Gene-Hsiang; Peng, Shie-Ming

    2017-06-01

    Through a pyrazine and naphthyridine-containing diamino ligand, N2,N7-di(pyrazin-2-yl)-1,8-naphthyridine-2,7-diamine (H2dpznda), defective extended metal atom chain complexes with one chromium(II) metal absent in centre, [Cr5(μ5-dpznda)4Cl2] (1) and [Cr5(μ5-dpznda)4(NCS)2] (2) were obtained. An electrochemistry research showed that the pentachromium(II) complexes were quite resistant to reduction although accessible to oxidation, with two reversible redox couples at E1/2 = +0.59 and +0.30 V.

  7. The feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    NASA Technical Reports Server (NTRS)

    Van Fossen, G. J.

    1983-01-01

    It is pointed out that in certain emergency situations it may be desirable to obtain power from a helicopter engine at levels greater than the maximum rating. Yost (1976) has reported studies concerning methods of power augmentation in the one engine inoperative (OEI) case. It was found that a combination of water/alcohol injection into the inlet and overtemperature/overspeed could provide adequate emergency power. The present investigation is concerned with the results of a feasibility study which analytically investigated the maximum possible level of augmentation with constant gas generator turbine stress rupture life as a constraint. In the proposed scheme, the increased engine output is obtained by turbine overtemperature, however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water.

  8. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  9. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.

    2017-07-01

    Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  10. Multisensor fusion for 3-D defect characterization using wavelet basis function neural networks

    NASA Astrophysics Data System (ADS)

    Lim, Jaein; Udpa, Satish S.; Udpa, Lalita; Afzal, Muhammad

    2001-04-01

    The primary objective of multi-sensor data fusion, which offers both quantitative and qualitative benefits, has the ability to draw inferences that may not be feasible with data from a single sensor alone. In this paper, data from two sets of sensors are fused to estimate the defect profile from magnetic flux leakage (MFL) inspection data. The two sensors measure the axial and circumferential components of the MFL. Data is fused at the signal level. If the flux is oriented axially, the samples of the axial signal are measured along a direction parallel to the flaw, while the circumferential signal is measured in a direction that is perpendicular to the flaw. The two signals are combined as the real and imaginary components of a complex valued signal. Signals from an array of sensors are arranged in contiguous rows to obtain a complex valued image. A boundary extraction algorithm is used to extract the defect areas in the image. Signals from the defect regions are then processed to minimize noise and the effects of lift-off. Finally, a wavelet basis function (WBF) neural network is employed to map the complex valued image appropriately to obtain the geometrical profile of the defect. The feasibility of the approach was evaluated using the data obtained from the MFL inspection of natural gas transmission pipelines. Results show the effectiveness of the approach.

  11. A catalytic defect in mitochondrial respiratory chain complex I due to a mutation in NDUFS2 in a patient with Leigh syndrome.

    PubMed

    Ngu, Lock Hock; Nijtmans, Leo G; Distelmaier, Felix; Venselaar, Hanka; van Emst-de Vries, Sjenet E; van den Brand, Mariël A M; Stoltenborg, Berendien J M; Wintjes, Liesbeth T; Willems, Peter H; van den Heuvel, Lambertus P; Smeitink, Jan A; Rodenburg, Richard J T

    2012-02-01

    In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia

    PubMed Central

    Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150

  13. The CiCs(SiI)n Defect in Silicon from a Density Functional Theory Perspective.

    PubMed

    Christopoulos, Stavros-Richard G; Sgourou, Efstratia N; Vovk, Ruslan V; Chroneos, Alexander; Londos, Charalampos A

    2018-04-16

    Carbon constitutes a significant defect in silicon (Si) as it can interact with intrinsic point defects and affect the operation of devices. In heavily irradiated Si containing carbon the initially produced carbon interstitial-carbon substitutional (C i C s ) defect can associate with self-interstitials (Si I 's) to form, in the course of irradiation, the C i C s (Si I ) defect and further form larger complexes namely, C i C s (Si I ) n defects, by the sequential trapping of self-interstitials defects. In the present study, we use density functional theory to clarify the structure and energetics of the C i C s (Si I ) n defects. We report that the lowest energy C i C s (Si I ) and C i C s (Si I )₂ defects are strongly bound with -2.77 and -5.30 eV, respectively.

  14. Carrier providers or killers: The case of Cu defects in CdTe

    DOE PAGES

    Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai

    2017-07-24

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less

  15. Carrier providers or killers: The case of Cu defects in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less

  16. Limb-body wall defect: experience of a reference service of fetal medicine from Southern Brazil.

    PubMed

    Gazolla, Ana C; da Cunha, André C; Telles, Jorge A B; Betat, Rosilene da S; Romano, Mayara A; Marshall, Isabel; Gobatto, Amanda M; de H Bicca, Anna M; Arcolini, Camila P; Dal Pai, Thaís K V; Vieira, Luciane R; Targa, Luciano V; Betineli, Ildo; Zen, Paulo R G; Rosa, Rafael F M

    2014-10-01

    Limb-body wall defect is a rare condition characterized by a combination of large and complex defects of the ventral thorax and abdominal wall with craniofacial and limb anomalies. The aim of this study was to describe the experience of our fetal medicine service, a reference from Southern Brazil, with prenatally diagnosed patients with a limb-body wall defect in a 3 years period. Only patients who fulfilled the criteria suggested by Hunter et al. (2011) were included in the study. Clinical data and results of radiological and cytogenetic evaluation were collected from their medical records. Our sample was composed of 8 patients. Many of their mothers were younger than 25 years (50%) and in their first pregnancy (62.5%). It is noteworthy that one patient was referred due to suspected anencephaly and another due to a twin pregnancy with an embryonic sac. Craniofacial defects were verified in three patients (37.5%), thoracic/abdominal abnormalities in 6 (75%) and limb defects in eight (100%). Congenital heart defects were observed in five patients (62.5%). One of them presented a previously undescribed complex heart defect. The results disclosed that complementary exams, such as MRI and echocardiography, are important to better define the observed defects. Some of them, such as congenital heart defects, may be more common than previously reported. This definition is essential for the proper management of the pregnancy and genetic counseling of the family. The birth of these children must be planned with caution and for the prognosis a long survival possibility, despite unlikely and rare, must be considered. © 2014 Wiley Periodicals, Inc.

  17. Two Stage Repair of Composite Craniofacial Defects with Antibiotic Releasing Porous Poly(methyl methacrylate) Space Maintainers and Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Spicer, Patrick

    Craniofacial defects resulting from trauma and resection present many challenges to reconstruction due to the complex structure, combinations of tissues, and environment, with exposure to the oral, skin and nasal mucosal pathogens. Tissue engineering seeks to regenerate the tissues lost in these defects; however, the composite nature and proximity to colonizing bacteria remain difficult to overcome. Additionally, many tissue engineering approaches have further hurdles to overcome in the regulatory process to clinical translation. As such these studies investigated a two stage strategy employing an antibiotic-releasing porous polymethylmethacrylate space maintainer fabricated with materials currently part of products approved or cleared by the United States Food and Drug Administration, expediting the translation to the clinic. This porous space maintainer holds the bone defect open allowing soft tissue to heal around the defect. The space maintainer can then be removed and one regenerated in the defect. These studies investigated the individual components of this strategy. The porous space maintainer showed similar soft tissue healing and response to non-porous space maintainers in a rabbit composite tissue defect. The antibiotic-releasing space maintainers showed release of antibiotics from 1-5 weeks, which could be controlled by loading and fabrication parameters. In vivo, space maintainers releasing a high dose of antibiotics for an extended period of time increased soft tissue healing over burst release space maintainers in an infected composite tissue defect model in a rabbit mandible. Finally, stabilization of bone defects and regeneration could be improved through scaffold structures and delivery of a bone forming growth factor. These studies illustrate the possibility of the two stage strategy for repair of composite tissue defects of the craniofacial complex.

  18. A Toxoplasma MORN1 Null Mutant Undergoes Repeated Divisions but Is Defective in Basal Assembly, Apicoplast Division and Cytokinesis

    PubMed Central

    Lorestani, Alexander; Sheiner, Lilach; Yang, Kevin; Robertson, Seth D.; Sahoo, Nivedita; Brooks, Carrie F.; Ferguson, David J. P.; Striepen, Boris; Gubbels, Marc-Jan

    2010-01-01

    The membrane occupation and recognition nexus protein 1 (MORN1) is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding. Lack of MORN1 resulted in double-headed parasites. These Janus-headed parasites form two complete apical complexes but fail to assemble a basal complex. Moreover, these parasites were capable of undergoing several more budding rounds resulting in the formation of up to 16-headed parasites conjoined at the basal end. Despite this segregation defect, the mother's cytoskeleton was completely disassembled in every budding round. Overall this argues that successful completion of the budding is not required for cell cycle progression. None of the known basal complex components, including a set of recently identified inner membrane complex (IMC) proteins, localized correctly in these multi-headed parasites. These data suggest that MORN1 is essential for assembly of the basal complex, and that lack of the basal complex abolishes the contractile capacity assigned to the basal complex late in daughter formation. Consistent with this hypothesis we observe that MORN1 mutants fail to efficiently constrict and divide the apicoplast. We used the null background provided by the mutant to dissect the function of subdomains of the MORN1 protein. This demonstrated that deletion of a single MORN domain already prevented the function of MORN1 whereas a critical role for the short linker between MORN domains 6 and 7 was identified. In conclusion, MORN1 is required for basal complex assembly and loss of MORN1 results in defects in apicoplast division and daughter segregation. PMID:20808817

  19. Optical activity and defect/dopant evolution in ZnO implanted with Er

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej

    2015-09-28

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Ermore » atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.« less

  20. Electrical conductivity of In2O3 and Ga2O3 after low temperature ion irradiation; implications for instrinsic defect formation and charge neutrality level.

    PubMed

    Vines, L; Bhoodoo, C; von Wenckstern, H; Grundmann, M

    2017-12-13

    The evolution of sheet resistance of n-type In 2 O 3 and Ga 2 O 3 exposed to bombardment with MeV 12 C and 28 Si ions at 35 K is studied in situ. While the sheet resistance of Ga 2 O 3 increased by more than eight orders of magnitude as a result of ion irradiation, In 2 O 3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga 2 O 3 remained highly resistive, while In 2 O 3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to [Formula: see text] cm -2 . A model where larger defect complexes preferentially produce donor like defects in In 2 O 3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.

  1. Electrical conductivity of In2O3 and Ga2O3 after low temperature ion irradiation; implications for instrinsic defect formation and charge neutrality level

    NASA Astrophysics Data System (ADS)

    Vines, L.; Bhoodoo, C.; von Wenckstern, H.; Grundmann, M.

    2018-01-01

    The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than eight orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 × 1012 cm-2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.

  2. Liability for Personal Injury Caused by Defective Medical Computer Programs

    PubMed Central

    Brannigan, Vincent M.

    1980-01-01

    Defective medical computer programs can cause personal injury. Financial responsibility for the injury under tort law will turn on several factors: whether the program is a product or a service, what types of defect exist in the product, and who produced the program. The factors involved in making these decisions are complex, but knowledge of the relevant issues can assist computer personnel in avoiding liability.

  3. First-principles theory of doping in layered oxide electrode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2017-12-01

    Doping lithium-ion battery electrode materials Li M O2 (M = Co, Ni, Mn) with impurities has been shown to be an effective way to optimize their electrochemical properties. Here, we report a detailed first-principles study of layered oxides LiCoO2, LiNiO2, and LiMnO2 lightly doped with transition-metal (Fe, Co, Ni, Mn) and non-transition-metal (Mg, Al) impurities using hybrid-density-functional defect calculations. We find that the lattice site preference is dependent on both the dopant's charge and spin states, which are coupled strongly to the local lattice environment and can be affected by the presence of codopant(s), and the relative abundance of the host compound's constituting elements in the synthesis environment. On the basis of the structure and energetics of the impurities and their complexes with intrinsic point defects, we determine all possible low-energy impurity-related defect complexes, thus providing defect models for further analyses of the materials. From a materials modeling perspective, these lightly doped compounds also serve as model systems for understanding the more complex, mixed-metal, Li M O2 -based battery cathode materials.

  4. Design and analysis of forward and reverse models for predicting defect accumulation, defect energetics, and irradiation conditions

    DOE PAGES

    Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent; ...

    2018-03-06

    The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less

  5. Impact of isovalent doping on radiation defects in silicon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sgourou, E. N.; Timerkaeva, D.; Chroneos, A.; Pochet, P.; Emtsev, V. V.

    2013-09-01

    Isovalent doping is an important process for the control of point defects in Si. Here, by means of infrared spectroscopy, we investigated the properties of the two main radiation-induced defects in Czochralski-Si (Cz-Si) the oxygen-vacancy (VO) and the carbon-oxygen (CiOi) centres. In particular, we investigated the effect of isovalent doping on the production, the thermal evolution, and the thermal stability of the VO and the CiOi defects. Additionally, we studied the reactions that participate upon annealing and the defects formed as a result of these reactions. Upon annealing VO is converted to VO2 defect although part of the CiOi is converted to CsO2i complexes. Thus, we studied the conversion ratios [VO2]/[VO] and [CsO2i]/[CiOi] with respect to the isovalent dopant. Additionally, the role of carbon in the above processes was discussed. A delay between the temperature characterizing the onset of the VO decay and the temperature characterizing the VO2 growth as well the further growth of VO2 after the complete disappearance of VO indicate that the VO to VO2 conversion is a complex phenomenon with many reaction processes involved. Differences exhibited between the effects of the various dopants on the properties of the two defects were highlighted. The results are discussed in view of density functional theory calculations involving the interaction of isovalent dopants with intrinsic defects, the oxygen and carbon impurities in Si.

  6. Design and analysis of forward and reverse models for predicting defect accumulation, defect energetics, and irradiation conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent

    The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less

  7. Thermal degradation of InP in open tube processing: deep-level photoluminescence

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Srivastava, A. K.; Arora, B. M.

    1990-09-01

    Thermal processing of InP at temperatures above 500 °C is indispensable in the growth and device fabrication of InGaAsP alloy semiconductors for optoelectronic and microwave applications. Incongruous loss of P at these temperatures creates native defects and their complexes. The presence of such defects modifies the electrical and optical properties of the material resulting in poor device performance. In addition, native defects play a significant role in dopant diffusion which is a topic of current interest. We have measured deep-level photoluminescence (PL) on undoped InP after heat treatments at 500 and 550 °C in an open-tube processing system in different protective environments of powder InP, and Sn-InP melt together with an InP cover. In this paper we shall present the PL results which have bearing on the question of defects. We find that (1) the Sn-InP melt provides better protection in preserving the overall luminescence in InP; (2) the deep-level PL related to defects has at least two components in the virgin samples, viz., MnIn, and band C, which is a native defect complex related to VP; (3) a new defect appears in samples heated in a P-deficient environment; and (4) the enhancement in the deep-level luminescence intensity after heat treatment can be attributed to the excess defect concentrations existing under nonequilibrium conditions of an open-tube processing environment.

  8. Thermodynamics and Kinetics of Three Mg-H-VN Complexes in Mg:GaN from Combined First-Principles Calculation and Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Donghwa; Mitchell, Brandon; Fujiwara, Y.; Dierolf, V.

    2014-05-01

    An understanding of the formation and dissociation process of Mg-H defects in GaN is of paramount importance for high efficient GaN-based solid-state lighting. Through a combination of first-principle calculations and experimental observations, we find the existence of three types of Mg related centers forming different Mg-H-VN complexes in Mg:GaN. Our study shows that the three different arrangements, which differ by the relative position of the H, determine the degree of acceptor passivation by changing their charge state from +3 to +1. The energetic study demonstrates that the relative stability of the defect complexes can vary with the location of the Fermi level, as well as thermal annealing and electron beam irradiation. The inclusion of a VN is shown to produce an additional variance in optical spectra associated with Mg acceptor activation, resulting from changes in the defect configurations and charge states. Our study shows that these three Mg-H-VN complexes are key components for understanding the Mg acceptor activation and passivation processes.

  9. Passivating the sulfur vacancy in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Lu, Haichang; Kummel, Andrew; Robertson, John

    2018-06-01

    Various methods to passivate the sulfur vacancy in 2D MoS2 are modeled using density functional theory (DFT) to understand the passivation mechanism at an atomic scale. First, the organic super acid, bis(trifluoromethane)sulfonimide (TFSI) is a strong protonating agent, and it is experimentally found to greatly increase the photoluminescence efficiency. DFT simulations find that the effectiveness of passivation depends critically on the charge state and number of hydrogens donated by TFSI since this determines the symmetry of the defect complex. A symmetrical complex is formed by three hydrogen atoms bonding to the defect in a -1 charge state, and this gives no bandgap states and a Fermi level in the midgap. However, a charge state of +1 gives a lower symmetry complex with one state in the gap. One or two hydrogens also give complexes with gap states. Second, passivation by O2 can provide partial passivation by forming a bridge bond across the S vacancy, but it leaves a defect state in the lower bandgap. On the other hand, substitutional additions do not shift the vacancy states out of the gap.

  10. A study of vacancy defects related to gray tracks in KTiOPO{sub 4} (KTP) using positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Li, Jing; Wang, Jiyang, E-mail: hdjiang@sdu.edu.cn

    For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO{sub 4} (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.

  11. Cell and defect behavior in lithium-counterdoped solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Mehta, S.; Swartz, C. K.

    1984-01-01

    Some n(+)/p cells in which lithium is introduced as a counterdopant, by ion-implantation, into the cell's boron-doped p-region were studied. To determine if the cells radiation resistance could be significantly improved by lithium counterdoping. Defect behavior was related to cell performance using deep level transient spectroscopy. Results indicate a significantly increased radiation resistance for the lithium counterdoped cells when compared to the boron doped 1 ohm-cm control cell. The increased radiation resistance of the lithium counterdoped cells is due to the complexing of lithium with divacancies and boron. It is speculated that complexing with oxygen and single vacancies also contributes to the increased radiation resistance. Counterdoping silicon with lithium results in a different set of defects.

  12. Generic equilibration dynamics of planar defects in trapped atomic superfluids

    DOE PAGES

    Scherpelz, Peter; Padavić, Karmela; Murray, Andy; ...

    2015-03-18

    Here, we investigate equilibration processes shortly after sudden perturbations are applied to ultracold trapped superfluids. We show the similarity of phase imprinting and localized density depletion perturbations, both of which initially are found to produce “phase walls”. These planar defects are associated with a sharp gradient in the phase. Importantly they relax following a quite general sequence. Our studies, based on simulations of the complex time-dependent Ginzburg-Landau equation, address the challenge posed by these experiments: how a superfluid eventually eliminatesa spatially extended planar defect. The processes involved are necessarily more complex than equilibration involving simpler line vortices. An essential mechanismmore » form relaxation involves repeated formation and loss of vortex rings near the trap edge.« less

  13. Designing functionality in perovskite thin films using ion implantation techniques: Assessment and insights from first-principles calculations

    DOE PAGES

    Sharma, Vinit K.; Herklotz, Andreas; Ward, Thomas Zac; ...

    2017-09-11

    Ion implantation has been widely used in the semiconductor industry for decades to selectively control electron/hole doping for device applications. Recently, experimental studies on ion implantation into more structurally and electronically complex materials have been undertaken in which defect generation has been used to control a variety of functional phenomena. Of particular interest, are recent findings demonstrating that low doses of low energy helium ions into single crystal films can be used to tailor the structural properties. These initial experimental studies have shown that crystal symmetry can be continuously controlled by applying increasingly large doses of He ions into amore » crystal. The observed changes in lattice structure were then observed to correlate with functional changes, such as metal-insulator transition temperature2 and optical bandgap3. In these preliminary experimental studies, changes to lattice expansion was proposed to be the direct result of chemical pressure originating predominantly from the implanted He applying chemical pressure at interstitial sites. However, the influence of possible secondary knock-on damage arising from the He atoms transferring energy to the lattice through nuclear-nuclear collision with the crystal lattice remains largely unaddressed. In this work, we focus on a SrRuO3 model system to provide a comprehensive examination of the impact of common defects on structural and electronic properties, obtain calculated defect formation energies, and define defect migration barriers. Our model indicates that, while interstitial He can modify the crystal properties, a dose significantly larger than those reported in experimental studies would be required. The true origin of the observed structural changes is likely the result of a combination of secondary defects created during He implantation. Of particular importance, we observe that different defect types can generate greatly varied local electronic structures and that the formation energies and migration energy barriers vary by defect type. Thus, we may have identified a new method of selectively inducing controlled defect complexes into single crystal materials. Development of this approach would have a broad impact on both our ability to probe specific defect contributions in fundamental studies and allow a new level of control over functional properties driven by specific defect complexes.« less

  14. Origin of reverse annealing in radiation-damaged silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    The paper employs relative defect concentrations, energy levels, capture cross sections, and minority carrier diffusion lengths in order to identify the defect responsible for the reverse annealing observed in a radiation damaged n(+)/p silicon solar cell. It is reported that the responsible defect, with the energy level at +0.30 eV, has been tentatively identified as boron-oxygen-vacancy complex. In conclusion, it is shown that removal of this defect could result in significant cell recovery when annealing at temperatures well below the currently required 400 C.

  15. Tight-binding calculation studies of vacancy and adatom defects in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing

    2016-02-19

    Computational studies of complex defects in graphene usually need to deal with a larger number of atoms than the current first-principles methods can handle. We show a recently developed three-center tight-binding potential for carbon is very efficient for large scale atomistic simulations and can accurately describe the structures and energies of various defects in graphene. Using the three-center tight-binding potential, we have systematically studied the stable structures and formation energies of vacancy and embedded-atom defects of various sizes up to 4 vacancies and 4 embedded atoms in graphene. In conclusion, our calculations reveal low-energy defect structures and provide a moremore » comprehensive understanding of the structures and stability of defects in graphene.« less

  16. Safety assessment for In-service Pressure Bending Pipe Containing Incomplete Penetration Defects

    NASA Astrophysics Data System (ADS)

    Wang, M.; Tang, P.; Xia, J. F.; Ling, Z. W.; Cai, G. Y.

    2017-12-01

    Incomplete penetration defect is a common defect in the welded joint of pressure pipes. While the safety classification of pressure pipe containing incomplete penetration defects, according to periodical inspection regulations in present, is more conservative. For reducing the repair of incomplete penetration defect, a scientific and applicable safety assessment method for pressure pipe is needed. In this paper, the stress analysis model of the pipe system was established for the in-service pressure bending pipe containing incomplete penetration defects. The local finite element model was set up to analyze the stress distribution of defect location and the stress linearization. And then, the applicability of two assessment methods, simplified assessment and U factor assessment method, to the assessment of incomplete penetration defects located at pressure bending pipe were analyzed. The results can provide some technical supports for the safety assessment of complex pipelines in the future.

  17. Quantum interference between two phonon paths and reduced heat transport in diamond lattice with atomic-scale planar defects

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Strelnikov, I. A.

    2018-02-01

    Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.

  18. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  19. Retrospective analysis of co-occurrence of congenital aortic stenosis and pulmonary artery stenosis in dogs.

    PubMed

    Kander, M; Pasławska, U; Staszczyk, M; Cepiel, A; Pasławski, R; Mazur, G; Noszczyk-Nowak, A

    2015-01-01

    The study has focused on the retrospective analysis of cases of coexisting congenital aortic stenosis (AS) and pulmonary artery stenosis (PS) in dogs. The research included 5463 dogs which were referred for cardiological examination (including clinical examination, ECG and echocardiography) between 2004 and 2014. Aortic stenosis and PS stenosis were detected in 31 dogs. This complex defect was the most commonly diagnosed in Boxers - 7 dogs, other breeds were represented by: 4 cross-breed dogs, 2 Bichon Maltais, 3 Miniature Pinschers, 2 Bernese Mountain Dogs, 2 French Bulldogs, and individuals of following breeds: Bichon Frise, Bull Terrier, Czech Wolfdog, German Shepherd, Hairless Chinese Crested Dog, Miniature Schnauzer, Pug, Rottweiler, Samoyed, West Highland White Terrier and Yorkshire Terrier. In all the dogs, the murmurs could be heard, graded from 2 to 5 (on a scale of 1-6). Besides, in 9 cases other congenital defects were diagnosed: patent ductus arteriosus, mitral valve dysplasia, pulmonary or aortic valve regurgitation, tricuspid valve dysplasia, ventricular or atrial septal defect. The majority of the dogs suffered from pulmonary valvular stenosis (1 dog had supravalvular pulmonary artery stenosis) and subvalvular aortic stenosis (2 dogs had valvular aortic stenosis). Conclusions and clinical relevance - co-occurrence of AS and PS is the most common complex congenital heart defect. Boxer breed was predisposed to this complex defect. It was found that coexisting AS and PS is more common in male dogs and the degree of PS and AS was mostly similar.

  20. Interaction of the Saccharomyces cerevisiae RING-domain protein Nse1 with Nse3 and the Smc5/6 complex is required for chromosome replication and stability.

    PubMed

    Wani, Saima; Maharshi, Neelam; Kothiwal, Deepash; Mahendrawada, Lakshmi; Kalaivani, Raju; Laloraya, Shikha

    2018-06-01

    Genomic stability is maintained by the concerted actions of numerous protein complexes that participate in chromosomal duplication, repair, and segregation. The Smc5/6 complex is an essential multi-subunit complex crucial for repair of DNA double-strand breaks. Two of its subunits, Nse1 and Nse3, are homologous to the RING-MAGE complexes recently described in human cells. We investigated the contribution of the budding yeast Nse1 RING-domain by isolating a mutant nse1-103 bearing substitutions in conserved Zinc-coordinating residues of the RING-domain that is hypersensitive to genotoxic stress and temperature. The nse1-103 mutant protein was defective in interaction with Nse3 and other Smc5/6 complex subunits, Nse4 and Smc5. Chromosome loss was enhanced, accompanied by a delay in the completion of replication and a modest defect in sister chromatid cohesion, in nse1-103. The nse1-103 mutant was synthetic sick with rrm3∆ (defective in fork passage through pause sites), this defect was rescued by inactivation of Tof1, a subunit of the fork protection complex that enforces pausing. The temperature sensitivity of nse1-103 was partially suppressed by deletion of MPH1, encoding a DNA-helicase. Homology modeling of the structure of the budding yeast Nse1-Nse3 heterodimer based on the human Nse1-MAGEG1 structure suggests a similar organization and indicates that perturbation of the Zn-coordinating cluster has the potential to allosterically alter structural elements at the Nse1/Nse3 interaction interface that may abrogate their association. Our findings demonstrate that the budding yeast Nse1 RING-domain organization is important for interaction with Nse3, which is crucial for completion of chromosomal replication, cohesion, and maintenance of chromosome stability.

  1. Supravalvar mitral ring with a parachute mitral valve and subcoarctation of the aorta in a child with hemodynamically significant VSD. A study of the morphology, echocardiographic diagnostics and surgical therapy.

    PubMed

    Mądry, Wojciech; Karolczak, Maciej A; Grabowski, Krzysztof

    2017-09-01

    The authors present a case of echocardiographic diagnosis of supravalvar mitral ring (a fibromembranous structure that arose from the atrial surface of the mitral leaflets) in a child with a parachute mitral valve, a ventricular septal defect, and mild narrowing of the aortic isthmus. The supravalvar mitral stenosis is a typical but very infrequently detected element of the complex of anatomical abnormalities located within the left heart and the proximal aorta, called the Shone's complex (syndrome). Diagnosing an additional, hemodynamically significant anatomic defect during echocardiography was possible thanks to the detection of marked mobility limitation of the ring-adjacent part of the mitral valve mural leaflet as well as of an atypical image of turbulence occurring during the inflow from the left atrium to the left ventricle. The early diagnosis made it possible to perform complete correction of this complex congenital defect within a single operation.

  2. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion.

    PubMed

    Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D

    2008-07-01

    Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.

  3. Drosophila variable nurse cells encodes Arrest defective 1 (ARD1), the catalytic subunit of the major N-terminal acetyltransferase complex

    PubMed Central

    Wang, Ying; Mijares, Michelle; Gall, Megan D.; Turan, Tolga; Javier, Anna; Bornemann, Douglas J; Manage, Kevin; Warrior, Rahul

    2010-01-01

    Mutations in the Drosophila variable nurse cells (vnc) gene result in female sterility and oogenesis defects, including egg chambers with too many or too few nurse cells. We show that vnc corresponds to Arrest Defective1 (Ard1) and encodes the catalytic subunit of NatA, the major N-terminal acetyl-transferase complex. While N-terminal acetylation is one of the most prevalent covalent protein modifications in eukaryotes, analysis of its role in development has been challenging since mutants that compromise NatA activity have not been described in any multicellular animal. Our data show that reduced ARD1 levels result in pleiotropic oogenesis defects including abnormal cyst encapsulation, desynchronized cystocyte division, disrupted nurse cell chromosome dispersion and abnormal chorion patterning, consistent with the wide range of predicted NatA substrates. Further we find that loss of Ard1 affects cell survival/proliferation and is lethal for the animal, providing the first demonstration that this modification is essential in higher eukaryotes. PMID:20882681

  4. Acousto-defect interaction in irradiated and non-irradiated silicon n+-p structures

    NASA Astrophysics Data System (ADS)

    Olikh, O. Ya.; Gorb, A. M.; Chupryna, R. G.; Pristay-Fenenkov, O. V.

    2018-04-01

    The influence of ultrasound on current-voltage characteristics of non-irradiated silicon n+-p structures as well as silicon structures exposed to reactor neutrons or 60Co gamma radiation has been investigated experimentally. It has been found that the ultrasound loading of the n+-p structure leads to the reversible change of shunt resistance, carrier lifetime, and ideality factor. Specifically, considerable acoustically induced alteration of the ideality factor and the space charge region lifetime was observed in the irradiated samples. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations. It has been shown that divacancies and vacancy-interstitial oxygen pairs are effectively modified by ultrasound in contrast to interstitial carbon-interstitial oxygen complexes.

  5. Effect of the order of He{sup +} and H{sup +} ion co-implantation on damage generation and thermal evolution of complexes, platelets, and blisters in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daghbouj, N.; Faculté des Sciences de Monastir, Université de Monastir, Monastir; Cherkashin, N., E-mail: nikolay.cherkashin@cemes.fr

    2016-04-07

    Hydrogen and helium co-implantation is nowadays used to efficiently transfer thin Si layers and fabricate silicon on insulator wafers for the microelectronic industry. The synergy between the two implants which is reflected through the dramatic reduction of the total fluence needed to fracture silicon has been reported to be strongly influenced by the implantation order. Contradictory conclusions on the mechanisms involved in the formation and thermal evolution of defects and complexes have been drawn. In this work, we have experimentally studied in detail the characteristics of Si samples co-implanted with He and H, comparing the defects which are formed followingmore » each implantation and after annealing. We show that the second implant always ballistically destroys the stable defects and complexes formed after the first implant and that the redistribution of these point defects among new complexes drives the final difference observed in the samples after annealing. When H is implanted first, He precipitates in the form of nano-bubbles and agglomerates within H-related platelets and nano-cracks. When He is implanted first, the whole He fluence is ultimately used to pressurize H-related platelets which quickly evolve into micro-cracks and surface blisters. We provide detailed scenarios describing the atomic mechanisms involved during and after co-implantation and annealing which well-explain our results and the reasons for the apparent contradictions reported at the state of the art.« less

  6. Injectable Reactive Biocomposites For Bone Healing In Critical-Size Rabbit Calvarial Defects

    DTIC Science & Technology

    2012-03-29

    defects (i.e. be conformable), provide temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of...temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of biologics. In this study, we evaluated the...complex defects (i.e. be conformable), harden to provide temporary protection until tissue remodels (i.e. be settable), and enhance tissue regeneration

  7. First-Principles Study of Defects in GaN

    DTIC Science & Technology

    2009-07-29

    This means both Mg and Be are not suitable p-type dopants in AlN. c) We have calculated the Ga Frenkel pairs (interstitial Ga and gallium vacancy... gallium vacancy complexes) in GaN. We studied both the stability of the pair at different separations and the barriers for the pair to form/disintegrate...high in energy than vacancy defects, especially for covalent materials. However, in ionic materials the charged interstitial defects can have low

  8. Cor triatriatum dexter associated with atrial septal defect: Management in a complex clinical case.

    PubMed

    Sozzi, Fabiola B; Montanaro, Claudia; Bacà, Laura; Viani, Giacomo M; Zilocchi, Massimo; Canetta, Ciro; Meazza, Roberto; Pavone, Laura; Lombardi, Federico

    2017-11-01

    The coexistence of an atrial septal defect and a prominent eustachian valve is a rare congenital anomaly, rarely reported in literature. Differentiation between a giant eustachian valve and cor triatriatum dexter can be difficult. A case of a large atrial septal defect associated with cor triatriatum dexter diagnosed by echocardiography in an asymptomatic woman is reported. A watchful waiting strategy was adopted. © 2017, Wiley Periodicals, Inc.

  9. Structure Formation in Solutions of Rigid Polymers Undergoing a Phase Transition

    DTIC Science & Technology

    1987-04-01

    cyclohexene dioxide (ERL-4206) - 10 g. nonenyl succinic anhydride (NSA) - 26 g. dimethyl amino ethanol ( DMAE ) - 0.4 g. After infiltration, short segments...existence of a significant number of defects within the individual microfibril. The presence of defects in the lateral packing of PBT chains is also suggested...of the D- and L- enantiomers yields a nematic phase. The ordered phases exhi- bit complex textures due to defects (disclinations) which depend on

  10. Prospective study on cranioplasty with individual carbon fiber reinforced polymer (CFRP) implants produced by means of stereolithography.

    PubMed

    Wurm, Gabriele; Tomancok, Berndt; Holl, Kurt; Trenkler, Johannes

    2004-12-01

    The aim of this study was to evaluate the value of carbon fiber reinforced polymer (CFRP) cranial implants produced by means of 3-dimensional (3D) stereolithography (SL) and template modeling for reconstructions of complex or extensive cranial defects. A series of 41 cranioplasties with individual CFRP implants was performed in 37 patients between April 1996 and November 2002. Only patients with complex and/or large cranial defects were included, most of them having extended scarring or dural calcification and poor quality of the overlying soft-tissue cover after infection or multiple preceding operations. Involvement of frontal sinus, a known risk factor for complications after cranioplasty, was the case in 21 patients (51.2%). A computer-based 3D model of the skull with the bony defect was generated by means of stereolithography after acquisition, evaluation and transfer of the patient's helical computed tomography (CT) data. A wax template of the defect that was used to design the individual prosthesis-shape was invested in dental stone. Then, the cranial implant was fabricated out of CFRP by loosen mold. Reconstruction of defects measuring up to 17 x 9 cm was performed. The intra-operative fit of the implants was excellent in 36 (87.8%), good in 1 (2.4%), and fair in 4 (9.8%) of the cases. Problems of implant fit occurred because of extended scarring and poor quality of soft-tissue cover. Adverse reactions were observed in 5 patients (1 subdural, 1 subcutaneous hematoma, 2 infections, 1 allergic reaction). Excellent contours and a solid stable reconstruction have been maintained in 30 out of 35 remaining plates (mean follow-up 3.6 years). No adverse effects concerning postoperative imaging, the accuracy of electroencephalograms and radiation therapy have been observed. The authors believe that this relatively new technique represents an advance in the management of complex and large cranial defects, but seems less suitable for simple defects because of cost-intensive techniques. Because of the high mechanical strength, biocompatibility, innovative design, and especially radiolucency, CFRP implants should, however, be considered in smaller defects if further imaging investigations or irradiation therapies are necessary.

  11. U.S. Geological Survey offshore program of resource and geo-environmental studies and topical investigations, Pacific-Arctic region

    USGS Publications Warehouse

    Scholl, David William

    1978-01-01

    The Geological Survey 's marine geology investigations in the Pacific-Arctic area are presented in this report in the context of the underlying socio-economic problem of expanding the domestic production of oil and gas and other mineral and hard- and soft-rock resources while maintaining acceptable standards in the marine environment. The primary mission of the Survey 's Pacific-Arctic Branch of Marine Geology is to provide scientifically interpreted information about the (1) resource potential, (2) geo-environmental setting, and (3) overall geologic characteristics of the continental margins (that is, the continental shelf, slope and rise) and adjacent deeper water and shallower coastal areas off California, Oregon, Washington, Alaska and Hawaii and also, where it is of interest to the U.S. Government, more remote deep-sea areas of the Pacific-Arctic realm. (Sinha-OEIS)

  12. Gambling related cognitions mediate the association between thinking style and problem gambling severity.

    PubMed

    Emond, Melissa S; Marmurek, Harvey H C

    2010-06-01

    This study examined the associations among thinking style (rational versus experiential), gambling related cognitions, and problem gambling severity. The participants were 70 female and 41 male regular gamblers who completed the Gambling Related Cognitions Scale (Raylu and Oei, Addiction 99:757-769, 2004), the Rational-Experiential Inventory (Pacini and Epstien, J Pers Soc Psychol 76(6):972-987, 1999), and the Problem Gambling Severity Index (Ferris and Wynne, The Canadian problem and gambling index: final report. Canadian Centre on Substance Abuse, Ottawa, 2001). Rational thinking was negatively related to problem gambling severity. Gambling related biases increased with problem gambling severity but the strength of those biases was dampened by rational thought. The patterns by which gambling related cognition mediated the association between thinking style and gambling severity suggest that therapeutic interventions may benefit from a consideration of a gambler's thinking style.

  13. Complex photonic lattices embedded with tailored intrinsic defects by a dynamically reconfigurable single step interferometric approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, Jolly, E-mail: jolly.xavierp@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in

    2014-02-24

    We report sculptured diverse photonic lattices simultaneously embedded with intrinsic defects of tunable type, number, shape as well as position by a single-step dynamically reconfigurable fabrication approach based on a programmable phase spatial light modulator-assisted interference lithography. The presented results on controlled formation of intrinsic defects in periodic as well as transversely quasicrystallographic lattices, irrespective and independent of their designed lattice geometry, portray the flexibility and versatility of the approach. The defect-formation in photonic lattices is also experimentally analyzed. Further, we also demonstrate the feasibility of fabrication of such defects-embedded photonic lattices in a photoresist, aiming concrete integrated photonic applications.

  14. The reverse sural artery fasciomusculocutaneous flap for small lower-limb defects: the use of the gastrocnemius muscle cuff as a plug for small bony defects following debridement of infected/necrotic bone.

    PubMed

    Al-Qattan, M M

    2007-09-01

    The reverse sural artery fasciomusculocutaneous flap is a modification of the original fasciocutaneous flap in which a midline gastrocnemius muscle cuff around the buried sural pedicle is included in the flap. This modification was done to improve the blood supply of the distal part of the flap, which is harvested from the upper leg. The aim of this paper is to demonstrate that there is another important advantage of the modified flap: the use of the muscle cuff as a "plug" for small lower limb defects following debridement of infected/necrotic bone. A total of 10 male adult patients with small complex lower-limb defects with underlying bone pathology were treated with the modified flap using the muscle component to fill up the small bony defects. The bony pathology included necrotic exposed bone without evidence of osteomyelitis or wound infection (n = 1), an underlying neglected tibial fracture with wound infection (n = 4), and a sinus at the heel with underlying calcaneal osteomyelitis (n = 5). Primary wound healing of the flap into the defect was noted in all patients. No recurrence of calcaneal osteomyelitis was seen and all tibial fractures united following appropriate orthopedic fixation. It was concluded that the reverse sural artery fasciomusculocutaneous flap is well suited for small complex lower-limb defects with underlying bone pathology.

  15. Defect control of conventional and anomalous electron transport at complex oxide interfaces

    DOE PAGES

    Gunkel, F.; Bell, Chris; Inoue, Hisashi; ...

    2016-08-30

    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO 3/SrTiO 3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K. Considering these two sources of nonlinearity, we suggest a phenomenological modelmore » capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. In conclusion, the most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.« less

  16. Conditional Creation and Rescue of Nipbl-Deficiency in Mice Reveals Multiple Determinants of Risk for Congenital Heart Defects

    PubMed Central

    Jacobs, Russell E.; Lopez-Burks, Martha E.; Choi, Hojae; Wikenheiser, Jamie; Hallgrimsson, Benedikt; Jamniczky, Heather A.; Fraser, Scott E.; Lander, Arthur D.; Calof, Anne L.

    2016-01-01

    Elucidating the causes of congenital heart defects is made difficult by the complex morphogenesis of the mammalian heart, which takes place early in development, involves contributions from multiple germ layers, and is controlled by many genes. Here, we use a conditional/invertible genetic strategy to identify the cell lineage(s) responsible for the development of heart defects in a Nipbl-deficient mouse model of Cornelia de Lange Syndrome, in which global yet subtle transcriptional dysregulation leads to development of atrial septal defects (ASDs) at high frequency. Using an approach that allows for recombinase-mediated creation or rescue of Nipbl deficiency in different lineages, we uncover complex interactions between the cardiac mesoderm, endoderm, and the rest of the embryo, whereby the risk conferred by genetic abnormality in any one lineage is modified, in a surprisingly non-additive way, by the status of others. We argue that these results are best understood in the context of a model in which the risk of heart defects is associated with the adequacy of early progenitor cell populations relative to the sizes of the structures they must eventually form. PMID:27606604

  17. Numerical simulation and optimization of casting process for complex pump

    NASA Astrophysics Data System (ADS)

    Liu, Xueqin; Dong, Anping; Wang, Donghong; Lu, Yanling; Zhu, Guoliang

    2017-09-01

    The complex shape of the casting pump body has large complicated structure and uniform wall thickness, which easy give rise to casting defects. The numerical simulation software ProCAST is used to simulate the initial top gating process, after analysis of the material and structure characteristics of the high-pressure pump. The filling process was overall smooth, not there the water shortage phenomenon. But the circular shrinkage defects appear at the bottom of casting during solidification process. Then, the casting parameters were optimized and adding cold iron in the bottom. The shrinkage weight was reduced from 0.00167g to 0.0005g. The porosity volume was reduced from 1.39cm3 to 0.41cm3. The optimization scheme is simulated and actual experimented. The defect has been significantly improved.

  18. Effect of electron injection on defect reactions in irradiated silicon containing boron, carbon, and oxygen

    NASA Astrophysics Data System (ADS)

    Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.

    2018-04-01

    Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.

  19. Hypoxia and the Edema Syndrome: Elucidation of a Mechanism of Teratogenesis

    EPA Science Inventory

    The elucidation of mechanisms and pathogenesis of birth defects is exceedingly complex. Consequently, there are few examples where the etiology of birth defects caused by a specific agent has been well described. One such example is the "Edema Syndrome" first described by Casimer...

  20. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects.

    PubMed

    Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef

    2017-01-01

    To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.

  1. Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes.

    PubMed

    Torraco, Alessandra; Ardissone, Anna; Invernizzi, Federica; Rizza, Teresa; Fiermonte, Giuseppe; Niceta, Marcello; Zanetti, Nadia; Martinelli, Diego; Vozza, Angelo; Verrigni, Daniela; Di Nottia, Michela; Lamantea, Eleonora; Diodato, Daria; Tartaglia, Marco; Dionisi-Vici, Carlo; Moroni, Isabella; Farina, Laura; Bertini, Enrico; Ghezzi, Daniele; Carrozzo, Rosalba

    2017-01-01

    Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.

  2. Regulation of flower development in Arabidopsis by SCF complexes.

    PubMed

    Ni, Weimin; Xie, Daoxin; Hobbie, Lawrence; Feng, Baomin; Zhao, Dazhong; Akkara, Joseph; Ma, Hong

    2004-04-01

    SCF complexes are the largest and best studied family of E3 ubiquitin protein ligases that facilitate the ubiquitylation of proteins targeted for degradation. The SCF core components Skp1, Cul1, and Rbx1 serve in multiple SCF complexes involving different substrate-specific F-box proteins that are involved in diverse processes including cell cycle and development. In Arabidopsis, mutations in the F-box gene UNUSUAL FLORAL ORGANS (UFO) result in a number of defects in flower development. However, functions of the core components Cul1 and Rbx1 in flower development are poorly understood. In this study we analyzed floral phenotypes caused by altering function of Cul1 or Rbx1, as well as the effects of mutations in ASK1 and ASK2. Plants homozygous for a point mutation in the AtCUL1 gene showed reduced floral organ number and several defects in each of the four whorls. Similarly, plants with reduced AtRbx1 expression due to RNA interference also exhibited floral morphological defects. In addition, compared to the ask1 mutant, plants homozygous for ask1 and heterozygous for ask2 displayed enhanced reduction of B function, as well as other novel defects of flower development, including carpelloid sepals and an inhibition of petal development. Genetic analyses demonstrate that AGAMOUS (AG) is required for the novel phenotypes observed in the first and second whorls. Furthermore, the genetic interaction between UFO and AtCUL1 supports the idea that UFO regulates multiple aspects of flower development as a part of SCF complexes. These results suggest that SCF complexes regulate several aspects of floral development in Arabidopsis.

  3. Infrared studies of the evolution of the C{sub i}O{sub i}(Si{sub I}) defect in irradiated Si upon isothermal anneals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeletos, T.; Londos, C. A., E-mail: hlontos@phys.uoa.gr; Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk

    2016-03-28

    Carbon-oxygen-self-interstitial complexes were investigated in silicon by means of Fourier transform infrared spectroscopy. Upon irradiation, the C{sub i}O{sub i} defect (C{sub 3}) forms which for high doses attract self-interstitials (Si{sub I}s) leading to the formation of the C{sub i}O{sub i}(Si{sub I}) defect (C{sub 4}) with two well-known related bands at 939.6 and 1024 cm{sup −1}. The bands are detectable in the spectra both in room temperature (RT) and liquid helium (LH) temperature. Upon annealing at 150 °C, these bands were transformed to three bands at 725, 952, and 973 cm{sup −1}, detectable only at LH temperatures. Upon annealing at 220 °C, these bands weremore » transformed to three bands at 951, 969.5, and 977 cm{sup −1}, detectable both at RT and LH temperatures. Annealing at 280 °C resulted in the transformation of these bands to two new bands at 973 and 1024 cm{sup −1}. The latter bands disappear from the spectra upon annealing at 315 °C without the emergence of other bands in the spectra. Considering reaction kinetics and defect metastability, we developed a model to describe the experimental results. Annealing at 150 °C triggers the capturing of Si{sub I}s by the C{sub 4} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 2} complex. The latter structure appears to be bistable: measuring at LH, the defect is in configuration C{sub i}O{sub i}(Si{sub I}){sub 2} giving rise to the bands at 725, 952, and 973 cm{sup −1}, whereas on measurements at RT, the defect converts to another configuration C{sub i}O{sub i}(Si{sub I}){sub 2}{sup *} without detectable bands in the spectra. Possible structures of the two C{sub i}O{sub i}(Si{sub I}){sub 2} configurations are considered and discussed. Upon annealing at 220 °C, additional Si{sub I}s are captured by the C{sub i}O{sub i}(Si{sub I}){sub 2} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 3} complex, which in turn on annealing at 280 °C converts to the C{sub i}O{sub i}(Si{sub I}){sub 4} complex. The latter defect anneals out at 315 °C, without being accompanied in the spectra by the growth of new bands.« less

  4. Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers

    NASA Astrophysics Data System (ADS)

    Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari

    2018-01-01

    Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.

  5. First principles study of intrinsic defects in hexagonal tungsten carbide

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying

    2010-11-01

    The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.

  6. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-02-18

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain,more » the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.« less

  7. Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.

    2013-12-01

    Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.

  8. Fumonisins, Tortillas and Neural Tube Defects: Untangling a Complex Issue

    USDA-ARS?s Scientific Manuscript database

    Fumonisin mycotoxins are found in corn and corn-based foods. Fumonisin B1 (FB1), the most common, disrupts sphingolipid metabolism thereby causing species-specific diseases in animals that include cancer in rodents and (birth) neural tube defects (NTD) in LM/Bc mice. Fumonisins’ affect on human heal...

  9. Nuclear Pasta: Topology and Defects

    NASA Astrophysics Data System (ADS)

    da Silva Schneider, Andre; Horowitz, Charles; Berry, Don; Caplan, Matt; Briggs, Christian

    2015-04-01

    A layer of complex non-uniform phases of matter known as nuclear pasta is expected to exist at the base of the crust of neutron stars. Using large scale molecular dynamics we study the topology of some pasta shapes, the formation of defects and how these may affect properties of neutron star crusts.

  10. Defect evolution in a Nisbnd Mosbnd Crsbnd Fe alloy subjected to high-dose Kr ion irradiation at elevated temperature

    NASA Astrophysics Data System (ADS)

    de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti

    2016-06-01

    A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.

  11. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex

    PubMed Central

    Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M.; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C.; Fischer, Alain; Durandy, Anne

    2015-01-01

    Background Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. Objective This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Methods Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. Results We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. Conclusion INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. PMID:25312759

  12. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    NASA Astrophysics Data System (ADS)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts printability of defects at wafer level and automates the process of defect dispositioning from images captured using high resolution inspection machine. It first eliminates false defects due to registration, focus errors, image capture errors and random noise caused during inspection. For the remaining real defects, actual mask-like contours are generated using the Calibre® ILT solution [1][2], which is enhanced to predict the actual mask contours from high resolution defect images. It enables accurate prediction of defect contours, which is not possible from images captured using inspection machine because some information is already lost due to optical effects. Calibre's simulation engine is used to generate images at wafer level using scanner optical conditions and mask-like contours as input. The tool then analyses simulated images and predicts defect printability. It automatically calculates maximum CD variation and decides which defects are severe to affect patterns on wafer. In this paper, we assess the printability of defects for the mask of advanced technology nodes. In particular, we will compare the recovered mask contours with contours extracted from SEM image of the mask and compare simulation results with AIMSTM for a variety of defects and patterns. The results of printability assessment and the accuracy of comparison are presented in this paper. We also suggest how this method can be extended to predict printability of defects identified on EUV photomasks.

  13. International adoption of children with birth defects: current knowledge and areas for further research.

    PubMed

    Cochran, Meagan E; Nelson, Katherine R; Robin, Nathaniel H

    2014-12-01

    To summarize the existing literature on the international adoption of children with birth defects and identify areas for further research. International adoption brings thousands of children to the United States each year, and children with birth defects are overrepresented in this population. Studies have demonstrated disparities in the health of children adopted from different countries as well as the complexity of medical care needed after adoption. Although the health of children involved in international adoption has been well studied, there is a lack of information about the experiences of the adoptive parents of children with birth defects. We discuss a pilot study conducted on adoptive parents of children with a specific birth defect, orofacial clefting, and discuss areas for future research.

  14. Atg6/UVRAG/Vps34-Containing Lipid Kinase Complex Is Required for Receptor Downregulation through Endolysosomal Degradation and Epithelial Polarity during Drosophila Wing Development

    PubMed Central

    Szatmári, Zsuzsanna; Sass, Miklós

    2014-01-01

    Atg6 (Beclin 1 in mammals) is a core component of the Vps34 PI3K (III) complex, which promotes multiple vesicle trafficking pathways. Atg6 and Vps34 form two distinct PI3K (III) complexes in yeast and mammalian cells, either with Atg14 or with UVRAG. The functions of these two complexes are not entirely clear, as both Atg14 and UVRAG have been suggested to regulate both endocytosis and autophagy. In this study, we performed a microscopic analysis of UVRAG, Atg14, or Atg6 loss-of-function cells in the developing Drosophila wing. Both autophagy and endocytosis are seriously impaired and defective endolysosomes accumulate upon loss of Atg6. We show that Atg6 is required for the downregulation of Notch and Wingless signaling pathways; thus it is essential for normal wing development. Moreover, the loss of Atg6 impairs cell polarity. Atg14 depletion results in autophagy defects with no effect on endocytosis or cell polarity, while the silencing of UVRAG phenocopies all but the autophagy defect of Atg6 depleted cells. Thus, our results indicate that the UVRAG-containing PI3K (III) complex is required for receptor downregulation through endolysosomal degradation and for the establishment of proper cell polarity in the developing wing, while the Atg14-containing complex is involved in autophagosome formation. PMID:25006588

  15. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development

    PubMed Central

    Bach, Liên; Michaelson, Louise V.; Haslam, Richard; Bellec, Yannick; Gissot, Lionel; Marion, Jessica; Da Costa, Marco; Boutin, Jean-Pierre; Miquel, Martine; Tellier, Frédérique; Domergue, Frederic; Markham, Jonathan E.; Beaudoin, Frederic; Napier, Johnathan A.; Faure, Jean-Denis

    2008-01-01

    Very-long-chain fatty acids (VLCFAs) are synthesized as acyl-CoAs by the endoplasmic reticulum-localized elongase multiprotein complex. Two Arabidopsis genes are putative homologues of the recently identified yeast 3-hydroxy-acyl-CoA dehydratase (PHS1), the third enzyme of the elongase complex. We showed that Arabidopsis PASTICCINO2 (PAS2) was able to restore phs1 cytokinesis defects and sphingolipid long chain base overaccumulation. Conversely, the expression of PHS1 was able to complement the developmental defects and the accumulation of long chain bases of the pas2–1 mutant. The pas2–1 mutant was characterized by a general reduction of VLCFA pools in seed storage triacylglycerols, cuticular waxes, and complex sphingolipids. Most strikingly, the defective elongation cycle resulted in the accumulation of 3-hydroxy-acyl-CoA intermediates, indicating premature termination of fatty acid elongation and confirming the role of PAS2 in this process. We demonstrated by in vivo bimolecular fluorescence complementation that PAS2 was specifically associated in the endoplasmic reticulum with the enoyl-CoA reductase CER10, the fourth enzyme of the elongase complex. Finally, complete loss of PAS2 function is embryo lethal, and the ectopic expression of PHS1 led to enhanced levels of VLCFAs associated with severe developmental defects. Altogether these results demonstrate that the plant 3-hydroxy-acyl-CoA dehydratase PASTICCINO2 is an essential and limiting enzyme in VLCFA synthesis but also that PAS2-derived VLCFA homeostasis is required for specific developmental processes. PMID:18799749

  16. A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect

    PubMed Central

    Paul, Kallyanashis; Padalhin, Andrew R.; Linh, Nguyen Thuy Ba; Kim, Boram; Sarkar, Swapan Kumar; Lee, Byong Taek

    2016-01-01

    A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP) dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76) higher compared with hollow BCP scaffold (32±0.225). PMID:27711142

  17. Evidence for a Role of VIPP1 in the Structural Organization of the Photosynthetic Apparatus in Chlamydomonas[W][OA

    PubMed Central

    Nordhues, André; Schöttler, Mark Aurel; Unger, Ann-Katrin; Geimer, Stefan; Schönfelder, Stephanie; Schmollinger, Stefan; Rütgers, Mark; Finazzi, Giovanni; Soppa, Barbara; Sommer, Frederik; Mühlhaus, Timo; Roach, Thomas; Krieger-Liszkay, Anja; Lokstein, Heiko; Crespo, José Luis; Schroda, Michael

    2012-01-01

    The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b6f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the QA/QA− redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids. PMID:22307852

  18. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  19. Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis

    PubMed Central

    Barnett, Chris; Yazgan, Oya; Kuo, Hui-Ching; Malakar, Sreepurna; Thomas, Trevor; Fitzgerald, Amanda; Harbour, Billy; Henry, Jonathan J.; Krebs, Jocelyn E.

    2012-01-01

    Williams Syndrome Transcription Factor (WSTF) is one of ~25 haplodeficient genes in patients with the complex developmental disorder Williams Syndrome (WS). WS results in visual/spatial processing defects, cognitive impairment, unique behavioral phenotypes, characteristic “elfin” facial features, low muscle tone and heart defects. WSTF exists in several chromatin remodeling complexes and has roles in transcription, replication, and repair. Chromatin remodeling is essential during embryogenesis, but WSTF’s role in vertebrate development is poorly characterized. To investigate the developmental role of WSTF, we knocked down WSTF in Xenopus laevis embryos using a morpholino that targets WSTF mRNA. BMP4 shows markedly increased and spatially aberrant expression in WSTF-deficient embryos, while SHH, MRF4, PAX2, EPHA4 and SOX2 expression are severely reduced, coupled with defects in a number of developing embryonic structures and organs. WSTF-deficient embryos display defects in anterior neural development. Induction of the neural crest, measured by expression of the neural crest-specific genes SNAIL and SLUG, is unaffected by WSTF depletion. However, at subsequent stages WSTF knockdown results in a severe defect in neural crest migration and/or maintenance. Consistent with a maintenance defect, WSTF knockdowns display a specific pattern of increased apoptosis at the tailbud stage in regions corresponding to the path of cranial neural crest migration. Our work is the first to describe a role for WSTF in proper neural crest function, and suggests that neural crest defects resulting from WSTF haploinsufficiency may be a major contributor to the pathoembryology of WS. PMID:22691402

  20. Creep Behavior of Oxide/Oxide Composites with Monazite Fiber Coating at 1100 deg C in Air and in Steam Environments

    DTIC Science & Technology

    2008-09-01

    monolithic ceramics initiates at small defects formed during processing. Minimization of such defects may improve performance, but thermal shock and cyclic...fiber tows are used in CMCs, where the use of small -diameter fibers causes a reduction in scale of microstructural defects associated with the fibers [7... Small Diameter · Improves matrix strength and facilitates fab- rication of thin and complex-shaped CMCs. · Low Density · Improves CMC specific properties

  1. Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Betsuyaku, K.; Kawasuso, A.

    2008-03-01

    Vacancy defects in ZnO induced by electron irradiation were characterized by the Doppler broadening of annihilation radiation measurements together with the local density approximation calculations. Zinc vacancies (VZn) are responsible for positron trapping in the as-irradiated state. These are annealed out below 200°C . The further annealing at 400°C results in the formation of secondary defects attributed to the complexes composed of zinc vacancies and zinc antisites (VZn-ZnO) .

  2. The Complex Genetic Basis of Congenital Heart Defects

    PubMed Central

    Akhirome, Ehiole; Walton, Nephi A.; Nogee, Julie M.; Jay, Patrick Y.

    2017-01-01

    Twenty years ago, chromosomal abnormalities were the only identifiable genetic causes of a small fraction of congenital heart defects (CHD). Today, a de novo or inherited genetic abnormality can be identified as pathogenic in one-third of cases. We refer to them here as monogenic causes, insofar as the genetic abnormality has a readily detectable, large effect. What explains the other two-thirds? This review considers a complex genetic basis. That is, a combination of genetic mutations or variants that individually may have little or no detectable effect contribute to the pathogenesis of a heart defect. Genes in the embryo that act directly in cardiac developmental pathways have received the most attention, but genes in the mother that establish the gestational milieu via pathways related to metabolism and aging also have an effect. A growing body of evidence highlights the pathogenic significance of genetic interactions in the embryo and maternal effects that have a genetic basis. The investigation of CHD as guided by a complex genetic model could help estimate risk more precisely and logically lead to a means of prevention. PMID:28381817

  3. Medical image segmentation based on SLIC superpixels model

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-ting; Zhang, Fan; Zhang, Ruo-ya

    2017-01-01

    Medical imaging has been widely used in clinical practice. It is an important basis for medical experts to diagnose the disease. However, medical images have many unstable factors such as complex imaging mechanism, the target displacement will cause constructed defect and the partial volume effect will lead to error and equipment wear, which increases the complexity of subsequent image processing greatly. The segmentation algorithm which based on SLIC (Simple Linear Iterative Clustering, SLIC) superpixels is used to eliminate the influence of constructed defect and noise by means of the feature similarity in the preprocessing stage. At the same time, excellent clustering effect can reduce the complexity of the algorithm extremely, which provides an effective basis for the rapid diagnosis of experts.

  4. Mental Images and the Modification of Learning Defects.

    ERIC Educational Resources Information Center

    Patten, Bernard M.

    Because human memory and thought involve extremely complex processes, it is possible to employ unusual modalities and specific visual strategies for remembering and problem-solving to assist patients with memory defects. This three-part paper discusses some of the research in the field of human memory and describes practical applications of these…

  5. Prosthetic Rehabilitation of Defects of the Head and Neck

    PubMed Central

    Salinas, Thomas J.

    2010-01-01

    Patients afflicted with head and neck cancer, traumatic injuries to the head and neck, or those with congenital or developmental defects benefit from multidisciplinary team management. The head and neck region participates in complex physiologic processes that can often be impeded by these circumstances. Evaluation of the patient by the maxillofacial prosthodontist can assist the other members of the team in providing treatment planning options for the patients. Intraoral defects arising from these circumstances can be treated with prosthodontics that serve to assist with speech, swallowing, and to some degree mastication. If chemotherapeutic or radiation modalities are also used to treat the head and neck, assessment of the patient by the maxillofacial prosthodontist may prove to identify factors that may predispose to undesirable sequelae. Preventive treatment by elective tooth extraction, prosthodontic assessment, and patient education prove to assist in predictable management of these oftentimes complex presenting conditions. Facial defects arising from similar circumstances can be an alternative or adjunct to plastic surgical reconstruction and offer the added advantage of tumor surveillance in susceptible patients. PMID:22550451

  6. Density functional studies of the defect-induced electronic structure modifications in bilayer boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-05-01

    The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.

  7. Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes

    PubMed Central

    Nicholson-Dykstra, Susan M.; Higgs, Henry N.

    2009-01-01

    The Arp2/3 complex-mediated assembly and protrusion of a branched actin network at the leading edge occurs during cell migration, although some studies suggest it is not essential. In order to test the role of Arp2/3 complex in leading edge protrusion, Swiss 3T3 fibroblasts and Jurkat T cells were depleted of Arp2 and evaluated for defects in cell morphology and spreading efficiency. Arp2-depleted fibroblasts exhibit severe defects in formation of sheet-like protrusions at early time points of cell spreading, with sheet-like protrusions limited to regions along the length of linear protrusions. However, Arp2-depleted cells are able to spread fully after extended times. Similarly, Arp2-depleted Jurkat T lymphocytes exhibit defects in spreading on anti-CD3. Interphase Jurkats in suspension are covered with large ruffle structures, whereas mitotic Jurkats are covered by finger-like linear protrusions. Arp2-depleted Jurkats exhibit defects in ruffle assembly but not in assembly of mitotic linear protrusions. Similarly, Arp2-depletion has no effect on the highly dynamic linear protrusion of another suspended lymphocyte line. We conclude that Arp2/3 complex plays a significant role in assembly of sheet-like protrusions, especially during early stages of cell spreading, but is not required for assembly of a variety of linear actin-based protrusions. PMID:18720401

  8. Investigation of hydrogen interaction with defects in zirconia

    NASA Astrophysics Data System (ADS)

    Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.

    2010-04-01

    Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.

  9. Ribonucleoprotein complexes in neurologic diseases.

    PubMed

    Ule, Jernej

    2008-10-01

    Ribonucleoprotein (RNP) complexes regulate the tissue-specific RNA processing and transport that increases the coding capacity of our genome and the ability to respond quickly and precisely to the diverse set of signals. This review focuses on three proteins that are part of RNP complexes in most cells of our body: TAR DNA-binding protein (TDP-43), the survival motor neuron protein (SMN), and fragile-X mental retardation protein (FMRP). In particular, the review asks the question why these ubiquitous proteins are primarily associated with defects in specific regions of the central nervous system? To understand this question, it is important to understand the role of genetic and cellular environment in causing the defect in the protein, as well as how the defective protein leads to misregulation of specific target RNAs. Two approaches for comprehensive analysis of defective RNA-protein interactions are presented. The first approach defines the RNA code or the collection of proteins that bind to a certain cis-acting RNA site in order to lead to a predictable outcome. The second approach defines the RNA map or the summary of positions on target RNAs where binding of a particular RNA-binding protein leads to a predictable outcome. As we learn more about the RNA codes and maps that guide the action of the dynamic RNP world in our brain, possibilities for new treatments of neurologic diseases are bound to emerge.

  10. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  11. Electrical conductivity of In2O3 and Ga2O3 after low temperature ion irradiation; implications for instrinsic defect formation and charge neutrality level.

    PubMed

    Vines, Lasse; Bhoodoo, Chidanand; von Wenckstern, Holger; Grundmann, Marius

    2017-11-29

    The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than 8 orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 1012 cm2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed. © 2017 IOP Publishing Ltd.

  12. The helical ventricular myocardial band of Torrent-Guasp: potential implications in congenital heart defects.

    PubMed

    Corno, Antonio F; Kocica, Mladen J; Torrent-Guasp, Francisco

    2006-04-01

    The new concepts of cardiac anatomy and physiology, based on the observations made by Francisco Torrent-Guasp's discovery of the helical ventricular myocardial band, can be useful in the context of the surgical strategies currently used to manage patients with congenital heart defects. The potential impact of the Torrent-Guasp's Heart on congenital heart defects have been analyzed in the following settings: ventriculo-arterial discordance (transposition of the great arteries), double (atrio-ventricular and ventriculo-arterial) discordance (congenitally corrected transposition of the great arteries), Ebstein's anomaly, pulmonary valve regurgitation after repair of tetralogy of Fallot, Ross operation, and complex intra-ventricular malformations. The functional interaction of right and left ventricles occurs not only through their arrangements in series but also thanks to the structural spiral features. Changes in size and function of either ventricle may influence the performance of the other ventricle. The variety and complexity of congenital heart defects make the recognition of the relationship between form and function a vital component, especially when compared to acquired disease. The new concepts of cardiac anatomy and function proposed by Francisco Torrent-Guasp, based on his observations, should stimulate further investigations of alternative surgical strategies by individuals involved with the management of patients with congenital heart defects.

  13. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  14. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE PAGES

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...

    2017-10-10

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  15. Weak scratch detection and defect classification methods for a large-aperture optical element

    NASA Astrophysics Data System (ADS)

    Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng

    2017-03-01

    Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.

  16. Orientational order of motile defects in active nematics

    DOE PAGES

    DeCamp, Stephen J.; Redner, Gabriel S.; Baskaran, Aparna; ...

    2015-08-17

    The study of equilibrium liquid crystals has led to fundamental insights into the nature of ordered materials, as well as many practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, which are driven away from equilibrium by the autonomous motion of their constituent rodlike particles. This internally-generated activity powers the continuous creation and annihilation of topological defects, leading to complex streaming flows whose chaotic dynamics appear to destroy long-range order. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimeter distances in microtubule-basedmore » active nematics, we identify a non-equilibrium phase characterized by system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Lastly, similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.« less

  17. Non-monotonic temperature dependence of radiation defect dynamics in silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.

    Understanding response of solids to particle irradiation remains a major materials physics challenge. This applies even to SiC, which is a prototypical nuclear ceramic and wide-band-gap semiconductor material. The lack of predictability is largely related to the complex, dynamic nature of radiation defect formation. Here, we use a novel pulsed-ion-beam method to study dynamic annealing in 4H-SiC ion-bombarded in the temperature range of 25–250 °C. We find that, while the defect recombination efficiency shows an expected monotonic increase with increasing temperature, the defect lifetime exhibits a non-monotonic temperature dependence with a maximum at ~100 °C. This finding indicates a changemore » in the dominant defect interaction mechanism at ~100 °C. As a result, the understanding of radiation defect dynamics may suggest new paths to designing radiation-resistant materials.« less

  18. Non-monotonic temperature dependence of radiation defect dynamics in silicon carbide

    DOE PAGES

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; ...

    2016-08-03

    Understanding response of solids to particle irradiation remains a major materials physics challenge. This applies even to SiC, which is a prototypical nuclear ceramic and wide-band-gap semiconductor material. The lack of predictability is largely related to the complex, dynamic nature of radiation defect formation. Here, we use a novel pulsed-ion-beam method to study dynamic annealing in 4H-SiC ion-bombarded in the temperature range of 25–250 °C. We find that, while the defect recombination efficiency shows an expected monotonic increase with increasing temperature, the defect lifetime exhibits a non-monotonic temperature dependence with a maximum at ~100 °C. This finding indicates a changemore » in the dominant defect interaction mechanism at ~100 °C. As a result, the understanding of radiation defect dynamics may suggest new paths to designing radiation-resistant materials.« less

  19. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  20. A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong

    2018-04-01

    A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.

  1. Hybrid Functional Study of Sodium and Potassium Incorporation in Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Tse, Kin Fai; Wong, Manhoi; Zhang, Yiou; Zhang, Jingzhao; Zhu, Junyi

    The thermodynamics of Na and K incorporation and its effects in Cu2ZnSnS4 (CZTS) is studied using density functional theory with hybrid functional. The allowed chemical potential of Na/K in CZTS is established. Formation energy calculations shows that Na can be significantly incorporated as both substitutional defects and interstitial defects, and incorporation of K related defects are generally less favorable. Transition energy calculations is performed showing that both Na and K exhibit benign defect properties and act as a p-type dopant. The qualitative disagreement between GGA with rigid band edge shifting and HSE calculations, formation of defect complexes, and implications in experiment will also be discussed. The understandings on the defect properties of Na and K provides an essential knowledge to further understand the surfactant effects of Na and K observed in experiments. This work is supported by General Research Fund Ref. No: 14319416.

  2. Performance, Defect Behavior and Carrier Enhancement in Low Energy, Proton Irradiated p(+)nn(+) InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.

  3. Point defects in Cd(Zn)Te and TlBr: Theory

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-09-01

    The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.

  4. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures.

    PubMed

    Zhang, S; Nordlund, K; Djurabekova, F; Zhang, Y; Velisa, G; Wang, T S

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  5. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  6. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  7. Swelling Mechanisms of UO2 Lattices with Defect Ingrowths

    PubMed Central

    Günay, Seçkin D.

    2015-01-01

    The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777

  8. Craniofacial Prosthetic Reconstruction Using Polymethyl Methacrylate Implant: A Case Report.

    PubMed

    Simon, Paul; Mohan, Jayashree; Selvaraj, Sunantha; Saravanan, B S; Pari, Parikodaiarasan

    2014-12-01

    Large cranial defects of complex geometric shapes are challenging to reconstruct. The cranial implants has to be fabricated prior to the cranioplastic surgery. The ideal material for cranial implant has to be inert, light weight, easy to fit and adaptable to the defect, offering the best aesthetic and functional results. Here is a clinical case report of a patient who was operated for osteomyelitis in the parieto-temporal region. The defect was reconstructed with heat cure polymethylmethacrylate (PMMA). Operative closure of the defect was facilitated with ligature titanium wires with minimal prosthesis contouring. The heat cure PMMA cranial implant is a safe, easy and economic alternative with great adaptability to cranial vault defects. The cosmetic results in this patient was excellent. No post-operative complications occurred.

  9. Research on metallic material defect detection based on bionic sensing of human visual properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  10. Toward superconducting critical current by design

    DOE PAGES

    Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...

    2016-03-31

    The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less

  11. Defect-induced magnetism in cobalt-doped ZnO epilayers

    NASA Astrophysics Data System (ADS)

    Ciatto, G.; Di Trolio, A.; Fonda, E.; Alippi, P.; Polimeni, A.; Capizzi, M.; Varvaro, G.; Bonapasta, A. Amore

    2014-02-01

    We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoO epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.

  12. Multiscale simulations of defect dipole-enhanced electromechanical coupling at dilute defect concentrations

    NASA Astrophysics Data System (ADS)

    Liu, Shi; Cohen, R. E.

    2017-08-01

    The role of defects in solids of mixed ionic-covalent bonds such as ferroelectric oxides is complex. Current understanding of defects on ferroelectric properties at the single-defect level remains mostly at the empirical level, and the detailed atomistic mechanisms for many defect-mediated polarization-switching processes have not been convincingly revealed quantum mechanically. We simulate the polarization-electric field (P-E) and strain-electric field (ɛ-E) hysteresis loops for BaTiO3 in the presence of generic defect dipoles with large-scale molecular dynamics and provide a detailed atomistic picture of the defect dipole-enhanced electromechanical coupling. We develop a general first-principles-based atomistic model, enabling a quantitative understanding of the relationship between macroscopic ferroelectric properties and dipolar impurities of different orientations, concentrations, and dipole moments. We find that the collective orientation of dipolar defects relative to the external field is the key microscopic structure feature that strongly affects materials hardening/softening and electromechanical coupling. We show that a small concentration (≈0.1 at. %) of defect dipoles dramatically improves electromechanical responses. This offers the opportunity to improve the performance of inexpensive polycrystalline ferroelectric ceramics through defect dipole engineering for a range of applications including piezoelectric sensors, actuators, and transducers.

  13. Mitochondrial Translation and Beyond: Processes Implicated in Combined Oxidative Phosphorylation Deficiencies

    PubMed Central

    Smits, Paulien; Smeitink, Jan; van den Heuvel, Lambert

    2010-01-01

    Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases, which are amongst the most common inherited human diseases. These disorders are caused by defects in the oxidative phosphorylation (OXPHOS) system, which comprises five multisubunit enzyme complexes encoded by both the nuclear and the mitochondrial genomes. Due to the multitude of proteins and intricacy of the processes required for a properly functioning OXPHOS system, identifying the genetic defect that underlies an OXPHOS deficiency is not an easy task, especially in the case of combined OXPHOS defects. In the present communication we give an extensive overview of the proteins and processes (in)directly involved in mitochondrial translation and the biogenesis of the OXPHOS system and their roles in combined OXPHOS deficiencies. This knowledge is important for further research into the genetic causes, with the ultimate goal to effectively prevent and cure these complex and often devastating disorders. PMID:20396601

  14. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling

    PubMed Central

    Dhingra, Rimpy; Margulets, Victoria; Chowdhury, Subir Roy; Thliveris, James; Jassal, Davinder; Fernyhough, Paul; Dorn, Gerald W.; Kirshenbaum, Lorrie A.

    2014-01-01

    Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3−/− mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy. PMID:25489073

  15. A comparative overview of the sperm centriolar complex in mammals and birds: Variations on a theme.

    PubMed

    Soley, John T

    2016-06-01

    This paper presents an overview of the structure, function and anomalies of the sperm centriolar complex (CC) on a comparative basis between mammals and birds. The information is based on selected references from the literature supplemented by original observations on spermiogenesis and sperm structure in disparate mammalian (cheetah and cane rat) and avian (ostrich, rhea and emu) species. Whereas the basic structure of the CC (a diplosome surrounded by pericentriolar material) is similar in Aves and Mammalia, certain differences are apparent. Centriole reduction does not generally occur in birds, but when present as in oscines, involves the loss of the proximal centriole. In ratites, the distal centriole forms the core of the entire midpiece and incorporates the outer dense fibres in addition to initiating axoneme formation. The elements of the connecting piece are not segmented in birds and less complex in basic design than in mammals. The functions of the various components of the CC appear to be similar in birds and mammals. Despite obvious differences in sperm head shape, the centrosomal anomalies afflicting both vertebrate groups demonstrate structural uniformity across species and display a similar range of defects. Most abnormalities result from defective migration and alignment of the CC relative to the nucleus. The most severe manifestation is that of acephalic sperm, while angled tail attachment, abaxial and multiflagellate sperm reflect additional defective forms. The stump-tail defect is not observed in birds. A comparison of defective sperm formation and centrosomal dysfunction at the molecular level is currently difficult owing to the paucity of relevant information on avian sperm. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex.

    PubMed

    Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C; Fischer, Alain; Durandy, Anne

    2015-04-01

    Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions?

    PubMed

    Bhatla, Puneet; Tretter, Justin T; Ludomirsky, Achi; Argilla, Michael; Latson, Larry A; Chakravarti, Sujata; Barker, Piers C; Yoo, Shi-Joon; McElhinney, Doff B; Wake, Nicole; Mosca, Ralph S

    2017-01-01

    Rapid prototyping facilitates comprehension of complex cardiac anatomy. However, determining when this additional information proves instrumental in patient management remains a challenge. We describe our experience with patient-specific anatomic models created using rapid prototyping from various imaging modalities, suggesting their utility in surgical and interventional planning in congenital heart disease (CHD). Virtual and physical 3-dimensional (3D) models were generated from CT or MRI data, using commercially available software for patients with complex muscular ventricular septal defects (CMVSD) and double-outlet right ventricle (DORV). Six patients with complex anatomy and uncertainty of the optimal management strategy were included in this study. The models were subsequently used to guide management decisions, and the outcomes reviewed. 3D models clearly demonstrated the complex intra-cardiac anatomy in all six patients and were utilized to guide management decisions. In the three patients with CMVSD, one underwent successful endovascular device closure following a prior failed attempt at transcatheter closure, and the other two underwent successful primary surgical closure with the aid of 3D models. In all three cases of DORV, the models provided better anatomic delineation and additional information that altered or confirmed the surgical plan. Patient-specific 3D heart models show promise in accurately defining intra-cardiac anatomy in CHD, specifically CMVSD and DORV. We believe these models improve understanding of the complex anatomical spatial relationships in these defects and provide additional insight for pre/intra-interventional management and surgical planning.

  18. Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.

    2015-03-01

    We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.

  19. Evaluating practical vs. theoretical inspection system capability with a new programmed defect test mask designed for 3X and 4X technology nodes

    NASA Astrophysics Data System (ADS)

    Glasser, Joshua; Pratt, Tim

    2008-10-01

    Programmed defect test masks serve the useful purpose of evaluating inspection system sensitivity and capability. It is widely recognized that when evaluating inspection system capability, it is important to understand the actual sensitivity of the inspection system in production; yet unfortunately we have observed that many test masks are a more accurate judge of theoretical sensitivity rather than real-world usable capability. Use of ineffective test masks leave the purchaser of inspection equipment open to the risks of over-estimating the capability of their inspection solution and overspecifying defect sensitivity to their customers. This can result in catastrophic yield loss for device makers. In this paper we examine some of the lithography-related technology advances which place an increasing burden on mask inspection complexity, such as MEEF, defect printability estimation, aggressive OPC, double patterning, and OPC jogs. We evaluate the key inspection system component contributors to successful mask inspection, including what can "go wrong" with these components. We designed and fabricated a test mask which both (a) more faithfully represents actual production use cases; and (b) stresses the key components of the inspection system. This mask's patterns represent 32nm, 36nm, and 45nm logic and memory technology including metal and poly like background patterns with programmed defects. This test mask takes into consideration requirements of advanced lithography, such as MEEF, defect printability, assist features, nearly-repetitive patterns, and data preparation. This mask uses patterns representative of 32nm, 36nm, and 45nm logic, flash, and DRAM technology. It is specifically designed to have metal and poly like background patterns with programmed defects. The mask is complex tritone and was designed for annular immersion lithography.

  20. Sonic Hedgehog mutations are not a common cause of congenital hypopituitarism in the absence of complex midline cerebral defects.

    PubMed

    Paulo, Sabrina Soares; Fernandes-Rosa, Fábio L; Turatti, Wendy; Coeli-Lacchini, Fernanda Borchers; Martinelli, Carlos E; Nakiri, Guilherme S; Moreira, Ayrton C; Santos, Antônio C; de Castro, Margaret; Antonini, Sonir R

    2015-04-01

    Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship. © 2014 John Wiley & Sons Ltd.

  1. The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events.

    PubMed

    Sørensen, Brian B; Ehrnsberger, Hans F; Esposito, Silvia; Pfab, Alexander; Bruckmann, Astrid; Hauptmann, Judith; Meister, Gunter; Merkl, Rainer; Schubert, Thomas; Längst, Gernot; Melzer, Michael; Grasser, Marion; Grasser, Klaus D

    2017-02-01

    We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.

  2. Dissection of the complex genetic basis of craniofacial anomalies using haploid genetics and interspecies hybrids in Nasonia wasps

    PubMed Central

    Werren, John H.; Cohen, Lorna B.; Gadau, Juergen; Ponce, Rita; Baudry, Emmanuelle; Lynch, Jeremy A.

    2016-01-01

    The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects. PMID:26721604

  3. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallam, Brett, E-mail: brett.hallam@unsw.edu.au; Abbott, Malcolm; Nampalli, Nitin

    2016-02-14

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead tomore » a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.« less

  4. Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Mo -Rigen; Wang, Shuai; Jin, Ke

    Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.

  5. Fabric defect detection based on faster R-CNN

    NASA Astrophysics Data System (ADS)

    Liu, Zhoufeng; Liu, Xianghui; Li, Chunlei; Li, Bicao; Wang, Baorui

    2018-04-01

    In order to effectively detect the defects for fabric image with complex texture, this paper proposed a novel detection algorithm based on an end-to-end convolutional neural network. First, the proposal regions are generated by RPN (regional proposal Network). Then, Fast Region-based Convolutional Network method (Fast R-CNN) is adopted to determine whether the proposal regions extracted by RPN is a defect or not. Finally, Soft-NMS (non-maximum suppression) and data augmentation strategies are utilized to improve the detection precision. Experimental results demonstrate that the proposed method can locate the fabric defect region with higher accuracy compared with the state-of- art, and has better adaptability to all kinds of the fabric image.

  6. Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation

    DOE PAGES

    He, Mo -Rigen; Wang, Shuai; Jin, Ke; ...

    2016-07-25

    Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.

  7. Lower lip reconstruction with nasolabial flap--going back to basics.

    PubMed

    Coutinho, Inês; Ramos, Leonor; Gameiro, Ana Rita; Vieira, Ricardo; Figueiredo, Américo

    2015-01-01

    Squamous cell carcinoma of the lower lip is frequent, and radical excision sometimes leads to complex defects. Many lip repair techniques are aggressive requiring general anesthesia and a prolonged post-operative period. The nasolabial flap, while a common flap for the repair of other facial defects, is an under-recognized option for the reconstruction of the lower lip. We describe the use of nasolabial flap for the repair of a large defect of the lower lip in a ninety year-old male, with good functional results and acceptable cosmetic outcome. We believe the nasolabial flap is a good alternative for intermediate-to-large lower lip defects in patients with impaired general condition.

  8. Defect classification in sparsity-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.

    2017-05-01

    Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.

  9. Carney Complex: an update

    PubMed Central

    Correa, Ricardo; Salpea, Paraskevi; Stratakis, Constantine

    2015-01-01

    Carney Complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas, and multiple endocrine tumors. The disease is caused by inactivating mutations or large deletions of the PRKAR1A gene located at 17q22–24 coding for the regulatory subunit type I alpha of protein kinase A (PKA) gene. Most recently, components of the complex have been associated with defects of other PKA subunits, such as the catalytic subunits PRKACA (adrenal hyperplasia) and PRKACB (pigmented spots, myxomas, pituitary adenomas). In this report, we review CNC, its clinical features, diagnosis, treatment, and molecular etiology including PRKAR1A mutations and the newest on PRKACA and PRKACB defects especially as they pertain to adrenal tumors and Cushing’s syndrome. PMID:26130139

  10. High resolution structural characterisation of laser-induced defect clusters inside diamond

    NASA Astrophysics Data System (ADS)

    Salter, Patrick S.; Booth, Martin J.; Courvoisier, Arnaud; Moran, David A. J.; MacLaren, Donald A.

    2017-08-01

    Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides, and defects within diamond. We present a transmission electron microscopy study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy indicates that the majority of the irradiated region remains as sp3 bonded diamond. Electrically conductive paths are attributed to the formation of multiple nano-scale, sp2-bonded graphitic wires and a network of strain-relieving micro-cracks.

  11. Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    Deep level transient spectroscopy and the Shockley-Read-Hall recombination theory are used to identify the defect responsible for reverse annealing in 2 ohm-cm n+/p silicon solar cells. This defect, with energy level at Ev + 0.30 eV, has been tentatively identified as a boron-oxygen-vacancy complex. It has been also determined by calculation that the removal of this defect could result in significant annealing at temperatures as low as 200 C for 2 ohm-cm and lower resistivity cells.

  12. Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures

    NASA Astrophysics Data System (ADS)

    Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.

    1989-11-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.

  13. Cl-doping of Te-rich CdTe: Complex formation, self-compensation and self-purification from first principles

    NASA Astrophysics Data System (ADS)

    Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.

    2015-08-01

    The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.

  14. The RPN5 subunit of the 26s proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis.

    PubMed

    Book, Adam J; Smalle, Jan; Lee, Kwang-Hee; Yang, Peizhen; Walker, Joseph M; Casper, Sarah; Holmes, James H; Russo, Laura A; Buzzinotti, Zachri W; Jenik, Pablo D; Vierstra, Richard D

    2009-02-01

    The 26S proteasome is an essential multicatalytic protease complex that degrades a wide range of intracellular proteins, especially those modified with ubiquitin. Arabidopsis thaliana and other plants use pairs of genes to encode most of the core subunits, with both of the isoforms often incorporated into the mature complex. Here, we show that the gene pair encoding the regulatory particle non-ATPase subunit (RPN5) has a unique role in proteasome function and Arabidopsis development. Homozygous rpn5a rpn5b mutants could not be generated due to a defect in male gametogenesis. While single rpn5b mutants appear wild-type, single rpn5a mutants display a host of morphogenic defects, including abnormal embryogenesis, partially deetiolated development in the dark, a severely dwarfed phenotype when grown in the light, and infertility. Proteasome complexes missing RPN5a are less stable in vitro, suggesting that some of the rpn5a defects are caused by altered complex integrity. The rpn5a phenotype could be rescued by expression of either RPN5a or RPN5b, indicating functional redundancy. However, abnormal phenotypes generated by overexpression implied that paralog-specific functions also exist. Collectively, the data point to a specific role for RPN5 in the plant 26S proteasome and suggest that its two paralogous genes in Arabidopsis have both redundant and unique roles in development.

  15. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  16. Arabidopsis COG Complex Subunits COG3 and COG8 Modulate Golgi Morphology, Vesicle Trafficking Homeostasis and Are Essential for Pollen Tube Growth

    PubMed Central

    Li, Yingxin; Li, Pengxiang; Gao, Caiji; Ding, Yu; Lan, Zhiyi; Shi, Zhixuan; Rui, Qingchen; Feng, Yihong; Liu, Yulong; Zhao, Yanxue; Wu, Chengyun; Zhang, Qian; Li, Yan; Jiang, Liwen

    2016-01-01

    Spatially and temporally regulated membrane trafficking events incorporate membrane and cell wall materials into the pollen tube apex and are believed to underlie the rapid pollen tube growth. In plants, the molecular mechanisms and physiological functions of intra-Golgi transport and Golgi integrity maintenance remain largely unclear. The conserved oligomeric Golgi (COG) complex has been implicated in tethering of retrograde intra-Golgi vesicles in yeast and mammalian cells. Using genetic and cytologic approaches, we demonstrate that T-DNA insertions in Arabidopsis COG complex subunits, COG3 and COG8, cause an absolute, male-specific transmission defect that can be complemented by expression of COG3 and COG8 from the LAT52 pollen promoter, respectively. No obvious abnormalities in the microgametogenesis of the two mutants are observed, but in vitro and in vivo pollen tube growth are defective. COG3 or COG8 proteins fused to green fluorescent protein (GFP) label the Golgi apparatus. In pollen of both mutants, Golgi bodies exhibit altered morphology. Moreover, γ-COP and EMP12 proteins lose their tight association with the Golgi. These defects lead to the incorrect deposition of cell wall components and proteins during pollen tube growth. COG3 and COG8 interact directly with each other, and a structural model of the Arabidopsis COG complex is proposed. We believe that the COG complex helps to modulate Golgi morphology and vesicle trafficking homeostasis during pollen tube tip growth. PMID:27448097

  17. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    NASA Astrophysics Data System (ADS)

    Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.

    2015-03-01

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.

  18. Stabilization of primary mobile radiation defects in MgF2 crystals

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Lisitsyna, L. A.; Popov, A. I.; Kotomin, E. A.; Abuova, F. U.; Akilbekov, A.; Maier, J.

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.

  19. Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching

    NASA Astrophysics Data System (ADS)

    Kosyak, V.; Postnikov, A. V.; Scragg, J.; Scarpulla, M. A.; Platzer-Björkman, C.

    2017-07-01

    Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of (" separators="|VCu --ZnC u + ) complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like ZnC u + antisites are involved in the formation of (" separators="|VCu --ZnC u + ) complex making CuZ n - dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.

  20. Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations.

    PubMed

    Rivera-Torres, José; Calvo, Conrado J; Llach, Anna; Guzmán-Martínez, Gabriela; Caballero, Ricardo; González-Gómez, Cristina; Jiménez-Borreguero, Luis J; Guadix, Juan A; Osorio, Fernando G; López-Otín, Carlos; Herraiz-Martínez, Adela; Cabello, Nuria; Vallmitjana, Alex; Benítez, Raul; Gordon, Leslie B; Jalife, José; Pérez-Pomares, José M; Tamargo, Juan; Delpón, Eva; Hove-Madsen, Leif; Filgueiras-Rama, David; Andrés, Vicente

    2016-11-15

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24 -/- mouse model of HGPS. Challenge of Zmpste24 -/- mice with the β-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24 -/- cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24 -/- progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.

  1. Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Tuan L.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550; Marian, Jaime, E-mail: jmarian@ucla.edu

    2015-11-01

    An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a proceduremore » for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe{sup 3+}, He{sup +} and H{sup +}) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.« less

  2. Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.

    2018-05-01

    The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.

  3. Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si.

    PubMed

    Wallace, J B; Aji, L B Bayu; Shao, L; Kucheyev, S O

    2018-05-25

    The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ∼-30 °C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ∼0.1  eV, independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ∼0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.

  4. Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hoang, Tuan L.; Marian, Jaime; Bulatov, Vasily V.; Hosemann, Peter

    2015-11-01

    An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+, He+ and H+) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.

  5. When Closure Fails: What the Radiologist Needs to Know About the Embryology, Anatomy, and Prenatal Imaging of Ventral Body Wall Defects.

    PubMed

    Torres, Ulysses S; Portela-Oliveira, Eduardo; Braga, Fernanda Del Campo Braojos; Werner, Heron; Daltro, Pedro Augusto Nascimento; Souza, Antônio Soares

    2015-12-01

    Ventral body wall defects (VBWDs) are one of the main categories of human congenital malformations, representing a wide and heterogeneous group of defects sharing a common feature, that is, herniation of one or more viscera through a defect in the anterior body wall. Gastroschisis and omphalocele are the 2 most common congenital VBWDs. Other uncommon anomalies include ectopia cordis and pentalogy of Cantrell, limb-body wall complex, and bladder and cloacal exstrophy. Although VBWDs are associated with multiple abnormalities with distinct embryological origins and that may affect virtually any system organs, at least in relation to anterior body wall defects, they are thought (except for omphalocele) to share a common embryologic mechanism, that is, a failure involving the lateral body wall folds responsible for closing the thoracic, abdominal, and pelvic portions of the ventral body wall during the fourth week of development. Additionally, many of the principles of diagnosis and management are similar for these conditions. Fetal ultrasound (US) in prenatal care allows the diagnosis of most of such defects with subsequent opportunities for parental counseling and optimal perinatal management. Fetal magnetic resonance imaging may be an adjunct to US, providing global and detailed anatomical information, assessing the extent of defects, and also helping to confirm the diagnosis in equivocal cases. Prenatal imaging features of VBWDs may be complex and challenging, often requiring from the radiologist a high level of suspicion and familiarity with the imaging patterns. Because an appropriate management is dependent on an accurate diagnosis and assessment of defects, radiologists should be able to recognize and distinguish between the different VBWDs and their associated anomalies. In this article, we review the relevant embryology of VBWDs to facilitate understanding of the pathologic anatomy and diagnostic imaging approach. Features will be illustrated with prenatal US and magnetic resonance imaging and correlated with postnatal and clinical imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  7. Complex Genetics and the Etiology of Human Congenital Heart Disease

    PubMed Central

    Gelb, Bruce D.; Chung, Wendy K.

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD, but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Mainly because of recent advances in genomic technology such as next-generation DNA sequencing, scientists have begun to identify the genetic variants underlying CHD. In this article, the roles of modifier genes, de novo mutations, copy number variants, common variants, and noncoding mutations in the pathogenesis of CHD are reviewed. PMID:24985128

  8. Loop quantum gravity simplicity constraint as surface defect in complex Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Han, Muxin; Huang, Zichang

    2017-05-01

    The simplicity constraint is studied in the context of four-dimensional spinfoam models with a cosmological constant. We find that the quantum simplicity constraint is realized as the two-dimensional surface defect in SL (2 ,C ) Chern-Simons theory in the construction of spinfoam amplitudes. By this realization of the simplicity constraint in Chern-Simons theory, we are able to construct the new spinfoam amplitude with a cosmological constant for an arbitrary simplicial complex (with many 4-simplices). The semiclassical asymptotics of the amplitude is shown to correctly reproduce the four-dimensional Einstein-Regge action with a cosmological constant term.

  9. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  10. Heart transplantation in adults with congenital heart disease.

    PubMed

    Houyel, Lucile; To-Dumortier, Ngoc-Tram; Lepers, Yannick; Petit, Jérôme; Roussin, Régine; Ly, Mohamed; Lebret, Emmanuel; Fadel, Elie; Hörer, Jürgen; Hascoët, Sébastien

    2017-05-01

    With the advances in congenital cardiac surgery and postoperative care, an increasing number of children with complex congenital heart disease now reach adulthood. There are already more adults than children living with a congenital heart defect, including patients with complex congenital heart defects. Among these adults with congenital heart disease, a significant number will develop ventricular dysfunction over time. Heart failure accounts for 26-42% of deaths in adults with congenital heart defects. Heart transplantation, or heart-lung transplantation in Eisenmenger syndrome, then becomes the ultimate therapeutic possibility for these patients. This population is deemed to be at high risk of mortality after heart transplantation, although their long-term survival is similar to that of patients transplanted for other reasons. Indeed, heart transplantation in adults with congenital heart disease is often challenging, because of several potential problems: complex cardiac and vascular anatomy, multiple previous palliative and corrective surgeries, and effects on other organs (kidney, liver, lungs) of long-standing cardiac dysfunction or cyanosis, with frequent elevation of pulmonary vascular resistance. In this review, we focus on the specific problems relating to heart and heart-lung transplantation in this population, revisit the indications/contraindications, and update the long-term outcomes. Copyright © 2017. Published by Elsevier Masson SAS.

  11. Buried oxide and defects in oxygen implanted Si monitored by positron annihilation

    NASA Astrophysics Data System (ADS)

    Kruseman, A. C.; van Veen, A.; Schut, H.; Mijnarends, P. E.; Fujinami, M.

    2001-08-01

    One- and two-detector Doppler broadening measurements performed on low (˜1014 to 1015O+/cm2) and high dose (˜1017 to 1018O+/cm2) oxygen-irradiated Si using variable-energy slow positrons are analyzed in terms of S and W parameters. After annealing the low-dose samples at 800 °C, large VxOy complexes are formed at depths around 400 nm. These complexes produce a clear-cut signature when the ratio of S to that of defect-free bulk Si is plotted. Similar behavior is found for samples irradiated with 2 and 4×1017O+/cm2 and annealed at 1000 °C. After irradiation with 1.7×1018O+/cm2 and anneal at 1350 °C a 170 nm thick almost-bulk-quality Si surface layer is formed on top of a 430 nm thick buried oxide layer. This method of preparation is called separation by implantation of oxygen. S-W measurements show that the surface layer contains electrically inactive VxOy complexes not seen by electron microscopy. A method is presented to decompose the Doppler broadening line shape into contributions of the bulk, surface, and defect.

  12. Bone Repair Cells for Craniofacial Regeneration

    PubMed Central

    Pagni, G; Kaigler, D; Rasperini, G; Avila-Ortiz, G; Bartel, R; Giannobile, WV

    2012-01-01

    Reconstruction of complex craniofacial deformities is a clinical challenge in situations of injury, congenital defects or disease. The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response for craniofacial wound healing. Both Somatic and Stem Cells have been adopted in the treatment of complex osseous defects and advances have been made in finding the most adequate scaffold for the delivery of cell therapies in human regenerative medicine. As an example of such approaches for clinical application for craniofacial regeneration, Ixmyelocel-T or bone repair cells are a source of bone marrow derived stem and progenitor cells. They are produced through the use of single pass perfusion bioreactors for CD90+ mesenchymal stem cells and CD14+ monocyte/macrophage progenitor cells. The application of ixmyelocel-T has shown potential in the regeneration of muscular, vascular, nervous and osseous tissue. The purpose of this manuscript is to highlight cell therapies used to repair bony and soft tissue defects in the oral and craniofacial complex. The field at this point remains at an early stage, however this review will provide insights into the progress being made using cell therapies for eventual development into clinical practice. PMID:22433781

  13. Aeolian Processes of the Pismo-Oceano Dune Complex, California

    NASA Astrophysics Data System (ADS)

    Barrineau, C. P.; Tchakerian, V.; Houser, C.

    2012-12-01

    The Pismo Dunes are located approximately 250 km northwest of Los Angeles and consist of 90 km2 of transverse, parabolic and paleodunes. The Pismo Dunes are one of the largest dune complexes on the west coast and are the largest remaining south of San Francisco Bay, but despite their size, relatively few process morphology studies have focused on their form and history. Specifically, the dune field includes 12 km2 of actively migrating transverse dune ridges advancing onshore in three distinct phases separated by small depressions easily indentified using a LiDAR-generated elevation model. An early field investigation by Tchakerian (1983) revealed a uniform increase in slip face heights and crestline wavelengths inland with no apparent change in grain size. Measurement of recent aerial imagery shows variable migration rates throughout the dunes and wavelengths between 30 and 100 m closest to the beach, in the second ridge between 50 and 140 m, and from 70 to 250 m furthest inland. During El Niño and La Niña periods, westerly winds advance onshore nearly perpendicular to the crestlines, fueling episodic migration of the dune field. It is hypothesized that particularly strong ENSO periods may have led to the development of distinct dune phases with separating depressions and the development of defects along the dune crest. Defects associated with the wakes of incipient vegetation and inter-dune depressions are conspicuous and widespread, though localized and variable through time and space. Aerial imagery taken in September 1994 shows a wider, more even distribution of defects across the dune field than currently visible. The signal is, however, complicated by the closure of the dune field to oversand vehicles in 1982. The closure of much of the complex to vehicular traffic in 1982 may play a role, as Tchakerian's crestline wavelength measurements were far smaller than those obtained for this study while maintaining a likewise increase between phases. At a decadal scale, excessive vehicular traffic may have impeded the transition of emergent, defect-ridden dune forms into mature transverse ridges. Despite the astounding lack to studies focusing on the Pismo Dunes, the complex presents multiple opportunities for inquiry regarding climatic control on dune field evolution, defect law and complex landform pattern development, and long-term anthropogenic alteration of coastal process morphology.

  14. Neural Network Classifiers to Grade Parts Based on Surface Defects with Spatial Dependencies

    Treesearch

    Daniel L. Schmoldt

    1995-01-01

    In many manufacturing situations, production parts must be assigned a qualitative grade, rather than only accepted or rejected. When this is done, spatial relationships between defect areas can be a critical factor in making grade assignments. In the case of grading hardwood lumber, for instance, there exists a highly complex set of grading rules which incorporate...

  15. A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy

    PubMed Central

    Ogilvie, Isla; Kennaway, Nancy G.; Shoubridge, Eric A.

    2005-01-01

    NADH:ubiquinone oxidoreductase (complex I) deficiency is a common cause of mitochondrial oxidative phosphorylation disease. It is associated with a wide range of clinical phenotypes in infants, including Leigh syndrome, cardiomyopathy, and encephalomyopathy. In at least half of patients, enzyme deficiency results from a failure to assemble the holoenzyme complex; however, the molecular chaperones required for assembly of the mammalian enzyme remain unknown. Using whole genome subtraction of yeasts with and without a complex I to generate candidate assembly factors, we identified a paralogue (B17.2L) of the B17.2 structural subunit. We found a null mutation in B17.2L in a patient with a progressive encephalopathy and showed that the associated complex I assembly defect could be completely rescued by retroviral expression of B17.2L in patient fibroblasts. An anti-B17.2L antibody did not associate with the holoenzyme complex but specifically recognized an 830-kDa subassembly in several patients with complex I assembly defects and coimmunoprecipitated a subset of complex I structural subunits from normal human heart mitochondria. These results demonstrate that B17.2L is a bona fide molecular chaperone that is essential for the assembly of complex I and for the normal function of the nervous system. PMID:16200211

  16. Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior.

    PubMed

    Ryglewski, Stefanie; Kadas, Dimitrios; Hutchinson, Katie; Schuetzler, Natalie; Vonhoff, Fernando; Duch, Carsten

    2014-12-16

    Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.

  17. Monti's procedure as an alternative technique in complex urethral distraction defect.

    PubMed

    Hosseini, Jalil; Kaviani, Ali; Mazloomfard, Mohammad M; Golshan, Ali R

    2010-01-01

    Pelvic fracture urethral distraction defect is usually managed by the end to end anastomotic urethroplasty. Surgical repair of those patients with post-traumatic complex posterior urethral defects, who have undergone failed previous surgical treatments, remains one of the most challenging problems in urology. Appendix urinary diversion could be used in such cases. However, the appendix tissue is not always usable. We report our experience on management of patients with long urethral defect with history of one or more failed urethroplasties by Monti channel urinary diversion. From 2001 to 2007, we evaluated data from 8 male patients aged 28 to 76 years (mean age 42.5) in whom the Monti technique was performed. All cases had history of posterior urethral defect with one or more failed procedures for urethral reconstruction including urethroplasty. A 2 to 2.5 cm segment of ileum, which had a suitable blood supply, was cut. After the re-anastomosis of the ileum, we closed the opened ileum transversely surrounding a 14-16 Fr urethral catheter using running Vicryl sutures. The newly built tube was used as an appendix during diversion. All patients performed catheterization through the conduit without difficulty and stomal stenosis. Mild stomal incontinence occurred in one patient in the supine position who became continent after adjustment of the catheterization intervals. There was no dehiscence, necrosis or perforation of the tube. Based on our data, Monti's procedure seems to be a valuable technique in patients with very long complicated urethral defect who cannot be managed with routine urethroplastic techniques.

  18. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23.

    PubMed Central

    Masutani, C; Sugasawa, K; Yanagisawa, J; Sonoyama, T; Ui, M; Enomoto, T; Takio, K; Tanaka, K; van der Spek, P J; Bootsma, D

    1994-01-01

    Complementation group C of xeroderma pigmentosum (XP) represents one of the most common forms of this cancer-prone DNA repair syndrome. The primary defect is located in the subpathway of the nucleotide excision repair system, dealing with the removal of lesions from the non-transcribing sequences ('genome-overall' repair). Here we report the purification to homogeneity and subsequent cDNA cloning of a repair complex by in vitro complementation of the XP-C defect in a cell-free repair system containing UV-damaged SV40 minichromosomes. The complex has a high affinity for ssDNA and consists of two tightly associated proteins of 125 and 58 kDa. The 125 kDa subunit is an N-terminally extended version of previously reported XPCC gene product which is thought to represent the human homologue of the Saccharomyces cerevisiae repair gene RAD4. The 58 kDa species turned out to be a human homologue of yeast RAD23. Unexpectedly, a second human counterpart of RAD23 was identified. All RAD23 derivatives share a ubiquitin-like N-terminus. The nature of the XP-C defect implies that the complex exerts a unique function in the genome-overall repair pathway which is important for prevention of skin cancer. Images PMID:8168482

  19. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys

    DOE PAGES

    Lu, Chenyang; Yang, Taini; Jin, Ke; ...

    2017-01-12

    A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less

  20. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study.

    PubMed

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-06-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  1. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study1

    PubMed Central

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-01-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755

  2. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    DOE PAGES

    Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...

    2016-10-25

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less

  3. Heparan Sulfate Expression in the Neural Crest is Essential for Mouse Cardiogenesis

    PubMed Central

    Pan, Yi; Carbe, Christian; Pickhinke, Ute; Kupich, Sabine; Ohlig, Stefanie; Frye, Maike; Seelige, Ruth; Pallerla, Srinivas R.; Moon, Anne M.; Lawrence, Roger; Esko, Jeffrey D.; Zhang, Xin; Grobe, Kay

    2015-01-01

    Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-Deacetylase/GlcN N-Sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1−/− embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect. PMID:24200809

  4. To repair or not to repair: with FAVOR there is no question

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Schulz, Kristian; Tabbone, Gilles; Himmelhaus, Michael; Scheruebl, Thomas

    2016-10-01

    In the mask shop the challenges associated with today's advanced technology nodes, both technical and economic, are becoming increasingly difficult. The constant drive to continue shrinking features means more masks per device, smaller manufacturing tolerances and more complexity along the manufacturing line with respect to the number of manufacturing steps required. Furthermore, the extremely competitive nature of the industry makes it critical for mask shops to optimize asset utilization and processes in order to maximize their competitive advantage and, in the end, profitability. Full maximization of profitability in such a complex and technologically sophisticated environment simply cannot be achieved without the use of smart automation. Smart automation allows productivity to be maximized through better asset utilization and process optimization. Reliability is improved through the minimization of manual interactions leading to fewer human error contributions and a more efficient manufacturing line. In addition to these improvements in productivity and reliability, extra value can be added through the collection and cross-verification of data from multiple sources which provides more information about our products and processes. When it comes to handling mask defects, for instance, the process consists largely of time consuming manual interactions that are error prone and often require quick decisions from operators and engineers who are under pressure. The handling of defects itself is a multiple step process consisting of several iterations of inspection, disposition, repair, review and cleaning steps. Smaller manufacturing tolerances and features with higher complexity contribute to a higher number of defects which must be handled as well as a higher level of complexity. In this paper the recent efforts undertaken by ZEISS to provide solutions which address these challenges, particularly those associated with defectivity, will be presented. From automation of aerial image analysis to the use of data driven decision making to predict and propose the optimized back end of line process flow, productivity and reliability improvements are targeted by smart automation. Additionally the generation of the ideal aerial image from the design and several repair enhancement features offer additional capabilities to improve the efficiency and yield associated with defect handling.

  5. Reconstruction of the midface and maxilla.

    PubMed

    Dalgorf, Dustin; Higgins, Kevin

    2008-08-01

    To review the current classification systems and reconstructive options available for restoration of maxillectomy defects. Defects involving the midface can have a great functional and aesthetic impact on the patient. Adequate restoration of the complex three-dimensional maxillary structure is required to replace form and function of the native tissue. An in-depth discussion of appropriate recipient vessel selection and reconstructive options are included in this article. The superficial temporal vessel system is presented as a reliable anastomosis site for restoration of midfacial defects. In addition, the complications of vein grafting, arteriovenous fistula loops and alternative recipient vessels sites are addressed to manage the challenge of the vessel-depleted neck. The current indications, advantages and disadvantages of local, regional and free-flap reconstructive options available for maxillectomy defects are highlighted in order to aid the surgeon in appropriate flap selection. A myriad of reconstructive options are available to restore maxillectomy defects. The surgeon must consider each defect and the needs of the individual patient when choosing the best suited reconstructive technique.

  6. 78 FR 23920 - Notice of Extension of Public Comment Period for the Notice of Intent To Prepare the Commonwealth...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...Marine Corps Forces, Pacific (MARFORPAC), as the Executive Agent designated by the United States (U.S.) Pacific Command (PACOM), is extending the public scoping comment period for the Commonwealth of the Northern Mariana Islands (CNMI) Joint Military Training Environmental Impact Statement (EIS)/Overseas EIS (OEIS) until May 13, 2013. A Notice of Intent (NOI) was published in the Federal Register on Thursday, March 14, 2013 (Vol. 78, No. 50, Pages 16257-16259). The Notice announced the initial public scoping comment period, including three public scoping meetings that took place on Wednesday, April 10, 2013; Thursday, April 11, 2013 and Friday, April 12, 2013. The public scoping meetings provided an opportunity for the public to obtain additional information and provide comments on the proposed action. The NOI requested the submission of all public scoping comments to MARFORPAC by April 29, 2013 Chamorro Standard Time (ChST). With this Notice, MARFORPAC is extending the public scoping comment period until May 13, 2013 (ChST).

  7. On correction of model of stabilization of distribution of concentration of radiation defects in a multilayer structure with account experiment data

    NASA Astrophysics Data System (ADS)

    Pankratov, E. L.

    2018-05-01

    We introduce a model of redistribution of point radiation defects, their interaction between themselves and redistribution of their simplest complexes (divacancies and diinterstitials) in a multilayer structure. The model gives a possibility to describe qualitatively nonmonotonicity of distributions of concentrations of radiation defects on interfaces between layers of the multilayer structure. The nonmonotonicity was recently found experimentally. To take into account the nonmonotonicity we modify recently used in literature model for analysis of distribution of concentration of radiation defects. To analyze the model we used an approach of solution of boundary problems, which could be used without crosslinking of solutions on interfaces between layers of the considered multilayer structures.

  8. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  9. Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes

    NASA Astrophysics Data System (ADS)

    Qi, Bingkun; Zhang, Lingxuan; Ge, Li

    2018-03-01

    We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.

  10. Cor triatriatum dexter and atrial septal defect in a 43-year-old woman.

    PubMed

    Vukovic, Petar M; Kosevic, Dragana; Milicic, Miroslav; Jovovic, Ljiljana; Stojanovic, Ivan; Micovic, Slobodan

    2014-08-01

    Cor triatriatum dexter is a rare congenital heart anomaly in which a membrane divides the right atrium into 2 chambers. We report the case of a 43-year-old woman who had cor triatriatum dexter and a large atrial septal defect. During attempted percutaneous closure, the balloon disrupted the membrane and revealed that the defect had no inferior rim, precluding secure placement of an Amplatzer Septal Occluder. Surgical treatment subsequently proved to be successful. In patients with an incomplete membrane and a septal defect with well-defined rims, percutaneous treatment can be the first choice. In patients who have cor triatriatum dexter and unfavorable anatomic features or concomitant complex heart anomalies, open-heart surgery remains the gold standard for treatment.

  11. Cor Triatriatum Dexter and Atrial Septal Defect in a 43-Year-Old Woman

    PubMed Central

    Kosevic, Dragana; Milicic, Miroslav; Jovovic, Ljiljana; Stojanovic, Ivan; Micovic, Slobodan

    2014-01-01

    Cor triatriatum dexter is a rare congenital heart anomaly in which a membrane divides the right atrium into 2 chambers. We report the case of a 43-year-old woman who had cor triatriatum dexter and a large atrial septal defect. During attempted percutaneous closure, the balloon disrupted the membrane and revealed that the defect had no inferior rim, precluding secure placement of an Amplatzer Septal Occluder. Surgical treatment subsequently proved to be successful. In patients with an incomplete membrane and a septal defect with well-defined rims, percutaneous treatment can be the first choice. In patients who have cor triatriatum dexter and unfavorable anatomic features or concomitant complex heart anomalies, open-heart surgery remains the gold standard for treatment. PMID:25120397

  12. Remote defect imaging for plate-like structures based on the scanning laser source technique

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo

    2018-04-01

    In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.

  13. Use of Isobestic and Isoemission Points in Absorption and Luminescence Spectra for Study of the Transformation of Radiation Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Stupak, A. P.; Runets, L. P.

    2015-03-01

    Isobestic and isoemission points are recorded in the combined absorption and luminescence spectra of two types of radiation defects involved in complex processes consisting of several simultaneous parallel and sequential reactions. These points are observed if a constant sum of two terms, each formed by the product of the concentration of the corresponding defect and a characteristic integral coefficient associated with it, is conserved. The complicated processes involved in the transformation of radiation defects in lithium fluoride are studied using these points. It is found that the ratio of the changes in the concentrations of one of the components and the reaction product remains constant in the course of several simultaneous reactions.

  14. Thermodynamics of surface defects at the aspirin/water interface

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Zheng, Chen; Reuter, Karsten

    2014-09-01

    We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.

  15. Algorithms and applications of aberration correction and American standard-based digital evaluation in surface defects evaluating system

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing

    2016-11-01

    The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.

  16. Mutations in the Putative Zinc-Binding Motif of UL52 Demonstrate a Complex Interdependence between the UL5 and UL52 Subunits of the Human Herpes Simplex Virus Type 1 Helicase/Primase Complex

    PubMed Central

    Chen, Yan; Carrington-Lawrence, Stacy D.; Bai, Ping; Weller, Sandra K.

    2005-01-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface. PMID:15994803

  17. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex.

    PubMed

    Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K

    2005-07-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.

  18. Acoustically driven degradation in single crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Olikh, O. Ya.

    2018-05-01

    The influence of ultrasound on current-voltage characteristics of crystalline silicon solar sell was investigated experimentally. The transverse and longitudinal acoustic waves were used over a temperature range of 290-340 K. It was found that the ultrasound loading leads to the reversible decrease in the photogenerated current, open-circuit voltage, fill factor, carrier lifetime, and shunt resistance as well as the increase in the ideality factor. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The contribution of the boron-oxygen related defects, iron-boron pairs, and oxide precipitates to both the carrier recombination and acousto-defect interaction was discussed. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations.

  19. Formation and local heating effects on the vibrational properties of H2* defects in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Vendamani, V. S.; Pathak, A. P.; Kanjilal, D.; Rao, S. V. S. Nageswara

    2018-04-01

    We report a successful formation of Si-H related complexes under low temperature (LT) proton implantation. H2* defect is one of the Si-H related defects, which is stable at around 600 K. The absorption line of H2* defect is around 1830 cm-1 and has been investigated by Fourier transform infrared spectroscopy (FTIR). The intensity variations in the absorption spectrum has been observed for samples implanted at 1 µA and 8 µA beam currents. It is found that, the formation of H2* defect tends towards saturation level at higher implanted fluencies. This observation might be the effect of ion induced annealing during proton implantation. In addition, Elastic recoil detection analysis (ERDA) has been performed to find out the concentration and desorption of hydrogen in proton implanted Si samples. In conclusion, this work demonstrates the importance of H passivation on the device stability/deterioration performance.

  20. Radiation-acoustic treatment of gallium phosphide light diodes

    NASA Astrophysics Data System (ADS)

    Tartachnik, Volodimir P.; Gontaruk, Olexsandr M.; Vernydub, Roman M.; Kryvutenko, Anatoly M.; Olikh, Yaroslav M.; Opilat, Vitalij Y.; Petrenko, Igor V.; Pinkovska, Myroslava B.

    1999-11-01

    The ultrasound influence on the defects of technological and radiation origin of GaP light diodes has been investigated. GaP light diodes were treated by ultrasound wave in different operating modes. Electroluminescence spectra were measured at room and low temperatures, integrated luminosity of devices was checked by solar cell. In order to find out the radiation field influence on non-equilibrium defects of acoustic origin samples were irradiated at room temperature by gamma rays of Co60. It has been discovered that in GaP light diodes treated by ultrasound unstable at room temperature dislocation networks occur at the volume of crystal. Ultrasound dose increase causes the creation of complex defects with high relaxation time and appearing of a part of more mobile defect,s which relax quicker. The nature of effects discovered has been discussed. The method of the emissive capacity restoring of samples degraded after irradiation have been proposed.

  1. Defects in regular nanosystems and interference spectra at reemission of electromagnetic field attosecond pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.

    2017-01-01

    The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.

  2. Reconstruction of acquired oromandibular defects.

    PubMed

    Fernandes, Rui P; Yetzer, Jacob G

    2013-05-01

    Acquired defects of the mandible resulting from trauma, infection, osteoradionecrosis, and ablative surgery of the oral cavity and lower face are particularly debilitating. Familiarity with mandibular and cervical anatomy is crucial in achieving mandibular reconstruction. The surgeon must evaluate which components of the hard and soft tissue are missing in selecting a method of reconstruction. Complexity of mandibular reconstruction ranges from simple rigid internal fixation to microvascular free tissue transfer, depending on defect- and patient-related factors. Modern techniques for microvascular tissue transfer provide a wide array of reconstructive options that can be tailored to patients' specific needs. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure

    NASA Astrophysics Data System (ADS)

    Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.

    2018-04-01

    Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.

  4. Effect of hydrogenation on the electrical and optical properties of CdZnTe substrates and HgCdTe epitaxial layers

    NASA Astrophysics Data System (ADS)

    Sitharaman, S.; Raman, R.; Durai, L.; Pal, Surendra; Gautam, Madhukar; Nagpal, Anjana; Kumar, Shiv; Chatterjee, S. N.; Gupta, S. C.

    2005-12-01

    In this paper, we report the experimental observations on the effect of plasma hydrogenation in passivating intrinsic point defects, shallow/deep levels and extended defects in low-resistivity undoped CdZnTe crystals. The optical absorption studies show transmittance improvement in the below gap absorption spectrum. Using variable temperature Hall measurement technique, the shallow defect level on which the penetrating hydrogen makes complex, has been identified. In 'compensated' n-type HgCdTe epitaxial layers, hydrogenation can improve the resistivity by two orders of magnitude.

  5. On the validity of the amphoteric-defect model in gallium arsenide and a criterion for Fermi-level pinning by defects

    NASA Astrophysics Data System (ADS)

    Chen, C.-H.; Tan, T. Y.

    1995-10-01

    Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V {Ga/2-} and the triply positively charged defect complex (ASGa+ V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V {Ga/2-}/(AsGa+ V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+ V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.

  6. Treatment of gun-shot defect of the foot with bovine collagen matrix application.

    PubMed

    Coban, Yusuf Kenan; Kalender, Ali Murat

    2009-12-01

    Nonoperative therapy might be chosen for patients with small wounds or defects around the foot and ankle region. Lyophilized bovine collagen matrix is one of ideal biological dressings used in wound treatment. We present an example of type 1 bovine collagen (Gelfix, Euroresearch, Inc., Milano, Italy) usage in a complex gun-shot wound of the foot and relevant literature is discussed.

  7. Beyond tRNA cleavage: novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing

    PubMed Central

    Dhungel, Nripesh; Hopper, Anita K.

    2012-01-01

    Pre-tRNA splicing is an essential process in all eukaryotes. In yeast and vertebrates, the enzyme catalyzing intron removal from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex). Although the SEN complex is conserved, the subcellular location where pre-tRNA splicing occurs is not. In yeast, the SEN complex is located at the cytoplasmic surface of mitochondria, whereas in vertebrates, pre-tRNA splicing is nuclear. We engineered yeast to mimic the vertebrate cell biology and demonstrate that all three steps of pre-tRNA splicing, as well as tRNA nuclear export and aminoacylation, occur efficiently when the SEN complex is nuclear. However, nuclear pre-tRNA splicing fails to complement growth defects of cells with defective mitochondrial-located splicing, suggesting that the yeast SEN complex surprisingly serves a novel and essential function in the cytoplasm that is unrelated to tRNA splicing. The novel function requires all four SEN complex subunits and the catalytic core. A subset of pre-rRNAs accumulates when the SEN complex is restricted to the nucleus, indicating that the SEN complex moonlights in rRNA processing. Thus, findings suggest that selection for the subcellular distribution of the SEN complex may reside not in its canonical, but rather in a novel, activity. PMID:22391451

  8. CuBi2O4 Prepared by the Polymerized Complex Method for Gas-Sensing Applications.

    PubMed

    Choi, Yun-Hyuk; Kim, Dai-Hong; Hong, Seong-Hyeon

    2018-05-02

    Multicomponent oxides can be extensively explored as alternative gas-sensing materials to binary oxides with their structural and compositional versatilities. In this work, the gas-sensing properties of CuBi 2 O 4 have been investigated toward various reducing gases (C 2 H 5 OH, NH 3 , H 2 , CO, and H 2 S) and oxidizing gas (NO 2 ) for the first time. For this, the powder synthesis has been developed using the polymerized complex method (Pechini method) to obtain a single-phase polycrystalline CuBi 2 O 4 . The defect, optical, and electronic properties in the prepared CuBi 2 O 4 powder were modulated by varying the calcination temperature from 500 to 700 °C. Noticeably, a high concentration of Cu + -oxygen vacancy ([Formula: see text]) defect complexes and isolated Cu 2+ ion clusters was found in the 500 °C-calcined CuBi 2 O 4 , where they were removed through air calcination at higher temperatures (up to 700 °C) while making the compound more stoichiometric. The change in the intrinsic defect concentration with the calcination temperature led to the variation of the electronic band gap energy and hole concentration in CuBi 2 O 4 with the polaronic hopping conduction (activation energy = 0.43 eV). The CuBi 2 O 4 sensor with 500 °C-calcined powder showed the highest gas responses (specifically, 10.4 toward 1000 ppm C 2 H 5 OH at the operating temperature of 400 °C) with the highest defect concentration. As a result, the gas-sensing characteristics of CuBi 2 O 4 are found to be dominantly affected by the intrinsic defect concentration, which is controlled by the calcination temperature. Toward reducing H 2 S and oxidizing NO 2 gases, the multiple reactions arising simultaneously on the surface of the CuBi 2 O 4 sensor govern its response behavior, depending on the gas concentration and the operating temperature. We believe that this work can be a cornerstone for understanding the effect of chemical defect on the gas-sensing characteristics in multicomponent oxides.

  9. Applications of Computer Technology in Complex Craniofacial Reconstruction.

    PubMed

    Day, Kristopher M; Gabrick, Kyle S; Sargent, Larry A

    2018-03-01

    To demonstrate our use of advanced 3-dimensional (3D) computer technology in the analysis, virtual surgical planning (VSP), 3D modeling (3DM), and treatment of complex congenital and acquired craniofacial deformities. We present a series of craniofacial defects treated at a tertiary craniofacial referral center utilizing state-of-the-art 3D computer technology. All patients treated at our center using computer-assisted VSP, prefabricated custom-designed 3DMs, and/or 3D printed custom implants (3DPCI) in the reconstruction of craniofacial defects were included in this analysis. We describe the use of 3D computer technology to precisely analyze, plan, and reconstruct 31 craniofacial deformities/syndromes caused by: Pierre-Robin (7), Treacher Collins (5), Apert's (2), Pfeiffer (2), Crouzon (1) Syndromes, craniosynostosis (6), hemifacial microsomia (2), micrognathia (2), multiple facial clefts (1), and trauma (3). In select cases where the available bone was insufficient for skeletal reconstruction, 3DPCIs were fabricated using 3D printing. We used VSP in 30, 3DMs in all 31, distraction osteogenesis in 16, and 3DPCIs in 13 cases. Utilizing these technologies, the above complex craniofacial defects were corrected without significant complications and with excellent aesthetic results. Modern 3D technology allows the surgeon to better analyze complex craniofacial deformities, precisely plan surgical correction with computer simulation of results, customize osteotomies, plan distractions, and print 3DPCI, as needed. The use of advanced 3D computer technology can be applied safely and potentially improve aesthetic and functional outcomes after complex craniofacial reconstruction. These techniques warrant further study and may be reproducible in various centers of care.

  10. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.

    2015-03-31

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) methodmore » has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.« less

  11. A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects.

    PubMed

    Brie, Joël; Chartier, Thierry; Chaput, Christophe; Delage, Cyrille; Pradeau, Benjamin; Caire, François; Boncoeur, Marie-Paule; Moreau, Jean-Jacques

    2013-07-01

    Neurosurgery and Maxillofacial Surgery Departments of Limoges University Hospital Centre have developed a new concept of a custom made ceramic implant in hydroxyapatite (HA) for the reconstruction of large and complex craniofacial bone defects (more than 25 cm(2)). The manufacturing process of the implants used a stereolithography technique that produces implants with three-dimensional shapes derived directly from the scan file of the patient's skull without moulding or machining. Eight patients received 8 implants between 2005 and 2008. The surgical procedure is simple and fast. The post-operative follow-up was 12 months. No major complications (infection or fracture of the implant) were observed. The cosmetic result was considered satisfactory by both patients and surgeons. These new implants are well suited for reconstruction of large craniofacial bone defects (greater than 25 cm(2)) in adults and children over 8 years. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. EPR and photoluminescence study of irradiated anion-defective alumina single crystals

    NASA Astrophysics Data System (ADS)

    Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.

    2017-09-01

    Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.

  13. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    DOE PAGES

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; ...

    2016-08-24

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μ B along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAEmore » is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.« less

  14. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends

    PubMed Central

    Kern, David M.; Nicholls, Peter K.; Page, David C.

    2016-01-01

    The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257

  15. [Free flap reconstruction in the head and neck. Indications, technical aspects and outcomes].

    PubMed

    Llorente, José Luis; López, Fernando; Suárez, Vanessa; Fueyo, Angel; Carnero, Susana; Martín, Clara; López, Victoria; Camporro, Daniel; Suárez, Carlos

    2014-01-01

    The use of microvascular free flaps (MFF) has become a common method of head and neck reconstruction because of its high success rates and better functional results. We report our experience in reconstructing complex defects with MFF. We analysed a series of 246 patients that underwent reconstruction using MFF in our Department from 1991 to 2013. There were 259 interventions performed in 246 patients. The most common reason for surgery was tumour recurrence (46%), followed by primary tumour resection (25%). The hypopharynx (52%) and the craniofacial region (22%) were the most frequently reconstructed sites. The free flaps most commonly used were the radial forearm free flap (41%) and the anterolateral thigh free flap (35%). Overall success and complication rates of 92% and 20% respectively were reported. The microvascular free flap is a reliable and useful tool for reconstructing complex head and neck defects and continues to be the reconstructive modality of choice for these defects. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  16. Computer-assisted orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction to correct facial asymmetry and maxillary defects secondary to maxillectomy in childhood.

    PubMed

    Zhang, Lei; Sun, Hao; Yu, Hong-bo; Yuan, Hao; Shen, Guo-fang; Wang, Xu-dong

    2013-05-01

    Maxillectomy in childhood not only causes composite primary defects but also secondary malformation of the middle and lower face. In the case presented, we introduced computer-assisted planning and simulation of orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction to correct complex craniofacial deformities. Virtual orthognathic surgery and maxillary reconstruction surgery were undertaken preoperatively. LeFort I osteotomy, with bilateral sagittal split ramus osteotomy and lower border ostectomy, was performed to correct malocclusion and facial asymmetry. Maxillary reconstruction was accomplished using a fibular osteomyocutaneous flap. The patient recovered uneventfully with an adequate aesthetic appearance on 3D computed tomography. Our experience indicates that orthognathic surgery combined with fibular osteomyocutaneous flap reconstruction can used to correct complex facial asymmetry and maxillary defects secondary to maxillectomy. Computer-assisted simulation enables precise execution of the reconstruction. It shortens the free flap ischemia time and reduces the risks associated with microsurgery.

  17. Computer-assisted innovations in craniofacial surgery.

    PubMed

    Rudman, Kelli; Hoekzema, Craig; Rhee, John

    2011-08-01

    Reconstructive surgery for complex craniofacial defects challenges even the most experienced surgeons. Preoperative reconstructive planning requires consideration of both functional and aesthetic properties of the mandible, orbit, and midface. Technological innovations allow for computer-assisted preoperative planning, computer-aided manufacturing of patient-specific implants (PSIs), and computer-assisted intraoperative navigation. Although many case reports discuss computer-assisted preoperative planning and creation of custom implants, a general overview of computer-assisted innovations is not readily available. This article reviews innovations in computer-assisted reconstructive surgery including anatomic considerations when using PSIs, technologies available for preoperative planning, work flow and process of obtaining a PSI, and implant materials available for PSIs. A case example follows illustrating the use of this technology in the reconstruction of an orbital-frontal-temporal defect with a PSI. Computer-assisted reconstruction of complex craniofacial defects provides the reconstructive surgeon with innovative options for challenging reconstructive cases. As technology advances, applications of computer-assisted reconstruction will continue to expand. © Thieme Medical Publishers.

  18. The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1

    PubMed Central

    Osada, Shigehiro; Sutton, Ann; Muster, Nemone; Brown, Christine E.; Yates, John R.; Sternglanz, Rolf; Workman, Jerry L.

    2001-01-01

    It is well established that acetylation of histone and nonhistone proteins is intimately linked to transcriptional activation. However, loss of acetyltransferase activity has also been shown to cause silencing defects, implicating acetylation in gene silencing. The something about silencing (Sas) 2 protein of Saccharomyces cerevisiae, a member of the MYST (MOZ, Ybf2/Sas3, Sas2, and TIP60) acetyltransferase family, promotes silencing at HML and telomeres. Here we identify a ∼450-kD SAS complex containing Sas2p, Sas4p, and the tf2f-related Sas5 protein. Mutations in the conserved acetyl-CoA binding motif of Sas2p are shown to disrupt the ability of Sas2p to mediate the silencing at HML and telomeres, providing evidence for an important role for the acetyltransferase activity of the SAS complex in silencing. Furthermore, the SAS complex is found to interact with chromatin assembly factor Asf1p, and asf1 mutants show silencing defects similar to mutants in the SAS complex. Thus, ASF1-dependent chromatin assembly may mediate the role of the SAS complex in silencing. PMID:11731479

  19. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes.

    PubMed

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor

    2015-03-21

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.

  20. Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects

    NASA Astrophysics Data System (ADS)

    Kaur, Sarbjit

    Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting. A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation generated a range of viscosities. The chemically cured complex coacervate, with sodium (meta) periodate crosslinker, was tested in pig animal studies, showing promising results. The adhesive adhered to the fetal membrane tissue, with maximum strength of 473 +/- 82 KPa on aluminum substrates. The elastic modulus increased with increasing methacrylation on both the polyphosphate and polyamine within the coacervate. Photopolymerized complex coacervate adhesive was photocured using Eosin-Y and treiethanolamine photoinitiators, using a green laser diode. Soft substrate bond strength increased with increasing PEG-dA concentration to a maximum of ~90 kPa. The crosslinked complex coacervate adhesives with PEG networks swelled less than 5% over 30 days in physiological conditions. The sterile glue was nontoxic, deliverable through a fine cannula, and stable over a long time period. Preliminary animal studies show a novel innovative method to seal fetal membrane defects in humans, in utero.

  1. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    PubMed

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Simulations of defect spin qubits in piezoelectric semiconductors

    NASA Astrophysics Data System (ADS)

    Seo, Hosung

    In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.

  3. Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen

    NASA Astrophysics Data System (ADS)

    Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans

    2017-01-01

    Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.

  4. SPR4-peptide Alters Bone Metabolism of Normal and HYP Mice

    PubMed Central

    Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N

    2015-01-01

    Context ASARM-peptides are substrates and ligands for PHEX, the gene responsible for X-linked hypophosphatemic rickets (HYP). PHEX binds to the DMP1-ASARM-motif to form a trimeric-complex with α5β3-integrin on the osteocyte surface and this suppresses FGF23 expression. ASARM-peptide disruption of this complex increases FGF23 expression. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide and ASARM-motif to study DMP1-PHEX interactions and to assess SPR4 for treating inherited hypophosphatemic rickets. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle into wild-type mice (WT) and HYP-mice for 4 weeks. Results Asymmetrically distributed mineralization defects occurred with WT-SPR4 femurs. Specifically, SPR4 induced negative effects on trabecular bone and increased bone volume and mineralization in cortical-bone. Markedly increased sclerostin and reduced active β-catenin occurred with HYP mice. SPR4-infusion suppressed sclerostin and increased active β-catenin in WT and HYP mice and improved HYP-mice trabecular mineralization defects but not cortical mineralization defects. Conclusions SPR4-peptide has bimodal activity and acts by: (1) preventing DMP1 binding to PHEX and (2) sequestering an inhibitor of DMP1-PHEX binding, ASARM-peptide. In PHEX defective HYP-mice the second pathway predominates. Although SPR4-peptide improved trabecular calcification defects, decreased sclerostin and increased active β-catenin it did not correct HYP-mice cortical mineralization defects on a normal phosphate diet. Thus, for inherited hypophosphatemic rickets patients on a normal phosphate diet, SPR4-peptide is not a useful therapeutic. PMID:25460577

  5. Flow-Through Free Fibula Osteocutaneous Flap in Reconstruction of Tibial Bone, Soft Tissue, and Main Artery Segmental Defects.

    PubMed

    Li, Zonghuan; Yu, Aixi; Qi, Baiwen; Pan, Zhenyu; Ding, Junhui

    2017-08-01

    The aim of this report was to present the use of flow-through free fibula osteocutaneous flap for the repair of complex tibial bone, soft tissue, and main artery segmental defects. Five patients with bone, soft tissue, and segmental anterior tibial artery defects were included. The lengths of injured tibial bones ranged from 4 to 7 cm. The sizes of impaired soft tissues were between 9 × 4 and 15 × 6 cm. The lengths of defect of anterior tibial artery segments ranged from 6 to 10 cm. Two patients had distal limb perfusion problems. Flow-through free fibula osteocutaneous flap was performed for all 5 patients. Patients were followed for 12 to 18 months. All wounds healed after 1-stage operation, and all flow-through flaps survived. The distal perfusion after vascular repair was normal in all patients. Superficial necrosis of flap edge was noted in 1 case. After the local debridement and partial thickness skin graft, the flap healed uneventfully, and the surgical operation did not increase injury to the donor site. Satisfactory bone union was achieved in all patients in 2 to 4 months postoperation. Enlargement of fibula graft was observed during follow-up from 12 to 18 months. The functions of adjacent joints were recovered, and all patients were able to walk normally. Flow-through free fibula osteocutaneous flap was shown to be an effective and efficient technique for repairing composite tibial bone, soft tissue, and main artery segmental defects. This 1-stage operation should be useful in clinical practice for the treatment of complex bone, soft tissue, and vessel defects.

  6. A novel lobule rotation flap for the reconstruction of middle third auricular defects.

    PubMed

    Basu, Indraneil; Way, Benjamin; Al-Basri, Isam

    2013-12-01

    There are numerous techniques for the reconstruction of cutaneous defects of the pinna. Many of these distort the auricle, and several are challenging and time-consuming to perform. An illustrative case is presented to demonstrate a novel lobule rotational flap, which can be used to cover cutaneous defects of the middle third of the pinna. Postoperative photography illustrates that this simple one-stage technique causes minimal anatomical distortion and allows the final scar to be concealed within the inner helical rim. Small local flaps can be raised from the lobule to cover challenging defects of the middle third of the pinna. In selected patients, with abundant lobular tissue, this technique can be as effective as more complex reconstructive options. © 2013 The International Society of Dermatology.

  7. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we?

    PubMed

    Khan, Wasim S; Rayan, Faizal; Dhinsa, Baljinder S; Marsh, David

    2012-01-01

    The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.

  8. An Osteoconductive, Osteoinductive, and Osteogenic Tissue-Engineered Product for Trauma and Orthopaedic Surgery: How Far Are We?

    PubMed Central

    Khan, Wasim S.; Rayan, Faizal; Dhinsa, Baljinder S.; Marsh, David

    2012-01-01

    The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery. PMID:25098363

  9. Point Defects in Oxides: Tailoring Materials Through Defect Engineering

    NASA Astrophysics Data System (ADS)

    Tuller, Harry L.; Bishop, Sean R.

    2011-08-01

    Optimization of electrical, optical, mechanical, and other properties of many advanced, functional materials today relies on precise control of point defects. This article illustrates the progress that has been made in elucidating the often complex equilibria exhibited by many materials by examining two recently well-characterized model systems, TlBr for radiation detection and PrxCe1-xO2-δ, of potential interest in solid-oxide fuel cells. The interplay between material composition, electrical conductivity, and mechanical properties (electrochemomechanics) is discussed, and implications in these relations, for example, enhancing electrical properties through large mechanical strains, are described. The impact of space charge and strain fields at interfaces, particularly important in nanostructure materials, is also emphasized. Key experimental techniques useful in characterizing bulk and surface defects are summarized and reviewed.

  10. Repairing Nanoparticle Surface Defects.

    PubMed

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Response function of a moving contact line

    NASA Astrophysics Data System (ADS)

    Perrin, H.; Belardinelli, D.; Sbragaglia, M.; Andreotti, B.

    2018-04-01

    The hydrodynamics of a liquid-vapor interface in contact with a heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determine the force exerted on the wedge of liquid in contact with the surface. From the mathematical point of view, defects introduce perturbation modes, whose space-time evolution is governed by the interfacial hydrodynamic equations of the contact line. In this paper we derive the response function of the contact line to such generic perturbations. The contact line response may be used to design simplified one-dimensional time-dependent models accounting for the complexity of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical framework to explore contact line motion through a disordered energy landscape.

  12. [The repair of bulky tissue defect of forearm with skin flaps].

    PubMed

    Huang, Xiaoyuan; Long, Jianhong; Xie, Tinghong; Zhang, Minghua; Zhang, Pihong; Yang, Xinghua; Zhong, Keqin

    2002-12-01

    To evaluate the repairing methods of bulky tissue defect of forearm with flaps. Twenty-one burned patients with wounds in the forearm were enrolled in this study. The injury causes were high-voltage electricity, hot press or crush injury. After local debridement, the forearm defects were repaired with pedicled complex flaps, latissimus dorsi musculocutaneous island flaps or large thoraco-abdominal flaps immediately. All the flaps survived very well with satisfactory results except for 1 patient in whom local ischemic necrosis and sub-flap infection at the distal end of the flap occurred. Early debridement followed by skin flaps with pedicles or musculocutaneous flaps transfer could be simple, safe and reliable treatment strategies in the management of bulky tissue defects of the forearm due to burn, electric injury, or other devastating injuries.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciatto, G.; Fonda, E.; Trolio, A. Di

    We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoOmore » epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.« less

  14. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces

    PubMed Central

    Zhu, Xuan; Li, Xiaoshi; Chen, Zeyu; Chen, Yimu; Lei, Yusheng; Li, Yang; Nomoto, Akihiro; Zhou, Qifa; di Scalea, Francesco Lanza

    2018-01-01

    Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects. This study reports a stretchable ultrasound probe that can conform to and detect nonplanar complex surfaces. The probe consists of a 10 × 10 array of piezoelectric transducers that exploit an “island-bridge” layout with multilayer electrodes, encapsulated by thin and compliant silicone elastomers. The stretchable probe shows excellent electromechanical coupling, minimal cross-talk, and more than 50% stretchability. Its performance is demonstrated by reconstructing defects in 3D space with high spatial resolution through flat, concave, and convex surfaces. The results hold great implications for applications of ultrasound that require imaging through complex surfaces. PMID:29740603

  15. A lightning strike to the head causing a visual cortex defect with simple and complex visual hallucinations

    PubMed Central

    Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold

    2007-01-01

    The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595

  16. A lightning strike to the head causing a visual cortex defect with simple and complex visual hallucinations

    PubMed Central

    Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold

    2009-01-01

    The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915

  17. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  18. Unified Numerical Solver for Device Metastabilities in CdTe Thin-Film PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileska, Dragica

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers de-vote significant empirical efforts to study these phenomena and to improve semiconduc-tor device stability. Still, understanding the underlying reasons of these instabilities re-mains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most com-monly alleged causes of metastability in CdTe device, such as “migration of Cu,” have been investigated rigorously overmore » the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses sug-gesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe pro-vide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic de-fects; for example, changing the state of an impurity from an interstitial donor to a sub-stitutional acceptor often is accompanied by generation of a compensating intrinsic in-terstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the elec-trical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire sys-tem and its interactions is required.« less

  19. Improving reticle defect disposition via fully automated lithography simulation

    NASA Astrophysics Data System (ADS)

    Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2016-03-01

    Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in-fab reticle qualification.

  20. Metastability and reliability of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Guo, Da; Brinkman, Daniel; Shaik, Abdul R.; Ringhofer, Christian; Vasileska, Dragica

    2018-04-01

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers devote significant empirical efforts to study these phenomena and to improve semiconductor device stability. Still, understanding the underlying reasons of these instabilities remains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most commonly alleged causes of metastability in CdTe devices, such as ‘migration of Cu’, have been investigated rigorously over the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses suggesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe provide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic defects; for example, changing the state of an impurity from an interstitial donor to a substitutional acceptor often is accompanied by generation of a compensating intrinsic interstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire system and its interactions is required.

  1. Structure of Ce2RhIn8: an example of complementary use of high-resolution neutron powder diffraction and reciprocal-space mapping to study complex materials.

    PubMed

    Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z

    2006-04-01

    The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.

  2. Complex doping of group 13 elements In and Ga in caged skutterudite CoSb 3

    DOE PAGES

    Xi, Lili; Qiu, Yting; Zheng, Shang; ...

    2014-12-12

    The complex doping behavior of Ga and In in CoSb 3 has been investigated using ab initio total-energy calculations and thermodynamics. The formation energies of void filling, Sb substitution and complex dual-site occupancy defects with different charge states, and their dependence on chemical potentials of species, were studied. Results show that Ga predominantly forms dual-site 2Ga VF–Ga Sb defects and substitutes for Sb only at very high Fermi levels or electron concentrations. In, on the other hand, can play multiple roles in skutterudites, including filling in the crystalline voids, substituting for Sb atoms or forming dual-site occupancy, among which themore » fully charge-compensated dual-site defects (2In VF–In Sb and 4In VF–2In Sb) are dominant. The equilibrium concentration ratio of impurities at void-filling sites to those at Sb-substitution sites for Ga-doped CoSb 3 is very close to be 2:1, while this value markedly deviates from 2:1 for In-doped CoSb 3. Furthermore, the 2:1 ratio of Ga doping in CoSb 3 leads to low electron concentration (~2 × 10 19 cm –3) and makes the doped system a semiconductor.« less

  3. Divacancy complexes induced by Cu diffusion in Zn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.

    2013-08-01

    Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.

  4. Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse.

    PubMed

    Pasek, Raymond C; Malarkey, Erik; Berbari, Nicolas F; Sharma, Neeraj; Kesterson, Robert A; Tres, Laura L; Kierszenbaum, Abraham L; Yoder, Bradley K

    2016-04-15

    Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42(KO)) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Defects in TOR regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Saccharomyces cerevisiae].

    PubMed

    Homza, B V; Vasyl'kovs'ka, R A; Semchyshyn, H M

    2014-01-01

    TOR signaling pathway first described in yeast S. cerevisiae is the highly conserved regulator of eukaryotic cell growth, aging and stress resistance. The effect of nitrogen sources, in particular amino acids, on the activity of TOR signaling pathway is well studied, however its relation to carbohydrates is poor understood. The aim of the present study is expanding of our understanding of potential role of TOR regulatory complexes in development of carbonyl/oxidative stress that can result from yeast cultivation on glucose and fructose. It has been shown that the level of alpha-dicarbonyl compounds and protein carbonyl groups increased with time of yeast cultivation and was higher in cells grown on fructose that demonstrated their accelerated aging and carbonyl/oxidative stress development as compared with cells grown on glucose. The strains defective in TOR proteins cultivated in the presence of glucose as well as fructose demonstrated lower markers of the stress and aging than parental strain. Thus these data confirmed the previous conclusion on fructose more potent ability to cause carbonyl/oxidative stress and accelerated aging in S. cerevisiae as compared with glucose. However, defects in TOR regulatory complexes retard aging and development of the stress in yeast independent on the type of carbohydrate in the cultivation medium.

  6. Comparative study of tow buckling defect during preforming of structural composites based on vegetable fibers

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed; Fazzini, Marina; Ouagne, Pierre

    2018-02-01

    During the complex shape forming of composite fibrous reinforcement, the planar bending of roving tows results in an out-of-plane deflection, along with a rotation on its central axis. The need to accurately follow and quantify the mechanism of formation of such defect has led us to consider two 3D imaging techniques, of which, have been tested and compared in this work.

  7. Mutants of Saccharomyces Cerevisiae with Defects in Acetate Metabolism: Isolation and Characterization of Acn(-) Mutants

    PubMed Central

    McCammon, M. T.

    1996-01-01

    The two carbon compounds, ethanol and acetate, can be oxidatively metabolized as well as assimilated into carbohydrate in the yeast Saccharomyces cerevisiae. The distribution of acetate metabolic enzymes among several cellular compartments, mitochondria, peroxisomes, and cytoplasm makes it an intriguing system to study complex metabolic interactions. To investigate the complex process of carbon catabolism and assimilation, mutants unable to grow on acetate were isolated. One hundred five Acn(-) (``ACetate Nonutilizing'') mutants were sorted into 21 complementation groups with an additional 20 single mutants. Five of the groups have defects in TCA cycle enzymes: MDH1, CIT1, ACO1, IDH1, and IDH2. A defect in RTG2, involved in the retrograde communication between the mitochondrion and the nucleus, was also identified. Four genes encode enzymes of the glyoxylate cycle and gluconeogenesis: ICL1, MLS1, MDH2, and PCK1. Five other genes appear to be defective in regulating metabolic activity since elevated levels of enzymes in several metabolic pathways, including the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism, were detected in these mutants: ACN8, ACN9, ACN17, ACN18, and ACN42. In summary, this analysis has identified at least 22 and as many as 41 different genes involved in acetate metabolism. PMID:8878673

  8. Defects in the cappuccino (cno) gene on mouse chromosome 5 and human 4p cause Hermansky-Pudlak syndrome by an AP-3-independent mechanism.

    PubMed

    Gwynn, B; Ciciotte, S L; Hunter, S J; Washburn, L L; Smith, R S; Andersen, S G; Swank, R T; Dell'Angelica, E C; Bonifacino, J S; Eicher, E M; Peters, L L

    2000-12-15

    Defects in a triad of organelles (melanosomes, platelet granules, and lysosomes) result in albinism, prolonged bleeding, and lysosome abnormalities in Hermansky-Pudlak syndrome (HPS). Defects in HPS1, a protein of unknown function, and in components of the AP-3 complex cause some, but not all, cases of HPS in humans. There have been 15 inherited models of HPS described in the mouse, underscoring its marked genetic heterogeneity. Here we characterize a new spontaneous mutation in the mouse, cappuccino (cno), that maps to mouse chromosome 5 in a region conserved with human 4p15-p16. Melanosomes of cno/cno mice are immature and dramatically decreased in number in the eye and skin, resulting in severe oculocutaneous albinism. Platelet dense body contents (adenosine triphosphate, serotonin) are markedly deficient, leading to defective aggregation and prolonged bleeding. Lysosomal enzyme concentrations are significantly elevated in the kidney and liver. Genetic, immunofluorescence microscopy, and lysosomal protein trafficking studies indicate that the AP-3 complex is intact in cno/cno mice. It was concluded that the cappuccino gene encodes a product involved in an AP-3-independent mechanism critical to the biogenesis of lysosome-related organelles. (Blood. 2000;96:4227-4235)

  9. A constructive nonlinear array (CNA) method for barely visible impact detection in composite materials

    NASA Astrophysics Data System (ADS)

    Malfense Fierro, Gian Piero; Meo, Michele

    2017-04-01

    Currently there are numerous phased array techniques such as Full Matrix Capture (FMC) and Total Focusing Method (TFM) that provide good damage assessment for composite materials. Although, linear methods struggle to evaluate and assess low levels of damage, while nonlinear methods have shown great promise in early damage detection. A sweep and subtraction evaluation method coupled with a constructive nonlinear array method (CNA) is proposed in order to assess damage specific nonlinearities, address issues with frequency selection when using nonlinear ultrasound imaging techniques and reduce equipment generated nonlinearities. These methods were evaluated using multiple excitation locations on an impacted composite panel with a complex damage (barely visible impact damage). According to various recent works, damage excitation can be accentuated by exciting at local defect resonance (LDR) frequencies; although these frequencies are not always easily determinable. The sweep methodology uses broadband excitation to determine both local defect and material resonances, by assessing local defect generated nonlinearities using a laser vibrometer it is possible to assess which frequencies excite the complex geometry of the crack. The dual effect of accurately determining local defect resonances, the use of an image subtraction method and the reduction of equipment based nonlinearities using CNA result in greater repeatability and clearer nonlinear imaging (NIM).

  10. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects?

    PubMed

    Xekouki, Paraskevi; Stratakis, Constantine A

    2012-12-01

    Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney-Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD's loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects.

  11. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects?

    PubMed Central

    Xekouki, Paraskevi; Stratakis, Constantine A

    2013-01-01

    Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney–Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD’s loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects. PMID:22889736

  12. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, William A.; Brada, Mark P.

    1995-01-01

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.

  13. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  14. Simple intrinsic defects in GaP and InP

    NASA Astrophysics Data System (ADS)

    Schultz, Peter A.

    2012-02-01

    To faithfully simulate evolution of defect chemistry and electrical response in irradiated semiconductor devices requires accurate defect reaction energies and energy levels. In III-Vs, good data is scarce, theory hampered by band gap and supercell problems. I apply density functional theory (DFT) to intrinsic defects in GaP and InP, predicting stable charge states, ground state configurations, defect energy levels, and identifying mobile species. The SeqQuest calculations incorporate rigorous charge boundary conditions removing supercell artifacts, demonstrated converged to the infinite limit. Computed defect levels are not limited by a band gap problem, despite Kohn-Sham gaps much smaller than the experimental gap. As in GaAs, [P.A. Schultz and O.A. von Lilienfeld, Modeling Simul. Mater. Sci. Eng. 17, 084007 (2009)], defects in GaP and InP exhibit great complexity---multitudes of charge states, bistabilities, and negative U systems---but show similarities to each other (and to GaAs). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Increased p-type conductivity in GaN{sub x}Sb{sub 1−x}, experimental and theoretical aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi; Makkonen, I.; Slotte, J.

    2015-08-28

    The large increase in the p-type conductivity observed when nitrogen is added to GaSb has been studied using positron annihilation spectroscopy and ab initio calculations. Doppler broadening measurements have been conducted on samples of GaN{sub x}Sb{sub 1−x} layers grown by molecular beam epitaxy, and the results have been compared with calculated first-principle results corresponding to different defect structures. From the calculated data, binding energies for nitrogen-related defects have also been estimated. Based on the results, the increase in residual hole concentration is explained by an increase in the fraction of negative acceptor-type defects in the material. As the band gapmore » decreases with increasing N concentration, the ionization levels of the defects move closer to the valence band. Ga vacancy-type defects are found to act as positron trapping defects in the material, and the ratio of Ga vacancy-type defects to Ga antisites is found to be higher than that of the p-type bulk GaSb substrate. Beside Ga vacancies, the calculated results imply that complexes of a Ga vacancy and nitrogen could be present in the material.« less

  16. Defects in Arsenic Implanted p + -n- and n + -p- Structures Based on MBE Grown CdHgTe Films

    NASA Astrophysics Data System (ADS)

    Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytskyy, H. V.; Świątek, Z.

    2018-02-01

    Complex studies of the defect structure of arsenic-implanted (with the energy of 190 keV) Cd x Hg 1-x Te ( x = 0.22) films grown by molecular-beam epitaxy are carried out. The investigations were performed using secondary-ion mass spectroscopy, transmission electron microscopy, optical reflection in the visible region of the spectrum, and electrical measurements. Radiation donor defects were studied in n +- p- and n +- n-structures obtained by implantation and formed on the basis of p-type and n-type materials, respectively, without activation annealing. It is shown that in the layer of the distribution of implanted ions, a layer of large extended defects with low density is formed in the near-surface region followed by a layer of smaller extended defects with larger density. A different character of accumulation of electrically active donor defects in the films with and without a protective graded-gap surface layer has been revealed. It is demonstrated that p +- n- structures are formed on the basis of n-type material upon activation of arsenic in the process of postimplantation thermal annealing with 100% activation of impurity and complete annihilation of radiation donor defects.

  17. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan

    2018-01-01

    In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.

  18. Defect detection and classification of galvanized stamping parts based on fully convolution neural network

    NASA Astrophysics Data System (ADS)

    Xiao, Zhitao; Leng, Yanyi; Geng, Lei; Xi, Jiangtao

    2018-04-01

    In this paper, a new convolution neural network method is proposed for the inspection and classification of galvanized stamping parts. Firstly, all workpieces are divided into normal and defective by image processing, and then the defective workpieces extracted from the region of interest (ROI) area are input to the trained fully convolutional networks (FCN). The network utilizes an end-to-end and pixel-to-pixel training convolution network that is currently the most advanced technology in semantic segmentation, predicts result of each pixel. Secondly, we mark the different pixel values of the workpiece, defect and background for the training image, and use the pixel value and the number of pixels to realize the recognition of the defects of the output picture. Finally, the defect area's threshold depended on the needs of the project is set to achieve the specific classification of the workpiece. The experiment results show that the proposed method can successfully achieve defect detection and classification of galvanized stamping parts under ordinary camera and illumination conditions, and its accuracy can reach 99.6%. Moreover, it overcomes the problem of complex image preprocessing and difficult feature extraction and performs better adaptability.

  19. Potential implications of the helical heart in congenital heart defects.

    PubMed

    Corno, Antonio F; Kocica, Mladen J

    2007-01-01

    The anatomic and functional observations made by Francisco Torrent-Guasp, in particular his discovery of the helical ventricular myocardial band (HVMB), have challenged what has been taught to cardiologists and cardiac surgeons over centuries. A literature debate is ongoing, with interdependent articles and comments from supporters and critics. Adequate understanding of heart structure and function is obviously indispensable for the decision-making process in congenital heart defects. The HVMB described by Torrent-Guasp and the potential impact on the understanding and treatment of congenital heart defects has been analyzed in the following settings: embryology, ventriculo-arterial discordance (transposition of great arteries), Ebstein's anomaly, pulmonary valve regurgitation after repair of tetralogy of Fallot, Ross operation, and other congenital heart defects. The common structural spiral feature is only one of the elements responsible for the functional interaction of right and left ventricles, and understanding the form/function relationship in congenital heart defects is more difficult than for acquired heart disease because of the variety and complexity of congenital heart defects. Individuals involved in the care of patients with congenital heart defects have to be stimulated to consider further investigations and alternative surgical strategies.

  20. Scale-free crystallization of two-dimensional complex plasmas: Domain analysis using Minkowski tensors

    NASA Astrophysics Data System (ADS)

    Böbel, A.; Knapek, C. A.; Räth, C.

    2018-05-01

    Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes. It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results founded on a solid mathematical framework.

  1. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy

    2013-01-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960

  2. Laparoscopic omentoplasty to support anastomotic urethroplasty in complex and redo pelvic fracture urethral defects.

    PubMed

    Kulkarni, Sanjay B; Barbagli, Guido; Joshi, Pankaj M; Hunter, Craig; Shahrour, Walid; Kulkarni, Jyotsna; Sansalone, Salvatore; Lazzeri, Massimo

    2015-05-01

    To test the hypothesis that a new surgical technique using elaborated perineal anastomotic urethroplasty combined with laparoscopic omentoplasty for patients with complex and prior failed pelvic fracture urethral defect repair was feasible, safe, and effective. We performed a prospective, observational, stage 2a study to observe treatment outcomes of combined perineal and laparoscopic approach for urethroplasty in patients with pelvic fracture urethral defect at a single center in Pune, India, between January 2012 and February 2013. Complex and redo patients with pelvic fracture urethral defect occurring after pelvic fracture urethral injury were included in the study. Anterior urethral strictures were excluded. The primary study outcome was the success rate of the surgical technique, and the secondary outcome was to evaluate feasibility and safety of the procedure. The clinical outcome was considered a failure when any postoperative instrumentation was needed. Fifteen male patients with a median age of 19 years were included in the study. Seven patients were adolescents (12-18 years) and 8 patients (53.3%) were adults (19-49 years). The mean number of prior urethroplasties was 1.8 (range, 1-3). All patients underwent elaborated bulbomembranous anastomosis using a perineal approach with inferior pubectomy combined with laparoscopic mobilization of the omentum into the perineum to envelope the anastomosis and to fill the perineal dead space. Of 15 patients, 14 (93.3%) were successful and 1 (6.6%) failed. One adolescent boy 14 years old developed a recurrent stricture 2 months after the procedure and was managed using internal urethrotomy. Median follow-up was 18 months (range, 13-24 months). Combining a laparoscopic omentoplasty to a membranobulbar anastomosis for complex and redo pelvic fracture urethral injury is successful, feasible, safe, and with minimal additional morbidity to the patient. The technique has the advantage of a perineal incision and the ability to use the omentum to support the anastomosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Reconstruction of posterior neck and skull with vertical trapezius musculocutaneous flap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathes, S.J.; Stevenson, T.R.

    1988-10-01

    The vertical trapezius musculocutaneous flap has been successfully utilized for reconstruction in 13 patients with complex posterior skull and neck defects. This flap based on its vascular pedicle, the descending branch of the transverse cervical artery, provides well-vascularized tissue for coverage of defects related to chronic osteomyelitis, tumor extirpation, osteoradionecrosis, and dehisced cervical laminectomy wounds. Emphasis on flap design, including the location of the skin island, allows adequate wound coverage, direct donor site closure, and muscle function preservation. With its large size and wide arc of rotation, the vertical trapezius musculocutaneous flap provides reliable coverage for posterior trunk, cervical, andmore » skull defects.« less

  4. Native and hydrogen-containing point defects in Mg3N2 : A density functional theory study

    NASA Astrophysics Data System (ADS)

    Lange, Björn; Freysoldt, Christoph; Neugebauer, Jörg

    2010-06-01

    The formation energy and solubility of hydrogen in magnesium nitride bulk (antibixbyite Mg3N2 ) have been studied employing density functional theory in the generalized gradient approximation. The effect of doping and the presence of native defects and complex formation have been taken into account. Our results show that magnesium nitride is a nearly defect-free insulator with insignificant hydrogen-storage capacity. Based on this insight we derive a model that highlights the role of the formation and presence of the parasitic Mg3N2 inclusions in the activation of p -doped GaN in optoelectronic devices.

  5. First-principles calculations of optical transitions at native defects and impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, John L.; Varley, Joel B.; Janotti, Anderson; Van de Walle, Chris G.

    2018-02-01

    Optical spectroscopy is a powerful approach for detecting defects and impurities in ZnO, an important electronic material. However, knowledge of how common optical signals are linked with defects and impurities is still limited. The Cu-related green luminescence is among the best understood luminescence signals, but theoretical descriptions of Cu-related optical processes have not agreed with experiment. Regarding native defects, assigning observed lines to specific defects has proven very difficult. Using first-principles calculations, we calculate the properties of native defects and impurities in ZnO and their associated optical signals. Oxygen vacancies are predicted to give luminescence peaks lower than 1 eV; while related zinc dangling bonds can lead to luminescence near 2.4 eV. Zinc vacancies lead to luminescence peaks below 2 eV, as do the related oxygen dangling bonds. However, when complexed with hydrogen impurities, zinc vacancies can cause higher-energy transitions, up to 2.3 eV. We also find that the Cu-related green luminescence is related to a (+/0) deep donor transition level.

  6. Divacancy-tin related defects in irradiated germanium

    NASA Astrophysics Data System (ADS)

    Khirunenko, L. I.; Sosnin, M. G.; Duvanskii, A. V.; Abrosimov, N. V.; Riemann, H.

    2018-04-01

    A new absorption spectrum has been detected in the region of 770-805 cm-1 following the annealing of low temperature irradiated Sn-doped Ge. The spectrum develops simultaneously with the disappearance of the V2-related absorption band. The new spectra arise both in p- (doping with gallium) and n- (doping with antimony) type samples and are completely identical to the absorption spectrum of the corresponding dopants. The studies have shown that the defects responsible for the registered spectra have hydrogen-like excited states similar to those observed for hydrogen-like group-III acceptors and group-V donors in Ge. The defects are identified as SnV2Ga and SnV2Sb. The formation of the revealed complexes consists of two stages. During the first stage, the defects are created as a result of the direct interaction of SnV2 diffusing upon the annealing with atoms Ga or Sb. The second stage arises, apparently, due to the participation of SnV2 in the formation of intermediate defects that are optically inactive and transform into the revealed defects at annealing temperatures Tann. > 243 K.

  7. Some challenging points in the identification of defects in floating-zone n-type silicon irradiated with 8 and 15 MeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emtsev, V. V., E-mail: emtsev@mail.ioffe.ru; Abrosimov, N. V.; Kozlovskii, V. V.

    2016-10-15

    Electrical properties of defects formed in n-Si(FZ) following 8 and 15 MeV proton irradiation are investigated by Hall effect measurements over the wide temperature range of T ≈ 25 to 300 K. Close attention is paid to the damaging factor of proton irradiation, leaving aside passivation effects by hydrogen. The concept of defect production and annealing processes being accepted in the literature so far needs to be reconsidered. Contrary to expectations the dominant impurity-related defects produced by MeV protons turn out to be electrically neutral in n-type material. Surprisingly, radiation acceptors appear to play a minor role. Annealing studies ofmore » irradiated samples of such complex defects as a divacancy tied to a phosphorus atom and a vacancy tied to two phosphorus atoms. The latter defect features high thermal stability. Identification of the dominant neutral donors, however, remains unclear and will require further, more detailed, studies. The electric properties of the material after proton irradiation can be completely restored at T = 800°C.« less

  8. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.

    PubMed

    Haberstroh, Kathrin; Ritter, Kathrin; Kuschnierz, Jens; Bormann, Kai-Hendrik; Kaps, Christian; Carvalho, Carlos; Mülhaupt, Rolf; Sittinger, Michael; Gellrich, Nils-Claudius

    2010-05-01

    The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from periost (OLP). In a prospective and randomized design nine sheep underwent osteotomy to create four critical-sized calvarial defects. Three animals each were assigned to the HYDR-, the TCP/Col-, or the PLGA-group. In each animal, one defect was treated with a cell-free, an OLB- or OLP-seeded group-specific scaffold, respectively. The fourth defect remained untreated as control (UD). Fourteen weeks later, animals were euthanized for histo-morphometrical analysis of the defect healing. OLB- and OLP-seeded HYDR and OLB-seeded TCP/Col scaffolds significantly increased the amount of newly formed bone (NFB) at the defect bottom and OLP-seeded HYDR also within the scaffold area, whereas PLGA-scaffolds showed lower rates. The relative density of NFB was markedly higher in the HYDR/OLB group compared to the corresponding PLGA group. TCP/Col had good stiffness to prepare complex structures by bioplotting but HYDR and PLGA were very soft. HYDR showed appropriate biodegradation, TCP/Col and PLGA seemed to be nearly undegraded after 14 weeks. 3D-bioplotted, cell-seeded HYDR and TCP/Col scaffolds increased the amount of NFB within ovine critical-size calvarial defects, but stiffness, respectively, biodegradation of materials is not appropriate for the application in cranio-facial surgery and have to be improved further by modifications of the manufacturing process or their material composition. (c) 2010 Wiley Periodicals, Inc.

  9. Sensory classification of table olives using an electronic tongue: Analysis of aqueous pastes and brines.

    PubMed

    Marx, Ítala; Rodrigues, Nuno; Dias, Luís G; Veloso, Ana C A; Pereira, José A; Drunkler, Deisy A; Peres, António M

    2017-01-01

    Table olives are highly appreciated and consumed worldwide. Different aspects are used for trade category classification being the sensory assessment of negative defects present in the olives and brines one of the most important. The trade category quality classification must follow the International Olive Council directives, requiring the organoleptic assessment of defects by a trained sensory panel. However, the training process is a hard, complex and sometimes subjective task, being the low number of samples that can be evaluated per day a major drawback considering the real needs of the olive industry. In this context, the development of electronic tongues as taste sensors for defects' sensory evaluation is of utmost relevance. So, an electronic tongue was used for table olives classification according to the presence and intensity of negative defects. Linear discrimination models were established based on sub-sets of sensor signals selected by a simulated annealing algorithm. The predictive potential of the novel approach was first demonstrated for standard solutions of chemical compounds that mimic butyric, putrid and zapateria defects (≥93% for cross-validation procedures). Then its applicability was verified; using reference table olives/brine solutions samples identified with a single intense negative attribute, namely butyric, musty, putrid, zapateria or winey-vinegary defects (≥93% cross-validation procedures). Finally, the E-tongue coupled with the same chemometric approach was applied to classify table olive samples according to the trade commercial categories (extra, 1 st choice, 2 nd choice and unsuitable for consumption) and an additional quality category (extra free of defects), established based on sensory analysis data. Despite the heterogeneity of the samples studied and number of different sensory defects perceived, the predictive linear discriminant model established showed sensitivities greater than 86%. So, the overall performance achieved showed that the electrochemical device could be used as a taste sensor for table olives organoleptic trade successful classification, allowing a preliminary quality assessment, which could facilitate, in the future, the complex task of sensory panelists. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Intentional defect array wafers: their practical use in semiconductor control and monitoring systems

    NASA Astrophysics Data System (ADS)

    Emami, Iraj; McIntyre, Michael; Retersdorf, Michael

    2003-07-01

    In the competitive world of semiconductor manufacturing today, control of the process and manufacturing equipment is paramount to success of the business. Consistent with the need for rapid development of process technology, is a need for development wiht respect to equipment control including defect metrology tools. Historical control methods for defect metrology tools included a raw count of defects detected on a characterized production or test wafer with little or not regard to the attributes of the detected defects. Over time, these characterized wafers degrade with multiple passes on the tools and handling requiring the tool owner to create and characterize new samples periodically. With the complex engineering software analysis systems used today, there is a strong reliance on the accuracy of defect size, location, and classification in order to provide the best value when correlating the in line to sort type of data. Intentional Defect Array (IDA) wafers were designed and manufacturered at International Sematech (ISMT) in Austin, Texas and is a product of collaboration between ISMT member companies and suppliers of advanced defect inspection equipment. These wafers provide the use with known defect types and sizes in predetermined locations across the entire wafer. The wafers are designed to incorporate several desired flows and use critical dimensions consistent with current and future technology nodes. This paper briefly describes the design of the IDA wafer and details many practical applications in the control of advanced defect inspection equipment.

  11. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  12. Waltzing route toward double-helix formation in cholesteric shells

    NASA Astrophysics Data System (ADS)

    Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa

    2016-08-01

    Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other.

  13. Protection of Nonhuman Primates Against Two Species of Ebola Virus Infection With a Single Complex Adenovirus Vector

    DTIC Science & Technology

    2010-04-01

    glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus -based vector (CAdVax). We evaluated our vaccine ...recombinant complex adenovirus vaccine (CAdVax) system, which provides multivalent protection of NHPs against multiple species of filoviruses (33). The...CAdVax vaccine platform is based on a complex, replication-defective adenovirus 5 (Ad5) vector (28–30, 37, 38) that allows for the incorporation of

  14. Golgi-to-Endoplasmic Reticulum (ER) Retrograde Traffic in Yeast Requires Dsl1p, a Component of the ER Target Site that Interacts with a COPI Coat Subunit

    PubMed Central

    Reilly, Barbara A.; Kraynack, Bryan A.; VanRheenen, Susan M.; Waters, M. Gerard

    2001-01-01

    DSL1 was identified through its genetic interaction with SLY1, which encodes a t-SNARE-interacting protein that functions in endoplasmic reticulum (ER)-to-Golgi traffic. Conditional dsl1 mutants exhibit a block in ER-to-Golgi traffic at the restrictive temperature. Here, we show that dsl1 mutants are defective for retrograde Golgi-to-ER traffic, even under conditions where no anterograde transport block is evident. These results suggest that the primary function of Dsl1p may be in retrograde traffic, and that retrograde defects can lead to secondary defects in anterograde traffic. Dsl1p is an ER-localized peripheral membrane protein that can be extracted from the membrane in a multiprotein complex. Immunoisolation of the complex yielded Dsl1p and proteins of ∼80 and ∼55 kDa. The ∼80-kDa protein has been identified as Tip20p, a protein that others have shown to exist in a tight complex with Sec20p, which is ∼50 kDa. Both Sec20p and Tip20p function in retrograde Golgi-to-ER traffic, are ER-localized, and bind to the ER t-SNARE Ufe1p. These findings suggest that an ER-localized complex of Dsl1p, Sec20p, and Tip20p functions in retrograde traffic, perhaps upstream of a Sly1p/Ufe1p complex. Last, we show that Dsl1p interacts with the δ-subunit of the retrograde COPI coat, Ret2p, and discuss possible roles for this interaction. PMID:11739780

  15. An Assessment of Nondestructive Evaluation Capability for Complex Additive Manufacturing Aerospace Components

    NASA Technical Reports Server (NTRS)

    Walker, James; Beshears, Ron; Lambert, Dennis; Tilson, William

    2016-01-01

    The primary focus of this work is to investigate some of the fundamental relationships between processing, mechanical testing, materials characterization, and NDE for additively manufactured (AM) components using the powder bed fusion direct melt laser sintered process. The goal is to understand the criticality of defects unique to the AM process and then how conventional nondestructive evaluation methods as well as some of the more non-traditional methods such as computed tomography, are effected by the AM material. Specific defects including cracking, porosity and partially/unfused powder will be addressed. Besides line-of-site NDE, as appropriate these inspection capabilities will be put into the context of complex AM geometries where hidden features obscure, or inhibit traditional NDE methods.

  16. In situ transmission electron microscopy He + implantation and thermal aging of nanocrystalline iron

    DOE PAGES

    Muntifering, Brittany R.; Fang, Youwu; Leff, Asher C.; ...

    2016-10-04

    Due to their high density of interfaces, nanostructured material are hypothesized to show a higher tolerance to radiation damage compared to conventional coarse-grained materials and are on interest for use in future nuclear reactors. In order to investigate the roles of vacancies, self-interstitials, and helium during defect accumulation, and the thermal evolution of such defects, a complex set of in situ TEM experiments were performed in nanocrystalline iron.

  17. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    NASA Astrophysics Data System (ADS)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  18. The determination factors of left-right asymmetry disorders- a short review.

    PubMed

    Catana, Andreea; Apostu, Adina Patricia

    2017-01-01

    Laterality defects in humans, situs inversus and heterotaxy, are rare disorders, with an incidence of 1:8000 to 1:10 000 in the general population, and a multifactorial etiology. It has been proved that 1.44/10 000 of all cardiac problems are associated with malformations of left-right asymmetry and heterotaxy accounts for 3% of all congenital heart defects. It is considered that defects of situs appear due to genetic and environmental factors. Also, there is evidence that the ciliopathies (defects of structure or function) are involved in development abnormalities. Over 100 genes have been reported to be involved in left-right patterning in model organisms, but only a few are likely to candidate for left-right asymmetry defects in humans. Left-right asymmetry disorders are genetically heterogeneous and have variable manifestations (from asymptomatic to serious clinical problems). The discovery of the right mechanism of left-right development will help explain the clinical complexity and may contribute to a therapy of these disorders.

  19. Soft tissue reconstruction of the oral cavity: a review of current options.

    PubMed

    Rigby, Matthew H; Taylor, S Mark

    2013-08-01

    This article provides an overview of the principles of soft tissue reconstruction of the oral cavity, and reviews the recent clinical outcomes for described options. For small defects of the oral cavity, healing by secondary intention and primary closure are both excellent options and may provide functionally superior results. In defects where a split-thickness skin graft is appropriate, acellular dermis may provide results that are at least as good at lower cost. Free flaps, particularly the radial forearm and the anterolateral thigh, have become the mainstays of oral cavity soft tissue reconstruction for larger defects. Recent clinical series suggest that relatively novel regional flaps provide a reasonable alternative to free flap reconstructions for moderate and some large soft tissue defects. Soft tissue reconstruction of the oral cavity is a complex task with significant functional implications. There are a large number of reconstructive options available. Systematic appraisal of the defect and options allows the reconstructive surgeon to optimize functional potential by choosing the most appropriate reconstructive option.

  20. Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells

    PubMed Central

    2012-01-01

    With particular focus on bulk heterojunction solar cells incorporating ZnO nanorods, we study how different annealing environments (air or Zn environment) and temperatures impact on the photoluminescence response. Our work gives new insight into the complex defect landscape in ZnO, and it also shows how the different defect types can be manipulated. We have determined the emission wavelengths for the two main defects which make up the visible band, the oxygen vacancy emission wavelength at approximately 530 nm and the zinc vacancy emission wavelength at approximately 630 nm. The precise nature of the defect landscape in the bulk of the nanorods is found to be unimportant to photovoltaic cell performance although the surface structure is more critical. Annealing of the nanorods is optimum at 300°C as this is a sufficiently high temperature to decompose Zn(OH)2 formed at the surface of the nanorods during electrodeposition and sufficiently low to prevent ITO degradation. PMID:23186280

  1. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  2. Electrical Properties of the V-Defects of Epitaxial HgCdTe

    NASA Astrophysics Data System (ADS)

    Novikov, V. A.; Grigoryev, D. V.; Bezrodnyy, D. A.; Voitsekhovskii, A. V.; Dvoretsky, S. A.; Mikhailov, N. N.

    2017-07-01

    The manufacturing process of wide-band-gap matrix photodetector devices and miniaturization of their individual pixels gave rise to increased demands on the material quality and research methods. In the present paper we propose using the methods of atomic-force microscopy to study the local distribution of electrical properties of the V-defects that form in epitaxial films of HgCdTe during their growth process via molecular beam epitaxy. We demonstrate that a complex approach to studying the electrical properties of a predefined region of a V-defect allows one to obtain more detailed information on its properties. Using scanning spreading resistance microscopy, we show that, for a V-defect when the applied bias is increased, the surface area that participates in the process of charge carrier transfer also increases almost linearly. The presence of a potential barrier on the periphery of individual crystal grains that form the V-defect interferes with the flow of current and also affects the distribution of surface potential and capacitive contrast.

  3. Electrical detection and analysis of surface acoustic wave in line-defect two-dimensional piezoelectric phononic crystals

    NASA Astrophysics Data System (ADS)

    Cai, Feida; Li, Honglang; Tian, Yahui; Ke, Yabing; Cheng, Lina; Lou, Wei; He, Shitang

    2018-03-01

    Line-defect piezoelectric phononic crystals (PCs) show good potential applications in surface acoustic wave (SAW) MEMS devices for RF communication systems. To analyze the SAW characteristics in line-defect two-dimensional (2D) piezoelectric PCs, optical methods are commonly used. However, the optical instruments are complex and expensive, whereas conventional electrical methods can only measure SAW transmission of the whole device and lack spatial resolution. In this paper, we propose a new electrical experimental method with multiple receiving interdigital transducers (IDTs) to detect the SAW field distribution, in which an array of receiving IDTs of equal aperture was used to receive the SAW. For this new method, SAW delay lines with perfect and line-defect 2D Al/128°YXLiNbO3 piezoelectric PCs on the transmitting path were designed and fabricated. The experimental results showed that the SAW distributed mainly in the line-defect region, which agrees with the theoretical results.

  4. BAG-6 is essential for selective elimination of defective proteasomal substrates

    PubMed Central

    Minami, Ryosuke; Hayakawa, Atsuko; Kagawa, Hiroki; Yanagi, Yuko; Yokosawa, Hideyoshi

    2010-01-01

    BAG-6/Scythe/BAT3 is a ubiquitin-like protein that was originally reported to be the product of a novel gene located within the human major histocompatibility complex, although the mechanisms of its function remain largely obscure. Here, we demonstrate the involvement of BAG-6 in the degradation of a CL1 model defective protein substrate in mammalian cells. We show that BAG-6 is essential for not only model substrate degradation but also the ubiquitin-mediated metabolism of newly synthesized defective polypeptides. Furthermore, our in vivo and in vitro analysis shows that BAG-6 interacts physically with puromycin-labeled nascent chain polypeptides and regulates their proteasome-mediated degradation. Finally, we show that knockdown of BAG-6 results in the suppressed presentation of MHC class I on the cell surface, a procedure known to be affected by the efficiency of metabolism of defective ribosomal products. Therefore, we propose that BAG-6 is necessary for ubiquitin-mediated degradation of newly synthesized defective polypeptides. PMID:20713601

  5. Repair of segmental bone defects in the maxilla by transport disc distraction osteogenesis: Clinical experience with a new device

    PubMed Central

    Boonzaier, James; Vicatos, George; Hendricks, Rushdi

    2015-01-01

    The bones of the maxillary complex are vital for normal oro-nasal function and facial cosmetics. Maxillary tumor excision results in large defects that commonly include segments of the alveolar and palatine processes, compromising eating, speech and facial appearance. Unlike the conventional approach to maxillary defect repair by vascularized bone grafting, transport disc distraction osteogenesis (TDDO) stimulates new bone by separating the healing callus, and stimulates growth of surrounding soft tissues as well. Bone formed in this way closely mimics the parent bone in form and internal structure, producing a superior anatomical, functional and cosmetic result. Historically, TDDO has been successfully used to close small horizontal cleft defects in the maxilla, not exceeding 25 mm. Fujioka et al. reported in 2012 that “no bone transporter corresponding to the (large) size of the oro-antral fistula is marketed. The authors report the successful treatment of 4 cases involving alveolar defects of between 25 mm and 80 mm in length. PMID:26389041

  6. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Chen, Yan; Feng, Qing-Ling; Zhao, Wei; Yu, Bo; Tian, Jing; Li, Song-Jian; Lin, Bo-Miao

    2011-09-01

    For reconstruction of irregular bone defects, injectable biomaterials are more appropriate than the preformed biomaterials. We herein develop a biomimetic in situ-forming composite consisting of chitosan (CS) and mineralized collagen fibrils (nHAC), which has a complex hierarchical structure similar to natural bone. The CS/nHAC composites with or without mesenchymal stem cells (MSCs) are injected into cancellous bone defects at the distal end of rabbit femurs. Defects are assessed by radiographic, histological diagnosis and Raman microscopy until 12 weeks. The results show that MSCs improve the biocompatibility of CS/nHAC composites and enhance new bone formation in vivo at 12 weeks. It can be concluded that the injectable CS/nHAC composites combined with MSCs may be a novel method for reconstruction of irregular bone defects.

  7. I2 basal stacking fault as a degradation mechanism in reverse gate-biased AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Lang, A. C.; Hart, J. L.; Wen, J. G.; Miller, D. J.; Meyer, D. J.; Taheri, M. L.

    2016-09-01

    Here, we present the observation of a bias-induced, degradation-enhancing defect process in plasma-assisted molecular beam epitaxy grown reverse gate-biased AlGaN/GaN high electron mobility transistors (HEMTs), which is compatible with the current theoretical framework of HEMT degradation. Specifically, we utilize both conventional transmission electron microscopy and aberration-corrected transmission electron microscopy to analyze microstructural changes in not only high strained regions in degraded AlGaN/GaN HEMTs but also the extended gate-drain access region. We find a complex defect structure containing an I2 basal stacking fault and offer a potential mechanism for device degradation based on this defect structure. This work supports the reality of multiple failure mechanisms during device operation and identifies a defect potentially involved with device degradation.

  8. Defect studies in copper-based p-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt to study the effect of the size of the MIII cation in the delafossites starting from Cu2O. Comparison of the formation energies between Cu2O and delafossite oxides clearly showed that the equilibrium concentration of the vacancies depended strongly on the structural parameters varied by the presence of different MIII cations. In particular, the size of the MIII cation greatly influenced the defect formation energies of VCu. It was observed from our calculations, as the size increases the formation energy decreases.

  9. The development and application of composite complexity models and a relative complexity metric in a software maintenance environment

    NASA Technical Reports Server (NTRS)

    Hops, J. M.; Sherif, J. S.

    1994-01-01

    A great deal of effort is now being devoted to the study, analysis, prediction, and minimization of software maintenance expected cost, long before software is delivered to users or customers. It has been estimated that, on the average, the effort spent on software maintenance is as costly as the effort spent on all other software costs. Software design methods should be the starting point to aid in alleviating the problems of software maintenance complexity and high costs. Two aspects of maintenance deserve attention: (1) protocols for locating and rectifying defects, and for ensuring that noe new defects are introduced in the development phase of the software process; and (2) protocols for modification, enhancement, and upgrading. This article focuses primarily on the second aspect, the development of protocols to help increase the quality and reduce the costs associated with modifications, enhancements, and upgrades of existing software. This study developed parsimonious models and a relative complexity metric for complexity measurement of software that were used to rank the modules in the system relative to one another. Some success was achieved in using the models and the relative metric to identify maintenance-prone modules.

  10. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function.

    PubMed

    Lombardi, Maria L; Lammerding, Jan

    2011-12-01

    Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.

  11. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation.

    PubMed

    Rondón, Ana G; Jimeno, Sonia; García-Rubio, María; Aguilera, Andrés

    2003-10-03

    THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1delta, tho2delta, and mft1delta mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1delta mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.

  12. A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation

    PubMed Central

    Neufeld, Thomas P.

    2017-01-01

    Autophagy plays an essential role in the cellular homeostasis of neurons, facilitating the clearance of cellular debris. This clearance process is orchestrated through the assembly, transport, and fusion of autophagosomes with lysosomes for degradation. The motor protein dynein drives autophagosome motility from distal sites of assembly to sites of lysosomal fusion. In this study, we identify the scaffold protein CKA (connector of kinase to AP-1) as essential for autophagosome transport in neurons. Together with other core components of the striatin-interacting phosphatase and kinase (STRIPAK) complex, we show that CKA associates with dynein and directly binds Atg8a, an autophagosomal protein. CKA is a regulatory subunit of PP2A, a component of the STRIPAK complex. We propose that the STRIPAK complex modulates dynein activity. Consistent with this hypothesis, we provide evidence that CKA facilitates axonal transport of dense core vesicles and autophagosomes in a PP2A-dependent fashion. In addition, CKA-deficient flies exhibit PP2A-dependent motor coordination defects. CKA function within the STRIPAK complex is crucial to prevent transport defects that may contribute to neurodegeneration. PMID:28100687

  13. Family of defect-dicubane Ni4Ln2 (Ln = Gd, Tb, Dy, Ho) and Ni4Y2 complexes: rare Tb(III) and Ho(III) examples showing SMM behavior.

    PubMed

    Zhao, Lang; Wu, Jianfeng; Ke, Hongshan; Tang, Jinkui

    2014-04-07

    Reactions of Ln(III) perchlorate (Ln = Gd, Tb, Dy, and Ho), NiCl2·6H2O, and a polydentate Schiff base resulted in the assembly of novel isostructural hexanuclear Ni4Ln2 complexes [Ln = Gd (1), Tb (2), Dy (3), Ho (4)] with an unprecedented 3d-4f metal topology consisting of two defect-dicubane units. The corresponding Ni4Y2 (5) complex containing diamagnetic Y(III) atoms was also isolated to assist the magnetic studies. Interestingly, complexes 2 and 3 exhibit SMM characteristics and 4 shows slow relaxation of the magnetization. The absence of frequency-dependent in-phase and out-of-phase signals for the Ni-Y species suggests that the Ln ions' contribution to the slow relaxation must be effectual as previously observed in other Ni-Dy samples. However, the observation of χ″ signals with zero dc field for the Ni-Tb and Ni-Ho derivatives is notable. Indeed, this is the first time that such a behavior is observed in the Ni-Tb and Ni-Ho complexes.

  14. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table.

    PubMed

    Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker

    2005-08-24

    Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.

  15. Perforator chimerism for the reconstruction of complex defects: A new chimeric free flap classification system.

    PubMed

    Kim, Jeong Tae; Kim, Youn Hwan; Ghanem, Ali M

    2015-11-01

    Complex defects present structural and functional challenges to reconstructive surgeons. When compared to multiple free flaps or staged reconstruction, the use of chimeric flaps to reconstruct such defects have many advantages such as reduced number of operative procedures and donor site morbidity as well as preservation of recipient vessels. With increased popularity of perforator flaps, chimeric flaps' harvest and design has benefited from 'perforator concept' towards more versatile and better reconstruction solutions. This article discusses perforator based chimeric flaps and presents a practice based classification system that incorporates the perforator flap concept into "Perforator Chimerism". The authors analyzed a variety of chimeric patterns used in 31 consecutive cases to present illustrative case series and their new classification system. Accordingly, chimeric flaps are classified into four types. Type I: Classical Chimerism, Type II: Anastomotic Chimerism, Type III: Perforator Chimerism and Type IV Mixed Chimerism. Types I on specific source vessel anatomy whilst Type II requires microvascular anastomosis to create the chimeric reconstructive solution. Type III chimeric flaps utilizes the perforator concept to raise two components of tissues without microvascular anastomosis between them. Type IV chimeric flaps are mixed type flaps comprising any combination of Types I to III. Incorporation of the perforator concept in planning and designing chimeric flaps has allowed safe, effective and aesthetically superior reconstruction of complex defects. The new classification system aids reconstructive surgeons and trainees to understand chimeric flaps design, facilitating effective incorporation of this important reconstructive technique into the armamentarium of the reconstruction toolbox. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Surface Charge-Transfer Doping of Graphene Nanoflakes Containing Double-Vacancy (5-8-5) and Stone-Wales (55-77) Defects through Molecular Adsorption.

    PubMed

    Shakourian-Fard, Mehdi; Jamshidi, Zahra; Kamath, Ganesh

    2016-10-18

    The adsorption of six electron donor-acceptor (D/A) organic molecules on various sizes of graphene nanoflakes (GNFs) containing two common defects, double-vacancy (5-8-5) and Stone-Wales (55-77), are investigated by means of ab initio DFT [M06-2X(-D3)/cc-pVDZ]. Different D/A molecules adsorb on a defect graphene (DG) surface with binding energies (ΔE b ) of about -12 to -28 kcal mol -1 . The ΔE b values for adsorption of molecules on the Stone-Wales GNF surface are higher than those on the double vacancy GNF surface. Moreover, binding energies increase by about 10 % with an increase in surface size. The nature of cooperative weak interactions is analyzed based on quantum theory of atoms in molecules, noncovalent interactions plot, and natural bond order analyses, and the dominant interaction is compared for different molecules. Electron density population analysis is used to explain the n- and p-type character of defect graphene nanoflakes (DGNFs) and also the change in electronic properties and reactivity parameters of DGNFs upon adsorption of different molecules and with increasing DGNF size. Results indicate that the HOMO-LUMO energy gap (E g ) of DGNFs decreases upon adsorption of molecules. However, by increasing the size of DGNFs, the E g and chemical hardness of all complexes decrease and the electrophilicity index increases. Furthermore, the values of the chemical potential of acceptor-DGNF complexes decrease with increasing size, whereas those of donor-DGNF complexes increase. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Steady state and time resolved optical characterization studies of Zn 2SnO 4 nanowires for solar cell applications

    DOE PAGES

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.; ...

    2016-10-25

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires havemore » a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.« less

  18. Carbon-hydrogen-related complexes in Si

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Stübner, R.; Gwozdz, K.; Weber, J.

    2018-04-01

    Several deep level transient spectroscopy (DLTS) peaks (E42, E65, E75, E90, E262, and H180) are observed in n- and p-type Czochralski-grown Si samples subjected to hydrogenation by a dc H plasma treatment. The concentration of the defects is found to be proportional to the carbon and hydrogen content in our samples. The analysis of the depth profiles performed in Si samples hydrogenated by wet chemically etching shows that all these defects contain a single H atom. E65 and E75 appear only in samples with a high oxygen content which shows that oxygen is a constituent of these defects. The analysis of the enhancement of the emission rate of the defects with electric field shows that E65, E75, E90, and E262 are single acceptors whereas E42 is a double acceptor. The presence of a barrier for hole capture (about 53 meV) can explain the absence of the enhancement of the emission rate of H180, which can be attributed to a single acceptor state. From a comparison with theory, we assign E90 to CH1BC, E42 (E262) to CH1AB, and H180 to CH1Td. The similarity of the electrical properties of E65 and E75 to those of E90 suggest that E65 and E75 may originate from the CH1BC defect with an oxygen atom in its nearest neighborhood. Our results on the CH-related complexes give a conclusive explanation of some previously reported controversial experimental data.

  19. Defect-Based Modulation of Optoelectronic Properties for Biofunctionalized Hexagonal Boron Nitride Nanosheets.

    PubMed

    Shakourian-Fard, Mehdi; Heydari, Hadiseh; Kamath, Ganesh

    2017-09-06

    Defect engineering potentially allows for dramatic tuning of the optoelectronic properties of two-dimensional materials. With the help of DFT calculations, a systematic study of DNA nucleobases adsorbed on hexagonal boron-nitride nanoflakes (h-BNNFs) with boron (V B ) and nitrogen (V N ) monovacancies is presented. The presence of V N and V B defects increases the binding strength of nucleobases by 9 and 34 kcal mol -1 , respectively (h-BNNF-V B >h-BNNF-V N >h-BNNF). A more negative electrostatic potential at the V B site makes the h-BNNF-V B surface more reactive than that of h-BNNF-V N , enabling H-bonding interactions with nucleobases. This binding energy difference affects the recovery time-a significant factor for developing DNA biosensors-of the surfaces in the order h-BNNF-V B >h-BNNF-V N >h-BNNF. The presence of V B and V N defect sites increases the electrical conductivity of the h-BNNF surface, V N defects being more favorable than V B sites. The blueshift of absorption peaks of the h-BNNF-V B -nucleobase complexes, in contrast to the redshift observed for h-BNNF-V N -nucleobase complexes, is attributed to their observed differences in binding energies, the HOMO-LUMO energy gap and other optoelectronic properties. Time-dependent DFT calculations reveal that the monovacant boron-nitride-sheet-nucleobase composites absorb visible light in the range 300-800 nm, thus making them suitable for light-emitting devices and sensing nucleobases in the visible region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Steady state and time resolved optical characterization studies of Zn 2SnO 4 nanowires for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires havemore » a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.« less

  1. The Pedicled Latissimus Dorsi Flap Provides Effective Coverage for Large and Complex Soft Tissue Injuries Around the Elbow.

    PubMed

    Hacquebord, Jacques H; Hanel, Douglas P; Friedrich, Jeffrey B

    2017-08-01

    The pedicled latissimus flap has been shown to provide effective coverage of wounds around the elbow with an average size of 100 to 147 cm 2 but with complication rates of 20% to 57%. We believe the pedicled latissimus dorsi flap is an effective and safe technique that provides reliable and durable coverage of considerably larger soft tissue defects around the elbow and proximal forearm. A retrospective review was performed including all patients from Harborview Medical Center between 1998 and 2012 who underwent coverage with pedicled latissimus dorsi flap for defects around the elbow. Demographic information, injury mechanism, soft tissue defect size, complications (minor vs major), and time to surgery were collected. The size of the soft tissue defect, complications, and successful soft tissue coverage were the primary outcome measures. A total of 18 patients were identified with variable mechanisms of injury. Average defect size around the elbow was 422 cm 2 . Three patients had partial necrosis of the distal most aspect of the flap, which was treated conservatively. One patient required a secondary fasciocutaneous flap, and another required conversion to a free latissimus flap secondary to venous congestion. Two were lost to follow-up after discharge from the hospital. In all, 88% (14 of 16) of the patients had documented (>3-month follow-up) successful soft tissue coverage with single-stage pedicled latissimus dorsi flap. The pedicled latissimus dorsi flap is a reliable option for large and complex soft tissue injuries around the elbow significantly larger than previous reports. However, coverage of the proximal forearm remains challenging.

  2. Natural Versus Synthetic Vitamin B Complexes in Human

    ClinicalTrials.gov

    2018-04-12

    Healthy; Thiamine and Niacin Deficiency States; Pyridoxine Deficiency; Folic Acid Deficiency Anemia, Dietary; Vitamin B 12 Deficiency; Peroxidase; Defect; Polyphenols; Oxidative Stress; Homocystine; Metabolic Disorder

  3. Trans-sphenoidal encephalocele in association with Dandy-Walker complex and cardiovascular anomalies.

    PubMed

    Joy, H M; Barker, C S; Small, J H; Armitage, M

    2001-01-01

    We present a case of trans-sphenoidal encephalomeningocele in association with a posterior cranial fossa malformation which fulfils the criteria for the Dandy-Walker complex [1]. Congenital cardiovascular defects were also present. An abnormality of neural crest development may be responsible for the combined occurrence of these anomalies.

  4. Complex torso reconstruction with human acellular dermal matrix: long-term clinical follow-up.

    PubMed

    Nemeth, Nicole L; Butler, Charles E

    2009-01-01

    Although reports have demonstrated good early outcomes with human acellular dermal matrix even when used for complex, contaminated defects, no long-term outcomes have been reported. The authors reviewed the long-term outcomes of 13 patients who had complex torso reconstructions that included human acellular dermal matrix. All patients were at increased risk for mesh-related complications. Eight patients died as a result of progression of their oncologic disease at a mean of 258 days postoperatively. The mean follow-up for the remaining five patients was 43.7 months. Six patients had early complications (none were human acellular dermal matrix-related) and were reported on previously. Two patients had developed complications since the initial report. One patient developed a flap donor-site seroma remote from the reconstruction site, and another developed a recurrent ventral hernia. No patients have required additional surgery for human acellular dermal matrix-related complications. This follow-up report indicates that human acellular dermal matrix repair of large, complex torso defects can result in good long-term outcomes even when patients are at high risk for mesh-related complications.

  5. Independent evolution of functionally exchangeable mitochondrial outer membrane import complexes

    PubMed Central

    Dimmer, Kai S

    2018-01-01

    Assembly and/or insertion of a subset of mitochondrial outer membrane (MOM) proteins, including subunits of the main MOM translocase, require the fungi-specific Mim1/Mim2 complex. So far it was unclear which proteins accomplish this task in other eukaryotes. Here, we show by reciprocal complementation that the MOM protein pATOM36 of trypanosomes is a functional analogue of yeast Mim1/Mim2 complex, even though these proteins show neither sequence nor topological similarity. Expression of pATOM36 rescues almost all growth, mitochondrial biogenesis, and morphology defects in yeast cells lacking Mim1 and/or Mim2. Conversely, co-expression of Mim1 and Mim2 restores the assembly and/or insertion defects of MOM proteins in trypanosomes ablated for pATOM36. Mim1/Mim2 and pATOM36 form native-like complexes when heterologously expressed, indicating that additional proteins are not part of these structures. Our findings indicate that Mim1/Mim2 and pATOM36 are the products of convergent evolution and arose only after the ancestors of fungi and trypanosomatids diverged. PMID:29923829

  6. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    PubMed Central

    van der Crabben, Saskia N.; Hennus, Marije P.; McGregor, Grant A.; Ritter, Deborah I.; Nagamani, Sandesh C.S.; Wells, Owen S.; Harakalova, Magdalena; Chinn, Ivan K.; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M.; Terheggen-Lagro, Suzanne W.; van Lieshout, Stef; van Roosmalen, Markus J.; Renkens, Ivo; Duran, Karen; Nijman, Isaac J.; Kloosterman, Wigard P.; Hennekam, Eric; van Hasselt, Peter M.; Wheeler, David A.; Palecek, Jan J.; Lehmann, Alan R.; Oliver, Antony W.; Pearl, Laurence H.; Plon, Sharon E.; Murray, Johanne M.

    2016-01-01

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood. PMID:27427983

  7. The Neuron-specific Chromatin Regulatory Subunit BAF53b is Necessary for Synaptic Plasticity and Memory

    PubMed Central

    Vogel-Ciernia, Annie; Matheos, Dina P.; Barrett, Ruth M.; Kramár, Enikö; Azzawi, Soraya; Chen, Yuncai; Magnan, Christophe N.; Zeller, Michael; Sylvain, Angelina; Haettig, Jakob; Jia, Yousheng; Tran, Anthony; Dang, Richard; Post, Rebecca J.; Chabrier, Meredith; Babayan, Alex; Wu, Jiang I.; Crabtree, Gerald R.; Baldi, Pierre; Baram, Tallie Z.; Lynch, Gary; Wood, Marcelo A.

    2013-01-01

    Recent exome sequencing studies have implicated polymorphic BAF complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intellectual disabilities and cognitive disorders. However, it is currently unknown how mutations in BAF complexes result in impaired cognitive function. Post mitotic neurons express a neuron specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Mice harboring selective genetic manipulations of BAF53b have severe defects in longterm memory and long-lasting forms of hippocampal synaptic plasticity. We rescued memory impairments in BAF53b mutant mice by reintroducing BAF53b in the adult hippocampus, indicating a role for BAF53b beyond neuronal development. The defects in BAF53b mutant mice appear to derive from alterations in gene expression that produce abnormal postsynaptic components, such as spine structure and function, and ultimately lead to deficits in synaptic plasticity. Our studies provide new insight into the role of dominant mutations in subunits of BAF complexes in human intellectual and cognitive disorders. PMID:23525042

  8. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease.

    PubMed

    van der Crabben, Saskia N; Hennus, Marije P; McGregor, Grant A; Ritter, Deborah I; Nagamani, Sandesh C S; Wells, Owen S; Harakalova, Magdalena; Chinn, Ivan K; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M; Terheggen-Lagro, Suzanne W; van Lieshout, Stef; van Roosmalen, Markus J; Renkens, Ivo; Duran, Karen; Nijman, Isaac J; Kloosterman, Wigard P; Hennekam, Eric; Orange, Jordan S; van Hasselt, Peter M; Wheeler, David A; Palecek, Jan J; Lehmann, Alan R; Oliver, Antony W; Pearl, Laurence H; Plon, Sharon E; Murray, Johanne M; van Haaften, Gijs

    2016-08-01

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood.

  9. QIL1 mutation causes MICOS disassembly and early onset fatal mitochondrial encephalopathy with liver disease

    PubMed Central

    Guarani, Virginia; Jardel, Claude; Chrétien, Dominique; Lombès, Anne; Bénit, Paule; Labasse, Clémence; Lacène, Emmanuelle; Bourillon, Agnès; Imbard, Apolline; Benoist, Jean-François; Dorboz, Imen; Gilleron, Mylène; Goetzman, Eric S; Gaignard, Pauline; Slama, Abdelhamid; Elmaleh-Bergès, Monique; Romero, Norma B; Rustin, Pierre; Ogier de Baulny, Hélène; Paulo, Joao A; Harper, J Wade; Schiff, Manuel

    2016-01-01

    Previously, we identified QIL1 as a subunit of mitochondrial contact site (MICOS) complex and demonstrated a role for QIL1 in MICOS assembly, mitochondrial respiration, and cristae formation critical for mitochondrial architecture (Guarani et al., 2015). Here, we identify QIL1 null alleles in two siblings displaying multiple clinical symptoms of early-onset fatal mitochondrial encephalopathy with liver disease, including defects in respiratory chain function in patient muscle. QIL1 absence in patients’ fibroblasts was associated with MICOS disassembly, abnormal cristae, mild cytochrome c oxidase defect, and sensitivity to glucose withdrawal. QIL1 expression rescued cristae defects, and promoted re-accumulation of MICOS subunits to facilitate MICOS assembly. MICOS assembly and cristae morphology were not efficiently rescued by over-expression of other MICOS subunits in patient fibroblasts. Taken together, these data provide the first evidence of altered MICOS assembly linked with a human mitochondrial disease and confirm a central role for QIL1 in stable MICOS complex formation. DOI: http://dx.doi.org/10.7554/eLife.17163.001 PMID:27623147

  10. Long-term efficacy of biomodeled polymethyl methacrylate implants for orbitofacial defects.

    PubMed

    Groth, Michael J; Bhatnagar, Aparna; Clearihue, William J; Goldberg, Robert A; Douglas, Raymond S

    2006-01-01

    To report the long-term efficacy of custom polymethyl methacrylate implants using high-resolution computed tomographic modeling in the reconstruction of complex orbitofacial defects secondary to trauma. Nine patients with complex orbitofacial bone defects after trauma were evaluated for this retrospective, nonrandomized, noncomparative study. All the patients underwent reconstruction using custom, heat-cured polymethyl methacrylate implants. Patients were followed up postoperatively and evaluated for complications. Nine consecutive patients (5 men and 4 women) aged 28 to 63 years who underwent surgical reconstruction using prefabricated, heat-cured polymethyl methacrylate implants were included in the study. The interval between injury and presentation ranged from 1 month to 40 years. There were no significant complications, including infection, extrusion, or displacement of the implant. In all of the patients, wound healing was uneventful, with antibiotic drugs administered perioperatively. Mean follow-up was 4.3 years from the first visit (range, 6 months to 10 years). Computed tomographic biomodeled, prefabricated, heat-cured polymethyl methacrylate implants are well tolerated in the long term. Their advantages include customized design, long-term biocompatibility, and excellent aesthetic results.

  11. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    DOE PAGES

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...

    2016-04-20

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less

  12. Defect formation energy in pyrochlore: the effect of crystal size

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Ewing, Rodney C.; Becker, Udo

    2014-09-01

    Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.

  13. Ion channeling study of defects in compound crystals using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.

    2014-08-01

    Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.

  14. Paravaginal defect: anatomy, clinical findings, and imaging

    PubMed Central

    Arenholt, Louise T.S.; Pedersen, Bodil Ginnerup; Glavind, Karin; Glavind-Kristensen, Marianne; DeLancey, John O.L.

    2017-01-01

    Introduction and Hypothesis The paravaginal defect has been a topic of active discussion concerning 1) what it is; 2) how to diagnose it; 3) its role in anterior vaginal wall prolapse; and 4) if and how to repair it. The aim of this article is to review the existing literature on the paravaginal defect and to discuss its role in the anterior vaginal wall support system, with an emphasis on anatomy and imaging. Methods Articles related to paravaginal defects were identified through a PUBMED search ending July 1, 2015. Results The support of the anterior vaginal wall is a complex system involving the levator ani muscle, the arcus tendineus fascia pelvis (ATFP), the pubocervical fascia, and the uterosacral/cardinal ligaments. Studies conclude that physical examination is inconsistent in detecting paravaginal defects. Ultrasound (US) and magnetic resonance imaging (MRI) have been used to describe patterns in the appearance of the vagina and bladder when a paravaginal defect is suspected. Different terms have been used (e.g. “sagging of bladder base,” “loss of tenting”), which all represent changes in the support of the pelvic floor but which could be due to both paravaginal defects and levator ani defects. Conclusion Paravaginal support plays a role in the support of the anterior vaginal wall, but we still do not know the degree to which it contributes to the development of prolapse. Both MRI and US are useful in the diagnosis of paravaginal defects, but further studies are needed to evaluate their use. PMID:27640064

  15. Rapid surface defect detection based on singular value decomposition using steel strips as an example

    NASA Astrophysics Data System (ADS)

    Sun, Qianlai; Wang, Yin; Sun, Zhiyi

    2018-05-01

    For most surface defect detection methods based on image processing, image segmentation is a prerequisite for determining and locating the defect. In our previous work, a method based on singular value decomposition (SVD) was used to determine and approximately locate surface defects on steel strips without image segmentation. For the SVD-based method, the image to be inspected was projected onto its first left and right singular vectors respectively. If there were defects in the image, there would be sharp changes in the projections. Then the defects may be determined and located according sharp changes in the projections of each image to be inspected. This method was simple and practical but the SVD should be performed for each image to be inspected. Owing to the high time complexity of SVD itself, it did not have a significant advantage in terms of time consumption over image segmentation-based methods. Here, we present an improved SVD-based method. In the improved method, a defect-free image is considered as the reference image which is acquired under the same environment as the image to be inspected. The singular vectors of each image to be inspected are replaced by the singular vectors of the reference image, and SVD is performed only once for the reference image off-line before detecting of the defects, thus greatly reducing the time required. The improved method is more conducive to real-time defect detection. Experimental results confirm its validity.

  16. Electron-pinned defect-dipoles for high-performance colossal permittivity materials

    NASA Astrophysics Data System (ADS)

    Hu, Wanbiao; Liu, Yun; Withers, Ray L.; Frankcombe, Terry J.; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer

    2013-09-01

    The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO2 rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 104) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that ‘triangular’ In23+VO••Ti3+ and ‘diamond’ shaped Nb25+Ti3+ATi (A  =  Ti3+/In3+/Ti4+) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO2. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

  17. Electron-pinned defect-dipoles for high-performance colossal permittivity materials.

    PubMed

    Hu, Wanbiao; Liu, Yun; Withers, Ray L; Frankcombe, Terry J; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer

    2013-09-01

    The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO₂ rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In₂(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb₂(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO₂. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

  18. Molecular genetic studies in a case series of isolated hypoaldosteronism due to biosynthesis defects or aldosterone resistance.

    PubMed

    Turan, Ihsan; Kotan, Leman Damla; Tastan, Mehmet; Gurbuz, Fatih; Topaloglu, Ali Kemal; Yuksel, Bilgin

    2018-06-01

    Hypoaldosteronism is associated with either insufficient aldosterone production or aldosterone resistance (pseudohypoaldosteronism). Patients with aldosterone defects typically present with similar symptoms and findings, which include failure to thrive, vomiting, hyponatremia, hyperkalemia and metabolic acidosis. Accurate diagnosis of these clinical conditions therefore can be challenging. Molecular genetic analyses can help to greatly clarify this complexity. The aim of this study was to obtain an overview of the clinical and genetic characteristics of patients with aldosterone defects due to biosynthesis defects or aldosterone resistance. We investigated the clinical and molecular genetic features of 8 consecutive patients with a clinical picture of aldosterone defects seen in our clinics during the period of May 2015 through October 2017. We screened CYP11B2 for aldosterone synthesis defects and NR3C2 and the three EnaC subunits (SCNN1A, SCNN1B and SCNN1G) for aldosterone resistance. We found 4 novel and 2 previously reported mutations in the genes CYP11B2, NR3C2, SCNN1A and SCNN1G in 9 affected individuals from 7 unrelated families. Molecular genetic investigations can help confidently diagnose these conditions and clarify the pathogenicity of aldosterone defects. This study may expand the clinical and genetic correlations of defects in aldosterone synthesis or resistance. © 2018 John Wiley & Sons Ltd.

  19. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, W.A.; Brada, M.P.

    1995-06-20

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.

  20. The Gag Cleavage Product, p12, is a Functional Constituent of the Murine Leukemia Virus Pre-Integration Complex

    PubMed Central

    Laham-Karam, Nihay; Selig, Sara; Ehrlich, Marcelo; Bacharach, Eran

    2010-01-01

    The p12 protein is a cleavage product of the Gag precursor of the murine leukemia virus (MLV). Specific mutations in p12 have been described that affect early stages of infection, rendering the virus replication-defective. Such mutants showed normal generation of genomic DNA but no formation of circular forms, which are markers of nuclear entry by the viral DNA. This suggested that p12 may function in early stages of infection but the precise mechanism of p12 action is not known. To address the function and follow the intracellular localization of the wt p12 protein, we generated tagged p12 proteins in the context of a replication-competent virus, which allowed for the detection of p12 at early stages of infection by immunofluorescence. p12 was found to be distributed to discrete puncta, indicative of macromolecular complexes. These complexes were localized to the cytoplasm early after infection, and thereafter accumulated adjacent to mitotic chromosomes. This chromosomal accumulation was impaired for p12 proteins with a mutation that rendered the virus integration-defective. Immunofluorescence demonstrated that intracellular p12 complexes co-localized with capsid, a known constituent of the MLV pre-integration complex (PIC), and immunofluorescence combined with fluorescent in situ hybridization (FISH) revealed co-localization of the p12 proteins with the incoming reverse transcribed viral DNA. Interactions of p12 with the capsid and with the viral DNA were also demonstrated by co-immunoprecipitation. These results imply that p12 proteins are components of the MLV PIC. Furthermore, a large excess of wt PICs did not rescue the defect in integration of PICs derived from mutant p12 particles, demonstrating that p12 exerts its function as part of this complex. Altogether, these results imply that p12 proteins are constituent of the MLV PIC and function in directing the PIC from the cytoplasm towards integration. PMID:21085616

  1. Burden and impact of congenital syndromes and comorbidities among adults with congenital heart disease.

    PubMed

    Bracher, Isabelle; Padrutt, Maria; Bonassin, Francesca; Santos Lopes, Bruno; Gruner, Christiane; Stämpfli, Simon F; Oxenius, Angela; De Pasquale, Gabriella; Seeliger, Theresa; Lüscher, Thomas F; Attenhofer Jost, Christine; Greutmann, Matthias

    2017-08-01

    Our aim was to assess the overall burden of congenital syndromes and non-cardiac comorbidities among adults with congenital heart disease and to assess their impact on circumstances of living and outcomes. Within a cohort of 1725 adults with congenital heart defects (65% defects of moderate or great complexity) followed at a single tertiary care center, congenital syndromes and comorbidities were identified by chart review. Their association with arrhythmias, circumstances of living and survival was analyzed. Within the study cohort, 232 patients (13%) had a genetic syndrome, 51% at least one comorbidity and 23% ≥2 comorbidities. Most prevalent comorbidities were systemic arterial hypertension (11%), thyroid dysfunction (9%), psychiatric disorders (9%), neurologic disorders (7%), chronic lung disease (7%), and previous stroke (6%). In contrast to higher congenital heart defect complexity, the presence of comorbidities had no impact on living circumstances but patients with comorbidities were less likely to work full-time. Atrial arrhythmias were more common among patients with moderate/great disease complexity and those with comorbidities but were less common among patients with congenital syndromes (p<0.01 for all comparisons). Patients with ≥2 comorbidities had lower survival estimates compared to those with ≤1 comorbidity (p=0.013). Congenital syndromes and comorbidities are highly prevalent in adults with congenital heart disease followed at specialist centers and add to the overall complexity of care. The presence of these additional factors has an impact on living circumstances, is associated with arrhythmias and needs to be further explored as prognostic markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Novel magnet-retained prosthetic system for facial reconstruction.

    PubMed

    Ahmed, Mostafa M; Piper, James M; Hansen, Nancy A; Sutton, Alan J; Schmalbach, Cecelia E

    2014-01-01

    Traumatic facial defects negatively impact speech, mastication, deglutition, dental hygiene, and psychosocial well-being. Reconstruction must address restoration of function and aesthetics to provide quality of life. This report describes soft-tissue reconstruction using a novel magnet-retained facial prosthesis without osseointegrated abutments, performed in a patient after traumatic loss of the entire left lower part of the face, including lips, commissure, and mentum. This reconstructive technique successfully addressed the cosmetic defect while also restoring function with respect to speech and oral nutrition. For this reason, magnet-retained facial prosthesis should be added to free tissue transfer and regional flaps as a reasonable option in the reconstructive algorithm for complex soft-tissue defects of the lower face.

  3. Polymer-stabilized liquid crystalline topological defect network for micro-pixelated optical devices

    NASA Astrophysics Data System (ADS)

    Araoka, Fumito; Le, Khoa V.; Fujii, Shuji; Orihara, Hiroshi; Sasaki, Yuji

    2018-02-01

    Spatially and temporally controlled topological defects in nematic liquid crystals (NLCs) are promising for its potential in optical applications. Utilization of self-organization is a key to fabricate complex micro- and nano-structures which are often difficult to obtain by conventional lithographic tools. Using photo-polymerization technique, here we show a polymer-stabilized NLC having a micro-pixelated structure of regularly ordered umbilical defects which are induced by an electric field. Due to the formation of polymer network, the self-organized pattern is kept stable without deterioration. Moreover, the polymer network allows to template other LCs whose optical properties can be tuned with external stimuli such as temperature and electric fields.

  4. Interaction Between a Steady Detonation Wave in Nitromethane and Geometrical Complex Confinement Defects

    NASA Astrophysics Data System (ADS)

    Crouzet, B.; Soulard, L.; Carion, N.; Manczur, P.

    2007-12-01

    Two copper cylinder expansion tests were carried out on nitromethane. They differ from the classical cylinder test in that the liner includes evenly-spaced protruding circular defects. The aim is to study how a detonation front propagating in the liquid explosive interacts with the confining material defects. The subsequent motion of the metal, accelerated by the expanding detonation products, is measured using a range of diagnostic techniques: electrical probes, a rapid framing camera, a glass block associated with a streak camera and velocity laser interferometers. The different experimental records have been examined in the light of previous classical cylinder test measurements, simple 2D theoretical shock polar analysis results and 2D numerical simulations.

  5. Stress-dependence of kinetic transitions at atomistic defects

    NASA Astrophysics Data System (ADS)

    Ball, S. L.; Alexander, K. C.; Schuh, C. A.

    2018-01-01

    The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the Σ5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.

  6. A cAMP-Regulated Chloride Channel in Lymphocytes that is Affected in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Chen, Jennifer H.; Schulman, Howard; Gardner, Phyllis

    1989-02-01

    A defect in regulation of a chloride channel appears to be the molecular basis for cystic fibrosis (CF), a common lethal genetic disease. It is shown here that a chloride channel with kinetic and regulatory properties similar to those described for secretory epithelial cells is present in both T and B lymphocyte cell lines. The regulation of the channels by adenosine 3',5'-monophosphate (cAMP)--dependent protein kinase in transformed B cells from CF patients is defective. Thus, lymphocytes may be an accessible source of CF tissue for study of this defect, for cloning of the chloride channel complex, and for diagnosis of the disease.

  7. Gerbode defect and multivalvular dysfunction: Complex complications in adult congenital heart disease.

    PubMed

    Ruivo, Catarina; Guardado, Joana; Montenegro Sá, Fernando; Saraiva, Fátima; Antunes, Alexandre; Correia, Joana; Morais, João

    2017-07-01

    We report a clinical case of a 40-year-old male with surgically corrected congenital heart disease (CHD) 10 years earlier: closure of ostium primum, mitral annuloplasty, and aortic valve and root surgery. The patient was admitted with acute heart failure. Transesophageal echocardiography (TEE) revealed a dysmorphic and severely incompetent aortic valve, a partial tear of the mitral valve cleft repair and annuloplasty ring dehiscence. A true left ventricular-to-right atrial shunt confirmed a direct Gerbode defect. The authors aim to discuss the diagnostic challenge of adult CHD, namely the key role of TEE on septal defects and valve regurgitations description. © 2017, Wiley Periodicals, Inc.

  8. Annealing kinetics of radiation defects in boron-implanted p-Hg1‑xCdxTe

    NASA Astrophysics Data System (ADS)

    Talipov, Niyaz; Voitsekhovskii, Alexander

    2018-06-01

    The results of studying the annealing kinetics of the radiation-induced donor-type defects in boron implanted p-type Hg1‑x Cd x Te (MCT) are presented. The annealing kinetics of the radiation donor centers depend significantly on the dose of B+ ions, that is on the initial level of structural defects generated in the MCT lattice by ion bombardment. The activation energy E A of annealing of donor defects generated by implantation of B+ ions increases with increasing dose and temperature of the post-implantation heat treatment under the SiO2 cap. The smaller the dose and the higher the initial hole concentration in p-MCT, the lower the temperature of a complete annealing of donor centers, which lies in the range 220–275 °C. In the initial stages of the post-implantation heat treatment, primary donor defects are annealed, and then, more stable secondary impurity-defect complexes are annealed. It was established for the first time that the activation energy of the donor defects annealing in bulk crystals and heteroepitaxial structures of MCT has two clearly pronounced regions: at low temperatures 90–130 °C, E A = 0.06 eV and at Т = 150–250 °C, E A = 0.71–0.86 eV.

  9. The p25 Subunit of the Dynactin Complex is Required for Dynein-Early Endosome Interaction

    DTIC Science & Technology

    2011-01-01

    Recently, spectrin mutations in Drosophila melanogaster have been shown to also cause defective axonal transport and neu- ronal degeneration...A and study showed that in Arp1-RNAi–treated Drosophila S2 cells, although dynactin cannot be fully assembled and vesicle transport is defective...Muresan et al., 2001; Schroer 2004). However, this idea has been under debate recently, mainly because results from a study in Drosophila S2 cells

  10. Problem of quality assurance during metal constructions welding via robotic technological complexes

    NASA Astrophysics Data System (ADS)

    Fominykh, D. S.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.

    2018-05-01

    The problem of minimizing the probability for critical combinations of events that lead to a loss in welding quality via robotic process automation is examined. The problem is formulated, models and algorithms for its solution are developed. The problem is solved by minimizing the criterion characterizing the losses caused by defective products. Solving the problem may enhance the quality and accuracy of operations performed and reduce the losses caused by defective product

  11. Experiences of informational needs and received information following a prenatal diagnosis of congenital heart defect

    PubMed Central

    Bergman, Gunnar; Wadensten, Barbro; Mattsson, Elisabet

    2016-01-01

    Abstract Objective To explore the need for information and what information was actually received following prenatal diagnosis of a congenital heart defect, in a country where termination of pregnancy beyond 22 weeks of gestation is not easily possible because of legal constraints. Methods Twenty‐six Swedish‐speaking pregnant women (n = 14) and partners (n = 12) were consecutively recruited for semi‐structured telephone interviews following the prenatal diagnosis of a congenital heart defect. Data were analyzed using content analysis. Results Although high satisfaction with the specialist information was described, the information was considered overwhelming and complex. Objective, honest, and detailed information about multiple subjects were needed, delivered repeatedly, and supplemented by written information/illustrations. Eighteen respondents had used the Internet to search for information and identified issues involving searching difficulties, low quality, and that it was too complex, insufficient, or unspecific. Those who terminated their pregnancy criticized that there was a lack of information about termination of pregnancy, both from health professionals and online sources, resulting in unanswered questions and unpreparedness. Conclusion Individuals faced with a prenatal diagnosis of a congenital heart defect need individualized and repeated information. These needs are not all adequately met, as individuals are satisfied with the specialist consultation but left with unanswered questions regarding pregnancy termination. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. PMID:26991536

  12. [Clinical and ossification outcome of custom-made hydroxyapatite prothese for large skull defect].

    PubMed

    Hardy, H; Tollard, E; Derrey, S; Delcampe, P; Péron, J-M; Fréger, P; Proust, F

    2012-02-01

    Cranioplasty is an everyday concern in neurosurgery, especially in decompressive craniectomy cases. Our surgical team uses custom-made hydroxyapatite implants for large and/or complex defects. Eight patients had a custom-made prosthesis. Each of them has been reviewed by an independent observer. Each patient described his feeling of satisfaction, using a questionnaire, graduated from "A" (really satisfied) to "D" (unsatisfied). Each of them also underwent a CT-scan (helicoidal acquisition, 0.6mm thick for multiplanar reconstruction) to evaluate qualitatively the ossification graduated from "0" (no ossification) to "5" (continuous ossification). Maximal under-prosthetic bone thickness, intra-prosthetic calcic density were also reported. Supervision delay was 43.7 months [6-99 months], average defect surface was 85.5 cm(2) [27.6-137.6 cm(2)], the craniectomy etiologies were intracranial hypertension (seven patients) and calvarial invasion (one patient). Implant tolerance was reparted in "A" score (50%) and "B" score (50%). Concerning ossification, six patients (75%) had a score of "2" or less and two patients had a score of "3" or "4". Hydroxyapatite custom-made implants for cranioplasty appear to be ideal for good aesthetic and tolerance results, but their ossification is hardly analyzed due to the prosthesis density higher than the bone's density. This is why we recommend them for children and in cases of complex defects such as pterion location. Copyright © 2011. Published by Elsevier Masson SAS.

  13. Experiences of informational needs and received information following a prenatal diagnosis of congenital heart defect.

    PubMed

    Carlsson, Tommy; Bergman, Gunnar; Wadensten, Barbro; Mattsson, Elisabet

    2016-06-01

    To explore the need for information and what information was actually received following prenatal diagnosis of a congenital heart defect, in a country where termination of pregnancy beyond 22 weeks of gestation is not easily possible because of legal constraints. Twenty-six Swedish-speaking pregnant women (n = 14) and partners (n = 12) were consecutively recruited for semi-structured telephone interviews following the prenatal diagnosis of a congenital heart defect. Data were analyzed using content analysis. Although high satisfaction with the specialist information was described, the information was considered overwhelming and complex. Objective, honest, and detailed information about multiple subjects were needed, delivered repeatedly, and supplemented by written information/illustrations. Eighteen respondents had used the Internet to search for information and identified issues involving searching difficulties, low quality, and that it was too complex, insufficient, or unspecific. Those who terminated their pregnancy criticized that there was a lack of information about termination of pregnancy, both from health professionals and online sources, resulting in unanswered questions and unpreparedness. Individuals faced with a prenatal diagnosis of a congenital heart defect need individualized and repeated information. These needs are not all adequately met, as individuals are satisfied with the specialist consultation but left with unanswered questions regarding pregnancy termination. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  14. Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Xue, Haizhou; Velisa, Gihan; ...

    2017-06-23

    Single-phase concentrated solid-solution alloys (SP-CSAs) have recently gained unprecedented attention due to their promising properties. To understand effects of alloying elements on irradiation-induced defect production, recombination and evolution, an integrated study of ion irradiation, ion beam analysis and atomistic simulations are carried out on a unique set of model crystals with increasing chemical complexity, from pure Ni to Ni 80Fe 20, Ni 50Fe 50, and Ni 80Cr 20 binaries, and to a more complex Ni 40Fe 40Cr 20 alloy. Both experimental and simulation results suggest that the binary and ternary alloys exhibit higher radiation resistance than elemental Ni. The modelingmore » work predicts that Ni 40Fe 40Cr 20 has the best radiation tolerance, with the number of surviving Frenkel pairs being factors of 2.0 and 1.4 lower than pure Ni and the 80:20 binary alloys, respectively. While the reduced defect mobility in SP-CSAs is identified as a general mechanism leading to slower growth of large defect clusters, the effect of specific alloying elements on suppression of damage accumulation is clearly demonstrated. This work suggests that concentrated solid-solution provides an effective way to enhance radiation tolerance by creating elemental alternation at the atomic level. The demonstrated chemical effects on defect dynamics may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less

  15. Defects in THO/TREX-2 function cause accumulation of novel cytoplasmic mRNP granules that can be cleared by autophagy

    PubMed Central

    Eshleman, Nichole; Liu, Guangbo; McGrath, Kaitlyn; Parker, Roy; Buchan, J. Ross

    2016-01-01

    The nuclear THO and TREX-2 complexes are implicated in several steps of nuclear mRNP biogenesis, including transcription, 3′ end processing and export. In a recent genomic microscopy screen in Saccharomyces cerevisiae for mutants with constitutive stress granules, we identified that absence of THO and TREX-2 complex subunits leads to the accumulation of Pab1-GFP in cytoplasmic foci. We now show that these THO/TREX-2 mutant induced foci (“TT foci”) are not stress granules but instead are a mRNP granule containing poly(A)+ mRNA, some mRNP components also found in stress granules, as well several proteins involved in mRNA 3′ end processing and export not normally seen in stress granules. In addition, TT foci are resistant to cycloheximide-induced disassembly, suggesting the presence of mRNPs impaired for entry into translation. THO mutants also exhibit defects in normal stress granule assembly. Finally, our data also suggest that TT foci are targeted by autophagy. These observations argue that defects in nuclear THO and TREX-2 complexes can affect cytoplasmic mRNP function by producing aberrant mRNPs that are exported to cytosol, where they accumulate in TT foci and ultimately can be cleared by autophagy. This identifies a novel mechanism of quality control for aberrant mRNPs assembled in the nucleus. PMID:27251550

  16. Status of the internal orbit after reduction of zygomaticomaxillary complex fractures.

    PubMed

    Ellis, Edward; Reddy, Likith

    2004-03-01

    We sought to determine the status of the internal orbit before and after reduction of zygomaticomaxillary complex (ZMC) fractures when treated without internal orbital reconstruction. We conducted a retrospective study of preoperative and postoperative computed tomography (CT) scans in 65 patients with unilateral ZMC fractures who were treated by reduction of the ZMC complex without internal orbital reconstruction. The size and location of the internal orbital defects, orbital soft tissue displacement, and orbital volume were assessed in the preoperative and postoperative CT scans. Reduction in the ZMC fractures was considered ideal in 58 of the 65 patients. Only minor malpositions occurred in the remaining 7 patients. The size of the internal orbital defects increased slightly with ZMC reduction but the internal orbital fractures were realigned, and few had increases in orbital volume or soft tissue sagging into the sinuses. Examination of follow-up CT scans in several patients taken weeks to months later showed that the residual defects became smaller and that none of these patients had an increase in orbital volume or soft tissue sagging. The preoperative CT scan can be used to assess the amount of internal orbital disruption for purposes of developing a treatment plan in patients with ZMC fractures. When there is minimal or no soft tissue herniation and minimal disruption of the internal orbit, ZMC reduction is adequate treatment.

  17. Parental overprotection and heart-focused anxiety in adults with congenital heart disease.

    PubMed

    Ong, Lephuong; Nolan, Robert P; Irvine, Jane; Kovacs, Adrienne H

    2011-09-01

    The care of adult patients with congenital heart disease (CHD) is challenging from a mental health perspective, as these patients continue to face a variety of biopsychosocial issues that may impact emotional functioning. Despite these issues, there are limited data on the psychosocial functioning of adults with CHD, and there are no data on the impact of parental overprotection on heart-focused anxiety in this patient population. The aim of this study was to examine the relationships between patient recollections of parental overprotection and current heart-focused anxiety in adults with CHD. A cross-sectional sample of 190 adult patients with CHD (51% male; mean age = 32.28, SD = 11.86 years) completed validated measures of perceived parental overprotection (Parental Bonding Instrument) and heart-focused anxiety (Cardiac Anxiety Questionnaire). The results indicated that perceived parental overprotection (β = 0.19, p = 0.02) and heart defect complexity (β = 0.17, p = 0.03) were significantly related to heart-focused anxiety. Contrary to hypotheses, perceived parental overprotection did not vary as a function of heart defect complexity (F (2, 169) = 0.02, p = 0.98). Perceived parental overprotection and heart defect complexity are associated with heart-focused anxiety in adults with congenital heart disease. These results can inform the development of clinical interventions aimed at improving the psychosocial adjustment of this patient population.

  18. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes

    NASA Astrophysics Data System (ADS)

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C.; Shimoni, Olga; Aharonovich, Igor

    2015-03-01

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07510b

  19. Laterality Defects Other Than Situs Inversus Totalis in Primary Ciliary Dyskinesia

    PubMed Central

    Davis, Stephanie D.; Ferkol, Thomas; Dell, Sharon D.; Rosenfeld, Margaret; Olivier, Kenneth N.; Sagel, Scott D.; Milla, Carlos; Zariwala, Maimoona A.; Wolf, Whitney; Carson, Johnny L.; Hazucha, Milan J.; Burns, Kimberlie; Robinson, Blair; Knowles, Michael R.; Leigh, Margaret W.

    2014-01-01

    BACKGROUND: Motile cilia dysfunction causes primary ciliary dyskinesia (PCD), situs inversus totalis (SI), and a spectrum of laterality defects, yet the prevalence of laterality defects other than SI in PCD has not been prospectively studied. METHODS: In this prospective study, participants with suspected PCD were referred to our multisite consortium. We measured nasal nitric oxide (nNO) level, examined cilia with electron microscopy, and analyzed PCD-causing gene mutations. Situs was classified as (1) situs solitus (SS), (2) SI, or (3) situs ambiguus (SA), including heterotaxy. Participants with hallmark electron microscopic defects, biallelic gene mutations, or both were considered to have classic PCD. RESULTS: Of 767 participants (median age, 8.1 years, range, 0.1-58 years), classic PCD was defined in 305, including 143 (46.9%), 125 (41.0%), and 37 (12.1%) with SS, SI, and SA, respectively. A spectrum of laterality defects was identified with classic PCD, including 2.6% and 2.3% with SA plus complex or simple cardiac defects, respectively; 4.6% with SA but no cardiac defect; and 2.6% with an isolated possible laterality defect. Participants with SA and classic PCD had a higher prevalence of PCD-associated respiratory symptoms vs SA control participants (year-round wet cough, P < .001; year-round nasal congestion, P = .015; neonatal respiratory distress, P = .009; digital clubbing, P = .021) and lower nNO levels (median, 12 nL/min vs 252 nL/min; P < .001). CONCLUSIONS: At least 12.1% of patients with classic PCD have SA and laterality defects ranging from classic heterotaxy to subtle laterality defects. Specific clinical features of PCD and low nNO levels help to identify PCD in patients with laterality defects. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00323167; URL: www.clinicaltrials.gov PMID:24577564

  20. Medialis pedis flap in the reconstruction of palmar skin defects of the digits: clarifying the anatomy of the medial plantar artery.

    PubMed

    Rodriguez-Vegas, Manuel

    2014-05-01

    Because of its outstanding texture, bulkiness, pliability and sensory recovery, the medialis pedis is an excellent alternative in the reconstruction of complex volar skin defects of the digits in selected patients. However, the surgical flap anatomy related with the medial plantar artery is still somewhat confusing to the point that the different journal articles and anatomy textbooks and atlases use different terminology and are, to some extent, misleading and/or incomplete. The authors report a clinical series of 15 medialis pedis free flaps in the reconstruction of skin defects of the fingers and evaluate their indications in free flap reconstruction of the skin defects of the digits. A review is made of the most relevant journal articles, anatomy textbooks, and atlases that describe the anatomy of the medial plantar artery with a special emphasis on the cutaneous branches that nourish the medialis pedis flap.

  1. Radiation creation of cation defects in alkali halide crystals: Review and today's concept (Review Article)

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Vasil'chenko, E.; Popov, A. I.

    2018-04-01

    Irradiation of alkali halide crystals creates pairs of Frenkel defects both in anion and cation sublattices. However, the particular nonimpact creation mechanisms (related to the decay of different electronic excitations) of cation Frenkel pairs are still unclear. At helium temperatures, there is yet no direct evidences of the creation of stable (long-lived) elemental cation defects. On the other hand, a number of complex structural defects containing cation vacancies and/or interstitials, were detected after irradiation of alkali halides at higher temperatures. Besides already proved mechanism related to the association of H and VK centers into trihalide molecules, the following possibilities of cation interstitial-vacancy pair creation are analyzed as well: (i) a direct decay of cation or anion excitons, (ii) the transformation of anion Frenkel pairs, formed at the decay of anion excitons or e-h recombination, into cation ones.

  2. Site Redistribution, Partial Frozen-in Defect Chemistry, and Electrical Properties of Ba1-x(Zr,Pr)O3-δ.

    PubMed

    Antunes, Isabel; Mikhalev, Sergey; Mather, Glenn Christopher; Kharton, Vladislav Vadimovich; Figueiras, Fábio Gabriel; Alves, Adriana; Rodrigues, Joana; Correia, Maria Rosário; Frade, Jorge Ribeiro; Fagg, Duncan Paul

    2016-09-06

    Changes in nominal composition of the perovskite (ABO3) solid solution Ba1-x(Zr,Pr)O3-δ and adjusted firing conditions at very high temperatures were used to induce structural changes involving site redistribution and frozen-in point defects, as revealed by Raman and photoluminescence spectroscopies. Complementary magnetic measurements allowed quantification of the reduced content of Pr. Weak dependence of oxygen stoichiometry with temperature was obtained by coulometric titration at temperatures below 1000 °C, consistent with a somewhat complex partial frozen-in defect chemistry. Electrical conductivity measurements combined with transport number and Seebeck coefficient measurements showed prevailing electronic transport and also indicated trends expected for partial frozen-in conditions. Nominal Ba deficiency and controlled firing at very high temperatures allows adjustment of structure and partial frozen-in defect chemistry, opening the way to engineer relevant properties for high-temperature electrochemical applications.

  3. Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    The defect responsible for reverse annealing in 2 ohm/cm n(+)/p silicon solar cells was identified. This defect, with energy level at e sub v + 0.30 eV was tentatively identified as a boron oxygen-vacancy complex. Results indicate that its removal could result in significant annealing for 2 ohm/cm and lower resistivity cells at temperatures as low as 200 C. These results were obtained by use of an expression derived from the Shockley-Read-Hall recombination theory which relates measured diffusion length ratios to relative defect concentrations and electron capture cross sections. The relative defect concentrations and one of the required capture cross sections are obtained from Deep Level Transient Spectroscopy. Four additional capture cross sections are obtained using diffusion length data and data from temperature dependent lifetime studied. These calculated results are in reasonable agreement with experimental data.

  4. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  5. Defect controlled magnetism in FeP/graphene/Ni(111)

    PubMed Central

    Bhandary, Sumanta; Eriksson, Olle; Sanyal, Biplab

    2013-01-01

    Spin switching of organometallic complexes by ferromagnetic surfaces is an important topic in the area of molecular nanospintronics. Moreover, graphene has been shown as a 2D surface for physisorption of molecular magnets and strain engineering on graphene can tune the spin state of an iron porphyrin (FeP) molecule from S = 1 to S = 2. Our ab initio density functional calculations suggest that a pristine graphene layer placed between a Ni(111) surface and FeP yields an extremely weak exchange interaction between FeP and Ni whereas the introduction of defects in graphene shows a variety of ferromagnetic and antiferromagnetic exchange interactions. Moreover, these defects control the easy axes of magnetization, strengths of magnetic anisotropy energies and spin-dipolar contributions. Our study suggests a new way of manipulating molecular magnetism by defects in graphene and hence has the potential to be explored in designing spin qubits to realize logic operations in molecular nanospintronics. PMID:24296980

  6. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair

    PubMed Central

    Agarwal, Rachit; García, Andrés J.

    2015-01-01

    Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724

  7. Guiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics.

    PubMed

    Romo-Herrera, Jose M; Terrones, Mauricio; Terrones, Humberto; Meunier, Vincent

    2008-12-23

    Electrical current could be efficiently guided in 2D nanotube networks by introducing specific topological defects within the periodic framework. Using semiempirical transport calculations coupled with Landauer-Buttiker formalism of quantum transport in multiterminal nanoscale systems, we provide a detailed analysis of the processes governing the atomic-scale design of nanotube circuits. We found that when defects are introduced as patches in specific sites, they act as bouncing centers that reinject electrons along specific paths, via a wave reflection process. This type of defects can be incorporated while preserving the 3-fold connectivity of each carbon atom embedded within the graphitic lattice. Our findings open up a new way to explore bottom-up design, at the nanometer scale, of complex nanotube circuits which could be extended to 3D nanosystems and applied in the fabrication of nanoelectronic devices.

  8. Hydrogen-enhanced clusterization of intrinsic defects and impurities in silicon

    NASA Astrophysics Data System (ADS)

    Mukashev, B. N.; Abdullin, Kh. A.; Gorelkinskii, Yu. V.; Tamendarov, M. F.; Tokmoldin, S. Zh

    2001-01-01

    Formation of intrinsic and impurity defect complexes in hydrogenated monocrystalline silicon is studied. Hydrogen was incorporated into samples by different ways: either by proton implantation at 80 and 300 K, or by annealing at 1250°C for 30-60 min in a sealed quartz ampoule containing ∼10 -3 ml of distilled water, or by treatment in hydrogen plasma. Radiation defects were incorporated either during the hydrogen implantation or by additional irradiation with protons or α-particles. The measurements were performed by electron paramagnetic resonance (EPR), deep level transient spectroscopy (DLTS) and infrared absorption (IR) methods. Essential differences of defect formation processes in hydrogenated samples as compared with reference samples were detected. The main reasons responsible for the differences are (i) hydrogen precipitation in a supersaturated solution during thermal treatment; (ii) interaction of hydrogen with defects and impurities and hydrogen-induced formation of defects; (iii) ability of hydrogen to play the role of accelerator of impurities precipitation. These factors result in the formation of vacancy-related, interstitial-related and impurity clusters which are observed only in the presence of hydrogen. The nature of the clusters and possible models of their structure are discussed.

  9. Simulating complex atomistic processes: On-the-fly kinetic Monte Carlo scheme with selective active volumes

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Osetsky, Yury N.; Stoller, Roger E.

    2011-10-01

    An accelerated atomistic kinetic Monte Carlo (KMC) approach for evolving complex atomistic structures has been developed. The method incorporates on-the-fly calculations of transition states (TSs) with a scheme for defining active volumes (AVs) in an off-lattice (relaxed) system. In contrast to conventional KMC models that require all reactions to be predetermined, this approach is self-evolving and any physically relevant motion or reaction may occur. Application of this self-evolving atomistic kinetic Monte Carlo (SEAK-MC) approach is illustrated by predicting the evolution of a complex defect configuration obtained in a molecular dynamics (MD) simulation of a displacement cascade in Fe. Over much longer times, it was shown that interstitial clusters interacting with other defects may change their structure, e.g., from glissile to sessile configuration. The direct comparison with MD modeling confirms the atomistic fidelity of the approach, while the longer time simulation demonstrates the unique capability of the model.

  10. Inhibition of U snRNP assembly by a virus-encoded proteinase.

    PubMed

    Almstead, Laura L; Sarnow, Peter

    2007-05-01

    It has been proposed that defects in the assembly of spliceosomal uridine-rich small nuclear ribonucleoprotein (U snRNP) complexes could account for the death of motor neurons in spinal muscular atrophy (SMA). We discovered that infection of cultured cells with poliovirus results in the specific cleavage of the host factor Gemin3 by a virus-encoded proteinase, 2A(pro). Gemin3 is a component of the macromolecular SMN complex that mediates assembly of U snRNP complexes by aiding the heptameric oligomerization of Sm proteins onto U snRNAs. Using in vitro Sm core assembly assays, we found that lowering the intracellular amounts of Gemin3 by either poliovirus infection or small interfering RNA (siRNA)-mediated knockdown of Gemin3 resulted in reduced assembly of U snRNPs. Immunofluorescence analyses revealed a specific redistribution of Sm proteins from the nucleoplasm to the cytoplasmic periphery of the nucleus in poliovirus-infected cells. We propose that defects in U snRNP assembly may be shared features of SMA and poliomyelitis.

  11. Effect of incorporation of nitrogen atoms in Al2O3 gate dielectric of wide-bandgap-semiconductor MOSFET on gate leakage current and negative fixed charge

    NASA Astrophysics Data System (ADS)

    Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji

    2018-06-01

    We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.

  12. Ultrasonic detection technology based on joint robot on composite component with complex surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Juan; Xu, Chunguang; Zhang, Lan

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order tomore » express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.« less

  13. The bitter taste of infection.

    PubMed

    Prince, Alice

    2012-11-01

    The human innate immune response to pathogens is complex, and it has been difficult to establish the contribution of epithelial signaling in the prevention of upper respiratory tract infection. The prevalence of chronic sinusitis in the absence of systemic immune defects indicates that there may be local defects in innate immunity associated with such mucosal infections. In this issue of the JCI, Cohen and colleagues investigate the role of the bitter taste receptors in airway epithelial cells, and find that these are critical to sensing the presence of invading pathogens.

  14. Changing vacancy balance in ZnO by tuning synthesis between zinc/oxygen lean conditions

    NASA Astrophysics Data System (ADS)

    Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Zubiaga, Asier; Tuomisto, Filip; Kuznetsov, Andrej Yu.

    2010-08-01

    The nature of intrinsic defects in ZnO films grown by metal organic vapor phase epitaxy was studied by positron annihilation and photoluminescence spectroscopy techniques. The supply of Zn and O during the film synthesis was varied by applying different growth temperatures (325-485 °C), affecting decomposition of the metal organic precursors. The microscopic identification of vacancy complexes was derived from a systematic variation in the defect balance in accordance with Zn/O supply trends.

  15. On the monitoring and implications of growing damages caused by manufacturing defects in composite structures

    NASA Astrophysics Data System (ADS)

    Schagerl, M.; Viechtbauer, C.; Hörrmann, S.

    2015-07-01

    Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.

  16. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    PubMed

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.

  17. Classification of maxillectomy defects: a systematic review and criteria necessary for a universal description.

    PubMed

    Bidra, Avinash S; Jacob, Rhonda F; Taylor, Thomas D

    2012-04-01

    Maxillectomy defects are complex and involve a number of anatomic structures. Several maxillectomy defect classifications have been proposed with no universal acceptance among surgeons and prosthodontists. Established criteria for describing the maxillectomy defect are lacking. This systematic review aimed to evaluate classification systems in the available literature, to provide a critical appraisal, and to identify the criteria necessary for a universal description of maxillectomy and midfacial defects. An electronic search of the English language literature between the periods of 1974 and June 2011 was performed by using PubMed, Scopus, and Cochrane databases with predetermined inclusion criteria. Key terms included in the search were maxillectomy classification, maxillary resection classification, maxillary removal classification, maxillary reconstruction classification, midfacial defect classification, and midfacial reconstruction classification. This was supplemented by a manual search of selected journals. After application of predetermined exclusion criteria, the final list of articles was reviewed in-depth to provide a critical appraisal and identify criteria for a universal description of a maxillectomy defect. The electronic database search yielded 261 titles. Systematic application of inclusion and exclusion criteria resulted in identification of 14 maxillectomy and midfacial defect classification systems. From these articles, 6 different criteria were identified as necessary for a universal description of a maxillectomy defect. Multiple deficiencies were noted in each classification system. Though most articles described the superior-inferior extent of the defect, only a small number of articles described the anterior-posterior and medial-lateral extent of the defect. Few articles listed dental status and soft palate involvement when describing maxillectomy defects. No classification system has accurately described the maxillectomy defect, based on criteria that satisfy both surgical and prosthodontic needs. The 6 criteria identified in this systematic review for a universal description of a maxillectomy defect are: 1) dental status; 2) oroantral/nasal communication status; 3) soft palate and other contiguous structure involvement; 4) superior-inferior extent; 5) anterior-posterior extent; and 6) medial-lateral extent of the defect. A criteria-based description appears more objective and amenable for universal use than a classification-based description. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Capacious and programmable multi-liposomal carriers

    NASA Astrophysics Data System (ADS)

    Yaroslavov, Alexander A.; Sybachin, Andrey V.; Zaborova, Olga V.; Migulin, Vasiliy A.; Samoshin, Vyacheslav V.; Ballauff, Matthias; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Menger, Fredric M.

    2015-01-01

    Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes.Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06037g

  19. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

    PubMed

    Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L

    2017-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

  20. Maxillectomy defects: a suggested classification scheme.

    PubMed

    Akinmoladun, V I; Dosumu, O O; Olusanya, A A; Ikusika, O F

    2013-06-01

    The term "maxillectomy" has been used to describe a variety of surgical procedures for a spectrum of diseases involving a diverse anatomical site. Hence, classifications of maxillectomy defects have often made communication difficult. This article highlights this problem, emphasises the need for a uniform system of classification and suggests a classification system which is simple and comprehensive. Articles related to this subject, especially those with specified classifications of maxillary surgical defects were sourced from the internet through Google, Scopus and PubMed using the search terms maxillectomy defects classification. A manual search through available literature was also done. The review of the materials revealed many classifications and modifications of classifications from the descriptive, reconstructive and prosthodontic perspectives. No globally acceptable classification exists among practitioners involved in the management of diseases in the mid-facial region. There were over 14 classifications of maxillary defects found in the English literature. Attempts made to address the inadequacies of previous classifications have tended to result in cumbersome and relatively complex classifications. A single classification that is based on both surgical and prosthetic considerations is most desirable and is hereby proposed.

Top