Calculating background levels for ecological risk parameters in toxic harbor sediment
Leadon, C.J.; McDonnell, T.R.; Lear, J.; Barclift, D.
2007-01-01
Establishing background levels for biological parameters is necessary in assessing the ecological risks from harbor sediment contaminated with toxic chemicals. For chemicals in sediment, the term contaminated is defined as having concentrations above background and significant human health or ecological risk levels. For biological parameters, a site could be considered contaminated if levels of the parameter are either more or less than the background level, depending on the specific parameter. Biological parameters can include tissue chemical concentrations in ecological receptors, bioassay responses, bioaccumulation levels, and benthic community metrics. Chemical parameters can include sediment concentrations of a variety of potentially toxic chemicals. Indirectly, contaminated harbor sediment can impact shellfish, fish, birds, and marine mammals, and human populations. This paper summarizes the methods used to define background levels for chemical and biological parameters from a survey of ecological risk investigations of marine harbor sediment at California Navy bases. Background levels for regional biological indices used to quantify ecological risks for benthic communities are also described. Generally, background stations are positioned in relatively clean areas exhibiting the same physical and general chemical characteristics as nearby areas with contaminated harbor sediment. The number of background stations and the number of sample replicates per background station depend on the statistical design of the sediment ecological risk investigation, developed through the data quality objective (DQO) process. Biological data from the background stations can be compared to data from a contaminated site by using minimum or maximum background levels or comparative statistics. In Navy ecological risk assessments (ERA's), calculated background levels and appropriate ecological risk screening criteria are used to identify sampling stations and sites with contaminated sediments.
USDA-ARS?s Scientific Manuscript database
For many crops government regulations define mycotoxin contamination levels that reflect the primary determinants of quality, value and possible uses of crops. Quality can be raised by lowering the mycotoxin level through a remediation process. In the case of copra, the dried nutmeat of the coconu...
USDA-ARS?s Scientific Manuscript database
For many crops government regulations define mycotoxin contamination levels that represent the primary determinants of quality, value and possible uses of crops. Quality can be raised in some crops by lowering the mycotoxin level through removal of infected products. In the case of copra, the drie...
NASA Technical Reports Server (NTRS)
Fay, M.
1998-01-01
This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).
Ryder, Noah L; Schemel, Christopher F; Jankiewicz, Sean P
2006-03-17
The occurrence of a fire, no matter how small, often exposes objects to significant levels of contamination from the products of combustion. The production and dispersal of these contaminants has been an issue of relevance in the field of fire science for many years, though little work has been done to examine the contamination levels accumulated within an enclosure some time after an incident. This phenomenon is of great importance when considering the consequences associated with even low level contamination of sensitive materials, such as food, pharmaceuticals, clothing, electrical equipment, etc. Not only does such exposure present a localized hazard, but also the shipment of contaminated goods places distant recipients at risk. It is the intent of this paper to use a well-founded computational fluid dynamic (CFD) program, the Fire Dynamics Simulator (FDS), a large eddy simulation (LES) code developed by National Institute of Standards and Technology (NIST), to model smoke dispersion in order to assess the subject of air contamination and post fire surface contamination in a warehouse facility. Measured results are then compared with the results from the FDS model. Two components are examined: the production rate of contaminates and the trajectory of contaminates caused by the forced ventilation conditions. Each plays an important role in determining the extent to which the products of combustion are dispersed and the levels to which products are exposed to the contaminants throughout the enclosure. The model results indicate a good first-order approximation to the measured surface contamination levels. The proper application of the FDS model can provide a cost and time efficient means of evaluating contamination levels within a defined volume.
Lyons, B P; Thain, J E; Stentiford, G D; Hylland, K; Davies, I M; Vethaak, A D
2010-10-01
The use of biological effects tools offer enormous potential to meet the challenges outlined by the European Union Marine Strategy Framework Directive (MSFD) whereby Member States are required to develop a robust set of tools for defining 11 qualitative descriptors of Good Environmental Status (GES), such as demonstrating that "Concentrations of contaminants are at levels not giving rise to pollution effects" (GES Descriptor 8). This paper discusses the combined approach of monitoring chemical contaminant levels, along side biological effect measurements relating to the effect of pollutants, for undertaking assessments of GES across European marine regions. We outline the minimum standards that biological effects tools should meet if they are to be used for defining GES in relation to Descriptor 8 and describe the current international initiatives underway to develop assessment criteria for these biological effects techniques. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Reilly, Timothy J.; Jones, Daniel K.; Focazio, Michael J.; Aquino, Kimberly C.; Carbo, Chelsea L.; Kaufhold, Erika E.; Zinecker, Elizabeth K.; Benzel, William M.; Fisher, Shawn C.; Griffin, Dale W.; Iwanowicz, Luke R.; Loftin, Keith A.; Schill, William B.
2015-10-26
Coastal communities are uniquely vulnerable to sea-level rise (SLR) and severe storms such as hurricanes. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms that could adversely affect the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geological Survey has developed a strategy to define baseline and post-event sediment-bound environmental health (EH) stressors (hereafter referred to as the Sediment-Bound Contaminant Resiliency and Response [SCoRR] strategy). A tiered, multimetric approach will be used to (1) identify and map contaminant sources and potential exposure pathways for human and ecological receptors, (2) define the baseline mixtures of EH stressors present in sediments and correlations of relevance, (3) document post-event changes in EH stressors present in sediments, and (4) establish and apply metrics to quantify changes in coastal resilience associated with sediment-bound contaminants. Integration of this information provides a means to improve assessment of the baseline status of a complex system and the significance of changes in contaminant hazards due to storm-induced (episodic) and SLR (incremental) disturbances. This report describes the purpose and design of the SCoRR strategy and the methods used to construct a decision support tool to identify candidate sampling stations vulnerable to contaminants that may be mobilized by coastal storms.
NASA Technical Reports Server (NTRS)
Bremer, J. C.
1982-01-01
Physical models are developed for establishing criteria to decide on the acceptable contamination level of optical devices in space-borne conditions. Optical systems can be degraded in terms of decreased throughput, i.e., transmissivity or reflectivity, or increases in the total integrated scatter (TIS). Performance losses can be caused by particulate accretion, molecular film accretion, and impact cratering. A quantitative relationship is defined for film thickness and loss of throughput. Formulas are also developed for cases where induced surface defects are larger than the desired viewing wavelengths, or smaller or of the same order of the observed wavelengths. The techniques are used to quantify the degradation of a VUV solar coronagraph, a VUV stellar telescope, and a solar cell due to TIS. Applications are projected for estimating the contamination sensitivity of specific instruments, assessing the contamination hazard from known particulates, or to define clean room standards.
Environmental monitoring of the orbiter payload bay and Orbiter Processing Facilities
NASA Technical Reports Server (NTRS)
Bartelson, D. W.; Johnson, A. M.
1985-01-01
Contamination control in the Orbiter Processing Facility (OPF) is studied. The clean level required in the OPF is generally clean, which means no residue, dirt, debris, or other extraneous contamination; various methods of maintaining this level of cleanliness are described. The monitoring and controlling of the temperature, relative humidity, and air quality in the OPF are examined. Additional modifications to the OPF to improve contamination control are discussed. The methods used to maintain the payload changeout room at a level of visually clean, no particulates are to be detected by the unaided eye, are described. The payload bay (PLB) must sustain the cleanliness level required for the specific Orbiter's mission; the three levels of clean are defined as: (1) standard, (2) sensitive, and (3) high sensitive. The cleaning and inspection verification required to achieve the desired cleanliness level on a variety of PLB surface types are examined.
Remedial Investigation/Feasibility Study (RI/FS) Report, David Global Communications Site. Volume 2
1994-02-23
adequately and prevent continued contamiuation of the groundwater. Groundwater containment systems would inhibit off-site migration of groundwater.) Response...and treatment would inhibit offsite movement of groundwater contamination and serve to remediate subsurface contamination to levels accepted by the...would inhibit oft-site migration of groundwater.) 3. xvii Glossar• of Terms Please define the following: anaerobic dohaloqenatiou - halogen
Silicon materials task of the low cost solar array project, phase 2
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R., Jr.; Blais, P. D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M. H.; Mccormick, J. R.
1977-01-01
The object of phase 2 of this program is to investigate and define the effects of various processes, contaminants and process-contaminant interactions in the performance of terrestrial solar cells. The major effort this quarter was in the areas of crystal growth and thermal processing, comparison of impurity effects in low and high resistivity silicon, modeling the behavior of p-type ingots containing Mo, and C and, quantitative analysis of bulk lifetime and junction degradation effects in contaminated solar cells. The performance of solar cells fabricated on silicon web crystals grown from melts containing about 10 to the 18th power/cu cm of Cr, Mn, Fe, Ni, Ti, and V, respectively were measured. Deep level spectroscopy of metal-contaminated ingots was employed to determine the level and density of recombination centers due to Ti, V, Ni, and Cr.
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.
LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L
2017-06-06
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils
LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.; ...
2017-05-04
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less
A noncontacting scanning photoelectron emission technique for bonding surface cleanliness inspection
NASA Technical Reports Server (NTRS)
Gause, Raymond L.
1989-01-01
Molecular contamination of bonding surfaces can drastically affect the bond strength that can be achieved and therefore the structural integrity and reliability of the bonded part. The presence of thin contaminant films on bonding surfaces can result from inadequate or incomplete cleaning methods, from oxide growth during the time between cleaning (such as grit blasting) and bonding, or from failure to properly protect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition of facility airborne molecules generated by adjacent manufacturing or processing operations. Required cleanliness levels for desired bond performance can be determined by testing to correlate bond strength with contaminant type and quantity, thereby establishing the degree of contamination that can be tolerated based on the strength that is needed. Once the maximum acceptable contaminant level is defined, a method is needed to quantitatively measure the contaminant level on the bonding surface prior to bonding to verify that the surface meets the established cleanliness requirement. A photoelectron emission technique for the nondestructive inspection of various bonding surfaces, both metallic and nonmetallic, to provide quantitative data on residual contaminant levels is described. The technique can be used to scan surfaces at speeds of at least 30 ft/min using a servo system to maintain required sensor to surface spacing. The fundamental operation of the photoelectron emission sensor system is explained and the automated scanning system and computer data acquisition hardware and software are described.
Processes of contaminant accumulation in an Arctic beluga whale population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickie, B.E.; Muir, D.; Kingsley, M.
1995-12-31
As long-lived top predators in marine food chains, marine mammals accumulate high levels of persistent organic contaminants. While arctic marine mammal contaminant concentrations are lower than those from temperate regions, levels are sufficiently high to be a health concern to people who rely on marine mammals as food. Monitoring programs developed to address this problem and to define spatial and temporal trends often are difficult to interpret since tissue contaminant concentrations vary with species, age, sex, reproductive effort, and condition (ie blubber thickness). It can be difficult to relate contaminant concentrations in other environmental compartments to those in marine mammalsmore » since their residues reflect exposure over their entire life, often 20 to 30 years. Contaminant accumulation models for marine mammals enable us to better understand the importance of, and interaction between, factors affecting contaminant accumulation, and can provide a dynamic framework for interpreting contaminant monitoring data. The authors developed two models for the beluga whale (Delphinapterus leucas): one provides a detailed view of processes at the individual level, the other examines population-based processes. The models quantify uptake, release and disposition of organic contaminants over their entire lifespan by incorporating all aspects of life-history. These models are used together to examine impact of a variety of factors on patterns and variability of PCBs found in the West Greenland beluga population (sample size: 696, 729). Factors examined include: energetics, growth, birth rate, lactation, contaminant assimilation and clearance rates, and dietary contaminant concentrations. Results are discussed in relation to the use of marine mammals for monitoring contaminant trends.« less
21 CFR 509.4 - Establishment of tolerances, regulatory limits, and action levels.
Code of Federal Regulations, 2010 CFR
2010-04-01
... a food additive, may be established to define a level of contamination at which a food may be... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Establishment of tolerances, regulatory limits, and action levels. 509.4 Section 509.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...
21 CFR 109.4 - Establishment of tolerances, regulatory limits, and action levels.
Code of Federal Regulations, 2010 CFR
2010-04-01
... a food additive, may be established to define a level of contamination at which a food may be... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Establishment of tolerances, regulatory limits, and action levels. 109.4 Section 109.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...
Chaffee, Bruce W; Lander, Michael J; Christen, Catherine; Redic, Kimberly A
2018-01-01
Purpose The primary aim was to determine if dispensing of cyclophosphamide tablets resulted in accumulated residue on pharmacy counting tools during a simulated outpatient dispensing process. Secondary objectives included determining if cyclophosphamide contamination exceeded a defined threshold level of 1 ng/cm 2 and if a larger number of prescriptions dispensed resulted in increased contamination. Methods Mock prescriptions of 40 cyclophosphamide 50 mg tablets were counted on clean trays in three scenarios using a simulated outpatient pharmacy after assaying five cleaned trays as controls. The three scenarios consisted of five simulated dispensings of one, three, or six prescriptions dispensed per scenario. Wipe samples of trays and spatulas were collected and assayed for all trays, including the five clean trays used as controls. Contamination was defined as an assayed cyclophosphamide level at or above 0.001 ng/cm 2 and levels above 1 ng/cm 2 were considered sufficient to cause risk of human uptake. Mean contamination for each scenario was calculated and compared using one-way analysis of variance. P-values of < 0.05 implied significance. Results Mean cyclophosphamide contamination on trays used to count one, three, and six cyclophosphamide prescriptions was 0.51 ± 0.10 (p=0.0003), 1.02 ± 0.10 (p < 0.0001), and 1.82 ± 0.10 ng/cm 2 (p < 0.0001), respectively. Control trays did not show detectable cyclophosphamide contamination. Increasing the number of prescriptions dispensed from 1 to 3, 1 to 6, and 3 to 6 counts increased contamination by 0.51 ± 0.15 (p = 0.0140), 1.31 + 0.15 (p < 0.0001), and 0.80 ± 0.15 ng/cm 2 (p = 0.0004), respectively. Conclusion Dispensing one or more prescriptions of 40 cyclophosphamide 50 mg tablets contaminates pharmacy counting tools, and an increased number of prescriptions dispensed correlates with increased level of contamination. Counting out three or more prescriptions leads to trays having contamination that surpasses the threshold at which worker exposure may be increased. Pharmacies should consider devoting a separate tray to cyclophosphamide tablets, as cross-contamination could occur with other drugs and the efficacy of decontamination methods is unclear. Employee exposure could be minimized with the use of personal protective equipment, environmental controls, and cleaning trays between uses. Future investigation should assess the extent of drug powder dispersion, the effects of various cleaning methods, and the potential extent of contamination with different oral cytotoxic drugs.
Contamination control program for the Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Barney, Richard D.
1991-01-01
Each of the three state of the art instruments flown aboard NASA's Cosmic Background Explorer (COBE) were designed, fabricated, and integrated using unique contamination control procedures to ensure accurate characterization of the diffuse radiation in the universe. The most stringent surface level cleanliness specifications ever attempted by NASA were required by the Diffuse Infrared Background Experiment (DRIBE) which is located inside a liquid helium cooled dewar along with the Far Infrared Absolute Spectrophotometer (FIRAS). The DRIBE instrument required complex stray radiation suppression that defined a cold primary optical baffle system surface cleanliness level of 100A. The cleanliness levels of the cryogenic FIRAS instrument and the Differential Microwave Radiometer (DMR) which were positioned symmetrically around the dewar were less stringent ranging from 300 to 500A. To achieve these instrument cleanliness levels, the entire flight spacecraft was maintained at level 500A throughout each phase of development. The COBE contamination control program is described along with the difficulties experienced in maintaining the cleanliness quality of personnel and flight hardware throughout instrument assembly.
NASA Technical Reports Server (NTRS)
Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.
1975-01-01
An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.
Weston, Victoria C.; Meurer, William J.; Frederiksen, Shirley M.; Fox, Allison K.; Scott, Phillip A.
2016-01-01
Objectives Cluster randomized trials (CRTs) are increasingly utilized to evaluate quality improvement interventions aimed at healthcare providers. In trials testing emergency department interventions, migration of emergency physicians (EPs) between hospitals is an important concern, as contamination may affect both internal and external validity. We hypothesized that geographically isolating emergency departments would prevent migratory contamination in a CRT designed to increase ED delivery of tPA in stroke (The INSTINCT Trial). Methods INSTINCT was a prospective, cluster randomized, controlled trial. 24 Michigan community hospitals were randomly selected in matched pairs for study. Contamination was defined at the cluster level, with substantial contamination defined a priori as >10% of EPs affected. Non-adherence, total crossover (contamination + non-adherence), migration distance and characteristics were determined. Results 307 emergency physicians were identified at all sites. Overall, 7 (2.3%) changed study sites. 1 moved between control sites, leaving 6 (2.0%) total crossovers. Of these, 2 (0.7%) moved from intervention to control (contamination) and 4 (1.3%) moved from control to intervention (non-adherence). Contamination was observed in 2 of 12 control sites, with 17% and 9% contamination of the total site EP workforce at follow-up, respectively. Average migration distance was 42 miles for all EPs moving in the study and 35 miles for EPs moving from intervention to control sites. Conclusion The mobile nature of emergency physicians should be considered in the design of quality improvement CRTs. Increased reporting of contamination in CRTs is encouraged to clarify thresholds and facilitate CRT design. PMID:25440230
Preston, Todd M; Chesley-Preston, Tara L; Thamke, Joanna N
2014-02-15
Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values >0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km(2) Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R(2)=0.78) than surface water samples (R(2)=0.53). Copyright © 2013 Elsevier B.V. All rights reserved.
Preston, Todd M.; Chesley-Preston, Tara L.; Thamke, Joanna N.
2014-01-01
Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values > 0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km2 Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R2 = 0.78) than surface water samples (R2 = 0.53).
NASA Technical Reports Server (NTRS)
1984-01-01
In order to define ribonuclease contamination, an assay for ribonuclease having picogram level sensitivity was established. In this assay, polycytidylic acid is digested by ribonuclease leading to smaller fragments of poly C that remain soluble after treatment of the sample with perchloric acid and lanthanum acetate. An absorbance measurement at 260 nm of the supernatant from the centrifuged sample measures the ribonuclease. A standard curve is shown. Using this assay procedure, ribonuclease contamination was found to be significant in routine laboratory proteins, in particular, bovine serum albumin, lysozyme, catalase, and cytochrome C. This was confirmed by demonstrating a considerable reduction in this activity in the presence of phosphate buffer since phosphate inhibits ribonuclease. Ribonuclease contamination was not significantly encountered in routine laboratory glassware, plasticware, column surfaces, chromatographic particles, and buffer reagents, including airborne contamination. Some contamination could be introduced by fingerprints, however.
Electric discharge for treatment of trace contaminants
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. J. (Inventor)
1978-01-01
A radio frequency glow discharge reactor is described for removing trace oxidizable contaminants from an oxygen bearing atmosphere. The reaction chamber is defined by an inner metal electrode facing a dielectric backed by an outer conductive electrode. In one embodiment, a conductive liquid forms the conductor of an outer electrode and cools the dielectric. A resonator coupled to a variable radio frequency source generates the high voltages for creating a glow discharge in the chamber at a predetermined pressure whereby the trace contaminants are oxidized into a few simple non-toxic products that may be easily recovered. The corresponding process for removal of trace contaminants from an oxygen-bearing atmosphere with high efficiency independent of the concentration level is also disclosed.
Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K
2016-11-01
French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.
Weston, Victoria C; Meurer, William J; Frederiksen, Shirley M; Fox, Allison K; Scott, Phillip A
2014-12-01
Cluster randomized trials (CRTs) are increasingly used to evaluate quality improvement interventions aimed at health care providers. In trials testing emergency department (ED) interventions, migration of emergency physicians (EPs) between hospitals is an important concern, as contamination may affect both internal and external validity. We hypothesized that geographically isolating EDs would prevent migratory contamination in a CRT designed to increase ED delivery of tissue plasminogen activator (tPA) in stroke (the INSTINCT trial). INSTINCT was a prospective, cluster randomized, controlled trial. Twenty-four Michigan community hospitals were randomly selected in matched pairs for study. Contamination was defined at the cluster level, with substantial contamination defined a priori as greater than 10% of EPs affected. Nonadherence, total crossover (contamination+nonadherence), migration distance, and characteristics were determined. Three hundred seven EPs were identified at all sites. Overall, 7 (2.3%) changed study sites. One moved between control sites, leaving 6 (2.0%) total crossovers. Of these, 2 (0.7%) moved from intervention to control (contamination); and 4 (1.3%) moved from control to intervention (nonadherence). Contamination was observed in 2 of 12 control sites, with 17% and 9% contamination of the total site EP workforce at follow-up, respectively. Average migration distance was 42 miles for all EPs moving in the study and 35 miles for EPs moving from intervention to control sites. The mobile nature of EPs should be considered in the design of quality improvement CRTs. Increased reporting of contamination in CRTs is encouraged to clarify thresholds and facilitate CRT design. Copyright © 2014 Elsevier Inc. All rights reserved.
Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruhlke, J.M.; Galpin, F.L.
1991-12-31
The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less
Ozone contamination in aircraft cabins - Results from GASP data and analyses
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Nastrom, G. D.
1981-01-01
The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.
Ozone contamination in aircraft cabins: Results from GASP data and analyses
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Nastrom, G. D.
1981-01-01
The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.
Environmental magnetic methods for detecting and mapping contaminated sediments in lakes
NASA Astrophysics Data System (ADS)
Boyce, J. I.
2009-05-01
The remediation of contaminated sediments is an urgent environmental priority in the Great Lakes and requires detailed mapping of impacted sediment layer thickness, areal distribution and pollutant levels. Magnetic property measurements of sediment cores from two heavily polluted basins in Lake Ontario (Hamilton Harbour, Frenchman's Bay) show that concentrations of hydrocarbons (PAH) and a number of heavy metals (Pb, As, Ni, Cu, Cr, Zn, Cd, Fe) are strongly correlated with magnetic susceptibility. The magnetic susceptibility contrast between the contaminated sediment and underlying 'pre-colonial' sediments is sufficient to generate a total field anomaly (ca. 2-20 nT) that can be measured with a magnetometer towed above the lake bed. Systematic magnetic surveying (550 line km) of Hamilton Harbour using a towed marine magnetometer clearly identifies a number of well-defined magnetic anomalies that coincide with known accumulations of contaminated lake sediment. When calibrated against in-situ magnetic property measurements, the modeled apparent susceptibility from magnetic survey results can be used to classify the relative contaminant impact levels. The results demonstrate the potential of magnetic property measurements for rapid reconnaissance mapping of large areas of bottom contamination prior to detailed coring and sediment remediation.
Landfill-stimulated iron reduction and arsenic release at the Coakley Superfund Site (NH).
deLemos, Jamie L; Bostick, Benjamin C; Renshaw, Carl E; Stürup, Stefan; Feng, Xiahong
2006-01-01
Arsenic is a contaminant at more than one-third of all Superfund Sites in the United States. Frequently this contamination appearsto resultfrom geochemical processes rather than the presence of a well-defined arsenic source. Here we examine the geochemical processes that regulate arsenic levels at the Coakley Landfill Superfund Site (NH), a site contaminated with As, Cr, Pb, Ni, Zn, and aromatic hydrocarbons. Long-term field observations indicate that the concentrations of most of these contaminants have diminished as a result of treatment by monitored natural attenuation begun in 1998; however, dissolved arsenic levels increased modestly over the same interval. We attribute this increase to the reductive release of arsenic associated with poorly crystalline iron hydroxides within a glaciomarine clay layer within the overburden underlying the former landfill. Anaerobic batch incubations that stimulated iron reduction in the glaciomarine clay released appreciable dissolved arsenic and iron. Field observations also suggest that iron reduction associated with biodegradation of organic waste are partly responsible for arsenic release; over the five-year study period since a cap was emplaced to prevent water flow through the site, decreases in groundwater dissolved benzene concentrations at the landfill are correlated with increases in dissolved arsenic concentrations, consistent with the microbial decomposition of both benzene and other organics, and reduction of arsenic-bearing iron oxides. Treatment of contaminated groundwater increasingly is based on stimulating natural biogeochemical processes to degrade the contaminants. These results indicate that reducing environments created within organic contaminant plumes may release arsenic. In fact, the strong correlation (>80%) between elevated arsenic levels and organic contamination in groundwater systems at Superfund Sites across the United States suggests that arsenic contamination caused by natural degradation of organic contaminants may be widespread.
REMOVAL OF ALACHLOR FROM DRINKING WATER
Alachlor (Lasso) is a pre-emergent herbicide used in the production of corn and soybeans. U.S. EPA has studied control of alachlor in drinking water treatment processes to define treatability before setting maximum contaminant levels and to assist water utilities in selecting con...
Spatio-temporal assessment of food safety risks in Canadian food distribution systems using GIS.
Hashemi Beni, Leila; Villeneuve, Sébastien; LeBlanc, Denyse I; Côté, Kevin; Fazil, Aamir; Otten, Ainsley; McKellar, Robin; Delaquis, Pascal
2012-09-01
While the value of geographic information systems (GIS) is widely applied in public health there have been comparatively few examples of applications that extend to the assessment of risks in food distribution systems. GIS can provide decision makers with strong computing platforms for spatial data management, integration, analysis, querying and visualization. The present report addresses some spatio-analyses in a complex food distribution system and defines influence areas as travel time zones generated through road network analysis on a national scale rather than on a community scale. In addition, a dynamic risk index is defined to translate a contamination event into a public health risk as time progresses. More specifically, in this research, GIS is used to map the Canadian produce distribution system, analyze accessibility to contaminated product by consumers, and estimate the level of risk associated with a contamination event over time, as illustrated in a scenario. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony R.; Romanok, Kristin M.; Wengrowski, Edward W
2015-01-01
A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenico Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.
EVALUATING THE SENSITIVITY OF SCREENING-LEVEL VAPOR INTRUSTION MODELS
Vapor intrusion is defined as the migration of volatile chemicals from the subsurface into overlying buildings. Volatile organic contaminants (VOCs) in soil or ground water can volatilize into soil gas and be transported towards the land surface where it can enter homes or busin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivarson, Kristine A.; Miller, Charles W.; Arola, Craig C.
Groundwater contamination by hexavalent chromium and other nuclear reactor operation-related contaminants has resulted in the need for groundwater remedial actions within the Hanford Site reactor areas (the Hanford Site 100 Area). The large geographic extent of the resultant contaminant plumes requires an extensive level of understanding of the aquifer structure, characteristics, and configuration to support assessment and design of remedial alternatives within the former 100-D, 100-H, and 100-K reactor areas. The authors have prepared two- and three-dimensional depictions of the key subsurface geologic structures at two Hanford Site reactor operable units (100-K and 100-D/H). These depictions, prepared using commercial-off-the-shelf (COTS)more » visualization software, provide a basis for expanding the understanding of groundwater contaminant migration pathways, including identification of geologically-defined preferential groundwater flow pathways. These identified preferential flow pathways support the conceptual site model and help explain both historical and current contaminant distribution and transport. (authors)« less
Assessing groundwater vulnerability to agrichemical contamination in the Midwest US
Burkart, M.R.; Kolpin, D.W.; James, D.E.
1999-01-01
Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and response variables whether they define intrinsic or specific vulnerability. Multivariate statistical analyses are useful for ranking variables critical to estimating water quality responses of interest. Overlay and index methods involve intersecting maps of intrinsic and specific vulnerability properties and indexing the variables by applying appropriate weights. Deterministic models use process-based equations to simulate contaminant transport and are distinguished from the other methods in their potential to predict contaminant transport in both space and time. An example of a one-dimensional leaching model linked to a geographic information system (GIS) to define a regional metamodel for contamination in the Midwest is included.
Zinc is an essential trace element for all living organisms including humans. ecause microbial-based toxicity approaches to assess the changes in ecosystem processes are not well defined for soil application, this laboratory has developed an automated respirometer capable of meas...
High pressure processing and its application to the challenge of virus-contaminated foods
USDA-ARS?s Scientific Manuscript database
High pressure processing (HPP) is an increasingly popular non-thermal food processing technology. Study of HPP’s potential to inactivate foodborne viruses has defined general pressure levels required to inactivate hepatitis A virus, norovirus surrogates, and human norovirus itself within foods such...
Allende, Ana; Castro-Ibáñez, Irene; Lindqvist, Roland; Gil, María Isabel; Uyttendaele, Mieke; Jacxsens, Liesbeth
2017-09-18
A quantitative microbial contamination model of Escherichia coli during primary production of baby spinach was developed. The model included only systematic contamination routes (e.g. soil and irrigation water) and it was used to evaluate the potential impact of weather conditions, agricultural practices as well as bacterial fitness in soil on the E. coli levels present in the crop at harvest. The model can be used to estimate E. coli contamination of baby spinach via irrigation water, via soil splashing due to irrigation water or rain events, and also including the inactivation of E. coli on plants due to solar radiation during a variable time of culturing before harvest. Seasonality, solar radiation and rainfall were predicted to have an important impact on the E. coli contamination. Winter conditions increased E. coli prevalence and levels when compared to spring conditions. As regards agricultural practices, both water quality and irrigation system slightly influenced E. coli levels on baby spinach. The good microbiological quality of the irrigation water (average E. coli counts in positive water samples below 1 log/100mL) could have influenced the differences observed among the tested agricultural practices (water treatment and irrigation system). This quantitative microbial contamination model represents a preliminary framework that assesses the potential impact of different factors and intervention strategies affecting E. coli concentrations at field level. Taking into account that E. coli strains may serve as a surrogate organism for enteric bacterial pathogens, obtained results on E. coli levels on baby spinach may be indicative of the potential behaviour of these pathogens under defined conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of Contaminant-Promoted Ignition in Scuba Equipment and Breathing Gas Delivery Systems
NASA Technical Reports Server (NTRS)
Forsyth, Elliott T.; Durkin, Robert; Beeson, Harold D.
2000-01-01
As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.
Assessment of hygienic quality of some types of cheese sampled from retail outlets.
Prencipe, Vincenza; Migliorati, Giacomo; Matteucci, Osvaldo; Calistri, Paolo; Di Giannatale, Elisabetta
2010-01-01
The authors evaluated the prevalence of Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp. and staphylococcal enterotoxin, in 2,132 samples selected from six types of cheese on the basis of recorded consumption in Italy in 2004. In L. monocytogenes-positive samples the precise level of contamination was determined. To define the physical-chemical characteristics of the selected natural cheeses, the pH values, water activity and sodium chloride content were determined. The results suggest that blue and soft cheeses (Brie, Camembert, Gorgonzola and Taleggio) are more likely to be contaminated with L. monocytogenes. The mean prevalence of L. monocytogenes in the six types of cheese was 2.4% (from 0.2% in Asiago and Crescenza to 6.5% in Taleggio), with contamination levels of up to 460 MPN/g. No presence of Salmonella spp. and E. coli O157 was found in any sample. Staphylococcus enterotoxin was found in 0.6% of the samples examined. Physical and chemical parameter values confirmed that all types of cheese are considered capable of supporting the growth of L. monocytogenes. The study confirmed the need to apply effective control at production and sales levels to reduce the probability of contamination by L. monocytogenes. This micro-organism can attain high levels of contamination in food products, such as cheeses that have a long shelf-life when associated with difficulties of maintaining appropriate storage temperatures in both sales points and in the home.
Andrew, Angeline S; Jewell, David A; Mason, Rebecca A; Whitfield, Michael L; Moore, Jason H; Karagas, Margaret R
2008-04-01
Arsenic exposure impairs development and can lead to cancer, cardiovascular disease, and diabetes. The mechanism underlying these effects remains unknown. Primarily because of geologic sources of contamination, drinking-water arsenic levels are above the current recommended maximum contaminant level of 10 microg/L in the northeastern, western, and north central regions of the United States. We investigated the effects of arsenic exposure, defined by internal biomarkers at levels relevant to the United States and similarly exposed populations, on gene expression. We conducted separate Affymetrix microarray-based genomewide analyses of expression patterns. Peripheral blood lymphocyte samples from 21 controls interviewed (1999-2002) as part of a case-control study in New Hampshire were selected based on high- versus low-level arsenic exposure levels. The biologic functions of the transcripts that showed statistically significant abundance differences between high- and low-arsenic exposure groups included an overrepresentation of genes involved in defense response, immune function, cell growth, apoptosis, regulation of cell cycle, T-cell receptor signaling pathway, and diabetes. Notably, the high-arsenic exposure group exhibited higher levels of several killer cell immunoglobulin-like receptors that inhibit natural killer cell activity. These findings define biologic changes that occur with chronic arsenic exposure in humans and provide leads and potential targets for understanding and monitoring the pathogenesis of arsenic-induced diseases.
Small RNA profiling of low biomass samples: identification and removal of contaminants.
Heintz-Buschart, Anna; Yusuf, Dilmurat; Kaysen, Anne; Etheridge, Alton; Fritz, Joëlle V; May, Patrick; de Beaufort, Carine; Upadhyaya, Bimal B; Ghosal, Anubrata; Galas, David J; Wilmes, Paul
2018-05-14
Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. DNA contamination has been previously reported, yet contamination with RNA is usually considered to be very unlikely due to its inherent instability. Small RNAs (sRNAs) identified in tissues and bodily fluids, such as blood plasma, have implications for physiology and pathology, and therefore the potential to act as disease biomarkers. Thus, the possibility for RNA contaminants demands careful evaluation. Herein, we report on the presence of small RNA (sRNA) contaminants in widely used microRNA extraction kits and propose an approach for their depletion. We sequenced sRNAs extracted from human plasma samples and detected important levels of non-human (exogenous) sequences whose source could be traced to the microRNA extraction columns through a careful qPCR-based analysis of several laboratory reagents. Furthermore, we also detected the presence of artefactual sequences related to these contaminants in a range of published datasets, thereby arguing in particular for a re-evaluation of reports suggesting the presence of exogenous RNAs of microbial and dietary origin in blood plasma. To avoid artefacts in future experiments, we also devise several protocols for the removal of contaminant RNAs, define minimal amounts of starting material for artefact-free analyses, and confirm the reduction of contaminant levels for identification of bona fide sequences using 'ultra-clean' extraction kits. This is the first report on the presence of RNA molecules as contaminants in RNA extraction kits. The described protocols should be applied in the future to avoid confounding sRNA studies.
Using Geographic Information Systems for Exposure Assessment in Environmental Epidemiology Studies
Nuckols, John R.; Ward, Mary H.; Jarup, Lars
2004-01-01
Geographic information systems (GIS) are being used with increasing frequency in environmental epidemiology studies. Reported applications include locating the study population by geocoding addresses (assigning mapping coordinates), using proximity analysis of contaminant source as a surrogate for exposure, and integrating environmental monitoring data into the analysis of the health outcomes. Although most of these studies have been ecologic in design, some have used GIS in estimating environmental levels of a contaminant at the individual level and to design exposure metrics for use in epidemiologic studies. In this article we discuss fundamentals of three scientific disciplines instrumental to using GIS in exposure assessment for epidemiologic studies: geospatial science, environmental science, and epidemiology. We also explore how a GIS can be used to accomplish several steps in the exposure assessment process. These steps include defining the study population, identifying source and potential routes of exposure, estimating environmental levels of target contaminants, and estimating personal exposures. We present and discuss examples for the first three steps. We discuss potential use of GIS and global positioning systems (GPS) in the last step. On the basis of our findings, we conclude that the use of GIS in exposure assessment for environmental epidemiology studies is not only feasible but can enhance the understanding of the association between contaminants in our environment and disease. PMID:15198921
Gibson, Sarah; Sahanggamu, Daniel; Fatmaningrum, Dewi; Curtis, Val; White, Sian
2017-10-01
To examine levels of bacterial contamination in formula feeding bottles in Sidoarjo, East Java, and to assess the preparation practices that may have been responsible. A cross-sectional study was conducted among 92 randomly selected households with children under the age of two who were bottle-fed formula. In each household, we carried out video observation of mothers/caregivers preparing bottles, and examined samples of formula for coliform bacteria and Escherichia coli (E. coli). In-depth interviews were conducted with a subsample of 20 mothers. A total of 88% of the formula feeds were contaminated with total coliforms at a level >10 MPN/ml, and 45% contained E. coli. These feeds were defined as 'unfit for human consumption'. In the video observations, none of the mothers complied with all five WHO-recommended measures of hygienic formula feed preparation. Only two mothers washed their hands with soap prior to formula preparation. Most mothers also failed to clean or sterilise the bottle and clean the preparation area. In-depth interviews confirmed that such suboptimal hygiene practices were common. The high levels of contamination found highlight that bottles are an important faecal-oral exposure pathway resulting from poor hygiene practices during bottle preparation. © 2017 John Wiley & Sons Ltd.
Contamination sources, prevention, and research
USDA-ARS?s Scientific Manuscript database
Contamination is defined as anything other than cotton in cotton lint. Worldwide, contamination is on the rise and plastic contamination has increased at a faster rate than contamination overall. In the U.S., there are many sources of plastic contaminants, such as plastic trash that collects in cott...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony
2015-09-15
Highlights: • A spreadsheet-based risk screening tool for groundwater affected by landfills is presented. • Domenico solute transport equations are used to estimate downgradient contaminant concentrations. • Landfills are categorized as presenting high, moderate or low risks. • Analysis of parameter sensitivity and examples of the method’s application are given. • The method has value to regulators and those considering redeveloping closed landfills. - Abstract: A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenicomore » Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.« less
Assessment of metal contamination in surface sediments from Zhelin Bay, the South China Sea.
Wang, Zhao-Hui; Feng, Jie; Jiang, Tao; Gu, Yang-Guang
2013-11-15
Metals and biogenic elements were analyzed from surface sediments collected from Zhelin Bay in the South China Sea in December 2008. The high concentrations of TOC, TN and BSi indicate the high nutrient level and diatom productivity in Zhelin Bay. The concentrations of metals were generally far lower than the effects-range-low (ERL) values that define pollutant levels. Enrichment factors (EF) and geoaccumulation indices (Igeo) suggest there are pollution levels of Cd, Cu and Zn at some stations. As, Cu, and Pb are potentially biotoxic in some stations. Correlation and principal component analyses indicate that most of the metals primarily originate from natural sources, and from maricultural activities as well. Mariculture contributes considerable Cd and Cu contamination. As and Pb comes primarily from combustion of gasoline and diesel fuel by ships. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dalla Libera, Nico; Fabbri, Paolo; Mason, Leonardo; Piccinini, Leonardo; Pola, Marco
2017-04-01
Arsenic groundwater contamination affects worldwide shallower groundwater bodies. Starting from the actual knowledges around arsenic origin into groundwater, we know that the major part of dissolved arsenic is naturally occurring through the dissolution of As-bearing minerals and ores. Several studies on the shallow aquifers of both the regional Venetian Plain (NE Italy) and the local Drainage Basin to the Venice Lagoon (DBVL) show local high arsenic concentration related to peculiar geochemical conditions, which drive arsenic mobilization. The uncertainty of arsenic spatial distribution makes difficult both the evaluation of the processes involved in arsenic mobilization and the stakeholders' decision about environmental management. Considering the latter aspect, the present study treats the problem of the Natural Background Level (NBL) definition as the threshold discriminating the natural contamination from the anthropogenic pollution. Actually, the UE's Directive 2006/118/EC suggests the procedures and criteria to set up the water quality standards guaranteeing a healthy status and reversing any contamination trends. In addition, the UE's BRIDGE project proposes some criteria, based on the 90th percentile of the contaminant's concentrations dataset, to estimate the NBL. Nevertheless, these methods provides just a statistical NBL for the whole area without considering the spatial variation of the contaminant's concentration. In this sense, we would reinforce the NBL concept using a geostatistical approach, which is able to give some detailed information about the distribution of arsenic concentrations and unveiling zones with high concentrations referred to the Italian drinking water standard (IDWS = 10 µg/liter). Once obtained the spatial information about arsenic distribution, we can apply the 90th percentile methods to estimate some Local NBL referring to every zones with arsenic higher than IDWS. The indicator kriging method was considered because it estimates the spatial distribution of the exceedance probabilities respect some pre-defined thresholds. This approach is largely mentioned in literature to face similar environmental problems. To test the validity of the procedure, we used the dataset from "A.Li.Na" project (founded by the Regional Environmental Agency) that defined regional NBLs of As, Fe, Mn and NH4+ into DBVL's groundwater. Primarily, we defined two thresholds corresponding respectively to the IDWS and the median of the data over the IDWS. These values were decided basing on the dataset's statistical structure and the quality criteria of the GWD 2006/118/EC. Subsequently, we evaluated the spatial distribution of the probability to exceed the defined thresholds using the Indicator kriging. The results highlight different zones with high exceedance probability ranging from 75% to 95% respect both the IDWS and the median value. Considering the geological setting of the DBVL, these probability values correspond with the occurrence of both organic matter and reducing conditions. In conclusion, the spatial prediction of the exceedance probability could be useful to define the areas in which estimate the local NBLs, enhancing the procedure of NBL definition. In that way, the NBL estimation could be more realistic because it considers the spatial distribution of the studied contaminant, distinguishing areas with high natural concentrations from polluted ones.
Phytoremediation: using green plants to clean up contaminate soil, groundwater, and wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negri, M.C.; Hinchman, R.R.; Gatliff, E.G.
1996-07-01
Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds and radioactive compounds in soil or water. Our research includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. A greenhouse experiment on zinc uptakemore » in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known ``hyperaccumulator`` species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.« less
NASA Astrophysics Data System (ADS)
Jones, D. K.
2016-12-01
Human and biotic communities are becoming increasingly vulnerable to sea-level rise and severe storms due to climate change. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms, which could adversely impact the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geological Survey (USGS) has developed spatial screening methods to identify and map contaminant sources and potential exposure pathways for human and ecological receptors. These methods have been applied within the northeastern U.S. to document contaminants of emerging concern, highlight vulnerable communities, and prioritize locations for future sampling campaigns. Integration of this information provides a means to better assess the baseline status of a complex system and the significance of changes in contaminant hazards due to storm-induced (episodic) and sea-level rise (incremental) disturbances. This presentation will provide an overview of a decision support tool developed by the USGS to document contaminants in the environment relative to key receptor populations and historic storm vulnerabilities. The support tool is designed to accommodate a broad array of geologic, land-use, and climatic variables and utilizes public, nationally available data sources to define contaminant sources and storm vulnerabilities. By employing a flexible and adaptable strategy built upon publicly available data, the method can readily be applied to other site selection or landscape evaluation efforts. Examples will be presented including the Sediment-bound Contaminant Resiliency and Response pilot study (see http://toxics.usgs.gov/scorr/), and investigations of endocrine disruption in the Chesapeake Bay. Key limitations and future applications will be discussed in addition to ongoing method developments to accommodate non-coastal disaster scenarios and more refined contaminant definitions.
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-03-30
TRU wastes are those (other than high level waste) contaminated with specified quantities of certain alpha-emitting radionuclides of long half-life and high specific radiotoxicity. TRU waste is defined as /sup 226/Ra isotopic sources and those other materials that, without regard to source or form, are contaminated with transuranic elements with half-lives greater than 20 years, and have TRU alpha contamination greater than 100 nCi/g. RH TRU waste has high beta and gamma radiation levels, up to 30,000 R/hr, and thermal output may be a few hundred watts per container. The radiation levels in most of this remotely handled (RH) TRUmore » waste, however, are below 100 R/hr. Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. This report presents a site by site discussion of RH waste handling, placement, and container data. This is followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that are the most up to date and accurate data available today. 10 tables.« less
NASA Astrophysics Data System (ADS)
Chon, Hyo-Taek
2015-04-01
Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.
Delineating Landfill Leachate Discharge To An Arsenic Contaminated Waterway
Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arseni...
Effectiveness of sheltering in buildings and vehicles for plutonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, R.J.
1990-07-30
The purpose of this paper is to collect and present current knowledge relevant to the protection offered by sheltering against exposure to plutonium particles released to the atmosphere during accidents. For those many contaminants for which effects are linear with the airborne concentration, it is convenient to define a Dose Reduction Factor (DRF). In the past, the DRF has been defined as the ratio of the radiological dose that may be incurred within the shelter to that in the outdoors. As such, it includes the dose through shine from plumes aloft and from material deposited on the surface. For thismore » paper, which is concerned only with the inhalation pathway, the DRF is the ratio of the time-integrated concentration inside the shelter to that outdoors. It is important to note that the range over which effects are linear with concentration may be limited for many contaminants. Examples are when concentrations produce effects that are irreversible, or when concentrations are below effects threshold levels. 71 refs., 4 figs., 8 tabs.« less
Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond
2015-08-01
Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing Groundwater Contamination Vulnerability at Public Water Supply Wells in California
NASA Astrophysics Data System (ADS)
Moran, J. E.; Hudson, B.; Dooher, B. P.; Leif, R.; Eaton, G. F.; Davisson, L.
2001-12-01
The California Aquifer Susceptibility project, sponsored by the California State Water Resources Control Board, uses a probabilistic approach to assess the vulnerability of public water supply wells to contamination by anthropogenic compounds. Sources of contamination to groundwater occur near the earth's surface, and have been present mostly since WWII. Therefore, wells that receive water that has recharged in the recent past are more likely to intercept contaminants transported by advection. The parameters that the study uses to rank wells according to vulnerability are groundwater age dates (using the tritium/helium method), stable isotopes of the water molecule (for water source determination), and analysis of low level Volatile Organic Compounds (VOCs). Results of a pilot project in which 300 public water supply wells were tested for vulnerability will be presented. Basins sampled for the study include the Livermore Valley, Santa Clara Valley, and the Sacramento Basin. Methyl-tertiary-Butyl Ether (MTBE) may be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Low-level detections of other VOCs such as TCE and PCE can give an early warning of a contaminant plume. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and associated contaminants. Examination of these parameters also helps identify 'short circuits', whereby e.g., loss of integrity in well casing allows near surface contamination to reach 'old' (recharged >50 years ago) water. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
Radionuclides in tea and their behaviour in the brewing process.
Zehringer, Markus; Kammerer, Franziska; Wagmann, Michael
2018-06-08
Tea plantations may be strongly affected by radioactive fallout. Tea plantations on the Turkish coast of the Black Sea were heavily contaminated by the fallout from the reactor fire at the Chernobyl nuclear power plant in 1986. Two years later, the contamination level was reduced by about 90%. When tea is brewed, the original contamination in the tea leaves is more or less leached into the tea water. While most of the radiocaesium (60-80%) is washed out by brewing, most of the radiostrontium remains in the leaves (70-80%). In food laws, a dilution factor of 40-50 is considered for tea brewing. Most laws only define limit values for radiocaesium. Radiostrontium is not specially regulated, even though its dose coefficients for ingestion are higher than the corresponding coefficients for radiocaesium. Radiostrontium in tea occurs primarily from global fallout (bomb tests from 1945-1965). Copyright © 2018. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Nalette, Tim; Reiss, Julie; Filburn, Tom; Seery, Thomas; Smith, Fred; Perry, Jay
2005-01-01
A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). System volume is competitive with existing technologies. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated. Progress pertaining to defining system requirements and identifying alternative amine formulations and substrates is presented.
A first report of rare earth elements in northwestern Mediterranean seaweeds.
Squadrone, Stefania; Brizio, Paola; Battuello, Marco; Nurra, Nicola; Sartor, Rocco Mussat; Benedetto, Alessandro; Pessani, Daniela; Abete, Maria Cesarina
2017-09-15
The concentrations of rare earth elements (REE) were determined by ICP-MS in dominant seaweed species, collected from three locations of the northwestern Mediterranean Sea. This is the first study to define levels and patterns of REE in macro algae from these coastal areas. Rare elements are becoming emerging inorganic contaminants in marine ecosystems, due to their worldwide increasing applications in industry, technology, medicine and agriculture. Significant inter-site and interspecies differences were registered, with higher levels of REE in brown and green macro algae than in red seaweeds. Levels of light REE were also observed to be greater compared to heavy REE in all samples. One of the investigated locations (Bergeggi, SV) had higher REE and ΣREE concentrations, probably due to its proximity to an important commercial and touristic harbor, while the other two sites were less affected by anthropogenic contaminations, and showed comparable REE patterns and lower concentrations. Rare earth elements in seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boe, Timothy; Lemieux, Paul; Schultheisz, Daniel
2013-07-01
Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies onmore » the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)« less
NASA Astrophysics Data System (ADS)
Pérez-Sirvent, Carmen; Martinez Sanchez, Maria Jose; Agudo, Ines; Belen Martinez, Lucia; Bech, Jaume
2016-04-01
A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of plants (lettuce, onion and broccoli), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). The experiments were carried out to check the validity of the use of calcareous materials to recover soils contaminated with heavy metals. The aim of this work was to apply a technology for decontamination to ensure that As do not enter into the trophic chain at risky levels and analyze and to assess the risk pre and post operational of the different treatments proposed. The materials used was a soils to be remediated (mining soils) and the materials used for remediation were lime filler and Construction and Demolition Waste (CDW). The plants were cultivated in greenhouse with several types of soil. Five experiments were used, namely, Tc (contaminated soil), T1 (uncontaminated soil (blank soil)), T2 (50% T1 + 50% Tc), T3 (Tc + (25%) lime residues coming from quarries) and T4 (Tc + (25%) residues coming from demolition and construction activities). The entire project involves twenty experiments which were prepared from soils highly contaminated mixed with two types of calcareous materials. The total As content of the soils samples, rhizosphere and vegetable samples, were measured and the translocation factor (TF), which is defined as the ratio of metal concentration in the leaves or shoots to the roots, and the Bioconcentration factor (BCF), which is defined as the ratio of metal concentration in the roots to that in soil were calculated. The use of CDR is shown to be a suitable way for remediating soils contaminated by metals. The methodology permits a revalorization of CDW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichlacz, Paul Louis; Orr, Brennan
2002-08-01
The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual modelsmore » of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers. Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical resistivity data. The ''thick'' aquifer interpretation utilizes colder temperature data and includes a northtrending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The ''thin'' aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility-specific models generally have focused efforts on the upper 250 ft of saturation. Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick, unfractured basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt. A key objective of the DOE water-integration project at the INEEL is to coordinate development of a subregional conceptual model of groundwater flow and contaminant transport that is based on the best available understanding of geologic and hydrologic features. The first step in this process is to compile and summarize the current conceptual models of groundwater flow and contaminant transport at the INEEL that have been developed from extensive geohydrologic studies conducted during the last 50 years.« less
Rochman, Chelsea M; Lewison, Rebecca L; Eriksen, Marcus; Allen, Harry; Cook, Anna-Marie; Teh, Swee J
2014-04-01
The accumulation of plastic debris in pelagic habitats of the subtropical gyres is a global phenomenon of growing concern, particularly with regard to wildlife. When animals ingest plastic debris that is associated with chemical contaminants, they are at risk of bioaccumulating hazardous pollutants. We examined the relationship between the bioaccumulation of hazardous chemicals in myctophid fish associated with plastic debris and plastic contamination in remote and previously unmonitored pelagic habitats in the South Atlantic Ocean. Using a published model, we defined three sampling zones where accumulated densities of plastic debris were predicted to differ. Contrary to model predictions, we found variable levels of plastic debris density across all stations within the sampling zones. Mesopelagic lanternfishes, sampled from each station and analyzed for bisphenol A (BPA), alkylphenols, alkylphenol ethoxylates, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), exhibited variability in contaminant levels, but this variability was not related to plastic debris density for most of the targeted compounds with the exception of PBDEs. We found that myctophid sampled at stations with greater plastic densities did have significantly larger concentrations of BDE#s 183 -209 in their tissues suggesting that higher brominated congeners of PBDEs, added to plastics as flame-retardants, are indicative of plastic contamination in the marine environment. Our results provide data on a previously unsampled pelagic gyre and highlight the challenges associated with characterizing plastic debris accumulation and associated risks to wildlife. Copyright © 2014 Elsevier B.V. All rights reserved.
Sources and Practices Contributing to Soil Contamination
A.S. Knox; A.P. Gamerdinger; D.C. Adriano; R.K. Kolka; D.I. Kaplan
1999-01-01
The term soil contamination can have different connotations because anthropogehic sources of contaminants have affected virtually every natural ecosystem in the world; a commonly held view is that contamination occurs when the soil composition deiiates from the normal composition (Adriano et al., 1997). Other specialists have defined soil pollution as the presence of...
Apitz, Sabine E; Barbanti, Andrea; Bocci, Martina; Carlin, Anna; Montobbio, Laura; Bernstein, Alberto Giulio
2007-07-01
A number of studies carried out in recent years have shown the presence of a wide range of contaminants in the Venice Lagoon. It is important to have a good understanding of the ecological quality of Venice Lagoon sediments in order to 1) define and locate areas where a threat to the environment is present and therefore an intervention is needed (i.e., in situ assessment and management); and 2) define sustainable and environmentally correct ways of managing sediments that are to be dredged for navigational purposes or in relation to other interventions (i.e., ex situ management). This study reports on a critical comparison of chemical quality of sediments in Venice Lagoon and its subregions. Data on the Venice Lagoon were compiled from several studies conducted during the past decade on surface sediment contamination; temporal variation and risks for contaminants at depth were not addressed. The comparison of observed pollutant concentrations with local and internationally used sediment quality guidelines (SQGs) was used as a tool to benchmark different sites and for a tier I (screening) ecological risk assessment. Meaning and relevance of a number of SQGs are discussed, together with the options available for carrying out the comparison with sediment data. The screening of the Venice Lagoon sediment quality is discussed from a risk-assessment perspective and appropriate values for use in an in situ-ex situ management framework are suggested. Although there were some differences depending upon which specific SQGs were applied, different SQGs provided the same general picture of screening risk in Venice Lagoon: Although there are geographic differences, median levels for several contaminants in surface sediments exceeded a number of SQGs. Many contaminants exceed threshold effects SQGs, and Hg exceeds probable effects SQGs in most sub-basins except the southern Lagoon. Venice Lagoon south has the lowest screening risk levels, Venice Lagoon central/north has the highest (and is nearest to the Porto Marghera and Venice City Canals sites). Ranges are high in all areas, therefore any remedial or disposal decision should use site-specific data.
Wildhaber, M.L.; Schmitt, C.J.
1998-01-01
We evaluated the toxic-units model developed by Wildhaber and Schmitt (1996) as a predictor of indices of mean tolerance to pollution (i.e., Lenat, 1993; Hilsenhoff, 1987) and other benthic community indices from Great Lakes sediments containing complex mixtures of environmental contaminants (e.g., polychlorinated biphenyls – PCBs, polycyclic aromatic hydrocarbons – PAHs, pesticides, chlorinated dioxins, and metals). Sediment toxic units were defined as the ratio of the estimated pore-water concentration of a contaminant to its chronic toxicity as estimated by U.S. Environmental Protection Agency Ambient Water Quality Criteria (AWQC) or other applicable standard. The total hazard of a sediment to aquatic life was assessed by summing toxic units for all contaminants quantified. Among the benthic community metrics evaluated, total toxic units were most closely correlated with Lenat's (1993) and Hilsenhoff's (1987) indices of community tolerance (TL and TH, respectively); toxic units accounted for 42% TL and 53% TH of variability in community tolerance as measured by Ponar grabs. In contrast, taxonomic richness and Shannon-Wiener diversity were not correlated (P > 0.05) with toxic units. Substitution of order- or family-level identifications for lowest possible (mostly genus- or species-) level identifications in the calculation of TL and TH indices weakened the relationships with toxic units. Tolerance values based on order- and family-level identifications of benthos for artificial substrate samples were more strongly correlated with toxic units than tolerance values for benthos from Ponar grabs. The ability of the toxic-units model to predict the other two components (i.e., laboratory-measured sediment toxicity and benthic community composition) of the Sediment Quality Triad (SQT) may obviate the need for the SQT in some situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Matthews; Christy Sloop
2012-02-01
Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred tomore » as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 569. The presence and nature of contamination at CAU 569 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. A field investigation will be performed to define any areas where TED exceeds the FAL and to determine whether contaminants of concern are present at the site from other potential releases. The presence and nature of contamination from other types of releases (e.g., excavation, migration, and any potential releases discovered during the investigation) will be evaluated using soil samples collected from biased locations indicating the highest levels of contamination. Appendix A provides a detailed discussion of the DQO methodology and the objectives specific to each study group.« less
Analysis of Environmental Contamination resulting from ...
Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to safe levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illu
Reducing the potential for processing contaminant formation in cereal products.
Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G
2014-05-01
Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue.
Impact of Long-Term Diesel Contamination on Soil Microbial Community Structure
Maphosa, Farai; Morillo, Jose A.; Abu Al-Soud, Waleed; Langenhoff, Alette A. M.; Grotenhuis, Tim; Rijnaarts, Huub H. M.; Smidt, Hauke
2013-01-01
Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation. PMID:23144139
DOE Office of Scientific and Technical Information (OSTI.GOV)
NNSA /NSO
The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker.more » Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations, and step-out sampling to define the extent of contamination, as necessary. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less
Defining acceptable levels for ecological indicators: an approach for considering social values.
Smyth, Robyn L; Watzin, Mary C; Manning, Robert E
2007-03-01
Ecological indicators can facilitate an adaptive management approach, but only if acceptable levels for those indicators have been defined so that the data collected can be interpreted. Because acceptable levels are an expression of the desired state of the ecosystem, the process of establishing acceptable levels should incorporate not just ecological understanding but also societal values. The goal of this research was to explore an approach for defining acceptable levels of ecological indicators that explicitly considers social perspectives and values. We used a set of eight indicators that were related to issues of concern in the Lake Champlain Basin. Our approach was based on normative theory. Using a stakeholder survey, we measured respondent normative evaluations of varying levels of our indicators. Aggregated social norm curves were used to determine the level at which indicator values shifted from acceptable to unacceptable conditions. For seven of the eight indicators, clear preferences were interpretable from these norm curves. For example, closures of public beaches because of bacterial contamination and days of intense algae bloom went from acceptable to unacceptable at 7-10 days in a summer season. Survey respondents also indicated that the number of fish caught from Lake Champlain that could be safely consumed each month was unacceptably low and the number of streams draining into the lake that were impaired by storm water was unacceptably high. If indicators that translate ecological conditions into social consequences are carefully selected, we believe the normative approach has considerable merit for defining acceptable levels of valued ecological system components.
Defining Acceptable Levels for Ecological Indicators: An Approach for Considering Social Values
NASA Astrophysics Data System (ADS)
Smyth, Robyn L.; Watzin, Mary C.; Manning, Robert E.
2007-03-01
Ecological indicators can facilitate an adaptive management approach, but only if acceptable levels for those indicators have been defined so that the data collected can be interpreted. Because acceptable levels are an expression of the desired state of the ecosystem, the process of establishing acceptable levels should incorporate not just ecological understanding but also societal values. The goal of this research was to explore an approach for defining acceptable levels of ecological indicators that explicitly considers social perspectives and values. We used a set of eight indicators that were related to issues of concern in the Lake Champlain Basin. Our approach was based on normative theory. Using a stakeholder survey, we measured respondent normative evaluations of varying levels of our indicators. Aggregated social norm curves were used to determine the level at which indicator values shifted from acceptable to unacceptable conditions. For seven of the eight indicators, clear preferences were interpretable from these norm curves. For example, closures of public beaches because of bacterial contamination and days of intense algae bloom went from acceptable to unacceptable at 7-10 days in a summer season. Survey respondents also indicated that the number of fish caught from Lake Champlain that could be safely consumed each month was unacceptably low and the number of streams draining into the lake that were impaired by storm water was unacceptably high. If indicators that translate ecological conditions into social consequences are carefully selected, we believe the normative approach has considerable merit for defining acceptable levels of valued ecological system components.
Phytoremediation: Using green plants to clean up contaminated soil, groundwater, and wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negri, M.C.; Hinchman, R.R.
1996-05-01
Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds ({open_quotes}organics{close_quotes}), and radioactive compounds in soil or water. Current research at Argonne National Laboratory includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. Amore » greenhouse experiment on zinc uptake in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data from Applied Natural Sciences, Inc. (our CRADA partner), indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known {open_quotes}hyperaccumulator{close_quotes} species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.« less
Study of performance loss of Lyman alpha filters due to chemical contamination
NASA Astrophysics Data System (ADS)
Faye, Delphine; Zhang, Xueyan; Etcheto, Pierre; Auchère, Frédéric
2017-05-01
Observations in the UV and EUV allow many diagnostics of the outer layers of the stars and the Sun so that more and more space telescopes are developed to operate in this fundamental spectral range. However, absorption by residual contaminants coming from polymers outgassing causes critical effects such as loss of signal, spectral shifts, stray light… Thus, a cleanliness and contamination control plan has to be defined to mitigate the risk of damage of sensitive surfaces. In order to specify acceptable cleanliness levels, it is paramount to improve our knowledge and understanding of contamination effects, especially in the UV/EUV range. Therefore, an experimental study has been carried out in collaboration between CNES and IAS, in the frame of the development of the Extreme UV Imager suite for the ESA Solar Orbiter mission; this instrument consists of two High Resolution Imagers and one Full Sun Imager designed for narrow pass-band EUV imaging of the solar corona, and thus very sensitive to contamination. Here, we describe recent results of performance loss measured on representative optical samples. Six narrow pass-band filters, with a multilayer coating designed to select the solar Lyman Alpha emission ray, were contaminated with different amounts of typical chemical species. The transmittance spectra were measured between 100 and 200 nm under high vacuum on the SOLEIL synchrotron beam line. They were compared before and after contamination, and also after a long exposure of the contaminated area to EUV-visible radiations.
Halotolerance and effect of salt on hydrophobicity in hydrocarbon-degrading bacteria.
Longang, Adégilns; Buck, Chris; Kirkwood, Kathlyn M
2016-01-01
Hydrocarbon-contaminated environments often also experience co-contamination with elevated levels of salt. This paper investigates the occurrence of halotolerance among several hydrocarbon-degrading bacteria, as an initial assessment of the importance of salt contamination to bioremediation strategies. Halotolerance was common, but not ubiquitous, among the 12 hydrocarbon-degrading bacteria tested, with many strains growing at up to 75 or 100 g NaCl L(-1) in rich medium. Greater sensitivity to elevated salt concentrations was observed among aromatics degraders compared to saturates degraders, and in defined medium compared to rich medium. Observed effects of high salt concentrations included increased lag times and decreased maximum growth. Many strains exhibited flocculation at elevated salt concentrations, but this did not correlate to any patterns in cell surface hydrophobicity, measured using the Bacterial Adhesion to Hydrocarbon assay. The occurrence of halotolerance in hydrocarbon-degrading bacteria suggests the potential for native microorganisms to contribute to the bioremediation of oil and salt co-contaminated sites, and indicates the need for a better understanding of the relationship between halotolerance and hydrocarbon biodegradation capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Ruskauff
2006-06-01
The Pahute Mesa groundwater flow model supports the FFACO UGTA corrective action strategy objective of providing an estimate of the vertical and horizontal extent of contaminant migration for each CAU in order to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground nuclear testing above background conditions exceeding Safe Drinking Water Act (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also bemore » presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. The FFACO (1996) requires that the contaminant transport model predict the contaminant boundary at 1,000 years and “at a 95% level of confidence.” The Pahute Mesa Phase I flow model described in this report provides, through the flow fields derived from alternative hydrostratigraphic framework models (HFMs) and recharge models, one part of the data required to compute the contaminant boundary. Other components include the simplified source term model, which incorporates uncertainty and variability in the factors that control radionuclide release from an underground nuclear test (SNJV, 2004a), and the transport model with the concomitant parameter uncertainty as described in Shaw (2003). The uncertainty in all the above model components will be evaluated to produce the final contaminant boundary. This report documents the development of the groundwater flow model for the Central and Western Pahute Mesa CAUs.« less
Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Otaki, Joji M
2018-02-14
The pale grass blue butterfly, Zizeeria maha, has been used to evaluate biological impacts of the Fukushima nuclear accident in March 2011. Here, we examined the possibility that butterflies have adapted to be robust in the contaminated environment. Larvae (n = 2432) were obtained from adult butterflies (n = 20) collected from 7 localities with various contamination levels in May 2012, corresponding to the 7th generation after the accident. When the larvae were reared on non-contaminated host plant leaves from Okinawa, the normality rates of natural exposure without artificial irradiation (as an indication of robustness) were high not only in the least contaminated locality but also in the most contaminated localities. The normality rates were similarly obtained when the larvae were reared on non-contaminated leaves with external irradiation or on contaminated leaves from Fukushima to deliver internal irradiation. The normality rate of natural exposure and that of external or internal exposure were correlated, suggesting that radiation resistance (or susceptibility) likely reflects general state of health. The normality rate of external or internal exposure was divided by the relative normality rate of natural exposure, being defined as the resistance value. The resistance value was the highest in the populations of heavily contaminated localities and was inversely correlated with the distance from the Fukushima Dai-ichi nuclear power plant. These results suggest that the butterfly population might have adapted to the contaminated environment within approximately 1 year after the accident. The present study may partly explain the decrease in mortality and abnormality rates later observed in the contaminated areas. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wasana, Hewa M S; Perera, Gamage D R K; Gunawardena, Panduka De S; Fernando, Palika S; Bandara, Jayasundera
2017-02-14
Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.
NASA Astrophysics Data System (ADS)
Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera
2017-02-01
Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.
The stethoscope and healthcare-associated infection: a snake in the grass or innocent bystander?
O'Flaherty, N; Fenelon, L
2015-09-01
There is a concern that stethoscopes may transmit infectious agents which could result in healthcare-associated infection (HCAI). The aim of this review was to evaluate the available literature as to the role of the stethoscope in the development of HCAI. A literature search was conducted across several databases for relevant studies and reports. Stethoscopes were consistently shown to harbour bacteria. The mean rate of stethoscope contamination across 28 studies was 85% (range: 47-100%). The majority of bacteria isolated were deemed to be non-pathogenic. The most frequently isolated organisms were coagulase-negative staphylococci. The mean level of contamination was in excess of the French Normalization standard for cleanliness (which equates to <20 colony-forming units per membrane) in all six studies in which contamination levels were quantified. Potentially pathogenic organisms cultured from stethoscopes included: Staphylococcus aureus, Pseudomonas aeruginosa, vancomycin-resistant enterococci, and Clostridium difficile. There was evidence that bacteria can transfer from the skin of the patient to the stethoscope and from the stethoscope to the skin. However, studies were not designed to detect a correlation between stethoscope contamination and subsequent HCAI. Surveys assessing cleaning practices revealed a suboptimal commitment to stethoscope disinfection among doctors and medical students. The optimum method for stethoscope cleaning has not been defined, although alcohol-based disinfectants are effective in reducing bacterial contamination. In conclusion, a link between contaminated stethoscopes and HCAI has not yet been confirmed, but transfer of bacteria between skin and stethoscope has been shown. The available information would suggest that stethoscopes should be decontaminated between patients. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Changes in PAH levels during production of rapeseed oil.
Cejpek, K; Hajslová, J; Kocourek, V; Tomaniová, M; Cmolík, J
1998-07-01
The influence of technological operations during rapeseed oil production on polycyclic aromatic hydrocarbon (PAH) concentrations in by-products, intermediate and final oils was evaluated. The decrease of light PAHs, benz(a)anthracene and benzo(a)pyrene during processing of crude oil to the deodorized product was significant at the 95% confidence interval in most batches analysed. Deodorization and alkali-refining were the steps contributing most to the PAH decrease. The relationship between PAH levels in rapeseed (and consequently in refined oil) and the duration of storage period was studied. The contamination of raw material processed a short time after harvesting was significantly higher than that of the rapeseed stored in silos for several months. Analyses of rapeseed samples, which were re-purified in the laboratory, revealed that solid particles, which contaminate rapeseed during harvesting, initial treatment, transport and storage, contributed to PAH contamination to the extent of 36% (light PAHs) to 64% (heavy PAHs) on average. Further experiments demonstrated that PAHs in re-purified rapeseed were concentrated in the cuticular layer, because they were removed well from the whole seeds by simple rinsing with organic solvent in an ultrasonic bath without losses of rapeseed oil. Alternative expressions of total PAH contamination (e.g. various PAH groups and/or differently defined B(a)P toxic equivalents) are discussed and their effect on drawing conclusions about PAH elimination rate has been demonstrated.
PHYTOREMEDIATION: USING PLANTS TO CLEAN UP CONTAMINATED SOIL, GROUNDWATER, AND WASTEWATER
Phytoremediation is an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost. The cleanup technology is defined as the use of green plants to remove, contain, or render harmless such environmental contaminants as heavy ...
Contaminated landslide runout deposits in rivers - Method for estimating long-term ecological risks.
Göransson, G; Norrman, J; Larson, M
2018-06-14
The potential catastrophic event of a landslide bringing contaminants to surface waters has been highlighted in public media, but there are still few scientific studies analyzing the risk of landslides with contaminated soil. The aim of this study is to present a method to estimate the risk of potential long-term ecological effects on water bodies due to contaminated soil released into a river through a landslide. The study constitutes further development of previous work focusing on the instantaneous (short-term) release of contaminants and associated effects. Risk is here defined as the probability of surface water failing to comply with environmental quality standards (EQS). The transport model formulation is kept simple enough to allow for a probabilistic analysis as a first assessment of the impact on the river water quality from a landslide runout deposit containing contaminated soil. The model is applied at a contaminated site located adjacent to the Göta Älv River that discharges into the Gothenburg estuary, in southwest Sweden. The results from the case study show that a contaminated runout deposit will likely cause contamination levels above EQSs in the near area for a long time and that it will take several years for the deposit to erode, with the greatest erosion at the beginning when water velocities are their highest above the deposit. A contaminated landslide runout deposit will thus act as a source of contamination to the downstream water system until all the contaminated deposit has been eroded away and the contaminants have been transported from the deposit to the river, and further to the river mouth - diluted but not necessarily negligible. Therefore, it is important to prevent landslides of contaminated soil or waste, and if such events were to occur, to remove the contaminated runout deposit as soon as possible. Copyright © 2018. Published by Elsevier B.V.
Design, fabrication and test of a trace contaminant control system
NASA Technical Reports Server (NTRS)
1975-01-01
A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Ruskauff
2009-02-01
As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additionalmore » model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.« less
Gazan, R; Béchaux, C; Crépet, A; Sirot, V; Drouillet-Pinard, P; Dubuisson, C; Havard, S
2016-07-01
Identification and characterisation of dietary patterns are needed to define public health policies to promote better food behaviours. The aim of this study was to identify the major dietary patterns in the French adult population and to determine their main demographic, socio-economic, nutritional and environmental characteristics. Dietary patterns were defined from food consumption data collected in the second French national cross-sectional dietary survey (2006-2007). Non-negative-matrix factorisation method, followed by a cluster analysis, was implemented to derive the dietary patterns. Logistic regressions were then used to determine their main demographic and socio-economic characteristics. Finally, nutritional profiles and contaminant exposure levels of dietary patterns were compared using ANOVA. Seven dietary patterns, with specific food consumption behaviours, were identified: 'Small eater', 'Health conscious', 'Mediterranean', 'Sweet and processed', 'Traditional', 'Snacker' and 'Basic consumer'. For instance, the Health-conscious pattern was characterised by a high consumption of low-fat and light products. Individuals belonging to this pattern were likely to be older and to have a better nutritional profile than the overall population, but were more exposed to many contaminants. Conversely, individuals of Snacker pattern were likely to be younger, consumed more highly processed foods, had a nutrient-poor profile but were exposed to a limited number of food contaminants. The study identified main dietary patterns in the French adult population with distinct food behaviours and specific demographic, socio-economic, nutritional and environmental features. Paradoxically, for better dietary patterns, potential health risks cannot be ruled out. Therefore, this study demonstrated the need to conduct a risk-benefit analysis to define efficient public health policies regarding diet.
A methodology for estimating risks associated with landslides of contaminated soil into rivers.
Göransson, Gunnel; Norrman, Jenny; Larson, Magnus; Alén, Claes; Rosén, Lars
2014-02-15
Urban areas adjacent to surface water are exposed to soil movements such as erosion and slope failures (landslides). A landslide is a potential mechanism for mobilisation and spreading of pollutants. This mechanism is in general not included in environmental risk assessments for contaminated sites, and the consequences associated with contamination in the soil are typically not considered in landslide risk assessments. This study suggests a methodology to estimate the environmental risks associated with landslides in contaminated sites adjacent to rivers. The methodology is probabilistic and allows for datasets with large uncertainties and the use of expert judgements, providing quantitative estimates of probabilities for defined failures. The approach is illustrated by a case study along the river Göta Älv, Sweden, where failures are defined and probabilities for those failures are estimated. Failures are defined from a pollution perspective and in terms of exceeding environmental quality standards (EQSs) and acceptable contaminant loads. Models are then suggested to estimate probabilities of these failures. A landslide analysis is carried out to assess landslide probabilities based on data from a recent landslide risk classification study along the river Göta Älv. The suggested methodology is meant to be a supplement to either landslide risk assessment (LRA) or environmental risk assessment (ERA), providing quantitative estimates of the risks associated with landslide in contaminated sites. The proposed methodology can also act as a basis for communication and discussion, thereby contributing to intersectoral management solutions. From the case study it was found that the defined failures are governed primarily by the probability of a landslide occurring. The overall probabilities for failure are low; however, if a landslide occurs the probabilities of exceeding EQS are high and the probability of having at least a 10% increase in the contamination load within one year is also high. Copyright © 2013 Elsevier B.V. All rights reserved.
Ferrario, J; Byrne, C; Dupuy, A E
1997-06-01
The addition of the "dioxin-like" polychlorinated biphenyl (PCB) congeners to the assessment of risk associated with the 2,3,7,8-chlorine substituted dioxins and furans has dramatically increased the number of laboratories worldwide that are developing analytical procedures for their detection and quantitation. Most of these procedures are based on established sample preparation and analytical techniques employing high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS), which are used for the analyses of dioxin/furans at low parts-per-trillion (ppt) levels. A significant and widespread problem that arises when using these sample preparation procedures for the analysis of coplanar PCBs is the presence of background levels of these congeners. Industrial processes, urban incineration, leaking electrical transformers, hazardous waste accidents, and improper waste disposal practices have released appreciable quantities of PCBs into the environment. This contamination has resulted in the global distribution of these compounds via the atmosphere and their ubiquitous presence in ambient air. The background presence of these compounds in method blanks must be addressed when determining the exact concentrations of these and other congeners in environmental samples. In this study reliable procedures were developed to accurately define these background levels and assess their variability over the course of the study. The background subtraction procedures developed and employed increase the probability that the values reported accurately represent the concentrations found in the samples and were not biased due to this background contamination.
NASA Technical Reports Server (NTRS)
Ferrario, J.; Byrne, C.; Dupuy, A. E. Jr
1997-01-01
The addition of the "dioxin-like" polychlorinated biphenyl (PCB) congeners to the assessment of risk associated with the 2,3,7,8-chlorine substituted dioxins and furans has dramatically increased the number of laboratories worldwide that are developing analytical procedures for their detection and quantitation. Most of these procedures are based on established sample preparation and analytical techniques employing high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS), which are used for the analyses of dioxin/furans at low parts-per-trillion (ppt) levels. A significant and widespread problem that arises when using these sample preparation procedures for the analysis of coplanar PCBs is the presence of background levels of these congeners. Industrial processes, urban incineration, leaking electrical transformers, hazardous waste accidents, and improper waste disposal practices have released appreciable quantities of PCBs into the environment. This contamination has resulted in the global distribution of these compounds via the atmosphere and their ubiquitous presence in ambient air. The background presence of these compounds in method blanks must be addressed when determining the exact concentrations of these and other congeners in environmental samples. In this study reliable procedures were developed to accurately define these background levels and assess their variability over the course of the study. The background subtraction procedures developed and employed increase the probability that the values reported accurately represent the concentrations found in the samples and were not biased due to this background contamination.
Development of a preprototype trace contaminant control system. [for space stations
NASA Technical Reports Server (NTRS)
1977-01-01
The steady state contaminant load model based on shuttle equipment and material test programs, and on the current space station studies was revised. An emergency upset contaminant load model based on anticipated emergency upsets that could occur in an operational space station was defined. Control methods for the contaminants generated by the emergency upsets were established by test. Preliminary designs of both steady state and emergency contaminant control systems for the space station application are presented.
NASA Astrophysics Data System (ADS)
Munaron, Dominique; Tapie, Nathalie; Budzinski, Hélène; Andral, Bruno; Gonzalez, Jean-Louis
2012-12-01
21 pharmaceuticals, 6 alkylphenols and 27 hydrophilic pesticides and biocides were investigated using polar organic contaminant integrative samplers (POCIS) during a large-scale study of contamination of French Mediterranean coastal waters. Marine and transitional water-bodies, defined under the EU Water Framework Directive were monitored. Our results show that the French Mediterranean coastal waters were contaminated with a large range of emerging contaminants, detected at low concentrations during the summer season. Caffeine, carbamazepine, theophilline and terbutaline were detected with a detection frequency higher than 83% in the coastal waters sampled, 4-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and 4-nonylphenol diethoxylate (NP2EO) were detected in all coastal waters sampled, and diuron, terbuthylazine, atrazine, irgarol and simazine were detected in more than 77% of samples. For pharmaceuticals, highest time-weighted average (TWA) concentrations were measured for caffeine and carbamazepine (32 and 12 ng L-1, respectively). For alkylphenols, highest TWA concentrations were measured for 4-nonylphenol mono-ethoxylate and 4-nonylphenol (41 and 33 ng L-1, respectively), and for herbicides and biocides, they were measured for diuron and irgarol (33 and 2.5 ng L-1, respectively). Except for Diana lagoon, lagoons and semi-enclosed bays were the most contaminated areas for herbicides and pharmaceuticals, whilst, for alkylphenols, levels of contamination were similar in lagoons and coastal waters. This study demonstrates the relevance and utility of POCIS as quantitative tool for measuring low concentrations of emerging contaminants in marine waters.
Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland
Bryła, Marcin; Waśkiewicz, Agnieszka; Podolska, Grażyna; Szymczyk, Krystyna; Jędrzejczak, Renata; Damaziak, Krzysztof; Sułek, Alicja
2016-01-01
The levels of 26 mycotoxins were determined in 147 samples of the grain of cereals cultivated in five regions of Poland during the 2014 growing season. The HPLC-HRMS (time-of-flight) analytical technique was used. An analytical procedure to simultaneously determine 26 mycotoxins in grain was developed, tested and verified. Samples from eastern and southern Poland were more contaminated with mycotoxins than the samples from northern and western Poland. Toxins produced by Fusarium fungi were the main contaminants found. Some deoxynivalenol (DON) was found in 100% of the tested samples of wheat (Osiny, Borusowa, Werbkowice), triticale, winter barley and oats, while the maximum permissible DON level (as defined in the EU Commission Regulation No. 1881/2006) was exceeded in 10 samples. Zearalenone (ZEN), DON metabolites and enniatins were also commonly found. The presence of mycotoxins in grain reflected the prevailing weather conditions during the plant flowering/earing stages, which were favorable for the development of blight. Among all investigated wheat genotypes, cv. Fidelius was the least contaminated, while Bamberka, Forkida and Kampana were the most contaminated. However, the single-factor ANOVA analysis of variance did not reveal (at a statistical significance level α = 0.05) any differences between levels of mycotoxins in individual genotypes. Triticale was the most contaminated grain among all of the tested varieties. ZEN, DON and the sum of 3-acetyldexynivalenol and 15-acetyldeoxynivalenol (3- and 15-ADON) were found in 100% of the tested triticale samples at concentrations within the 4–86, 196–1326 and 36–374 µg·kg−1 range, respectively. Of particular concern was the fact that some “emerging mycotoxins” (enniatins) (in addition to commonly-known and legally-regulated mycotoxins) were also found in the tested triticale samples (enniatin B (Enn-B), enniatin B1 (Enn-B1), enniatin A-1 (Enn-A1), 100% of samples, and enniatin A (Enn-A), 70% of samples). Depending on the toxin, they were found at levels between 8 and 3328 µg·kg−1. PMID:27231939
Use of geostatistics for remediation planning to transcend urban political boundaries.
Milillo, Tammy M; Sinha, Gaurav; Gardella, Joseph A
2012-11-01
Soil remediation plans are often dictated by areas of jurisdiction or property lines instead of scientific information. This study exemplifies how geostatistically interpolated surfaces can substantially improve remediation planning. Ordinary kriging, ordinary co-kriging, and inverse distance weighting spatial interpolation methods were compared for analyzing surface and sub-surface soil sample data originally collected by the US EPA and researchers at the University at Buffalo in Hickory Woods, an industrial-residential neighborhood in Buffalo, NY, where both lead and arsenic contamination is present. Past clean-up efforts estimated contamination levels from point samples, but parcel and agency jurisdiction boundaries were used to define remediation sites, rather than geostatistical models estimating the spatial behavior of the contaminants in the soil. Residents were understandably dissatisfied with the arbitrariness of the remediation plan. In this study we show how geostatistical mapping and participatory assessment can make soil remediation scientifically defensible, socially acceptable, and economically feasible. Copyright © 2012 Elsevier Ltd. All rights reserved.
Studying of tritium content in snowpack of Degelen mountain range.
Turchenko, D V; Lukashenko, S N; Aidarkhanov, A O; Lyakhova, O N
2014-06-01
The paper presents the results of investigation of tritium content in the layers of snow located in the streambeds of the "Degelen" massif contaminated with tritium. The objects of investigation were selected watercourses Karabulak, Uzynbulak, Aktybai located beyond the "Degelen" site. We studied the spatial distribution of tritium relative to the streambed of watercourses and defined the borders of the snow cover contamination. In the centre of the creek watercourses the snow contamination in the surface layer is as high as 40 000 Bq/L. The values of the background levels of tritium in areas not related to the streambed, which range from 40 to 50 Bq/L. The results of snow cover measurements in different seasonal periods were compared. The main mechanisms causing tritium transfer in snow were examined and identified. The most important mechanism of tritium transfer in the streams is tritium emanation from ice or soil surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alaska harbor seal (Phoca vitulina) contaminants: A review with annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papa, R.S.; Becker, P.R.
1998-10-01
The numbers of harbor seals (Phoca vitulina) have declined steadily and substantially over the last two decades in the Central and Western Gulf of Alaska, including Prince William Sound. Although the reasons for this decline have not been identified, hypotheses have included fishery interactions, changes in availability of food resources, human harvests, disease, increase in predation, increase in disturbance, and pollution. Although the presence of contaminants has been suggested as one possible causative factor in the decline of both the harbor seal and Steller sea lion, very little information is readily available on contaminant concentrations in these animals. As anmore » initial step in the development of a database that can be used to define the types of studies needed to address the possible role of anthropogenic contaminants in the decline of this species, existing data and information on levels of contaminants in the harbor seals of Alaska, the contiguous U.S., and other areas of the world were reviewed. This report provides references and current scientific literature, as well as gray literature and unpublished databases. This report is divided into three sections: (1) a synthesis of information based on the review, (2) tables that summarize the published data, and (3) an annotated bibliography.« less
BIOSURFACES AND BIOAVAILABILITY: A NANOSCALE OVERVIEW
Environmentally, contaminant bioavailability is a key parameter in determining exposure assessment and ultimately risk assessment/risk management. Defining bioavailability requires knowledge of the contaminant spatial/temporal disposition and transportability and the thermodyna...
Dinicola, Richard S.
2005-01-01
The U.S. Army disposed of waste trichloroethene (TCE) and other materials in the East Gate Disposal Yard near the Logistics Center on Fort Lewis, Washington, from the 1940s to the early 1970s. As a result, ground water contaminated with primarily TCE extends more than 3 miles downgradient from the East Gate Disposal Yard. The site is underlain by a complex and heterogeneous sequence of glacial and non-glacial deposits that have been broadly categorized into an upper and a lower aquifer (the latter referred to as the sea-level aquifer). TCE contamination was detected in both aquifers. This report describes an investigation by the U.S. Geological Survey (USGS) of the source, migration, and attenuation of TCE in the sea-level aquifer. A refined conceptual model for ground-water flow and contaminant migration into and through the sea-level aquifer was developed in large part from interpretation of environmental tracer data. The tracers used included stable isotopes of oxygen (18O), hydrogen (2H), and carbon (13C); the radioactive hydrogen isotope tritium (3H); common ions and redox-related analytes; chlorofluorocarbons; and sulfur hexafluoride. Tracer and TCE concentrations were determined for samples collected by the USGS from 37 wells and two surface-water sites in American Lake during 1999-2000. Ground-water levels were measured by the USGS in more than 40 wells during 2000-01, and were combined with measurements by the U.S. Army and others to create potentiometric-surface maps. Localized ground-water flow features were identified that are of particular relevance to the migration of TCE in the study area. A ridge of ground water beneath American Lake diverts the flow of TCE-contaminated ground water in the sea-level aquifer to the west around the southern end of the lake. Tracer data provided clear evidence that American Lake is a significant source of recharge to the sea-level aquifer that has created that ridge of ground water. High ground-water altitudes at locations north and northeast of the Logistics Center combined with the ridge beneath American Lake prevent TCE contaminated water beneath the Logistics Center from migrating toward municipal water-supply wells northeast of the site. The 1999-2000 TCE concentrations measured by the USGS at older wells screened in the sea-level aquifer were similar to those measured since 1995, but the known downgradient extent of the TCE contamination expanded nearly 2 miles after the Army installed and sampled new wells during 2003-04. Concentrations of TCE in the sea-level aquifer were consistently highest in the upper part of the aquifer throughout the plume, although TCE has spread throughout much of the thickness of the aquifer in the downgradient portions of the plume. Environmental tracer data indicated that the primary pathway for contaminant migration into the sea-level aquifer is through the previously identified confining unit window, an area where the predominately fine-grained confining unit is relatively coarse grained and more permeable. Other less substantial pathways for contaminant migration also were identified near the East Gate Disposal Yard and the I-5 pump-and-treat facilities. Those areas are near active pumping wells and ground-water reintroduction facilities, but there is no evidence that the contaminant migration was caused or enhanced by those activities. Within the sea-level aquifer, TCE concentrations continue to migrate westward in the flow field strongly influenced by ground-water recharge from American Lake. Historical data are not available to definitively determine if the 5-?g/L leading edge of the current TCE plume is stable or if it is still moving downgradient. However, an evaluation of the available data combined with TCE traveltime estimates indicates that the peak TCE concentrations in the sea-level aquifer may have not yet reached the wells near the currently defined leading edge of the plume. Hypothetically, the 5-?g/L leading edge
THE IMPACT OF GROUND WATER-SURFACE WATER INTERACTIONS ON CONTAMINANT TRANSPORT AT CONTAMINATED SITES
The purpose of this document is to provide an overview of the dynamics of chemical processes that govern contaminant transport and speciation during water exchange across the GW/SW transition zone. A conceptual model of the GW/SW transition zone is defined to serve as a starting...
NASA Astrophysics Data System (ADS)
Massmann, Joel; Freeze, R. Allan
1987-02-01
This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While the framework is quite general, the development in this paper is specifically suited for a landfill in which the primary design feature is one or more synthetic liners in parallel. Contamination is brought about by the release of a single, inorganic nonradioactive species into a saturated, high-permeability, advective, steady state horizontal flow system which can be analyzed with a two-dimensional analysis. It is possible to carry out sensitivity analyses for a wide variety of influences on this system, including landfill size, liner design, hydrogeological parameters, amount of exploration, extent of monitoring network, nature of remedial schemes, economic factors, and regulatory policy.
Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).
Koroša, A; Auersperger, P; Mali, N
2016-11-15
Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined. Copyright © 2016 Elsevier B.V. All rights reserved.
Groundwater Nitrate Contamination Risk Assessment in Canicattì area (Sicily)
NASA Astrophysics Data System (ADS)
Pisciotta, Antonino; Cusimano, Gioacchino; Favara, Rocco
2010-05-01
Groundwaters play a dominant role in the Sicily, because as most part of Mediterranean countries this island is interested by the phenomenon of desertification and the quality of the groundwater reservoir is one of the most important aim for the management policy strategies. During last decade most of the Italian regions the nitrate levels in river and groundwaters have increased gradually over mainly as a consequence of large-scale agricultural application of manure and fertilizers, thereby threatening drinking water quality. The excessive use of chemicals and fertilizers increases the risk to pollution of surface and groundwater from diffuse source, an important reflex to human health and the environment. The studied area is located in Canicattì (central Sicily, Italy), the current land use (grape, olive grove and almond) is the main source of groundwater pollution. In order to investigate the effect of the over farming on the groundwater quality we report the study on the potential risk of contamination from nitrate of agricultural origin through the join of the application of two parametric methods: the IPNOA method (the intrinsic nitrate contamination risk from Agricultural sources) applied to define the Nitrate Vulnerable Zones and the SINTACS method applied to determine the aquifer vulnerability to contamination.
Standardised survey method for identifying catchment risks to water quality.
Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A
2016-06-01
This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking.
Trifonova, Tatiana A; Alkhutova, Ekaterina Y
2016-12-01
This study considered the possibility of using plant community phytomass for the assessment of soil pollution with heavy metals (HM) from industrial wastes. The three-year-long field experiment was run under the regional natural meadow vegetation; the polymetallic galvanic slime was used as an industrial waste contaminant. It is shown that soil contamination primarily causes decrease of phytomass in the growing phytocenosis. The vegetation experiments determined nonlinear dependence of cultivated and wild plant biomass on the level of soil contamination; it is described by the equations of logistic and Gaussian regression. In the absence of permanent contaminants, the soil is self-cleaned over time. It reproduces phytomass mainly due to the productivity increase of the most pollution-tolerant species in the remaining phytocenosis. This phenomenon is defined as environmental hysteresis. Soil pollution by industrial waste leads to the loss of plant biodiversity. The research shows that the study of the HM impact on ecosystems is expedient given the consideration of the "soil-phytocenosis-pollutant" complex in the "dose-response" aspect. The reaction of phytocenosis on HM showing decline in phytomass leads to serious limitations in the choice of accumulating plants, because the adsorbed HM are rejected through phytomass.
Final Work Plan: Phase I Investigation at Bladen, Nebraska
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.; Yan, Eugene
The village of Bladen is a town of population approximately 237 in the northwest part of Webster County, Nebraska, 30 mi southwest of Hastings and 140 mi southwest of Lincoln, Nebraska. In 2000, the fumigant-related compound carbon tetrachloride was detected in public water supply well PWS 68-1, at a trace level. Low-level contamination, below the maximum contamination level (MCL) of 5.0 μg/L, has been detected intermittently in well PWS 68-1 since 2000, including in the last sample taken in July 2013. In 2006, the village installed a new well, PWS 2006-1, that remains free of contamination. Because the carbon tetrachloridemore » found in well PWS 68-1 might be linked to historical use of fumigants containing carbon tetrachloride at grain storage facilities, including its former facility in Bladen, the CCC/USDA is proposing an investigation to (1) delineate the source and extent of the carbon tetrachloride contamination potentially associated with its former facility, (2) characterize pathways and controlling factors for contaminant migration in the subsurface, and (3) establish a basis for estimating potential health and environmental risks. The work will be performed in accordance with the Intergovernmental Agreement established between the NDEQ and the Farm Service Agency of the USDA. The site investigation at Bladen will be implemented in phases, so that data collected and interpretations developed during each phase can be evaluated to determine if a subsequent phase of investigation is warranted and, if warranted, to provide effective guidance for the subsequent investigation activities. This Work Plan identifies the specific technical objectives and defines the scope of work proposed for the Phase I investigation by compiling and evaluating historical data. The proposed investigation activities will be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research institute operated by UChicago Argonne, LLC, for the U.S. Department of Energy.« less
A stress ecology framework for comprehensive risk assessment of diffuse pollution.
van Straalen, Nico M; van Gestel, Cornelis A M
2008-12-01
Environmental pollution is traditionally classified as either localized or diffuse. Local pollution comes from a point source that emits a well-defined cocktail of chemicals, distributed in the environment in the form of a gradient around the source. Diffuse pollution comes from many sources, small and large, that cause an erratic distribution of chemicals, interacting with those from other sources into a complex mixture of low to moderate concentrations over a large area. There is no good method for ecological risk assessment of such types of pollution. We argue that effects of diffuse contamination in the field must be analysed in the wider framework of stress ecology. A multivariate approach can be applied to filter effects of contaminants from the many interacting factors at the ecosystem level. Four case studies are discussed (1) functional and structural properties of terrestrial model ecosystems, (2) physiological profiles of microbial communities, (3) detritivores in reedfield litter, and (4) benthic invertebrates in canal sediment. In each of these cases the data were analysed by multivariate statistics and associations between ecological variables and the levels of contamination were established. We argue that the stress ecology framework is an appropriate assessment instrument for discriminating effects of pollution from other anthropogenic disturbances and naturally varying factors.
A review of what is an emerging contaminant
2014-01-01
A review is presented of how one defines emerging contaminants and what can be included in that group of contaminants which is preferably termed “contaminants of emerging concern”. An historical perspective is given on the evolution of the issues surrounding emerging contaminants and how environmental scientists have tackled this issue. This begins with global lead contamination from the Romans two millennia ago, moves on to arsenic-based and DDT issues and more recently to pharmaceuticals, cyanotoxins, personal care products, nanoparticles, flame retardants, etc. Contaminants of emerging concern will remain a moving target as new chemical compounds are continuously being produced and science continuously improves its understanding of current and past contaminants. PMID:24572188
Sedimentation and contamination patterns of dike systems along the Rhône River (France)
NASA Astrophysics Data System (ADS)
Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry
2017-04-01
Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in the 20th century. Sediment thickness tends to increase in the dike systems following downstream direction. Coupling trace elements (Cu, Zn, Pb) and sediment patterns, metal pollution is mainly observed in the 1970's deposits, similarly to previous studies focused on PCB. These results constitute basic information to inform managers and improve restoration actions that are currently implemented in the Rhône River.
Outpatient radioiodine therapy for thyroid cancer: a safe nuclear medicine procedure.
Willegaignon, José; Sapienza, Marcelo; Ono, Carla; Watanabe, Tomoco; Guimarães, Maria Inês; Gutterres, Ricardo; Marechal, Maria Helena; Buchpiguel, Carlos
2011-06-01
To evaluate the dosimetric effect of outpatient radioiodine therapy for thyroid cancer in members of a patient's family and their living environment, when using iodine-131 doses reaching 7.4 GBq. The following parameters were thus defined: (a) whole-body radiation doses to caregivers, (b) the production of contaminated solid waste, and (c) radiation potential and surface contamination within patients' living quarters. In total, 100 patients were treated on an outpatient basis, taking into consideration their acceptable living conditions, interests, and willingness to comply with medical and radiation safety guidelines. Both the caregivers and the radiation dose potentiality inside patients' residences were monitored by using thermoluminescent dosimeters. Surface contamination and contaminated solid wastes were identified and measured with a Geiger-Müller detector. A total of 90 monitored individuals received a mean dose of 0.27 (±0.28) mSv, and the maximum dose registered was 1.6 mSv. The mean value for the potential dose within all living quarters was 0.31 (±0.34) mSv, and the mean value per monitored surface was 5.58 Bq/cm(2) for all the 1659 points measured. The overall production of contaminated solid wastes was at a low level, being about 3 times less than the exemption level indicated by the International Atomic Energy Agency. This study indicates that the treatment of thyroid cancer by applying radioiodine activities up to 7.4 GBq, on an outpatient basis, is a safe procedure, especially when supervised by qualified professionals. This alternative therapy should be a topic for careful discussion considering the high potential for reducing costs in healthcare and improving patient acceptance.
NASA Astrophysics Data System (ADS)
Grassi, Sergio; Amadori, Michele; Pennisi, Maddalena; Cortecci, Gianni
2014-02-01
A study on the upper reaches of the Cecina River (Tuscany-Central Italy) and the associated unconfined aquifer was carried out from September 2007 to August 2008. The study aimed to identify the sources of B and As contamination in stream water and groundwater, and record contamination levels. The study area, which comprises a northern sector of the Larderello geothermal field, has in time been contaminated by both surface geothermal manifestations (now thought to have ceased) and anthropogenic activity. The latter refers to the disposal of spent geothermal fluids and borogypsum sludge, by-product of colemanite treatment with sulphuric acid, which until the late '70s were discharged in the Larderello area into the Possera Creek, a southern tributary of the Cecina River. A network of 22 stream sections and 9 observation wells was defined. Stream discharge (16 sites), well water levels and chemical concentrations (mainly B, As and anions) in water were measured monthly. Together, discharge and chemical concentrations were used to define the source of contamination by calculating the contaminant load in successive sections of the river network. Due to the stream's intermittent flow, only 50% of the performed monthly surveys could be used in comparing the contaminant load at different sections. Both contaminant loads (referring to median to high flow conditions) and chemical concentrations suggest that B mainly derives from the leakage of a concentrated Na-SO4 water rich in B, SO4, NO3 likely from a small aquitard located in the Larderello area. The B load from this area is about 2 kg/h and increases to approximately 2.7 kg/h in the final section of the study area, likely due to contribution of groundwater. As mainly derives from dissolution and adsorption-desorption processes involving water and As-rich stream bed sediments. Of the total 15 g/h As load measured at the end section, only about 3 g/h derive from the Larderello area. Further to stream bed, As-rich sediments are also found at shallow depths in the area of the Cecina-Possera confluence and in the upper part of the aquifer skeleton. These sediments contribute to increase up to about 76 μg/L the As content of groundwater of the Cecina-Possera confluence area which, draining water from the Possera Creek, represents the aquifer root zone. This zone determines the B and As contents of groundwater which flows more or less parallel to the Cecina River, undergoes progressive dilution during its westward flow and locally supplies the same river. Most of the study stream water and groundwater in the study area cannot be exploited because mean B and As contents (respectively in the range 1.2-15.6 mg/L and 1.1-75.9 μg/L), are often well above the permissible limits for drinking water (1 mg/L for B, 10 μg/L for As).
Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio
2016-01-01
Objectives Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. Methods To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10–40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2–3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. Results A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value <0.001), although the association was slight (relative risk (RR): 1.03 per 10 kBq/m2 increase in soil contamination). Analysis of categorical soil contamination levels showed statistical (but not clinical) significance only in relatively higher soil contamination levels (model 2: Cs-137 levels above 100 kBq/m2 compared to those <25 kBq/m2, RR=1.75, p value <0.01; model 3: levels above 63 kBq/m2 compared to those <11 kBq/m2, RR=1.45, p value <0.05). Conclusions Low levels of internal and soil contamination were not associated, and only loose/small associations were observed in areas with slightly higher levels of soil contamination in Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual measurements are essential for the precise evaluation of chronic internal radiation contamination. PMID:27357196
2010-03-01
still be effective at controlling microbial growth. DiEGME and TriEGME’s ability to inhibit biofilm growth is also demonstrated. TriEGME is shown to...MO) with DiEGME or TriEGME added as appropriate. Fuel was filtered with a 0.45µm hydrophobic cellulose nitrate filter (Nalge Nunc, Rochester, NY... biofilm formation. However, no numerical standards have been universally accepted which define a particular colony count level as problematic (27). This
Pointing to potential reference areas to assess soil mutagenicity.
Meyer, D D; Da Silva, F M R; Souza, J W M; Pohren, R S; Rocha, J A V; Vargas, V M F
2015-04-01
Several have been performed to evaluate the mutagenicity of soil samples in urban and industrial areas. The use of uncontaminated reference areas has been an obstacle to the study of environmental mutagenesis. The study aimed to indicate a methodology to define reference areas in studies of environmental contamination based on "Ambient Background Concentration" of metallic elements associated with the Salmonella/microsome assay. We looked at three potential reference areas, two of them close by the industrial sources of contamination (São Jerônimo reference, near the coal-fired power plant, and Triunfo reference, near the wood preservative plant), but not directly influenced by them and an area located inside a protected area (Itapuã reference). We also carried out chemical analyses of some metals to plot the metal profile of these potential reference areas and define basal levels of these metals in the soils. After examining the mutagenicity of the inorganic extracts using strains TA98, TA97a, and TA100, in the presence and absence of S9 mix, we indicated the São Jerônimo reference and the Itapuã reference as two sites that could be used in future studies of mutagenicity of soils in southern Brazil. The association between a mutagenicity bioassay and the "Ambient Background Concentration" seems to be a useful method to indicate the reference areas in studies of contamination by environmental mutagens, where these results were corroborated by canonical correspondence analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.
The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at the western edge of Everest, Kansas, from the early 1950s to the early 1970s. Sampling by the Kansas Department of Health and Environment (KDHE) in 1997 resulted in the detection of carbon tetrachloride in one domestic well (the Nigh well) northwest of the former facility. On behalf of the CCC/USDA, Argonne National Laboratory subsequently conducted a series of investigations to characterize the contamination (Argonne 2003, 2006a,b,c). Automatic, continuous monitoring of groundwater levels began in 2002 and is ongoing at six locations. The resultsmore » have consistently indicated groundwater flow toward the north-northwest from the former CCC/USDA property to the Nigh property, then west-southwest from the Nigh property to the intermittent creek. Sitewide periodic groundwater and surface water sampling with analysis for volatile organic compounds (VOCs) began in 2008. Argonne's combined data indicate no significant downgradient extension of contamination since 2000. At present, the sampling is annual, as approved by the KDHE (2009) in response to a plan developed for the CCC/USDA (Argonne 2009). This document presents a plan for collecting indoor air samples in homes located along and adjacent to the defined extent of the carbon tetrachloride contamination. The plan was requested by the KDHE. Ambient air samples to represent the conditions along this pathway will also be taken. The purpose of the proposed work is to satisfy KDHE requirements and to collect additional data for assessing the risk to human health due to the potential upward migration of carbon tetrachloride and its primary degradation product (chloroform) into homes located in close proximity to the former grain storage facility, as well as along and within 100 ft laterally from the currently defined plume emanating from the former Everest facility. Investigation of the indoor air environment was not a defined objective during the previous investigations of the Everest site (Argonne 2003, 2006a,b,c) as they predated the more recent regulatory concern regarding potential health risks associated with the vapor contaminant pathway.« less
Park, In-Sun; Park, Jae-Woo
2011-01-30
Total petroleum hydrocarbon (TPH) is an important environmental contaminant that is toxic to human and environmental receptors. However, human health risk assessment for petroleum, oil, and lubricant (POL)-contaminated sites is especially challenging because TPH is not a single compound, but rather a mixture of numerous substances. To address this concern, this study recommends a new human health risk assessment strategy for POL-contaminated sites. The strategy is based on a newly modified TPH fractionation method and includes an improved analytical protocol. The proposed TPH fractionation method is composed of ten fractions (e.g., aliphatic and aromatic EC8-10, EC10-12, EC12-16, EC16-22 and EC22-40). Physicochemical properties and toxicity values of each fraction were newly defined in this study. The stepwise ultrasonication-based analytical process was established to measure TPH fractions. Analytical results were compared with those from the TPH Criteria Working Group (TPHCWG) Direct Method. Better analytical efficiencies in TPH, aliphatic, and aromatic fractions were achieved when contaminated soil samples were analyzed with the new analytical protocol. Finally, a human health risk assessment was performed based on the developed tiered risk assessment framework. Results showed that a detailed quantitative risk assessment should be conducted to determine scientifically and economically appropriate cleanup target levels, although the phase II process is useful for determining the potency of human health risks posed by POL-contamination. Copyright © 2010 Elsevier B.V. All rights reserved.
Apparatus for measuring surface particulate contamination
Woodmansee, Donald E.
2002-01-01
An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.
Neelam, Taneja; Malkit, Singh; Pooja, Rao; Manisha, Biswal; Shiva, Priya; Ram, Chander; Meera, Sharma
2012-12-01
Acute gastroenteritis due to Vibrio cholerae and Enterotoxigenic E. coli is a common problem faced in the hot and humid summer months in north India. The study was undertaken to evaluate drinking water supplies for fecal coliforms, V. cholerae and Enterotoxigenic E. coli in urban, semiurban and rural areas in and around Chandigarh and correlate with occurrence of acute gastroenteritis occurring from the same region. Drinking water sample were collected from various sources from April to October 2004 from a defined area. Samples were tested for fecal coliforms and E. coli count. E. coli were screened for heat labile toxin (LT) also. Stool samples from cases of acute gastroenteritis from the same region and time were collected and processed for V. cholerae, Enterotoxigenic E. coli (ETEC) and others like Salmonella, Shigella and Aeromonas spp. A total of 364 water samples were collected, (251 semi urban, 41 rural and 72 from urban areas). 116 (31.8%) samples were contaminated with fecal coliforms (58.5% rural, 33.4% semiurban and 11.1% of samples from urban areas). E. coli were grown from 58 samples. Ninety two isolates of E. coli were tested for enterotoxins of which 8 and 24 were positive for LT and ST respectively. V. cholerae were isolated from 2 samples during the outbreak investigation. Stored water samples showed a significantly higher level of contamination and most of Enterotoxigenic E. coli were isolated from stored water samples. A total of 780 acute gastroenteritis cases occurred; 445 from semiurban, 265 rural and 70 from urban areas. Out of 189 stool samples submitted, ETEC were the commonest (30%) followed by V. cholerae (19%), Shigellae (8.4%), Salmonellae (2.1%) and Aeromonas (2.6%). ST-ETEC (40/57) were commoner than LT-ETEC (17/57). In the present study, high levels of contamination of drinking water supplies (32.1%) correlated well with cases of acute gastroenteritis. Majority of cases of acute gastroenteritis occurred in the semi urban corresponding with high level of contamination (33.4%). The highest level of water contamination was seen in rural areas (58.5%) but the number of acute gastroenteritis cases were lesser (33.9%) as ponds were infrequently used for drinking purpose. Safer household water storage and treatment is recommended to prevent acute gastroenteritis, together with point-of-use water quality monitoring.
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and Maximum Residual Disinfectant Level Goals § 141.55 Maximum contaminant level goals for radionuclides...
40 CFR 141.55 - Maximum contaminant level goals for radionuclides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Maximum contaminant level goals for... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and Maximum Residual Disinfectant Level Goals § 141.55 Maximum contaminant level goals for radionuclides...
Thomas, L.K.; Widdowson, M.A.; Chapelle, F.H.; Novak, J.T.; Boncal, J.E.; Lebrón, C. A.
2012-01-01
The distribution of natural organic carbon was investigated at a chloroethene-contaminated site where complete reductive dechlorination of tetrachloroethene (PCE) to vinyl chloride and ethene was observed. In this study, operationally defined potentially bioavailable organic carbon (PBOC) was measured in surficial aquifer sediment samples collected at varying depths and locations in the vicinity of a dense nonaqueous phase liquid (DNAPL) source and aqueous phase plume. The relationship between chloroethene concentrations and PBOC levels was examined by comparing differences in extractable organic carbon in aquifer sediments with minimal chloroethene exposure relative to samples collected in the source zone. Using performance-monitoring data, direct correlations with PBOC were also developed with chloroethene concentrations in groundwater. Results show a logarithm-normal distribution for PBOC in aquifer sediments with a mean concentration of 187 mg/kg. PBOC levels in sediments obtained from the underlying confining unit were generally greater when compared to sediments collected in the sandy surficial aquifer. Results demonstrated a statistically significant inverse correlation (p=0.007) between PBOC levels in aquifer sediments and chloroethene concentrations for selected monitoring wells in which chloroethene exposure was the highest. Results from laboratory exposure assays also demonstrated that sediment samples exhibited a reduction in PBOC levels of 35% and 73%, respectively, after a 72-h exposure period to PCE (20,000 μg/L). These results support the notion that PBOC depletion in sediments may be expected in chloroethene-contaminated aquifers, which has potential implications for the long-term sustainability of monitored natural attenuation.
40 CFR 141.66 - Maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Maximum contaminant levels for... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides. (a) [Reserved] (b) MCL for combined radium-226 and -228. The maximum...
40 CFR 141.66 - Maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Maximum contaminant levels for... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides. (a) [Reserved] (b) MCL for combined radium-226 and -228. The maximum...
40 CFR 141.66 - Maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Maximum contaminant levels for... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides. (a) [Reserved] (b) MCL for combined radium-226 and -228. The maximum...
40 CFR 141.66 - Maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Maximum contaminant levels for... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides. (a) [Reserved] (b) MCL for combined radium-226 and -228. The maximum...
Correcting for Sample Contamination in Genotype Calling of DNA Sequence Data
Flickinger, Matthew; Jun, Goo; Abecasis, Gonçalo R.; Boehnke, Michael; Kang, Hyun Min
2015-01-01
DNA sample contamination is a frequent problem in DNA sequencing studies and can result in genotyping errors and reduced power for association testing. We recently described methods to identify within-species DNA sample contamination based on sequencing read data, showed that our methods can reliably detect and estimate contamination levels as low as 1%, and suggested strategies to identify and remove contaminated samples from sequencing studies. Here we propose methods to model contamination during genotype calling as an alternative to removal of contaminated samples from further analyses. We compare our contamination-adjusted calls to calls that ignore contamination and to calls based on uncontaminated data. We demonstrate that, for moderate contamination levels (5%–20%), contamination-adjusted calls eliminate 48%–77% of the genotyping errors. For lower levels of contamination, our contamination correction methods produce genotypes nearly as accurate as those based on uncontaminated data. Our contamination correction methods are useful generally, but are particularly helpful for sample contamination levels from 2% to 20%. PMID:26235984
Árvay, Július; Demková, Lenka; Hauptvogl, Martin; Michalko, Miloslav; Bajčan, Daniel; Stanovič, Radovan; Tomáš, Ján; Hrstková, Miroslava; Trebichalský, Pavol
2017-10-01
Former long-term mining and smelting of pollymetallic ores in the Middle Spiš area caused a serious contamination problem of the environment with heavy metals and metalloids, especially mercury (Hg). Several studies have reported concentration of Hg in the area but this paper provides first detailed characterization of Hg contamination of different environmental components in agricultural, forest, grassland and urban ecosystems. The ecosystems are in different distances from emission sources - former mercury and copper smelting plants in NE Slovakia. Total Hg content was studied in soil/substrate samples (n = 234) and characteristic biological samples (Athyrium filix-femina (L.) Roth, Macrolepiota procera (Scop.) Singer, Boletus edulis Bull., Cyanoboletus pulverulentus (Opat.) Gelardi, Vizzini & Simonini, Triticum aestivum (L.), Poa pratensis (L.)) (n = 234) collected in the above-mentioned ecosystems. The level of contamination and environmental risks were assessed by contamination factor (C f ), index of geoaccumulation (I geo ) and potential environmental risk index (PER). To determine the level of transition of Hg from abiotic to biotic environment, bioconcentration factor (BCF) was used. To determine a health risk resulting from regular and long-term consumption of the locally available species, the results of the Hg content were compared with the Provisional Tolerable Weekly Intake (PTWI) for Hg defined by World Health Organization. The results suggest that almost 63% of the area belong to the very high risk category and 80% of the sampling sites shown very high contamination factor. Geoaccumulation index showed that almost 30% of the area is very strongly contaminated and only 8% is not contaminated with Hg. Spearman's correlation relationship confirmed that the values of PER, BCF, C f and I geo decreased with an increasing distance from the pollution source. The percentage of contribution to PTWI ranged between 5.76-69.0% for adults and 11.5-138% for children. Mushroom M. procera showed the highest %PTWI among the tested biological samples. Studied ecotoxicological parameters showed high level of health risk for population living in the area. Consumption of the crops grown in the area and mainly edible wild mushrooms might negatively affect the health of the consumers in the long-term. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Muñoz-Martín, Alfonso; Antón, Loreto; Granja, Jose Luis; Villarroya, Fermín; Montero, Esperanza; Rodríguez, Vanesa
2016-04-01
Soil contamination can come from diffuse sources (air deposition, agriculture, etc.) or local sources, these last being related to anthropogenic activities that are potentially soil contaminating activities. According to data from the EU, in Spain, and particularly for the Autonomous Community of Madrid, it can be considered that heavy metals, toxic organic compounds (including Non Aqueous Phases Liquids, NAPLs) and combinations of both are the main problem of point sources of soil contamination in our community. The five aspects that will be applied in Caresoil Program (S2013/MAE-2739) in the analysis and remediation of a local soil contamination are: 1) the location of the source of contamination and characterization of soil and aquifer concerned, 2) evaluation of the dispersion of the plume, 3) application of effective remediation techniques, 4) monitoring the evolution of the contaminated soil and 5) risk analysis throughout this process. These aspects involve advanced technologies (hydrogeology, geophysics, geochemistry,...) that require new developing of knowledge, being necessary the contribution of several researching groups specialized in the fields previously cited, as they are those integrating CARESOIL Program. Actually two cases concerning hydrocarbon spills, as representative examples of soil local contamination in Madrid area, are being studied. The first is being remediated and we are monitoring this process to evaluate its effectiveness. In the second location we are defining the extent of contamination in soil and aquifer to define the most effective remediation technique.
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Matthews
2011-07-01
Corrective Action Unit 106 comprises the four corrective action sites (CASs) listed below: • 05-20-02, Evaporation Pond • 05-23-05, Atmospheric Test Site - Able • 05-45-04, 306 GZ Rad Contaminated Area • 05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viablemore » CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from groundwater pumping during the Radionuclide Migration study program (CAS 05-20-02), a weapons-related airdrop test (CAS 05-23-05), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). The presence and nature of contamination from surface-deposited radiological contamination from CAS 05-23-05, Atmospheric Test Site - Able, and other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) from the remaining three CASs will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 106 includes the following activities: • Conduct radiological surveys. • Collect and submit environmental samples for laboratory analysis to determine internal dose rates and the presence of contaminants of concern. • If contaminants of concern are present, collect additional samples to define the extent of the contamination and determine the area where the total effective dose at the site exceeds final action levels (i.e., corrective action boundary). • Collect samples of investigation-derived waste, as needed, for waste management purposes.« less
Revealed social preference for potable groundwater: An Eastern Iowa case study
NASA Astrophysics Data System (ADS)
Raunikar, R. P.; Bernknopf, R. L.; Forney, W.; Mishra, S.
2011-12-01
The spatially explicit land use and land cover information provided by Landsat moderate-resolution land imagery (MRLI) is needed to more efficiently balance the production of goods and services over landscapes. For example, economic trade-offs are needed to provide both clean groundwater resources and other non-environmental goods and services produced by activities that affect the vadose zone and thus contribute to contamination of groundwater. These trade-off choices are made by numerous economic agents and are constrained by many social institutions including governmental regulations at many levels, contractual obligations and traditions. In effect, on a social level, society acts as if it values groundwater by foregoing other goods to protect these resources. The result of the protection afforded to groundwater resources is observable by measuring contamination in well samples. This observed level of groundwater contamination risk is the revealed preference of society as a whole for clean groundwater. We observed the risk of groundwater contamination in a sampling of well data from our study area (35 counties of Eastern Iowa.) We used a proportional hazard model to quantify the nitrate contamination survival implied by the panel of 19,873 well data, where remaining below a 10 mg/ml maximum contamination level (MCL) is defined as survival. We tested the data for evidence that the levels of protection provided to these resources is correlated with aquifer and vadose zone characteristics and geographic location and whether it changed over time and with economic and other conditions. We demonstrate the use of a nitrate conditioned hazard function for projecting the survival of wells based on nitrate exposure information over the 1940 to 2010 time period. We discuss results of simulations of the survival process that demonstrate the economic significance of this approach. We find that aquifer survival has been significantly improving over time. The principle of revealed preference is the concept from economic consumer theory meaning that the observed consumption bundle chosen (e.g. the amounts of crop production, groundwater risk and everything else) is preferred to any other bundle possible (e.g. the bundle including more crop production and the concomitant increase in groundwater risk) given the constraints the consumer faces. This concept was initially applied at the level of an individual consumer, but it also applies by the same logic at the social level of analysis. Using the spatially explicit information provided by Landsat MRLI about land use on the surfaces recharging the aquifers, more efficient regulation can be devised to allow more production on the surface while protecting aquifers to the degree implied by this revealed preference analysis.
De Angelo, Carlos; Nuñez, Pablo; Salas, Martín; Motta, Carlos E.; Chiaretta, Alicia; Salomón, Oscar D.; Liang, Song
2017-01-01
Background Intestinal parasitoses are a major concern for public health, especially in children from middle and low-income populations of tropical and subtropical areas. We examined the presence and co-infection of parasites in humans as well as parasitic environmental contamination in Puerto Iguazú, Argentina. We explored the environmental and socio-demographic characteristics of the persistence of parasites in children and their environment. Methodology/Principal findings This cross-section survey was conducted among children population comprised into the area of the public health care centers of Iguazú during June 2013 to May 2016. Copro-parasitological status of 483 asymptomatic children was assessed. Simultaneously, a design-based sampling of 744 soil samples and 530 dog feces was used for characterize the environmental contamination. The 71.5% of these sites were contaminated. Sixteen genera were detected in the environment being hookworms (62.0%) the main pathogens group detected followed by Toxocara spp (16.3%), Trichuris spp (15.2%) and Giardia (6.5%). Total children prevalence raised 58.8%, detecting twelve genera of parasite with Giardia intestinalis as the most prevalent pathogen (29.0%) followed by Enterobius vermicularis (23.0%), Hymenolepis nana (12.4%) and hookworms (4.4%). Through questionnaires and census data, we characterized the socio-demographics conditions at an individual, family and neighborhood levels. A multi-level analysis including environmental contamination data showed that the ´presence of parasites´ was mostly determined by individual (e.g. age, playing habits, previous treatment) and household level (e.g. UBN, WASH, mother's literacy) determinants. Remarkably, to define the level of ‘parasite co-infection’, besides individual and household characteristics, environmental factors at a neighborhood level were important. Conclusion/Significance Our work represents the major survey of intestinal parasites in human and environmental samples developed in the region. High prevalence was detected in the children population as well as in their environment. This work shows the importance of considering and promoting multi-level actions over the identified determinants to face this public health problem from integrative approaches. PMID:29155829
Rivero, Maria Romina; De Angelo, Carlos; Nuñez, Pablo; Salas, Martín; Motta, Carlos E; Chiaretta, Alicia; Salomón, Oscar D; Liang, Song
2017-11-01
Intestinal parasitoses are a major concern for public health, especially in children from middle and low-income populations of tropical and subtropical areas. We examined the presence and co-infection of parasites in humans as well as parasitic environmental contamination in Puerto Iguazú, Argentina. We explored the environmental and socio-demographic characteristics of the persistence of parasites in children and their environment. This cross-section survey was conducted among children population comprised into the area of the public health care centers of Iguazú during June 2013 to May 2016. Copro-parasitological status of 483 asymptomatic children was assessed. Simultaneously, a design-based sampling of 744 soil samples and 530 dog feces was used for characterize the environmental contamination. The 71.5% of these sites were contaminated. Sixteen genera were detected in the environment being hookworms (62.0%) the main pathogens group detected followed by Toxocara spp (16.3%), Trichuris spp (15.2%) and Giardia (6.5%). Total children prevalence raised 58.8%, detecting twelve genera of parasite with Giardia intestinalis as the most prevalent pathogen (29.0%) followed by Enterobius vermicularis (23.0%), Hymenolepis nana (12.4%) and hookworms (4.4%). Through questionnaires and census data, we characterized the socio-demographics conditions at an individual, family and neighborhood levels. A multi-level analysis including environmental contamination data showed that the ´presence of parasites´ was mostly determined by individual (e.g. age, playing habits, previous treatment) and household level (e.g. UBN, WASH, mother's literacy) determinants. Remarkably, to define the level of 'parasite co-infection', besides individual and household characteristics, environmental factors at a neighborhood level were important. Our work represents the major survey of intestinal parasites in human and environmental samples developed in the region. High prevalence was detected in the children population as well as in their environment. This work shows the importance of considering and promoting multi-level actions over the identified determinants to face this public health problem from integrative approaches.
Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio
2016-06-29
Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10-40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2-3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value <0.001), although the association was slight (relative risk (RR): 1.03 per 10 kBq/m(2) increase in soil contamination). Analysis of categorical soil contamination levels showed statistical (but not clinical) significance only in relatively higher soil contamination levels (model 2: Cs-137 levels above 100 kBq/m(2) compared to those <25 kBq/m(2), RR=1.75, p value <0.01; model 3: levels above 63 kBq/m(2) compared to those <11 kBq/m(2), RR=1.45, p value <0.05). Low levels of internal and soil contamination were not associated, and only loose/small associations were observed in areas with slightly higher levels of soil contamination in Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual measurements are essential for the precise evaluation of chronic internal radiation contamination. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
40 CFR 143.3 - Secondary maximum contaminant levels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Secondary maximum contaminant levels... levels. The secondary maximum contaminant levels for public water systems are as follows: Contaminant Level Aluminum 0.05 to 0.2 mg/l. Chloride 250 mg/l. Color 15 color units. Copper 1.0 mg/l. Corrosivity...
Phase I and II feasibility study report for the 300-FF-5 operable unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-12-31
The purpose of this Phase I/II feasibility study is to assemble and screen a list of alternatives for remediation of the 300-FF-5 operable site on the Hanford Reservation. This screening is based on information gathered in the Phase I Remedial Investigation (RI) and on currently available information on remediation technologies. The alternatives remaining after screening provide a range of response actions for remediation. In addition, key data needs are identified for collection during a Phase II RI (if necessary). This Phase I/II FS represents a primary document as defined by the Tri-Party Agreement, but will be followed by a Phasemore » III FS that will further develop the alternatives and provide a detailed evaluation of them. The following remedial action objectives were identified for the 300-FF-5 operable unit: Limit current human exposure to contaminated groundwater in the unit; Limit discharge of contaminated groundwater to the Columbia River; Reduce contaminant concentrations in groundwater below acceptable levels by the year 2018.« less
NASA Technical Reports Server (NTRS)
Fuller, M.; Huang, Y.
2003-01-01
The Antarctic Meteorite Program has returned over 16,000 meteorites from the ice sheets of the Antarctic. This more than doubles the number of preexisting meteorite collection and adds important and rare specimens to the assemblage. The CM carbonaceous chondrites are of particular interest because of their high organic component. The Antarctic carbonaceous chondrites provide a large, previously uninvestigated suite of meteorites. Of the 161 CM chondrites listed in the Catalogue of Meteorites 138 of them have been recovered from the Antarctic ice sheets,. However, these meteorites have typically been exposed to Earth s conditions for long periods of time. The extent of terrestrial organic contamination and weathering that has taken place on these carbonaceous chondrites is unknown. In the past, stable isotope analysis was used to identify bulk organics that were extraterrestrial in origin. Although useful, this method could not exclude the possibility of terrestrial contamination contributing to the isotopic measurement. Compound specific isotope analysis of organic meteorite material has provided the opportunity to discern the terrestrial contamination from extraterrestrial organic compounds on the molecular level.
Rail assembly for use in a radioactive environment
Watts, Ralph E.
1989-01-01
An improved rail assembly and method of construction thereof is disclosed herein that is particularly adapted for use with a crane trolley in a hot cell environment which is exposed to airborne and liquidborne radioactive contaminants. The rail assembly is generally comprised of a support wall having an elongated, rail-housing recess having a floor, side wall and ceiling. The floor of the recess is defined at least in part by the load-bearing surface of a rail, and is substantially flat, level and crevice-free to facilitate the drainage of liquids out of the recess. The ceiling of the recess overhangs and thereby captures trolley wheels within the recess to prevent them from becoming dislodged from the recess during a seismic disturbance. Finally, the interior of the recess includes a power track having a slot for receiving a sliding electrical connector from the crane trolley. The power track is mounted in an upper corner of the recess with its connector-receiving groove oriented downwardly to facilitate the drainage of liquidborne contaminants and to discourage the collection of airborne contaminants within the track.
Lin, Audrie; Arnold, Benjamin F.; Afreen, Sadia; Goto, Rie; Huda, Tarique Mohammad Nurul; Haque, Rashidul; Raqib, Rubhana; Unicomb, Leanne; Ahmed, Tahmeed; Colford, John M.; Luby, Stephen P.
2013-01-01
We assessed the relationship of fecal environmental contamination and environmental enteropathy. We compared markers of environmental enteropathy, parasite burden, and growth in 119 Bangladeshi children (≤ 48 months of age) across rural Bangladesh living in different levels of household environmental cleanliness defined by objective indicators of water quality and sanitary and hand-washing infrastructure. Adjusted for potential confounding characteristics, children from clean households had 0.54 SDs (95% confidence interval [CI] = 0.06, 1.01) higher height-for-age z scores (HAZs), 0.32 SDs (95% CI = −0.72, 0.08) lower lactulose:mannitol (L:M) ratios in urine, and 0.24 SDs (95% CI = −0.63, 0.16) lower immunoglobulin G endotoxin core antibody (IgG EndoCAb) titers than children from contaminated households. After adjusting for age and sex, a 1-unit increase in the ln L:M was associated with a 0.33 SDs decrease in HAZ (95% CI = −0.62, −0.05). These results are consistent with the hypothesis that environmental contamination causes growth faltering mediated through environmental enteropathy. PMID:23629931
Water quality assessment of the Asata River catchment area in Enugu Metropolis, Southeast Nigeria
NASA Astrophysics Data System (ADS)
Osinowo, Olawale Olakunle
2016-09-01
Hydrogeochemical mapping of the Asata River Catchment area in the Enugu metropolis, southeast Nigeria was carried out in order to assess the quality of the surface and groundwater and based on the analyses of the hydrogeochemical data, establish the level of chemical contaminations which inhibit the availability of potable water in the area. Forty (40) water samples comprising five (5) springs, nineteen (19) surface (streams/rivers) and sixteen (16) groundwater (well/borehole) samples were collected and analysed for the presence and degree of contamination of nine (9) major chemical contaminants. Hydrochemical analyses indicate that Electrical Conductivity (EC) which has a linear relationship with Total Dissolved Solid (TDS) ranges between 015 and 887 μS/cm, pH between 4.4 and 8.3, nitrate (NO3-) ranges between 40 and 130 mg/l and chloride (Cl-) between 7 and 130 mg/l. The concentrations of the dissolved chemical constituents defined the pollution trend and the rate of dispersion of contaminants. The degree of contaminants followed a simple trend, where the level of contamination of the dissolved chemical constituents is least in sampled spring water, with measured chemical constituents of EC, pH, NO3- and Cl- range from 15 to 354 μS/cm; 6.4-6.5; 4.0-70 mg/l and 8-36 mg/l, respectively. However, the value of the measured chemical constituent of EC, pH, NO3- and Cl- gradually increases down the stream in both the surface (63-354 μS/cm; 4.5-7.7; 7.1-110 mg/l; 8-41 mg/l) and groundwater (56-531 μS/cm; 4.5-7.5; 40-130 mg/l; 7-130 mg/l), respectively. Noticeable peaks in contamination levels characterised sections of the study area where human population or their activities is highest. The result of the hydrogeochemical mapping indicate that Enugu coal mine operation, the industrial activities, fertilizer applied to plants cultivated on river banks and domestic human wastes which are indiscriminately dumped along river channels are the major sources of chemical contamination in the Asata River catchment area. An adequate water resource management scheme is urgently needed to rescue the shallow regolith aquifer from being permanently damaged. Acts such as construction of uncased toilet pits and septic tanks into the thin shallow regolith aquifer, application of inorganic fertilizers along river bank farms and indiscriminate dumping of untreated industrial and human wastes should also be discouraged.
40 CFR 141.11 - Maximum contaminant levels for inorganic chemicals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for inorganic chemicals. 141.11 Section 141.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.11 Maximum contaminant levels for inorganic chemicals. (a) The maximum contaminant level for...
40 CFR 141.11 - Maximum contaminant levels for inorganic chemicals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Maximum contaminant levels for inorganic chemicals. 141.11 Section 141.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.11 Maximum contaminant levels for inorganic chemicals. (a) The maximum contaminant level for...
40 CFR 141.11 - Maximum contaminant levels for inorganic chemicals.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Maximum contaminant levels for inorganic chemicals. 141.11 Section 141.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.11 Maximum contaminant levels for inorganic chemicals. (a) The maximum contaminant level for...
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...
40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... maximum contaminant levels for radionuclides. 142.65 Section 142.65 Protection of Environment... Available § 142.65 Variances and exemptions from the maximum contaminant levels for radionuclides. (a)(1) Variances and exemptions from the maximum contaminant levels for combined radium-226 and radium-228, uranium...
40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... maximum contaminant levels for radionuclides. 142.65 Section 142.65 Protection of Environment... Available § 142.65 Variances and exemptions from the maximum contaminant levels for radionuclides. (a)(1) Variances and exemptions from the maximum contaminant levels for combined radium-226 and radium-228, uranium...
40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... maximum contaminant levels for radionuclides. 142.65 Section 142.65 Protection of Environment... Available § 142.65 Variances and exemptions from the maximum contaminant levels for radionuclides. (a)(1) Variances and exemptions from the maximum contaminant levels for combined radium-226 and radium-228, uranium...
40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maximum contaminant levels for radionuclides. 142.65 Section 142.65 Protection of Environment... Available § 142.65 Variances and exemptions from the maximum contaminant levels for radionuclides. (a)(1) Variances and exemptions from the maximum contaminant levels for combined radium-226 and radium-228, uranium...
40 CFR Appendix I to Part 257 - Maximum Contaminant Levels (MCLs)
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Maximum Contaminant Levels (MCLs) I Appendix I to Part 257 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Part 257—Maximum Contaminant Levels (MCLs) Maximum Contaminant Levels (MCLs) Promulgated Under the Safe...
Rahman, M S; Reichelt-Brushet, A J; Clark, M W; Farzana, T; Yee, L H
2017-03-01
Bio-accessibility and bioavailability of arsenic (As) in historically As-contaminated soils (cattle tick pesticide), and pristine soils were assessed using 3 different approaches. These approaches included human bio-accessibility using an extraction test replicating gastric conditions (in vitro physiologically-based extraction test); an operationally defined bioaccessibility extraction test - 1.0M HCl extraction; and a live organism bioaccumulation test using earthworms. A sequential extraction procedure revealed the soil As-pool that controls bio-accessibility and bioaccumulation of As. Findings show that As is strongly bound to historically contaminated soil with a lower degree of As bio-accessibility (<15%) and bioaccumulation (<9%) compared with freshly contaminated soil. Key to these lower degrees of bio-accessibility and bioaccumulation is the greater fraction of As associated with crystalline Fe/Al oxy-hydroxide and residual phases. The high bio-accessibility and bioaccumulation of freshly sorbed As in pristine soils were from the exchangeable and specifically sorbed As fractions. Arsenic bioaccumulation in earthworms correlates strongly with both the human bio-accessible, and the operationally defined bioavailable fractions. Hence, results suggest that indirect As bioavailability measures, such as accumulation by earthworm, can be used as complementary lines of evidence to reinforce site-wide trends in the bio-accessibility using in vitro physiologically-based extractions and/or operationally defined extraction test. Such detailed knowledge is useful for successful reclamation and management of the As contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.
The costs of using unauthenticated, over-passaged cell lines: how much more data do we need?
Hughes, Peyton; Marshall, Damian; Reid, Yvonne; Parkes, Helen; Gelber, Cohava
2007-11-01
Increasing data demonstrate that cellular cross-contamination, misidentified cell lines, and the use of cultures at high-passage levels contribute to the generation of erroneous and misleading results as well as wasted research funds. Contamination of cell lines by other lines has been recognized and documented back to the 1950s. Based on submissions to major cell repositories in the last decade, it is estimated that between 18% and 36% of cell lines may be contaminated or misidentified. More recently, problems surrounding practices of over-subculturing cells are being identified. As a result of selective pressures and genetic drift, cell lines, when kept in culture too long, exhibit reduced or altered key functions and often no longer represent reliable models of their original source material. A review of papers showing significant experimental variances between low- and high-passage cell culture numbers, as well as contaminated lines, makes a strong case for using verified, tested cell lines at low- or defined passage numbers. In the absence of cell culture guidelines, mandates from the National Institutes of Health (NIH) and other funding agencies or journal requirements, it becomes the responsibility of the scientific community to perform due diligence to ensure the integrity of cell cultures used in research.
PESTICIDE LEACHING ANALYTICAL MODEL AND GIS-BASED APPLICATION IN AGRICULTURAL WATERSHEDS
Groundwater contamination by pesticides and other organic pollutants has been detected across agricultural areas and is on the increase. Because groundwater monitoring is too costly to define the geographic extent of contamination at such large scales, indirect methods are needed...
Contamination of stethoscopes and physicians' hands after a physical examination.
Longtin, Yves; Schneider, Alexis; Tschopp, Clément; Renzi, Gesuèle; Gayet-Ageron, Angèle; Schrenzel, Jacques; Pittet, Didier
2014-03-01
To compare the contamination level of physicians' hands and stethoscopes and to explore the risk of cross-transmission of microorganisms through the use of stethoscopes. We conducted a structured prospective study between January 1, 2009, and May 31, 2009, involving 83 inpatients at a Swiss university teaching hospital. After a standardized physical examination, 4 regions of the physician's gloved or ungloved dominant hand and 2 sections of the stethoscopes were pressed onto selective and nonselective media; 489 surfaces were sampled. Total aerobic colony counts (ACCs) and total methicillin-resistant Staphylococcus aureus (MRSA) colony-forming unit (CFU) counts were assessed. Median total ACCs (interquartile range) for fingertips, thenar eminence, hypothenar eminence, hand dorsum, stethoscope diaphragm, and tube were 467, 37, 34, 8, 89, and 18, respectively. The contamination level of the diaphragm was lower than the contamination level of the fingertips (P<.001) but higher than the contamination level of the thenar eminence (P=.004). The MRSA contamination level of the diaphragm was higher than the MRSA contamination level of the thenar eminence (7 CFUs/25 cm(2) vs 4 CFUs/25 cm(2); P=.004). The correlation analysis for both total ACCs and MRSA CFU counts revealed that the contamination level of the diaphragm was associated with the contamination level of the fingertips (Spearman's rank correlation coefficient, ρ=0.80; P<.001 and ρ=0.76; P<.001, respectively). Similarly, the contamination level of the stethoscope tube increased with the increase in the contamination level of the fingertips for both total ACCs and MRSA CFU counts (ρ=0.56; P<.001 and ρ=.59; P<.001, respectively). These results suggest that the contamination level of the stethoscope is substantial after a single physical examination and comparable to the contamination of parts of the physician's dominant hand. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Variation of mercury in fish from Massachusetts lakes based on ecoregion and lake trophic status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, J.; Hutcheson, M.; West, C.R.
1995-12-31
Twenty-four of the state`s least-impacted waterbodies were sampled for sediment, water, physical characteristics and 3 species of fish to determine the extent of, and patterns of variation in, mercury contamination. Sampling effort was apportioned among three different ecological subregions of the state, as defined by EPA, and among lakes of differing trophic status. The authors sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Mean fish mercury was 0.14 ppm wet weight in samples of 168 of the bottom feeding brown bullheads (Ameriurus nebulosus) (range = 0.01--0.79 ppm); 0.3more » ppm in 199 of the omnivorous yellow perch (Perca flavescens) (range = 0.01--0.75 ppm); and 0.4 ppm in samples of 152 of the predaceous largemouth bass (Micropterus salmoides) (range = 0.05--1.1 ppm). Multivariate statistics are employed to determine how mercury concentrations in fish correlate with sediment chemistry, water chemistry, fish trophic status, fish size and age, lake and watershed size, the presence and extent of wetlands in the watershed, and physical characteristics of the lake. The survey design complements ongoing efforts begun in 1983 to test fish in a variety of waters, from which emanated fish advisories for impacted rivers and lakes. The study defines a baseline for fish contamination in Massachusetts lakes and ponds that serves as a template for public health decisions regarding fish consumption.« less
Tiedeken, Jessica A; Ramsdell, John S
2010-04-01
Fetal poisoning of California sea lions (CSLs; Zalophus californianus) has been associated with exposure to the algal toxin domoic acid. These same sea lions accumulate a mixture of persistent environmental contaminants including pesticides and industrial products such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Developmental exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and its stable metabolite 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (p,p -DDE) has been shown to enhance domoic acid-induced seizures in zebrafish; however, the contribution of other co-occurring contaminants is unknown. We formulated a mixture of contaminants to include PCBs, PBDEs, hexachlorocyclohexane (HCH), and chlordane at levels matching those reported for fetal CSL blubber to determine the impact of co-occurring persistent contaminants with p,p -DDE on chemically induced seizures in zebrafish as a model for the CSLs. Embryos were exposed (6-30 hr postfertilization) to p,p -DDE in the presence or absence of a defined contaminant mixture prior to neurodevelopment via either bath exposure or embryo yolk sac microinjection. After brain maturation (7 days postfertilization), fish were exposed to a chemical convulsant, either pentylenetetrazole or domoic acid; resulting seizure behavior was then monitored and analyzed for changes, using cameras and behavioral tracking software. Induced seizure behavior did not differ significantly between subjects with embryonic exposure to a contaminant mixture and those exposed to p,p -DDE only. These studies demonstrate that p,p -DDE--in the absence of PCBs, HCH, chlordane, and PBDEs that co-occur in fetal sea lions--accounts for the synergistic activity that leads to greater sensitivity to domoic acid seizures.
Derrien, M; Jardé, E; Gruau, G; Pourcher, A M; Gourmelon, M; Jadas-Hécart, A; Pierson Wickmann, A C
2012-09-01
Improving the microbiological quality of coastal and river waters relies on the development of reliable markers that are capable of determining sources of fecal pollution. Recently, a principal component analysis (PCA) method based on six stanol compounds (i.e. 5β-cholestan-3β-ol (coprostanol), 5β-cholestan-3α-ol (epicoprostanol), 24-methyl-5α-cholestan-3β-ol (campestanol), 24-ethyl-5α-cholestan-3β-ol (sitostanol), 24-ethyl-5β-cholestan-3β-ol (24-ethylcoprostanol) and 24-ethyl-5β-cholestan-3α-ol (24-ethylepicoprostanol)) was shown to be suitable for distinguishing between porcine and bovine feces. In this study, we tested if this PCA method, using the above six stanols, could be used as a tool in "Microbial Source Tracking (MST)" methods in water from areas of intensive agriculture where diffuse fecal contamination is often marked by the co-existence of human and animal sources. In particular, well-defined and stable clusters were found in PCA score plots clustering samples of "pure" human, bovine and porcine feces along with runoff and diluted waters in which the source of contamination is known. A good consistency was also observed between the source assignments made by the 6-stanol-based PCA method and the microbial markers for river waters contaminated by fecal matter of unknown origin. More generally, the tests conducted in this study argue for the addition of the PCA method based on six stanols in the MST toolbox to help identify fecal contamination sources. The data presented in this study show that this addition would improve the determination of fecal contamination sources when the contamination levels are low to moderate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Breeding aflatoxin-resistant maize lines using recent advances in technologies - a review.
Brown, Robert L; Menkir, Abebe; Chen, Zhi-Yuan; Bhatnagar, Deepak; Yu, Jiujiang; Yao, Haibo; Cleveland, Thomas E
2013-01-01
Aflatoxin contamination caused by Aspergillus flavus infection of corn is a significant and chronic threat to corn being used as food or feed. Contamination of crops at levels of 20 ng g(-1) or higher (as regulated by the USFDA) by this toxin and potent carcinogen makes the crop unsalable, resulting in a significant economic burden on the producer. This review focuses on elimination of this contamination in corn which is a major US crop and the basis of many products. Corn is also "nature's example" of a crop containing heritable resistance to aflatoxin contamination, thereby serving as a model for achieving resistance to aflatoxin contamination in other crops as well. This crop is the largest production grain crop worldwide, providing food for billions of people and livestock and critical feedstock for production of biofuels. In 2011, the economic value of the US corn crop was US$76 billion, with US growers producing an estimated 12 billion bushels, more than one-third of the world's supply. Thus, the economics and significance of corn as a food crop and the threat to food safety due to aflatoxin contamination of this major food crop have prompted the many research efforts in many parts of the world to identify resistance in corn to aflatoxin contamination. Plant breeding and varietal selection has been used as a tool to develop varieties resistance to disease. This methodology has been employed in defining a few corn lines that show resistance to A. flavus invasion; however, no commercial lines have been marketed. With the new tools of proteomics and genomics, identification of resistance mechanisms, and rapid resistance marker selection methodologies, there is an increasing possibility of finding significant resistance in corn, and in understanding the mechanism of this resistance.
Partnership of Environmental Education and Research-A compilation of student research, 1999-2008
Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.
2011-01-01
The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.
Wardrop, Nicola A; Hill, Allan G; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Wright, Jim A
2018-01-01
Current priorities for diarrhoeal disease prevention include use of sanitation and safe water. There have been few attempts to quantify the importance of animal faeces in drinking-water contamination, despite the presence of potentially water-borne zoonotic pathogens in animal faeces. This study aimed to quantify the relationship between livestock ownership and point-of-consumption drinking-water contamination. Data from nationally representative household surveys in Nepal, Bangladesh, and Ghana, each with associated water quality assessments, were used. Multinomial regression adjusting for confounders was applied to assess the relationship between livestock ownership and the level of drinking-water contamination with E. coli. Ownership of five or more large livestock (e.g. cattle) was significantly associated with drinking-water contamination in Ghana (RRR=7.9, 95% CI=1.6 to 38.9 for medium levels of contamination with 1-31cfu/100ml; RRR=5.2, 95% CI=1.1-24.5 for high levels of contamination with >31cfu/100ml) and Bangladesh (RRR=2.4, 95% CI=1.3-4.5 for medium levels of contamination; non-significant for high levels of contamination). Ownership of eight or more poultry (chickens, guinea fowl, ducks or turkeys) was associated with drinking-water contamination in Bangladesh (RRR=1.5, 95% CI=1.1-2.0 for medium levels of contamination, non-significant for high levels of contamination). These results suggest that livestock ownership is a significant risk factor for the contamination of drinking-water at the point of consumption. This indicates that addressing human sanitation without consideration of faecal contamination from livestock sources will not be sufficient to prevent drinking-water contamination. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
40 CFR 143.3 - Secondary maximum contaminant levels.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 143.3 Section 143.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL SECONDARY DRINKING WATER REGULATIONS § 143.3 Secondary maximum contaminant levels. The secondary maximum contaminant levels for public water systems are as follows: Contaminant...
40 CFR 143.3 - Secondary maximum contaminant levels.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 143.3 Section 143.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL SECONDARY DRINKING WATER REGULATIONS § 143.3 Secondary maximum contaminant levels. The secondary maximum contaminant levels for public water systems are as follows: Contaminant...
40 CFR 143.3 - Secondary maximum contaminant levels.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 143.3 Section 143.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL SECONDARY DRINKING WATER REGULATIONS § 143.3 Secondary maximum contaminant levels. The secondary maximum contaminant levels for public water systems are as follows: Contaminant...
40 CFR 143.3 - Secondary maximum contaminant levels.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 143.3 Section 143.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL SECONDARY DRINKING WATER REGULATIONS § 143.3 Secondary maximum contaminant levels. The secondary maximum contaminant levels for public water systems are as follows: Contaminant...
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpellini, D.; Paoloni, S.; Medaglia, P.G.
Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate andmore » metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.« less
Gilmore, Thomas; O'Malley, Gerald F; Lau, Wayne Bond; Vann, David R; Bromberg, Adam; Martin, Aaron; Gibbons, Andrea; Rimmer, Evan
2013-03-01
Lead-contaminated ceramics can be a clinically significant source of lead poisoning, with the potential to cause illness in children and adults; one death in a child has been described. We hypothesized that the prevalence of lead-contaminated ceramics would be higher within Chinatown versus outside of Chinatown. The study was a prospective observational cross-sectional study. Two areas were defined geographically as being within and outside of Philadelphia's Chinatown, and a predefined number of items were purchased in each area. Each item was screened for lead utilizing a colorimetric testing swab. Positive items were leached for lead using the ASTM C738-94 protocol for lead level quantification. The primary outcome was the prevalence of ceramics not compliant with the FDA standard for leachable lead within and outside of Philadelphia's Chinatown. A total of 132 items were purchased, 46 outside of and 86 within Chinatown. More lead-positive items originated within Chinatown than outside of Chinatown [five positive items, 5.8 % prevalence within Chinatown (95 % confidence interval, CI, 2.5-12.9 %), and zero positive, 0 % prevalence outside of Chinatown (95 % CI 0-7.5 %)]. However, this difference was not found to be statistically significant (P = 0.1624). The leachable lead-positive items were up to 40-fold the acceptable FDA levels. Testing a larger number of items may demonstrate a significant source of lead exposure.
Klinkenberg, Don; Thomas, Ekelijn; Artavia, Francisco F Calvo; Bouma, Annemarie
2011-08-01
Design of surveillance programs to detect infections could benefit from more insight into sampling schemes. We address the effect of sampling schemes for Salmonella Enteritidis surveillance in laying hens. Based on experimental estimates for the transmission rate in flocks, and the characteristics of an egg immunological test, we have simulated outbreaks with various sampling schemes, and with the current boot swab program with a 15-week sampling interval. Declaring a flock infected based on a single positive egg was not possible because test specificity was too low. Thus, a threshold number of positive eggs was defined to declare a flock infected, and, for small sample sizes, eggs from previous samplings had to be included in a cumulative sample to guarantee a minimum flock level specificity. Effectiveness of surveillance was measured by the proportion of outbreaks detected, and by the number of contaminated table eggs brought on the market. The boot swab program detected 90% of the outbreaks, with 75% fewer contaminated eggs compared to no surveillance, whereas the baseline egg program (30 eggs each 15 weeks) detected 86%, with 73% fewer contaminated eggs. We conclude that a larger sample size results in more detected outbreaks, whereas a smaller sampling interval decreases the number of contaminated eggs. Decreasing sample size and interval simultaneously reduces the number of contaminated eggs, but not indefinitely: the advantage of more frequent sampling is counterbalanced by the cumulative sample including less recently laid eggs. Apparently, optimizing surveillance has its limits when test specificity is taken into account. © 2011 Society for Risk Analysis.
A proposed approach for the assessment of chemicals in indirect potable reuse schemes.
Rodriguez, Clemencia; Weinstein, Philip; Cook, Angus; Devine, Brian; Van Buynder, Paul
2007-10-01
The city of Perth in Western Australia is facing a future of compromised water supplies. In recent years, this urban region has been experiencing rapid population growth, coupled with drying climate, which has exacerbated water shortages. As part of the government strategy to secure water sustainability and to address an agenda focused on all elements of the water cycle, a target of 20% reuse of treated wastewater by 2012 was established. This includes a feasibility review of managed aquifer recharge for indirect potable reuse. A characterization of contaminants in wastewater after treatment and an assessment of the health implications are necessary to reassure both regulators and the public. To date, the commonly used approach involves a comparison of measured contaminant concentrations with the established drinking-water standards or other toxicological guidelines for the protection of human health. However, guidelines and standards have not been established for many contaminants in recycled water (unregulated chemicals). This article presents a three-tiered approach for the preliminary health risk assessment of chemicals in order to determine key contaminants that need to be monitored and managed. The proposed benchmark values for the calculation of risk quotients are health based, systematically defined, scientifically defensible, easy to apply, and clear to interpret. The proposed methodology is based on the derivation of health-based levels for unregulated contaminants with toxicity information and a "threshold of toxicological concern" for unregulated contaminants without toxicity data. The application of this approach will help policymakers set guidelines regarding unregulated chemicals in recycled water.
Spark gap switch with spiral gas flow
Brucker, John P.
1989-01-01
A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.
A direct push resistivity method was evaluated as a complementary screening tool to provide rapid in-situ contaminant detection to aid in better defining locations for drilling, sampling, and monitoring well installation at hazardous waste sites. Nine continuous direct push resi...
Process for treating waste water having low concentrations of metallic contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, Brian B; Millings, Margaret R; Nichols, Ralph L
A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.
Tsubokura, Masaharu; Kato, Shigeaki; Nomura, Shuhei; Gilmour, Stuart; Nihei, Masahiko; Sakuma, Yu; Oikawa, Tomoyoshi; Kanazawa, Yukio; Kami, Masahiro; Hayano, Ryugo
2014-01-01
Maintaining low levels of chronic internal contamination among residents in radiation-contaminated areas after a nuclear disaster is a great public health concern. However, the efficacy of reduction measures for individual internal contamination remains unknown. To reduce high levels of internal radiation exposure in a group of individuals exposed through environmental sources, we performed careful dietary intervention with identification of suspected contaminated foods, as part of mass voluntary radiation contamination screenings and counseling program in Minamisoma Municipal General Hospital and Hirata Central Hospital. From a total of 30,622 study participants, only 9 residents displayed internal cesium-137 (Cs-137) levels of more than 50 Bq/kg. The median level of internal Cs-137 contamination in these residents at the initial screening was 4,830 Bq/body (range: 2,130–15,918 Bq/body) and 69.6 Bq/kg (range: 50.7–216.3 Bq/kg). All these residents with high levels of internal contamination consumed homegrown produce without radiation inspection, and often collected mushrooms in the wild or cultivated them on bed-logs in their homes. They were advised to consume distributed food mainly and to refrain from consuming potentially contaminated foods without radiation inspection and local produces under shipment restrictions such as mushrooms, mountain vegetables, and meat of wild life. A few months after the intervention, re-examination of Cs levels revealed remarkable reduction of internal contamination in all residents. Although the levels of internal radiation exposure appear to be minimal amongst most residents in Fukushima, a subset of the population, who unknowingly consumed highly contaminated foodstuffs, experienced high levels of internal contamination. There seem to be similarities in dietary preferences amongst residents with high internal contamination levels, and intervention based on pre- and post-test counseling and dietary advice from medical care providers about risky food intake appears to be a feasible option for changing residents' dietary practices, subsequently resulting in a reduction in Cs internal contamination levels. PMID:24932486
OSIRIS-REx Contamination Control Strategy and Implementation
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Adelman, L. A.; Ajluni, T.; Andronikov, A. V.; Aponte, J. C.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.;
2017-01-01
OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This manuscript describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at Level 100 A/2 and less than 180 nanograms per square centimeter of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication between scientists, engineers, managers, and technicians.
Gómez, Aina G; Ondiviela, Bárbara; Puente, Araceli; Juanes, José A
2015-05-15
This work presents a standard and unified procedure for assessment of environmental risks at the contaminant source level in port aquatic systems. Using this method, port managers and local authorities will be able to hierarchically classify environmental hazards and proceed with the most suitable management actions. This procedure combines rigorously selected parameters and indicators to estimate the environmental risk of each contaminant source based on its probability, consequences and vulnerability. The spatio-temporal variability of multiple stressors (agents) and receptors (endpoints) is taken into account to provide accurate estimations for application of precisely defined measures. The developed methodology is tested on a wide range of different scenarios via application in six European ports. The validation process confirms its usefulness, versatility and adaptability as a management tool for port water quality in Europe and worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.
OSIRIS-REx Contamination Control Strategy and Implementation
NASA Astrophysics Data System (ADS)
Dworkin, J. P.; Adelman, L. A.; Ajluni, T.; Andronikov, A. V.; Aponte, J. C.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.; Burton, A. S.; Callahan, M. P.; Castro-Wallace, S. L.; Clark, B. C.; Clemett, S. J.; Connolly, H. C.; Cutlip, W. E.; Daly, S. M.; Elliott, V. E.; Elsila, J. E.; Enos, H. L.; Everett, D. F.; Franchi, I. A.; Glavin, D. P.; Graham, H. V.; Hendershot, J. E.; Harris, J. W.; Hill, S. L.; Hildebrand, A. R.; Jayne, G. O.; Jenkens, R. W.; Johnson, K. S.; Kirsch, J. S.; Lauretta, D. S.; Lewis, A. S.; Loiacono, J. J.; Lorentson, C. C.; Marshall, J. R.; Martin, M. G.; Matthias, L. L.; McLain, H. L.; Messenger, S. R.; Mink, R. G.; Moore, J. L.; Nakamura-Messenger, K.; Nuth, J. A.; Owens, C. V.; Parish, C. L.; Perkins, B. D.; Pryzby, M. S.; Reigle, C. A.; Righter, K.; Rizk, B.; Russell, J. F.; Sandford, S. A.; Schepis, J. P.; Songer, J.; Sovinski, M. F.; Stahl, S. E.; Thomas-Keprta, K.; Vellinga, J. M.; Walker, M. S.
2018-02-01
OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.
OSIRIS-REx Contamination Control Strategy and Implementation
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Adelman, L. A.; Ajluni, T. M.; Andronikov, A. V.; Aponte, J. S.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.;
2017-01-01
OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and less than 180 ng/cm(exp 2) of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.
Payload/orbiter contamination control requirement study
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Rantanen, R. O.; Ress, E. B.
1974-01-01
A study was conducted to determine and quantify the expected particulate and molecular on-orbit contaminant environment for selected space shuttle payloads as a result of major shuttle orbiter contamination sources. Individual payload susceptibilities to contamination are reviewed. The risk of payload degradation is identified and preliminary recommendations are provided concerning the limiting factors which may depend on operational activities associated with the payload/orbiter interface or upon independent payload functional activities. A basic computer model of the space shuttle orbiter which includes a representative payload configuration is developed. The major orbiter contamination sources, locations, and flux characteristics based upon available data have been defined and modeled.
As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipe...
40 CFR 422.41 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contaminated nonprocess waste water, as defined below. (c) The term contaminated non-process waste water shall..., eliminate and control to the maximum extent feasible such contact and provided further that all reasonable..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.51 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contaminated non-process waste water, as defined below. (c) The term contaminated nonprocess waste water shall..., eliminate and control to the maximum extent feasible such contact and provided further that all reasonable..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.41 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... contaminated nonprocess waste water, as defined below. (c) The term contaminated non-process waste water shall..., eliminate and control to the maximum extent feasible such contact and provided further that all reasonable..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.51 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... include contaminated non-process waste water, as defined below. (c) The term contaminated nonprocess waste..., reduce, eliminate and control to the maximum extent feasible such contact and provided further that all..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.51 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contaminated non-process waste water, as defined below. (c) The term contaminated nonprocess waste water shall..., eliminate and control to the maximum extent feasible such contact and provided further that all reasonable..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.41 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... contaminated nonprocess waste water, as defined below. (c) The term contaminated non-process waste water shall..., eliminate and control to the maximum extent feasible such contact and provided further that all reasonable..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.51 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... contaminated non-process waste water, as defined below. (c) The term contaminated nonprocess waste water shall..., eliminate and control to the maximum extent feasible such contact and provided further that all reasonable..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.41 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contaminated nonprocess waste water, as defined below. (c) The term contaminated non-process waste water shall..., eliminate and control to the maximum extent feasible such contact and provided further that all reasonable..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.51 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... contaminated non-process waste water, as defined below. (c) The term contaminated nonprocess waste water shall..., eliminate and control to the maximum extent feasible such contact and provided further that all reasonable..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
40 CFR 422.41 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... include contaminated nonprocess waste water, as defined below. (c) The term contaminated non-process waste..., reduce, eliminate and control to the maximum extent feasible such contact and provided further that all..., “Rainfall Frequency Atlas of the United States,” May 1961, and subsequent amendments or equivalent regional...
Towards bioavailability-based soil criteria: Past, present and future perspectives
USDA-ARS?s Scientific Manuscript database
Bioavailability has been used as a key indicator in chemical risk assessment, yet it is a poorly quantified risk factor. Worldwide, the framework used to assess potentially contaminated sites is similar and the decisions are based on threshold contaminant concentration. The uncertainty in the defin...
Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance
NASA Technical Reports Server (NTRS)
Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.
2016-01-01
Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzelman, K M; Mansfield, W G
This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in themore » food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.« less
Veldhoen, Nik; Ikonomou, Michael G; Dubetz, Cory; Macpherson, Nancy; Sampson, Tracy; Kelly, Barry C; Helbing, Caren C
2010-05-05
The health and physiological condition of anadromous salmon is of concern as their upriver migration requires navigation of human-impacted waterways and metabolism of stored energy reserves containing anthropogenic contaminants. Such factors may affect reproductive success of fish stocks. This study investigates chemical contaminant burdens and select gene expression profiles in Pacific Sockeye (Oncorhynchus nerka) and Chinook (Oncorhynchus tshawytscha) salmon which traverse the Fraser River watershed during their spawning migration. Chemical analyses of muscle tissue and eggs of salmon collected from the lower Fraser River (pre-migration) and from upstream spawning grounds (post-migration) during the 2007 migration revealed the presence of numerous chemical contaminants, including PCBs, dioxins/furans, pesticides, and heavy metals. However, muscle tissue residue concentrations were well below human health consumption guidelines and 2,3,7,8 TCDD toxic equivalents (SigmaTEQs) in salmon eggs, calculated using WHO toxic equivalency factors (WHO-TEFs) for fish health, did not exceed the 0.3pgg(-1) wet weight toxicological threshold level previously associated with 30% egg mortality in salmon populations. Quantitative real-time PCR probes were generated and used to assess differences in abundance of key mRNA transcripts encoding nine gene products associated with reproduction, stress, metal toxicity, and exposure to environmental contaminants. Gene expression profiles were characterized in liver and muscle tissue of pre- and post-migration Sockeye and Chinook salmon. The results of stock-matched animals indicate that dynamic changes in mRNA levels occur for a number of genes in both species during migration and suggest that Sockeye salmon exhibit a greater level of biological stress compared to the Chinook salmon population. Using a male-specific genotypic marker, we found that out of the 154 animals examined, one Sockeye was genotypically male but phenotypically female. This individual's gene expression profile in liver and muscle was reminiscent of, but not identical to, the female expression profile. These studies provide the first glimpse of the dynamic yet common nature of changes in the transcriptome that are shared between species during in-migration and highlight differences that may relate to population success. Continued longitudinal assessment will further define the association between contaminant burden, physiological stress, and modulation of gene expression in migrating Pacific salmon.
Fram, Miranda S.; Olsen, Lisa D.; Belitz, Kenneth
2012-01-01
Volatile organic compounds (VOCs) were analyzed in quality-control samples collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. From May 2004 through September 2010, a total of 2,026 groundwater samples, 211 field blanks, and 109 source-solution blanks were collected and analyzed for concentrations of 85 VOCs. Results from analyses of these field and source-solution blanks and of 2,411 laboratory instrument blanks during the same time period were used to assess the quality of data for the 2,026 groundwater samples. Eighteen VOCs were detected in field blanks or source-solution blanks: acetone, benzene, bromodichloromethane, 2-butanone, carbon disulfide, chloroform, 1,1-dichloroethene, dichloromethane, ethylbenzene, tetrachloroethene, styrene, tetrahydrofuran, toluene, trichloroethene, trichlorofluoromethane, 1,2,4-trimethylbenzene, m- and p-xylenes, and o-xylene. The objective of the evaluation of the VOC-blank data was to determine if study reporting levels (SRLs) were needed for any of the VOCs detected in blanks to ensure the quality of the data from groundwater samples. An SRL is equivalent to a raised reporting level that is used in place of the reporting level used by the analyzing laboratory [long‑term method detection level (LT-MDL) or laboratory reporting level (LRL)] to reduce the probability of reporting false-positive detections. Evaluation of VOC-blank data was done in three stages: (1) identification of a set of representative quality‑control field blanks (QCFBs) to be used for calculation of SRLs and identification of VOCs amenable to the SRL approach, (2) evaluation of potential sources of contamination to blanks and groundwater samples by VOCs detected in field blanks, and (3) selection of appropriate SRLs from among four potential SRLs for VOCs detected in field blanks and application of those SRLs to the groundwater data. An important conclusion from this study is that to ensure the quality of the data from groundwater samples, it was necessary to apply different methods of determining SRLs from field blank data to different VOCs, rather than use the same method for all VOCs. Four potential SRL values were defined by using three approaches: two values were defined by using a binomial probability method based on one-sided, nonparametric upper confidence limits, one was defined as equal to the maximum concentration detected in the field blanks, and one was defined as equal to the maximum laboratory method detection level used during the period when samples were collected for the project. The differences in detection frequencies and concentrations among different types of blanks (laboratory instrument blanks, source-solution blanks, and field blanks collected with three different sampling equipment configurations) and groundwater samples were used to infer the sources and mechanisms of contamination for each VOC detection in field blanks. Other chemical data for the groundwater samples (oxidation-reduction state, co-occurrence of VOCs, groundwater age) and ancillary information about the well sites (land use, presence of known sources of contamination) were used to evaluate whether the patterns of detections of VOCs in groundwater samples before and after application of potential SRLs were plausible. On this basis, the appropriate SRL was selected for each VOC that was determined to require an SRL. The SRLs for ethylbenzene [0.06 microgram per liter (μg/L)], m- and p-xylenes (0.33 μg/L), o-xylene (0.12 μg/L), toluene (0.69 μg/L), and 1,2,4-trimethylbenzene (0.56 μg/L) corresponded to the highest concentrations detected in the QCFBs and were selected because they resulted in the most censoring of groundwater data. Comparisons of hydrocarbon ratios in groundwater samples and blanks and comparisons between detection frequencies of the five hydrocarbons in groundwater samples and different types of blanks suggested three dominant sources of contamination that affected groundwater samples and blanks: (1) ethylbenzene, m- and p-xylenes, o-xylene, and toluene from fuel or exhaust components sorbed onto sampling lines, (2) toluene from vials and the source blank water, and (3) 1,2,4-trimethylbenzene from materials used for collection of samples for radon-222 analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Mary J.; Peterson, Robert E.
This report presents and discusses results of the fiscal year 2003 sampling event associated with aquifer tubes along the Columbia River in the northern Hanford Site. Aquifer tube data help define the extent of groundwater contamination near the river, determine vertical variations in contamination, monitor the performance of interim remedial actions near the river, and support impact studies.
TOXICITY AND MUTAGENICITY OF A MIXTURE OF 25 CHEMICALS FOUND IN CONTAMINATED GROUNDWATER
A defined mixture of 25 chemicals that are often found in contaminated ground water was prepared as a water solution and studied for mutagenicity in bacteria, for prophage induction in bacteria, for palatability and effect on weight-gain in rats and mice, and for cytogenetic effe...
Kucuksezgin, Filiz; Pazi, Idil; Yucel-Gier, Guzel; Akcali, Baris; Galgani, François
2013-11-01
Within the framework of the MYTITURK project, heavy metals and organic compounds contaminations were assessed in transplanted mussels in eight different bays from the Eastern Aegean coast. Izmir Bay, Canakkale Strait entrance, Saros and Candarli Bay were defined low pollution extent according to Principal Component Analysis taking into metal accumulation. PAHs (Polycyclic Aromatic Hydrocarbons) levels in the range of 29.4-64.2 ng g(-1) (dry weight) indicated that PAH contamination level classified as low along the Aegean coast. Concentrations of Aroclor1254 and 1260 were higher in transplanted mussels from Canakkale Strait Outlet due to industrial activities was originated from Marmara Sea. The organochlorinated pesticides such as heptachlor (<0.4 ng g(-1)), aldrin (<0.30 ng g(-1)), dieldrin (<0.75 ng g(-1)), endrin (<2.3 ng g(-1)) concentrations were homogeneous however, HCB (Hexachlorobenzene) and lindane concentrations were found undetectable level along the coast. DDE/DDT ratio in the caged mussels form Gulluk and Gokova Bay indicated recent DDT (Dikloro difenil trikloroethan) usage in these areas. The residues of organochlorinated compounds in transplanted mussels confirm the long persistence of DDTs. According to world health authorities, the concentration of heavy metals in mussels for the study area can generally be considered not to be at levels posing a health risk except Zn. The levels of POPs indicated that transplanted mussels have a lack of risk for the human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Patrick
This Closure Report (CR) presents information supporting the clean closure of Corrective Action Unit (CAU) 412: Clean Slate I Plutonium Dispersion (TTR), located on the Tonopah Test Range, Nevada. CAU 412 consists of a release of radionuclides to the surrounding soil from a storage–transportation test conducted on May 25, 1963. Corrective action investigation (CAI) activities were performed in April and May 2015, as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR), Tonopah Test Range, Nevada; and in accordance with the Soils Activity Quality Assurance Plan. Themore » purpose of the CAI was to fulfill data needs as defined during the data quality objectives process. The CAU 412 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the data needs identified by the data quality objectives process. This CR provides documentation and justification for the clean closure of CAU 412 under the FFACO without further corrective action. This justification is based on historical knowledge of the site, previous site investigations, implementation of the 1997 interim corrective action, and the results of the CAI. The corrective action of clean closure was confirmed as appropriate for closure of CAU 412 based on achievement of the following closure objectives: Radiological contamination at the site is less than the final action level using the ground troops exposure scenario (i.e., the radiological dose is less than the final action level): Removable alpha contamination is less than the high contamination area criterion: No potential source material is present at the site, and any impacted soil associated with potential source material has been removed so that remaining soil contains contaminants at concentrations less than the final action levels: and There is sufficient information to characterize investigation and remediation waste for disposal.« less
Lo, Yi-Chun; Dooyema, Carrie A; Neri, Antonio; Durant, James; Jefferies, Taran; Medina-Marino, Andrew; de Ravello, Lori; Thoroughman, Douglas; Davis, Lora; Dankoli, Raymond S; Samson, Matthias Y; Ibrahim, Luka M; Okechukwu, Ossai; Umar-Tsafe, Nasir T; Dama, Alhassan H; Brown, Mary Jean
2012-10-01
During May-June 2010, a childhood lead poisoning outbreak related to gold ore processing was confirmed in two villages in Zamfara State, Nigeria. During June-September of that year, villages with suspected or confirmed childhood lead poisoning continued to be identified in Zamfara State. We investigated the extent of childhood lead poisoning [≥ 1 child with a blood lead level (BLL) ≥ 10 µg/dL] and lead contamination (≥ 1 soil/dust sample with a lead level > 400 parts per million) among villages in Zamfara State and identified villages that should be prioritized for urgent interventions. We used chain-referral sampling to identify villages of interest, defined as villages suspected of participation in gold ore processing during the previous 12 months. We interviewed villagers, determined BLLs among children < 5 years of age, and analyzed soil/dust from public areas and homes for lead. We identified 131 villages of interest and visited 74 (56%) villages in three local government areas. Fifty-four (77%) of 70 villages that completed the survey reported gold ore processing. Ore-processing villages were more likely to have ≥ 1 child < 5 years of age with lead poisoning (68% vs. 50%, p = 0.17) or death following convulsions (74% vs. 44%, p = 0.02). Soil/dust contamination and BLL ≥ 45 µg/dL were identified in ore-processing villages only [50% (p < 0.001) and 15% (p = 0.22), respectively]. The odds of childhood lead poisoning or lead contamination was 3.5 times as high in ore-processing villages than the other villages (95% confidence interval: 1.1, 11.3). Childhood lead poisoning and lead contamination were widespread in surveyed areas, particularly among villages that had processed ore recently. Urgent interventions are required to reduce lead exposure, morbidity, and mortality in affected communities.
Lo, Yi-Chun; Dooyema, Carrie A.; Neri, Antonio; Durant, James; Jefferies, Taran; Medina-Marino, Andrew; de Ravello, Lori; Thoroughman, Douglas; Davis, Lora; Dankoli, Raymond S.; Samson, Matthias Y.; Ibrahim, Luka M.; Okechukwu, Ossai; Umar-Tsafe, Nasir T.; Dama, Alhassan H.
2012-01-01
Background: During May–June 2010, a childhood lead poisoning outbreak related to gold ore processing was confirmed in two villages in Zamfara State, Nigeria. During June–September of that year, villages with suspected or confirmed childhood lead poisoning continued to be identified in Zamfara State. Objectives: We investigated the extent of childhood lead poisoning [≥ 1 child with a blood lead level (BLL) ≥ 10 µg/dL] and lead contamination (≥ 1 soil/dust sample with a lead level > 400 parts per million) among villages in Zamfara State and identified villages that should be prioritized for urgent interventions. Methods: We used chain-referral sampling to identify villages of interest, defined as villages suspected of participation in gold ore processing during the previous 12 months. We interviewed villagers, determined BLLs among children < 5 years of age, and analyzed soil/dust from public areas and homes for lead. Results: We identified 131 villages of interest and visited 74 (56%) villages in three local government areas. Fifty-four (77%) of 70 villages that completed the survey reported gold ore processing. Ore-processing villages were more likely to have ≥ 1 child < 5 years of age with lead poisoning (68% vs. 50%, p = 0.17) or death following convulsions (74% vs. 44%, p = 0.02). Soil/dust contamination and BLL ≥ 45 µg/dL were identified in ore-processing villages only [50% (p < 0.001) and 15% (p = 0.22), respectively]. The odds of childhood lead poisoning or lead contamination was 3.5 times as high in ore-processing villages than the other villages (95% confidence interval: 1.1, 11.3). Conclusion: Childhood lead poisoning and lead contamination were widespread in surveyed areas, particularly among villages that had processed ore recently. Urgent interventions are required to reduce lead exposure, morbidity, and mortality in affected communities. PMID:22766030
Cleaning, disinfection and sterilization of surface prion contamination.
McDonnell, G; Dehen, C; Perrin, A; Thomas, V; Igel-Egalon, A; Burke, P A; Deslys, J P; Comoy, E
2013-12-01
Prion contamination is a risk during device reprocessing, being difficult to remove and inactivate. Little is known of the combined effects of cleaning, disinfection and sterilization during a typical reprocessing cycle in clinical practice. To investigate the combination of cleaning, disinfection and/or sterilization on reducing the risk of surface prion contamination. In vivo test methods were used to study the impact of cleaning alone and cleaning combined with thermal disinfection and high- or low-temperature sterilization processes. A standardized test method, based on contamination of stainless steel wires with high titres of scrapie-infected brain homogenates, was used to determine infectivity reduction. Traditional chemical methods of surface decontamination against prions were confirmed to be effective, but extended steam sterilization was more variable. Steam sterilization alone reduced the risk of prion contamination under normal or extended exposure conditions, but did show significant variation. Thermal disinfection had no impact in these studies. Cleaning with certain defined formulations in combination with steam sterilization can be an effective prion decontamination process, in particular with alkaline formulations. Low-temperature, gaseous hydrogen peroxide sterilization was also confirmed to reduce infectivity in the presence and absence of cleaning. Prion decontamination is affected by the full reprocessing cycle used on contaminated surfaces. The correct use of defined cleaning, disinfection and sterilization methods as tested in this report in the scrapie infectivity assay can provide a standard precaution against prion contamination. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Inorganic and organic contaminants in Alaskan shorebird eggs.
Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B
2016-05-01
Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are relatively free of most contaminants and that contaminant concentrations are below levels (except potentially strontium) that would likely affect the survival of individuals and consequently regulate the species at the population level.
Alberti, Luca; Colombo, Loris; Formentin, Giovanni
2018-04-15
The Lombardy Region in Italy is one of the most urbanized and industrialized areas in Europe. The presence of countless sources of groundwater pollution is therefore a matter of environmental concern. The sources of groundwater contamination can be classified into two different categories: 1) Point Sources (PS), which correspond to areas releasing plumes of high concentrations (i.e. hot-spots) and 2) Multiple-Point Sources (MPS) consisting in a series of unidentifiable small sources clustered within large areas, generating an anthropogenic diffuse contamination. The latter category frequently predominates in European Functional Urban Areas (FUA) and cannot be managed through standard remediation techniques, mainly because detecting the many different source areas releasing small contaminant mass in groundwater is unfeasible. A specific legislative action has been recently enacted at Regional level (DGR IX/3510-2012), in order to identify areas prone to anthropogenic diffuse pollution and their level of contamination. With a view to defining a management plan, it is necessary to find where MPS are most likely positioned. This paper describes a methodology devised to identify the areas with the highest likelihood to host potential MPS. A groundwater flow model was implemented for a pilot area located in the Milan FUA and through the PEST code, a Null-Space Monte Carlo method was applied in order to generate a suite of several hundred hydraulic conductivity field realizations, each maintaining the model in a calibrated state and each consistent with the modelers' expert-knowledge. Thereafter, the MODPATH code was applied to generate back-traced advective flowpaths for each of the models built using the conductivity field realizations. Maps were then created displaying the number of backtracked particles that crossed each model cell in each stochastic calibrated model. The result is considered to be representative of the FUAs areas with the highest likelihood to host MPS responsible for diffuse contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
Parliman, D.J.
1987-01-01
The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications of organic wastewater and organic solute loading rates on subsurface water quality is not feasible at this time.
Approach to study of Cu, Ni and Zn content in soil for ecotoxicological risk assessment
NASA Astrophysics Data System (ADS)
Boluda, R.; Marimon, L.; Gil, C.; Roca-Pérez, L.
2009-04-01
Current Spanish legislation on contaminated soils defines contaminated soil as "that whose characteristics have been negatively altered by the presence of dangerous human-derived chemical components whose concentration is such that it is an unacceptable risk for human health or the environment and has been expressly declared as such by legal ruling". Regarding heavy metals, the Spanish Autonomous Communities will promote measures to obtain generic reference values to declare a soil to be contaminated. In the Valencian Community, these reference values still do not exist. So if the protection of ecosystems is considered a priority to declare a soil to be contaminated and to assess the level of risk, emergency toxicity tests and seed growth in land plants are resorted to, or tests with aquatic organisms or other experiments with leached soils obtained by standard procedures are carried out. We studied the toxic effects of calcareous contaminated soils by Cu, Ni and Zn on marine bacterium Vibrio fisheri (MicrotoxR test assay) (1) and on barley (Hordeum vulgare L.) in plate (germination index) (2) and pot (UNE 77301) (3) experiments for the purpose of establishing the Cu, Ni and Zn concentrations in soil which may lead to toxicity in order to observe, therefore, whether there is any likelihood of these pollutants coming into contact with any receptor and if adverse effects exist for living beings and the environment. The results showed significant differences among the three types of tests done but, in all cases, the concentrations needed to reflect toxicity effect on organisms were around 20 -70 (Cu and Ni) to 1000 (Zn) times higher than the levels of the control soils. The sensitivity order of the bio-assay was: (1) < (3) < (2). We would like to thank Spanish government-MICINN for partial funding and support (MICINN, project CGL2006-09776).
Jalali, Mohsen; Khanlari, Zahra V
2007-11-01
Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.
Fuller, C.C.; Davis, J.A.; Cain, D.J.; Lamothe, P.J.; Fries Fernandez, T.L.G.; Vargas, J.A.; Murillo, M.M.
1990-01-01
A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediment from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediments from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.
NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Julianne J.; Mizell, Steve A.; Nikolich, George
2013-01-01
The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4more » Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.« less
Dudarev, Alexey A; Dushkina, Eugenia V; Sladkova, Yuliya N; Alloyarov, Pavel R; Chupakhin, Valery S; Dorofeyev, Vitaliy M; Kolesnikova, Tatjana A; Fridman, Kirill B; Evengard, Birgitta; Nilsson, Lena M
2013-01-01
Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Uniform water security indicators collected from Russian official statistical sources for the period 2000-2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized--underground and surface, and non-centralized) and of drinking water. Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40-80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32-90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5-12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages--0.2-2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus--up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized--underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions.
Jeffries, Thomas C.; Rayu, Smriti; Nielsen, Uffe N.; Lai, Kaitao; Ijaz, Ali; Nazaries, Loic; Singh, Brajesh K.
2018-01-01
Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP) compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation in situ and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination. Here we address this knowledge gap by performing shotgun sequencing of community DNA from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Our results showed two distinct groups of soils defined by differing functional and taxonomic profiles. Degradation assays suggested that these groups corresponded to the organophosphorus degradation potential of soils, with the fastest degrading community being defined by increases in transport and nutrient cycling pathways and enzymes potentially involved in phosphorus metabolism. This was against a backdrop of taxonomic community shifts potentially related to contamination adaptation and reflecting the legacy of exposure. Overall our results highlight the value of using holistic system-wide metagenomic approaches as a tool to predict microbial degradation in the context of the ecology of contaminated habitats. PMID:29515526
INTEGRATING PROBABILISTIC AND FIXED-SITE MONITORING FOR ROBUST WATER QUALITY ASSESSMENTS
Determining the extent of water-quality degradation, controlling nonpoint sources, and defining allowable amounts of contaminants are important water-quality issues defined in the Clean Water Act that require new monitoring data. Probabilistic, randomized stream water-quality mon...
Wright, Justin; Kirchner, Veronica; Bernard, William; Ulrich, Nikea; McLimans, Christopher; Campa, Maria F.; Hazen, Terry; Macbeth, Tamzen; Marabello, David; McDermott, Jacob; Mackelprang, Rachel; Roth, Kimberly; Lamendella, Regina
2017-01-01
The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios. PMID:29213257
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Justin; Kirchner, Veronica; Bernard, William
The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.« less
Wright, Justin; Kirchner, Veronica; Bernard, William; ...
2017-11-22
The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.« less
Mortier, Virginie; Vancoillie, Leen; Dauwe, Kenny; Staelens, Delfien; Demecheleer, Els; Schauvliege, Marlies; Dinakis, Sylvie; Van Maerken, Tom; Dessilly, Géraldine; Ruelle, Jean; Verhofstede, Chris
2017-10-24
Pre-analytical sample processing is often overlooked as a potential cause of inaccurate assay results. Here we demonstrate how plasma, extracted from standard EDTA-containing blood collection tubes, may contain traces of blood cells consequently resulting in a false low-level HIV-1 viral load when using Roche Cobas HIV-1 assays. The presence of human DNA in Roche Cobas 4800 RNA extracts and in RNA extracts from the Abbott HIV-1 RealTime assay was assessed by quantifying the human albumin gene by means of quantitative PCR. RNA was extracted from plasma samples before and after an additional centrifugation and tested for viral load and DNA contamination. The relation between total DNA content and viral load was defined. Elevated concentrations of genomic DNA were detected in 28 out of 100 Cobas 4800 extracts and were significantly more frequent in samples processed outside of the AIDS Reference Laboratory. An association between genomic DNA presence and spurious low-level viraemia results was demonstrated. Supplementary centrifugation of plasma before RNA extraction eliminated the contamination and the false viraemia. Plasma isolated from standard EDTA-containing blood collection tubes may contain traces of HIV DNA leading to false viral load results above the clinical cutoff. Supplementary centrifugation of plasma before viral load analysis may eliminate the occurrence of this spurious low-level viraemia.
Contamination control concepts for space station customer servicing
NASA Technical Reports Server (NTRS)
Maruya, K. A.; Ryan, L. E.; Rosales, L. A.; Medler, E. H.
1986-01-01
The customer servicing operations envisioned for the space station, which include instrument repair, orbital replacement unit (ORU) changeout, and fluid replenishment for free-flying and attached payloads, are expected to create requirements for a unique contamination control subsystem for the customer servicing facility (CSF). Both the core space station and the CSF users present unique requirements/sensitivities, not all of which are currently defined with common criteria. Preliminary results from an assessment of the effects of the CSF-induced contamination environment are reported. Strategies for a comprehensive contamination control approach and a description of specific hardware devices and their applicability are discussed.
Developing the Cleanliness Requirements for an Organic-detection Instrument MOMA-MS
NASA Technical Reports Server (NTRS)
Perry, Radford; Canham, John; Lalime, Erin
2015-01-01
The cleanliness requirements for an organic-detection instrument, like the Mars Organic Molecule Analyzer Mass Spectrometer (MOMA-MS), on a Planetary Protection Class IVb mission can be extremely stringent. These include surface molecular and particulate, outgassing, and bioburden. The prime contractor for the European Space Agencys ExoMars 2018 project, Thales Alenia Space Italy, provided requirements based on a standard, conservative approach of defining limits which yielded levels that are unverifiable by standard cleanliness verification methods. Additionally, the conservative method for determining contamination surface area uses underestimation while conservative bioburden surface area relies on overestimation, which results in inconsistencies for the normalized reporting. This presentation will provide a survey of the challenge to define requirements that can be reasonably verified and still remain appropriate to the core science of the ExoMars mission.
Natural attenuation software (NAS): Assessing remedial strategies and estimating timeframes
Mendez, E.; Widdowson, M.; Chapelle, F.; Casey, C.
2005-01-01
Natural Attenuation Software (NAS) is a screening tool to estimate remediation timeframes for monitored natural attenuation (MNA) and to assist in decision-making on the level of source zone treatment in conjunction with MNA using site-specific remediation objectives. Natural attenuation processes that NAS models include are advection, dispersion, sorption, non-aqueous phase liquid (NAPL) dissolution, and biodegradation of either petroleum hydrocarbons or chlorinated ethylenes. Newly-implemented enhancements to NAS designed to maximize the utility of NAS for site managers were observed. NAS has expanded source contaminant specification options to include chlorinated ethanes and chlorinated methanes, and to allow for the analysis of any other user-defined contaminants that may be subject to microbially-mediated transformations (heavy metals, radioisotopes, etc.). Included is the capability to model co-mingled plumes, with constituents from multiple contaminant categories. To enable comparison of remediation timeframe estimates between MNA and specific engineered remedial actions , NAS was modified to incorporate an estimation technique for timeframes associated with pump-and-treat remediation technology for comparison to MNA. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
NASA Astrophysics Data System (ADS)
Reilly, T. J.; Focazio, M. J.; Murdoch, P. S.; Benzel, W. M.; Fisher, S. C.; Griffin, D. W.; Iwanowicz, L. R.; Jones, D. K.; Loftin, K. A.
2014-12-01
Enhanced dispersion and concentration of contaminants such as trace metals and organic pollutants through storm-induced disturbances and sea level rise (SLR) are major factors that could adversely impact the health and resilience of communities and ecosystems in coming years. As part of the response to Hurricane Sandy, the U.S. Geological Survey collected data on the effects of contaminant source disturbance and dispersion. A major limitation of conducting pre- and post-Sandy comparisons was the lack of baseline data in locations proximal to potential contaminant sources and mitigation activities, sensitive ecosystems, and recreational facilities where human and ecological exposures are probable. To address this limitation, a Sediment-bound Contaminant Resiliency and Response (SCoRR) strategy with two operational modes, Resiliency (baseline) and Response (event-based), has been designed by leveraging existing interagency networks and resources. In Resiliency Mode, sites will be identified and sampled using standardized procedures prioritized to develop baseline data and to define sediment-quality based environmental health metrics. In Response Mode, a subset of sites within the network will be evaluated to ensure that adequate pre-event data exist at priority locations. If deficient, pre-event samples will be collected from priority locations. Crews will be deployed post-event to resample these locations allowing direct evaluation of impacts, as well as redefining baseline conditions for these areas. A tiered analytical and data integration strategy has been developed that will identify vulnerable human and environmental receptors, the sediment-bound contaminants present, and the biological activity and potential effects of exposure to characterized sediments. Communication mechanisms are in development to make resulting data available in a timely fashion and in a suitable format for informing event response and recovery efforts.
Exposure assessment of process-related contaminants in food by biomarker monitoring.
Rietjens, Ivonne M C M; Dussort, P; Günther, Helmut; Hanlon, Paul; Honda, Hiroshi; Mally, Angela; O'Hagan, Sue; Scholz, Gabriele; Seidel, Albrecht; Swenberg, James; Teeguarden, Justin; Eisenbrand, Gerhard
2018-01-01
Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.
Davis, J. Hal
2007-01-01
The U.S. Naval Air Station occupies 3,800 acres adjacent to the St. Johns River in Jacksonville, Florida. The Station was placed on the U.S. Environmental Protection Agency's National Priorities List in December 1989 and is participating in the U.S. Department of Defense Installation Restoration Program, which serves to identify and remediate environmental contamination. One contaminated site, the old landfill, was designated as Operable Unit 1 (OU1) in 1989. The major source of ground-water contamination was from the disposal of waste oil and solvents into open pits, which began in the 1940s. Several remedial measures were implemented at this site to prevent the spread of contamination. Recovery trenches were installed in 1995 to collect free product. In 1998, some of the contamination was consolidated to the center of the old landfill and covered by an impermeable cap. Currently, Operable Unit 1 is being reevaluated as part of a 5-year review process to determine if the remedial actions were effective. Solute transport modeling indicated that the concentration of contaminants would have reached its maximum extent by the 1970s, after which the concentration levels would have generally declined because the pits would have ceased releasing high levels of contaminants. In the southern part of the site, monitoring well MW-19, which had some of the highest levels of contamination, showed decreases for measured and simulated concentrations of trichloroethene (TCE) and dichloroethene (DCE) from 1992 to present. Two upgradient disposal pits were simulated to have ceased releasing high levels of contamination in 1979, which consequently caused a drop in simulated concentrations. Monitoring well MW-100 had the highest levels of contamination of any well directly adjacent to a creek. Solute transport modeling substantially overestimated the concentrations of TCE, DCE, and vinyl chloride (VC) in this well. The reason for this overestimation is not clear, however, it indicates that the model will be conservative when used to predict concentration levels and the time required for the contamination to move through the system. Monitoring well MW-97 had the highest levels of contamination in the central part of the site. The levels decreased for both the measured and simulated values of TCE, DCE, and VC from 1999 to present. Simulating the source area as ceasing to release high levels of contamination in 1979 caused the drop in concentration, which began in the 1990s at this well. Monitoring well MW-89 had the highest levels of contamination in the northern part of the site. In order to match the low levels of contamination in wells MW-12 and MW-93, the pit was simulated as ceasing to release contamination in 1970; however, the installation of a trench in 1995 could have caused the source area to release additional contamination from 1995 to 1998. The effect of the additional dissolution was a spike in contamination at MW-89, beginning in about 1996 and continuing until the present time. Results from the last several sampling events indicate that the TCE and DCE levels could be decreasing, but VC shows no apparent trend. Several more years of sampling are needed to determine if these trends are continuing. Based on the solute transport modeling predictions, TCE, DCE, and VC will have migrated to the vicinity of creeks that drain ground water from the aquifer by 2010, and only relatively low levels will remain in the aquifer by 2015. Because the creeks represent the point where the contaminated ground water comes into contact with the environment, future contamination levels are a concern. The concentration of chlorinated solvents in the creek water has always been relatively low. Because the model shows that concentrations of TCE, DCE, and VC are declining in the aquifer, contamination levels in the creeks also are anticipated to decline.
Bonetta, Sa; Bonetta, Si; Ferretti, E; Balocco, F; Carraro, E
2010-05-01
This study was designed to define the extent of water contamination by Legionella pneumophila of certain Italian hotels and to compare quantitative real-time PCR with the conventional culture method. Nineteen Italian hotels of different sizes were investigated. In each hotel three hot water samples (boiler, room showers, recycling) and one cold water sample (inlet) were collected. Physico-chemical parameters were also analysed. Legionella pneumophila was detected in 42% and 74% of the hotels investigated by the culture method and by real-time PCR, respectively. In 21% of samples analysed by the culture method, a concentration of >10(4) CFU l(-1) was found, and Leg. pneumophila serogroup 1 was isolated from 10.5% of the hotels. The presence of Leg. pneumophila was significantly influenced by water sample temperature, while no association with water hardness or residual-free chlorine was found. This study showed a high percentage of buildings colonized by Leg. pneumophila. Moreover, real-time PCR proved to be sensitive enough to detect lower levels of contamination than the culture method. This study indicates that the Italian hotels represent a possible source of risk for Legionnaires' disease and confirms the sensitivity of the molecular method. To our knowledge, this is the first report to demonstrate Legionella contamination in Italian hotels using real-time PCR and culture methods.
The U.S. EPA’s in vitro bioaccessibility (IVBA) method 9200.1-86 defines a validated analytical procedure for the determination of lead bioaccessibility in contaminated soils. The method requires the use of a custom-fabricated extraction device that uses a heated water bath for ...
Several field and laboratory assays were employed below an urban storm sewer outfall to define the relationship between stormwater runoff and contaminant effects. Specifically, two bioassays that measure feeding rate as a toxicological endpoint were employed in the field and in t...
Protecting Children from Chemical Exposure: Social Work and U.S. Social Welfare Policy.
ERIC Educational Resources Information Center
Rogge, Mary E.; Combs-Orme, Terri
2003-01-01
Defines chemical contamination and reviews data regarding the ubiquity of toxic chemicals. Describes major risk pathways to fetuses and children at different developmental stages and discusses evidence regarding exposure and harm to children from chemical contamination. Reviews the roles for social workers in protecting current and future…
Contaminants can alter the stress response. This study examined the stress response, defined by plasma cortisol concentration, and its relationship to plasma estradiol-17b and testosterone concentrations in adult gar collected from Lake Apopka, Orange Lake and Lake Woodruff NWR, ...
Project Objective: To identify at-risk populations, particularly women of child bearing years and young children, for consumption of contaminated fish and seafood via the use of geographically and demographically defined seafood consumption patterns and fish/seafood contaminatio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, R.J.
1982-08-01
Wildlife toxicology may be defined as the study of the effects of environmental contaminants on wildlife species, as related to their wellbeing, general health, and reproduction. Results of studies with pesticides, heavy metals, and chlorinated hydrocarbons are examined. Integrated field and laboratory studies using selected model species might lead to ways of quantifying the adverse effects of chemical contaminants. (KRM)
40 CFR 270.80 - What is a RAP?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., store, or dispose of hazardous remediation waste (as defined in § 260.10 of this chapter) at a remediation waste management site. A RAP may only be issued for the area of contamination where the remediation wastes to be managed under the RAP originated, or areas in close proximity to the contaminated...
[New approach for managing microbial risks in food].
Augustin, Jean-Christophe
2015-01-01
The aim of the food legislation is to ensure the protection of human health. Traditionally, the food legislation requires food business operators to apply good hygiene practices and specific procedures to control foodborne pathogens. These regulations allowed reaching a high level of health protection. The improvement of the system will require risk-based approaches. Firstly, risk assessment should allow the identification of high-risk situations where resources should be allocated for a better targeting of risk management. Then, management measures should be adapted to the health objective. In this approach, the appropriate level of protection is converted intofood safety and performance objectives on the food chain, i.e., maximum microbial contamination to fulfil the acceptable risk level. When objectives are defined, the food business operators and competent authorities can identify control options to comply with the objectives and establish microbiological criteria to verify compliance with these objectives. This approach, described for approximately 10 years, operative thanks to the development of quantitative risk assessment techniques, is still difficult to use in practical terms since it requires a commitment of competent authorities to define the acceptable risk and needs also the implementation of sometimes complex risk models.
Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas
Guan, Yang; Shao, Chaofeng; Ju, Meiting
2014-01-01
Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743
Coulon, Frédéric; Al Awadi, Mohammed; Cowie, William; Mardlin, David; Pollard, Simon; Cunningham, Colin; Risdon, Graeme; Arthur, Paul; Semple, Kirk T; Paton, Graeme I
2010-10-01
A six month field scale study was carried out to compare windrow turning and biopile techniques for the remediation of soil contaminated with bunker C fuel oil. End-point clean-up targets were defined by human risk assessment and ecotoxicological hazard assessment approaches. Replicate windrows and biopiles were amended with either nutrients and inocula, nutrients alone or no amendment. In addition to fractionated hydrocarbon analysis, culturable microbial characterisation and soil ecotoxicological assays were performed. This particular soil, heavy in texture and historically contaminated with bunker fuel was more effectively remediated by windrowing, but coarser textures may be more amendable to biopiling. This trial reveals the benefit of developing risk and hazard based approaches in defining end-point bioremediation of heavy hydrocarbons when engineered biopile or windrow are proposed as treatment option. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin
The North Water Polynya is an area of high biological activity that supports large numbers of higher trophic-level organisms such as seabirds and marine mammals. An overall objective of the Upper Trophic-Level Group of the International North Water Polynya Study (NOW) was to evaluate carbon and contaminant flux through these high trophic-level (TL) consumers. Crucial to an evaluation of the role of such consumers, however, was the establishment of primary trophic linkages within the North Water food web. We used δ15N values of food web components from particulate organic matter (POM) through polar bears ( Ursus maritimus) to create a trophic-level model based on the assumptions that Calanus hyperboreus occupies TL 2.0 and there is a 2.4‰ trophic enrichment in 15N between birds and their diets, and a 3.8‰ trophic enrichment for all other components. This model placed the planktivorous dovekie ( Alle alle) at TL 3.3, ringed seal ( Phoca hispida) at TL 4.5, and polar bear at TL 5.5. The copepods C. hyperboreus, Chiridius glacialis and Euchaeta glacialis formed a trophic continuum (TL 2.0-3.0) from primary herbivore through omnivore to primary carnivore. Invertebrates were generally sorted according to planktonic, benthic and epibenthic feeding groups. Seabirds formed three trophic groups, with dovekie occupying the lowest, black-legged kittiwake ( Rissa tridactyla), northern fulmar ( Fulmarus glacialis), thick-billed murre ( Uria aalge), and ivory gull ( Pagophilia eburnea) intermediate (TL 3.9-4.0), and glaucous gull ( Larus hyperboreus) the highest (TL 4.6) trophic positions. Among marine mammals, walrus ( Odobenus rosmarus) occupied the lowest (TL 3.2) and bearded seal ( Erignathus barbatus), ringed seal, beluga whale ( Delphinapterus leucas), and narwhal ( Monodon monoceros) intermediate positions (TL 4.1-4.6). In addition to arctic cod ( Boreogadus saida), we suggest that lower trophic-level prey, in particular the amphipod Themisto libellula, contribute fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.
Shafe, A; Mortazavi, S M J; Joharnia, A; Safaeyan, Gh H
2016-09-01
Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.
40 CFR 142.61 - Variances from the maximum contaminant level for fluoride.
Code of Federal Regulations, 2010 CFR
2010-07-01
... level for fluoride. 142.61 Section 142.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... from the maximum contaminant level for fluoride. (a) The Administrator, pursuant to section 1415(a)(1... means generally available for achieving compliance with the Maximum Contaminant Level for fluoride. (1...
40 CFR 142.61 - Variances from the maximum contaminant level for fluoride.
Code of Federal Regulations, 2011 CFR
2011-07-01
... level for fluoride. 142.61 Section 142.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... from the maximum contaminant level for fluoride. (a) The Administrator, pursuant to section 1415(a)(1... means generally available for achieving compliance with the Maximum Contaminant Level for fluoride. (1...
Modeling of hydrogen-air diffusion flame
NASA Technical Reports Server (NTRS)
Isaac, Kakkattukuzhy
1988-01-01
The present research objective is to determine the effects of contaminants on extinction limits of simple, well defined, counterflow Hydrogen 2-air diffusion flames, with combustion at 1 atmosphere. Results of extinction studies and other flame characterizations, with appropriate mechanistic modeling (presently underway), will be used to rationalize the observed effects of contamination over a reasonably wide range of diffusion flame conditions. The knowledge gained should help efforts to anticipate the effects of contaminants on combustion processes in Hydrogen 2-fueled scramjets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitten, C.B.; Sjostrom, K.J.
1991-04-01
Ground-water contaminants were found in ground-water monitoring wells at the existing landfill. More wells to define the horizontal and vertical extent of the contaminant plume are to be installed. Geophysical techniques (electro-magnetic induction, vertical electrical resistivity, and horizontal resistivity profiling) were used to map the extent of the contaminant plume. Using the geophysical, ground-water elevation, and geologic data, five anomalous areas south and east of the landfill were identified as locations for additional ground-water monitoring wells.
NASA Astrophysics Data System (ADS)
Clozel, Blandine
2017-04-01
As part of the Regional Health Plan for the Rhône-Alpes area (France), a cartography of soil contamination by persistent organic pollutants (dioxins/furans (PCDD/PCDF) and polychlorinated biphenyls (PCB)) was undertaken in order to define the background concentrations of soils located away from point source pollution. In the natural environment, PCDD/PCDF and PCB comes from air pollution and accumulate in the upper part of the soils. To define the background concentration of persistent organic pollutants from diffuse atmospheric origin in soils, sampling was carried out within the first 5 centimeters of soils that have been very little anthropized and untilled for more than 15 years. In such soils mixing and dilution of the pollutants is very limited. 170 samples were collected following a systematic plan of grid type (mesh of 8 x 8 km) in an area of 14 000km2, avoiding soil of high altitude and from urban area. Beyond their total concentration, the ratio of the congeners of PCBs (7 indicators and 12 dioxin-like) and of the 17 dioxins/furans was also used for interpretation. As expected, the concentrations in pollutants are globally lower in the rural zones than in the more industrialized ones. However, the pollutants are relatively enriched in valleys, confirming that the meteorological conditions and the local topography play a significant role in the repartition of the diffuse atmospheric pollution. For the vast majority of samples, even some of those presenting the highest total concentration, the ratio of the various congeners argues for an ancient origin of the contamination. All studies at the French or European level of the atmospheric concentration of organic pollutants indicate a progressive decrease in emissions of these contaminants for about 20 years. However, the soils have been receptors since a long time and such pollutants have accumulated. The congeners ratio give evolved signature of pollution indicating, on one hand, it is mainly due to past activities but, on the other hand, indicate that it will persist because of its high stability. These results show the importance of knowing the spatial distribution of the concentrations of PCDD/PCDF and PCB and taking into account the signature of their congeners when defining the reference value of background concentration which are applied to distinguish a recent point source pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwemmer, Philipp, E-mail: schwemmer@ftz-west.uni-kiel.de; Covaci, Adrian, E-mail: adrian.covaci@uantwerpen.be; Das, Krishna, E-mail: krishna.das@ulg.ac.be
2015-01-15
The River Elbe is responsible for influxes of contaminants into the Wadden Sea World Heritage Site. We investigated levels of polychlorinated biphenyls (PCBs), oxychlordane (OxC), hexachlorobenzene (HCB), hexachlorocyclohexanes (α-, β-, γ-HCHs), dichlorodiphenyltrichloroethane (DDT) and its metabolites, and polybrominated diphenyl ethers (PBDEs) in blood and feathers from Eurasian oystercatchers (Haematopus ostralegus; n=28) at the Elbe and compared it with a non-riverine site about 90 km further north. (1) Mean levels of all contaminants in feathers and serum were significantly higher at the river (∑PCBs: 27.6 ng/g feather, 37.0 ng/ml serum; ∑DDTs: 5.3 ng/g feather, 4.4 ng/ml serum) compared with the non-riverinemore » site (∑PCBs: 6.5 ng/g feather, 1.2 ng/ml serum; ∑DDTs: 1.4 ng/g feather, 0.5 ng/ml serum). Mean ∑HCH and HCB levels were <1.8 ng/g in feather and <1.8 ng/ml in serum at both sites. (2) Levels of most detectable compounds in serum and feathers were significantly related, but levels were not consistently higher in either tissue. (3) There was no significant relationship between trophic level in individual oystercatchers (expressed as δ15N) or the degree of terrestrial feeding (expressed as δ13C) and contaminant loads. (4) PBDEs were not detected in significant amounts at either site. The results of this study indicate that the outflow from one of Europe′s largest river systems is associated with significant historical contamination, reflected by the accumulation of contaminants in body tissues in a coastal benthivore predator. - Highlights: • Contaminants in Oystercatchers from the Elbe river and a non-riverine site were measured. • Mean levels of contaminants were higher at the river than at the non-riverine site. • Levels of most contaminants in serum and feathers were significantly related. • No relationship between trophic level (δ15N) and contaminant level was found. • One of Europe′s largest river systems is associated with major historical contamination.« less
Test results for fuel cell operation on anaerobic digester gas
NASA Astrophysics Data System (ADS)
Spiegel, R. J.; Preston, J. L.
EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.
Trzesicka-Mlynarz, D; Ward, O P
1995-06-01
A mixed culture, isolated from soil contaminated with polycyclic aromatic hydrocarbons (PAHs), grew on and degraded fluoranthene in aqueous media supplemented with glucose, yeast extract, and peptone. Increased complex nitrogen levels in the medium promoted bacterial growth and a greater extent of fluoranthene degradation. Amendment of the media with high glucose levels also diminished specific fluoranthene degradation. The mixed culture was capable of degrading a range of other PAHs, including benzo[a]pyrene, anthracene, phenanthrene, acenaphthene, and fluorene. The mixed culture contained four predominant isolates, all of which were Gram-negative rods, three of which were identified as Pseudomonas putida, Flavobacterium sp., and Pseudomonas aeruginosa. Better degradation of a defined PAH mixture was observed with the mixed culture than with individual isolates. A reconstituted culture, prepared by combining the four individual isolates, manifested a similar PAH biodegradation performance to the original mixed culture. When compared with the mixed culture, individual isolates exhibited a relatively good capacity to remove more water-soluble PAHs (acenaphthene, fluorene, phenanthrene, fluoranthene). In contrast, removal of less water-soluble PAHs (anthracene and pyrene) was low or negligible with isolated cultures compared with the mixed culture.
Ogino, Haruyuki; Hattori, Takatoshi
2013-01-01
This paper focuses on the surface contamination control of slightly contaminated property after the Fukushima nuclear accident. The operational level for the unconditional release of contaminated properties is calculated in counts per minute (cpm) to enable the use of a typical Geiger-Muller (GM) survey meter with a 50-mm bore, on the basis of the surficial clearance level of 10 Bq cm−2 for 134Cs and 137Cs derived in the previous studies of the authors. By applying a factor for the conversion of the unit surface contamination to the count rate of a survey meter widely used after the Fukushima accident, the operational level for the unconditional release of contaminated properties was calculated to be 2300 cpm on average and 23 000 cpm at the highest-contamination part. The calculated numerical values of the operational levels are effective as long as the typical GM survey meter is used in the radiation measurement. PMID:23778575
Fisher, Edward M.; Noti, John D.; Lindsley, William G.; Blachere, Francoise M.; Shaffer, Ronald E.
2015-01-01
Facemasks are part of the hierarchy of interventions used to reduce the transmission of respiratory pathogens by providing a barrier. Two types of facemasks used by healthcare workers are N95 filtering facepiece respirators (FFRs) and surgical masks (SMs). These can become contaminated with respiratory pathogens during use, thus serving as potential sources for transmission. However, because of the lack of field studies, the hazard associated with pathogen-exposed facemasks is unknown. A mathematical model was used to calculate the potential influenza contamination of facemasks from aerosol sources in various exposure scenarios. The aerosol model was validated with data from previous laboratory studies using facemasks mounted on headforms in a simulated healthcare room. The model was then used to estimate facemask contamination levels in three scenarios generated with input parameters from the literature. A second model estimated facemask contamination from a cough. It was determined that contamination levels from a single cough (≈19 viruses) were much less than likely levels from aerosols (4,473 viruses on FFRs and 3,476 viruses on SMs). For aerosol contamination, a range of input values from the literature resulted in wide variation in estimated facemask contamination levels (13–202,549 viruses), depending on the values selected. Overall, these models and estimates for facemask contamination levels can be used to inform infection control practice and research related to the development of better facemasks, to characterize airborne contamination levels, and to assist in assessment of risk from reaerosolization and fomite transfer because of handling and reuse of contaminated facemasks. PMID:24593662
Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.
2006-01-01
Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area. Results are presented in a descending order based on detection frequencies (most frequently detected compound listed first), or alphabetically when a detection frequency could not be calculated. Only certain wells were measured for all constituents and water-quality parameters. The results of all of the analyses were compared with U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) Maximum Contaminant Levels (MCLs), Secondary Maximum Contaminant Levels (SMCLs), USEPA lifetime health advisories (HA-Ls), the risk-specific dose at a cancer risk level equal to 1 in 100,000 or 10E-5 (RSD5), and CADHS notification levels (NLs). When USEPA and CADHS MCLs are the same, detection levels were compared with the USEPA standard; however, in some cases, the CADHS MCL may be lower. In those cases, the data were compared with the CADHS MCL. Constituents listed by CADHS as 'unregulated chemicals for which monitoring is required' were compared with the CADHS 'detection level for the purposes of reporting' (DLR). DLRs unlike MCLs are not health based standards. Instead, they are levels at which current laboratory detection capabilities allow eighty percent of qualified laboratories to achieve measurements within thirty percent of the true concentration. Twenty-three volatile organic compounds (VOCs) and seven gasoline oxygenates were detected in ground-water samples collected in the Northern San Joaquin Basin GAMA study unit. Additionally, 13 tentatively identified compounds were detected. VOCs were most frequently detected in the Eastern San Joaquin Basin study area and least frequently detected in samples collected in the Cosumnes Basin study area. Dichlorodifluoromethane (CFC-12), a CADHS 'unregulated chemical for which monitoring is required,' was detected in two wells at concentrations greater than the DLR. Trihalomethanes were the most frequently detected class of VOC constituents. Chloroform (trichloromethane) was the m
41 CFR 109-42.1102-51 - Suspect personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... radioactive or chemical contamination may occur shall be considered suspect and shall be monitored using... the level of contamination of excess or surplus personal property to the lowest practicable level. Contaminated personal property that exceeds applicable contamination standards shall not be utilized or...
Defining contamination control requirements for non-human research on Space Station Freedom
NASA Technical Reports Server (NTRS)
Corbin, Barbara J.; Funk, Glenn A.
1992-01-01
The use of non-human biological specimens for life sciences research on Space Station Freedom has generated concerns about spacecraft internal contamination, crew safety and hardware utility. Various NASA organizations convened to discuss the concerns and determine how they should be addressed. This paper will present the issues raised at this meeting, the process by which safety concerns were identified, and the means by which contamination control requirements for all biological payloads were recommended for incorporation into Space Station Freedom safety requirements. The microbiological, toxicological and particulate contamination criteria for long-term spaceflight will be based on realistic assessment of risk and hardware will be designed to meet established contamination criteria while facilitating crew operations, thereby meeting the needs of the investigator.
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the groundwater, soil gas, and soil for contaminants at the Vietnam Armor Training Facility (VATF) at Fort Gordon, from October 2009 to September 2011. The assessment included the detection of organic compounds in the groundwater and soil gas, and inorganic compounds in the soil. In addition, organic contaminant assessment included organic compounds classified as explosives and chemical agents in selected areas. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. This report is a revision of "Assessment of soil-gas, surface-water, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2010," Open-File Report 2011-1200, and supersedes that report to include results of additional samples collected in July 2011. Four passive samplers were deployed in groundwater wells at the VATF in Fort Gordon. Total petroleum hydrocarbons and benzene and octane were detected above the method detection level at all four wells. The only other volatile organic compounds detected above their method detection level were undecane and pentadecane, which were detected in two of the four wells. Soil-gas samplers were deployed at 72 locations in a grid pattern across the VATF on June 3, 2010, and then later retrieved on June 9, 2010. Total petroleum hydrocarbons were detected in 71 of the 72 samplers (one sampler was destroyed in the field and not analyzed) at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylene (BTEX) was detected above the detection level in 31 of the 71 samplers that were analyzed. Other volatile organic compounds detected above their respective method detection levels were naphthalene, 2-methyl-naphthalene, tridecane, 1,2,4-trimethylbenzene, and perchloroethylene. After the results of the 71 soil-gas samplers were received, 31 additional passive soil-gas samplers were deployed on July 14, 2011, and retrieved on July 18, 2011. These 31 samplers were deployed on a larger areal scale to better define the extent of the contamination. Total petroleum hydrocarbons were detected above their method detection level at all 31 samplers, whereas BTEX was detected above its method detection level at 17 of the 31 samplers. Other organic compounds detected above their method detection levels were naphthalene, 2-methyl-naphthalene, octane, undecane, tridecane, pentadecane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, chloroform, and perchloroethylene. Subsequent to the 2010 soil-gas survey, four areas determined to have elevated contaminant mass were selected and sampled for explosives and chemical agents. No detections of explosives or chemical agents above their respective method detection levels were found at any of the sampling locations. The same four locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. A fifth location also was selected on the basis of the elevated contaminant mass of the soil-gas survey. No metals that exceeded the Regional Screening Levels for Industrial Soils, as classified by the U.S. Environmental Protection Agency, were detected at any of the five VATF locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina, as classified by the South Carolina Department of Health and Environmental Control. Because South Carolina is adjacent to Georgia and the soils in the Coastal Plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The metals that were detected above the ambient background levels for South Carolina, as classified by the South Carolina Department of Health and Environmental Control, include aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, and zinc.
40 CFR 141.13 - Maximum contaminant levels for turbidity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...
A study was conducted (1) to assess the capability of groundpenetrating radar (GPR) to identify natural subsurface features, detect man-made objects burled in the soil, and both detect and define the extent of contaminated soil or ground water due to a toxic spill, and (2) to det...
The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission’s Great Lakes Water Quality Agreement. A sediment remediation project took place in the lower 14.2 km of the river where urban and industrial activitie...
Sugimoto, Amina; Gilmour, Stuart; Tsubokura, Masaharu; Nomura, Shuhei; Kami, Masahiro; Oikawa, Tomoyoshi; Kanazawa, Yukio; Shibuya, Kenji
2014-06-01
The Fukushima Dai-ichi nuclear disaster, the first level-7 major nuclear disaster since Chernobyl, raised concerns about the future health consequences of exposure to and intake of radionuclides. Factors determining the risk and level of internal radiation contamination after a nuclear accident, which are a key to understanding and improving current nuclear disaster management, are not well studied. We investigated both the prevalence and level of internal contamination in residents of Minamisoma, and identified factors determining the risk and levels of contamination. We implemented a program assessing internal radiation contamination using a whole body counter (WBC) measurement and a questionnaire survey in Minamisoma, between October 2011 and March 2012. Approximately 20% of the city's population (8,829 individuals) participated in the WBC measurement for internal contamination, of which 94% responded to the questionnaire. The proportion of participants with detectable internal contamination was 40% in adults and 9% in children. The level of internal contamination ranged from 2.3 to 196.5 Bq/kg (median, 11.3 Bq/kg). Tobit regression analysis identified two main risk factors: more time spent outdoors, and intake of potentially contaminated foods and water. Our findings suggest that, with sensible and reasonable precautions, people may be able to live continuously in radiation-affected areas with limited contamination risk. To enable this, nuclear disaster response should strictly enforce food and water controls and disseminate evidence-based and up-to-date information about avoidable contamination risks.
Silano, Marco; Silano, Vittorio
2017-07-03
A priority of the European Union is the control of risks possibly associated with chemical contaminants in food and undesirable substances in feed. Following an initial chapter describing the main contaminants detected in food and undesirable substances in feed in the EU, their main sources and the factors which affect their occurrence, the present review focuses on the "continous call for data" procedure that is a very effective system in place at EFSA to make possible the exposure assessment of specific contaminants and undesirable substances. Risk assessment of contaminants in food atances in feed is carried currently in the European Union by the CONTAM Panel of EFSA according to well defined methodologies and in collaboration with competent international organizations and with Member States.
Systems Reliability Framework for Surface Water Sustainability and Risk Management
NASA Astrophysics Data System (ADS)
Myers, J. R.; Yeghiazarian, L.
2016-12-01
With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability.
Mixture effects of 30 environmental contaminants on incident metabolic syndrome-A prospective study.
Lind, Lars; Salihovic, Samira; Lampa, Erik; Lind, P Monica
2017-10-01
Several cross-sectional studies have linked different environmental contaminants to the metabolic syndrome (MetS). However, mixture effects have not been investigated and no prospective studies exist regarding environmental contaminants and the MetS. To study mixture effects of contaminants on the risk of incident MetS in a prospective fashion. Our sample consisted of 452 subjects from the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS) study (50% women, all aged 70years) free from the MetS at baseline, being followed for 10years. At baseline, 30 different environmental contaminants were measured; 6 polychlorinated biphenyls (PCBs), 3 organochlorine (OC) pesticides, one dioxin, one polybrominated diphenyl ether (all in plasma), 8 perfluoroalkyl substances (in plasma) and 11 metals (in whole blood). The MetS was defined by the ATPIII/NCEP criteria. Gradient boosted Classification and Regression Trees (CARTs) was used to evaluate potential synergistic and additive mixture effects on incident MetS. During 10-year follow-up, 92 incident cases of the MetS occurred. PCB126, PCB170, hexachlorobenzene (HCB) and PCB118 levels were all associated with incident MetS in an additive fashion (OR 1.73 for a change from 10th to 90th percentile (95%CI 1.24-3.04) for PCB126, OR 0.63 (0.42-0.78) for PCB170, OR 1.44 (1.09-2.20) for HCB and OR 1.46 (1.13-2.43) for PCB118). No synergistic effects were found. A mixture of environmental contaminants, with PCB126, PCB170, HCB and PCB118 being the most important, showed associations with future development of the MetS in an additive fashion in this prospective study. Thus, mixture effects of environmental contaminants could contribute to the development of cardio-metabolic derangements. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Bareiss, L. E.
1978-01-01
The paper presents a compilation of the results of a systems level Shuttle/payload contamination analysis and related computer modeling activities. The current technical assessment of the contamination problems anticipated during the Spacelab program are discussed and recommendations are presented on contamination abatement designs and operational procedures based on experience gained in the field of contamination analysis and assessment, dating back to the pre-Skylab era. The ultimate test of the Shuttle/Payload Contamination Evaluation program will be through comparison of predictions with measured levels of contamination during actual flight.
Barbaro, Jeffrey R.
2002-01-01
Water-quality, aquifer-sediment, and hydro-logic data were used to assess the effectiveness of natural attenuation of ground-water contamination at Fire Training Area Three, the Rubble Area Landfill, the Liquid Waste Disposal Landfill, and the Receiver Station Landfill in the East Management Unit of Dover Air Force Base, Delaware. These sites, which are contaminated with chlorinated solvents and fuel hydrocarbons, are under-going long-term monitoring to determine if natural attenuation continues to sufficiently reduce contaminant concentrations to meet regulatory requirements. This report is the first assessment of the effectiveness of natural attenuation at these sites since long-term monitoring began in 1999, and follows a preliminary investigation done in 1995?96. This assessment was done by the U.S. Geological Survey in cooperation with the U.S. Air Force.Since 1995?96, additional information has been collected and used in the current assessment. The conclusions in this report are based primarily on ground-water samples collected from January through March 2000. Previous analytical results from selected wells, available geologic and geo-physical well logs, and newly acquired information such as sediment organic-carbon measurements, hydraulic-conductivity measurements determined from slug tests on wells in the natural attenuation study area, and water-level measurements from surficial-aquifer wells also were used in this assessment. This information was used to: (1) calculate retardation factors and estimate contaminant migration velocities, (2) improve estimates of ground-water flow directions and inferred contaminant migration pathways, (3) better define the areal extent of contamination and the proximity of contaminants to discharge areas and the Base boundary, (4) develop a better under-standing of the vertical variability of contaminant concentrations and redox conditions, (5) evaluate the effects of temporal changes on concentrations in the plumes and source areas, and (6) determine whether intrinsic biodegradation is occurring at these sites.The water-quality data indicate that intrinsic biodegradation is occurring at all three sites. The strongest indication of intrinsic biodegradation is the detection of tetrachloroethene and trichloroethene breakdown products within and down-gradient of the source areas. The patterns of electron acceptors and metabolic by-products indicate that contaminant biodegradation has changed the prevailing geochemistry of the surficial aquifer, creating the strongly reducing conditions necessary for chlorinated solvent bio-degradation. Geochemical changes include depleted dissolved oxygen and elevated ferrous iron and methane levels relative to concentrations in uncontaminated zones of the surficial aquifer. At Fire Training Area Three and the Rubble Area Landfill sites, natural attenuation appears to be adequate for controlling the migration of the contaminant plumes. At the third site, the Liquid Waste Disposal and Receiver Station Landfills, the plume is larger and the uncertainty about the effectiveness of natural attenuation in reducing contaminant concentrations and controlling plume migration is greater. Ground-water data indicate, however, that U.S. Environmental Protection Agency maximum contaminant levels were not exceeded in any point-of-compliance wells located along the Base boundary.The information presented in this report led to the development of improved conceptual models for these sites, and to the recognition of four issues that are currently unclear and may need further study. These issues include delineating the areal and vertical extent of the contaminant plumes in greater detail, determining the extent of intrinsic biodegradation downgradient of the Liquid Waste Disposal and Receiver Station Landfills, deter-mining the fate of contaminants in the ground-water discharge areas, and determining the effect of temporal variability in source concentrations and ground-water
41 CFR 109-42.1102-52 - Low level contaminated personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... contamination does not exceed applicable standards, it may be utilized and disposed of in the same manner as.... However, recipients shall be advised where levels of radioactive contamination require specific controls... within DOE, reported to GSA, or otherwise disposed of, the kind and degree of contamination must be...
Numerical simulation of the pollution formed by exhaust jets at the ground running procedure
NASA Astrophysics Data System (ADS)
Korotaeva, T. A.; Turchinovich, A. O.
2016-10-01
The paper presents an approach that is new for aviation-related ecology. The approach allows defining spatial distribution of pollutant concentrations released at engine ground running procedure (GRP) using full gas-dynamic models. For the first time such a task is modeled in three-dimensional approximation in the framework of the numerical solution of the Navier-Stokes equations with taking into account a kinetic model of interaction between the components of engine exhaust and air. The complex pattern of gas-dynamic flow that occurs at the flow around an aircraft with the jet exhausts that interact with each other, air, jet blast deflector (JBD), and surface of the airplane has been studied in the present work. The numerical technique developed for calculating the concentrations of pollutants produced at the GRP stage permits to define level, character, and area of contamination more reliable and increase accuracy in definition of sanitary protection zones.
Reppas-Chrysovitsinos, Efstathios; Sobek, Anna; MacLeod, Matthew
2018-01-01
Legislation such as the Stockholm Convention and REACH aim to identify and regulate the production and use of chemicals that qualify as persistent organic pollutants (POPs) and very persistent and very bioaccumulative (vPvB) chemicals, respectively. Recently, a series of studies on planetary boundary threats proposed seven chemical hazard profiles that are distinct from the POP and vPvB profiles. We previously defined two exposure-based hazard profiles; airborne persistent contaminants (APCs) and waterborne persistent contaminants (WPCs) that correspond to two profiles of chemicals that are planetary boundary threats. Here, we extend our method to screen a database of chemicals consisting of 8648 substances produced within the OECD countries. We propose a new scoring scheme to disentangle the POP, vPvB, APC and WPC profiles by focusing on the spatial range of exposure potential, discuss the relationship between high exposure hazard and elemental composition of chemicals, and identify chemicals with high exposure hazard potential.
NASA Astrophysics Data System (ADS)
Twarakavi, N. C.; Kaluarachchi, J. J.
2004-12-01
Arsenic is historically known be toxic to human health. Drinking water contaminated with unsafe levels of arsenic may cause cancer. The toxicity of arsenic is suggested by a MCLG of zero and a low MCL of 10 µg/L, that has been a subject of constant scrutiny. The US Environmental Protection Agency (US EPA), based on the recommendations of the National Academy of Sciences revised the MCL from 1974 value of 50 µg/L to 10 µg/L. The decision was based on a national-level analysis of arsenic concentration data collected by the National Analysis of Water Quality Assessment (NAWQA). Another factor that makes arsenic in drinking water a major issue is the widespread occurrence and a variety of sources. Arsenic occurs naturally in mineral deposits and is also contributed through anthropogenic sources. A methodology using the ordinal logistic regression (LR) method is proposed to predict the probability of occurrence of arsenic in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered the maximum contaminant level (MCL) options of 3, 5, 10, 20, and 50 µg/L as threshold values to estimate the probabilities of arsenic occurrence in ranges defined by a given MCL and a detection limit of 1 µg/L. The fit between the observed and predicted probability of occurrence was around 83% for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic for different aquifer types in the CONUS. The shallow ground water of the western US is more vulnerable to arsenic contamination than the eastern US. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The model results were extended for estimating the health risks and costs posed by arsenic occurrence in the ground water of the United States. The risk assessment showed that counties in southern California, Arizona, Florida, Washington States and a few others scattered throughout the CONUS face a high risk from arsenic exposure through untreated ground water consumption. The risk analysis also showed the trade-offs in using different risk estimates as decision-making tools. A simple cost effectiveness analysis was performed to understand the household costs for MCL compliance in using arsenic-contaminated ground water. The results showed that the current MCL of 10 µg/L is a good compromise based on existing treatment technologies
This article discusses the use of solidification/stabilization (S/S) to treat soils contaminated with organic and inorganic chemicals at wood preserving sites. Solidification is defined for this article as making a material into a free standing solid. Stabilization is defined as ...
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
[Routes of pathogenic staphylococcal contamination of slaughter poultry].
Georgiev, L; Zakhartsev, Ts; Baĭl'ozov, D
1977-01-01
The contamination of birds with pathogenic staphylococci was followed up during their slaughter handling and trimming at two poultry-dressing houses. It was found that water cooling and evisceration were mostly contributing to contamination. Taking part in the dissemination of Staphylococcus infection were also the female workers on the slaughter belt, especially those that had wounds on their hands. Studied were the properties of a total of 881 strains of staphylococci, 43.35 per cent of them being defined as Staph. aureus, and 56.64 per cent--as Staph. edidermidis.
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the city of Toledo. The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission. In 2009-2010 a sediment remediation pro...
Biowaste resistojet propellant system, biological and functional analysis, task 1 and 2
NASA Technical Reports Server (NTRS)
1971-01-01
The influence of chemical contaminants in potential biowaste sources upon the design and interface requirements of a biowaste resistojet propulsion system for a space station and/or base are evaluated. Chemical contaminants are defined as all compounds present in biowaste other than carbon dioxide, water, and methane. The latter are the nominal effluent candidates for the biowaste resistojet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 7-acre Midco II site is an abandoned chemical waste storage and disposal facility in Gary, Indiana. Land use in the surrounding area is predominantly industrial. The underlying aquifer, which is used primarily for non-drinking purposes, is highly susceptible to contamination from surface sources. From 1976 to 1978, the site was used for treatment, storage, and disposal of chemical and bulk liquid wastes. The ROD amends a 1989 ROD that addressed the remaining contaminated soil, pit wastes, and ground water by treatment of an estimated 35,000 cubic yards of soil wastes. The amended remedy reduces the estimated amount of soilmore » to be treated, as a result of new information on arsenic data and amended soil CALs, further defines the site cover requirements, and further defines the requirements for deep well injection of contaminated ground water. The primary contaminants of concern affecting the subsurface soil, sediment, and ground water are VOCs, including methylene chloride, benzene, toluene, TCE, and xylenes; other organics, including PCBs, phenols, and PAHs; and metals, including chromium, and lead. The amended remedial action for the ROD is included.« less
Analyte separation utilizing temperature programmed desorption of a preconcentrator mesh
Linker, Kevin L.; Bouchier, Frank A.; Theisen, Lisa; Arakaki, Lester H.
2007-11-27
A method and system for controllably releasing contaminants from a contaminated porous metallic mesh by thermally desorbing and releasing a selected subset of contaminants from a contaminated mesh by rapidly raising the mesh to a pre-determined temperature step or plateau that has been chosen beforehand to preferentially desorb a particular chemical specie of interest, but not others. By providing a sufficiently long delay or dwell period in-between heating pulses, and by selecting the optimum plateau temperatures, then different contaminant species can be controllably released in well-defined batches at different times to a chemical detector in gaseous communication with the mesh. For some detectors, such as an Ion Mobility Spectrometer (IMS), separating different species in time before they enter the IMS allows the detector to have an enhanced selectivity.
Dudarev, Alexey A.; Dushkina, Eugenia V.; Sladkova, Yuliya N.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Dorofeyev, Vitaliy M.; Kolesnikova, Tatjana A.; Fridman, Kirill B.; Evengard, Birgitta; Nilsson, Lena M.
2013-01-01
Background Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Study design and methods Uniform water security indicators collected from Russian official statistical sources for the period 2000–2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized – underground and surface, and non-centralized) and of drinking water. Results Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40–80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32–90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5–12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages – 0.2–2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus – up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). Conclusion In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized – underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions. PMID:24350065
Drinkable, But. . . Much to be Done
ERIC Educational Resources Information Center
Sterrett, Frances S.
1977-01-01
Maximum levels of the principle water contaminants are discussed in this article. Difficulties related to establishing standards for contaminants in drinking water are identified and the possible results of high levels of these contaminants included. (MA)
Mixed feed and its ingredients electron beam decontamination
NASA Astrophysics Data System (ADS)
Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Yu; Voronin, L. A.; Ites, Yu V.; Korobeynikov, M. V.; Leonov, S. V.; Leonova, M. A.; Tkachenko, V. O.; Shtarklev, E. A.; Yuskov, Yu G.
2017-01-01
Electron beam treatment is used for food processing for decades to prevent or minimize food losses and prolong storage time. This process is also named cold pasteurization. Mixed feed ingredients supplied in Russia regularly occur to be contaminated. To reduce contamination level the contaminated mixed feed ingredients samples were treated by electron beam with doses from 2 to 12 kGy. The contamination levels were decreased to the level that ensuring storage time up to 1 year.
Giltrap, M; Ronan, J; Hardenberg, S; Parkes, G; McHugh, B; McGovern, E; Wilson, J G
2013-06-15
Candidate OSPAR/ICES recommended biomarkers at the level of the individual in Mytilus edulis for determination of good environmental status for MSFD were evaluated against contaminant levels at sites around Ireland. The sites chosen ranged from moderate to low pollution levels, but the actual ranking of the sites varied according to the contaminant levels present. At the most contaminated site, Cork, 4 out of 16 contaminants exceeded the EAC, while at Shannon, no EACs were exceeded. The SOS assay suggested that Cork was the healthiest site with a LT50 of 17.6 days, while SOS for Shannon was 15.6 days. Likewise, condition factors varied among sites and did not always correspond to contaminant-based status. There may be uncertainty in assigning status around the not good:good boundary. This raises potential difficulties not only in the biomarker/contaminant load relationship but also in the reliability of the biomarkers themselves and hence barriers meeting compliance levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
10 CFR 850.31 - Release criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... lowest contamination level practicable, but not to exceed the levels established in paragraphs (b) and (c... contamination level of equipment or item surfaces does not exceed the higher of 0.2 µg/100 cm 2 or the... the equipment or item and its future use and the nature of the beryllium contamination. (c) Before...
Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J
2010-11-01
Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Lowman, Warren; Venter, Laurissa; Scribante, Juan
2013-02-19
Hospital-acquired infections (HAIs) are largely preventable through risk analysis and modification of practice. Anaesthetic practice plays a limited role in the prevention of HAIs, although laryngoscope use and decontamination is an area of concern. We aimed to assess the level of microbial contamination of re-usable laryngoscope blades at a public hospital in South Africa. The theatre complex of a secondary-level public hospital in Johannesburg. Blades from two different theatres were sampled twice daily, using a standardised technique, over a 2-week period. Samples were quantitatively assessed for microbial contamination, and stratified by area on blade, theatre and time using Fisher's exact test. A contamination rate of 57.3% (63/110) was found, with high-level contamination accounting for 22.2% of these. Common commensals were the most frequently isolated micro-organisms (79.1%), but important hospital pathogens such as Enterobacter species and Acinetobacter baumannii were isolated from blades with high-level contamination. No significant difference in the level of microbial contamination by area on blade, theatre or time was found (p<0.05). A combination of sub-optimal decontamination and improper handling of laryngoscopes after decontamination results in significant microbial contamination of re-usable laryngoscope blades. There is an urgent need to review protocols and policies surrounding the use of these blades.
Failure Prevention of Hydraulic System Based on Oil Contamination
NASA Astrophysics Data System (ADS)
Singh, M.; Lathkar, G. S.; Basu, S. K.
2012-07-01
Oil contamination is the major source of failure and wear of hydraulic system components. As per literature survey, approximately 70 % of hydraulic system failures are caused by oil contamination. Hence, to operate the hydraulic system reliably, the hydraulic oil should be of perfect condition. This requires a proper `Contamination Management System' which involves monitoring of various parameters like oil viscosity, oil temperature, contamination level etc. A study has been carried out on vehicle mounted hydraulically operated system used for articulation of heavy article, after making the platform levelled with outrigger cylinders. It is observed that by proper monitoring of contamination level, there is considerably increase in reliability, economy in operation and long service life. This also prevents the frequent failure of hydraulic system.
NASA Astrophysics Data System (ADS)
Osinowo, Olawale Olakunle; Falufosi, Michael Oluseyi; Omiyale, Eniola Oluwatosin
2018-04-01
This study attempts to establish the level of contamination caused by the decomposition of wastes by defining the lateral distribution and the vertical limit of leachate induced zone of anomalous conductivity distribution within the subsurface through the analyses of Electromagnetic (EM) and Electrical Resistivity Tomography (ERT) data, generated from the integrated geophysical survey over Awotan landfill dumpsite, in Ibadan, southwest Nigeria. Nine (9) EM and ERT profiles each were established within and around the Awotan landfill site. EM data were acquire at 5 m station interval using 10 m, 20 m and 40 m inter-coil spacings, while ERT stations were occupied at 2 m electrode spacing using dipole-dipole electrode configuration. The near perfect agreement between the two sets of data generated from the EM and ERT surveys over the Awotan landfill site as well as the subsurface imaging ability of these geophysical methods to delineate the region of elevated contamination presented in the form of anomalously high apparent ground conductivity and low subsurface resistivity distribution, suggest the importance of integrating electromagnetic and electrical resistivity investigation techniques for environmental studies and more importantly for selecting appropriate landfill dump site location such with ability to retain the generated contaminants and thus prevent environmental pollution.
NASA Astrophysics Data System (ADS)
Brumovský, Miroslav; Bečanová, Jitka; Kohoutek, Jiří; Thomas, Henrike; Petersen, Wilhelm; Sørensen, Kai; Sáňka, Ondřej; Nizzetto, Luca
2016-10-01
Chemical pollution is of concern for the marine environment. New European regulation demands exposure and impact assessment to be conducted in coastal environments in order to define and ensure fulfillment of environmental quality standards. A cost-effective approach for monitoring the over 100,000 km of European coasts is necessary. This proof-of-concept study focuses on the use of unmanned water sampling from a commercial ship of opportunity to implement monitoring of marine contaminants of emerging concern. Marine areas that are not directly affected by river plumes or other direct sources were covered in order to provide information on background pollution. 14 currently used pesticides, 11 pharmaceuticals and personal care products and 3 food additives were detected in water samples through targeted analysis at sub-ng to tenths of ng/L levels in both coastal and offshore areas of the North Sea. Among contaminants, 6 pesticides (dimethoate, fenpropimorph, pendimethalin, propiconazole, tebuconazole and temephos), 3 pharmaceuticals (acetaminophen, naproxen and ketoprofen) and 2 food additives (acesulfame and saccharine) have never been detected before in offshore areas. 4 pesticides (diuron, isoproturon, metazachlor and terbuthylazine), 4 pharmaceuticals (carbamazepine, atenolol, ibuprofen and ketoprofen) and 2 food additives (sucralose and acesulfame) were detected in over 90% of the samples. The antibiotic sulfamethoxazole was detected in 50% of the samples at tenths of pg/L levels, including some offshore areas. Our study highlights that the use of ships of opportunity can provide a key support for the development and cost-effective implementation of marine monitoring of chemical pollutants in Europe and elsewhere.
Earth Science Instruction Using Brownfields in the Virtual Classroom
NASA Astrophysics Data System (ADS)
Bower, P. M.; Liddicoat, J. C.
2008-05-01
Geophysical methods of defining contaminant plumes from brownfields are taught in lecture and laboratory using Brownfield Action (BA) that is a network-based, interactive, digital space and simulation in which undergraduate students explore and solve problems in geohydrology. In the U.S., BA is recognized nationally as an innovative curriculum and simulation that has been developed by Peter Bower at Barnard College in collaboration with Columbia University's Center for New Media Teaching and Learning. Brownfields are former industrial sites that have potential as recreational, residential, and commercial real estate sites when reclaimed. As part of assessing the value of such a site, an environmental site assessment (ESA) is required to determine the nature and extent of any contamination. To reach that objective, BA contains a narrative element that is embedded and to be discovered in simulation; it is a story of groundwater contamination complete with underground contaminant plumes in a fictitious town with buildings, roads, wells, water tower, homes, and businesses as well as a municipal government with relevant historical documents. Student companies work collaboratively in teams of two, sign a contract with a development corporation to conduct a Phase One ESA, receive a realistic budget, and compete with other teams to fulfill the contract while maximizing profit. To reach a valid conclusion in the form of a professional-level ESA and 3-D maps of the physical site, teams must construct a detailed narrative from diverse forms of information, including socio-historical and a scientific dataset comprised of over 2,000,000 data points. BA forces the students to act on their perceptions of the interlocking realms of knowledge, theory and practical experience, providing an opportunity for them to gain valuable practice at tackling the complexity and ambiguity of a large-scale, interdisciplinary investigation of groundwater contamination and environmental forensics.
Suture, synthetic, or biologic in contaminated ventral hernia repair.
Bondre, Ioana L; Holihan, Julie L; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K
2016-02-01
Data are lacking to support the choice between suture, synthetic mesh, or biologic matrix in contaminated ventral hernia repair (VHR). We hypothesize that in contaminated VHR, suture repair is associated with the lowest rate of surgical site infection (SSI). A multicenter database of all open VHR performed at from 2010-2011 was reviewed. All patients with follow-up of 1 mo and longer were included. The primary outcome was SSI as defined by the Centers for Disease Control and Prevention. The secondary outcome was hernia recurrence (assessed clinically or radiographically). Multivariate analysis (stepwise regression for SSI and Cox proportional hazard model for recurrence) was performed. A total of 761 VHR were reviewed for a median (range) follow-up of 15 (1-50) mo: there were 291(38%) suture, 303 (40%) low-density and/or mid-density synthetic mesh, and 167(22%) biologic matrix repair. On univariate analysis, there were differences in the three groups including ethnicity, ASA, body mass index, institution, diabetes, primary versus incisional hernia, wound class, hernia size, prior VHR, fascial release, skin flaps, and acute repair. The unadjusted outcomes for SSI (15.1%; 17.8%; 21.0%; P = 0.280) and recurrence (17.8%; 13.5%; 21.5%; P = 0.074) were not statistically different between groups. On multivariate analysis, biologic matrix was associated with a nonsignificant reduction in both SSI and recurrences, whereas synthetic mesh associated with fewer recurrences compared to suture (hazard ratio = 0.60; P = 0.015) and nonsignificant increase in SSI. Interval estimates favored biologic matrix repair in contaminated VHR; however, these results were not statistically significant. In the absence of higher level evidence, surgeons should carefully balance risk, cost, and benefits in managing contaminated ventral hernia repair. Copyright © 2016 Elsevier Inc. All rights reserved.
Ruiz-Fernández, Ana Carolina; Portela, Julián Mauricio Betancourt; Sericano, José Luis; Sanchez-Cabeza, Joan-Albert; Espinosa, Luisa Fernanda; Cardoso-Mohedano, José Gilberto; Pérez-Bernal, Libia Hascibe; Tinoco, Jesús Antonio Garay
2016-02-01
The oldest refinery and the major petrochemical complexes of Mexico are located in the lower reach of the Coatzacoalcos River, considered the most polluted coastal area of Mexico. A (210)Pb-dated sediment core, from the continental shelf of the Coatzacoalcos River, was studied to assess the contamination impact by the oil industry in the southern Gulf of Mexico. The sedimentary record showed the prevalence of petrogenic PAHs between 1950s and 1970s, a period during which waste discharges from the oil industry were not regulated. Later on, sediments exhibited higher contents of pyrogenic PAHs, attributed to the incineration of petrochemical industry wastes and recurrent wildfires in open dumpsites at the nearby swamps. The total concentration of the 16 EPA-priority PAHs indicated low levels of contamination (<100 ng g(-1)), except a peak value (>1000 ng g(-1)) during the late 1970s, most likely due to the major oil spill produced by the blowout of the Ixtoc-I offshore oil rig in deep waters of the southwestern Gulf of Mexico. Most of the PAH congeners did not show defined temporal trends but, according to a Factor Analysis, apparently have a common origin, probably waste released from the nearby oil industry. The only exceptions were the pyrogenic benzo(b)fluoranthene and benzo(a)pyrene, and the biogenic perylene, that showed increasing concentration trends with time, which we attributed to erosional input of contaminated soil from the catchment area. Our study confirmed chronic oil contamination in the Coatzacoalcos River coastal area from land based sources for more than 60 years (since 1950s). Copyright © 2015 Elsevier Ltd. All rights reserved.
Preservation of samples for dissolved mercury
Hamlin, S.N.
1989-01-01
Water samples for dissolved mercury requires special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms. Because this acid-oxidant preservative acts as a sink for airborne mercury and plastic containers are permeable to mercury vapor, glass bottles are preferred for sample collection. To maintain a healthy work environment and minimize the potential for contamination of water samples, mercury and its compounds are isolated from the atmosphere while in storage. Concurrently, a program to monitor environmental levels of mercury vapor in areas of potential contamination is needed to define the extent of mercury contamination and to assess the effectiveness of mercury clean-up procedures.Water samples for dissolved mercury require special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms.
McKee, M.J.; Kromrey, G.B.; May, T.W.; Orazio, C.E.
2008-01-01
Organochlorine and metal contaminants often occur in commercial fish diets and can accumulate in fish to levels of concern for human consumption. Contaminant levels were investigated in diet and rainbow trout fillets from Missouri coldwater hatcheries used in 'put and take' fisheries. The average fillet:diet ratio was <0.1 for lead and cadmium, 0.4-0.6 for organochlorine compounds, and about 0.8 for mercury. Trout fillet concentrations for all contaminants were low (<50 ng/g) and below Missouri's fish consumption advisory trigger levels. ?? 2008 Springer Science+Business Media, LLC.
NASA Astrophysics Data System (ADS)
Che-Alota, V.; Atekwana, E. A.; Sauck, W. A.; Nolan, J. T.; Slater, L. D.
2007-12-01
Previous geophysical investigations (1996, 1997, 2003, and 2004) conducted at the decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) showed a clearly defined high conductivity anomaly associated with hydrocarbon contaminants in the vadose zone and ground water near the source area. The source of the geophysical anomalies was attributed to biogeochemical modifications of the contaminated zone resulting from intrinsic bioremediation. During these previous surveys, ground penetrating radar (GPR) data showed a zone of attenuated GPR reflections extending from the vadose zone to below the water table. Self potential data (SP) data defined a positive anomaly coincident with the hydrochemically defined plume, while electrical resistivity data showed anomalously high conductivity within the zone of impact. In 2007, another integrated geophysical study of the site was conducted. GPR, SP, electrical resistivity, and induced polarization surveys were conducted with expectations of achieving similar results as the past surveys. However, preliminary assessment of the data shows a marked decrease in electrical conductivity and SP response over the plume. GPR data still showed the attenuated signals, but the zone of attenuation was only observed below the water table. We attribute the attenuation of the observed geophysical anomalies to ongoing soil vapor extraction initiated in 2003. Significant removal of the contaminant mass by the vapor extraction system has altered the subsurface biogeochemical conditions and these changes were documented by the 2007 geophysical and geochemical data. The results of this study show that the attenuation of the contaminant plume is detectable with geophysical methods.
Chemical, Biological, and Radiological (CBR) Contamination Survivability, Large Item Interiors
2016-08-03
e.g., mud, grease, etc.). m. Pretest (baseline) and posttest (30 days after the first contamination and/or other defined long-term time interval...procedures used. f. Description of SUT-interior materials of construction, paint type, and surface condition (pretest and posttest ), including...difficult to decontaminate or allow liquid to penetrate. g. Pretest and posttest ME functional performance characteristics (when measured) used as
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the City of Toledo. The Ottawa River is a component of the Maumee River AOC as defined by the International Commission. The Ottawa River is approximately 45 miles long; however, the 2...
Ozone contamination in aircraft cabins: Objectives and approach
NASA Technical Reports Server (NTRS)
Perkins, P. J.
1979-01-01
Three panels were developed to solve the problem of ozone contamination in aircraft cabins. The problem is defined from direct in-flight measurements of ozone concentrations inside and outside airliners in their normal operations. Solutions to the cabin ozone problem are discussed under two areas: (1) flight planning to avoid high ozone concentrations, and (2) ozone destruction techniques installed in the cabin air systems.
USDA-ARS?s Scientific Manuscript database
Introduction: A “High Event Period” (HEP) is defined as a time period in which commercial plants experience a higher than usual rate of E. coli O157:H7 contamination of beef trims. Our previous studies suggested that instead of being a direct result of bacteria on animal hides, in-plant biofilm for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.H. Little, P.R. Maul, J.S.S. Penfoldag
2003-02-27
This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less
Toporcák, J; Legáth, J; Kul'ková, J
1992-07-01
Increasing numbers of specialists have been concerned with the problem of friendly environment in relation to man as well as to farm and wild animals. Greater interest in the biological monitoring of environment and ecosystem contamination can be observed. Determination of residues of organic and inorganic substances in bees (Apis mellifera) and in their products is one of effective possibilities of environmental pollution monitoring. Our work was aimed at the study of mercury levels in bees and their products. Mercury levels were determined in the head, abdomen and thorax of bees (Apis mellifera) from 20 bee populations coming from industrially contaminated areas with a dominant load of mercury (10 populations) and from uncontaminated areas. Mercury levels were determined simultaneously in honey coming from both contaminated and uncontaminated areas. The following mercury levels were found in bees from the contaminated area: heads 0.029-0.385 mg/kg, thorax 0.028-0.595 mg/kg and abdomen 0.083-2.255 mg/kg. Mercury levels in samples from uncontaminated areas ranged from 0.004 to 0.024 mg/kg in the heads, from 0.004 to 0.008 mg/kg in the thorax and from 0.008 to 0.020 mg/kg in the abdomen. In honey samples from the contaminated and uncontaminated areas mercury levels ranged from 0.050 to 0.212 mg/kg and from 0.001 to 0.003 mg/kg, respectively. The results of sample analyses for mercury loads in bees and honey from both contaminated and uncontaminated areas are given in Tab. I. Mean mercury levels in the single parts of the body in Apis mellifera and in honey from contaminated and uncontaminated areas are given in Figs. 1, 2, 3.(ABSTRACT TRUNCATED AT 250 WORDS)
CONTAMINANTS AND REMEDIAL OPTIONS AT SELECTED METAL-CONTAMINATED SITES
This document provides information that facilitates characterization of the site and selection of treatment technologies at metals-contaminated sites that would be capable of meeting site-specific cleanup levels. he document does not facilitate the determination of cleanup levels...
Agricultural areas in potentially contaminated sites: characterization, risk, management.
Vanni, Fabiana; Scaini, Federica; Beccaloni, Eleonora
2016-01-01
In Italy, the current legislation for contaminants in soils provides two land uses: residential/public or private gardens and commercial/industrial; there are not specific reference values for agricultural soils, even if a special decree has been developed and is currently going through the legislative approval process. The topic of agricultural areas is relevant, also in consideration of their presence near potentially contaminated sites. Aim and results. In this paper, contamination sources and transport modes of contaminants from sources to the target in agricultural areas are examined and a suitable "conceptual model" to define appropriate characterization methods and risk assessment procedures is proposed. These procedures have already been used by the National Institute of Health in various Italian areas characterized by different agricultural settings. Finally, specific remediation techniques are suggested to preserve soil resources and, if possible, its particular land use.
Mercury in Long Island Sound sediments
Varekamp, J.C.; Buchholtz ten Brink, Marilyn R.; Mecray, E.I.; Kreulen, B.
2000-01-01
Mercury (Hg) concentrations were measured in 394 surface and core samples from Long Island Sound (LIS). The surface sediment Hg concentration data show a wide spread, ranging from 600 ppb Hg in westernmost LIS. Part of the observed range is related to variations in the bottom sedimentary environments, with higher Hg concentrations in the muddy depositional areas of central and western LIS. A strong residual trend of higher Hg values to the west remains when the data are normalized to grain size. Relationships between a tracer for sewage effluents (C. perfringens) and Hg concentrations indicate that between 0-50 % of the Hg is derived from sewage sources for most samples from the western and central basins. A higher percentage of sewage-derived Hg is found in samples from the westernmost section of LIS and in some local spots near urban centers. The remainder of the Hg is carried into the Sound with contaminated sediments from the watersheds and a small fraction enters the Sound as in situ atmospheric deposition. The Hg-depth profiles of several cores have well-defined contamination profiles that extend to pre-industrial background values. These data indicate that the Hg levels in the Sound have increased by a factor of 5-6 over the last few centuries, but Hg levels in LIS sediments have declined in modern times by up to 30 %. The concentrations of C. perfringens increased exponentially in the top core sections which had declining Hg concentrations, suggesting a recent decline in Hg fluxes that are unrelated to sewage effluents. The observed spatial and historical trends show Hg fluxes to LIS from sewage effluents, contaminated sediment input from the Connecticut River, point source inputs of strongly contaminated sediment from the Housatonic River, variations in the abundance of Hg carrier phases such as TOC and Fe, and focusing of sediment-bound Hg in association with westward sediment transport within the Sound.
Contamination monitoring approaches for EUV space optics
NASA Technical Reports Server (NTRS)
Ray, David C.; Malina, Roger F.; Welsh, Barry J.; Battel, Steven J.
1989-01-01
Data from contaminant-induced UV optics degradation studies and particulate models are used here to develop end-of-service-life instrument contamination requirements which are very stringent but achievable. The budget is divided into allocations for each phase of hardware processing. Optical and nonoptical hardware are monitored for particulate and molecular contamination during initial cleaning and baking, assembly, test, and calibration phases. The measured contamination levels are compared to the requirements developed for each phase to provide confidence that the required end-of-life levels will be met.
Contaminant effect endpoints in terrestrial vertebrates at and above the individual level
Rattner, B.A.; Cohen, J.B.; Golden, N.H.; Albers, P.H.; Heinz, G.H.; Ohlendorf, H.M.
2000-01-01
Use of biochemical, physiological, anatomical, reproductive and behavioral characteristics of wild terrestrial vertebrates to assess contaminant exposure and effects has become commonplace over the past 3 decades. At the level of the individual organism, response patterns have been associated with and sometimes causally linked to contaminant exposure. However, such responses at the organismal level are rarely associated with or causally linked to effects at the population level. Although the ultimate goal of ecotoxicology is the protection of populations, communities, and ecosystems, most of the existing science and regulatory legislation focus on the level of the individual. Consequently, much of this overview concentrates on contaminant effects at the organismal level, with some extrapolation to higher-level effects. In this chapter, we review the state of the science for the evaluation of biotic end-points used to assess contaminant exposure and effects at or above the level of the individual. In addition, we describe extant contaminant concentration thresholds, guidelines, or standards (toxicant criteria) in environmental matrices (e.g., water, soil, sediment, foods) that have been developed to protect wild terrestrial vertebrates. Suggestions are provided to develop and embellish the use and value of such endpoints and criteria for extrapolation of effects to higher levels of biological organization. Increasing focus on populations, communities, and ecosystems is needed to develop biologically meaningful regulatory guidelines that will protect natural resources.
Shuryak, Igor; Dadachova, Ekaterina
2016-01-01
Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions) are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stressors in radioactive environments, we analyzed three data sets on: (1) bacteria isolated from soil contaminated by nuclear waste at the Hanford site (USA); (2) fungi isolated from the Chernobyl nuclear-power plant (Ukraine) buildings after the accident; (3) yeast subjected to continuous γ-irradiation in the laboratory, where radiation dose rate and cell removal rate were independently varied. We applied generalized linear mixed-effects models to describe the first two data sets, whereas the third data set was amenable to mechanistic modeling using differential equations. Machine learning and information-theoretic approaches were used to select the best-supported formalism(s) among biologically-plausible alternatives. Our analysis suggests the following: (1) Both radionuclides and co-occurring chemical contaminants (e.g. NO2) are important for explaining microbial responses to radioactive contamination. (2) Radionuclides may produce non-monotonic dose responses: stimulation of microbial growth at low concentrations vs. inhibition at higher ones. (3) The extinction-defining critical radiation dose rate is dramatically lowered by additional stressors. (4) Reproduction suppression by radiation can be more important for determining the critical dose rate, than radiation-induced cell mortality. In conclusion, the modeling approaches used here on three diverse data sets provide insight into explaining and predicting multi-stressor effects on microbial communities: (1) the most severe effects (e.g. extinction) on microbial populations may occur when unfavorable environmental conditions (e.g. fluctuations of temperature and/or nutrient levels) coincide with radioactive contamination; (2) an organism’s radioresistance and bioremediation efficiency in rich laboratory media may be insufficient to carry out radionuclide bioremediation in the field—robustness against multiple stressors is needed. PMID:26808049
Exposure assessment of process-related contaminants in food by biomarker monitoring
Rietjens, Ivonne M. C. M.; Dussort, P.; Gunther, Helmut; ...
2018-01-04
Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state ofmore » the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. Here, in spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.« less
Exposure assessment of process-related contaminants in food by biomarker monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rietjens, Ivonne M. C. M.; Dussort, P.; Gunther, Helmut
Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state ofmore » the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. Here, in spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.« less
Mental contamination: The effects of religiosity.
Bilekli, Ilgun; Inozu, Mujgan
2018-03-01
Mental contamination, which occurs in the absence of contact with a contaminant, has a moral element. Previous studies evoked feelings of mental contamination via listening to a scenario, which described a non-consensual kiss. Since mental contamination has a moral element, we tested the effects of the level of religiosity on feelings of mental contamination and related variables in an experimental design. Female undergraduates of high religiosity (n = 48) and low religiosity (n = 44) were randomly assigned to listen to one of two audio recordings involving a consensual or non-consensual kiss from a man described as moral. Mental contamination feelings were evoked successfully in both groups. Effects of scenario condition and religiosity level were seen in mental contamination and related negative feelings. Participants who imagined a non-consensual kiss reported greatest feelings of mental contamination, and internal and external negative feelings. More importantly, high religiosity resulted in greater feelings of mental contamination, internal negative feelings, as well as urges to wash and actual washing behaviors. The current study was conducted on non-clinical Muslim females. This limits the generalization of the findings to the wider population. Mental contamination and related feelings can be seen in different forms at different levels of religiosity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of a decision support system to manage contamination in marine ecosystems.
Dagnino, A; Viarengo, A
2014-01-01
In recent years, contamination and its interaction with climate-change variables have been recognized as critical stressors in coastal areas, emphasizing the need for a standardized framework encompassing chemical and biological data into risk indices to support decision-making. We therefore developed an innovative, expert decision support system (Exp-DSS) for the management of contamination in marine coastal ecosystems. The Exp-DSS has two main applications: (i) to determine environmental risk and biological vulnerability in contaminated sites; and (ii) to support the management of waters and sediments by assessing the risk due to the exposure of biota to these matrices. The Exp-DSS evaluates chemical data, both as single compounds and as total toxic pressure of the mixture, to compare concentrations to effect-based thresholds (TELs and PELs). Sites are then placed into three categories of contamination: uncontaminated, mildly contaminated, and highly contaminated. In highly contaminated sites, effects on high-level ecotoxicological endpoints (i.e. survival and reproduction) are used to determine risk at the organism-population level, while ecological parameters (i.e. alterations in community structure and ecosystem functions) are considered for assessing effects on biodiversity. Changes in sublethal biomarkers are utilized to assess the stress level of the organisms in mildly contaminated sites. In Triad studies, chemical concentrations, ecotoxicological high-level effects, and ecological data are combined to determine the level of environmental risk in highly contaminated sites; chemical concentration and ecotoxicological sublethal effects are evaluated to determine biological vulnerability in mildly contaminated sites. The Exp-DSS was applied to data from the literature about sediment quality in estuarine areas of Spain, and ranked risks related to exposure to contaminated sediments from high risk (Huelva estuary) to mild risk (Guadalquivir estuary and Bay of Cadiz). A spreadsheet-based version of the Exp-DSS is available at the MEECE and DiSIT web sites (www.meece.eu and www.disit.unipmn.it). © 2013 Elsevier B.V. All rights reserved.
Gilmour, Stuart; Tsubokura, Masaharu; Nomura, Shuhei; Kami, Masahiro; Oikawa, Tomoyoshi; Kanazawa, Yukio; Shibuya, Kenji
2014-01-01
Background: The Fukushima Dai-ichi nuclear disaster, the first level-7 major nuclear disaster since Chernobyl, raised concerns about the future health consequences of exposure to and intake of radionuclides. Factors determining the risk and level of internal radiation contamination after a nuclear accident, which are a key to understanding and improving current nuclear disaster management, are not well studied. Objective: We investigated both the prevalence and level of internal contamination in residents of Minamisoma, and identified factors determining the risk and levels of contamination. Methods: We implemented a program assessing internal radiation contamination using a whole body counter (WBC) measurement and a questionnaire survey in Minamisoma, between October 2011 and March 2012. Results: Approximately 20% of the city’s population (8,829 individuals) participated in the WBC measurement for internal contamination, of which 94% responded to the questionnaire. The proportion of participants with detectable internal contamination was 40% in adults and 9% in children. The level of internal contamination ranged from 2.3 to 196.5 Bq/kg (median, 11.3 Bq/kg). Tobit regression analysis identified two main risk factors: more time spent outdoors, and intake of potentially contaminated foods and water. Conclusions: Our findings suggest that, with sensible and reasonable precautions, people may be able to live continuously in radiation-affected areas with limited contamination risk. To enable this, nuclear disaster response should strictly enforce food and water controls and disseminate evidence-based and up-to-date information about avoidable contamination risks. Citation: Sugimoto A, Gilmour S, Tsubokura M, Nomura S, Kami M, Oikawa T, Kanazawa Y, Shibuya K. 2014. Assessment of the risk of medium-term internal contamination in Minamisoma City, Fukushima, Japan, after the Fukushima Dai-ichi Nuclear accident. Environ Health Perspect 122:587–593; http://dx.doi.org/10.1289/ehp.1306848 PMID:24633072
Fish consumption and contaminant exposure among Montreal-area sportfishers: Pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosatsky, T.; Przybysz, R.; Shatenstein, B.
1999-02-01
A 1995 pilot study assessed sport fish consumption and contaminant exposure among Montreal-area residents fishing the frozen St. Lawrence river. Interviews conducted among 223 ice fishers met on-site were used to create an index of estimated exposure to fish-borne contaminants. A second-stage assessment of sport fish consumption and tissue contaminant burdens included 25 interviewees at the highest level of estimated contaminant exposure and 15 low-exposure fishers. High-level fisher-consumers reported eating 0.92 {+-} 0.99 sport fish meals/week during the previous 3 weeks compared to 0.38 {+-} 0.21 for the low-level group. Based on the product of consumption frequency times mass ofmore » sport fish meals consumed, high-level consumers ate a mean of 18.3 kg of sport fish annually versus 3.3 kg for the low-level consumers. Tissue contaminant assessments showed significant groupwise differences: 0--1 cm hair mercury, lipid-adjusted plasma PCB congeners, and lipid-adjusted plasma DDE. No participant had a hair mercury or plasma DDE concentration above Health Canada recommendations but 2/25 high-level participants had plasma Aroclor 1260 concentrations above recommended limits.« less
Contamination control plan for prelaunch operations
NASA Technical Reports Server (NTRS)
Austin, J. D.
1983-01-01
A unified, systematic plan is presented for contamination control for space flight systems. Allowable contaminant quantities, or contamination budgets, are determined based on system performance margins and system-level allowable degradations. These contamination budgets are compared to contamination rates in ground environments to establish the controls required in each ground environment. The use of feedback from contamination monitoring and some contamination control procedures are discussed.
Levels and trends of contaminants in humans of the Arctic.
Gibson, Jennifer; Adlard, Bryan; Olafsdottir, Kristin; Sandanger, Torkjel Manning; Odland, Jon Øyvind
2016-01-01
The Arctic Monitoring and Assessment Programme (AMAP) is one of the six working groups established under the Arctic Council. AMAP is tasked with monitoring the levels of contaminants present in the Arctic environment and people as well as assessing their effects on a continuous basis, and reporting these results regularly. Most of the presented data have been collected over the last 20 years and are from all eight Arctic countries. Levels of contaminants appear to be declining in some of the monitored Arctic populations, but it is not consistent across the Arctic. Most Arctic populations continue to experience elevated levels of these contaminants compared to other populations monitored globally. There are certain contaminants, such as perfluorinated compounds and polybrominated diphenyl ethers, which are still increasing in Arctic populations. These contaminants require more investigation to find out the predominant and important sources of exposure, and whether they are being transported to the Arctic through long-range transport in the environment.
Levels and trends of contaminants in humans of the Arctic
Gibson, Jennifer; Adlard, Bryan; Olafsdottir, Kristin; Sandanger, Torkjel Manning; Odland, Jon Øyvind
2016-01-01
The Arctic Monitoring and Assessment Programme (AMAP) is one of the six working groups established under the Arctic Council. AMAP is tasked with monitoring the levels of contaminants present in the Arctic environment and people as well as assessing their effects on a continuous basis, and reporting these results regularly. Most of the presented data have been collected over the last 20 years and are from all eight Arctic countries. Levels of contaminants appear to be declining in some of the monitored Arctic populations, but it is not consistent across the Arctic. Most Arctic populations continue to experience elevated levels of these contaminants compared to other populations monitored globally. There are certain contaminants, such as perfluorinated compounds and polybrominated diphenyl ethers, which are still increasing in Arctic populations. These contaminants require more investigation to find out the predominant and important sources of exposure, and whether they are being transported to the Arctic through long-range transport in the environment. PMID:27974136
USDA-ARS?s Scientific Manuscript database
In the meat industry, a “High Event Period” (HEP) is defined as a time period during which commercial meat plants experience a higher than usual rate of E. coli O157:H7 contamination. Genetic analysis indicated that within a HEP, most of the E. coli O157:H7 strains belong to a singular dominant str...
2011-03-21
and may be difficult to decontaminate. n. Pretest (baseline) and posttest (30 days after the first contamination and/or other defined long-term...be reported in a form that can be compared with pretest and posttest hardness functional performance data. 4.1.6.2 Decontaminability. a...exterior materials of construction, paint type, and surface condition ( pretest and posttest ), including cleanliness (mud, grease, and other
Environmental contaminants of emerging concern in seafood--European database on contaminant levels.
Vandermeersch, Griet; Lourenço, Helena Maria; Alvarez-Muñoz, Diana; Cunha, Sara; Diogène, Jorge; Cano-Sancho, German; Sloth, Jens J; Kwadijk, Christiaan; Barcelo, Damia; Allegaert, Wim; Bekaert, Karen; Fernandes, José Oliveira; Marques, Antonio; Robbens, Johan
2015-11-01
Marine pollution gives rise to concern not only about the environment itself but also about the impact on food safety and consequently on public health. European authorities and consumers have therefore become increasingly worried about the transfer of contaminants from the marine environment to seafood. So-called "contaminants of emerging concern" are chemical substances for which no maximum levels have been laid down in EU legislation, or substances for which maximum levels have been provided but which require revision. Adequate information on their presence in seafood is often lacking and thus potential risks cannot be excluded. Assessment of food safety issues related to these contaminants has thus become urgent and imperative. A database (www.ecsafeseafooddbase.eu), containing available information on the levels of contaminants of emerging concern in seafood and providing the most recent data to scientists and regulatory authorities, was developed. The present paper reviews a selection of contaminants of emerging concern in seafood including toxic elements, endocrine disruptors, brominated flame retardants, pharmaceuticals and personal care products, polycyclic aromatic hydrocarbons and derivatives, microplastics and marine toxins. Current status on the knowledge of human exposure, toxicity and legislation are briefly presented and the outcome from scientific publications reporting on the levels of these compounds in seafood is presented and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt
2013-11-01
In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.
Spacecraft contamination issues from LDEF: Issues for design
NASA Technical Reports Server (NTRS)
Pippin, Gary; Crutcher, Russ
1993-01-01
Many contamination sources have been identified on the Long Duration Exposure Facility (LDEF). Effects of contamination from these sources are being quantified and have been reported on in several papers. For a designer, the essential question is how much contamination from all sources can be tolerated without causing a given spacecraft system to degrade below a critical performance level, or fail altogether. Even a rudimentary knowledge of the mechanisms by which molecular and particulate contamination can occur will allow simple design options to be chosen to circumvent potential contamination problems and reduce contamination levels. Because of the varied nature and condition of hardware used on LDEF experiments, examples of many types of contamination were seen and these provide a useful guide to expected performance of many types of materials in space environments.
Environmental contaminants of emerging concern in seafood – European database on contaminant levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandermeersch, Griet, E-mail: griet.vandermeersch@ilvo.vlaanderen.be; Lourenço, Helena Maria; Alvarez-Muñoz, Diana
Marine pollution gives rise to concern not only about the environment itself but also about the impact on food safety and consequently on public health. European authorities and consumers have therefore become increasingly worried about the transfer of contaminants from the marine environment to seafood. So-called “contaminants of emerging concern” are chemical substances for which no maximum levels have been laid down in EU legislation, or substances for which maximum levels have been provided but which require revision. Adequate information on their presence in seafood is often lacking and thus potential risks cannot be excluded. Assessment of food safety issuesmore » related to these contaminants has thus become urgent and imperative. A database ( (www.ecsafeseafooddbase.eu)), containing available information on the levels of contaminants of emerging concern in seafood and providing the most recent data to scientists and regulatory authorities, was developed. The present paper reviews a selection of contaminants of emerging concern in seafood including toxic elements, endocrine disruptors, brominated flame retardants, pharmaceuticals and personal care products, polycyclic aromatic hydrocarbons and derivatives, microplastics and marine toxins. Current status on the knowledge of human exposure, toxicity and legislation are briefly presented and the outcome from scientific publications reporting on the levels of these compounds in seafood is presented and discussed. - Highlights: • Development of a European database regarding contaminants of emerging concern. • Current status on knowledge of human exposure, toxicity and legislation. • Review on the occurrence of contaminants of emerging concern in seafood.« less
Tadee, Pakpoom; Boonkhot, Phacharaporn; Patchanee, Prapas
2014-11-01
Salmonella spp. is one of the important foodborne pathogens, and the slaughtering process is recognized as a potential point of contamination and the spread of the pathogens. The three objectives of this study are first, to quantify the contamination levels of Salmonella spp. in pig skins and carcasses, second, to evaluate the outcomes from different pig supply sources and different practices at three critical steps (scalding, splitting, and washing) for Salmonella spp. contamination, and third, to assess risk of Salmonella spp. contamination in pork products after slaughtering level. The study was performed in three representative slaughterhouses in Chiang Mai and Lamphun provinces, Thailand. Investigation conducted from May 2013 through October 2013 found the overall prevalence and contamination levels mean to be 11.85% and 0.34 MPN/cm2, respectively. There was no statistically significant in Salmonella spp. prevalence and contamination levels detected with different patterns at the slaughterhouses which were supplied pigs from either co-operative or integrated farms. Factors found to reduce Salmonella spp. loads on carcasses included good practices, e.g., regular changing of water in the scalding tank after each batch and the use of chlorine in the washing step. Risk of Salmonella spp. contamination of pork products at the final stage of slaughtering was nearly 10%. Good practices and proper hygiene measures should be applied to minimize the risk of Salmonella spp. exposure in the slaughtering line, which can reduce the contamination pressure downstream at retail shops as well as for end consumers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn Kidman
This document constitutes an addendum to the September 2006, Closure Report for Corrective Action Unit 214: Bunkers and Storage Areas as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • Thismore » cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 25-23-01, Contaminated Materials • CAS 25-23-19, Radioactive Material Storage These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.« less
Wang, Wei; Yan, Shaofei; Bai, Li; Li, Zhigang; Du, Chunming; Li, Fengqin
2015-11-01
To survey the contamination of L. monocytogenes isolated from retail ready-to-eat meats in Beijing. Ready-to-eat meats were quantitatively detected for L. monocytogenes using MPN method. L. monocytogenes isolates were analyzed by PFGE. Fourteen out of 197 ready-to-eat meat samples were positive for L. monocytogenes with the contamination rate of 7.11% and the geometry mean contamination level of 14.31 MPN/g. The contamination of L. monocytogenes isolated from free trade market (13.89%) was more severe than those from specificity store (8.57%), supermarket (5.75%) and restaurant (2.56%), while supermarket had the highest mean contamination level of 22.78 MPN/g. A total of 13 PFGE types were characterized using DICE-UPGMA analysis through BioNumerics 7.1 software. There were two isolates from the same free trade market share the same PFGE type, which suggested the same contamination source of both samples. Contamination of L. monocytogenes exist in retail ready-to-eat meats. The contamination level of L. monocytogenes isolated from free trade market is more severe than those from specificity store, supermarket and restaurant.
Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.
2009-01-01
Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.
MSFC Skylab contamination control systems mission evaluation
NASA Technical Reports Server (NTRS)
1974-01-01
Cluster external contamination control evaluation was made throughout the Skylab Mission. This evaluation indicated that contamination control measures instigated during the design, development, and operational phases of this program were adequate to reduce the general contamination environment external to the Cluster below the threshold senstivity levels for experiments and affected subsystems. Launch and orbit contamination control features included eliminating certain vents, rerouting vents for minimum contamination impact, establishing filters, incorporating materials with minimum outgassing characteristics and developing operational constraints and mission rules to minimize contamination effects. Prior to the launch of Skylab, contamination control math models were developed which were used to predict Cluster surface deposition and background brightness levels throughout the mission. The report summarizes the Skylab system and experiment contamination control evaluation. The Cluster systems and experiments evaluated include Induced Atmosphere, Corollary and ATM Experiments, Thermal Control Surfaces, Solar Array Systems, Windows and Star Tracker.
Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José
2004-09-01
Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.
Olarerin-George, Anthony O.; Hogenesch, John B.
2015-01-01
Mycoplasmas are notorious contaminants of cell culture and can have profound effects on host cell biology by depriving cells of nutrients and inducing global changes in gene expression. Over the last two decades, sentinel testing has revealed wide-ranging contamination rates in mammalian culture. To obtain an unbiased assessment from hundreds of labs, we analyzed sequence data from 9395 rodent and primate samples from 884 series in the NCBI Sequence Read Archive. We found 11% of these series were contaminated (defined as ≥100 reads/million mapping to mycoplasma in one or more samples). Ninety percent of mycoplasma-mapped reads aligned to ribosomal RNA. This was unexpected given 37% of contaminated series used poly(A)-selection for mRNA enrichment. Lastly, we examined the relationship between mycoplasma contamination and host gene expression in a single cell RNA-seq dataset and found 61 host genes (P < 0.001) were significantly associated with mycoplasma-mapped read counts. In all, this study suggests mycoplasma contamination is still prevalent today and poses substantial risk to research quality. PMID:25712092
Geology, hydrology, and ground-water quality at the Byron Superfund site near Byron, Illinois
Kay, Robert T.; Yeskis, Douglas J.; Bolen, William J.; Rauman, James R.; Prinos, Scott T.
1997-01-01
A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency to define the geohydrology and contaminant distribution at a Superfund site near Byron, Illinois. Geologic units of interest beneath the site are the St. Peter Sandstone; the shale, dolomite and sandstone of the Glenwood Formation; the dolomite of the Platteville and Galena Groups; and sands, gravels, tills and loess of Quaternary age. The hydrologic units of interest are the unconsolidated aquifer, Galena-Platteville aquifer, Harmony Hill Shale semiconfining unit, and the St. Peter aquifer. Ground-water flow generally is from the upland areas northwest and southwest toward the Rock River. Water levels indicate the potential for downward ground-water flow in most of the area except near the Rock River. The Galena-Platteville aquifer can be subdivided into four zones characterized by differing water-table altitudes, hydraulic gradients, and vertical and horizontal permeabilities. Geophysical, hydraulic, and aquifer-test data indicate that lithology, stratigraphy, and tectonic structures affect the distribution of primary and secondary porosity of dolomite in the Galena and Platteville Groups, which affects the permeability distribution in the Galena-Platteville aquifer. The distribution of cyanide, chlorinated aliphatic hydrocarbons, and aromatic hydrocarbons in ground water indicates that these contaminants are derived from multiple sources in the study area. Contaminants in the northern part of this area migrate northwest to the Rock River. Contaminants in the central and southern parts of this area appear to migrate to the southwest in the general direction of the Rock River.
Rivoal, K.; Ragimbeau, C.; Salvat, G.; Colin, P.; Ermel, G.
2005-01-01
In many industrialized countries, the incidence of campylobacteriosis exceeds that of salmonellosis. Campylobacter bacteria are transmitted to humans mainly in food, especially poultry meat products. Total prevention of Campylobacter colonization in broiler flocks is the best way to reduce (or eliminate) the contamination of poultry products. The aim of this study was to establish the sources and routes of contamination of broilers at the farm level. Molecular typing methods (DNA macrorestriction pulsed-field gel electrophoresis and analysis of gene polymorphism by PCR-restriction fragment length polymorphism) were used to characterize isolates collected from seven broiler farms. The relative genomic diversity of Campylobacter coli and Campylobacter jejuni was determined. Analysis of the similarity among 116 defined genotypes was used to determine clusters within the two species. Furthermore, evidence of recombination suggested that there were genomic rearrangements within the Campylobacter populations. Recovery of related clusters from different broiler farms showed that some Campylobacter strains might be specifically adapted to poultry. Analysis of the Campylobacter cluster distribution on three broiler farms showed that soil in the area around the poultry house was a potential source of Campylobacter contamination. The broilers were infected by Campylobacter spp. between days 15 and 36 during rearing, and the type of contamination changed during the rearing period. A study of the effect of sanitary barriers showed that the chickens stayed Campylobacter spp. free until they had access to the open area. They were then rapidly colonized by the Campylobacter strains isolated from the soil. PMID:16204541
Ferranti, Greta; Mansi, Antonella; Marcelloni, Anna M.; Proietto, Anna R.; Saini, Navneet; Borella, Paola; Bargellini, Annalisa
2016-01-01
Physical and chemical disinfection methods have been proposed with the aim of controlling Legionella water contamination. To date, the most effective procedures for reducing bacterial contamination have not yet been defined. The aim of this study was to assess the long-term effectiveness of various disinfection procedures in order to reduce both culturable and nonculturable (NC) legionellae in different hospital water networks treated with heat, chlorine dioxide, monochloramine, and hydrogen peroxide. The temperature levels and biocide concentrations that proved to give reliable results were analyzed. In order to study the possible effects on the water pipes, we verified the extent of corrosion on experimental coupons after applying each method for 6 months. The percentage of positive points was at its lowest after treatment with monochloramine, followed by chlorine dioxide, hydrogen peroxide, and hyperthermia. Different selections of Legionella spp. were observed, as networks treated with chlorine-based disinfectants were contaminated mainly by Legionella pneumophila serogroup 1, hyperthermia was associated with serogroups 2 to 14, and hydrogen peroxide treatment was associated mainly with non-pneumophila species. NC cells were detected only in heat-treated waters, and also when the temperature was approximately 60°C. The corrosion rates of the coupons were within a satisfactory limit for water networks, but the morphologies differed. We confirm here that chemical disinfection controls Legionella colonization more effectively than hyperthermia does. Monochloramine was the most effective treatment, while hydrogen peroxide may be a promising alternative to chlorine-based disinfectants due to its ability to select for other, less virulent or nonpathogenic species. PMID:26969696
USDA-ARS?s Scientific Manuscript database
Environmental contamination with Mycobacterium avium subsp. paratuberculosis (MAP) is thought to be the primary source of infection for dairy cattle. The exact link between fecal shedding of MAP by individual cows and environmental contamination levels at the herd level was explored with a cross-se...
Magnuson, Matthew; Campisano, Romy; Griggs, John; Fitz-James, Schatzi; Hall, Kathy; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Silvestri, Erin; Smith, Terry; Willison, Stuart; Ernst, Hiba
2014-11-01
Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity. However, the same techniques discussed could also have application to catastrophes resulting from other incidents, such as natural disasters or industrial accidents. Further, the high sample throughput enabled by the techniques discussed could be employed for conventional environmental studies and compliance monitoring, potentially decreasing costs and/or increasing the quantity of data available to decision-makers. Published by Elsevier Ltd.
Wei, Yanyan; Zheng, Xiaoman; Shohag, Md. Jahidul Islam; Gu, Minghua
2017-01-01
In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi (Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0–87.6% and 20.1–82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9–71.8% for Cd bioaccessibility and 16.1–59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg−1 bw day−1, BEDI of As < 3 μg kg−1 bw day−1) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities. PMID:28850097
Wei, Yanyan; Zheng, Xiaoman; Shohag, Md Jahidul Islam; Gu, Minghua
2017-08-29
In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi ( Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0-87.6% and 20.1-82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9-71.8% for Cd bioaccessibility and 16.1-59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg -1 bw day -1 , BEDI of As < 3 μg kg -1 bw day -1 ) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities.
Occurrence of aflatoxin M1 in conventional and organic milk offered for sale in Italy.
Armorini, Sara; Altafini, Alberto; Zaghini, Anna; Roncada, Paola
2016-11-01
In the present study, 58 samples of milk were analyzed for the presence of aflatoxin M 1 (AFM 1 ). The samples were purchased during the period April-May 2013 in a random manner from local stores (supermarkets, small retail shops, small groceries, and specialized suppliers) located in the surrounding of Bologna (Italy). The commercial samples of milk were either organic (n = 22) or conventional (n = 36); fresh milk samples and UHT milk samples, whole milk samples, and partially skim milk samples were present in both the two considered categories. For the quantification of AFM 1 in milk, the extraction-purification technique based on the use of immunoaffinity columns was adopted and analyses were performed using HPLC-FD. AFM 1 was detected in 35 samples, 11 from organic production and 24 from conventional production. No statistically (P > 0.05) significant differences were observed in the concentration of AFM 1 in the two categories of product. The levels of contamination found in the positive samples ranged between 0.009 and 0.026 ng mL -1 . No sample exceeded the limit defined at community level for AFM 1 in milk (0.05 μg kg -1 ). This demonstrates the effectiveness of the checks before the placing on the market of these food products. Thus, the "aflatoxins" problem that characterized the summer of 2012 does not seem to have had effect on the contamination level of the considered milk samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.P.; Hazelton, R.F.
1984-12-01
A study was conducted to evaluate the technical and economic feasibility of using in-situ decontamination techniques to convert glove boxes and other large TRU-contaminated components directly into LLW. The results of the technical evaluation indicate that in-situ decontamination of these types of components to non-TRU levels is technically feasible. Applicable decontamination techniques include electropolishing, hand scrubbing, chemical washes/sprays, strippable coatings and Freon spray-cleaning. The removal of contamination from crevices and other holdup areas remains a problem, but may be solved through further advances in decontamination technology. Also, the increase in the allowable maximum TRU level from 10 nCi/g to 100more » nCi/g as defined in DOE Order 5820.2 reduces the removal requirement and facilitates measurement of the remaining quantities. The major emphasis of the study was on a cost/benefit evaluation that included a review and update of previous analyses and evaluations of TRU-waste volume reduction and conversion options. The results of the economic evaluation show, for the assumptions used, that there is a definite cost incentive to size reduce large components, and that decontamination of sectioned material has become cost competitive with the size reduction options. In-situ decontamination appears to be the lowest cost option when based on routine-type operations conducted by well-trained and properly equipped personnel. 16 references, 1 figure, 7 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
This ROD Amendment changes a component of the selected remedial action for contaminated soil. The original selected remedy documented in the March 1996 Record of Decision (ROD) is a series of remedial actions that address the principal threats at the Site, by removing the most highly contaminated soil, extracting nonaqueous phase liquid (NAPL) from and treating contaminated groundwater, and capping the most highly contaminated sediment. Because significant levels of dioxin are present in soil areas originally identified for excavation and on-site biological treatment (i.e, areas where contamination exceeds the action levels for PCP and PAHs), it now appears unlikely thatmore » this intended treatment will achieve the level of risk reduction contemplated in the 1996 ROD. Accordingly, DEQ and EPA have selected an alternative remedy for contaminated soil at the McCormick and Baxter site.« less
Wolkers, H; Lydersen, C; Kovacs, K M; Burkow, I; van Bavel, B
2006-01-01
The concentrations and patterns of polychlorinated biphenyls (PCBs), chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs) were studied in white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) from Svalbard, Norway. In addition, their main food items were included in the study. In the whales, a broad range of pollutants was found in relatively high concentrations. PCBs and pesticides were approximately 3000 and 8000 ng/g lipid, respectively, for white whales and three times higher for narwhals. PBDEs 47 were approximately 70 ng/g lipid for white whales and 170 ng/g lipid for narwhals. Compared with other marine mammals from the same area, contaminant levels are among the highest levels ever measured. These high levels are likely in part because of a decreased capacity to metabolize contaminants. Metabolic indices indicated that most compounds accumulate to the same degree in white whales and narwhals, but for some toxaphenes and chlordanes, narwhals might have a decreased metabolism and consequently a higher accumulation. The three-times-higher contaminant levels in blubber of narwhals was further explained by substantially higher contaminant levels in their more benthic diet. The high levels and broad pattern of accumulating pollutants make white whales and narwhals excellent indicators for a wide range of contaminants in the Arctic.
Residual tobacco smoke pollution in used cars for sale: air, dust, and surfaces.
Matt, Georg E; Quintana, Penelope J E; Hovell, Melbourne F; Chatfield, Dale; Ma, Debbie S; Romero, Romina; Uribe, Anna
2008-09-01
Regular tobacco use in the enclosed environment of a car raises concerns about longer-term contamination of a car's microenvironment with residual secondhand smoke pollutants. This study (a) developed and compared methods to measure residual contamination of cars with secondhand smoke, (b) examined whether cars of smokers and nonsmokers were contaminated by secondhand smoke, and (c) how smoking behavior and restrictions affected contamination levels. Surface wipe, dust, and air samples were collected in used cars sold by nonsmokers (n = 20) and smokers (n = 87) and analyzed for nicotine. Sellers were interviewed about smoking behavior and restrictions, and car interiors were inspected for signs of tobacco use. Cars of smokers who smoked in their vehicles showed significantly elevated levels of nicotine (p < .001) in dust, on surfaces, and in the air compared with nonsmoker cars with smoking ban. When smokers imposed car smoking bans, air nicotine levels were significantly lower (p < .01), but dust and surface contamination levels remained at similar levels. Smoking more cigarettes in the car and overall higher smoking rate of the seller were significantly associated with higher secondhand smoke contamination of the car (p < .001). Use of a cutpoint for nicotine levels from surface wipe samples correctly identified 82% of smoker cars without smoking bans, 75% of smoker cars with bans, and 100% of nonsmoker cars. Surface nicotine levels provide a relatively inexpensive and accurate method to identify cars and other indoor environments contaminated with residual secondhand smoke. Disclosure requirements and smoke-free certifications could help protect nonsmoking buyers of used cars.
Nøstbakken, Ole Jakob; Hove, Helge T; Duinker, Arne; Lundebye, Anne-Katrine; Berntssen, Marc H G; Hannisdal, Rita; Lunestad, Bjørn Tore; Maage, Amund; Madsen, Lise; Torstensen, Bente E; Julshamn, Kåre
2015-01-01
Environmental pollutants such as dioxins and PCBs, heavy metals, and organochlorine pesticides are a global threat to food safety. In particular, the aquatic biota can bioaccumulate many of these contaminants potentially making seafood of concern for chronic exposure to humans. The main objective was to evaluate trends of contaminant levels in Norwegian farmed Atlantic salmon in light of the derived tolerable intakes. Through an EU-instigated surveillance programme, the Norwegian Food Safety Authority (NFSA) has between 1999 and 2011 collected more than 2300 samples of Norwegian farmed Atlantic salmon (Salmo salar) for contaminant analyses. The fillets of these fish were homogenised and analysed for dioxins, PCBs, heavy metals and organochlorine pesticides. The levels of the contaminants mercury, arsenic, dioxins, dioxin-like PCBs and DDT in Norwegian farmed salmon fillet have decreased during our period of analyses. The levels of cadmium, lead and several organochlorine pesticides were too close to the limit of quantification to calculate time trends. For PCB6 and quantifiable amounts of pesticides, except DDT, stable levels were observed. The contaminant levels in Norwegian farmed salmon have generally decreased between 1999 and 2011. Excluding other dietary sources, the levels of dioxins and dioxin-like PCBs in 2011 allowed consumption of up to 1.3kg salmon per week to reach the tolerable weekly intake. The group of contaminants which was the limiting factor for safe consumption of Norwegian farmed salmon, based on currently established TWI values, is the sum of dioxins and dioxin-like PCBs. Copyright © 2014. Published by Elsevier Ltd.
Fluorescence Imaging Reveals Surface Contamination
NASA Technical Reports Server (NTRS)
Schirato, Richard; Polichar, Raulf
1992-01-01
In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.
Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric
2016-10-01
In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.
Sadeghi, Fatemeh; Nasseri, Simin; Mosaferi, Mohammad; Nabizadeh, Ramin; Yunesian, Masud; Mesdaghinia, Alireza
2017-05-01
In this research, probable arsenic contamination in drinking water in the city of Ardabil was studied in 163 samples during four seasons. In each season, sampling was carried out randomly in the study area. Results were analyzed statistically applying SPSS 19 software, and the data was also modeled by Arc GIS 10.1 software. The maximum permissible arsenic concentration in drinking water defined by the World Health Organization and Iranian national standard is 10 μg/L. Statistical analysis showed 75, 88, 47, and 69% of samples in autumn, winter, spring, and summer, respectively, had concentrations higher than the national standard. The mean concentrations of arsenic in autumn, winter, spring, and summer were 19.89, 15.9, 10.87, and 14.6 μg/L, respectively, and the overall average in all samples through the year was 15.32 μg/L. Although GIS outputs indicated that the concentration distribution profiles changed in four consecutive seasons, variance analysis of the results showed that statistically there is no significant difference in arsenic levels in four seasons.
Keita, Seydou; Masuzzo, Ambra; Royet, Julien; Kurz, C Leopold
2017-05-01
When exposed to microorganisms, animals use several protective strategies. On one hand, as elegantly exemplified in Drosophila melanogaster, the innate immune system recognizes microbial compounds and triggers an antimicrobial response. On the other hand, behaviors preventing an extensive contact with the microbes and thus reducing the risk of infection have been described. However, these reactions ranging from microbes aversion to intestinal transit increase or food intake decrease have been rarely defined at the molecular level. In this study, we set up an experimental system that allowed us to rapidly identify and quantify food intake decreases in Drosophila larvae exposed to media contaminated with bacteria. Specifically, we report a robust dose-dependent food intake decrease following exposure to the bacteria Erwinia carotovora carotovora strain Ecc15. We demonstrate that this response does not require Imd innate immune pathway, but rather the olfactory neuronal circuitry, the Trpa1 receptor and the evf virulence factor. Finally, we show that Ecc15 induce the same behavior in the invasive pest insect Drosophila suzukii. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterizing unknown systematics in large scale structure surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Nishant; Ho, Shirley; Myers, Adam D.
Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data,more » we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.« less
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) persistence in the Seveso (Milan, Italy) soil.
Cerlesi, S; Di Domenico, A; Ratti, S
1989-10-01
Preliminary results of a new study on TCDD environmental persistence at Seveso (Milan, Italy) are presented. For this study, the most contaminated territory, Zone A, was divided into areas to fractionate the available TCDD levels in soil into data sets with reduced value spreads. In addition, various time subsets were defined for each area. Selected data were fitted with the exponential model y = y0.e-k.1. It was estimated that at least 1.2 kg TCDD was present in Zone A shortly after the accident. On average, a considerable portion (23%) of this amount lay on vegetation; TCDD which was not photodegraded or volatilized before the heavy rains of fall 1976, was later washed off and transferred to ground by water action. From this study, mean analytical underestimations affecting January 1977 and March 1978 contamination map data were on the order of 30 and 24%. All the above figures are considered optimistic. A few years after the accident, mean TCDD half-life in soil appeared to be 9.1y (t1/2-95% CLs, 6.2-17y).
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1990-01-01
Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.
NASA Astrophysics Data System (ADS)
Thebo, A.
2016-12-01
Urban wastewater provides a reliable, nutrient rich source of irrigation water for downstream agricultural producers. However, globally, less than ten percent of collected wastewater receives any form of treatment, resulting in the widespread indirect reuse of untreated, diluted wastewater from surface water sources. This research explores these links between water scarcity, anthropogenic drivers of water quality, and adaptation strategies farmer's employ through a case study in Dharwad, a mid-sized South Indian city. This study took an interdisciplinary approach, incorporating survey based research with geospatial analysis, and molecular methods (for waterborne pathogen detection) to develop a systems level understanding of the drivers, health risks, and adaptation strategies associated with the indirect reuse of wastewater in irrigated agriculture. In Dharwad, farmers with better access to wastewater reported growing more water-intensive, but higher value vegetable crops. While farmers further downstream tended to grow more staple crops. This study evaluated levels of culturable E. coli and diarrheagenic E. coli pathotype gene targets to assess contamination in irrigation water, soil, and on produce from farms. Irrigation water source was a major factor affecting the concentrations of culturable E. coli detected in soil samples and on greens. However, even when irrigation water was not contaminated (all borewell water samples) some culturable E. coli were present at low concentrations in soil and on produce samples, suggesting additional sources of contamination on farms. Maximum temperatures within the previous week showed a significant positive association with concentrations of E. coli on wastewater irrigated produce. This presentation will focus on discussing the ways in which urban wastewater management, climate, irrigation practices and cultivation patterns all come together to define the risks and benefits posed via the indirect reuse of wastewater.
Pillai, Satish K; Chang, Arthur; Murphy, Matthew W; Buzzell, Jennifer; Ansari, Armin; Whitcomb, Robert C; Miller, Charles; Jones, Robert; Saunders, David P; Cavicchia, Philip; Watkins, Sharon M; Blackmore, Carina; Williamson, John A; Stephens, Michael; Morrison, Melissa; McNees, James; Murphree, Rendi; Buchanan, Martha; Hogan, Anthony; Lando, James; Nambiar, Atmaram; Torso, Lauren; Melnic, Joseph M; Yang, Lucie; Lewis, Lauren
2014-01-01
During routine screening in 2011, US Customs and Border Protection (CBP) identified 2 persons with elevated radioactivity. CBP, in collaboration with Los Alamos National Laboratory, informed the Food and Drug Administration (FDA) that these people could have increased radiation exposure as a result of undergoing cardiac Positron Emission Tomography (PET) scans several months earlier with rubidium Rb 82 chloride injection from CardioGen-82. We conducted a multistate investigation to assess the potential extent and magnitude of radioactive strontium overexposure among patients who had undergone Rb 82 PET scans. We selected a convenience sample of clinical sites in 4 states and reviewed records to identify eligible study participants, defined as people who had had an Rb 82 PET scan between February and July 2011. All participants received direct radiation screening using a radioisotope identifier able to detect the gamma energy specific for strontium-85 (514 keV) and urine bioassay for excreted radioactive strontium. We referred a subset of participants with direct radiation screening counts above background readings for whole body counting (WBC) using a rank ordering of direct radiation screening. The rank order list, from highest to lowest, was used to contact and offer voluntary enrollment for WBC. Of 308 participants, 292 (95%) had direct radiation screening results indistinguishable from background radiation measurements; 261 of 265 (98%) participants with sufficient urine for analysis had radioactive strontium results below minimum detectable activity. None of the 23 participants who underwent WBC demonstrated elevated strontium activity above levels associated with routine use of the rubidium Rb 82 generator. Among investigation participants, we did not identify evidence of strontium internal contamination above permissible levels. This investigation might serve as a model for future investigations of radioactive internal contamination incidents.
Facility Concepts for Mars Returned Sample Handling
NASA Technical Reports Server (NTRS)
Cohen, Marc M.; Briggs, Geoff (Technical Monitor)
2001-01-01
Samples returned from Mars must be held in quarantine until their biological safety has been determined. A significant challenge, unique to NASA's needs, is how to contain the samples (to protect the blaspheme) while simultaneously protecting their pristine nature. This paper presents a comparative analysis of several quarantine facility concepts for handling and analyzing these samples. The considerations in this design analysis include: modes of manipulation; capability for destructive as well as non-destructive testing; avoidance of cross-contamination; linear versus recursive processing; and sample storage and retrieval within a closed system. The ability to rigorously contain biologically hazardous materials has been amply demonstrated by facilities that meet the specifications of the Center for Disease Control Biosafety Level 4. The newly defined Planetary Protection Level Alpha must provide comparable containment while assuring that the samples remain pristine; the latter requirement is based on the need to avoid compromising science analyses by instrumentation of the highest possible sensitivity (among other things this will assure that there is no false positive detection of organisms or organic molecules - a situation that would delay or prevent the release of the samples from quarantine). Protection of the samples against contamination by terrestrial organisms and organic molecules makes a considerable impact upon the sample handling facility. The use of glove boxes appears to be impractical because of their tendency to leak and to surges. As a result, a returned sample quarantine facility must consider the use of automation and remote manipulation to carry out the various functions of sample handling and transfer within the system. The problem of maintaining sensitive and bulky instrumentation under the constraints of simultaneous sample containment and contamination protection also places demands on the architectural configuration of the facility that houses it.
Street foods in Accra, Ghana: how safe are they?
Mensah, Patience; Yeboah-Manu, Dorothy; Owusu-Darko, Kwaku; Ablordey, Anthony
2002-01-01
OBJECTIVE: To investigate the microbial quality of foods sold on streets of Accra and factors predisposing to their contamination. METHODS: Structured questionnaires were used to collect data from 117 street vendors on their vital statistics, personal hygiene, food hygiene and knowledge of foodborne illness. Standard methods were used for the enumeration, isolation, and identification of bacteria. FINDINGS: Most vendors were educated and exhibited good hygiene behaviour. Diarrhoea was defined as the passage of > or =3 stools per day) by 110 vendors (94.0%), but none associated diarrhoea with bloody stools; only 21 (17.9%) associated diarrhoea with germs. The surroundings of the vending sites were clean, but four sites (3.4%) were classified as very dirty. The cooking of food well in advance of consumption, exposure of food to flies, and working with food at ground level and by hand were likely risk factors for contamination. Examinations were made of 511 menu items, classified as breakfast/snack foods, main dishes, soups and sauces, and cold dishes. Mesophilic bacteria were detected in 356 foods (69.7%): 28 contained Bacillus cereus (5.5%), 163 contained Staphylococcus aureus (31.9%) and 172 contained Enterobacteriaceae (33.7%). The microbial quality of most of the foods was within the acceptable limits but samples of salads, macaroni, fufu, omo tuo and red pepper had unacceptable levels of contamination. Shigella sonnei and enteroaggregative Escherichia coli were isolated from macaroni, rice, and tomato stew, and Salmonella arizonae from light soup. CONCLUSION: Street foods can be sources of enteropathogens. Vendors should therefore receive education in food hygiene. Special attention should be given to the causes of diarrhoea, the transmission of diarrhoeal pathogens, the handling of equipment and cooked food, hand-washing practices and environmental hygiene. PMID:12163918
Street foods in Accra, Ghana: how safe are they?
Mensah, Patience; Yeboah-Manu, Dorothy; Owusu-Darko, Kwaku; Ablordey, Anthony
2002-01-01
To investigate the microbial quality of foods sold on streets of Accra and factors predisposing to their contamination. Structured questionnaires were used to collect data from 117 street vendors on their vital statistics, personal hygiene, food hygiene and knowledge of foodborne illness. Standard methods were used for the enumeration, isolation, and identification of bacteria. Most vendors were educated and exhibited good hygiene behaviour. Diarrhoea was defined as the passage of > or =3 stools per day) by 110 vendors (94.0%), but none associated diarrhoea with bloody stools; only 21 (17.9%) associated diarrhoea with germs. The surroundings of the vending sites were clean, but four sites (3.4%) were classified as very dirty. The cooking of food well in advance of consumption, exposure of food to flies, and working with food at ground level and by hand were likely risk factors for contamination. Examinations were made of 511 menu items, classified as breakfast/snack foods, main dishes, soups and sauces, and cold dishes. Mesophilic bacteria were detected in 356 foods (69.7%): 28 contained Bacillus cereus (5.5%), 163 contained Staphylococcus aureus (31.9%) and 172 contained Enterobacteriaceae (33.7%). The microbial quality of most of the foods was within the acceptable limits but samples of salads, macaroni, fufu, omo tuo and red pepper had unacceptable levels of contamination. Shigella sonnei and enteroaggregative Escherichia coli were isolated from macaroni, rice, and tomato stew, and Salmonella arizonae from light soup. Street foods can be sources of enteropathogens. Vendors should therefore receive education in food hygiene. Special attention should be given to the causes of diarrhoea, the transmission of diarrhoeal pathogens, the handling of equipment and cooked food, hand-washing practices and environmental hygiene.
Berntssen, Marc H G; Maage, A; Julshamn, K; Oeye, B E; Lundebye, A-K
2011-03-01
Information on carry-over of contaminants from feed to animal food products is essential for appropriate human risk assessment of feed contaminants. The carry-over of potentially hazardous persistent organic pollutants (POPs) from feed to fillet was assessed in consumption sized Atlantic salmon (Salmo salar). Relative carry-over (defined as the fraction of a certain dietary POP retained in the fillet) was assessed in a controlled feeding trial, which provided fillet retention of dietary organochlorine pesticides (OCPs), dioxins (PCDD/Fs), polychlorinated biphenyls (PCBs), and brominated flame retardants (BFRs). Highest retention was found for OCPs, BFRs and PCBs (31-58%), and the lowest retentions were observed for PCDD/Fs congeners (10-34%). National monitoring data on commercial fish feed and farmed Atlantic salmon on the Norwegian market were used to provide commercially relevant feed-to-fillet transfer factors (calculated as fillet POP level divided by feed POP level), which ranged from 0.4 to 0.5, which is a factor 5-10 times higher than reported for terrestrial meat products. For the OCP with one of the highest relative carry-over, toxaphene, uptake and elimination kinetics were established. Model simulations that are based on the uptake and elimination kinetics gave predicted levels that were in agreement with the measured values. Application of the model to the current EU upper limit for toxaphene in feed (50 μg kg(-1)) gave maximum fillet levels of 22 μg kg(-1), which exceeds the estimated permissible level (21 μg kg(-1)) for toxaphene in fish food samples in Norway. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Clifford, S. M.
2014-04-01
With the dawn of planetary exploration, the international science community expressed concerns regarding the potential contamination of habitable planetary environments by the introduction of terrestrial organisms on robotic spacecraft. The initial concern was that such contamination would confound our efforts to find unambiguous evidence of life elsewhere in the Solar System, although, more recently, this concern has been expanded to include ethical considerations regarding the need to protect alien biospheres from potentially harmful and irreversible contamination. The international agreements which address this concern include the UN Space Treaty of 1967 and the Planetary Protection Policy of the International Council for Science's Committee on Space Research (COSPAR). In the context of Mars exploration, COSPAR calls a potentially habitable environment a 'Special Region', which it defines as: "A region within which terrestrial organisms are likely to propagate, or a region which is interpreted to have a high potential for the existence of extant Martian life forms." Specifically included in this definition are regions where liquid water is present or likely to occur and the Martian polar caps. Over the years, scientists have debated the level of cleanliness required for robotic spacecraft to investigate such environments with the goal of defining international standards that are strict enough to ensure the integrity of life-detection efforts during the period of 'biological exploration', which has been somewhat arbitrarily defined as 50 years from the arrival date of any given mission. More recently, NASA and ESA have adopted a definition of Special Regions as any Martian environment where liquid water is likely to exist within the next 500 years. While this appears to be a more conservative interpretation of the original COSPAR definition, it specifically excludes some environments where there is a high probability of liquid water on timescales greater than 500 years, such as in the Martian polar layered deposits (and other high-latitude, ice-rich environments), at times of high obliquity. Current climate models suggest that, for obliquities > 45°, summertime surface temperatures at polar and near-polar latitudes may approach or exceed the melting point of water for continuous periods of many months (Costard et al., 2001; Jakosky et al., 2003) - conditions that may be repeated annually throughout the maximum obliquity phase of the 105-year obliquity cycle. If so, these icerich, high-latitude environments may be considered climatically recurrent Special Regions - and may be among the most potentially habitable environments on Mars for the survival and growth of terrestrial microorganisms.A significant concern arising from this potential is that, whether by accident or the nominal operation of investigating spacecraft (cleaned to less than Special Region (IVc) standards), we might irreversibly contaminate these sensitive environments. While such contamination may not pose an immediate threat to the integrity of our spacecraft life-detection experiments, its potential impact on the long-term health and ultimate survival of a native Martian biosphere raises significant scientific and ethical concerns, as identified in the NRC report on Preventing the Forward Contamination 0f Mars [4]. Precedents for considering the adoption of planetary protection standards that minimize the potential impact of our exploration efforts on a native biosphere include the NRC report on Preventing the Forward Contamination of Europa, which noted that "future spacecraft missions to Europa must be subject to procedures designed to prevent its contamination by terrestrial organisms. This is necessary to safeguard the scientific integrity of future studies of Europa's biological potential and to protect against potential harm to Europan organisms, if they exist, and is mandated by obligations under the [Outer Space Treaty]" [5]). Virtually identical concerns were expressed by the NRC Committee on Planetary and Lunar Exploration [6] in its report A Science Strategy for the Exploration of Europa. Because microbial contaminants on spacecraft cleaned to less than IVc standards could introduce terrestrial organisms into polar and other ice-rich environments that current climate models and geologic evidence suggests are likely to become habitable on timescales of 105 - 107 years, PREVCOM argued that the definition of Special Regions should be extended to include such environments, in agreement with the original COSPAR definition. Our failure to do so could lead to the irreversible biological contamination of Mars and the potential extinction of the very first extraterrestrial biosphere we have attempted to detect. While there are those who believe that the advent of human exploration will make the irreversible biological contamination of Mars inevitable, it is an issue that should be addressed explicitly and in advance -- before the momentum of our robotic exploration activities renders the debate over the protection of such a Martian biosphere moot.
An evaluation of the infection control potential of a UV clinical podiatry unit.
Humphreys, Paul N; Davies, Chris S; Rout, Simon
2014-02-28
Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne contamination may be particularly important in podiatry due to the generation of particulates during treatment. Consequently, technologies that prevent contamination in podiatry settings may have a useful role. The aims of this investigation were twofold, firstly to determine the ability of a UV cabinet to protect instruments from airborne contamination and secondly to determine its ability to remove microbes from contaminated surfaces and instruments. A UV instrument cabinet was installed in a University podiatry suite. Impact samplers and standard microbiological techniques were used to determine the nature and extent of microbial airborne contamination. Sterile filters were used to determine the ability of the UV cabinet to protect exposed surfaces. Artificially contaminated instruments were used to determine the ability of the cabinet to remove microbial contamination. Airborne bacterial contamination was dominated by Gram positive cocci including Staphylococcus aureus. Airborne fungal levels were much lower than those observed for bacteria. The UV cabinet significantly reduced (p < 0.05) the observed levels of airborne contamination. When challenged with contaminated instruments the cabinet was able to reduce microbial levels by between 60% to 100% with more complex instruments e.g. clippers, remaining contaminated. Bacterial airborne contamination is a potential infection risk in podiatry settings due to the presence of S. aureus. The use of a UV instrument cabinet can reduce the risk of contamination by airborne microbes. The UV cabinet tested was unable to decontaminate instruments and as such could pose an infection risk if misused.
An evaluation of the infection control potential of a UV clinical podiatry unit
2014-01-01
Background Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne contamination may be particularly important in podiatry due to the generation of particulates during treatment. Consequently, technologies that prevent contamination in podiatry settings may have a useful role. The aims of this investigation were twofold, firstly to determine the ability of a UV cabinet to protect instruments from airborne contamination and secondly to determine its ability to remove microbes from contaminated surfaces and instruments. Method A UV instrument cabinet was installed in a University podiatry suite. Impact samplers and standard microbiological techniques were used to determine the nature and extent of microbial airborne contamination. Sterile filters were used to determine the ability of the UV cabinet to protect exposed surfaces. Artificially contaminated instruments were used to determine the ability of the cabinet to remove microbial contamination. Results Airborne bacterial contamination was dominated by Gram positive cocci including Staphylococcus aureus. Airborne fungal levels were much lower than those observed for bacteria. The UV cabinet significantly reduced (p < 0.05) the observed levels of airborne contamination. When challenged with contaminated instruments the cabinet was able to reduce microbial levels by between 60% to 100% with more complex instruments e.g. clippers, remaining contaminated. Conclusions Bacterial airborne contamination is a potential infection risk in podiatry settings due to the presence of S. aureus. The use of a UV instrument cabinet can reduce the risk of contamination by airborne microbes. The UV cabinet tested was unable to decontaminate instruments and as such could pose an infection risk if misused. PMID:24576315
Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R
2016-02-01
Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters.
Fulton, M; Key, P; Wirth, E; Leight, A K; Daugomah, J; Bearden, D; Sivertsen, S; Scott, G
2006-10-01
Toxic contaminants may enter estuarine ecosystems through a variety of pathways. When sediment contaminant levels become sufficiently high, they may impact resident biota. One approach to predict sediment-associated toxicity in estuarine ecosystems involves the use of sediment quality guidelines (ERMs, ERLs) and site-specific contaminant chemistry while a second approach utilizes site-specific ecological sampling to assess impacts at the population or community level. The goal of this study was to utilize an integrated approach including chemical contaminant analysis, sediment quality guidelines and grass shrimp population monitoring to evaluate the impact of contaminants from industrial sources. Three impacted sites and one reference site were selected for study. Grass shrimp populations were sampled using a push-netting approach. Sediment samples were collected at each site and analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Contaminant levels were then compared to sediment quality guidelines. In general, grass shrimp population densities at the sites decreased as the ERM quotients increased. Grass shrimp densities were significantly reduced at the impacted site that had an ERM exceedance for chromium and the highest Mean ERM quotient. Regression analysis indicated that sediment chromium concentrations were negatively correlated with grass shrimp density. Grass shrimp size was reduced at two sites with intermediate levels of contamination. These findings support the use of both sediment quality guidelines and site-specific population monitoring to evaluate the impacts of sediment-associated contaminants in estuarine systems.
2016-03-16
e.g., mud, grease, and other). j. Pretest (baseline) and posttest (30 days after the first contamination and/or other defined long-term time...item surface condition (pretest and posttest ), materials of construction, paint type, and surface cleanliness (e.g., mud, grease, decontamination...penetrate. h. Pretest and posttest ME functional performance characteristics used as the measure of the test item’s mission performance before
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the City of Toledo. The Ottawa River is a component of the Maumee River AOC as defined by the International Commission. The Ottawa River is approximately 45 miles long; however, the 2...
USDA-ARS?s Scientific Manuscript database
In the meat industry, a “High Event Period” (HEP) is defined as a time period when beef processing establishments experience an increased occurrence of product contamination by E. coli O157:H7. Our previous studies suggested that bacterial biofilm formation and sanitizer resistance might contribute...
Breitwieser, Marine; Viricel, Amélia; Graber, Marianne; Murillo, Laurence; Becquet, Vanessa; Churlaud, Carine; Fruitier-Arnaudin, Ingrid; Huet, Valérie; Lacroix, Camille; Pante, Eric; Le Floch, Stéphane; Thomas-Guyon, Hélène
2016-01-01
Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.
Graber, Marianne; Murillo, Laurence; Becquet, Vanessa; Churlaud, Carine; Fruitier-Arnaudin, Ingrid; Huet, Valérie; Lacroix, Camille; Pante, Eric; Le Floch, Stéphane; Thomas-Guyon, Hélène
2016-01-01
Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites. PMID:26938082
Costs and Risks of Continuous Purges for Instruments
NASA Technical Reports Server (NTRS)
Secunda, M.; De Garcia, K. Montt
2018-01-01
As instruments are built, tested, and launched, they are exposed to environments that have various levels of cleanliness. Often, Scientists and Contamination Control Engineers specify a purge to mitigate the instrument's exposure to a non-clean environment, protect sensitive optics from a specific threat, such as water, or as insurance against things going wrong in a clean environment. The cost of the purge, in effort, dollars and risk, is often understated when the requirements are being established, and the need for purge is not clearly justifiable. This paper will more clearly define some of the costs and risks associated with the continuous purging of instruments during the course of building, testing and launching instruments.
Intentional and inadvertent chemical contamination of food, water, and medication.
MCKay, Charles; Scharman, Elizabeth J
2015-02-01
Numerous examples of chemical contamination of food, water, or medication have led to steps by regulatory agencies to maintain the safety of this critical social infrastructure and supply chain. Identification of contaminant site is important. Environmental testing and biomonitoring can define the nature and extent of the event and are useful for providing objective information, but may be unavailable in time for clinical care. Clinical diagnosis should be based on toxidrome recognition and assessment of public health implications. There are several resources available to assist and these can be accessed through regional poison control centers or local/state public health departments. Copyright © 2015 Elsevier Inc. All rights reserved.
Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging
NASA Astrophysics Data System (ADS)
Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.
2017-03-01
Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.
Falciglia, Pietro P; Puccio, Valentina; Romano, Stefano; Vagliasindi, Federico G A
2015-05-01
This work focuses on the stabilisation/solidification (S/S) of radionuclide-polluted soils at different (232)Th levels using Portland cement alone and with barite aggregates. The potential of S/S was assessed applying a full testing protocol and calculating γ-radiation shielding (γRS) index, that included the measurement of soil radioactivity before and after the S/S as a function of the emission energy and soil contamination level. The results indicate that setting processes are strongly dependent on the contaminant concentration, and for contamination level higher than 5%, setting time values longer than 72 h. The addition of barite aggregates to the cement gout leads to a slight improvement of the S/S performance in terms of durability and contaminant leaching but reduces the mechanical resistance of the treated soils samples. Barite addition also causes an increase in the γ-rays shielding properties of the S/S treatment up to about 20%. Gamma-ray measurements show that γRS strongly depends on the energy, and that the radioactivity with the contamination level was governed by a linear trend, while, γRS index does not depend on the radionuclide concentration. Results allow the calculated γRS values and those available from other experiments to be applied to hazard radioactive soil contaminations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Low contaminant formic acid fuel for direct liquid fuel cell
Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA
2009-11-17
A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.
NASA Astrophysics Data System (ADS)
Costa, Pedro M.; Caeiro, Sandra; Diniz, Mário S.; Lobo, Jorge; Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos; DelValls, T. Ángel; Costa, M. Helena
2010-11-01
The effects of sediment-bound contaminants on kidney and gill chloride cells were surveyed in juvenile Solea senegalensis exposed to fresh sediments collected from three distinct sites of the Sado Estuary (Portugal) in a 28-day laboratorial assay. Sediments were analyzed for metallic contaminants, polycyclic aromatic hydrocarbons and organochlorines as well as for total organic matter, redox potential and fine fraction. The potential for causing adverse biological effects of each surveyed sediment was assessed by comparison of contaminant levels to available guidelines for coastal sediments, namely the Threshold Effects Level ( TEL) and the Probable Effects Level ( PEL). The Sediment Quality Guideline Quotient indices ( SQGQ) were calculated to compare the overall contamination levels of the three stations. A qualitative approach was employed to analyze the histo/cytopathological traits in gill chloride cells and body kidney of fish exposed to each tested sediment for 0, 14 and 28 days. The results showed that sediment contamination can be considered low to moderate and that the least contaminated sediment (from a reference site, with the lowest SQGQ) caused lesser changes in the surveyed organs. However, the most contaminated sediment (by both metallic and organic xenobiotics, with highest SQGQ) was neither responsible for the highest mortality nor for the most pronounced lesions. Exposure to the sediment presenting an intermediate SQGQ, essentially contaminated by organic compounds, caused the highest mortality (48%) and the most severe damage to kidneys, up to full renal necrosis. Chloride cell alterations were similar in fish exposed to the two most contaminated sediments and consisted of a pronounced cellular hypertrophy, likely involving fluid retention and loss of mitochondria. It can be concluded that sediment contamination considered to be low or moderate may be responsible for severe injury to cells and parenchyma involved in the maintenance of osmotic balance, contributing for the high mortality levels observed. The results suggest that sediment-bound organic contaminants such as PAHs (polycyclic aromatic hydrocarbons) and PCBs (polychlorinated biphenyls) may be very toxic to the analyzed organs, especially the kidney, even when present in low-risk concentrations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... Approaches To Derive a Maximum Contaminant Level Goal for Perchlorate AGENCY: Environmental Protection Agency... maximum contaminant level goal (MCLG) for perchlorate. DATES: Nominations should be submitted by January... perchlorate. In 2011, EPA announced its decision (76 FR 7762-7767) to regulate perchlorate under the Safe...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford
2008-06-24
Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifersmore » underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.« less
Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.
2008-01-01
Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Robert
The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate themore » contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).« less
Verification of surface preparation for adhesive bonding
NASA Technical Reports Server (NTRS)
Myers, Rodney S.
1995-01-01
A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.
Bache, Sarah E; Maclean, Michelle; Gettinby, George; Anderson, John G; MacGregor, Scott J; Taggart, Ian
2013-03-01
Routine nursing activities such as dressing/bed changes increase bacterial dispersal from burns patients, potentially contaminating healthcare workers (HCW) carrying out these tasks. HCW thus become vectors for transmission of nosocomial infection between patients. The suspected relationship between %total body surface area (%TBSA) of burn and levels of bacterial release has never been fully established. Bacterial contamination of HCW was assessed by contact plate samples (n=20) from initially sterile gowns worn by the HCW during burns patient dressing/bed changes. Analysis of 24 gowns was undertaken and examined for relationships between %TBSA, time taken for activity, and contamination received by the HCW. Relationships between size of burn and levels of HCW contamination, and time taken for the dressing/bed change and levels of HCW contamination were best described by exponential models. Burn size correlated more strongly (R(2)=0.82, p<0.001) than time taken (R(2)=0.52, p<0.001), with levels of contamination received by the HCW. Contamination doubled with every 6-9% TBSA increase in burn size. Burn size was used to create a model to predict bacterial contamination received by a HCW carrying out bed/dressing changes. This may help with the creation of burn-specific guidelines on protective clothing worn by HCW caring for burns patients. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The EPA Office of Ground Water and Drinking Water is developing national primary drinking water regulations for disinfectant and disinfection by-product contaminants. Thirteen contaminants are being considered to be regulated under Phase 6. These contaminants, referred to as Phase 6a, are the subject of the report. The information is important for setting the Maximum Contaminant Level Goal for a contaminant. The exposure information also is used to estimate the baseline health impact assessment of current levels and for evaluation of the health benefits of the regulatory alternatives.
Drinking Water Research Division's research activities in support of EPA's regulatory agenda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R.M.; Feige, W.A.
1991-01-01
The Safe Drinking Water Act and its Amendments will have a dramatic impact on the way in which one views the treatment and distribution of water in the U.S. The paper discusses the regulatory agenda, including proposed and promulgated regulations for volatile and synthetic organic contaminants, pesticides, lead, copper, inorganic contaminants, and radionuclides. In addition, the Surface Water Treatment and Coliform Rules are discussed in some detail. Tables are presented that list the Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs), as well as Best Available Technology (BAT) for reducing many of these contaminants to acceptable levels. Finally,more » a discussion of expected disinfection requirements and the regulation of disinfection by-products (DBP) is made. Treatment techniques for controlling DBPs are briefly described.« less
Antonissen, G; De Baere, S; Devreese, M; Van Immerseel, F; Martel, A; Croubels, S
2017-01-01
The aim of the present study was to evaluate the effect of the Fusarium mycotoxins deoxynivalenol (DON) and fumonisins (FBs) on the stress response in broiler chickens, using corticosterone (CORT) in plasma as a biomarker. Chickens were fed either a control diet, a DON contaminated diet, a FBs contaminated diet, or a DON and FBs contaminated diet for 15 d at concentrations close to the European Union maximum guidance levels for DON and FBs in poultry. Mean plasma CORT levels were significantly higher in broiler chickens fed a DON contaminated and a DON and FBs contaminated diet compared to birds fed a control diet. A similar trend was observed for animals fed a FBs contaminated diet. Consequently, feeding broilers a diet contaminated with DON and/or FBs induced a CORT stress response, which may indicate a negative effect on animal welfare. © 2016 Poultry Science Association Inc.
Influence of the Pressure Difference and Door Swing on Heavy Contaminants Migration between Rooms
Hendiger, Jacek; Chludzińska, Marta; Ziętek, Piotr
2016-01-01
This paper presents the results of investigations whose aim was to describe the influence of the pressure difference level on the ability of contaminants migration between neighbouring rooms in dynamic conditions associated with door swing. The analysis was based on airflow visualization made with cold smoke, which simulated the heavy contaminants. The test room was pressurized to a specific level and then the door was opened to observe the trail of the smoke plume in the plane of the door. The door was opened in both directions: to the positively and negatively pressurized room. This study focuses on the visualization of smoke plume discharge and an uncertainty analysis is not applicable. Unlike other studies which focus on the analysis of pressure difference, the present study looks at the contaminants which are heavier than air and on “pumping out” the contaminants by means of door swing. Setting the proper level of pressure difference between the contaminated room and the neighbouring rooms can prove instrumental in ensuring protection against toxic contaminants migration. This study helped to establish the threshold of pressure difference necessary to reduce migration of heavy contaminants to neighbouring rooms. PMID:27171260
Influence of the Pressure Difference and Door Swing on Heavy Contaminants Migration between Rooms.
Hendiger, Jacek; Chludzińska, Marta; Ziętek, Piotr
2016-01-01
This paper presents the results of investigations whose aim was to describe the influence of the pressure difference level on the ability of contaminants migration between neighbouring rooms in dynamic conditions associated with door swing. The analysis was based on airflow visualization made with cold smoke, which simulated the heavy contaminants. The test room was pressurized to a specific level and then the door was opened to observe the trail of the smoke plume in the plane of the door. The door was opened in both directions: to the positively and negatively pressurized room. This study focuses on the visualization of smoke plume discharge and an uncertainty analysis is not applicable. Unlike other studies which focus on the analysis of pressure difference, the present study looks at the contaminants which are heavier than air and on "pumping out" the contaminants by means of door swing. Setting the proper level of pressure difference between the contaminated room and the neighbouring rooms can prove instrumental in ensuring protection against toxic contaminants migration. This study helped to establish the threshold of pressure difference necessary to reduce migration of heavy contaminants to neighbouring rooms.
NASA Astrophysics Data System (ADS)
Anaya-Romero, Maria; José Blanco-Velázquez, Francisco; Muñoz-Vallés, Sara
2017-04-01
Restoration of soil ecosystems contaminated by heavy metals requires their characterization and the assessment of measures for risk reduction. Particular soil traits and history define different levels of resilience, so soil contamination assessment needs to take into account a site-by-site approach, which considers both the particular environmental characteristics of soils and the human activities. Nevertheless, current approaches for soil contamination assessment developed as academy and market solutions continue to be rather qualitative, and they do not allow as far the selection of efficient remediation measures to solve soil contamination at the long-term and extensively over larger áreas. In this context, under the framework of RECARE (Preventing and Remediating degradation of Soils in Europe through Land Care) project, we are designing a Decision Support System (DSS) which automatically assess soil contamination values by heavy metals in the topsoil and evaluate the efficiency of soil remediation measures under scenarios of climate and land-use change. The DSS works by simulating the spatio-temporal efficiency of three widely applied remediation measures (compost, sugar beet lime and iron-rich clayey materials). Input variables are divided into: (I) climate variables (mainly precipitation and temperature), (II) site variables (elevation, slope and erodibility), (III) soil (heavy metal content, pH, sand/clay content, soil organic carbon and bulk density), (IV) land use and (V) remediation measures. The predictor variables are related to soil functions expressed by % of change of heavy metal content (Currently the DSS consider cadmium dynamics due to the worldwide distribution in agricultural system and toxicity impact on health and plants), soil carbon and erosion dynamics. The pilot study area is the Guadiamar valley (SW Spain) where the main threat is soil contamination, after a mine spill occurred on April 1998. Since that time, a huge soil databse of more than 30 Gbytes, has been produced by different stakeholders (administration, scientist and private sector), which covered the spatial-temporal evolution of soil contamination by specific soil remediation measures, so the affected area has become the "virtual lab" to develop and test the DSS. Further development of the DSS tool includes its validation/calibration in other European climate zones, such as Copsa Mica in Romania, and the inclusion of new input and output variables to improve the accurancy of results.
Park, Sangshin; Szonyi, Barbara; Gautam, Raju; Nightingale, Kendra; Anciso, Juan; Ivanek, Renata
2012-11-01
The objective of this study was to perform a systematic review of risk factors for contamination of fruits and vegetables with Listeria monocytogenes, Salmonella, and Escherichia coli O157:H7 at the preharvest level. Relevant studies were identified by searching six electronic databases: MEDLINE, EMBASE, CAB Abstracts, AGRIS, AGRICOLA, and FSTA, using the following thesaurus terms: L. monocytogenes, Salmonella, E. coli O157 AND fruit, vegetable. All search terms were exploded to find all related subheadings. To be eligible, studies had to be prospective controlled trials or observational studies at the preharvest level and had to show clear and sufficient information on the process in which the produce was contaminated. Of the 3,463 citations identified, 68 studies fulfilled the eligibility criteria. Most of these studies were on leafy greens and tomatoes. Six studies assessed produce contamination with respect to animal host-related risk factors, and 20 studies assessed contamination with respect to pathogen characteristics. Sixty-two studies assessed the association between produce contamination and factors related to produce, water, and soil, as well as local ecological conditions of the production location. While evaluations of many risk factors for preharvest-level produce contamination have been reported, the quality assessment of the reviewed studies confirmed the existence of solid evidence for only some of them, including growing produce on clay-type soil, the application of contaminated or non-pH-stabilized manure, and the use of spray irrigation with contaminated water, with a particular risk of contamination on the lower leaf surface. In conclusion, synthesis of the reviewed studies suggests that reducing microbial contamination of irrigation water and soil are the most effective targets for the prevention and control of produce contamination. Furthermore, this review provides an inventory of the evaluated risk factors, including those requiring more research.
Shafiq, Muhammad; Shaukat, Tahira; Nazir, Aisha; Bareen, Firdaus-E-
2017-08-01
Kasur is one of the hubs of leather industry in the Punjab, Pakistan, where chrome tanning method of leather processing is extensively being used. Chromium (Cr) accumulation levels in the irrigation water, soil, and seasonal vegetables were studied in three villages located in the vicinity of wastewater treatment plant and solid waste dumping site operated by the Kasur Tanneries Waste Management Agency (KTWMA). The data was interpreted using analysis of variance (ANOVA), clustering analysis (CA), and principal component analysis (PCA). Interpolated surface maps for Cr were generated using the actual data obtained for the 30 sampling sites in each of the three villages for irrigation water, soil, and seasonal vegetables. The level of contamination in the three villages was directly proportional to their distance from KTWMA wastewater treatment plant and the direction of water runoff. The highest level of Cr contamination in soil (mg kg -1 ) was observed at Faqeeria Wala (37.67), intermediate at Dollay Wala (30.33), and the least in Maan (25.16). A gradational variation in Cr accumulation was observed in the three villages from contaminated wastewater having the least contamination level (2.02-4.40 mg L -1 ), to soil (25.16-37.67 mg kg -1 ), and ultimately in the seasonal vegetable crops (156.67-248.33 mg kg -1 ) cultivated in the region, having the highest level of Cr contamination above the permissible limit. The model used not only predicted the current situation of Cr contamination in the three villages but also indicated the trend of magnification of Cr contamination from irrigation water to soil and to the base of the food chain. Among the multiple causes of Cr contamination of vegetables, soil irrigation with contaminated groundwater was observed to be the dominant one.
Unique Regulatory Approach for Licensing the Port Hope Remediation Project in Canada - 13315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, M.; Howard, D.; Elder, P.
2013-07-01
The Port Hope remediation project is a part of a larger initiative of the Canadian Federal Government the Port Hope Area Initiative (PHAI) which is based upon a community proposal. The Government of Canada, through Natural Resources Canada (NRCan) is investing $1.28 billion over 10 years to clean up historic low-level radioactive waste in the Port Hope Area and to provide long-term safe management of the low-level radioactive wastes in the Port Hope Area. These wastes arose from the activities of a former Federal Crown Corporation (Eldorado Nuclear) and its private sector predecessors. In Canada, historic waste are defined asmore » low-level radioactive waste that was managed in a manner no longer considered acceptable, but for which the original producer cannot reasonably be held responsible or no longer exists and for which the Federal Government has accepted responsibility. In Canada, under the current regulatory framework, the environmental remediation is not considered as a distinct phase of the nuclear cycle. The regulatory approach for dealing with existing sites contaminated with radioactive residues is defined on the basis of risk and application of existing regulations. A unique regulatory approach was taken by the Canadian Nuclear Safety Commission (CNSC) to address the various licensing issues and to set out the requirements for licensing of the Port Hope Project within the current regulatory framework. (authors)« less
Kiffmeyer, Thekla K; Tuerk, Jochen; Hahn, Moritz; Stuetzer, Hartmut; Hadtstein, Claudia; Heinemann, André; Eickmann, Udo
2013-05-01
A large-scale study was carried out in order to determine the contamination level of antineoplastic drugs in pharmacies and to investigate the suitability and effects of wipe sample monitoring at regular intervals. A specific study design was developed. The 130 participating pharmacies were divided into a study and a control group, carrying out five and two wipe sampling cycles, respectively. The work practice was analyzed using questionnaires to identify factors that influence the contamination level. From 1269 wipe samples, 774 (61%) were contaminated with at least one of the analyzed cytotoxic drugs: cyclophosphamide, docetaxel, etoposide, 5-fluorouracil, gemcitabine, ifosfamide, methotrexate, and paclitaxel. A significant decrease of the contamination with cyclophosphamide and 5-fluorouracil was observed in the study group. The Monitoring-Effect Study of Wipe Sampling in Pharmacies method has proven to be a reliable and affordable tool for contamination control. Based on the 90th percentile of the contamination values, a substance-independent performance-based guidance value of 0.1ng cm(-2) has been derived.
Schock, Michael R; Hyland, Robert N; Welch, Meghan M
2008-06-15
Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.
Tabor, Matthew L; Newman, Derrick; Whelton, Andrew J
2014-09-16
Cured-in-place pipe (CIPP) is becoming a popular U.S. stormwater culvert rehabilitation method. Several State transportation agencies have reported that CIPP activities can release styrene into stormwater, but no other contaminants have been monitored. CIPP's stormwater contamination potential and that of its condensate waste was characterized. Condensate completely dissolved Daphnia magna within 24 h. Condensate pH was 6.2 and its chemical oxygen demand (COD) level was 36,000 ppm. D. magna mortality (100%) occurred in 48 h, even when condensate was diluted by a factor of 10,000 and styrene was present at a magnitude less than its LC50. Condensate and stormwater contained numerous carcinogenic solvents used in resin synthesis, endocrine disrupting contaminants such as plasticizers, and initiator degradation products. For 35 days, COD levels at the culvert outlets and downstream ranged from 100 to 375 ppm and styrene was 0.01 to 7.4 ppm. Although contaminant levels generally reduced with time, styrene levels were greatest 50 ft downstream, not at the culvert outlet. Cured CIPP extraction tests confirmed that numerous contaminants other than styrene were released into the environment and their persistence and toxicity should be investigated. More effective contaminant containment and cleaner installation processes must be developed to protect the environment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... maximum contaminant levels for organic and inorganic chemicals. 142.62 Section 142.62 Protection of... inorganic chemicals. (a) The Administrator, pursuant to section 1415(a)(1)(A) of the Act hereby identifies... for organic chemicals listed in § 141.61 (a) and (c): Contaminant Best available technologies PTA 1...
Toxin-eating bacteria and bioremediation
Church, George M; Dantas, Gautam; Sommer, Morten O
2014-02-25
Methods are provided for reducing a level of one or more antibiotics from an antibiotic-contaminated substance. An organism that can utilize the one or more antibiotics as a carbon source is cultured in the presence of the antibiotic-contaminated substance for a sufficient amount of time to reduce the level of one or more antibiotics from the antibiotic-contaminated substance.
Manheim, F.T.; Buchholtz ten Brink, Marilyn R.; Mecray, E.L.
1998-01-01
A comprehensive database of sediment chemistry and environmental parameters has been compiled for Boston Harbor and Massachusetts Bay. This work illustrates methodologies for rescuing and validating sediment data from heterogeneous historical sources. It greatly expands spatial and temporal data coverage of estuarine and coastal sediments. The database contains about 3500 samples containing inorganic chemical, organic, texture and other environmental data dating from 1955 to 1994. Cooperation with local and federal agencies as well as universities was essential in locating and screening documents for the database. More than 80% of references utilized came from sources with limited distribution (gray literature). Task sharing was facilitated by a comprehensive and clearly defined data dictionary for sediments. It also served as a data entry template and flat file format for data processing and as a basis for interpretation and graphical illustration. Standard QA/QC protocols are usually inapplicable to historical sediment data. In this work outliers and data quality problems were identified by batch screening techniques that also provide visualizations of data relationships and geochemical affinities. No data were excluded, but qualifying comments warn users of problem data. For Boston Harbor, the proportion of irreparable or seriously questioned data was remarkably small (<5%), although concentration values for metals and organic contaminants spanned 3 orders of magnitude for many elements or compounds. Data from the historical database provide alternatives to dated cores for measuring changes in surficial sediment contamination level with time. The data indicate that spatial inhomogeneity in harbor environments can be large with respect to sediment-hosted contaminants. Boston Inner Harbor surficial sediments showed decreases in concentrations of Cu, Hg, and Zn of 40 to 60% over a 17-year period.A comprehensive database of sediment chemistry and environmental parameters has been compiled for Boston Harbor and Massachusetts Bay. This work illustrates methodologies for rescuing and validating sediment data from heterogeneous historical sources. It greatly expands spatial and temporal data coverage of estuarine and coastal sediments. The database contains about 3500 samples containing inorganic chemical, organic, texture and other environmental data dating from 1995 to 1994. Cooperation with local and federal agencies as well as universities was essential in locating and screening documents for the database. More than 80% of references utilized came from sources with limited distribution (gray Task sharing was facilitated by a comprehensive and clearly defined data dictionary for sediments. It also served as a data entry template and flat file format for data processing and as a basis for interpretation and graphical illustration. Standard QA/QC protocols are usually inapplicable to historical sediment data. In this work outliers and data quality problems were identified by batch screening techniques that also provide visualizations of data relationships and geochemical affinities. No data were excluded, but qualifying comments warn users of problem data. For Boston Harbor, the proportion of irreparable or seriously questioned data was remarkably small (<5%), although concentration values for metals and organic contaminants spanned 3 orders of magnitude for many elements or compounds. Data from the historical database provide alternatives to dated cores for measuring changes in surficial sediment contamination level with time. The data indicate that spatial inhomogeneity in harbor environments can be large with respect to sediment-hosted contaminants. Boston Inner Harbor surficial sediments showed decreases in concentrations Cu, Hg, and Zn of 40 to 60% over a 17-year period.
Leary, Christopher J; Ralicki, Hannah F; Laurencio, David; Crocker-Buta, Sarah; Malone, John H
2018-01-01
Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how these factors are potentially interrelated to affect montane populations. One possibility is that increased precipitation associated with global warming promotes the deposition of contaminants in montane regions. Increased exposure to contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that could contribute to montane population declines by compromising resistance to pathogens and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by examining contaminant levels, stress and sex steroid levels, and nematode abundances in male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica. We found no evidence that montane populations were more likely to possess contaminants (i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chlorophenoxy herbicides) than lowland populations. We also found no evidence of elevational differences in circulating levels of the stress hormone corticosterone, estradiol or progesterone. However, montane populations possessed lower androgen levels, hosted more nematode species, and had higher nematode abundances than lowland populations. Although these results suggested that nematodes contributed to lower androgens in montane populations, we were unable to detect a significant inverse relationship between nematode abundance and androgen level. Our results suggest that montane populations of this species are not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes and compromised sex steroid levels as potential threats to montane populations.
USEPA/USGS Sample Collection Protocol for Bacterial ...
Report/SOP This Sample Collection Procedure (SCP) describes the activities and considerations for the collection of bacterial pathogens from representative surface soil samples (0-5 cm). This sampling depth can be reached without the use of a drill rig, direct-push technology, or other mechanized equipment. Analizing soil samples for biothreat agents may, for instance, define the extent of contamination or determine whether the concentrations of contaminants present a risk to public health, welfare, or the environment.
Toccalino, Patricia L.; Norman, Julia E.; Phillips, Robyn H.; Kauffman, Leon J.; Stackelberg, Paul E.; Nowell, Lisa H.; Krietzman, Sandra J.; Post, Gloria B.
2004-01-01
A state-scale pilot effort was conducted to evaluate a Health-Based Screening Level (HBSL) approach developed for communicating findings from the U.S. Geological Survey (USGS) National Water-Quality Assessment Program in a human-health context. Many aquifers sampled by USGS are used as drinking-water sources, and water-quality conditions historically have been assessed by comparing measured contaminant concentrations to established drinking-water standards and guidelines. Because drinking-water standards and guidelines do not exist for many analyzed contaminants, HBSL values were developed collaboratively by the USGS, U.S. Environmental Protection Agency (USEPA), New Jersey Department of Environmental Protection, and Oregon Health & Science University, using USEPA toxicity values and USEPA Office of Water methodologies. The main objective of this report is to demonstrate the use of HBSL approach as a tool for communicating water-quality data in a human-health context by conducting a retrospective analysis of ground-water quality data from New Jersey. Another important objective is to provide guidance on the use and interpretation of HBSL values and other human-health benchmarks in the analyses of water-quality data in a human-health context. Ground-water samples collected during 1996-98 from 30 public-supply, 82 domestic, and 108 monitoring wells were analyzed for 97 pesticides and 85 volatile organic compounds (VOCs). The occurrence of individual pesticides and VOCs was evaluated in a human-health context by calculating Benchmark Quotients (BQs), defined as ratios of measured concentrations of regulated compounds (that is, compounds with Federal or state drinking-water standards) to Maximum Contaminant Level (MCL) values and ratios of measured concentrations of unregulated compounds to HBSL values. Contaminants were identified as being of potential human-health concern if maximum detected concentrations were within a factor of 10 of the associated MCL or HBSL (that is, maximum BQ value (BQmax) greater than or equal to 0.1) in any well type (public supply, domestic, monitoring). Most (57 of 77) pesticides and VOCs with human-health benchmarks were detected at concentrations well below these levels (BQmax less than 0.1) for all three well types; however, BQmax values ranged from 0.1 to 3,000 for 6 pesticides and 14 VOCs. Of these 20 contaminants, one pesticide (dieldrin) and three VOCs (1,2-dibromoethane, tetrachloroethylene, and trichloroethylene) both (1) were measured at concentrations that met or exceeded MCL or HBSL values, and (2) were detected in more than 10 percent of samples collected from raw ground water used as sources of drinking water (public-supply and (or) domestic wells) and, therefore, are particularly relevant to human health. The occurrence of multiple pesticides and VOCs in individual wells also was evaluated in a human-health context because at least 53 different contaminants were detected in each of the three well types. To assess the relative human-health importance of the occurrence of multiple contaminants in different wells, the BQ values for all contaminants in a given well were summed. The median ratio of the maximum BQ to the sum of all BQ values for each well ranged from 0.83 to 0.93 for all well types, indicating that the maximum BQ makes up the majority of the sum for most wells. Maximum and summed BQ values were statistically greater for individual public-supply wells than for individual domestic and monitoring wells. The HBSL approach is an effective tool for placing water-quality data in a human-health context. For 79 of the 182 compounds analyzed in this study, no USEPA drinking-water standards or guidelines exist, but new HBSL values were calculated for 39 of these 79 compounds. The new HBSL values increased the number of detected pesticides and VOCs with human-health benchmarks from 65 to 77 (of 97 detected compounds), thereby expanding the basis for interpreting contaminant-occu
Contaminant levels in fish tissue from San Francisco Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairey, R.; Taberski, K.
1995-12-31
Edible fish species were collected from thirteen locations throughout San Francisco Bay, during the spring of 1994, for determination of contaminants levels in muscle tissue. Species collected included white croaker, surfperch, leopard and brown smoothhound sharks, striped bass, white sturgeon and halibut Sixty six composite tissue samples were analyzed for the presence of PAHs, PCBs, pesticides, trace elements and dioxin/furans. The US EPA approach to assessing chemical contaminant data for fish tissue consumption was used for identifying the primary chemicals of concern. Six chemicals or chemical groups were found to exceed screening levels established using the US EPA approach. PCBsmore » (as total Aroclors) exceeded the screening level of 3 ppb in all sixty six tissue samples, with the highest concentrations (638 ppb) found near San Francisco`s industrial areas. Mercury was elevated (> 0.14 ppm) in forty of the sixty-six samples with the highest levels (1.26 ppm) occurring in shark muscle tissues. Concentrations of the organochlorine pesticides dieldrin, total chlordanes and total DDTs exceeded screening levels in a number of samples. Dioxin/furans (as TEQs) were elevated (above 0.15 ppt) in 16 of the 19 samples analyzed. Fish with high lipid content (croaker and surfperch) in their muscle tissue generally exhibited higher contaminant levels while fish with low lipid levels (halibut and shark) exhibited lower organic contaminant levels. Tissue samples taken from North Bay stations most often exhibited high levels of chemical contamination. The California Office of Health Hazard Assessment is currently evaluating the results of this study and has issued an interim Health Advisory concerning the human consumption of fish tissue from San Francisco Bay.« less
Crowe, A S; Booty, W G
1995-05-01
A multi-level pesticide assessment methodology has been developed to permit regulatory personnel to undertake a variety of assessments on the potential for pesticide used in agricultural areas to contaminate the groundwater regime at an increasingly detailed geographical scale of investigation. A multi-level approach accounts for a variety of assessment objectives and detail required in the assessment, the restrictions on the availability and accuracy of data, the time available to undertake the assessment, and the expertise of the decision maker. The level 1: regional scale is designed to prioritize districts having a potentially high risk for groundwater contamination from the application of a specific pesticide for a particular crop. The level 2: local scale is used to identify critical areas for groundwater contamination, at a soil polygon scale, within a district. A level 3: soil profile scale allows the user to evaluate specific factors influencing pesticide leaching and persistence, and to determine the extent and timing of leaching, through the simulation of the migration of a pesticide within a soil profile. Because of the scale of investigation, limited amount of data required, and qualitative nature of the assessment results, the level 1 and level 2 assessment are designed primarily for quick and broad guidance related to management practices. A level 3 assessment is more complex, requires considerably more data and expertise on the part of the user, and hence is designed to verify the potential for contamination identified during the level 1 or 2 assessment. The system combines environmental modelling, geographical information systems, extensive databases, data management systems, expert systems, and pesticide assessment models, to form an environmental information system for assessing the potential for pesticides to contaminate groundwater.
Determination of yolk contamination in liquid egg white using Raman spectroscopy.
Cluff, K; Konda Naganathan, G; Jonnalagada, D; Mortensen, I; Wehling, R; Subbiah, J
2016-07-01
Purified egg white is an important ingredient in a number of baked and confectionary foods because of its foaming properties. However, yolk contamination in amounts as low as 0.01% can impede the foaming ability of egg white. In this study, we used Raman spectroscopy to evaluate the hypothesis that yolk contamination in egg white could be detected based on its molecular optical properties. Yolk contaminated egg white samples (n = 115) with contamination levels ranging from 0% to 0.25% (on weight basis) were prepared. The samples were excited with a 785 nm laser and Raman spectra from 250 to 3,200 cm(-1) were recorded. The Raman spectra were baseline corrected using an optimized piecewise cubic interpolation on each spectrum and then normalized with a standard normal variate transformation. Samples were randomly divided into calibration (n = 77) and validation (n = 38) data sets. A partial least squares regression (PLSR) model was developed to predict yolk contamination levels, based on the Raman spectral fingerprint. Raman spectral peaks, in the spectral region of 1,080 and 1,666 cm(-1), had the largest influence on detecting yolk contamination in egg white. The PLSR model was able to correctly predict yolk contamination levels with an R(2) = 0.90 in the validation data set. These results demonstrate the capability of Raman spectroscopy for detection of yolk contamination at very low levels in egg white and present a strong case for development of an on-line system to be deployed in egg processing plants. © 2016 Poultry Science Association Inc.
Transcript and protein environmental biomarkers in fish--a review.
Tom, Moshe; Auslander, Meirav
2005-04-01
The levels of contaminant-affected gene products (transcripts and proteins) are increasingly utilized as environmental biomarkers, and their appropriate implementation as diagnostic tools is discussed. The required characteristics of a gene product biomarker are accurate evaluation using properly normalized absolute units, aiming at long-term comparability of biomarker levels over a wide geographical range and among many laboratories. Quantitative RT-PCR and competitive ELISA are suggested as preferred evaluation methods for transcript and protein, respectively. Constitutively expressed RNAs or proteins which are part of the examined homogenate are suggested as normalizing agents, compensating for variable processing efficiency. Essential characterization of expression patterns is suggested, providing reference values to be compared to the monitored levels. This comparison would enable estimation of the intensity of biological effects of contaminants. Contaminant-independent reference expression patterns should include natural fluctuations of the biomarker level. Contaminant-dependent patterns should include dose response to model contaminants chronically administered in two environmentally-realistic routes, reaching extreme sub-lethal affected levels. Recent studies using fish as environmental sentinel species, applying gene products as environmental biomarkers, and implementing at least part of the depicted methodologies are reviewed.
Phytoremediation of Petroleum Hydrocarbon (PHC) Contaminated Soil by Using Mimosa pudica L. .
Budhadev, Basumatary; Rubul, Saikia; Sabitry, Bordoloi; Hari Prasad, Sarma
2014-07-01
The aim of this study was to evaluate the efficiency of Mimosa pudica L. that could be effective in phytoremediation of PHC-contaminated soil. Experiments were conducted in net house to determine the tolerance of this species to a heavy crude oil contaminated soil under the application of two fertilizer levels and reduction of PHC was monitored for 180 days. Assessment of plant growth, biomass and Total Oil and Grease (TOG) degradation were carried out at an interval of 60 days. In the presence of contaminants, biomass and plant height were reduced up to 27% and 10.4% respectively. Experiments with different percentages of crude oil showed that M. pudica could tolerate crude-oil contamination up to 6.2% (w/w). The estimation of TOG in soil of the tested plants revealed that M. pudica could decrease 31.7% of crude oil contaminants in low fertilizer level (200N, 100P, 100K) and 24.7% in high fertilizer level (240N, 120P, 120K). In case of unplanted pots, the reduction of TOG was 13.7% in low fertilizer level and 11.2% in high fertilizer level. This experiment has identified the suitability of a native candidate plant species for further investigation of their phytoremediation potential.
The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
High pressure processing and its application to the challenge of virus-contaminated foods.
Kingsley, David H
2013-03-01
High pressure processing (HPP) is an increasingly popular non-thermal food processing technology. Study of HPP's potential to inactivate foodborne viruses has defined general pressure levels required to inactivate hepatitis A virus, norovirus surrogates, and human norovirus itself within foods such as shellfish and produce. The sensitivity of a number of different picornaviruses to HPP is variable. Experiments suggest that HPP inactivates viruses via denaturation of capsid proteins which render the virus incapable of binding to its receptor on the surface of its host cell. Beyond the primary consideration of treatment pressure level, the effects of extending treatment times, temperature of initial pressure application, and matrix composition have been identified as critical parameters for designing HPP inactivation strategies. Research described here can serve as a preliminary guide to whether a current commercial process could be effective against HuNoV or HAV.
10 CFR 835.1101 - Control of material and equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
....1101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control... section, material and equipment in contamination areas, high contamination areas, and airborne radioactivity areas shall not be released to a controlled area if: (1) Removable surface contamination levels on...
40 CFR 142.40 - Requirements for a variance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... responsibility from any requirement respecting a maximum contaminant level of an applicable national primary... maximum contaminant levels of such drinking water regulations despite application of the best technology...
Measurement of air contamination in different wards of public sector hospital, Sukkur.
Memon, Badaruddin AllahDino; Bhutto, Gul Hassan; Rizvi, Wajid Hussain
2016-11-01
The aim of this study was to evaluate and assess the index of bacterial contamination in different wards of the Public Sector Hospital of Sukkur (Teaching) Pakistan; whether or not the air contamination was statistically different from the acceptable level using active and passive sampling. In addition to this main hypothesis, other investigations included: occurrence of the most common bacteria, whether or not the bacterial contamination in the wards was a persistent problem and identification of the effective antibiotics against the indentified bacteria. The evidence sought based on the One Sample T test suggests that there is a (statistically) significant difference between the observed (higher) than the acceptance level (p<0.01), the result based on One-Way ANOVA suggests that the contamination problem was persistent as there was no significant difference among observed contamination of all three visits at (p>0.01) and the result of antibiotic susceptibility test highlights sensitivity and resistance level of antibiotics for the indentified bacteria.
Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L
2016-02-01
Honey bees are exposed to a variety of environmental factors that impact their health, including nutritional stress, pathogens, and pesticides. In particular, there has been increasing evidence that sublethal exposure to pesticides can cause subtle, yet important effects on honey bee health and behavior. Here, we add to this body of knowledge by presenting data on bee-collected pollen containing sublethal levels of cyhalothrin, a pyrethroid insecticide, which, when fed to young honey bees, resulted in significant changes in lifespan, nutritional physiology,and behavior. For the first time, we show that when young, nest-aged bees are presented with pollen containing field-relevant levels of cyhalothrin, they reduce their consumption of contaminated pollen. This indicates that, at least for some chemicals, young bees are able to detect contamination in pollen and change their behavioral response, even if the contamination levels do not prevent foraging honey bees from collecting the contaminated pollen.
Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta
2014-01-01
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14. PMID:25478795
Chronic contamination decreases disease spread: a Daphnia–fungus–copper case study
Civitello, David J.; Forys, Philip; Johnson, Adam P.; Hall, Spencer R.
2012-01-01
Chemical contamination and disease outbreaks have increased in many ecosystems. However, connecting pollution to disease spread remains difficult, in part, because contaminants can simultaneously exert direct and multi-generational effects on several host and parasite traits. To address these challenges, we parametrized a model using a zooplankton–fungus–copper system. In individual-level assays, we considered three sublethal contamination scenarios: no contamination, single-generation contamination (hosts and parasites exposed only during the assays) and multi-generational contamination (hosts and parasites exposed for several generations prior to and during the assays). Contamination boosted transmission by increasing contact of hosts with parasites. However, it diminished parasite reproduction by reducing the size and lifespan of infected hosts. Multi-generational contamination further reduced parasite reproduction. The parametrized model predicted that a single generation of contamination would enhance disease spread (via enhanced transmission), whereas multi-generational contamination would inhibit epidemics relative to unpolluted conditions (through greatly depressed parasite reproduction). In a population-level experiment, multi-generational contamination reduced the size of experimental epidemics but did not affect Daphnia populations without disease. This result highlights the importance of multi-generational effects for disease dynamics. Such integration of models with experiments can provide predictive power for disease problems in contaminated environments. PMID:22593104
Amateur Cleanrooms: Costs May Not Offset Benefits
NASA Technical Reports Server (NTRS)
Ramsey, W. Lawrence
2005-01-01
Contamination and Coatings Branch During my career at NASA, I have encountered a variety of cleanroom systems. With many projects, cost pressures and lack of adequate facilities have forced the managers to resort to amateur cleanrooms to manufacture spacecraft and instruments. These rooms are usually spaces that have been used for other purposes that are converted to cleanroom, usually without the assistance of a contamination control specialist. Often, scientists and engineers are successful in converting an area for experimental use. However, when the area is used for production, countless difficulties are encountered. This paper will document some of the disasters that I have personally witnessed and offer some guidelines for contamination professionals to follow if you are called upon to assist in the development of new cleanrooms. Cleanroom come in all shapes and sizes from special purpose mini-environments (such as flow benches) to large, expansive production facilities. These areas may require a variety of unit operations to be carried out within a short range of each other. The design of the cleanroom should account for compatibilities of these operations to protect the product and personnel. The level of cleanliness has traditionally been associated with the method of ventilation. However, just because and =ea has HEPA filters and greater that 20 air changes per hour does not mean that it is a cleanroom. Airflow is extremely complex; the only way to properly design a cleanroom is through the use of a computer based model. In the aerospace industry, few engineered cleanrooms are modeled. Modeling has been perceived as expensive; however, modern programs and fast computers are changing perception. It is the lack of appreciation for how air flow and location within a cleanroom affects the product that causes most of the problems I have experienced. Currently, the rules defining the best air flow design practices are based on simplistic historical data that are often wrong. The performance of a cleanroom is defined by a set of complex interactions between the airflow, sources of contamination and heat, position of the air terminals and exhausts as well as the objects occupying the space in question. These subtleties are almost never appreciated in the setup of amateur cleanrooms (and sadly, in some engineered cleanroom as well). Experience with the room, measurement of air flows in the room, and black light inspections can be used to
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5.0 {micro}g/L) were detected in two private wells near the former grain storage facility at Hanover, as part of a statewide USDA private wellmore » sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In April 2007, the CCC/USDA collected near-surface soil samples at 1.8-2 ft BGL (below ground level) at 61 locations across the former CCC/USDA facility. All soil samples were analyzed by the rigorous gas chromatograph-mass spectrometer analytical method (purge-and-trap method). No contamination was found in soil samples above the reporting limit of 10 {micro}g/kg. In July 2007, the CCC/USDA sampled indoor air at nine residences on or adjacent to its former facility to address the residents concerns regarding vapor intrusion. Low levels of carbon tetrachloride were detected at four of the nine homes. Because carbon tetrachloride found in private wells and indoor air at the site might be linked to historical use of fumigants containing carbon tetrachloride at its former grain storage facility, the CCC/USDA is proposing to conduct an investigation to determine the source and extent of the carbon tetrachloride contamination associated with the former facility. This investigation will be conducted in accordance with the intergovernmental agreement between the KDHE and the Farm Service Agency (FSA) of the USDA. The investigation at Hanover will be performed, on behalf of the CCC/USDA, by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Seven technical objectives have been proposed for the Hanover investigation. They are as follows: (1) Identify the sources and extent of soil contamination beneath the former CCC/USDA facility; (2) Characterize groundwater contamination beneath the former CCC/USDA facility; (3) Determine groundwater flow patterns; (4) Define the vertical and lateral extent of the groundwater plume outside the former CCC/USDA facility; (5) Evaluate the aquifer and monitor the groundwater system; (6) Identify any other potential sources of contamination that are not related to activities of the CCC/USDA; and (7) Determine whether there is a vapor intrusion problem at the site attributable to the former CCC/USDA facility. The technical objectives will be accomplished in a phased approached. Data collected during each phase will be evaluated to determine whether the subsequent phase is necessary. The KDHE project manager and the CCC/USDA will be contacted during each phase and kept apprised of the results. Whether implementation of each phase of work is necessary will be discussed and mutually agreed upon by the CCC/USDA and KDHE project managers.« less
Groundwater nitrate contamination: Factors and indicators
Wick, Katharina; Heumesser, Christine; Schmid, Erwin
2012-01-01
Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation. PMID:22906701
40 CFR 141.151 - Purpose and applicability of this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... risks (if any) from exposure to contaminants detected in the drinking water in an accurate and..., detected means: at or above the levels prescribed by § 141.23(a)(4) for inorganic contaminants, at or above the levels prescribed by § 141.24(f)(7) for the contaminants listed in § 141.61(a), at or above the...
Chen, Yi; Allard, Emma; Wooten, Anna; Hur, Minji; Sheth, Ishani; Laasri, Anna; Hammack, Thomas S; Macarisin, Dumitru
2016-01-01
The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h) was significantly longer (P < 0.01) than that with initial contamination levels > 3 CFU/g (8.60 h). The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case study.
Chen, Yi; Allard, Emma; Wooten, Anna; Hur, Minji; Sheth, Ishani; Laasri, Anna; Hammack, Thomas S.; Macarisin, Dumitru
2016-01-01
The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h) was significantly longer (P < 0.01) than that with initial contamination levels > 3 CFU/g (8.60 h). The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case study. PMID:27242775
Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo
2016-01-01
With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020
RESPONDING TO THREATS AND INCIDENTS OF INTENTIONAL DRINKING WATER CONTAMINATION
All drinking water systems have some degree of vulnerability to contamination, and analysis shows that it is possible to contaminate drinking water at levels causing varying degrees of harm. Furthermore, experience indicates that the threat of contamination, overt or circumstant...
Mack, Thomas J.; Belaval, Marcel; Degnan, James R.; Roy, Stephen J.; Ayotte, Joseph D.
2011-01-01
The water-supply systems investigated were typical of small community water systems in New Hampshire where a water system may serve 100 connections or less. Each water system consisted of two wells, approximately 300 to 400 feet deep, in generally low-yielding (about 10 gallons per minute or less) crystalline bedrock. The wells were typically operated a few hours per day to fill a storage tank and had tens of feet of drawdown caused by the low well yields. The systems selected had contaminant concentrations slightly above MCL, or a low-level contamination. One of the water systems investigated had low-level (10 to 24 micrograms per liter) arsenic contamination, and two of the water systems had low-level uranium (30 to 40 micrograms per liter) contamination. The contaminant values were blended-water concentrations from the two wells in a system. Each water system had differences in contaminant concentrations between the two wells. In each case, the well with the greater concentration of the two was selected for investigation. In two of the three systems investigated, there was either not enough variation in the borehole contaminant concentration or not enough water-yielding fractures for borehole modifications to be a viable potential remedy to elevated contamination. However, borehole and contaminant conditions in one of the bedrock supply-well systems may be favorable to potential improvement of supplied water by borehole modification where selected fracture zones are sealed off from supplying water to the well.
Potential health and environmental issues of mercury-contaminated amalgamators.
Roberts, H W; Leonard, D; Osborne, J
2001-01-01
Dental amalgamators may become contaminated internally with metallic mercury. This contamination may result from mercury leakage from capsules during trituration or from the long-term accrual from microscopic exterior contaminants that result from the industrial assembly process. The potential health risk to dental personnel from this contamination is unknown. The authors assessed used amalgamators from the federal service inventory for the amounts of mercury vapor levels, as well as the visual presence of mercury contamination. They evaluated these amalgamators for potential mercury vapor health risk, using established National Institute for Occupational Safety and Health methods and American Conference of Governmental Industrial Hygienists standards. Ten of the 11 amalgamators assessed had measurable mercury vapor levels. Four amalgamators were found to have internal static mercury vapor levels above Occupational Safety and Health Administration ceiling limit thresholds. During a simulated worst-case clinical use protocol, the authors found that no amalgamators produced mercury vapor in the breathing space of dental personnel that exceeded established time-weighted federal mercury vapor limits. Amalgamators may be contaminated internally with metallic mercury. Although the authors detected mercury vapor from these units during aggressive, simulated clinical use, dilution factors combined with room air exchange were found to keep health risks below established federal safety thresholds. Dental personnel should be aware that amalgamators may be contaminated with mercury and produce minute amounts of mercury vapor. These contaminated amalgamators may require disposal as environmentally hazardous waste.
Memorandum of the Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination
This memorandum presents clarifying guidance for establishing protective cleanup levels for radioactive contamination at Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites.
Contaminant plume configuration and movement: an experimental model
NASA Astrophysics Data System (ADS)
Alencoao, A.; Reis, A.; Pereira, M. G.; Liberato, M. L. R.; Caramelo, L.; Amraoui, M.; Amorim, V.
2009-04-01
The relevance of Science and Technology in our daily routines makes it compulsory to educate citizens who have both scientific literacy and scientific knowledge. These will allow them to be intervening citizens in a constantly changing society. Thus, physical and natural sciences are included in school curricula, both in primary and secondary education, with the fundamental aim of developing in the students the skills, attitudes and knowledge needed for the understanding of the planet Earth and its real problems. On the other hand, teaching in Geosciences is more and more based on practical methodologies which use didactic material, sustaining teachers' pedagogical practices and facilitating students' learning tasks suggested on the syllabus defined for each school level. Themes related to exploring the different components of the Hydrological Cycle and themes related to natural environment protection and preservation, namely water resources and soil contamination by industrial and urban sewage are examples of subject matters included on the Portuguese syllabus. These topics motivated the conception and construction of experimental models for the study of the propagation of pollutants on a porous medium. The experimental models allow inducing a horizontal flux of water though different kinds of permeable substances (e.g. sand, silt), with contamination spots on its surface. These experimental activities facilitate the student to understand the flow path of contaminating substances on the saturated zone and to observe the contaminant plume configuration and movement. The activities are explored in a teaching and learning process perspective where the student builds its own knowledge through real question- problem based learning which relate Science, Technology and Society. These activities have been developed in the framework of project ‘Water in the Environment' (CV/PVI/0854) of the POCTI Program (Programa Operacional "Ciência, Tecnologia, Inovação") financed by the Portuguese Fundation for Science and Tecnology and FEDER Program.
Method for in-situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2006-12-12
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.
NASA Astrophysics Data System (ADS)
Fissan, Heinz; Asbach, Christof; Kuhlbusch, Thomas A. J.; Wang, Jing; Pui, David Y. H.; Yook, Se-Jin; Kim, Jung H.
2009-05-01
Extreme Ultraviolet Lithography (EUVL) is a leading lithography technology for the sub-32 nm chip manufacturing technology. Photomasks, in a mask carrier or inside a vacuum scanner, need to be protected from contamination by nanoparticles larger than the minimum feature size expected from this technology. The most critical part with respect to contamination in the EUVL-system is the photomask. The protection is made more difficult because protective pellicles cannot be used, due to the attenuation of the EUV beam by the pellicle. We have defined a set of protection schemes to protect EUVL photomasks from particle contamination and developed models to describe their effectiveness at atmospheric pressure (e.g. in mask carriers) or during scanning operation at low pressure. These schemes include that the mask is maintained facing down to avoid gravitational settling and the establishment of a thermal gradient underneath the mask surface to thermophoretically repel particles. Experimental verification studies of the models were carried out in atmospheric-pressure carriers and in a vacuum system down to about 3.3 Pa. Particles with sizes between 60 (for experiments, isn't it 125 nm?) nm and 250 nm were injected into the vacuum chamber with controlled speed and concentration to validate the analytical and numerical models. It could be shown that a deterministic approach using free molecular expressions can be used to accurately describe particle deposition at these low pressure levels. Thermophoresis was found to be very effective at both atmospheric and low pressure against the diffusional particle deposition, whereas inertial particle deposition of large and/or fast particles can likely not be prevented. A review of the models and their verification will be presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sollome, James; Martin, Elizabeth
MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database,more » genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.« less
Marchesi, Isabella; Ferranti, Greta; Mansi, Antonella; Marcelloni, Anna M; Proietto, Anna R; Saini, Navneet; Borella, Paola; Bargellini, Annalisa
2016-05-15
Physical and chemical disinfection methods have been proposed with the aim of controlling Legionella water contamination. To date, the most effective procedures for reducing bacterial contamination have not yet been defined. The aim of this study was to assess the long-term effectiveness of various disinfection procedures in order to reduce both culturable and nonculturable (NC) legionellae in different hospital water networks treated with heat, chlorine dioxide, monochloramine, and hydrogen peroxide. The temperature levels and biocide concentrations that proved to give reliable results were analyzed. In order to study the possible effects on the water pipes, we verified the extent of corrosion on experimental coupons after applying each method for 6 months. The percentage of positive points was at its lowest after treatment with monochloramine, followed by chlorine dioxide, hydrogen peroxide, and hyperthermia. Different selections of Legionella spp. were observed, as networks treated with chlorine-based disinfectants were contaminated mainly by Legionella pneumophila serogroup 1, hyperthermia was associated with serogroups 2 to 14, and hydrogen peroxide treatment was associated mainly with non-pneumophila species. NC cells were detected only in heat-treated waters, and also when the temperature was approximately 60°C. The corrosion rates of the coupons were within a satisfactory limit for water networks, but the morphologies differed. We confirm here that chemical disinfection controls Legionella colonization more effectively than hyperthermia does. Monochloramine was the most effective treatment, while hydrogen peroxide may be a promising alternative to chlorine-based disinfectants due to its ability to select for other, less virulent or nonpathogenic species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Interactions of organic contaminants with mineral-adsorbed surfactants
Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.
2003-01-01
Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.
Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant
NASA Technical Reports Server (NTRS)
Oravec, Heather Ann; Daniels, Christopher C.
2014-01-01
Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.
Historic and contemporary contamination in the marine environment of Kuwait: An overview.
Al-Sarawi, Hanan A; Jha, Awadhesh N; Al-Sarawi, Mohammad A; Lyons, Brett P
2015-11-30
The rapid expansion of industry, along with previous pollution events linked to conflicts in the region, have led to a variety of contaminants being inadvertently or deliberately discharged into Kuwait's marine environment. These include polycyclic aromatic hydrocarbons (PAHs) and trace metals, from the petrochemical industry, and contaminated brine from the region's desalination industries. The present paper has reviewed over 60 studies that have reported the levels of contaminants, including PAHs, metals and polychlorinated biphenyls (PCBs) present in seawater, sediment and representative marine organisms. Most of the reviewed literature confirmed that while Kuwait's marine environment has been subjected to a wide array of pollution events, the actual levels of contamination remains relatively low. However, sediment contamination hotspots associated with point sources of industrial contamination, such as originating from the Shuaiba industrial area, do exist at a number of locations around the coast. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 142.61 - Variances from the maximum contaminant level for fluoride.
Code of Federal Regulations, 2014 CFR
2014-07-01
... level for fluoride. 142.61 Section 142.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION... from the maximum contaminant level for fluoride. (a) The Administrator, pursuant to section 1415(a)(1...
40 CFR 142.61 - Variances from the maximum contaminant level for fluoride.
Code of Federal Regulations, 2012 CFR
2012-07-01
... level for fluoride. 142.61 Section 142.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION... from the maximum contaminant level for fluoride. (a) The Administrator, pursuant to section 1415(a)(1...
40 CFR 142.61 - Variances from the maximum contaminant level for fluoride.
Code of Federal Regulations, 2013 CFR
2013-07-01
... level for fluoride. 142.61 Section 142.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION... from the maximum contaminant level for fluoride. (a) The Administrator, pursuant to section 1415(a)(1...
Drinking Water Maximum Contaminant Levels (MCLs)
National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.
Blanchard, Paul J.
2002-01-01
The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential or intermediate potential for contamination. About 6 percent of the study area was assessed to have the least potential for contamination, mostly in areas where the slope of the land surface is more than 12 percent. Nearly all fields on the Navajo Indian Irrigation Project were assessed to have the most potential for contamination. The assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project was based on pesticide application to various crops on part of the Navajo Indian Irrigation Project during 1997-99. The assessment indicated that ground water underlying fields of beans, wheat, barley, and alfalfa was most vulnerable to pesticide contamination; ground water underlying fields of corn and potatoes was intermediately vulnerable to pesticide contamination; and ground water underlying fields of hay was least vulnerable to pesticide contamination.
International Space Station External Contamination Environment for Space Science Utilization
NASA Technical Reports Server (NTRS)
Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica
2014-01-01
The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.
Do oral aluminium phosphate binders cause accumulation of aluminium to toxic levels?
2011-01-01
Background Aluminium (Al) toxicity was frequent in the 1980s in patients ingesting Al containing phosphate binders (Alucaps) whilst having HD using water potentially contaminated with Al. The aim of this study was to determine the risk of Al toxicity in HD patients receiving Alucaps but never exposed to contaminated dialysate water. Methods HD patients only treated with Reverse Osmosis(RO) treated dialysis water with either current or past exposure to Alucaps were given standardised DFO tests. Post-DFO serum Al level > 3.0 μmol/L was defined to indicate toxic loads based on previous bone biopsy studies. Results 39 patients (34 anuric) were studied. Mean dose of Alucap was 3.5 capsules/d over 23.0 months. Pre-DFO Al levels were > 1.0 μmol/L in only 2 patients and none were > 3.0 μmol/L. No patients had a post DFO Al levels > 3.0 μmol/L. There were no correlations between the serum Al concentrations (pre-, post- or the incremental rise after DFO administration) and the total amount of Al ingested. No patients had unexplained EPO resistance or biochemical evidence of adynamic bone. Conclusions Although this is a small study, oral aluminium exposure was considerable. Yet no patients undergoing HD with RO treated water had evidence of Al toxicity despite doses equivalent to 3.5 capsules of Alucap for 2 years. The relationship between the DFO-Al results and the total amount of Al ingested was weak (R2 = 0.07) and not statistically significant. In an era of financial prudence, and in view of the recognised risk of excess calcium loading in dialysis patients, perhaps we should re-evaluate the risk of using Al-based phosphate binders in HD patients who remain uric. PMID:21992770
Using stable isotopes to estimate habitat-based risk of contaminant exposure in fish
Sediment contamination is a common threat to sustainability in coastal ecosystems. For fish, the risk of exposure to contaminants will vary with respect to life history, including movements between contaminated inshore and less impacted offshore areas, trophic level, and habitat ...
Swabbing of waiting room magazines reveals only low levels of bacterial contamination
Charnock, Colin
2005-01-01
Previous studies have shown that toys in waiting rooms of general practice surgeries can be contaminated with potentially pathogenic bacteria. The question was raised as to whether magazines might also be sources of contamination. Swabbing of the front page of 15 magazines from 11 general practice surgeries, followed by analysis for total and specific bacteria, revealed low levels of contamination. Among targeted groups of pathogens only two colonies of Staphylococcus aureus were detected. Magazines do not seem to be potentially important vectors of bacterial transfer in the setting examined. PMID:15667764
Polychlorinated biphenyl contamination of nursing mothers' milk in Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickizer, T.M.; Brilliant, L.B.; Copeland, R.
As part of an effort to assess the extent and distribution of PCB contamination in the human population of Michigan, PCB levels in the breast milk of Michigan nursing mothers were investigated. All of the 1057 samples collected from 68 counties contained PCB residues ranging from trace amounts to 5.1 ppm. The mean PCB level was 1.496 ppm. The public health significance of PCB contamination in human populations and the implications of PCB contamination of human milk for current breast-feeding practices are discussed. Several precautionary measures for nursing mothers are recommended.
Albers, P.H.; Heinz, G.H.; Hall, R.J.; Albers, Peter H.; Heinz, Gary H.; Ohlendorf, Harry M.
2000-01-01
Conclusions: A need for a broader range ofinformation on effects of contaminants on individuals exists among the 4 classes of terrestrial vertebrates, especially mammals, reptiles, and amphibians. Separation of contaminant effects from other effects and reduction of speculative extrapolation within and among species requires information that can be produced only by combined field and laboratory investigations that incorporate seasonal or annual cycles and important spatial and interaction conditions. Assessments of contaminant effects at the population level and higher are frequently dependent on extrapolations from a lower organizational level. Actual measurements of the effects of contaminants on populations or communities, possibly in conjunction with case studies that establish relations between effects on individuals and effects on populations, are needed to reduce the uncertainty associated with these extrapolations. Associated with these assessment levels is the need for acceptable definitions of what we mean when we refer to a 'meaningful population change' or an 'effect on communities or ecosystems.' At these higher levels of organization we are also confronted with the need for procedures useful for separating contaminant effects from effects caused by other environmental conditions. Although the bulk of literature surveyed was of the focused cause-and-effect type that is necessary for proving relations between contaminants and wildlife, community or ecosystem field assessments, as sometimes performed with reptiles and amphibians, might be a useful alternative for estimating the potential of a contaminant to cause environmental harm. Assumptions about the special usefulness of reptiles and amphibians as environmental indicators ought to be tested with comparisons to mammals and birds. Information on the effects of contaminants above the individual level is needed to generate accurate estimates of the potential consequences of anthropogenic pollution (e.g., ecological risk assessments). However, realized population, or higher, levels of effects should not be part of regulatory guidelines because the threshold of harm would be too high to be used as a catalyst for action. Measures of realized population or community effects could be used to evaluate the effectiveness of regulatory actions and assess chronic or difficult environmental problems. Some of these information needs can be satisfied with modest effort and expense, but much of the suggested work that incorporates great complexity or long duration is likely to be difficult to accomplish. Cooperation among investigators with different specialties and a willingness by government, academia, and corporate organizations to support the most challenging work will be necessary. Because we are unlikely to have the financial resources to evaluate more than a small number of contaminants for effects at the levels of population, community, or ecosystem, we might need to thoroughly study a few contaminants and then extend the findings to functionally similar contaminants. If sufficient cooperation and organizational support does not materialize, the pursuit of estimation methods will overshadow the collection of actual information on relations between contaminants and wildlife.
Method and apparatus for controlling cross contamination of microfluid channels
Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Paul, Phillip H [Livermore, CA; Arnold, Don W [Livermore, CA
2006-02-07
A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.
Does groundwater protection in Europe require new EU-wide environmental quality standards?
Balderacchi, Matteo; Filippini, Maria; Gemitzi, Alexandra; Klöve, Björn; Petitta, Marco; Trevisan, Marco; Wachniew, Przemysław; Witczak, Stanisław; Gargini, Alessandro
2014-01-01
The European Groundwater Directive could be improved by limiting the scopes of the Annexes I and II to the manmade and natural substances, respectively, and by defining a common monitoring protocol. The changes in the European landuse patterns, in particular the urban sprawl phenomena, obscure the distinction between the point and diffuse sources of contamination. In the future more importance will be given to the household contamination. Moreover, the agricultural environment could be used for developing new conceptual models related to the pharmaceuticals.
Quantitative assessment of bio-aerosols contamination in indoor air of University dormitory rooms.
Hayleeyesus, Samuel Fekadu; Ejeso, Amanuel; Derseh, Fikirte Aklilu
2015-07-01
The purpose of this study is to provide insight into how students are exposed to indoor bio-aerosols in the dormitory rooms and to figure out the major possible factors that govern the contamination levels. The Bio-aerosols concentration level of indoor air of thirty dormitory rooms of Jimma University was determined by taking 120 samples. Passive air sampling technique; the settle plate method using open Petri-dishes containing different culture media was employed to collect sample twice daily. The range of bio-aerosols contamination detected in the dormitory rooms was 511-9960 CFU/m(3) for bacterial and 531-6568 CFU/m(3) for fungi. Based on the criteria stated by WHO expert group, from the total 120 samples 95 of the samples were above the recommended level. The statistical analysis showed that, occupancy were significantly affected the concentrations of bacteria that were measured in all dormitory rooms at 6:00 am sampling time (p-value=0.000) and also the concentrations of bacteria that were measured in all dormitory rooms were significantly different to each other (p-value=0.013) as of their significance difference in occupancy (p-value=0.000). Moreover, there were a significant different on the contamination level of bacteria at 6:00 am and 7:00 pm sampling time (p=0.015), whereas there is no significant difference for fungi contamination level for two sampling times (p= 0.674). There is excessive bio-aerosols contaminant in indoor air of dormitory rooms of Jimma University and human occupancy produces a marked concentration increase of bacterial contamination levels and most fungi species present into the rooms air of Jimma University dormitory were not human-borne.
Quantitative assessment of bio-aerosols contamination in indoor air of University dormitory rooms
Hayleeyesus, Samuel Fekadu; Ejeso, Amanuel; Derseh, Fikirte Aklilu
2015-01-01
Objectives The purpose of this study is to provide insight into how students are exposed to indoor bio-aerosols in the dormitory rooms and to figure out the major possible factors that govern the contamination levels. Methodology The Bio-aerosols concentration level of indoor air of thirty dormitory rooms of Jimma University was determined by taking 120 samples. Passive air sampling technique; the settle plate method using open Petri-dishes containing different culture media was employed to collect sample twice daily. Results The range of bio-aerosols contamination detected in the dormitory rooms was 511–9960 CFU/m3 for bacterial and 531–6568 CFU/m3 for fungi. Based on the criteria stated by WHO expert group, from the total 120 samples 95 of the samples were above the recommended level. The statistical analysis showed that, occupancy were significantly affected the concentrations of bacteria that were measured in all dormitory rooms at 6:00 am sampling time (p-value=0.000) and also the concentrations of bacteria that were measured in all dormitory rooms were significantly different to each other (p-value=0.013) as of their significance difference in occupancy (p-value=0.000). Moreover, there were a significant different on the contamination level of bacteria at 6:00 am and 7:00 pm sampling time (p=0.015), whereas there is no significant difference for fungi contamination level for two sampling times (p= 0.674). Conclusion There is excessive bio-aerosols contaminant in indoor air of dormitory rooms of Jimma University and human occupancy produces a marked concentration increase of bacterial contamination levels and most fungi species present into the rooms air of Jimma University dormitory were not human-borne. PMID:26609289
Ralicki, Hannah F.; Laurencio, David; Crocker-Buta, Sarah
2018-01-01
Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how these factors are potentially interrelated to affect montane populations. One possibility is that increased precipitation associated with global warming promotes the deposition of contaminants in montane regions. Increased exposure to contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that could contribute to montane population declines by compromising resistance to pathogens and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by examining contaminant levels, stress and sex steroid levels, and nematode abundances in male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica. We found no evidence that montane populations were more likely to possess contaminants (i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chlorophenoxy herbicides) than lowland populations. We also found no evidence of elevational differences in circulating levels of the stress hormone corticosterone, estradiol or progesterone. However, montane populations possessed lower androgen levels, hosted more nematode species, and had higher nematode abundances than lowland populations. Although these results suggested that nematodes contributed to lower androgens in montane populations, we were unable to detect a significant inverse relationship between nematode abundance and androgen level. Our results suggest that montane populations of this species are not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes and compromised sex steroid levels as potential threats to montane populations. PMID:29324824
Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs.
Bytingsvik, Jenny; Simon, Eszter; Leonards, Pim E G; Lamoree, Marja; Lie, Elisabeth; Aars, Jon; Derocher, Andrew E; Wiig, Oystein; Jenssen, Bjørn M; Hamers, Timo
2013-05-07
We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQMeas). Our findings show that the TTR-binding activity related to contaminant levels was significantly lower (45%) in 2008 than in 1998 (mean ± standard error of mean: 1998, 2265 ± 231 nM; 2008, 1258 ± 170 nM). Although we cannot exclude a potential influence of between-year differences in capture location and cub body mass, our findings most likely reflect reductions of TTR-binding contaminants or their precursors in the arctic environment (e.g., polychlorinated biphenyls [PCBs]). The measured TTR-binding activity correlated positively with the cubs' plasma levels of hydroxylated PCBs (OH-PCBs). No such association was found between TTR-binding activity and the plasma levels of perfluoroalkyl substances (PFASs). The OH-PCBs explained 60 ± 7% and 54 ± 4% of the TTR-binding activity in 1998 and 2008, respectively, and PFASs explained ≤1.2% both years. Still, almost half the TTR-binding activity could not be explained by the contaminants we examined. The considerable levels of TTR-binding contaminants warrant further effect directed analysis (EDA) to identify the contaminants responsible for the unexplained part of the observed TTR-binding activity.
Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas
2017-04-01
Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC. Published by Elsevier Ltd.
Bartholomay, Roy C.; Carter, Janet M.; Qi, Sharon L.; Squillace, Paul J.; Rowe, Gary L.
2007-01-01
About 10 to 30 percent of the population in most States uses domestic (private) water supply. In many States, the total number of people served by domestic supplies can be in the millions. The water quality of domestic supplies is inconsistently regulated and generally not well characterized. The U.S. Geological Survey (USGS) has two water-quality data sets in the National Water Information System (NWIS) database that can be used to help define the water quality of domestic-water supplies: (1) data from the National Water-Quality Assessment (NAWQA) Program, and (2) USGS State data. Data from domestic wells from the NAWQA Program were collected to meet one of the Program's objectives, which was to define the water quality of major aquifers in the United States. These domestic wells were located primarily in rural areas. Water-quality conditions in these major aquifers as defined by the NAWQA data can be compared because of the consistency of the NAWQA sampling design, sampling protocols, and water-quality analyses. The NWIS database is a repository of USGS water data collected for a variety of projects; consequently, project objectives and analytical methods vary. This variability can bias statistical summaries of contaminant occurrence and concentrations; nevertheless, these data can be used to define the geographic distribution of contaminants. Maps created using NAWQA and USGS State data in NWIS can show geographic areas where contaminant concentrations may be of potential human-health concern by showing concentrations relative to human-health water-quality benchmarks. On the basis of national summaries of detection frequencies and concentrations relative to U.S. Environmental Protection Agency (USEPA) human-health benchmarks for trace elements, pesticides, and volatile organic compounds, 28 water-quality constituents were identified as contaminants of potential human-health concern. From this list, 11 contaminants were selected for summarization of water-quality data in 16 States (grantee States) that were funded by the Environmental Public Health Tracking (EPHT) Program of the Centers for Disease Control and Prevention (CDC). Only data from domestic-water supplies were used in this summary because samples from these wells are most relevant to human exposure for the targeted population. Using NAWQA data, the concentrations of the 11 contaminants were compared to USEPA human-health benchmarks. Using NAWQA and USGS State data in NWIS, the geographic distribution of the contaminants were mapped for the 16 grantee States. Radon, arsenic, manganese, nitrate, strontium, and uranium had the largest percentages of samples with concentrations greater than their human-health benchmarks. In contrast, organic compounds (pesticides and volatile organic compounds) had the lowest percentages of samples with concentrations greater than human-health benchmarks. Results of data retrievals and spatial analysis were compiled for each of the 16 States and are presented in State summaries for each State. Example summary tables, graphs, and maps based on USGS data for New Jersey are presented to illustrate how USGS water-quality and associated ancillary geospatial data can be used by the CDC to address goals and objectives of the EPHT Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.
In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less
Organochlorine contaminants in eggs of common terns from the Canadian Great Lakes 1981
Weseloh, D.V.; Custer, T.W.; Braune, B.M.
1989-01-01
To determine if contaminant levels in common terns had changed over the last decade, we collected and analyzed eggs from four nesting colonies on the three lower Great lakes during 1981. DDE and PCBs were detected in every egg from the four colonies. Dieldrin, mirex and trans-nonachlor were detected in more than 45% of the eggs. Seven other organochlorine contaminants (DDD, DDT, hexachlorobenzene, oxychlordane, cis-chlordane, cis-nonachlor and toxaphene) were detected in less than 25% of the eggs. Eggs from the Lake Ontario colony were generally the most heavily contaminated. Comparisons of DDE and PCB data with earlier studies of common terns indicated that contaminant levels in eggs from the four sampled colonies, or nearby sites, have decreased by up to 80-90% from 1969-73 to 1981. Interspecies comparisons showed that common tern eggs have lower organochlorine residue levels than eggs of caspian terns or herring gulls. Dietary variation and migratory status are possible explanations for the differences in residue levels among species. Eggshell thickness, log-PCBs, and log-DDE were not significantly intercorrelated. Elevated contaminant levels in the early 1970s might be at least partly responsible for the decline of the Great Lakes Common Tern population over the past decade. Stabilization of population numbers during the early 1980s suggests that organochlorine pollution levels have been reduced to a point where they are no longer an important factor in the population dynamics of this species on the Great Lakes.
Contamination of U.S. Butter with Polybrominated Diphenyl Ethers from Wrapping Paper
Schecter, Arnold; Smith, Sarah; Colacino, Justin; Malik, Noor; Opel, Matthias; Paepke, Olaf; Birnbaum, Linda
2011-01-01
Objectives Our aim was to report the first known incidence of U.S. butter contamination with extremely high levels of polybrominated diphenyl ethers (PBDEs). Methods Ten butter samples were individually analyzed for PBDEs. One of the samples and its paper wrapper contained very high levels of higher-brominated PBDEs. Dietary estimates were calculated using the 2007 U.S. Department of Agriculture Loss-Adjusted Food Availability data, excluding the elevated sample. Results The highly contaminated butter sample had a total upper bound PBDE level of 42,252 pg/g wet weight (ww). Levels of brominated diphenyl ether (BDE)-206, -207, and -209 were 2,000, 2,290, and 37,600 pg/g ww, respectively. Its wrapping paper contained a total upper-bound PBDE concentration of 804,751 pg/g ww, with levels of BDE-206, -207, and -209 of 51,000, 11,700, and 614,000 pg/g, respectively. Total PBDE levels in the remaining nine butter samples ranged from 180 to 1,212 pg/g, with geometric mean of 483 and median of 284 pg/g. Excluding the outlier, total PBDE daily intake from all food was 22,764 pg/day, lower than some previous U.S. dietary intake estimates. Conclusion Higher-brominated PBDE congeners were likely transferred from contaminated wrapping paper to butter. A larger representative survey may help determine how frequently PBDE contamination occurs. Sampling at various stages in food production may identify contamination sources and reduce risk. PMID:21138809
Contamination of U.S. butter with polybrominated diphenyl ethers from wrapping paper.
Schecter, Arnold; Smith, Sarah; Colacino, Justin; Malik, Noor; Opel, Matthias; Paepke, Olaf; Birnbaum, Linda
2011-02-01
Our aim was to report the first known incidence of U.S. butter contamination with extremely high levels of polybrominated diphenyl ethers (PBDEs). Ten butter samples were individually analyzed for PBDEs. One of the samples and its paper wrapper contained very high levels of higher-brominated PBDEs. Dietary estimates were calculated using the 2007 U.S. Department of Agriculture Loss-Adjusted Food Availability data, excluding the elevated sample. The highly contaminated butter sample had a total upper bound PBDE level of 42,252 pg/g wet weight (ww). Levels of brominated diphenyl ether (BDE)-206, -207, and -209 were 2,000, 2,290, and 37,600 pg/g ww, respectively. Its wrapping paper contained a total upper-bound PBDE concentration of 804,751 pg/g ww, with levels of BDE-206, -207, and -209 of 51,000, 11,700, and 614,000 pg/g, respectively. Total PBDE levels in the remaining nine butter samples ranged from 180 to 1,212 pg/g, with geometric mean of 483 and median of 284 pg/g. Excluding the outlier, total PBDE daily intake from all food was 22,764 pg/day, lower than some previous U.S. dietary intake estimates. Higher-brominated PBDE congeners were likely transferred from contaminated wrapping paper to butter. A larger representative survey may help determine how frequently PBDE contamination occurs. Sampling at various stages in food production may identify contamination sources and reduce risk.
Ferrari, Matthew J.
2001-01-01
Water samples were collected from August through November 2000 from 30 randomly selected public drinking-water supply wells screened in the unconfined aquifer in Delaware, and analyzed to assess the occurrence and distribution of selected pesticide compounds, volatile organic compounds, major inorganic ions, and nutrients. Water from a subset of 10 wells was sampled and analyzed for radium and radon. The average age of ground water entering the well screens in all the wells was determined to be generally less than 20 years. Low concentrations of pesticide compounds and volatile organic compounds were detected throughout the State of Delaware, with several compounds often detected in each water sample. Pesticide and metabolite (pesticide degradation products) concentrations were generally less than 1 microgram per liter, and were detected in sam-ples from 27 of 30 wells. Of the 45 pesticides and 13 metabolites analyzed, 19 compounds (13 pesticides and 6 metabolites) were detected in at least 1 of the 30 samples. Desethylatrazine, alachlor ethane sulfonic acid, metolachlor ethane sulfonic acid, metolachlor, and atrazine were the most frequently detected pesticide compounds, and were present in at least half the samples. None of the pesticide detections was above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. Volatile organic compounds also were present at low concentrations (generally less than 1 microgram per liter) in samples from all 30 wells. Of the 85 volatile organic com-pounds analyzed, 34 compounds were detected in at least 1 of the 30 samples. Chloroform, tetrachloroethene, and methyl tert-butyl ether were the most frequently detected volatile organic compounds, and were found in at least half the samples. None of the volatile organic compound detections was above U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. A few samples contained compounds with concentrations above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for inorganic compounds and radionuclides. One sample out of 30 contained a concentration of nitrite plus nitrate above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Level of 10 milligrams per liter as nitrogen. Iron and manganese concentrations above the U.S. Environmental Protection Agency's Secondary Maximum Contaminant Levels were found in 7 of 30 ground-water samples, most of them from Sussex County. In the 10 wells sampled for radionuclides, only one sample had detectable levels of radium-224 and -226, and another sample contained detectable levels of radium-228; both of these samples also had detectable gross-alpha and gross-beta activities. None of these activities were above the U.S. Environ-mental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. Radon was detected in all 10 samples, but was above the current U.S. Environmental Protection Agency's proposed Primary Maximum Contaminant Level of 300 picocuries per liter in only one sample.
Wolkers, Hans; Corkeron, Peter J; Van Parijs, Sofie M; Similä, Tiu; Van Bavel, Bert
2007-08-01
Blubber tissue of one subadult and eight male adult killer whales was sampled in Northern Norway in order to assess the degree and type of contaminant exposure and transfer in the herring-killer whale link of the marine food web. A comprehensive selection of contaminants was targeted, with special attention to toxaphenes and polybrominated diphenyl ethers (PBDEs). In addition to assessing exposure and food chain transfer, selective accumulation and metabolism issues also were addressed. Average total polychlorinated biphenyl (PCB) and pesticide levels were similar, approximately 25 microg/g lipid, and PBDEs were approximately 0.5 microg/g. This makes killer whales one of the most polluted arctic animals, with levels exceeding those in polar bears. Comparing the contamination of the killer whale's diet with the diet of high-arctic species such as white whales reveals six to more than 20 times higher levels in the killer whale diet. The difference in contaminant pattern between killer whales and their prey and the metabolic index calculated suggested that these cetaceans have a relatively high capacity to metabolize contaminants. Polychlorinated biphenyls, chlordanes, and dichlorodiphenyldichloro-ethylene (DDE) accumulate to some degree in killer whales, although toxaphenes and PBDEs might be partly broken down.
Decommissioning a phosphoric acid production plant: a radiological protection case study.
Stamatis, V; Seferlis, S; Kamenopoulou, V; Potiriadis, C; Koukouliou, V; Kehagia, K; Dagli, C; Georgiadis, S; Camarinopoulos, L
2010-12-01
During a preliminary survey at the area of an abandoned fertilizer plant, increased levels of radioactivity were measured at places, buildings, constructions and materials. The extent of the contamination was determined and the affected areas were characterized as controlled areas. After the quantitative and qualitative determination of the contaminated materials, the decontamination was planned and performed step by step: the contaminated materials were categorized according to their physical characteristics (scrap metals, plastic pipes, scales and residues, building materials, etc) and according to their level of radioactivity. Depending on the material type, different decontamination and disposal options were proposed; the most appropriate technique was chosen taking into account apart from technical issues, the legal framework, radiation protection issues, the opinion of the local authorities involved as well as the owner's wish. After taking away the biggest amount of the contaminated materials, an iterative process consisting of surveys and decontamination actions was performed in order to remove the residual traces of contamination from the area. During the final survey, no residual surface contamination was detected; some sparsely distributed low level contaminated materials deeply immersed into the soil were found and removed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dudarev, Alexey A; Alloyarov, Pavel R; Chupakhin, Valery S; Dushkina, Eugenia V; Sladkova, Yuliya N; Dorofeyev, Vitaliy M; Kolesnikova, Tatijana A; Fridman, Kirill B; Nilsson, Lena Maria; Evengård, Birgitta
2013-01-01
Problems related to food security in Russian Arctic (dietary imbalance, predominance of carbohydrates, shortage of milk products, vegetables and fruits, deficit of vitamins and microelements, chemical, infectious and parasitic food contamination) have been defined in the literature. But no standard protocol of food security assessment has been used in the majority of studies. Our aim was to obtain food security indicators, identified within an Arctic collaboration, for selected regions of the Russian Arctic, Siberia and the Far East, and to compare food safety in these territories. In 18 regions of the Russian Arctic, Siberia and the Far East, the following indicators of food security were analyzed: food costs, food consumption, and chemical and biological food contamination for the period 2000-2011. Food costs in the regions are high, comprising 23-43% of household income. Only 4 out of 10 food groups (fish products, cereals, sugar, plant oil) are consumed in sufficient amounts. The consumption of milk products, eggs, vegetables, potatoes, fruits (and berries) is severely low in a majority of the selected regions. There are high levels of biological contamination of food in many regions. The biological and chemical contamination situation is alarming, especially in Chukotka. Only 7 food pollutants are under regular control; among pesticides, only DDT. Evenki AO and Magadan Oblast have reached peak values in food contaminants compared with other regions. Mercury in local fish has not been analyzed in the majority of the regions. In 3 regions, no monitoring of DDT occurs. Aflatoxins have not been analyzed in 5 regions. Nitrates had the highest percentage in excess of the hygienic threshold in all regions. Excesses of other pollutants in different regions were episodic and as a rule not high. Improvement of the food supply and food accessibility in the regions of the Russian Arctic, Siberia and the Far East is of utmost importance. Both quantitative and qualitative control of chemical and biological contaminants in food is insufficient and demands radical enhancement aimed at improving food security.
Dudarev, Alexey A.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Dushkina, Eugenia V.; Sladkova, Yuliya N.; Dorofeyev, Vitaliy M.; Kolesnikova, Tatijana A.; Fridman, Kirill B.; Nilsson, Lena Maria; Evengård, Birgitta
2013-01-01
Background Problems related to food security in Russian Arctic (dietary imbalance, predominance of carbohydrates, shortage of milk products, vegetables and fruits, deficit of vitamins and microelements, chemical, infectious and parasitic food contamination) have been defined in the literature. But no standard protocol of food security assessment has been used in the majority of studies. Objectives Our aim was to obtain food security indicators, identified within an Arctic collaboration, for selected regions of the Russian Arctic, Siberia and the Far East, and to compare food safety in these territories. Study design and methods In 18 regions of the Russian Arctic, Siberia and the Far East, the following indicators of food security were analyzed: food costs, food consumption, and chemical and biological food contamination for the period 2000–2011. Results Food costs in the regions are high, comprising 23–43% of household income. Only 4 out of 10 food groups (fish products, cereals, sugar, plant oil) are consumed in sufficient amounts. The consumption of milk products, eggs, vegetables, potatoes, fruits (and berries) is severely low in a majority of the selected regions. There are high levels of biological contamination of food in many regions. The biological and chemical contamination situation is alarming, especially in Chukotka. Only 7 food pollutants are under regular control; among pesticides, only DDT. Evenki AO and Magadan Oblast have reached peak values in food contaminants compared with other regions. Mercury in local fish has not been analyzed in the majority of the regions. In 3 regions, no monitoring of DDT occurs. Aflatoxins have not been analyzed in 5 regions. Nitrates had the highest percentage in excess of the hygienic threshold in all regions. Excesses of other pollutants in different regions were episodic and as a rule not high. Conclusion Improvement of the food supply and food accessibility in the regions of the Russian Arctic, Siberia and the Far East is of utmost importance. Both quantitative and qualitative control of chemical and biological contaminants in food is insufficient and demands radical enhancement aimed at improving food security. PMID:24471055
Trends of chlorinated organic contaminants in Great Lakes trout and walleye from 1970-1998
Hickey, J.P.; Batterman, S.A.; Chernyak, S.M.
2006-01-01
Levels of chlorinated organic contaminants in predator fish have been monitored annually in each of the Great Lakes since the 1970s. This article updates earlier reports with data from 1991 to 1998 for lake trout (Salvelinus namaycush) and (Lake Erie only) walleye (Sander vitreus) to provide a record that now extends nearly 30 years. Whole fish were analyzed for a number of industrial contaminants and pesticides, including polychlorinated biphenyls (PCBs), dichloro-diphenyl-trichloroethane (DDT), dieldrin, toxaphene, and mirex, and contaminant trends were quantified using multicompartment models. As in the past, fish from Lakes Michigan, Ontario, and Huron have the highest levels of PCBs, DDT, and dieldrin; Superior has the highest levels of toxaphene; and Ontario has the highest levels of mirex. In the period after curtailment of chemical use, concentrations rapidly decreased, represented by relatively short half-lives from approximately 1 to 9 years. Although trends depend on both the contaminant and the lake, in many cases the rate of decline has been decreasing, and concentrations are gradually approaching an irreducible concentration. For dioxin-like PCBs, levels have not been decreasing during the most recent 5-year period (1994 to 1998). In some cases, the year-to-year variation in contaminant levels is large, mainly because of food-web dynamics. Although this variation sometimes obscures long-term trends, the general pattern of a rapid decrease followed by slowing or leveling-off of the downward trend seems consistent across the Great Lakes, and future improvements of the magnitude seen in the 1970s and early 1980s likely will take much longer.
Ax, Erika; Lampa, Erik; Lind, Lars; Salihovic, Samira; van Bavel, Bert; Cederholm, Tommy; Sjögren, Per; Lind, P Monica
2015-02-01
Food intake contributes substantially to our exposure to environmental contaminants. Still, little is known about our dietary habits' contribution to exposure variability. The aim of this study was to assess circulating levels of environmental contaminants in relation to predefined dietary patterns in an elderly Swedish population. Dietary data and serum concentrations of environmental contaminants were obtained from 844 70-year-old Swedish subjects (50% women) in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Dietary data from 7-day food records was used to assess adherence to a Mediterranean-like diet, a low carbohydrate-high protein diet and the WHO dietary recommendations. Circulating levels of 6 polychlorinated biphenyl markers, 3 organochlorine pesticides, 1 dioxin and 1 polybrominated diphenyl ether, the metals cadmium, lead, mercury and aluminum and serum levels of bisphenol A and 4 phthalate metabolites were investigated in relation to dietary patterns in multivariate linear regression models. A Mediterranean-like diet was positively associated with levels of several polychlorinated biphenyls (118, 126, 153, and 209), trans-nonachlor and mercury. A low carbohydrate-high protein diet was positively associated with polychlorinated biphenyls 118 and 153, trans-nonachlor, hexachlorobenzene and p, p'-dichlorodiphenyldichloroethylene, mercury and lead. The WHO recommended diet was negatively related to levels of dioxin and lead, and borderline positively to polychlorinated biphenyl 118 and trans-nonachlor. Dietary patterns were associated in diverse manners with circulating levels of environmental contaminants in this elderly Swedish population. Following the WHO dietary recommendations seems to be associated with a lower burden of environmental contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yoo, Ri Na; Kye, Bong-Hyeon; Kim, Gun; Kim, Hyung Jin; Cho, Hyeon-Min
2017-10-01
Colonic perforation is a lethal condition presenting high morbidity and mortality in spite of urgent surgical treatment. This study investigated the surgical outcome of patients with colonic perforation associated with retroperitoneal contamination. Retrospective analysis was performed for 30 patients diagnosed with colonic perforation caused by either inflammation or ischemia who underwent urgent surgical treatment in our facility from January 2005 to December 2014. Patient characteristics were analyzed to find risk factors correlated with increased postoperative mortality. Using the Physiological and Operative Severity Score for the Enumeration of Mortality and Morbidity (POSSUM) audit system, the mortality and morbidity rates were estimated to verify the surgical outcomes. Patients with retroperitoneal contamination, defined by the presence of retroperitoneal air in the preoperative abdominopelvic CT, were compared to those without retroperitoneal contamination. Eight out of 30 patients (26.7%) with colonic perforation had died after urgent surgical treatment. Factors associated with mortality included age, American Society of Anesthesiologists (ASA) physical status classification, and the ischemic cause of colonic perforation. Three out of 6 patients (50%) who presented retroperitoneal contamination were deceased. Although the patients with retroperitoneal contamination did not show significant increase in the mortality rate, they showed significantly higher ASA physical status classification than those without retroperitoneal contamination. The mortality rate predicted from Portsmouth POSSUM was higher in the patients with retroperitoneal contamination. Patients presenting colonic perforation along with retroperitoneal contamination demonstrated severe comorbidity. However, retroperitoneal contamination was not found to be correlated with the mortality rate.
Space station contamination control study: Internal combustion, phase 1
NASA Technical Reports Server (NTRS)
Ruggeri, Robert T.
1987-01-01
Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.
Mould and yeast flora in fresh berries, grapes and citrus fruits.
Tournas, V H; Katsoudas, Eugenia
2005-11-15
Fresh fruits are prone to fungal contamination in the field, during harvest, transport, marketing, and with the consumer. It is important to identify fungal contaminants in fresh fruits because some moulds can grow and produce mycotoxins on these commodities while certain yeasts and moulds can cause infections or allergies. In this study, 251 fresh fruit samples including several varieties of grapes, strawberries, blueberries, raspberries, blackberries, and various citrus fruits were surface-disinfected, incubated at room temperature for up to 14 days without supplemental media, and subsequently examined for mould and yeast growth. The level of contamination (percent of contaminated items/sample) varied depending on the type of fruit. All raspberry and blackberry samples were contaminated at levels ranging from 33% to 100%, whereas 95% of the blueberry samples supported mould growth at levels between 10% and 100% of the tested berries, and 97% of strawberry samples showed fungal growth on 33-100% of tested berries. The most common moulds isolated from these commodities were Botrytis cinerea, Rhizopus (in strawberries), Alternaria, Penicillium, Cladosporium and Fusarium followed by yeasts, Trichoderma and Aureobasidium. Thirty-five percent of the grape samples tested were contaminated and supported fungal growth; the levels of contamination ranged from 9% to 80%. The most common fungi spoiling grapes were Alternaria, B. cinerea and Cladosporium. Eighty-three percent of the citrus fruit samples showed fungal growth at levels ranging from 25% to 100% of tested fruits. The most common fungi in citrus fruits were Alternaria, Cladosporium, Penicillium, Fusarium and yeasts. Less common were Trichoderma, Geotrichum and Rhizopus.
The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-10
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document.more » Analytical results from second quarter 1991 are listed in this report.« less
The Savannah River Site's Groundwater Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-10
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document.more » Analytical results from second quarter 1991 are listed in this report.« less
The Savannah River Site's Groundwater Monitoring Program: Second quarter 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, C.D.
1992-10-07
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria sectionmore » of this document. Analytical results from second quarter 1992 are listed in this report.« less
Dagnino, Alessandro; Bo, Tiziano; Copetta, Andrea; Fenoglio, Stefano; Oliveri, Caterina; Bencivenga, Mauro; Felli, Angelo; Viarengo, Aldo
2013-10-01
With the aim of supporting decision makers to manage contamination in freshwater environments, an innovative expert decision support system (EDSS) was developed. The EDSS was applied in a sediment quality assessment along the Bormida river (NW, Italy) which has been heavily contaminated by an upstream industrial site for more than a century. Sampling sites were classified by means of comparing chemical concentrations with effect-based target values (threshold and probable effect concentrations). The level of each contaminant and the combined toxic pressure were used to rank sites into three categories: (i) uncontaminated (8 sites), (ii) mildly contaminated (4) and (iii) heavily contaminated (19). In heavily contaminated sediments, an environmental risk index (EnvRI) was determined by means of integrating chemical data with ecotoxicological and ecological parameters (triad approach). In addition a sediment risk index (SedRI) was computed from combining chemical and ecotoxicological data. Eight sites exhibited EnvRI values ≥0.25, the safety threshold level (range of EnvRI values: 0.14-0.31) whereas SedRI exceeded the safety threshold level at 6 sites (range of SedRI values: 0.16-0.36). At sites classified as mildly contaminated, sublethal biomarkers were integrated with chemical data into a biological vulnerability index (BVI), which exceeded the safety threshold level at one site (BVI value: 0.28). Finally, potential human risk was assessed in selected stations (11 sites) by integrating genotoxicity biomarkers (GTI index falling in the range 0.00-0.53). General conclusions drawn from the EDSS data include: (i) in sites classified as heavily contaminated, only a few exhibited some significant, yet limited, effects on biodiversity; (ii) restrictions in re-using sediments from heavily contaminated sites found little support in ecotoxicological data; (iii) in the majority of the sites classified as mildly contaminated, tested organisms exhibited low response levels; (iv) preliminary results on genotoxicity biomarkers indicate possible negative consequences for humans if exposed to river sediments from target areas. © 2013.
Exposures associated with blood lead levels greater than 40 ug/dl in young children who live in lead-contaminated homes have been well documented. As the action level for lead is reduced, activities that contribute to lower levels of lead exposure must be identified. A child's ea...
Beehler, G P; Baker, J A; Falkner, K; Chegerova, T; Pryshchepava, A; Chegerov, V; Zevon, M; Bromet, E; Havenaar, J; Valdismarsdottir, H; Moysich, K B
2008-11-01
Radiation contamination and sociopolitical instability following the Chernobyl nuclear power plant disaster have had a profound impact on Belarus. To investigate the factors that impact long-term mental health outcomes of this population almost 20 years after the disaster. Cross-sectional study. In-person interviews were conducted with 381 men and women from two geographic areas of differing radiation contamination within Belarus. Participants completed surveys of demographics, psychosocial factors and psychological distress. Individual-level characteristics were combined with household-level measures of radiation contamination exposure and family characteristics to create multilevel predictive models of psychological distress. Between-household effects accounted for 20% of variability in depression and anxiety scores, but only 8% of variability in somatization scores. Degree of chronic daily stressors showed a significant positive relationship with psychological distress, whereas mastery/controllability showed a significant inverse relationship with distress. At household level, perceived family problems, but not level of residential radiation contamination, was the best predictor of distress. Multilevel modelling indicates that long-term psychological distress among Belarusians affected by the Chernobyl disaster is better predicted by stress-moderating psychosocial factors present in one's daily life than by level of residential radiation contamination.
The Evolving Role of Coliforms As Indicators of Unhygienic Processing Conditions in Dairy Foods.
Martin, Nicole H; Trmčić, Aljoša; Hsieh, Tsung-Han; Boor, Kathryn J; Wiedmann, Martin
2016-01-01
Testing for coliforms has a long history in the dairy industry and has helped to identify raw milk and dairy products that may have been exposed to unsanitary conditions. Coliform standards are included in a number of regulatory documents (e.g., the U.S. Food and Drug Administration's Grade "A" Pasteurized Milk Ordinance). As a consequence, detection above a threshold of members of this method-defined, but diverse, group of bacteria can result in a wide range of regulatory outcomes. Coliforms are defined as aerobic or facultatively anaerobic, Gram negative, non-sporeforming rods capable of fermenting lactose to produce gas and acid within 48 h at 32-35°C; 19 genera currently include at least some strains that represent coliforms. Most bacterial genera that comprise the coliform group (e.g., Escherichia , Klebsiella , and Serratia ) are within the family Enterobacteriaceae, while at least one genus with strains recognized as coliforms, Aeromonas , is in the family Aeromonadaceae. The presence of coliforms has long been thought to indicate fecal contamination, however, recent discoveries regarding this diverse group of bacteria indicates that only a fraction are fecal in origin, while the majority are environmental contaminants. In the US dairy industry in particular, testing for coliforms as indicators of unsanitary conditions and post-processing contamination is widespread. While coliforms are easily and rapidly detected, and are not found in pasteurized dairy products that have not been exposed to post-processing contamination, advances in knowledge of bacterial populations most commonly associated with post-processing contamination in dairy foods has led to questions regarding the utility of coliforms as indicators of unsanitary conditions for dairy products. For example, Pseudomonas spp. frequently contaminate dairy products after pasteurization, yet they are not detected by coliform tests. This review will address the role that coliforms play in raw and finished dairy products, their sources and the future of this diverse group as indicator organisms in dairy products.
The Evolving Role of Coliforms As Indicators of Unhygienic Processing Conditions in Dairy Foods
Martin, Nicole H.; Trmčić, Aljoša; Hsieh, Tsung-Han; Boor, Kathryn J.; Wiedmann, Martin
2016-01-01
Testing for coliforms has a long history in the dairy industry and has helped to identify raw milk and dairy products that may have been exposed to unsanitary conditions. Coliform standards are included in a number of regulatory documents (e.g., the U.S. Food and Drug Administration’s Grade “A” Pasteurized Milk Ordinance). As a consequence, detection above a threshold of members of this method-defined, but diverse, group of bacteria can result in a wide range of regulatory outcomes. Coliforms are defined as aerobic or facultatively anaerobic, Gram negative, non-sporeforming rods capable of fermenting lactose to produce gas and acid within 48 h at 32–35°C; 19 genera currently include at least some strains that represent coliforms. Most bacterial genera that comprise the coliform group (e.g., Escherichia, Klebsiella, and Serratia) are within the family Enterobacteriaceae, while at least one genus with strains recognized as coliforms, Aeromonas, is in the family Aeromonadaceae. The presence of coliforms has long been thought to indicate fecal contamination, however, recent discoveries regarding this diverse group of bacteria indicates that only a fraction are fecal in origin, while the majority are environmental contaminants. In the US dairy industry in particular, testing for coliforms as indicators of unsanitary conditions and post-processing contamination is widespread. While coliforms are easily and rapidly detected, and are not found in pasteurized dairy products that have not been exposed to post-processing contamination, advances in knowledge of bacterial populations most commonly associated with post-processing contamination in dairy foods has led to questions regarding the utility of coliforms as indicators of unsanitary conditions for dairy products. For example, Pseudomonas spp. frequently contaminate dairy products after pasteurization, yet they are not detected by coliform tests. This review will address the role that coliforms play in raw and finished dairy products, their sources and the future of this diverse group as indicator organisms in dairy products. PMID:27746769
Arsenic in Mexican children exposed to contaminated well water.
Monroy-Torres, Rebeca; Macías, Alejandro E; Gallaga-Solorzano, Juan Carlos; Santiago-García, Enrique Javier; Hernández, Isabel
2009-01-01
This cross-sectional study measures the arsenic level in school children exposed to contaminated well water in a rural area in México. Arsenic was measured in hair by hydride generation atomic absorption spectrophotometry. Overall, 110 children were included (average 10 years-old). Among 55 exposed children, mean arsenic level on hair was 1.3 mg/kg (range <0.006-5.9). All unexposed children had undetectable arsenic levels. The high level of arsenic in water was associated to the level in hair. However, exposed children drank less well water at school or at home than unexposed children, suggesting that the use of contaminated water to cook beans, broths or soups may be the source of arsenic exposure.
Harding, L E; Harris, M L; Stephen, C R; Elliott, J E
1999-02-01
We assessed chlorinated hydrocarbon contamination of mink and river otters on the Columbia and Fraser River systems of northwestern North America, in relation to morphological measures of condition. We obtained carcasses of mink and river otters from commercial trappers during the winters 1994-1995 and 1995-1996. Necropsies included evaluation of the following biological parameters: sex, body mass and length, age, thymus, heart, liver, lung, spleen, pancreas, kidney, gonad, omentum, adrenal gland and baculum masses, baculum length, and stomach contents. Livers were analyzed, individually or in pools, for residues of organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), dibenzo-p-dioxins, and dibenzofurans. Contaminant levels were relatively low compared to those documented in other North American populations, although they ranged higher than those detected during an earlier survey (1990-1992) of these regional populations. Body condition varied slightly among collection regions, but showed no relationship with contaminant burden. Mink from the upper Fraser River had less fat stores and also had some of the lowest OC contamination levels observed. Similarly, a few individuals with enlarged livers and kidneys had low contaminant levels. Although a few individual animals with gross abnormalities of reproductive systems did not show high levels of contamination, there was a significant negative correlation between total PCB concentrations (as Aroclor 1260) and baculum length in juvenile mink (r = 0.707; p = 0.033; n = 8). The association of juvenile baculum length with eventual reproductive success is unknown, but further characterization of reproductive organ morphology and relationship to contaminants should be undertaken in a larger subset of these populations.
Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection
Tuladhar, Era; Hazeleger, Wilma C.; Koopmans, Marion; Zwietering, Marcel H.; Beumer, Rijkelt R.
2012-01-01
Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested. PMID:22941071
Residual viral and bacterial contamination of surfaces after cleaning and disinfection.
Tuladhar, Era; Hazeleger, Wilma C; Koopmans, Marion; Zwietering, Marcel H; Beumer, Rijkelt R; Duizer, Erwin
2012-11-01
Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log(10) for poliovirus and close to 4 log(10) for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log(10) reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.
The goal of this study was to evaluate the possible use of the Environmental Relative Moldiness Index (ERMI) to quantify mold contamination in multi-level, office buildings. Settled-dust samples were collected in multi-level, office buildings and the ERMI value for each sample de...
Malina, Natalia; Mazlova, Elena A
2017-10-01
This study highlights the fact that serious contamination from polychlorinated biphenyls (PCBs) still exists in Serpukhov City (Russia). The research help to determine the temporal (16- and 24-year periods) and spatial PCBs distribution in the environmental compartments of the studied region. Samples of soil, sediments, water and plants were analysed in order to establish their contamination levels. The most recent data on the Serpukhov City's soil contamination showed that the PCBs concentrations varies from 0.0009 to 1169 mg/kg depending on the sampling point and the distance from the pollution source. The temporal trends of the contamination distribution with the soil depth showed contamination migration in the upper soil layers of the highly polluted site. The high level of water pollution (11.5 μg/L) in the proximity to the contamination source and the sediments contamination (0.098-119 mg/kg) were determined, as well as the water migration pathways of the PCBs that were prevalent in the studied region. The PCB congener group (by the level of chlorination) analysis showed that heptachlorinated biphenyls were only found in the soils in close proximity to the contamination place, while biphenyls with Cl ≤ 6 were found in the soil samples downstream of the condenser plant and with Cl ≤ 5 in the soil samples upstream of the plant. The plant uptake of PCBs, even on the extremely contaminated site, was shown. In turn, this research present new knowledge necessary for the development of a contaminated territory remediation strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Segura, M; Alía, C; Valverde, J; Franch, G; Torres Rodríguez, J M; Sitges-Serra, A
1990-01-01
An in vivo model of hub-related catheter sepsis in rabbits is reported. The model was used to investigate the protection offered by a new hub design against external contamination by Pseudomonas aeruginosa or Staphylococcus epidermidis and to reassess the diagnostic value of the semiquantitative culture method in bacteremia of endoluminal origin. Contamination of conventional Luer-Lock connectors was followed by clinical sepsis, positive catheter segment cultures, or both, whereas contamination of the new hub was followed by complete protection. Clinical and bacteriological discrepancies observed between contamination with P. aeruginosa and S. epidermidis suggest that the virulence of microorganisms may account for differences in the natural history of hub-originated catheter sepsis. The semiquantitative extraluminal method for catheter culture yielded less than 15 CFU in three animals with proven bacteremia and should not be used as the "gold standard" to define catheter-related bacteremia. PMID:2254430
NASA Technical Reports Server (NTRS)
Linford, R. M. F.; Allen, T. H.; Dillow, C. F.
1975-01-01
A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.
Microbial Contamination of Chicken Wings: An Open-Ended Laboratory Project.
ERIC Educational Resources Information Center
Deutch, Charles E.
2001-01-01
Introduces the chicken wing project in which students assess the microbial contamination of chicken wings for the safety of foods. Uses the colony counting technique and direct wash fluid examination for determining the microbial contamination, and investigates methods to reduce the level of microbial contamination. (Contains 14 references.) (YDS)
Current university and USDA lab cotton contamination research
USDA-ARS?s Scientific Manuscript database
U.S. cotton is considered to have some of the lowest levels of contamination in the world. However, that reputation is in jeopardy as complaints of contamination from domestic and foreign mills are on the rise. Cotton contamination can be classified under four major categorizes: fabrics and strings ...
49 CFR 177.843 - Contamination of vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Contamination of vehicles. 177.843 Section 177.843... and Unloading § 177.843 Contamination of vehicles. (a) Each motor vehicle used for transporting Class... surface contamination is not greater than the level prescribed in § 173.443(a) of this subchapter. (b...
USDA and university researchers work to prevent U.S. cotton contamination
USDA-ARS?s Scientific Manuscript database
U.S. cotton is considered to have some of the lowest levels of contamination in the world. However, that reputation is in jeopardy as complaints of contamination from domestic and foreign mills are on the rise. Cotton contamination is classified by the International Textile Manufacturers Federation ...
Predictors of Heavy Stethoscope Contamination Following a Physical Examination.
Tschopp, Clément; Schneider, Alexis; Longtin, Yves; Renzi, Gesuele; Schrenzel, Jacques; Pittet, Didier
2016-06-01
BACKGROUND The degree of bacterial contamination of stethoscopes can vary significantly following a physical examination. OBJECTIVE To conduct a prospective study to investigate the impact of various environmental and patient characteristics on stethoscope contamination. METHODS Following a standardized examination, the levels of bacterial contamination of 4 regions of the physicians' hands and 2 sections of the stethoscopes, and the presence of different pathogenic bacteria, were assessed. Predictors of heavy stethoscope contamination were identified through multivariate logistic regression. RESULTS In total, 392 surfaces were sampled following examination of 56 patients. The microorganisms most frequently recovered from hands and stethoscopes were Enterococcus spp. (29% and 20%, respectively) and Enterobacteriaceae (16% and 7%, respectively). Staphylococcus aureus (either methicillin susceptible or resistant), extended-spectrum β-lactamase-producing Enterobacteriaceae, and Acinetobacter baumannii were recovered from 4%-9% of the samples from either hands or stethoscopes. There was a correlation between the likelihood of recovering these pathogens from the stethoscopes vs from the physicians' hands (ρ=0.79; P=.04). The level of patient's skin contamination was an independent predictor of contamination of the stethoscope diaphragm (adjusted odds ratio [aOR], 1.001; P=.007) and tube (aOR, 1.001; P=.003). Male sex (aOR, 28.24; P=.01) and reception of a bed bath (aOR, 7.52; P=.048) were also independently associated with heavy tube contamination. CONCLUSIONS Stethoscope contamination following a single physical examination is not negligible and is associated with the level of contamination of the patient's skin. Prevention of pathogen dissemination is needed. Infect Control Hosp Epidemiol 2016;37:673-679.
Process for measuring low cadmium levels in blood and other biological specimens
Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.
1994-01-01
A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.
Process for measuring low cadmium levels in blood and other biological specimens
Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.
1994-05-03
A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-29
This decision document presents the final selected remedial action for the Stanley Kessler Superfund Site (the Site). The selected remedy for the Site will restore contaminated ground water to its beneficial use by cleaning up the ground water to background levels as established by EPA or the appropriate Maximum Contaminant Levels or non-zero Maximum Contaminant Level Goals established under the Federal Safe Drinking Water Act whichever is more stringent. The selected remedy is the only planned action for the Site.
Quantification of Campylobacter jejuni contamination on chicken carcasses in France.
Duqué, Benjamin; Daviaud, Samuel; Guillou, Sandrine; Haddad, Nabila; Membré, Jeanne-Marie
2018-04-01
Highly prevalent in poultry, Campylobacter is a foodborne pathogen which remains the primary cause of enteritis in humans. Several studies have determined prevalence and contamination level of this pathogen throughout the food chain. However it is generally performed in a deterministic way without considering heterogeneity of contamination level. The purpose of this study was to quantify, using probabilistic tools, the contamination level of Campylobacter spp. on chicken carcasses after air-chilling step in several slaughterhouses in France. From a dataset (530 data) containing censored data (concentration <10CFU/g), several factors were considered, including the month of sampling, the farming method (standard vs certified) and the sampling area (neck vs leg). All probabilistic analyses were performed in R using fitdistrplus, mc2d and nada packages. The uncertainty (i.e. error) generated by the presence of censored data was small (ca 1 log 10 ) in comparison to the variability (i.e. heterogeneity) of contamination level (3 log 10 or more), strengthening the probabilistic analysis and facilitating result interpretation. The sampling period and sampling area (neck/leg) had a significant effect on Campylobacter contamination level. More precisely, two "seasons" were distinguished: one from January to May, another one from June to December. During the June-to-December season, the mean Campylobacter concentration was estimated to 2.6 [2.4; 2.8] log 10 (CFU/g) and 1.8 [1.5; 2.0] log 10 (CFU/g) for neck and leg, respectively. The probability of having >1000CFU/g (higher limit of European microbial criterion) was estimated to 35.3% and 12.6%, for neck and leg, respectively. In contrast, during January-to-May season, the mean contamination level was estimated to 1.0 [0.6; 1.3] log 10 (CFU/g) and 0.6 [0.3; 0.9] log 10 (CFU/g) for neck and leg, respectively. The probability of having >1000CFU/g was estimated to 13.5% and 2.0% for neck and leg, respectively. An accurate quantification of contamination level enables industrials to better adapt their processing and hygiene practices. These results will also help in refining exposure assessment models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biljan, M M; Hart, C A; Sunderland, D; Manasse, P R; Kingsland, C R
1993-01-01
OBJECTIVE--To assess level of contamination of neckwear worn by gynaecologists and obstetricians during routine working week. DESIGN--Multicentre randomised double blind crossover trial. Participants wore the same conventional ties for three days in one week and bow ties for the same period in second week. SETTING--Two teaching and three district general hospitals in the midlands, Wales, and north England. SUBJECTS--15 registrars and senior registrars. INTERVENTIONS--A swab soaked in sterile saline was taken from specific area on ties at end of first and third working days and sent in transport medium for culture on chocolatised blood and MacConkey agar for 48 hours. MAIN OUTCOME MEASURES--Level of bacteriological growth assessed semiquantitatively (0 for no contamination; for heavy contamination) after swabs had been cultured. At end of study the participants completed a questionnaire to assess their attitude toward wearing different types of necktie. RESULTS--12 doctors (80%) completed the study. Although bow ties were significantly less contaminated at end of first working day (z = -2.354, p = 0.019), this difference was not maintained; there was no difference in level of contamination on third day. Level of contamination did not increase between first and third day of wearing the same garment. One of the 10 doctors who returned the questionnaire found the bow tie very uncomfortable. All participants would consider wearing a bow tie if it proved to be less contaminated than a conventional tie. CONCLUSIONS--Although a significant difference in contamination was established between conventional and bow ties on first day of study, this difference was not confirmed on third day and there is unlikely to be any real association between tie type and bacterial contamination. Because of its negative image and difficulty to tie, the bow tie will probably remain a minority fashion. Images p1583-a PMID:8292945
Evaluation of two cleaning methods for the removal of asbestos fibers from carpet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kominsky, J.R.; Freyberg, R.W.; Chesson, J.
The research study examined the effectiveness of dry vacuuming and wet cleaning for the removal of asbestos fibers from carpet, and evaluated the potential for fiber reentrainment during carpet cleaning activities. Routine carpet cleaning operations using high-efficiency particulate air (HEPA) filtered dry vacuum cleaners and HEPA-filtered hot-water extraction cleaners were simulated on carpet artificially contaminated with asbestos fibers. Overall, wet cleaning the carpet with a hot-water extraction cleaner reduced the level of asbestos contamination by approximately 70 percent. There was no significant evidence of either an increase or a decrease in the asbestos concentration after dry vacuuming. The level ofmore » asbestos contamination had no significant effect on the difference between the carpet asbestos concentrations before and after cleaning. Airborne asbestos concentrations were between two and four times greater during the carpet cleaning activities. The level of asbestos contamination in the carpet cleaning activities. The level of asbestos contamination in the carpet and the type of cleaning method used had no statistically significant effect on the difference between the airborne asbestos concentrations before and during cleaning.« less
Groundwater and Air Contamination: Risk, Toxicity, Exposure Assessment, Policy, and Regulation
NASA Astrophysics Data System (ADS)
Watts, R. J.; Teel, A. L.
2003-12-01
The improper disposal of hazardous wastes and subsequent contamination of surface and groundwaters has exposed the public and ecosystems to toxic chemicals that have detrimental consequences. The cost of cleaning up the thousands of hazardous waste sites throughout the world is daunting, and the effort to do so is economically impractical. As a result, some level of contamination will always remain, both locally and globally. The presence of a residual level of contamination carries with it the probability of negative impacts on the world's population; e.g., enhanced risk of cancer or the onset of neurological disorders. Risk is the probability of such events. Risk assessments are routinely performed at contaminated sites and in areas of widespread environmental contamination, such as an entire aquifer, as a means of quantifying the potential threats to public health and to ecosystems.
Phytoremediation of soils and water contaminated with toxic elements and radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornish, J.E.; Huddleston, G.J.; Levine, R.S.
1995-12-31
At many U.S. Department of Energy (DOE) facilities and other sites, large volumes of soils, sediments and waters are contaminated with heavy metals and/or radionuclides, often at only a relatively small factor above regulatory action levels. In response, the DOE`s Office of Technology Development is evaluating the emerging biotechnology known as phytoremediation; this approach utilizes the accelerated transfer of contaminant mass from solution to either root or above ground biomass. After growth, the plant biomass - containing 100 to 1,000 times the contaminant levels observed with conventional plants - is processed to achieve further volume reduction and contaminant concentration. Thus,more » phytoremediation offers the potential for low cost remediation of highly to moderately contaminated media. Progress made to date by DOE in developing this technology will be summarized and evaluated.« less
Yamada, Ami; Bemrah, Nawel; Veyrand, Bruno; Pollono, Charles; Merlo, Mathilde; Desvignes, Virginie; Sirot, Véronique; Oseredczuk, Marine; Marchand, Philippe; Cariou, Ronan; Antignac, Jean-Phillippe; Le Bizec, Bruno; Leblanc, Jean-Charles
2014-07-30
In this study, French marine and freshwater fish perfluoroalkyl acid (PFAA) contamination are presented along with their fatty acid (FA) composition to provide further elements for a risk/benefit balance of fish consumption to be assessed. The 29 most consumed marine fish species were collected in four metropolitan French coastal areas in 2004 to constitute composite samples. Geographical differences in terms of consumed species and contamination level were taken into account. Three hundred and eighty-seven composite samples corresponding to 16 freshwater fish species collected between 2008 and 2010 in the six major French rivers or their tributaries were selected among the French national agency for water and aquatic environments freshwater fish sample library. The raw edible parts were analyzed for FA composition and PFAA contamination. Results show that freshwater fishes are more contaminated by PFAAs than marine fishes and do not share the same contamination profile. Freshwater fish contamination is mostly driven by perfluorooctane sulfonate (PFOS) (75%), whereas marine fish contamination is split between perfluorooctanoic acid (PFOA) (24%), PFOS (20%), perfluorohexanoic acid (PFHxA) (15%), perfluoropentanoic acid (PFHpA) (11%), and perfluorobutanoic acid (PFBA) (11%). Common carp, pike-perch, European perch, thicklip grey mullet, and common roach presented the most unfavorable balance profile due to their high level of PFAAs and low level of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). These data could be used, if needed, in an updated opinion on fish consumption that takes into account PFAA contamination.
Management of contaminated marine marketable resources after oil and HNS spills in Europe.
Cunha, Isabel; Neuparth, Teresa; Moreira, Susana; Santos, Miguel M; Reis-Henriques, Maria Armanda
2014-03-15
Different risk evaluation approaches have been used to face oil and hazardous and noxious substances (HNS) spills all over the world. To minimize health risks and mitigate economic losses due to a long term ban on the sale of sea products after a spill, it is essential to preemptively set risk evaluation criteria and standard methodologies based on previous experience and appropriate scientifically sound criteria. Standard methodologies are analyzed and proposed in order to improve the definition of criteria for reintegrating previously contaminated marine marketable resources into the commercialization chain in Europe. The criteria used in former spills for the closing of and lifting of bans on fisheries and harvesting are analyzed. European legislation was identified regarding food sampling, food chemical analysis and maximum levels of contaminants allowed in seafood, which ought to be incorporated in the standard methodologies for the evaluation of the decision criteria defined for oil and HNS spills in Europe. A decision flowchart is proposed that opens the current decision criteria to new material that may be incorporated in the decision process. Decision criteria are discussed and compared among countries and incidents. An a priori definition of risk criteria and an elaboration of action plans are proposed to speed up actions that will lead to prompt final decisions. These decisions, based on the best available scientific data and conducing to lift or ban economic activity, will tend to be better understood and respected by citizens. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Yi; Allard, Emma; Wooten, Anna; ...
2016-05-18
The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initialmore » contamination levels ≤ 3 CFU/g (9.50 h) was significantly longer (P < 0.01) than that with initial contamination levels > 3 CFU/g (8.60 h). The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case study.« less
Albatross species demonstrate regional differences in North Pacific marine contamination
Finkelstein, M.; Keitt, B.S.; Croll, D.A.; Tershy, B.; Jarman, Walter M.; Rodriguez-Pastor, S.; Anderson, D.J.; Sievert, P.R.; Smith, D.R.
2006-01-01
Recent concern about negative effects on human health from elevated organochlorine and mercury concentrations in marine foods has highlighted the need to understand temporal and spatial patterns of marine pollution. Seabirds, long-lived pelagic predators with wide foraging ranges, can be used as indicators of regional contaminant patterns across large temporal and spatial scales. Here we evaluate contaminant levels, carbon and nitrogen stable isotope ratios, and satellite telemetry data from two sympatrically breeding North Pacific albatross species to demonstrate that (1) organochlorine and mercury contaminant levels are significantly higher in the California Current compared to levels in the high-latitude North Pacific and (2) levels of organochlorine contaminants in the North Paci.c are increasing over time. Black-footed Albatrosses (Phoebastria nigripes) had 370-460% higher organochlorine (polychlorinated biphenyls [PCBs], dichlorodiphenyltrichloroethanes [DDTs]) and mercury body burdens than a closely related species, the Laysan Albatross (P. immutabilis), primarily due to regional segregation of their North Pacific foraging areas. PCBs (the sum of the individual PCB congeners analyzed) and DDE concentrations in both albatross species were 130-360% higher than concentrations measured a decade ago. Our results demonstrate dramatically high and increasing contaminant concentrations in the eastern North Pacific Ocean, a finding relevant to other marine predators, including humans. ?? 2006 by the Ecological Society of America.
Muddying the Waters: A New Area of Concern for Drinking Water Contamination in Cameroon
Healy Profitós, Jessica M.; Mouhaman, Arabi; Lee, Seungjun; Garabed, Rebecca; Moritz, Mark; Piperata, Barbara; Tien, Joe; Bisesi, Michael; Lee, Jiyoung
2014-01-01
In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries), leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals) was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship’s impact on drinking water quality. PMID:25464137
Muddying the waters: a new area of concern for drinking water contamination in Cameroon.
Profitós, Jessica M Healy; Mouhaman, Arabi; Lee, Seungjun; Garabed, Rebecca; Moritz, Mark; Piperata, Barbara; Tien, Joe; Bisesi, Michael; Lee, Jiyoung
2014-11-28
In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries), leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals) was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship's impact on drinking water quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Allard, Emma; Wooten, Anna
The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initialmore » contamination levels ≤ 3 CFU/g (9.50 h) was significantly longer (P < 0.01) than that with initial contamination levels > 3 CFU/g (8.60 h). The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case study.« less
Cheng, Allen C; Jacups, Susan P; Gal, Daniel; Mayo, Mark; Currie, Bart J
2006-04-01
Melioidosis, the infection due to the environmental organism Burkholderia pseudomallei, is endemic to northern Australia and South East Asia. It is associated with exposure to mud and pooled surface water, but environmental determinants of this disease are poorly understood. We defined case-clusters in northern Australia, determined their contribution to the observed rate of melioidosis, and explored clinical features and associated environmental factors. Using geographical information systems data, we examined clustering of melioidosis cases in time and geographical space in the Top End of the Northern Territory of Australia between 1990 and 2002 using a scan statistic. DNA macrorestriction analysis, resolved by pulsed field gel electrophoresis, was performed on isolates from patients. We defined five case-clusters involving 27 patients that occurred within 7-28 days and/or a radius of 100-300 km. Clustered cases were associated with extreme weather events or environmental contamination; no difference in the clinical pattern of disease was noted from other patients not involved in clusters. Isolates from patients linked to environmental contamination were caused by isolates with similar DNA macrorestriction patterns, but isolates from patients linked to severe weather events had more diverse DNA macrorestriction patterns. Case-clusters of melioidosis where isolates exhibit diverse DNA macrorestriction patterns in our region are linked to extreme weather events and outbreaks where isolates are predominantly of the same DNA macrorestriction pattern are linked with contamination of an environmental source.
PRN 96-8: Toxicologically Significant Levels of Pesticide Active Ingredients
This notice sets out EPA's interpretation of the term toxicologically significant as it applies to contaminants in pesticide products that are also pesticide active ingredients. It provides risk-based concentration levels of such contaminants.
Kim, Ki-Youn; Ko, Han-Jong; Kim, Hyeon-Tae; Kim, Chi-Nyon; Kim, Yoon-Shin; Roh, Young-Man
2008-04-01
The objective of the study is to demonstrate an effect of manual feeding on the level of farmer's exposure to airborne contaminants in the confinement nursery pig house. The levels of all the airborne contaminants besides respirable dust, total airborne fungi and ammonia were significantly higher in the treated nursery pig house with feeding than the control nursery pig house without feeding. Although there is no significant difference in respirable dust and total airborne fungi between the treatment and the control, their concentrations in the treated nursery pig house were also higher than the control nursery pig house. The result that the level of ammonia in the treated nursery pig house is lower than the control nursery pig house would be reasoned by the mechanism of ammonia generation in the pig house and adsorption property of ammonia to dust particles. In conclusion, manual feeding by farmer increased the exposure level of airborne contaminants compared to no feeding activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kominsky, J.R.; Freyberg, R.W.
A study was conducted to evaluate the potential for asbestos fiber reentrainment during cleaning of carpet contaminated with asbestos. Two types of carpet cleaning equipment were evaluated at two carpet contamination levels. Airborne asbestos concentrations were determined before and during carpet cleaning. Overall, airborne asbestos concentrations were two to four times greater during the carpet cleaning activity. The level of asbestos contamination and the type of cleaning method used had no statistically significant effect on the relative increase of airborne asbestos concentrations during carpet cleaning.
1980-11-01
levels in fish exceed the 5 ppm limit set by the FDA for edible portions of fish. Evidence of human DDT contamination has been found in persons...Contamination of aquatic organisms, results from low levels of DDTR that now exist in water and/or sediment. 5 . Contamination of aquatic organisms also...SOIL, WATER AND OTHER SURFACES 1- 5 3.4 PERSISTENCE IN SOIL 1-7 3.5 WATER SOLUBILITY 1-7 4.0 DDT DEGRADATION IN THE ENVIRONMENT 1-7 4.1 DEGRADATION IN
Thyroid disrupting chemicals: Mechanisms and mixtures
Environmental contaminants are known to act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are xenobiotics that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeostasis, or change circulating o...
Application of WATERSHED ECOLOGICAL RISK ASSESSMENT Methods to Watershed Management
Watersheds are frequently used to study and manage environmental resources because hydrologic boundaries define the flow of contaminants and other stressors. Ecological assessments of watersheds are complex because watersheds typically overlap multiple jurisdictional boundaries,...