The characterization of weighted local hardy spaces on domains and its application.
Wang, Heng-geng; Yang, Xiao-ming
2004-09-01
In this paper, we give the four equivalent characterizations for the weighted local hardy spaces on Lipschitz domains. Also, we give their application for the harmonic function defined in bounded Lipschitz domains.
Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry
Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.
2014-01-01
ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral membrane. While it is known that the PtdSer binding is essential for the PVEER function of TIM-1, TIM-3 shares this binding activity but does not enhance virus entry. No comprehensive studies have been done to characterize the other domains of TIM-1. In this study, using a variety of chimeric proteins and deletion mutants, we define the features necessary for a functional PVEER. With these features in mind, we generated a TIM-1 mimic using functionally similar domains from other proteins. This mimic, like TIM-1, effectively enhanced transduction. These studies provide insight into the key features necessary for PVEERs and will allow for more effective identification of unknown PVEERs. PMID:24696470
Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems.
Williams, Richard A; Timmis, Jon; Qwarnstrom, Eva E
2016-01-01
Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model.
Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems
Timmis, Jon; Qwarnstrom, Eva E.
2016-01-01
Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model. PMID:27571414
Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media
Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...
A framework for joint image-and-shape analysis
NASA Astrophysics Data System (ADS)
Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain
2014-03-01
Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.
Analysis instruments for the performance of Advanced Practice Nursing.
Sevilla-Guerra, Sonia; Zabalegui, Adelaida
2017-11-29
Advanced Practice Nursing has been a reality in the international context for several decades and recently new nursing profiles have been developed in Spain as well that follow this model. The consolidation of these advanced practice roles has also led to of the creation of tools that attempt to define and evaluate their functions. This study aims to identify and explore the existing instruments that enable the domains of Advanced Practice Nursing to be defined. A review of existing international questionnaires and instruments was undertaken, including an analysis of the design process, the domains/dimensions defined, the main results and an exploration of clinimetric properties. Seven studies were analysed but not all proved to be valid, stable or reliable tools. One included tool was able to differentiate between the functions of the general nurse and the advanced practice nurse by the level of activities undertaken within the five domains described. These tools are necessary to evaluate the scope of advanced practice in new nursing roles that correspond to other international models of competencies and practice domains. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Contragenic functions on spheroidal domains
NASA Astrophysics Data System (ADS)
García-Ancona, Raybel; Morais, Joao; Porter, R. Michael
2018-05-01
We construct bases of polynomials for the spaces of square-integrable harmonic functions which are orthogonal to the monogenic and antimonogenic $\\mathbb{R}^3$-valued functions defined in a prolate or oblate spheroid.
McLaughlin, William A; Chen, Ken; Hou, Tingjun; Wang, Wei
2007-01-01
Background Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation. Results Using a new computational method, we have identified 114 groups of domains, referred to as domain assembly units (DASSEM units), in the proteome of budding yeast Saccharomyces cerevisiae. The units participate in many important cellular processes such as transcription regulation, translation initiation, and mRNA splicing. Within the units the domains were found to function in a cooperative manner; and each domain contributed to a different aspect of the unit's overall function. The member domains of DASSEM units were found to be significantly enriched among proteins contained in transcription modules, defined as genes sharing similar expression profiles and presumably similar functions. The observation further confirmed the functional coherence of DASSEM units. The functional linkages of units were found in both functionally characterized and uncharacterized proteins, which enabled the assessment of protein function based on domain composition. Conclusion A new computational method was developed to identify groups of domains that are linked by a common function in the proteome of Saccharomyces cerevisiae. These groups can either lie within individual proteins or span across different proteins. We propose that the functional linkages among the domains within the DASSEM units can be used as a non-homology based tool to annotate uncharacterized proteins. PMID:17937820
The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D
NASA Technical Reports Server (NTRS)
Canuto, Claudio; Tabacco, Anita; Urban, Karsten
1998-01-01
The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.
Molecular Characterization of Caveolin-induced Membrane Curvature*
Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M.; Walser, Piers; Collins, Brett M.; Parton, Robert G.
2015-01-01
The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. PMID:26304117
Molecular Characterization of Caveolin-induced Membrane Curvature.
Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M; Walser, Piers; Collins, Brett M; Parton, Robert G
2015-10-09
The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
On a cost functional for H2/H(infinity) minimization
NASA Technical Reports Server (NTRS)
Macmartin, Douglas G.; Hall, Steven R.; Mustafa, Denis
1990-01-01
A cost functional is proposed and investigated which is motivated by minimizing the energy in a structure using only collocated feedback. Defined for an H(infinity)-norm bounded system, this cost functional also overbounds the H2 cost. Some properties of this cost functional are given, and preliminary results on the procedure for minimizing it are presented. The frequency domain cost functional is shown to have a time domain representation in terms of a Stackelberg non-zero sum differential game.
Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data
NASA Astrophysics Data System (ADS)
Garanzha, V. A.; Kudryavtseva, L. N.
2012-03-01
A method is proposed for the generation of three-dimensional tetrahedral meshes from incomplete, weakly structured, and inconsistent data describing a geometric model. The method is based on the construction of a piecewise smooth scalar function defining the body so that its boundary is the zero isosurface of the function. Such implicit description of three-dimensional domains can be defined analytically or can be constructed from a cloud of points, a set of cross sections, or a "soup" of individual vertices, edges, and faces. By applying Boolean operations over domains, simple primitives can be combined with reconstruction results to produce complex geometric models without resorting to specialized software. Sharp edges and conical vertices on the domain boundary are reproduced automatically without using special algorithms. Refs. 42. Figs. 25.
Dilworth, David; Bonnafous, Pierre; Edoo, Amiirah Bibi; Bourbigot, Sarah; Pesek-Jardim, Francy; Gudavicius, Geoff; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.
2017-01-01
Abstract Prolyl isomerases are defined by a catalytic domain that facilitates the cis–trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets. PMID:29036638
Cross-domain latent space projection for person re-identification
NASA Astrophysics Data System (ADS)
Pu, Nan; Wu, Song; Qian, Li; Xiao, Guoqiang
2018-04-01
In this paper, we research the problem of person re-identification and propose a cross-domain latent space projection (CDLSP) method to address the problems of the absence or insufficient labeled data in the target domain. Under the assumption that the visual features in the source domain and target domain share the similar geometric structure, we transform the visual features from source domain and target domain to a common latent space by optimizing the object function defined in the manifold alignment method. Moreover, the proposed object function takes into account the specific knowledge in the re-id with the aim to improve the performance of re-id under complex situations. Extensive experiments conducted on four benchmark datasets show the proposed CDLSP outperforms or is competitive with stateof- the-art methods for person re-identification.
Pair correlation functions for identifying spatial correlation in discrete domains
NASA Astrophysics Data System (ADS)
Gavagnin, Enrico; Owen, Jennifer P.; Yates, Christian A.
2018-06-01
Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular, and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of spatial correlation in irregular lattices for which recognizing correlation is less intuitive.
Functional CAR models for large spatially correlated functional datasets.
Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S
2016-01-01
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
Opposing interactions between homothorax and Lobe define the ventral eye margin of Drosophila eye
Singh, Amit; Tare, Meghana; Kango-Singh, Madhuri; Son, Won-Seok; Cho, Kyung-Ok; Choi, Kwang-wook
2011-01-01
SUMMARY Patterning in multi-cellular organisms involves progressive restriction of cell fates by generation of boundaries to divide an organ primordium into smaller fields. We have employed the Drosophila eye model to understand the genetic circuitry responsible for defining the boundary between the eye and the head cuticle on the ventral margin. The default state of the early eye is ventral and depends on the function of Lobe (L) and the Notch ligand Serrate (Ser). We identified homothorax (hth) as a strong enhancer of the L mutant phenotype of loss of ventral eye. Hth is a MEIS class gene with a highly conserved Meis-Hth (MH) domain and a homeodomain (HD). Hth is known to bind Extradenticle (Exd) via its MH domain for its nuclear translocation. Loss-of-function of hth, a negative regulator of eye, results in ectopic ventral eye enlargements. This phenotype is complementary to the L mutant phenotype of loss-of-ventral eye. However, if L and hth interact during ventral eye development remains unknown. Here we show that (i) L acts antagonistically to hth, (ii) Hth is upregulated in the L mutant background, and (iii) MH domain of Hth is required for its genetic interaction with L, while its homeodomain is not, (iv) in L mutant background ventral eye suppression function of Hth involves novel MH domain-dependent factor(s), (v) Nuclear localization of Exd is not sufficient to mediate the Hth function in the L mutant background. Further, Exd is not a critical rate-limiting factor for the Hth function. Thus, optimum levels of L and Hth are required to define the boundary between the developing eye and head cuticle on the ventral margin. PMID:21920354
Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.
Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L
2016-02-25
Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.
Unfolding of a temperature-sensitive domain controls voltage-gated channel activation
Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A.; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S.; Minor, Daniel L.
2016-01-01
Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNaV) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNaV CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNaV CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNaV voltage dependencies, and demonstrate that a discrete domain can encode the temperature dependent response of a channel. PMID:26919429
Extension theorems for homogenization on lattice structures
NASA Technical Reports Server (NTRS)
Miller, Robert E.
1992-01-01
When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.
Zhang, Wangshu; Coba, Marcelo P; Sun, Fengzhu
2016-01-11
Protein domains can be viewed as portable units of biological function that defines the functional properties of proteins. Therefore, if a protein is associated with a disease, protein domains might also be associated and define disease endophenotypes. However, knowledge about such domain-disease relationships is rarely available. Thus, identification of domains associated with human diseases would greatly improve our understanding of the mechanism of human complex diseases and further improve the prevention, diagnosis and treatment of these diseases. Based on phenotypic similarities among diseases, we first group diseases into overlapping modules. We then develop a framework to infer associations between domains and diseases through known relationships between diseases and modules, domains and proteins, as well as proteins and disease modules. Different methods including Association, Maximum likelihood estimation (MLE), Domain-disease pair exclusion analysis (DPEA), Bayesian, and Parsimonious explanation (PE) approaches are developed to predict domain-disease associations. We demonstrate the effectiveness of all the five approaches via a series of validation experiments, and show the robustness of the MLE, Bayesian and PE approaches to the involved parameters. We also study the effects of disease modularization in inferring novel domain-disease associations. Through validation, the AUC (Area Under the operating characteristic Curve) scores for Bayesian, MLE, DPEA, PE, and Association approaches are 0.86, 0.84, 0.83, 0.83 and 0.79, respectively, indicating the usefulness of these approaches for predicting domain-disease relationships. Finally, we choose the Bayesian approach to infer domains associated with two common diseases, Crohn's disease and type 2 diabetes. The Bayesian approach has the best performance for the inference of domain-disease relationships. The predicted landscape between domains and diseases provides a more detailed view about the disease mechanisms.
Wall mechanics and exocytosis define the shape of growth domains in fission yeast.
Abenza, Juan F; Couturier, Etienne; Dodgson, James; Dickmann, Johanna; Chessel, Anatole; Dumais, Jacques; Carazo Salas, Rafael E
2015-10-12
The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked.
Wang, Hong-Mei; Xu, Yun-Fei; Ning, Shang-Lei; Yang, Du-Xiao; Li, Yi; Du, Yu-Jie; Yang, Fan; Zhang, Ya; Liang, Nan; Yao, Wei; Zhang, Ling-Li; Gu, Li-Chuan; Gao, Cheng-Jiang; Pang, Qi; Chen, Yu-Xin; Xiao, Kun-Hong; Ma, Rong; Yu, Xiao; Sun, Jin-Peng
2014-09-01
The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.
A Short-Segment Fourier Transform Methodology
2009-03-01
defined sampling of the continuous-valued discrete-time Fourier transform, superresolution in the frequency domain and allowance of Dirac delta functions associated with pure sinusoidal input data components.
Data compression and genomes: a two-dimensional life domain map.
Menconi, Giulia; Benci, Vieri; Buiatti, Marcello
2008-07-21
We define the complexity of DNA sequences as the information content per nucleotide, calculated by means of some Lempel-Ziv data compression algorithm. It is possible to use the statistics of the complexity values of the functional regions of different complete genomes to distinguish among genomes of different domains of life (Archaea, Bacteria and Eukarya). We shall focus on the distribution function of the complexity of non-coding regions. We show that the three domains may be plotted in separate regions within the two-dimensional space where the axes are the skewness coefficient and the curtosis coefficient of the aforementioned distribution. Preliminary results on 15 genomes are introduced.
Stapf, Christopher; Cartwright, Edward; Bycroft, Mark; Hofmann, Kay; Buchberger, Alexander
2011-01-01
Cellular functions of the essential, ubiquitin-selective AAA ATPase p97/valosin-containing protein (VCP) are controlled by regulatory cofactors determining substrate specificity and fate. Most cofactors bind p97 through a ubiquitin regulatory X (UBX) or UBX-like domain or linear sequence motifs, including the hitherto ill defined p97/VCP-interacting motif (VIM). Here, we present the new, minimal consensus sequence RX5AAX2R as a general definition of the VIM that unites a novel family of known and putative p97 cofactors, among them UBXD1 and ZNF744/ANKZF1. We demonstrate that this minimal VIM consensus sequence is necessary and sufficient for p97 binding. Using NMR chemical shift mapping, we identified several residues of the p97 N-terminal domain (N domain) that are critical for VIM binding. Importantly, we show that cellular stress resistance conferred by the yeast VIM-containing cofactor Vms1 depends on the physical interaction between its VIM and the critical N domain residues of the yeast p97 homolog, Cdc48. Thus, the VIM-N domain interaction characterized in this study is required for the physiological function of Vms1 and most likely other members of the newly defined VIM family of cofactors. PMID:21896481
Erazo-Oliveras, Alfredo; Fuentes, Natividad R; Wright, Rachel C; Chapkin, Robert S
2018-06-02
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Local, smooth, and consistent Jacobi set simplification
Bhatia, Harsh; Wang, Bei; Norgard, Gregory; ...
2014-10-31
The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lackmore » fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).« less
Nie, Zhongzhen; Hirsch, Dianne S; Luo, Ruibai; Jian, Xiaoying; Stauffer, Stacey; Cremesti, Aida; Andrade, Josefa; Lebowitz, Jacob; Marino, Michael; Ahvazi, Bijan; Hinshaw, Jenny E; Randazzo, Paul A
2006-01-24
Arf GAPs are multidomain proteins that function in membrane traffic by inactivating the GTP binding protein Arf1. Numerous Arf GAPs contain a BAR domain, a protein structural element that contributes to membrane traffic by either inducing or sensing membrane curvature. We have examined the role of a putative BAR domain in the function of the Arf GAP ASAP1. ASAP1's N terminus, containing the putative BAR domain together with a PH domain, dimerized to form an extended structure that bound to large unilamellar vesicles containing acidic phospholipids, properties that define a BAR domain. A recombinant protein containing the BAR domain of ASAP1, together with the PH and Arf GAP domains, efficiently bent the surface of large unilamellar vesicles, resulting in the formation of tubular structures. This activity was regulated by Arf1*GTP binding to the Arf GAP domain. In vivo, the tubular structures induced by ASAP1 mutants contained epidermal growth factor receptor (EGFR) and Rab11, and ASAP1 colocalized in tubular structures with EGFR during recycling of receptor. Expression of ASAP1 accelerated EGFR trafficking and slowed cell spreading. An ASAP1 mutant lacking the BAR domain had no effect. The N-terminal BAR domain of ASAP1 mediates membrane bending and is necessary for ASAP1 function. The Arf dependence of the bending activity is consistent with ASAP1 functioning as an Arf effector.
Crane, Paul K; Trittschuh, Emily; Mukherjee, Shubhabrata; Saykin, Andrew J; Sanders, R Elizabeth; Larson, Eric B; McCurry, Susan M; McCormick, Wayne; Bowen, James D; Grabowski, Thomas; Moore, Mackenzie; Bauman, Julianna; Gross, Alden L; Keene, C Dirk; Bird, Thomas D; Gibbons, Laura E; Mez, Jesse
2017-12-01
There may be biologically relevant heterogeneity within typical late-onset Alzheimer's dementia. We analyzed cognitive data from people with incident late-onset Alzheimer's dementia from a prospective cohort study. We determined individual averages across memory, visuospatial functioning, language, and executive functioning. We identified domains with substantial impairments relative to that average. We compared demographic, neuropathology, and genetic findings across groups defined by relative impairments. During 32,286 person-years of follow-up, 869 people developed Alzheimer's dementia. There were 393 (48%) with no domain with substantial relative impairments. Some participants had isolated relative impairments in memory (148, 18%), visuospatial functioning (117, 14%), language (71, 9%), and executive functioning (66, 8%). The group with isolated relative memory impairments had higher proportions with ≥ APOE ε4 allele, more extensive Alzheimer's-related neuropathology, and higher proportions with other Alzheimer's dementia genetic risk variants. A cognitive subgrouping strategy may identify biologically distinct subsets of people with Alzheimer's dementia. Copyright © 2017 the Alzheimer's Association. All rights reserved.
Defining functional distance using manifold embeddings of gene ontology annotations
Lerman, Gilad; Shakhnovich, Boris E.
2007-01-01
Although rigorous measures of similarity for sequence and structure are now well established, the problem of defining functional relationships has been particularly daunting. Here, we present several manifold embedding techniques to compute distances between Gene Ontology (GO) functional annotations and consequently estimate functional distances between protein domains. To evaluate accuracy, we correlate the functional distance to the well established measures of sequence, structural, and phylogenetic similarities. Finally, we show that manual classification of structures into folds and superfamilies is mirrored by proximity in the newly defined function space. We show how functional distances place structure–function relationships in biological context resulting in insight into divergent and convergent evolution. The methods and results in this paper can be readily generalized and applied to a wide array of biologically relevant investigations, such as accuracy of annotation transference, the relationship between sequence, structure, and function, or coherence of expression modules. PMID:17595300
A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties
Murphy, James M.; Zhang, Qingwei; Young, Samuel N.; Reese, Michael L.; Bailey, Fiona P.; Eyers, Patrick A.; Ungureanu, Daniela; Hammaren, Henrik; Silvennoinen, Olli; Varghese, Leila N.; Chen, Kelan; Tripaydonis, Anne; Jura, Natalia; Fukuda, Koichi; Qin, Jun; Nimchuk, Zachary; Mudgett, Mary Beth; Elowe, Sabine; Gee, Christine L.; Liu, Ling; Daly, Roger J.; Manning, Gerard; Babon, Jeffrey J.; Lucet, Isabelle S.
2017-01-01
Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains. PMID:24107129
Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet
2014-10-01
JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.
Taha; Siddiqui, K S; Campanaro, S; Najnin, T; Deshpande, N; Williams, T J; Aldrich-Wright, J; Wilkins, M; Curmi, P M G; Cavicchioli, R
2016-09-01
TRAM domain proteins present in Archaea and Bacteria have a β-barrel shape with anti-parallel β-sheets that form a nucleic acid binding surface; a structure also present in cold shock proteins (Csps). Aside from protein structures, experimental data defining the function of TRAM domains is lacking. Here, we explore the possible functional properties of a single TRAM domain protein, Ctr3 (cold-responsive TRAM domain protein 3) from the Antarctic archaeon Methanococcoides burtonii that has increased abundance during low temperature growth. Ribonucleic acid (RNA) bound by Ctr3 in vitro was determined using RNA-seq. Ctr3-bound M. burtonii RNA with a preference for transfer (t)RNA and 5S ribosomal RNA, and a potential binding motif was identified. In tRNA, the motif represented the C loop; a region that is conserved in tRNA from all domains of life and appears to be solvent exposed, potentially providing access for Ctr3 to bind. Ctr3 and Csps are structurally similar and are both inferred to function in low temperature translation. The broad representation of single TRAM domain proteins within Archaea compared with their apparent absence in Bacteria, and scarcity of Csps in Archaea but prevalence in Bacteria, suggests they represent distinct evolutionary lineages of functionally equivalent RNA-binding proteins. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Mapping Interactions between Myosin Relay and Converter Domains That Power Muscle Function*
Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.
2014-01-01
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle. PMID:24627474
Sinars, Cindy R.; Cheung-Flynn, Joyce; Rimerman, Ronald A.; Scammell, Jonathan G.; Smith, David F.; Clardy, Jon
2003-01-01
The ability to bind immunosuppressive drugs such as cyclosporin and FK506 defines the immunophilin family of proteins, and the FK506-binding proteins form the FKBP subfamily of immunophilins. Some FKBPs, notably FKBP12 (the 12-kDa FK506-binding protein), have defined roles in regulating ion channels or cell signaling, and well established structures. Other FKBPs, especially the larger ones, participate in important biological processes, but their exact roles and the structural bases for these roles are poorly defined. FKBP51 (the 51-kDa FKBP) associates with heat shock protein 90 (Hsp90) and appears in functionally mature steroid receptor complexes. In New World monkeys, FKBP51 has been implicated in cortisol resistance. We report here the x-ray structures of human FKBP51, to 2.7 Å, and squirrel monkey FKBP51, to 2.8 Å, by using multiwavelength anomalous dispersion phasing. FKBP51 is composed of three domains: two consecutive FKBP domains and a three-unit repeat of the TPR (tetratricopeptide repeat) domain. This structure of a multi-FKBP domain protein clarifies the arrangement of these domains and their possible interactions with other proteins. The two FKBP domains differ by an insertion in the second that affects the formation of the progesterone receptor complex. PMID:12538866
Clifton, Molly K.; Westman, Belinda J.; Thong, Sock Yue; O’Connell, Mitchell R.; Webster, Michael W.; Shepherd, Nicholas E.; Quinlan, Kate G.; Crossley, Merlin; Blobel, Gerd A.; Mackay, Joel P.
2014-01-01
FOG1 is a transcriptional regulator that acts in concert with the hematopoietic master regulator GATA1 to coordinate the differentiation of platelets and erythrocytes. Despite considerable effort, however, the mechanisms through which FOG1 regulates gene expression are only partially understood. Here we report the discovery of a previously unrecognized domain in FOG1: a PR (PRD-BF1 and RIZ) domain that is distantly related in sequence to the SET domains that are found in many histone methyltransferases. We have used NMR spectroscopy to determine the solution structure of this domain, revealing that the domain shares close structural similarity with SET domains. Titration with S-adenosyl-L-homocysteine, the cofactor product synonymous with SET domain methyltransferase activity, indicated that the FOG PR domain is not, however, likely to function as a methyltransferase in the same fashion. We also sought to define the function of this domain using both pulldown experiments and gel shift assays. However, neither pulldowns from mammalian nuclear extracts nor yeast two-hybrid assays reproducibly revealed binding partners, and we were unable to detect nucleic-acid-binding activity in this domain using our high-diversity Pentaprobe oligonucleotides. Overall, our data demonstrate that FOG1 is a member of the PRDM (PR domain containing proteins, with zinc fingers) family of transcriptional regulators. The function of many PR domains, however, remains somewhat enigmatic for the time being. PMID:25162672
NASA Astrophysics Data System (ADS)
Kaindl, T.; Oelke, J.; Pasc, A.; Kaufmann, S.; Konovalov, O. V.; Funari, S. S.; Engel, U.; Wixforth, A.; Tanaka, M.
2010-07-01
Highly uniform, strongly correlated domains of synthetically designed lipids can be incorporated into supported lipid membranes. The systematic characterization of membranes displaying a variety of domains revealed that the equilibrium size of domains significantly depends on the length of fluorocarbon chains, which can be quantitatively interpreted within the framework of an equivalent dipole model. A mono-dispersive, narrow size distribution of the domains enables us to treat the inter-domain correlations as two-dimensional colloidal crystallization and calculate the potentials of mean force. The obtained results demonstrated that both size and inter-domain correlation can precisely be controlled by the molecular structures. By coupling α-D-mannose to lipid head groups, we studied the adhesion behavior of the murine macrophage (J774A.1) on supported membranes. Specific adhesion and spreading of macrophages showed a clear dependence on the density of functional lipids. The obtained results suggest that such synthetic lipid domains can be used as a defined platform to study how cells sense the size and distribution of functional molecules during adhesion and spreading.
Emergence of novel domains in proteins
2013-01-01
Background Proteins are composed of a combination of discrete, well-defined, sequence domains, associated with specific functions that have arisen at different times during evolutionary history. The emergence of novel domains is related to protein functional diversification and adaptation. But currently little is known about how novel domains arise and how they subsequently evolve. Results To gain insights into the impact of recently emerged domains in protein evolution we have identified all human young protein domains that have emerged in approximately the past 550 million years. We have classified them into vertebrate-specific and mammalian-specific groups, and compared them to older domains. We have found 426 different annotated young domains, totalling 995 domain occurrences, which represent about 12.3% of all human domains. We have observed that 61.3% of them arose in newly formed genes, while the remaining 38.7% are found combined with older domains, and have very likely emerged in the context of a previously existing protein. Young domains are preferentially located at the N-terminus of the protein, indicating that, at least in vertebrates, novel functional sequences often emerge there. Furthermore, young domains show significantly higher non-synonymous to synonymous substitution rates than older domains using human and mouse orthologous sequence comparisons. This is also true when we compare young and old domains located in the same protein, suggesting that recently arisen domains tend to evolve in a less constrained manner than older domains. Conclusions We conclude that proteins tend to gain domains over time, becoming progressively longer. We show that many proteins are made of domains of different age, and that the fastest evolving parts correspond to the domains that have been acquired more recently. PMID:23425224
Betson, Martha; Settleman, Jeffrey
2007-08-01
The Rho GTPases interact with multiple downstream effectors to exert their biological functions, which include important roles in tissue morphogenesis during the development of multicellular organisms. Among the Rho effectors are the protein kinase N (PKN) proteins, which are protein kinase C (PKC)-like kinases that bind activated Rho GTPases. The PKN proteins are well conserved evolutionarily, but their biological role in any organism is poorly understood. We previously determined that the single Drosophila ortholog of mammalian PKN proteins, Pkn, is a Rho/Rac-binding kinase essential for Drosophila development. By performing "rescue" studies with various Pkn mutant constructs, we have defined the domains of Pkn required for its role during Drosophila development. These studies suggested that Rho, but not Rac binding is important for Pkn function in development. In addition, we determined that the kinase domain of PKC53E, a PKC family kinase, can functionally substitute for the kinase domain of Pkn during development, thereby exemplifying the evolutionary strategy of "combining" functional domains to produce proteins with distinct biological activities. Interestingly, we also identified a requirement for Pkn in wing morphogenesis, thereby revealing the first postembryonic function for Pkn.
Oyola-Robles, Delise; Gay, Darren C; Trujillo, Uldaeliz; Sánchez-Parés, John M; Bermúdez, Mei-Ling; Rivera-Díaz, Mónica; Carballeira, Néstor M; Baerga-Ortiz, Abel
2013-07-01
Polyunsaturated fatty acids (PUFAs) are made in some strains of deep-sea bacteria by multidomain proteins that catalyze condensation, ketoreduction, dehydration, and enoyl-reduction. In this work, we have used the Udwary-Merski Algorithm sequence analysis tool to define the boundaries that enclose the dehydratase (DH) domains in a PUFA multienzyme. Sequence analysis revealed the presence of four areas of high structure in a region that was previously thought to contain only two DH domains as defined by FabA-homology. The expression of the protein fragment containing all four protein domains resulted in an active enzyme, while shorter protein fragments were not soluble. The tetradomain fragment was capable of catalyzing the conversion of crotonyl-CoA to β-hydroxybutyryl-CoA efficiently, as shown by UV absorbance change as well as by chromatographic retention of reaction products. Sequence alignments showed that the two novel domains contain as much sequence conservation as the FabA-homology domains, suggesting that they too may play a functional role in the overall reaction. Structure predictions revealed that all domains belong to the hotdog protein family: two of them contain the active site His70 residue present in FabA-like DHs, while the remaining two do not. Replacing the active site His residues in both FabA domains for Ala abolished the activity of the tetradomain fragment, indicating that the DH activity is contained within the FabA-homology regions. Taken together, these results provide a first glimpse into a rare arrangement of DH domains which constitute a defining feature of the PUFA synthases. Copyright © 2013 The Protein Society.
Oyola-Robles, Delise; Gay, Darren C; Trujillo, Uldaeliz; Sánchez-Parés, John M; Bermúdez, Mei-Ling; Rivera-Díaz, Mónica; Carballeira, Néstor M; Baerga-Ortiz, Abel
2013-01-01
Polyunsaturated fatty acids (PUFAs) are made in some strains of deep-sea bacteria by multidomain proteins that catalyze condensation, ketoreduction, dehydration, and enoyl-reduction. In this work, we have used the Udwary-Merski Algorithm sequence analysis tool to define the boundaries that enclose the dehydratase (DH) domains in a PUFA multienzyme. Sequence analysis revealed the presence of four areas of high structure in a region that was previously thought to contain only two DH domains as defined by FabA-homology. The expression of the protein fragment containing all four protein domains resulted in an active enzyme, while shorter protein fragments were not soluble. The tetradomain fragment was capable of catalyzing the conversion of crotonyl-CoA to β-hydroxybutyryl-CoA efficiently, as shown by UV absorbance change as well as by chromatographic retention of reaction products. Sequence alignments showed that the two novel domains contain as much sequence conservation as the FabA-homology domains, suggesting that they too may play a functional role in the overall reaction. Structure predictions revealed that all domains belong to the hotdog protein family: two of them contain the active site His70 residue present in FabA-like DHs, while the remaining two do not. Replacing the active site His residues in both FabA domains for Ala abolished the activity of the tetradomain fragment, indicating that the DH activity is contained within the FabA-homology regions. Taken together, these results provide a first glimpse into a rare arrangement of DH domains which constitute a defining feature of the PUFA synthases. PMID:23696301
Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program
Foti, Rossana; Gnan, Stefano; Cornacchia, Daniela; Dileep, Vishnu; Bulut-Karslioglu, Aydan; Diehl, Sarah; Buness, Andreas; Klein, Felix A.; Huber, Wolfgang; Johnstone, Ewan; Loos, Remco; Bertone, Paul; Gilbert, David M.; Manke, Thomas; Jenuwein, Thomas; Buonomo, Sara C.B.
2016-01-01
Summary DNA replication is temporally and spatially organized in all eukaryotes, yet the molecular control and biological function of the replication-timing program are unclear. Rif1 is required for normal genome-wide regulation of replication timing, but its molecular function is poorly understood. Here we show that in mouse embryonic stem cells, Rif1 coats late-replicating domains and, with Lamin B1, identifies most of the late-replicating genome. Rif1 is an essential determinant of replication timing of non-Lamin B1-bound late domains. We further demonstrate that Rif1 defines and restricts the interactions between replication-timing domains during the G1 phase, thereby revealing a function of Rif1 as organizer of nuclear architecture. Rif1 loss affects both number and replication-timing specificity of the interactions between replication-timing domains. In addition, during the S phase, Rif1 ensures that replication of interacting domains is temporally coordinated. In summary, our study identifies Rif1 as the molecular link between nuclear architecture and replication-timing establishment in mammals. PMID:26725008
Decomposition of Proteins into Dynamic Units from Atomic Cross-Correlation Functions.
Calligari, Paolo; Gerolin, Marco; Abergel, Daniel; Polimeno, Antonino
2017-01-10
In this article, we present a clustering method of atoms in proteins based on the analysis of the correlation times of interatomic distance correlation functions computed from MD simulations. The goal is to provide a coarse-grained description of the protein in terms of fewer elements that can be treated as dynamically independent subunits. Importantly, this domain decomposition method does not take into account structural properties of the protein. Instead, the clustering of protein residues in terms of networks of dynamically correlated domains is defined on the basis of the effective correlation times of the pair distance correlation functions. For these properties, our method stands as a complementary analysis to the customary protein decomposition in terms of quasi-rigid, structure-based domains. Results obtained for a prototypal protein structure illustrate the approach proposed.
Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain
Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona
2016-01-01
Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368
Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.
Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona
2016-04-01
Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.
Derivative Sign Patterns in Two Dimensions
ERIC Educational Resources Information Center
Schilling, Kenneth
2013-01-01
Given a function defined on a subset of the plane whose partial derivatives never change sign, the signs of the partial derivatives form a two-dimensional pattern. We explore what patterns are possible for various planar domains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcucci, Katherine T.; Kellogg School of Science and Technology, Scripps Research Institute, La Jolla, CA, 92037; Martina, Yuri
2008-06-05
The porcine endogenous retrovirus (PERV) Gag protein contains two late (L) domain motifs, PPPY and P(F/S)AP. Using viral release assays we demonstrate that PPPY is the dominant L domain involved in PERV release. PFAP represents a novel retroviral L domain variant and is defined by abnormal viral assembly phenotypes visualized by electron microscopy and attenuation of early PERV release as measured by viral genomes. PSAP is functionally dominant over PFAP in early PERV release. PSAP virions are 3.5-fold more infectious in vitro by TCID{sub 50} and in vivo results in more RNA positive tissues and higher levels of proviral DNAmore » using our human PERV-A receptor (HuPAR-2) transgenic mouse model [Martina, Y., Marcucci, K.T., Cherqui, S., Szabo, A., Drysdale, T., Srinivisan, U., Wilson, C.A., Patience, C., Salomon, D.R., 2006. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J. Virol. 80 (7), 3135-3146]. The functional hierarchies displayed by PERV L domains, demonstrates that L domain selection in viral evolution exists to promote efficient viral assembly, release and infectivity in the virus-host context.« less
On the maximum-entropy/autoregressive modeling of time series
NASA Technical Reports Server (NTRS)
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
Robakis, Thalia; Bak, Beata; Lin, Shu-huei; Bernard, Daniel J.; Scheiffele, Peter
2008-01-01
Precursor proteolysis is a crucial mechanism for regulating protein structure and function. Signal peptidase (SP) is an enzyme with a well defined role in cleaving N-terminal signal sequences but no demonstrated function in the proteolysis of cellular precursor proteins. We provide evidence that SP mediates intraprotein cleavage of IgSF1, a large cellular Ig domain protein that is processed into two separate Ig domain proteins. In addition, our results suggest the involvement of signal peptide peptidase (SPP), an intramembrane protease, which acts on substrates that have been previously cleaved by SP. We show that IgSF1 is processed through sequential proteolysis by SP and SPP. Cleavage is directed by an internal signal sequence and generates two separate Ig domain proteins from a polytopic precursor. Our findings suggest that SP and SPP function are not restricted to N-terminal signal sequence cleavage but also contribute to the processing of cellular transmembrane proteins. PMID:18981173
Comparison of specificity and information for fuzzy domains
NASA Technical Reports Server (NTRS)
Ramer, Arthur
1992-01-01
This paper demonstrates how an integrated theory can be built on the foundation of possibility theory. Information and uncertainty were considered in 'fuzzy' literature since 1982. Our departing point is the model proposed by Klir for the discrete case. It was elaborated axiomatically by Ramer, who also introduced the continuous model. Specificity as a numerical function was considered mostly within Dempster-Shafer evidence theory. An explicity definition was given first by Yager, who has also introduced it in the context of possibility theory. Axiomatic approach and the continuous model have been developed very recently by Ramer and Yager. They also establish a close analytical correspondence between specificity and information. In literature to date, specificity and uncertainty are defined only for the discrete finite domains, with a sole exception. Our presentation removes these limitations. We define specificity measures for arbitrary measurable domains.
Gajewska, B; Kamińska, J; Jesionowska, A; Martin, N C; Hopper, A K; Zoładek, T
2001-01-01
Rsp5p, ubiquitin-protein ligase, an enzyme of the ubiquitination pathway, contains three WW domains that mediate protein-protein interactions. To determine if these domains adapt Rsp5p to a subset of substrates involved in numerous cellular processes, we generated mutations in individual or combinations of the WW domains. The rsp5-w1, rsp5-w2, and rsp5-w3 mutant alleles complement RSP5 deletions at 30 degrees. Thus, individual WW domains are not essential. Each rsp5-w mutation caused temperature-sensitive growth. Among variants with mutations in multiple WW domains, only rsp5-w1w2 complemented the deletion. Thus, the WW3 domain is sufficient for Rsp5p essential functions. To determine whether rsp5-w mutations affect endocytosis, fluid phase and uracil permease (Fur4p) endocytosis was examined. The WW3 domain is important for both processes. WW2 appears not to be important for fluid phase endocytosis whereas it is important for Fur4p endocytosis. In contrast, the WW1 domain affects fluid phase endocytosis, but it does not appear to function in Fur4p endocytosis. Thus, various WW domains play different roles in the endocytosis of these two substrates. Rsp5p is located in the cytoplasm in a punctate pattern that does not change during the cell cycle. Altering WW domains does not change the location of Rsp5p.
Gajewska, B; Kamińska, J; Jesionowska, A; Martin, N C; Hopper, A K; Zoładek, T
2001-01-01
Rsp5p, ubiquitin-protein ligase, an enzyme of the ubiquitination pathway, contains three WW domains that mediate protein-protein interactions. To determine if these domains adapt Rsp5p to a subset of substrates involved in numerous cellular processes, we generated mutations in individual or combinations of the WW domains. The rsp5-w1, rsp5-w2, and rsp5-w3 mutant alleles complement RSP5 deletions at 30 degrees. Thus, individual WW domains are not essential. Each rsp5-w mutation caused temperature-sensitive growth. Among variants with mutations in multiple WW domains, only rsp5-w1w2 complemented the deletion. Thus, the WW3 domain is sufficient for Rsp5p essential functions. To determine whether rsp5-w mutations affect endocytosis, fluid phase and uracil permease (Fur4p) endocytosis was examined. The WW3 domain is important for both processes. WW2 appears not to be important for fluid phase endocytosis whereas it is important for Fur4p endocytosis. In contrast, the WW1 domain affects fluid phase endocytosis, but it does not appear to function in Fur4p endocytosis. Thus, various WW domains play different roles in the endocytosis of these two substrates. Rsp5p is located in the cytoplasm in a punctate pattern that does not change during the cell cycle. Altering WW domains does not change the location of Rsp5p. PMID:11139494
Binder, Julia C; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F; Jäncke, Lutz; Martin, Mike
2015-01-01
Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly.
Binder, Julia C.; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F.; Jäncke, Lutz; Martin, Mike
2015-01-01
Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly. PMID:26257643
A mathematical function to evaluate surgical complexity of cleft lip and palate.
Ortiz-Posadas, M R; Vega-Alvarado, L; Toni, B
2009-06-01
The objective of this work is to show the modeling of a similarity function adapted to the medical environment using the logical-combinatorial approach of pattern recognition theory, and its application comparing the condition of patients with congenital malformations in the lip and/or palate, which are called cleft-primary palate and/or cleft-secondary palate, respectively. The similarity function is defined by the comparison criteria determined for each variable, taking into account their type (qualitative or quantitative), their domain and their initial space representation. In all, we defined 18 variables, with their domains and six different comparison criteria (fuzzy and absolute difference type). The model includes, further, the importance of every variable as well as a weight which reflects the surgical complexity of the cleft. Likewise, the usefulness of this function is shown by calculating the similarity among three patients. This work was developed jointly with the Cleft Palate Team at the Reconstructive Surgery Service of the Pediatric Hospital of Tacubaya, which belongs to the Health Institute of the Federal District in Mexico City.
Differential diagnosis of adults with ADHD: the role of executive function and self-regulation.
Barkley, Russell A
2010-07-01
Adult ADHD is conceptualized as a disorder of age-inappropriate behavior that occurs because of maldevelopment of 2 related neuropsychological domains. The neuropsychological symptoms seen in adults with ADHD may be explained by deficits in executive function, which can be broadly defined as a set of neurocognitive processes that allow for the organization of behavior across time so as to attain future goals. Executive function is comprised of 2 broad domains: inhibition and metacognition. Inhibition encompasses the ability to inhibit motor, verbal, cognitive, and emotional activities. In turn, deficits in inhibition contribute to deficits in the development of 4 aspects of executive function in the domain of metacognition, which include nonverbal working memory, verbal working memory, planning and problem-solving, and emotional self-regulation. Understanding the ways in which deficits in executive function contribute to the symptoms of ADHD can help in differentiating ADHD from disorders that share similar characteristics. (c) Copyright 2010 Physicians Postgraduate Press, Inc.
Future Roles for Autonomous Vertical Lift in Disaster Relief and Emergency Response
NASA Technical Reports Server (NTRS)
Young, Larry A.
2006-01-01
System analysis concepts are applied to the assessment of potential collaborative contributions of autonomous system and vertical lift (a.k.a. rotorcraft, VTOL, powered-lift, etc.) technologies to the important, and perhaps underemphasized, application domain of disaster relief and emergency response. In particular, an analytic framework is outlined whereby system design functional requirements for an application domain can be derived from defined societal good goals and objectives.
CERT Research Annual Report 2009
2009-01-01
Domain Name System (DNS), which maps names to IP addresses, is a vital component of the Internet. Nearly every transaction on the Internet begins by...many different ASNs (Autonomous System Numbers, which map to Internet Service Providers) there are. If there are more than 20, then it is extremely...functions, that is, mappings from their domains to ranges, or inputs to outputs. These mappings are pre-defined as a starting point for the FX
Structural classification of small, disulfide-rich protein domains.
Cheek, Sara; Krishna, S Sri; Grishin, Nick V
2006-05-26
Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.
Molecular basis of splotch and Waardenburg Pax-3 mutations.
Chalepakis, G; Goulding, M; Read, A; Strachan, T; Gruss, P
1994-01-01
Pax genes control certain aspects of development, as mutations result in (semi)dominant defects apparent during embryogenesis. Pax-3 has been associated with the mouse mutant splotch (Sp) and the human Waardenburg syndrome type 1 (WS1). We have examined the molecular basis of splotch and WS1 by studying the effect of mutations on DNA binding, using a defined target sequence. Pax-3 contains two different types of functional DNA-binding domains, a paired domain and a homeodomain. Mutational analysis of Pax-3 reveals different modes of DNA binding depending on the presence of these domains. A segment of Pax-3 located between the two DNA-binding domains, including a conserved octapeptide, participates in protein homodimerization. Pax-3 mutations found in splotch alleles and WS1 individuals change DNA binding and, in the case of a protein product of the Sp allele, dimerization. These findings were taken as a basis to define the molecular nature of the mutants. Images PMID:7909605
Structural and functional analysis of the YAP-binding domain of human TEAD2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.
2010-06-15
The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helixmore » inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.« less
Psychosocial functioning in the context of diagnosis: assessment and theoretical issues.
Ro, Eunyoe; Clark, Lee Anna
2009-09-01
Psychosocial functioning is an important focus of attention in the revision of the Diagnostic and Statistical Manual of Mental Disorders. Researchers and clinicians are converging upon the opinion that psychometrically strong, comprehensive assessment of individuals' functioning is needed to characterize disorder fully. Also shared is the realization that existing theory and research in this domain have critical shortcomings. The authors urge that the field reexamine the empirical evidence and address theoretical issues to guide future development of the construct and its measurement. The authors first discuss several theoretical issues relevant to the conceptualization and assessment of functioning: (a) definitions of functioning, (b) the role of functioning in defining disorder, and (c) understanding functioning within environmental contexts. The authors then present data regarding empirical domains of psychosocial functioning and their interrelations. Self-reported data on multiple domains of psychosocial functioning were collected from 429 participants. Factor-analytic results (promax rotation) suggest a 4-factor structure of psychosocial functioning: Well-Being, Basic Functioning, Self-Mastery, and Interpersonal and Social Relationships. Finally, the authors propose an integration of theory and empirical findings, which they believe will better incorporate psychosocial functioning into future diagnostic systems. Copyright 2009 APA, all rights reserved.
The evolution of function within the Nudix homology clan
Srouji, John R.; Xu, Anting; Park, Annsea; Kirsch, Jack F.
2017-01-01
ABSTRACT The Nudix homology clan encompasses over 80,000 protein domains from all three domains of life, defined by homology to each other. Proteins with a domain from this clan fall into four general functional classes: pyrophosphohydrolases, isopentenyl diphosphate isomerases (IDIs), adenine/guanine mismatch‐specific adenine glycosylases (A/G‐specific adenine glycosylases), and nonenzymatic activities such as protein/protein interaction and transcriptional regulation. The largest group, pyrophosphohydrolases, encompasses more than 100 distinct hydrolase specificities. To understand the evolution of this vast number of activities, we assembled and analyzed experimental and structural data for 205 Nudix proteins collected from the literature. We corrected erroneous functions or provided more appropriate descriptions for 53 annotations described in the Gene Ontology Annotation database in this family, and propose 275 new experimentally‐based annotations. We manually constructed a structure‐guided sequence alignment of 78 Nudix proteins. Using the structural alignment as a seed, we then made an alignment of 347 “select” Nudix homology domains, curated from structurally determined, functionally characterized, or phylogenetically important Nudix domains. Based on our review of Nudix pyrophosphohydrolase structures and specificities, we further analyzed a loop region downstream of the Nudix hydrolase motif previously shown to contact the substrate molecule and possess known functional motifs. This loop region provides a potential structural basis for the functional radiation and evolution of substrate specificity within the hydrolase family. Finally, phylogenetic analyses of the 347 select protein domains and of the complete Nudix homology clan revealed general monophyly with regard to function and a few instances of probable homoplasy. Proteins 2017; 85:775–811. © 2016 Wiley Periodicals, Inc. PMID:27936487
Hybrid and Rogue Kinases Encoded in the Genomes of Model Eukaryotes
Rakshambikai, Ramaswamy; Gnanavel, Mutharasu; Srinivasan, Narayanaswamy
2014-01-01
The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes–S.cerevisiae, D. melanogaster, C.elegans, M.musculus, T.rubripes and H.sapiens–and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P.falciparum sheds light on possible strategies in host-pathogen interactions. PMID:25255313
Wind-instrument reflection function measurements in the time domain.
Keefe, D H
1996-04-01
Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.
Structural genomics reveals EVE as a new ASCH/PUA-related domain
Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Forouhar, Farhad; Zhou, Weihong; Kuzin, Alexander P.; Seetharaman, Jayaraman; Abashidze, Mariam; Ramelot, Theresa A.; Kennedy, Michael A.; Cort, John R.; Belachew, Adam; Hunt, John F.; Tong, Liang; Montelione, Gaetano T.; Rost, Burkhard
2014-01-01
Summary We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links. PMID:19191354
Structural Genomics Reveals EVE as a New ASCH/PUA-Related Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertonati, C.; Punta, M; Fischer, M
2008-01-01
We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE.more » Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links.« less
Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.
1994-11-01
A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less
Fast and accurate fitting and filtering of noisy exponentials in Legendre space.
Bao, Guobin; Schild, Detlev
2014-01-01
The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters.
Bradley, Michael J.; Chivers, Peter T.; Baker, Nathan A.
2008-01-01
Summary E. coliNikR is a homotetrameric Ni2+- and DNA-binding protein that functions as a transcriptional repressor of the NikABCDE nickel permease. The protein is composed of 2 distinct domains. The N-terminal fifty amino acids of each chain forms part of the dimeric ribbon-helix-helix (RHH) domains, a well-studied DNA-binding fold. The eighty-three residue C-terminal nickel-binding domain forms an ACT-fold and contains the tetrameric interface. In this study, we have utilized an equilibrium molecular dynamics (MD) simulation in order to explore the conformational dynamics of the NikR tetramer and determine important residue interactions within and between the RHH and ACT domains to gain insight into the effects of Ni on DNA-binding activity. The molecular simulation data was analyzed using two different correlation measures based on fluctuations in atomic position and non-covalent contacts, together with a clustering algorithm to define groups of residues with similar correlation patterns for both types of correlation measure. Based on these analyses, we have defined a series of residue interrelationships that describe an allosteric communication pathway between the Ni2+ and DNA binding sites, which are separated by 40 Å. Several of the residues identified by our analyses have been previously shown experimentally to be important for NikR function. An additional subset of the identified residues structurally connects the experimentally implicated residues and may help coordinate the allosteric communication between the ACT and RHH domains. PMID:18433769
A Perikinetochoric Ring Defined by MCAK and Aurora-B as a Novel Centromere Domain
Parra, María Teresa; Gómez, Rocío; Viera, Alberto; Page, Jesús; Calvente, Adela; Wordeman, Linda; Rufas, Julio S; Suja, José A
2006-01-01
Mitotic Centromere-Associated Kinesin (MCAK) is a member of the kinesin-13 subfamily of kinesin-related proteins. In mitosis, this microtubule-depolymerising kinesin seems to be implicated in chromosome segregation and in the correction of improper kinetochore-microtubule interactions, and its activity is regulated by the Aurora-B kinase. However, there are no published data on its behaviour and function during mammalian meiosis. We have analysed by immunofluorescence in squashed mouse spermatocytes, the distribution and possible function of MCAK, together with Aurora-B, during both meiotic divisions. Our results demonstrate that MCAK and Aurora-B colocalise at the inner domain of metaphase I centromeres. Thus, MCAK shows a “cone”-like three-dimensional distribution beneath and surrounding the closely associated sister kinetochores. During the second meiotic division, MCAK and Aurora-B also colocalise at the inner centromere domain as a band that joins sister kinetochores, but only during prometaphase II in unattached chromosomes. During chromosome congression to the metaphase II plate, MCAK relocalises and appears as a ring below each sister kinetochore. Aurora-B also relocalises to appear as a ring surrounding and beneath kinetochores but during late metaphase II. Our results demonstrate that the redistribution of MCAK at prometaphase II/metaphase II centromeres depends on tension across the centromere and/or on the interaction of microtubules with kinetochores. We propose that the perikinetochoric rings of MCAK and Aurora-B define a novel transient centromere domain at least in mouse chromosomes during meiosis. We discuss the possible functions of MCAK at the inner centromere domain and at the perikinetochoric ring during both meiotic divisions. PMID:16741559
Dependence as a unifying construct in defining Alzheimer’s disease severity
McLaughlin, Trent; Feldman, Howard; Fillit, Howard; Sano, Mary; Schmitt, Frederick; Aisen, Paul; Leibman, Christopher; Mucha, Lisa; Ryan, J. Michael; Sullivan, Sean D.; Spackman, D. Eldon; Neumann, Peter J.; Cohen, Joshua; Stern, Yaakov
2012-01-01
This article reviews measures of Alzheimer’s disease (AD) progression in relation to patient dependence and offers a unifying conceptual framework for dependence in AD. Clinicians typically characterize AD by symptomatic impairments in three domains: cognition, function, and behavior. From a patient’s perspective, changes in these domains, individually and in concert, ultimately lead to increased dependence and loss of autonomy. Examples of dependence in AD range from a need for reminders (early AD) to requiring safety supervision and assistance with basic functions (late AD). Published literature has focused on the clinical domains as somewhat separate constructs and has given limited attention to the concept of patient dependence as a descriptor of AD progression. This article presents the concept of dependence on others for care needs as a potential method for translating the effect of changes in cognition, function, and behavior into a more holistic, transparent description of AD progression. PMID:21044778
Dependence as a unifying construct in defining Alzheimer's disease severity.
McLaughlin, Trent; Feldman, Howard; Fillit, Howard; Sano, Mary; Schmitt, Frederick; Aisen, Paul; Leibman, Christopher; Mucha, Lisa; Ryan, J Michael; Sullivan, Sean D; Spackman, D Eldon; Neumann, Peter J; Cohen, Joshua; Stern, Yaakov
2010-11-01
This article reviews measures of Alzheimer's disease (AD) progression in relation to patient dependence and offers a unifying conceptual framework for dependence in AD. Clinicians typically characterize AD by symptomatic impairments in three domains: cognition, function, and behavior. From a patient's perspective, changes in these domains, individually and in concert, ultimately lead to increased dependence and loss of autonomy. Examples of dependence in AD range from a need for reminders (early AD) to requiring safety supervision and assistance with basic functions (late AD). Published literature has focused on the clinical domains as somewhat separate constructs and has given limited attention to the concept of patient dependence as a descriptor of AD progression. This article presents the concept of dependence on others for care needs as a potential method for translating the effect of changes in cognition, function, and behavior into a more holistic, transparent description of AD progression. Copyright © 2010. Published by Elsevier Inc.
Successful treatment of diplopia with prism improves health-related quality of life.
Hatt, Sarah R; Leske, David A; Liebermann, Laura; Holmes, Jonathan M
2014-06-01
To report change in strabismus-specific health-related quality of life (HRQOL) following treatment with prism. Retrospective cross-sectional study. Thirty-four patients with diplopia (median age 63, range 14-84 years) completed the Adult Strabismus-20 questionnaire (100-0, best to worst HRQOL) and a diplopia questionnaire in a clinical practice before prism and in prism correction. Before prism, diplopia was "sometimes" or worse for reading and/or straight-ahead distance. Prism treatment success was defined as diplopia rated "never" or "rarely" on the diplopia questionnaire for reading and straight-ahead distance. Failure was defined as worsening or no change in diplopia. For both successes and failures, mean Adult Strabismus-20 scores were compared before prism and in prism correction. Each of the 4 Adult Strabismus-20 domains (self-perception, interactions, reading function, and general function) was analyzed separately. Twenty-three of 34 (68%) were successes and 11 (32%) were failures. For successes, reading function improved from 57 ± 27 (SD) before prism to 69 ± 27 in-prism correction (difference 12 ± 20, 95% CI 3.2-20.8, P = .02) and general function improved from 66 ± 25 to 80 ± 18 (difference 14 ± 22, 95% CI 5.0-23.6, P = .003). Self-perception and interaction domains remained unchanged (P > .2). For failures there was no significant change in Adult Strabismus-20 score on any domain (P > .4). Successful correction of diplopia with prism is associated with improvement in strabismus-specific HRQOL, specifically reading function and general function. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zaal, K. J. J. M.
1991-06-01
In programming solutions of complex function theory, the complex logarithm function is replaced by the complex logarithmic function, introducing a discontinuity along the branch cut into the programmed solution which was not present in the mathematical solution. Recently, Liaw and Kamel presented their solution of the infinite anisotropic centrally cracked plate loaded by an arbitrary point force, which they used as Green's function in a boundary element method intended to evaluate the stress intensity factor at the tip of a crack originating from an elliptical home. Their solution may be used as Green's function of many more numerical methods involving anisotropic elasticity. In programming applications of Liaw and Kamel's solution, the standard definition of the logarithmic function with the branch cut at the nonpositive real axis cannot provide a reliable computation of the displacement field for Liaw and Kamel's solution. Either the branch cut should be redefined outside the domain of the logarithmic function, after proving that the domain is limited to a part of the plane, or the logarithmic function should be defined on its Riemann surface. A two dimensional line fractal can provide the link between all mesh points on the plane essential to evaluate the logarithm function on its Riemann surface. As an example, a two dimensional line fractal is defined for a mesh once used by Erdogan and Arin.
Tien, Jerry F; Fong, Kimberly K; Umbreit, Neil T; Payen, Celia; Zelter, Alex; Asbury, Charles L; Dunham, Maitreya J; Davis, Trisha N
2013-09-01
During mitosis, kinetochores physically link chromosomes to the dynamic ends of spindle microtubules. This linkage depends on the Ndc80 complex, a conserved and essential microtubule-binding component of the kinetochore. As a member of the complex, the Ndc80 protein forms microtubule attachments through a calponin homology domain. Ndc80 is also required for recruiting other components to the kinetochore and responding to mitotic regulatory signals. While the calponin homology domain has been the focus of biochemical and structural characterization, the function of the remainder of Ndc80 is poorly understood. Here, we utilized a new approach that couples high-throughput sequencing to a saturating linker-scanning mutagenesis screen in Saccharomyces cerevisiae. We identified domains in previously uncharacterized regions of Ndc80 that are essential for its function in vivo. We show that a helical hairpin adjacent to the calponin homology domain influences microtubule binding by the complex. Furthermore, a mutation in this hairpin abolishes the ability of the Dam1 complex to strengthen microtubule attachments made by the Ndc80 complex. Finally, we defined a C-terminal segment of Ndc80 required for tetramerization of the Ndc80 complex in vivo. This unbiased mutagenesis approach can be generally applied to genes in S. cerevisiae to identify functional properties and domains.
Novel functions of CCM1 delimit the relationship of PTB/PH domains.
Zhang, Jun; Dubey, Pallavi; Padarti, Akhil; Zhang, Aileen; Patel, Rinkal; Patel, Vipulkumar; Cistola, David; Badr, Ahmed
2017-10-01
Three NPXY motifs and one FERM domain in CCM1 makes it a versatile scaffold protein for tethering the signaling components together within the CCM signaling complex (CSC). The cellular role of CCM1 protein remains inadequately expounded. Both phosphotyrosine binding (PTB) and pleckstrin homology (PH) domains were recognized as structurally related but functionally distinct domains. By utilizing molecular cloning, protein binding assays and RT-qPCR to identify novel cellular partners of CCM1 and its cellular expression patterns; by screening candidate PTB/PH proteins and subsequently structurally simulation in combining with current X-ray crystallography and NMR data to defined the essential structure of PTB/PH domain for NPXY-binding and the relationship among PTB, PH and FERM domain(s). We identified a group of 28 novel cellular partners of CCM1, all of which contain either PTB or PH domain(s), and developed a novel classification system for these PTB/PH proteins based on their relationship with different NPXY motifs of CCM1. Our results demonstrated that CCM1 has a wide spectrum of binding to different PTB/PH proteins and perpetuates their specificity to interact with certain PTB/PH domains through selective combination of three NPXY motifs. We also demonstrated that CCM1 can be assembled into oligomers through intermolecular interaction between its F3 lobe in FERM domain and one of the three NPXY motifs. Despite being embedded in FERM domain as F3 lobe, F3 module acts as a fully functional PH domain to interact with NPXY motif. The most salient feature of the study was that both PTB and PH domains are structurally and functionally comparable, suggesting that PTB domain is likely evolved from PH domain with polymorphic structural additions at its N-terminus. A new β1A-strand of the PTB domain was discovered and new minimum structural requirement of PTB/PH domain for NPXY motif-binding was determined. Based on our data, a novel theory of structure, function and relationship of PTB, PH and FERM domains has been proposed, which extends the importance of the NPXY-PTB/PH interaction on the CSC signaling and/or other cell receptors with great potential pointing to new therapeutic strategies. The study provides new insight into the structural characteristics of PTB/PH domains, essential structural elements of PTB/PH domain required for NPXY motif-binding, and function and relationship among PTB, PH and FERM domains. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural Basis for Endosomal Targeting by the Bro1 Domain
Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.
2010-01-01
Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782
Alden, Eva C; Cobia, Derin J; Reilly, James L; Smith, Matthew J
2015-10-01
Schizophrenia is characterized by impairment in multiple aspects of community functioning. Available literature suggests that community functioning may be enhanced through cognitive remediation, however, evidence is limited regarding whether specific neurocognitive domains may be treatment targets. We characterized schizophrenia subjects based on their level of community functioning through cluster analysis in an effort to identify whether specific neurocognitive domains were associated with variation in functioning. Schizophrenia (SCZ, n=60) and control (CON, n=45) subjects completed a functional capacity task, social competence role-play, functional attainment interview, and a neuropsychological battery. Multiple cluster analytic techniques were used on the measures of functioning in the schizophrenia subjects to generate functionally-defined subgroups. MANOVA evaluated between-group differences in neurocognition. The cluster analysis revealed two distinct groups, consisting of 36 SCZ characterized by high levels of community functioning (HF-SCZ) and 24 SCZ with low levels of community functioning (LF-SCZ). There was a main group effect for neurocognitive performance (p<0.001) with CON outperforming both SCZ groups in all neurocognitive domains. Post-hoc tests revealed that HF-SCZ had higher verbal working memory compared to LF-SCZ (p≤0.05, Cohen's d=0.78) but the two groups did not differ in remaining domains. The cluster analysis classified schizophrenia subjects in HF-SCZ and LF-SCZ using a multidimensional assessment of community functioning. Moreover, HF-SCZ demonstrated rather preserved verbal working memory relative to LF-SCZ. The results suggest that verbal working memory may play a critical role in community functioning, and is a potential cognitive treatment target for schizophrenia subjects. Copyright © 2015 Elsevier B.V. All rights reserved.
Vilches, Silvia; Vergara, Cristina; Nicolás, Oriol; Mata, Ágata; Del Río, José A; Gavín, Rosalina
2016-09-01
The biological functions of the cellular prion protein remain poorly understood. In fact, numerous studies have aimed to determine specific functions for the different protein domains. Studies of cellular prion protein (PrP(C)) domains through in vivo expression of molecules carrying internal deletions in a mouse Prnp null background have provided helpful data on the implication of the protein in signalling cascades in affected neurons. Nevertheless, understanding of the mechanisms underlying the neurotoxicity induced by these PrP(C) deleted forms is far from complete. To better define the neurotoxic or neuroprotective potential of PrP(C) N-terminal domains, and to overcome the heterogeneity of results due to the lack of a standardized model, we used neuroblastoma cells to analyse the effects of overexpressing PrP(C) deleted forms. Results indicate that PrP(C) N-terminal deleted forms were properly processed through the secretory pathway. However, PrPΔF35 and PrPΔCD mutants led to death by different mechanisms sharing loss of alpha-cleavage and activation of caspase-3. Our data suggest that both gain-of-function and loss-of-function pathogenic mechanisms may be associated with N-terminal domains and may therefore contribute to neurotoxicity in prion disease. Dissecting the molecular response induced by PrPΔF35 may be the key to unravelling the physiological and pathological functions of the prion protein.
Detecting recurrence domains of dynamical systems by symbolic dynamics.
beim Graben, Peter; Hutt, Axel
2013-04-12
We propose an algorithm for the detection of recurrence domains of complex dynamical systems from time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited in recurrence plots. In phase space, recurrence plots yield intersecting balls around sampling points that could be merged into cells of a phase space partition. We construct this partition by a rewriting grammar applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic recurrence plot revealing functional components of the signal.
Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien
2013-01-01
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181
The Structural and Functional Organization of Cognition
Snow, Peter J.
2016-01-01
This article proposes that what have been historically and contemporarily defined as different domains of human cognition are served by one of four functionally- and structurally-distinct areas of the prefrontal cortex (PFC). Their contributions to human intelligence are as follows: (a) BA9, enables our emotional intelligence, engaging the psychosocial domain; (b) BA47, enables our practical intelligence, engaging the material domain; (c) BA46 (or BA46-9/46), enables our abstract intelligence, engaging the hypothetical domain; and (d) BA10, enables our temporal intelligence, engaging in planning within any of the other three domains. Given their unique contribution to human cognition, it is proposed that these areas be called the, social (BA9), material (BA47), abstract (BA46-9/46) and temporal (BA10) mind. The evidence that BA47 participates strongly in verbal and gestural communication suggests that language evolved primarily as a consequence of the extreme selective pressure for practicality; an observation supported by the functional connectivity between BA47 and orbital areas that negatively reinforce lying. It is further proposed that the abstract mind (BA46-9/46) is the primary seat of metacognition charged with creating adaptive behavioral strategies by generating higher-order concepts (hypotheses) from lower-order concepts originating from the other three domains of cognition. PMID:27799901
Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R; Vojtesek, Borivoj; Ball, Kathryn L
2011-04-22
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.
Epitope mapping of the domains of human angiotensin converting enzyme.
Kugaevskaya, Elena V; Kolesanova, Ekaterina F; Kozin, Sergey A; Veselovsky, Alexander V; Dedinsky, Ilya R; Elisseeva, Yulia E
2006-06-01
Somatic angiotensin converting enzyme (sACE), contains in its single chain two homologous domains (called N- and C-domains), each bearing a functional zinc-dependent active site. The present study aims to define the differences between two sACE domains and to localize experimentally revealed antigenic determinants (B-epitopes) in the recently determined three-dimensional structure of testicular tACE. The predicted linear antigenic determinants of human sACE were determined by peptide scanning ("PEPSCAN") approach. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. Comparison of arrangement of epitopes in the human domains with the corresponding sequences of some mammalian sACEs enabled to classify the revealed antigenic determinants as variable or conserved areas. The location of antigenic determinants with respect to various structural elements and to functionally important sites of the human sACE C-domain was estimated. The majority of antigenic sites of the C-domain were located at the irregular elements and at the boundaries of secondary structure elements. The data show structural differences between the sACE domains. The experimentally revealed antigenic determinants were in agreement with the recently determined crystal tACE structure. New potential applications are open to successfully produce mono-specific and group-specific antipeptide antibodies.
Regulation of receptor-type protein tyrosine phosphatases by their C-terminal tail domains.
Barnea, Maayan; Olender, Tsviya; Bedford, Mark T; Elson, Ari
2016-10-15
Protein tyrosine phosphatases (PTPs) perform specific functions in vivo, despite being vastly outnumbered by their substrates. Because of this and due to the central roles PTPs play in regulating cellular function, PTP activity is regulated by a large variety of molecular mechanisms. We review evidence that indicates that the divergent C-terminal tail sequences (C-terminal domains, CTDs) of receptor-type PTPs (RPTPs) help regulate RPTP function by controlling intermolecular associations in a way that is itself subject to physiological regulation. We propose that the CTD of each RPTP defines an 'interaction code' that helps determine molecules it will interact with under various physiological conditions, thus helping to regulate and diversify PTP function. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Overlapping and Specific Functions of the Hsp104 N Domain Define Its Role in Protein Disaggregation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jungsoon; Sung, Nuri; Mercado, Jonathan M.
Hsp104 is a ring-forming protein disaggregase that rescues stress-damaged proteins from an aggregated state. To facilitate protein disaggregation, Hsp104 cooperates with Hsp70 and Hsp40 chaperones (Hsp70/40) to form a bi-chaperone system. How Hsp104 recognizes its substrates, particularly the importance of the N domain, remains poorly understood and multiple, seemingly conficting mechanisms have been proposed. Although the N domain is dispensable for protein disaggregation, it is sensitive to point mutations that abolish the function of the bacterial Hsp104 homolog in vitro, and is essential for curing yeast prions by Hsp104 overexpression in vivo. Here, we present the crystal structure of anmore » N-terminal fragment of Saccharomyces cerevisiae Hsp104 with the N domain of one molecule bound to the C-terminal helix of the neighboring D1 domain. Consistent with mimicking substrate interaction, mutating the putative substrate-binding site in a constitutively active Hsp104 variant impairs the recovery of functional protein from aggregates. We fnd that the observed substrate-binding defect can be rescued by Hsp70/40 chaperones, providing a molecular explanation as to why the N domain is dispensable for protein disaggregation when Hsp70/40 is present, yet essential for the dissolution of Hsp104-specifc substrates, such as yeast prions, which likely depends on a direct N domain interaction.« less
Overlapping and Specific Functions of the Hsp104 N Domain Define Its Role in Protein Disaggregation
Lee, Jungsoon; Sung, Nuri; Mercado, Jonathan M.; ...
2017-09-11
Hsp104 is a ring-forming protein disaggregase that rescues stress-damaged proteins from an aggregated state. To facilitate protein disaggregation, Hsp104 cooperates with Hsp70 and Hsp40 chaperones (Hsp70/40) to form a bi-chaperone system. How Hsp104 recognizes its substrates, particularly the importance of the N domain, remains poorly understood and multiple, seemingly conficting mechanisms have been proposed. Although the N domain is dispensable for protein disaggregation, it is sensitive to point mutations that abolish the function of the bacterial Hsp104 homolog in vitro, and is essential for curing yeast prions by Hsp104 overexpression in vivo. Here, we present the crystal structure of anmore » N-terminal fragment of Saccharomyces cerevisiae Hsp104 with the N domain of one molecule bound to the C-terminal helix of the neighboring D1 domain. Consistent with mimicking substrate interaction, mutating the putative substrate-binding site in a constitutively active Hsp104 variant impairs the recovery of functional protein from aggregates. We fnd that the observed substrate-binding defect can be rescued by Hsp70/40 chaperones, providing a molecular explanation as to why the N domain is dispensable for protein disaggregation when Hsp70/40 is present, yet essential for the dissolution of Hsp104-specifc substrates, such as yeast prions, which likely depends on a direct N domain interaction.« less
NASA Astrophysics Data System (ADS)
Soltani-Mohammadi, Saeed; Safa, Mohammad; Mokhtari, Hadi
2016-10-01
One of the most important stages in complementary exploration is optimal designing the additional drilling pattern or defining the optimum number and location of additional boreholes. Quite a lot research has been carried out in this regard in which for most of the proposed algorithms, kriging variance minimization as a criterion for uncertainty assessment is defined as objective function and the problem could be solved through optimization methods. Although kriging variance implementation is known to have many advantages in objective function definition, it is not sensitive to local variability. As a result, the only factors evaluated for locating the additional boreholes are initial data configuration and variogram model parameters and the effects of local variability are omitted. In this paper, with the goal of considering the local variability in boundaries uncertainty assessment, the application of combined variance is investigated to define the objective function. Thus in order to verify the applicability of the proposed objective function, it is used to locate the additional boreholes in Esfordi phosphate mine through the implementation of metaheuristic optimization methods such as simulated annealing and particle swarm optimization. Comparison of results from the proposed objective function and conventional methods indicates that the new changes imposed on the objective function has caused the algorithm output to be sensitive to the variations of grade, domain's boundaries and the thickness of mineralization domain. The comparison between the results of different optimization algorithms proved that for the presented case the application of particle swarm optimization is more appropriate than simulated annealing.
Membrane raft association is a determinant of plasma membrane localization.
Diaz-Rohrer, Blanca B; Levental, Kandice R; Simons, Kai; Levental, Ilya
2014-06-10
The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting.
Membrane raft association is a determinant of plasma membrane localization
Diaz-Rohrer, Blanca B.; Levental, Kandice R.; Simons, Kai; Levental, Ilya
2014-01-01
The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting. PMID:24912166
Computational modeling of Repeat1 region of INI1/hSNF5: An evolutionary link with ubiquitin
Bhutoria, Savita
2016-01-01
Abstract The structure of a protein can be very informative of its function. However, determining protein structures experimentally can often be very challenging. Computational methods have been used successfully in modeling structures with sufficient accuracy. Here we have used computational tools to predict the structure of an evolutionarily conserved and functionally significant domain of Integrase interactor (INI)1/hSNF5 protein. INI1 is a component of the chromatin remodeling SWI/SNF complex, a tumor suppressor and is involved in many protein‐protein interactions. It belongs to SNF5 family of proteins that contain two conserved repeat (Rpt) domains. Rpt1 domain of INI1 binds to HIV‐1 Integrase, and acts as a dominant negative mutant to inhibit viral replication. Rpt1 domain also interacts with oncogene c‐MYC and modulates its transcriptional activity. We carried out an ab initio modeling of a segment of INI1 protein containing the Rpt1 domain. The structural model suggested the presence of a compact and well defined ββαα topology as core structure in the Rpt1 domain of INI1. This topology in Rpt1 was similar to PFU domain of Phospholipase A2 Activating Protein, PLAA. Interestingly, PFU domain shares similarity with Ubiquitin and has ubiquitin binding activity. Because of the structural similarity between Rpt1 domain of INI1 and PFU domain of PLAA, we propose that Rpt1 domain of INI1 may participate in ubiquitin recognition or binding with ubiquitin or ubiquitin related proteins. This modeling study may shed light on the mode of interactions of Rpt1 domain of INI1 and is likely to facilitate future functional studies of INI1. PMID:27261671
Computational modeling of Repeat1 region of INI1/hSNF5: An evolutionary link with ubiquitin.
Bhutoria, Savita; Kalpana, Ganjam V; Acharya, Seetharama A
2016-09-01
The structure of a protein can be very informative of its function. However, determining protein structures experimentally can often be very challenging. Computational methods have been used successfully in modeling structures with sufficient accuracy. Here we have used computational tools to predict the structure of an evolutionarily conserved and functionally significant domain of Integrase interactor (INI)1/hSNF5 protein. INI1 is a component of the chromatin remodeling SWI/SNF complex, a tumor suppressor and is involved in many protein-protein interactions. It belongs to SNF5 family of proteins that contain two conserved repeat (Rpt) domains. Rpt1 domain of INI1 binds to HIV-1 Integrase, and acts as a dominant negative mutant to inhibit viral replication. Rpt1 domain also interacts with oncogene c-MYC and modulates its transcriptional activity. We carried out an ab initio modeling of a segment of INI1 protein containing the Rpt1 domain. The structural model suggested the presence of a compact and well defined ββαα topology as core structure in the Rpt1 domain of INI1. This topology in Rpt1 was similar to PFU domain of Phospholipase A2 Activating Protein, PLAA. Interestingly, PFU domain shares similarity with Ubiquitin and has ubiquitin binding activity. Because of the structural similarity between Rpt1 domain of INI1 and PFU domain of PLAA, we propose that Rpt1 domain of INI1 may participate in ubiquitin recognition or binding with ubiquitin or ubiquitin related proteins. This modeling study may shed light on the mode of interactions of Rpt1 domain of INI1 and is likely to facilitate future functional studies of INI1. © 2016 The Protein Society.
ERIC Educational Resources Information Center
Anstey, Kaarin J.
2014-01-01
Optimal cognitive development is defined in this article as the highest level of cognitive function reached in each cognitive domain given a person's biological and genetic disposition, and the highest possible maintenance of cognitive function over the adult life course. Theoretical perspectives underpinning the development of a framework…
Proteomic analysis of the enterocyte brush border
McConnell, Russell E.; Benesh, Andrew E.; Mao, Suli; Tabb, David L.
2011-01-01
The brush border domain at the apex of intestinal epithelial cells is the primary site of nutrient absorption in the intestinal tract and the primary surface of interaction with microbes that reside in the lumen. Because the brush border is positioned at such a critical physiological interface, we set out to create a comprehensive list of the proteins that reside in this domain using shotgun mass spectrometry. The resulting proteome contains 646 proteins with diverse functions. In addition to the expected collection of nutrient processing and transport components, we also identified molecules expected to function in the regulation of actin dynamics, membrane bending, and extracellular adhesion. These results provide a foundation for future studies aimed at defining the molecular mechanisms underpinning brush border assembly and function. PMID:21330445
Engelmann, Brett W
2017-01-01
The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.
Yager, Joel; Feinstein, Robert E
2017-04-01
Offering a new framework for understanding and studying basic dimensions of normal and abnormal human functioning and mental disorders, the National Institute of Mental Health (NIMH) has initiated the Research Domain Criteria (RDoC) project in which a series of higher order domains, representing major systems of emotion, cognition, motivation, and social behavior, and their constituent operationally defined constructs serve as organizing templates for further research and inquiry, eg, to discover validated biomarkers and endophenotypes. Cutting across traditional DSM diagnoses, the domains are defined as Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Systems for Social Processes, and Arousal/Regulatory Systems. To inform educators, trainees, and practitioners about RDoC, alert them to potential practical applications, and encourage their broad exploration in clinical settings, this article reviews the RDoC domains and their subsystem constructs with regard to potential current clinical considerations and applications. We describe ways in which the RDoC domains and constructs offer transdiagnostic frameworks for complementing traditional practice; suggest clinical questions to help elucidate salient information; and, translating RDoC domains and constructs headings into clinically friendly language, offer a template for the psychiatric review of systems that can serve in clinical notes. © Copyright 2017 Physicians Postgraduate Press, Inc.
Successful treatment of diplopia with prism improves health-related quality of life
Hatt, Sarah R.; Leske, David A.; Liebermann, Laura; Holmes, Jonathan M.
2014-01-01
Purpose To report change in strabismus-specific health-related quality of life (HRQOL) following treatment with prism. Design Retrospective cross-sectional study Methods Thirty-four patients with diplopia (median age 63, range 14 to 84 years) completed the Adult Strabismus-20 questionnaire (100 to 0, best to worst HRQOL) and a diplopia questionnaire in a clinical practice before prism and in prism correction. Before prism, diplopia was “sometimes” or worse for reading and/or straight ahead distance. Prism treatment success was defined as diplopia rated “never” or “rarely” on the Diplopia Questionnaire for reading and straight ahead distance. Failure was defined as worsening or no change in diplopia. For both successes and failures, mean Adult Strabismus -20 scores were compared pre-prism and in prism correction. Each of the four Adult Strabismus -20 domains (Self-perception, Interactions, Reading function and General function) were analyzed separately. Results Twenty-three (68%) of 34 were successes and 11 (32%) were failures. For successes, Reading Function improved from 57 ± 27 (SD) before prism to 69 ± 27 in-prism correction (difference 12 ± 20, 95% CI 3.2 to 20.8, P=0.02) and General Function improved from 66 ± 25 to 80 ± 18 (difference 14 ± 22, 95% CI 5.0 to 23.6, P=0.003). Self-perception and Interaction domains remained unchanged (P>0.2). For failures there was no significant change in Adult Strabismus -20 score on any domain (P>0.4). Conclusions Successful correction of diplopia with prism is associated with improvement in strabismus-specific HRQOL, specifically reading function and general function. PMID:24561171
Mueller, Daniel R.; Schmidt, Stefanie J.; Roder, Volker
2015-01-01
Objective: Cognitive remediation (CR) approaches have demonstrated to be effective in improving cognitive functions in schizophrenia. However, there is a lack of integrated CR approaches that target multiple neuro- and social-cognitive domains with a special focus on the generalization of therapy effects to functional outcome. Method: This 8-site randomized controlled trial evaluated the efficacy of a novel CR group therapy approach called integrated neurocognitive therapy (INT). INT includes well-defined exercises to improve all neuro- and social-cognitive domains as defined by the Measurement And Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative by compensation and restitution. One hundred and fifty-six outpatients with a diagnosis of schizophrenia or schizoaffective disorder according to DSM-IV-TR or ICD-10 were randomly assigned to receive 15 weeks of INT or treatment as usual (TAU). INT patients received 30 bi-weekly therapy sessions. Each session lasted 90min. Mixed models were applied to assess changes in neurocognition, social cognition, symptoms, and functional outcome at post-treatment and at 9-month follow-up. Results: In comparison to TAU, INT patients showed significant improvements in several neuro- and social-cognitive domains, negative symptoms, and functional outcome after therapy and at 9-month follow-up. Number-needed-to-treat analyses indicate that only 5 INT patients are necessary to produce durable and meaningful improvements in functional outcome. Conclusions: Integrated interventions on neurocognition and social cognition have the potential to improve not only cognitive performance but also functional outcome. These findings are important as treatment guidelines for schizophrenia have criticized CR for its poor generalization effects. PMID:25713462
Route planning in a four-dimensional environment
NASA Technical Reports Server (NTRS)
Slack, M. G.; Miller, D. P.
1987-01-01
Robots must be able to function in the real world. The real world involves processes and agents that move independently of the actions of the robot, sometimes in an unpredictable manner. A real-time integrated route planning and spatial representation system for planning routes through dynamic domains is presented. The system will find the safest most efficient route through space-time as described by a set of user defined evaluation functions. Because the route planning algorthims is highly parallel and can run on an SIMD machine in O(p) time (p is the length of a path), the system will find real-time paths through unpredictable domains when used in an incremental mode. Spatial representation, an SIMD algorithm for route planning in a dynamic domain, and results from an implementation on a traditional computer architecture are discussed.
Bradley, Michael J; Chivers, Peter T; Baker, Nathan A
2008-05-16
Escherichia coli NikR is a homotetrameric Ni(2+)- and DNA-binding protein that functions as a transcriptional repressor of the NikABCDE nickel permease. The protein is composed of two distinct domains. The N-terminal 50 amino acids of each chain forms part of the dimeric ribbon-helix-helix (RHH) domains, a well-studied DNA-binding fold. The 83-residue C-terminal nickel-binding domain forms an ACT (aspartokinase, chorismate mutase, and TyrA) fold and contains the tetrameric interface. In this study, we have utilized an equilibrium molecular dynamics simulation in order to explore the conformational dynamics of the NikR tetramer and determine important residue interactions within and between the RHH and ACT domains to gain insight into the effects of Ni(2+) on DNA-binding activity. The molecular simulation data were analyzed using two different correlation measures based on fluctuations in atomic position and noncovalent contacts together with a clustering algorithm to define groups of residues with similar correlation patterns for both types of correlation measure. Based on these analyses, we have defined a series of residue interrelationships that describe an allosteric communication pathway between the Ni(2+)- and DNA-binding sites, which are separated by 40 A. Several of the residues identified by our analyses have been previously shown experimentally to be important for NikR function. An additional subset of the identified residues structurally connects the experimentally implicated residues and may help coordinate the allosteric communication between the ACT and RHH domains.
Graph Frequency Analysis of Brain Signals
Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro
2016-01-01
This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different levels of task familiarity. PMID:28439325
Tamoxifen Dependent Interaction Between the Estrogen Receptor and a Novel P21 Activated Kinase
2002-06-01
binding domain at the C Cv1 cells were cotransfected with ARE4-Luc reporter (100 teric G prti Tse bindin dominat the C ng), pRL-SV40 ( Renilla control...48 h and assayed for luciferase and Renilla Three of the four residues defining a putative het- activity. erotrimeric G protein binding motif were...nases. Taken together, these results demonstrated expression of the control Renilla reporter regulated by that the PAK6 CRIB domain was functional with re
Borthakur, Susmita; Lee, HyeongJu; Kim, SoonJeung; Wang, Bing-Cheng; Buck, Matthias
2014-01-01
The sterile α motif (SAM) domain of the ephrin receptor tyrosine kinase, EphA2, undergoes tyrosine phosphorylation, but the effect of phosphorylation on the structure and interactions of the receptor is unknown. Studies to address these questions have been hindered by the difficulty of obtaining site-specifically phosphorylated proteins in adequate amounts. Here, we describe the use of chemically synthesized and specifically modified domain-length peptides to study the behavior of phosphorylated EphA2 SAM domains. We show that tyrosine phosphorylation of any of the three tyrosines, Tyr921, Tyr930, and Tyr960, has a surprisingly small effect on the EphA2 SAM structure and stability. However, phosphorylation at Tyr921 and Tyr930 enables differential binding to the Src homology 2 domain of the adaptor protein Grb7, which we propose will lead to distinct functional outcomes. Setting up different signaling platforms defined by selective interactions with adaptor proteins thus adds another level of regulation to EphA2 signaling. PMID:24825902
H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo
Ejlassi-Lassallette, Aïda; Mocquard, Eloïse; Arnaud, Marie-Claire; Thiriet, Christophe
2011-01-01
While specific posttranslational modification patterns within the H3 and H4 tail domains are associated with the S-phase, their actual functions in replication-dependent chromatin assembly have not yet been defined. Here we used incorporation of trace amounts of recombinant proteins into naturally synchronous macroplasmodia of Physarum polycephalum to examine the function of H3 and H4 tail domains in replication-coupled chromatin assembly. We found that the H3/H4 complex lacking the H4 tail domain was not efficiently recovered in nuclei, whereas depletion of the H3 tail domain did not impede nuclear import but chromatin assembly failed. Furthermore, our results revealed that the proper pattern of acetylation on the H4 tail domain is required for nuclear import and chromatin assembly. This is most likely due to binding of Hat1, as coimmunoprecipitation experiments showed Hat1 associated with predeposition histones in the cytoplasm and with replicating chromatin. These results suggest that the type B histone acetyltransferase assists in shuttling the H3/H4 complex from cytoplasm to the replication forks. PMID:21118997
Fast and Accurate Fitting and Filtering of Noisy Exponentials in Legendre Space
Bao, Guobin; Schild, Detlev
2014-01-01
The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters. PMID:24603904
Functional advantages of dynamic protein disorder.
Berlow, Rebecca B; Dyson, H Jane; Wright, Peter E
2015-09-14
Intrinsically disordered proteins participate in many important cellular regulatory processes. The absence of a well-defined structure in the free state of a disordered domain, and even on occasion when it is bound to physiological partners, is fundamental to its function. Disordered domains are frequently the location of multiple sites for post-translational modification, the key element of metabolic control in the cell. When a disordered domain folds upon binding to a partner, the resulting complex buries a far greater surface area than in an interaction of comparably-sized folded proteins, thus maximizing specificity at modest protein size. Disorder also maintains accessibility of sites for post-translational modification. Because of their inherent plasticity, disordered domains frequently adopt entirely different structures when bound to different partners, increasing the repertoire of available interactions without the necessity for expression of many different proteins. This feature also adds to the faithfulness of cellular regulation, as the availability of a given disordered domain depends on competition between various partners relevant to different cellular processes. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Wang, Xiao-Tao; Cui, Wang
2017-01-01
Abstract A current question in the high-order organization of chromatin is whether topologically associating domains (TADs) are distinct from other hierarchical chromatin domains. However, due to the unclear TAD definition in tradition, the structural and functional uniqueness of TAD is not well studied. In this work, we refined TAD definition by further constraining TADs to the optimal separation on global intra-chromosomal interactions. Inspired by this constraint, we developed a novel method, called HiTAD, to detect hierarchical TADs from Hi-C chromatin interactions. HiTAD performs well in domain sensitivity, replicate reproducibility and inter cell-type conservation. With a novel domain-based alignment proposed by us, we defined several types of hierarchical TAD changes which were not systematically studied previously, and subsequently used them to reveal that TADs and sub-TADs differed statistically in correlating chromosomal compartment, replication timing and gene transcription. Finally, our work also has the implication that the refinement of TAD definition could be achieved by only utilizing chromatin interactions, at least in part. HiTAD is freely available online. PMID:28977529
A Functional Approach to Hyperspectral Image Analysis in the Cloud
NASA Astrophysics Data System (ADS)
Wilson, A.; Lindholm, D. M.; Coddington, O.; Pilewskie, P.
2017-12-01
Hyperspectral image volumes are very large. A hyperspectral image analysis (HIA) may use 100TB of data, a huge barrier to their use. Hylatis is a new NASA project to create a toolset for HIA. Through web notebook and cloud technology, Hylatis will provide a more interactive experience for HIA by defining and implementing concepts and operations for HIA, identified and vetted by subject matter experts, and callable within a general purpose language, particularly Python. Hylatis leverages LaTiS, a data access framework developed at LASP. With an OPeNDAP compliant interface plus additional server side capabilities, the LaTiS API provides a uniform interface to virtually any data source, and has been applied to various storage systems, including: file systems, databases, remote servers, and in various domains including: space science, systems administration and stock quotes. In the LaTiS architecture, data `adapters' read data into a data model, where server-side computations occur. Data `writers' write data from the data model into the desired format. The Hylatis difference is the data model. In LaTiS, data are represented as mathematical functions of independent and dependent variables. Domain semantics are not present at this level, but are instead present in higher software layers. The benefit of a domain agnostic, mathematical representation is having the power of math, particularly functional algebra, unconstrained by domain semantics. This agnosticism supports reusable server side functionality applicable in any domain, such as statistical, filtering, or projection operations. Algorithms to aggregate or fuse data can be simpler because domain semantics are separated from the math. Hylatis will map the functional model onto the Spark relational interface, thereby adding a functional interface to that big data engine.This presentation will discuss Hylatis goals, strategies, and current state.
MyTH4-FERM myosins have an ancient and conserved role in filopod formation
Goodson, Holly V.; Arthur, Ashley L.; Luxton, G. W. Gant; Houdusse, Anne; Titus, Margaret A.
2016-01-01
The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium. However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation. PMID:27911821
A Key Claudin Extracellular Loop Domain is Critical for Epithelial Barrier Integrity
Mrsny, Randall J.; Brown, G. Thomas; Gerner-Smidt, Kirsten; Buret, Andre G.; Meddings, Jon B.; Quan, Clifford; Koval, Michael; Nusrat, Asma
2008-01-01
Intercellular tight junctions (TJs) regulate epithelial barrier properties. Claudins are major structural constituents of TJs and belong to a large family of tetra-spanning membrane proteins that have two predicted extracellular loops (ELs). Given that claudin-1 is widely expressed in epithelia, we further defined the role of its EL domains in determining TJ function. The effects of several claudin-1 EL mimetic peptides on epithelial barrier structure and function were examined. Incubation of model human intestinal epithelial cells with a 27-amino acid peptide corresponding to a portion of the first EL domain (Cldn-153–80) reversibly interfered with epithelial barrier function by inducing the rearrangement of key TJ proteins: occludin, claudin-1, junctional adhesion molecule-A, and zonula occludens-1. Cldn-153–80 associated with both claudin-1 and occludin, suggesting both the direct interference with the ability of these proteins to assemble into functional TJs and their close interaction under physiological conditions. These effects were specific for Cldn-153–80, because peptides corresponding to other claudin-1 EL domains failed to influence TJ function. Furthermore, the oral administration of Cldn-153–80 to rats increased paracellular gastric permeability. Thus, the identification of a critical claudin-1 EL motif, Cldn-153–80, capable of regulating TJ structure and function, offers a useful adjunct to treatments that require drug delivery across an epithelial barrier. PMID:18349130
Escorpizo, Reuben; Boers, Maarten; Stucki, Gerold; Boonen, Annelies
2011-08-01
To contribute to the discussion on a common approach for domain selection in the Outcomes in Rheumatology Clinical Trials (OMERACT) process. First, this article reports on the consistency in the selection and names of the domains of the current OMERACT core set, and next on the comparability of the specifications of concepts that are relevant within the domains. For this purpose, a convenience sample of 4 OMERACT core sets was used: rheumatoid arthritis (RA), psoriatic arthritis (PsA), longitudinal observational studies (LOS) in rheumatology, and ankylosing spondylitis (AS). Domains from the different core sets were compared directly. To be able to compare the specific content of the domains, the concepts contained in the questionnaires that were considered or proposed to measure the domains were identified and linked to the category of the International Classification of Functioning, Disability, and Health (ICF) that best fit that construct. Large differences in the domains, and lack of domain definitions, were noted among the 4 OMERACT core sets. When comparing the concepts in the questionnaires that represent the domains, core sets differed also in the number and type of constructs that were addressed within each of the domains. Especially for the specification of the concepts within the domains Discomfort and Disability, the ICF proved to be useful as external reference to classify the different constructs. Our exercise suggests that the OMERACT process could benefit from a standardized approach to select, define, and specify domains, and demonstrated that the ICF is useful for further classification of the more specific concepts of "what to measure" within the domains. A clear definition and classification of domains and their specification can be useful as a starting point to build a pool of items that could then be used to develop new instruments to assess functioning and health for rheumatological conditions.
Narayan, Vikram; Landré, Vivien; Ning, Jia; Hernychova, Lenka; Muller, Petr; Verma, Chandra; Walkinshaw, Malcolm D.; Blackburn, Elizabeth A.; Ball, Kathryn L.
2015-01-01
CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control. PMID:26330542
On domain modelling of the service system with its application to enterprise information systems
NASA Astrophysics Data System (ADS)
Wang, J. W.; Wang, H. F.; Ding, J. L.; Furuta, K.; Kanno, T.; Ip, W. H.; Zhang, W. J.
2016-01-01
Information systems are a kind of service systems and they are throughout every element of a modern industrial and business system, much like blood in our body. Types of information systems are heterogeneous because of extreme uncertainty in changes in modern industrial and business systems. To effectively manage information systems, modelling of the work domain (or domain) of information systems is necessary. In this paper, a domain modelling framework for the service system is proposed and its application to the enterprise information system is outlined. The framework is defined based on application of a general domain modelling tool called function-context-behaviour-principle-state-structure (FCBPSS). The FCBPSS is based on a set of core concepts, namely: function, context, behaviour, principle, state and structure and system decomposition. Different from many other applications of FCBPSS in systems engineering, the FCBPSS is applied to both infrastructure and substance systems, which is novel and effective to modelling of service systems including enterprise information systems. It is to be noted that domain modelling of systems (e.g. enterprise information systems) is a key to integration of heterogeneous systems and to coping with unanticipated situations facing to systems.
Nmf9 Encodes a Highly Conserved Protein Important to Neurological Function in Mice and Flies.
Zhang, Shuxiao; Ross, Kevin D; Seidner, Glen A; Gorman, Michael R; Poon, Tiffany H; Wang, Xiaobo; Keithley, Elizabeth M; Lee, Patricia N; Martindale, Mark Q; Joiner, William J; Hamilton, Bruce A
2015-07-01
Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes.
Functional and topological characteristics of mammalian regulatory domains
Symmons, Orsolya; Uslu, Veli Vural; Tsujimura, Taro; Ruf, Sandra; Nassari, Sonya; Schwarzer, Wibke; Ettwiller, Laurence; Spitz, François
2014-01-01
Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles. PMID:24398455
Cytochemistry of the functional domains of the nucleus in normal and in pathologic conditions.
Maraldi, N M; Zini, N; Santi, S; Ognibene, A; Rizzoli, R; Mazzotti, G; Manzoli, F A
1998-01-01
By means of ultrastructural cytochemistry significant advances have been made in understanding the functional roles of many nuclear domains. This review gives schematic information about the main nuclear domains involved in replication, transcription, processing and transport of the transcripts in normal and in pathologic conditions. Particular attention is paid to a functional domain that appears to be involved in signal transduction. Data are reported on the intranuclear specific localization of key elements of the polyphosphoinositide signal transduction system in different cell types including human osteosarcoma cell lines. Compared with the compartmentalization of the cytoplasm, the nucleus has long been considered as relatively unstructured. On the other hand, fundamental nuclear functions, such as DNA replication and RNA transcription, can be molecularly characterized also in cell-free systems, suggesting that supramolecular organization is not so strictly required as for other cell functions occurring within intact cytoplasmic organelles. Nevertheless, a stringent organization is required for packing about 200 cm of DNA in the about 30 micron 3 of the nucleus. In the absence of membrane-delimited organelles, the nuclear organization is based on functional compartments, or domains, whose spatial localization involves the nuclear matrix, which shares many properties with the cytoskeleton. The nuclear domains are defined as structural compartments, not necessarily stable but dynamically variable, which perform specific metabolic functions through the partitioning of molecular complexes. Their identification has been made possible in the last few years by the development of specific nuclear probes for confocal and electron microscope immunocytochemistry. Therefore, the complex network of structures and enzymatic functions that make up the nucleus is in several cases yielding to molecular analysis, but a large part remains unknown (Strouboulis and Wolffe, 1996; Laemmli and Tjian, 1996). Rapid advances in understanding the functional role of the nuclear domains have been made recently: in particular, of the nuclear envelope, of the nucleolus, and of RNA splicing. In other cases, e.g. the precise localization of the nuclear domains involved in signal transduction, much remains to be clarified (Forbes and Johnson, 1997). It is conceivable that in the near future unexpected new nuclear domains will come to light and new nuclear functions may emerge, especially in field of post-transcriptional processing and transport of RNAs, and in the relationships between the nucleo-skeleton and enzymic fixed sites involved in replication, transcription and signal transduction. The aim of this review is to provide information about the morphological characteristics, the associated functions and the molecular composition of the main nuclear domains found to date. To simplify the exposition, the main data on each nuclear domain are reported in Tables, together with the principal references on the subject. Figures refer to original findings on some aspects of nuclear domain organization.
Archaeal MCM has separable processivity, substrate choice and helicase domains
Barry, Elizabeth R.; McGeoch, Adam T.; Kelman, Zvi; Bell, Stephen D.
2007-01-01
The mini-chromosome maintenance (MCM) complex is the principal candidate for the replicative helicase of archaea and eukaryotes. Here, we describe a functional dissection of the roles of the three principal structural modules of the homomultimeric MCM of the hyperthermophilic archaeon Sulfolobus solfataricus. Our results include the first analysis of the central AAA+ domain in isolation. This domain possesses ATPase and helicase activity, defining this as the minimal helicase domain. Reconstitution experiments show that the helicase activity of the AAA+ domain can be stimulated by addition of the isolated N-terminal half in trans. Addition of the N-terminus influences both the processivity of the helicase and the choice of substrate that can be melted by the ATPase domain. The degenerate helix-turn-helix domain at the C-terminus of MCM exerts a negative effect on the helicase activity of the complex. These results provide the first evidence for extensive regulatory inter-domain communication within the MCM complex. PMID:17259218
Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R.; Vojtesek, Borivoj; Ball, Kathryn L.
2011-01-01
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs. PMID:21245151
Gijsbers, Rik; Ceulemans, Hugo; Bollen, Mathieu
2003-01-01
The ubiquitous nucleotide pyrophosphatases/phosphodiesterases NPP1-3 consist of a short intracellular N-terminal domain, a single transmembrane domain and a large extracellular part, comprising two somatomedin-B-like domains, a catalytic domain and a poorly defined C-terminal domain. We show here that the C-terminal domain of NPP1-3 is structurally related to a family of DNA/RNA non-specific endonucleases. However, none of the residues that are essential for catalysis by the endonucleases are conserved in NPP1-NPP3, suggesting that the nuclease-like domain of NPP1-3 does not represent a second catalytic domain. Truncation analysis revealed that the nuclease-like domain of NPP1 is required for protein stability, for the targeting of NPP1 to the plasma membrane and for the expression of catalytic activity. We also demonstrate that 16 conserved cysteines in the somatomedin-B-like domains of NPP1, in concert with two flanking cysteines, mediate the dimerization of NPP1. The K173Q polymorphism of NPP1, which maps to the second somatomedin-B-like domain and has been associated with the aetiology of insulin resistance, did not affect the dimerization or catalytic activity of NPP1, and did not endow NPP1 with an affinity for the insulin receptor. Our data suggest that the non-catalytic ectodomains contribute to the subunit structure, stability and function of NPP1-3. PMID:12533192
A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity.
Mills, Jamie E; Whitford, Paul C; Shaffer, Jennifer; Onuchic, Jose N; Adams, Joseph A; Jennings, Patricia A
2007-02-02
The SH2 domain of the C-terminal Src kinase [Csk] contains a unique disulfide bond that is not present in other known SH2 domains. To investigate whether this unusual disulfide bond serves a novel function, the effects of disulfide bond formation on catalytic activity of the full-length protein and on the structure of the SH2 domain were investigated. The kinase activity of full-length Csk decreases by an order of magnitude upon formation of the disulfide bond in the distal SH2 domain. NMR spectra of the fully oxidized and fully reduced SH2 domains exhibit similar chemical shift patterns and are indicative of similar, well-defined tertiary structures. The solvent-accessible disulfide bond in the isolated SH2 domain is highly stable and far from the small lobe of the kinase domain. However, reduction of this bond results in chemical shift changes of resonances that map to a cluster of residues that extend from the disulfide bond across the molecule to a surface that is in direct contact with the small lobe of the kinase domain in the intact molecule. Normal mode analyses and molecular dynamics calculations suggest that disulfide bond formation has large effects on residues within the kinase domain, most notably within the active-site cleft. Overall, the data indicate that reversible cross-linking of two cysteine residues in the SH2 domain greatly impacts catalytic function and interdomain communication in Csk.
Defining a Technical Basis for Comparing and Contrasting Emerging Dynamic Discovery Protocols
2001-05-02
UPnP, SLP, Bluetooth , and HAVi • Projected specific UML models for Jini, UPnP, and SLP • Completed a Rapide Model of Jini structure, function, and...narrow application focus but targeting a different application domain. (e.g., HAVi, Salutation Consortium, and Bluetooth Service Discovery) • Sun has...Our General Approach? 1/31/2002 7 Particulars of Our Approach Define a Generic UML Model that Encompasses Jini, UPnP, SLP, HAVi, and Bluetooth
The Aspartate-Less Receiver (ALR) Domains: Distribution, Structure and Function
Weiner, Joshua J.; Han, Lanlan; Peterson, Francis C.; Volkman, Brian F.; Silvaggi, Nicholas R.; Ulijasz, Andrew T.
2015-01-01
Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains. PMID:25875291
C-type lectins in immunity: recent developments
Dambuza, Ivy M; Brown, Gordon D
2015-01-01
C-type lectin receptors (CLRs) comprise a large superfamily of proteins, which recognise a diverse range of ligands, and are defined by the presence of at least one C-type lectin-like domain (CTLD). Of particular interest are the single extracellular CTLD-containing receptors of the ‘Dectin-1’ and ‘Dectin-2’ clusters, which associate with signalling adaptors or possess integral intracellular signalling domains. These CLRs have traditionally been associated with the recognition of fungi, but recent discoveries have revealed diverse and unexpected functions. In this review, we describe their newly identified roles in anti-microbial host defence, homeostasis, autoimmunity, allergy and their functions in the recognition and response to dead and cancerous cells. PMID:25553393
Beauchamp, Miriam H; Brooks, Brian L; Barrowman, Nick; Aglipay, Mary; Keightley, Michelle; Anderson, Peter; Yeates, Keith O; Osmond, Martin H; Zemek, Roger
2015-09-01
Neuropsychological assessment aims to identify individual performance profiles in multiple domains of cognitive functioning; however, substantial variation exists in how deficits are defined and what cutoffs are used, and there is no universally accepted definition of neuropsychological impairment. The aim of this study was to derive and validate a clinical case definition rule to identify neuropsychological impairment in children and adolescents. An existing normative pediatric sample was used to calculate base rates of abnormal functioning on eight measures covering six domains of neuropsychological functioning. The dataset was analyzed by varying the range of cutoff levels [1, 1.5, and 2 standard deviations (SDs) below the mean] and number of indicators of impairment. The derived rule was evaluated by bootstrap, internal and external clinical validation (orthopedic and traumatic brain injury). Our neuropsychological impairment (NPI) rule was defined as "two or more test scores that fall 1.5 SDs below the mean." The rule identifies 5.1% of the total sample as impaired in the assessment battery and consistently targets between 3 and 7% of the population as impaired even when age, domains, and number of tests are varied. The NPI rate increases in groups known to exhibit cognitive deficits. The NPI rule provides a psychometrically derived method for interpreting performance across multiple tests and may be used in children 6-18 years. The rule may be useful to clinicians and scientists who wish to establish whether specific individuals or clinical populations present within expected norms versus impaired function across a battery of neuropsychological tests.
Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.
Li, Shuai; Li, Yangming
2013-10-28
The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.
Functional display of platelet-binding VWF fragments on filamentous bacteriophage.
Yee, Andrew; Tan, Fen-Lai; Ginsburg, David
2013-01-01
von Willebrand factor (VWF) tethers platelets to sites of vascular injury via interaction with the platelet surface receptor, GPIb. To further define the VWF sequences required for VWF-platelet interaction, a phage library displaying random VWF protein fragments was screened against formalin-fixed platelets. After 3 rounds of affinity selection, DNA sequencing of platelet-bound clones identified VWF peptides mapping exclusively to the A1 domain. Aligning these sequences defined a minimal, overlapping segment spanning P1254-A1461, which encompasses the C1272-C1458 cystine loop. Analysis of phage carrying a mutated A1 segment (C1272/1458A) confirmed the requirement of the cystine loop for optimal binding. Four rounds of affinity maturation of a randomly mutagenized A1 phage library identified 10 and 14 unique mutants associated with enhanced platelet binding in the presence and absence of botrocetin, respectively, with 2 mutants (S1370G and I1372V) common to both conditions. These results demonstrate the utility of filamentous phage for studying VWF protein structure-function and identify a minimal, contiguous peptide that bind to formalin-fixed platelets, confirming the importance of the VWF A1 domain with no evidence for another independently platelet-binding segment within VWF. These findings also point to key structural elements within the A1 domain that regulate VWF-platelet adhesion.
Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.
Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A
1999-10-10
HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.
East, Michael P.; Bowzard, J. Bradford; Dacks, Joel B.; Kahn, Richard A.
2012-01-01
The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases. PMID:23014990
Cardiovagal Autonomic Function in HIV-Infected Patients with Unsuppressed HIV Viremia
Chow, Dominic C.; Wood, Robert; Choi, Julia; Grandinetti, Andrew; Gerschenson, Mariana; Sriratanaviriyakul, Narin; Nakamoto, Beau; Shikuma, Cecilia; Low, Phillip
2011-01-01
Purpose HIV infection has been implicated in dysregulation of the autonomic nervous system. Method Cross-sectional study examining the relationship between the presence of persistent detectable HIV viral load with autonomic function, measured by heart rate variability (HRV). Non-virologic suppression (NVS) was defined as having a detectable viral load for at least 3 months prior to autonomic function testing. HRV was measured during the following 4 maneuvers: resting and paced respirations and sustained handgrip and tilt. Inferences on parasympathetic and sympathetic modulations were determined by analyzing time and frequency domains of HRV. Results 57 participants were enrolled in 3 groups: 22 were HIV-infected participants with HIV virologic suppression (VS; undetectable HIV viral load), 9 were HIV-infected participants who had NVS, and 26 were HIV seronegative controls. There were lower time domain parameters in the HIV-infected group as a whole compared to controls. There were no significant differences in time domain parameters among HIV-infected participants. There were no differences in frequency domain parameters during any of the maneuvers between controls and all HIV-infected participants, nor between the NVS and VS groups. Conclusion There were differences in autonomic function between HIV-infected individuals and HIV seronegative controls, but not between the NVS and VS groups. PMID:21684854
Distinct Functional Domains of Ubc9 Dictate Cell Survival and Resistance to Genotoxic Stress
van Waardenburg, Robert C. A. M.; Duda, David M.; Lancaster, Cynthia S.; Schulman, Brenda A.; Bjornsti, Mary-Ann
2006-01-01
Covalent modification with SUMO alters protein function, intracellular localization, or protein-protein interactions. Target recognition is determined, in part, by the SUMO E2 enzyme, Ubc9, while Siz/Pias E3 ligases may facilitate select interactions by acting as substrate adaptors. A yeast conditional Ubc9P123L mutant was viable at 36°C yet exhibited enhanced sensitivity to DNA damage. To define functional domains in Ubc9 that dictate cellular responses to genotoxic stress versus those necessary for cell viability, a 1.75-Å structure of yeast Ubc9 that demonstrated considerable conservation of backbone architecture with human Ubc9 was solved. Nevertheless, differences in side chain geometry/charge guided the design of human/yeast chimeras, where swapping domains implicated in (i) binding residues within substrates that flank canonical SUMOylation sites, (ii) interactions with the RanBP2 E3 ligase, and (iii) binding of the heterodimeric E1 and SUMO had distinct effects on cell growth and resistance to DNA-damaging agents. Our findings establish a functional interaction between N-terminal and substrate-binding domains of Ubc9 and distinguish the activities of E3 ligases Siz1 and Siz2 in regulating cellular responses to genotoxic stress. PMID:16782883
From scenarios to domain models: processes and representations
NASA Astrophysics Data System (ADS)
Haddock, Gail; Harbison, Karan
1994-03-01
The domain specific software architectures (DSSA) community has defined a philosophy for the development of complex systems. This philosophy improves productivity and efficiency by increasing the user's role in the definition of requirements, increasing the systems engineer's role in the reuse of components, and decreasing the software engineer's role to the development of new components and component modifications only. The scenario-based engineering process (SEP), the first instantiation of the DSSA philosophy, has been adopted by the next generation controller project. It is also the chosen methodology of the trauma care information management system project, and the surrogate semi-autonomous vehicle project. SEP uses scenarios from the user to create domain models and define the system's requirements. Domain knowledge is obtained from a variety of sources including experts, documents, and videos. This knowledge is analyzed using three techniques: scenario analysis, task analysis, and object-oriented analysis. Scenario analysis results in formal representations of selected scenarios. Task analysis of the scenario representations results in descriptions of tasks necessary for object-oriented analysis and also subtasks necessary for functional system analysis. Object-oriented analysis of task descriptions produces domain models and system requirements. This paper examines the representations that support the DSSA philosophy, including reference requirements, reference architectures, and domain models. The processes used to create and use the representations are explained through use of the scenario-based engineering process. Selected examples are taken from the next generation controller project.
van Zwieten, Anita; Wong, Germaine; Ruospo, Marinella; Palmer, Suetonia C; Barulli, Maria Rosaria; Iurillo, Annalisa; Saglimbene, Valeria; Natale, Patrizia; Gargano, Letizia; Murgo, Marco; Loy, Clement T; Tortelli, Rosanna; Craig, Jonathan C; Johnson, David W; Tonelli, Marcello; Hegbrant, Jörgen; Wollheim, Charlotta; Logroscino, Giancarlo; Strippoli, Giovanni F M
2017-11-22
Mounting evidence indicates an increased risk of cognitive impairment in adults with end-stage kidney disease on dialysis, but the extent and pattern of deficits across the spectrum of cognitive domains are uncertain. We conducted a cross-sectional study of 676 adult hemodialysis patients from 20 centers in Italy, aiming to evaluate the prevalence and patterns of cognitive impairment across five domains of learning and memory, complex attention, executive function, language and perceptual-motor function. We assessed cognitive function using a neuropsychological battery of 10 tests and calculated test and domain z-scores using population norms (age or age/education). We defined cognitive impairment as a z-score ≤ -1.5. Participants' median age was 70.9 years (range 21.6-94.1) and 262 (38.8%) were women. Proportions of impairment on each domain were as follows: perceptual-motor function 31.5% (150/476), language 41.2% (273/662), executive function 41.7% (281/674), learning and memory 42.2% (269/638), complex attention 48.8% (329/674). Among 474 participants with data for all domains, only 28.9% (n = 137) were not impaired on any domain, with 25.9% impaired on a single domain (n = 123), 17.3% on two (n = 82), 13.9% on three (n = 66), 9.1% on four (n = 43) and 4.9% (n = 23) on all five. Across patients, patterns of impairment combinations were diverse. In conclusion, cognitive impairment is extremely common in hemodialysis patients, across numerous domains, and patients often experience multiple deficits simultaneously. Clinical care should be tailored to meet the needs of patients with different types of cognitive impairment and future research should focus on identifying risk factors for cognitive decline. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Predicting PDZ domain mediated protein interactions from structure
2013-01-01
Background PDZ domains are structural protein domains that recognize simple linear amino acid motifs, often at protein C-termini, and mediate protein-protein interactions (PPIs) in important biological processes, such as ion channel regulation, cell polarity and neural development. PDZ domain-peptide interaction predictors have been developed based on domain and peptide sequence information. Since domain structure is known to influence binding specificity, we hypothesized that structural information could be used to predict new interactions compared to sequence-based predictors. Results We developed a novel computational predictor of PDZ domain and C-terminal peptide interactions using a support vector machine trained with PDZ domain structure and peptide sequence information. Performance was estimated using extensive cross validation testing. We used the structure-based predictor to scan the human proteome for ligands of 218 PDZ domains and show that the predictions correspond to known PDZ domain-peptide interactions and PPIs in curated databases. The structure-based predictor is complementary to the sequence-based predictor, finding unique known and novel PPIs, and is less dependent on training–testing domain sequence similarity. We used a functional enrichment analysis of our hits to create a predicted map of PDZ domain biology. This map highlights PDZ domain involvement in diverse biological processes, some only found by the structure-based predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic metabolism and suggest new interactions for other processes including wound healing and Wnt signalling. Conclusions We built a structure-based predictor of PDZ domain-peptide interactions, which can be used to scan C-terminal proteomes for PDZ interactions. We also show that the structure-based predictor finds many known PDZ mediated PPIs in human that were not found by our previous sequence-based predictor and is less dependent on training–testing domain sequence similarity. Using both predictors, we defined a functional map of human PDZ domain biology and predict novel PDZ domain function. Users may access our structure-based and previous sequence-based predictors at http://webservice.baderlab.org/domains/POW. PMID:23336252
Mease, PJ; Clauw, DJ; Christensen, R; Crofford, L; Gendreau, M; Martin, SA; Simon, L; Strand, V; Williams, DA; Arnold, LM
2012-01-01
Following development of the core domain set for fibromyalgia (FM) in OMERACT 7–9, the FM working group has progressed toward the development of an FM responder index and a disease activity score based on these domains, utilizing outcome indices of these domains from archived randomized clinical trials (RCTs) in FM. Possible clinical domains that could be included in a responder index and disease activity score include: pain, fatigue, sleep disturbance, cognitive dysfunction, mood disturbance, tenderness, stiffness, and functional impairment. Outcome measures for these domains demonstrate good to adequate psychometric properties, although measures of cognitive dysfunction need to be further developed. The approach used in the development of responder indices and disease activity scores for rheumatoid arthritis and ankylosing spondylitis represent heuristic models for our work, but FM is challenging in that there is no clear algorithm of treatment that defines disease activity based on treatment decisions, nor are there objective markers that define thresholds of severity or response to treatment. The process of developing candidate dichotomous responder definitions and continuous quantitative disease activity measures is described, as is participant discussion that transpired at OMERACT 10. Final results of this work will be published in a separate manuscript pending completion of analyses. PMID:21724721
Generic Educational Knowledge Representation for Adaptive and Cognitive Systems
ERIC Educational Resources Information Center
Caravantes, Arturo; Galan, Ramon
2011-01-01
The interoperability of educational systems, encouraged by the development of specifications, standards and tools related to the Semantic Web is limited to the exchange of information in domain and student models. High system interoperability requires that a common framework be defined that represents the functional essence of educational systems.…
Engeroff, Tobias; Ingmann, Tobias; Banzer, Winfried
2018-06-01
A growing body of literature suggests that physical activity might alleviate the age-related neurodegeneration and decline of cognitive function. However, most of this evidence is based on data investigating the association of exercise interventions or current physical activity behavior with cognitive function in elderly subjects. We performed a systematic review and hypothesize that physical activity during the adult life span is connected with maintained domain-specific cognitive functions during late adulthood defined as age 60+ years. We performed a systematic literature search up to November 2017 in PubMed, Web of Science, and Google Scholar without language limitations for studies analyzing the association of leisure physical activity during the adult life span (age 18+ years) and domain-specific cognitive functions in older adults (age 60+ years). The literature review yielded 14,294 articles and after applying inclusion and exclusion criteria, nine cross-sectional and 14 longitudinal studies were included. Moderate- and vigorous-intensity leisure physical activity was associated with global cognitive function and specific cognitive domains including executive functions and memory but not attention or working memory. Most studies assessed mid- to late-adulthood physical activity, thus information concerning the influence of young adult life-span physical activity is currently lacking. Observational evidence that moderate- and vigorous-intensity leisure physical activity is beneficially associated with maintained cognitive functions during old age is accumulating. Further studies are necessary to confirm a causal link by assessing objective physical activity data and the decline of cognitive functions at multiple time points during old age.
PARADIGM: The Partnership for Advancing Interdisciplinary Global Modeling - Year 4 Annual Report
2005-01-01
Microbial Foodweb - Microzooplankton and Bacteria Defining and/or generating functional groups of phytoplankton and biogeochemical functions and their...Peninsula (Karner et al. 2001; Church et al. 2003). Archaea are structurally similar to bacteria (they are both prokaryotes) but are genetically distinct...With the Bacteria and Eukarya, the Archaea form the three fundamental domains of life. They may be numerically dominant in a large part of all ocean
Protein domain assignment from the recurrence of locally similar structures
Tai, Chin-Hsien; Sam, Vichetra; Gibrat, Jean-Francois; Garnier, Jean; Munson, Peter J.
2010-01-01
Domains are basic units of protein structure and essential for exploring protein fold space and structure evolution. With the structural genomics initiative, the number of protein structures in the Protein Databank (PDB) is increasing dramatically and domain assignments need to be done automatically. Most existing structural domain assignment programs define domains using the compactness of the domains and/or the number and strength of intra-domain versus inter-domain contacts. Here we present a different approach based on the recurrence of locally similar structural pieces (LSSPs) found by one-against-all structure comparisons with a dataset of 6,373 protein chains from the PDB. Residues of the query protein are clustered using LSSPs via three different procedures to define domains. This approach gives results that are comparable to several existing programs that use geometrical and other structural information explicitly. Remarkably, most of the proteins that contribute the LSSPs defining a domain do not themselves contain the domain of interest. This study shows that domains can be defined by a collection of relatively small locally similar structural pieces containing, on average, four secondary structure elements. In addition, it indicates that domains are indeed made of recurrent small structural pieces that are used to build protein structures of many different folds as suggested by recent studies. PMID:21287617
N-terminal Domains Elicit Formation of Functional Pmel17 Amyloid Fibrils*
Watt, Brenda; van Niel, Guillaume; Fowler, Douglas M.; Hurbain, Ilse; Luk, Kelvin C.; Stayrook, Steven E.; Lemmon, Mark A.; Raposo, Graça; Shorter, James; Kelly, Jeffery W.; Marks, Michael S.
2009-01-01
Pmel17 is a transmembrane protein that mediates the early steps in the formation of melanosomes, the subcellular organelles of melanocytes in which melanin pigments are synthesized and stored. In melanosome precursor organelles, proteolytic fragments of Pmel17 form insoluble, amyloid-like fibrils upon which melanins are deposited during melanosome maturation. The mechanism(s) by which Pmel17 becomes competent to form amyloid are not fully understood. To better understand how amyloid formation is regulated, we have defined the domains within Pmel17 that promote fibril formation in vitro. Using purified recombinant fragments of Pmel17, we show that two regions, an N-terminal domain of unknown structure and a downstream domain with homology to a polycystic kidney disease-1 repeat, efficiently form amyloid in vitro. Analyses of fibrils formed in melanocytes confirm that the polycystic kidney disease-1 domain forms at least part of the physiological amyloid core. Interestingly, this same domain is also required for the intracellular trafficking of Pmel17 to multivesicular compartments within which fibrils begin to form. Although a domain of imperfect repeats (RPT) is required for fibril formation in vivo and is a component of fibrils in melanosomes, RPT is not necessary for fibril formation in vitro and in isolation is unable to adopt an amyloid fold in a physiologically relevant time frame. These data define the structural core of Pmel17 amyloid, imply that the RPT domain plays a regulatory role in timing amyloid conversion, and suggest that fibril formation might be physically linked with multivesicular body sorting. PMID:19840945
He, Ran; Zu, Li-Dong; Yao, Peng; Chen, Xin; Wang, En-Duo
2009-02-01
In human cytoplasm, nine aminoacyl-tRNA synthetases (aaRSs) and three protein factors form a multi-synthetase complex (MSC). Human cytosolic methionyl-tRNA synthetase (hcMetRS) is a component of the MSC. Sequence alignment revealed that hcMetRS has an N-terminal extension of 267 amino acid residues. This extension can be divided into three sub-domains: GST-like, GN, and GC sub-domains. The effect of each sub-domain in the N-terminal extension of hcMetRS on enzymatic activity and incorporation into the MSC was studied. The results of cellular assay showed that the GST-like sub-domain was responsible for the incorporation of hcMetRS into the MSC. The entire N-terminal extension of hcMetRS is indispensable for the enzymatic activity. Deletion mutagenesis revealed that a seven-amino acid motif within the sub-domain GC was important for the activity of amino acid activation. A conserved proline residue within the seven-amino acid motif was crucial, while the other six residues were moderately important for the amino acid activation activity. Thus, the last 15 residues of previously defined N-terminal extension of hcMetRS was a part of the catalytic domain; whereas the first 252 residues of hcMetRS constitute the N-terminal extended domain of hcMetRS. The formerly defined N-terminal extension of hcMetRS possesses two functions of two different domains.
Das, Debanu; Finn, Robert D; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Lam, Winnie W; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A
2010-01-01
Sufu (Suppressor of Fused), a two-domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu-like proteins have previously been identified based on sequence similarity to the N-terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu-like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu-like protein. The structure revealed a striking similarity to the N-terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ∼15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu-like proteins that are present in ∼200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam. PMID:20836087
2012-01-01
Background The NCBI Conserved Domain Database (CDD) consists of a collection of multiple sequence alignments of protein domains that are at various stages of being manually curated into evolutionary hierarchies based on conserved and divergent sequence and structural features. These domain models are annotated to provide insights into the relationships between sequence, structure and function via web-based BLAST searches. Results Here we automate the generation of conserved domain (CD) hierarchies using a combination of heuristic and Markov chain Monte Carlo (MCMC) sampling procedures and starting from a (typically very large) multiple sequence alignment. This procedure relies on statistical criteria to define each hierarchy based on the conserved and divergent sequence patterns associated with protein functional-specialization. At the same time this facilitates the sequence and structural annotation of residues that are functionally important. These statistical criteria also provide a means to objectively assess the quality of CD hierarchies, a non-trivial task considering that the protein subgroups are often very distantly related—a situation in which standard phylogenetic methods can be unreliable. Our aim here is to automatically generate (typically sub-optimal) hierarchies that, based on statistical criteria and visual comparisons, are comparable to manually curated hierarchies; this serves as the first step toward the ultimate goal of obtaining optimal hierarchical classifications. A plot of runtimes for the most time-intensive (non-parallelizable) part of the algorithm indicates a nearly linear time complexity so that, even for the extremely large Rossmann fold protein class, results were obtained in about a day. Conclusions This approach automates the rapid creation of protein domain hierarchies and thus will eliminate one of the most time consuming aspects of conserved domain database curation. At the same time, it also facilitates protein domain annotation by identifying those pattern residues that most distinguish each protein domain subgroup from other related subgroups. PMID:22726767
Cromar, Graham; Wong, Ka-Chun; Loughran, Noeleen; On, Tuan; Song, Hongyan; Xiong, Xuejian; Zhang, Zhaolei; Parkinson, John
2014-01-01
The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins. PMID:25323955
Tell, G; Perrone, L; Fabbro, D; Pellizzari, L; Pucillo, C; De Felice, M; Acquaviva, R; Formisano, S; Damante, G
1998-01-01
The thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor involved in the development of thyroid and lung. TTF-1 contains two transcriptional activation domains (N and C domain). The primary amino acid sequence of the N domain does not show any typical characteristic of known transcriptional activation domains. In aqueous solution the N domain exists in a random-coil conformation. The increase of the milieu hydrophobicity, by the addition of trifluoroethanol, induces a considerable gain of alpha-helical structure. Acidic transcriptional activation domains are largely unstructured in solution, but, under hydrophobic conditions, folding into alpha-helices or beta-strands can be induced. Therefore our data indicate that the inducibility of alpha-helix by hydrophobic conditions is a property not restricted to acidic domains. Co-transfections experiments indicate that the acidic domain of herpes simplex virus protein VP16 (VP16) and the TTF-1 N domain are interchangeable and that a chimaeric protein, which combines VP16 linked to the DNA-binding domain of TTF-1, undergoes the same regulatory constraints that operate for the wild-type TTF-1. In addition, we demonstrate that the TTF-1 N domain possesses two typical properties of acidic activation domains: TBP (TATA-binding protein) binding and ability to activate transcription in yeast. Accordingly, the TTF-1 N domain is able to squelch the activity of the p65 acidic domain. Altogether, these structural and functional data suggest that a non-acidic transcriptional activation domain (TTF-1 N domain) activates transcription by using molecular mechanisms similar to those used by acidic domains. TTF-1 N domain and acidic domains define a family of proteins whose common property is to activate transcription through the use of mechanisms largely conserved during evolutionary development. PMID:9425125
Merging Applicability Domains for in Silico Assessment of Chemical Mutagenicity
2014-02-04
molecular fingerprints as descriptors for developing quantitative structure−activity relationship ( QSAR ) models and defining applicability domains with...used to define and quantify an applicability domain for either method. The importance of using applicability domains in QSAR modeling cannot be...domain from roughly 80% to 90%. These results indicated that the proposed QSAR protocol constituted a highly robust chemical mutagenicity prediction
Developing a Domain Theory Defining and Exemplifying a Learning Theory of Progressive Attainments
ERIC Educational Resources Information Center
Bunderson, C. Victor
2011-01-01
This article defines the concept of Domain Theory, or, when educational measurement is the goal, one might call it a "Learning Theory of Progressive Attainments in X Domain". The concept of Domain Theory is first shown to be rooted in validity theory, then the concept of domain theory is expanded to amplify its necessary but long neglected…
U-shaped development: an old but unsolved problem.
Pauls, Franz; Macha, Thorsten; Petermann, Franz
2013-01-01
Even today the investigation of U-shaped functions in human development is of considerable importance for different domains of Developmental Psychology. More and more scientific researchers focus their efforts on the challenge to describe and explain the phenomenon by identifying those skills and abilities being affected. The impact of U-shaped functions on diagnostic decision-making and on therapeutic treatment programs highlights the importance of understanding the nature of non-monotonic development. The present article therefore addresses the relevant questions of how U-shaped functions are defined in theory, in which developmental domains such non-monotonic growth curves are suggested to occur, and which implications there are for future methodology and diagnostic practice. Finally, it is recommended to clearly identify those interactions between proximal and distal subcomponents which are expected to contribute to a U-shaped development.
U-Shaped Development: An Old but Unsolved Problem
Pauls, Franz; Macha, Thorsten; Petermann, Franz
2013-01-01
Even today the investigation of U-shaped functions in human development is of considerable importance for different domains of Developmental Psychology. More and more scientific researchers focus their efforts on the challenge to describe and explain the phenomenon by identifying those skills and abilities being affected. The impact of U-shaped functions on diagnostic decision-making and on therapeutic treatment programs highlights the importance of understanding the nature of non-monotonic development. The present article therefore addresses the relevant questions of how U-shaped functions are defined in theory, in which developmental domains such non-monotonic growth curves are suggested to occur, and which implications there are for future methodology and diagnostic practice. Finally, it is recommended to clearly identify those interactions between proximal and distal subcomponents which are expected to contribute to a U-shaped development. PMID:23750146
The Association between BMI and Different Frailty Domains: A U-Shaped Curve?
Rietman, M L; van der A, D L; van Oostrom, S H; Picavet, H S J; Dollé, M E T; van Steeg, H; Verschuren, W M M; Spijkerman, A M W
2018-01-01
Previous studies showed a U-shaped association between BMI and (physical) frailty. We studied the association between BMI and physical, cognitive, psychological, and social frailty. Furthermore, the overlap between and prevalence of these frailty domains was examined. Cross-sectional study. The Doetinchem Cohort Study is a longitudinal population-based study starting in 1987-1991 examining men and women aged 20-59 with follow-up examinations every 5 yrs. For the current analyses, we used data from round 5 (2008-2012) with 4019 participants aged 41-81 yrs. Physical frailty was defined as having ≥ 2 of 4 frailty criteria from the Frailty Phenotype (unintentional weight loss, exhaustion, physical activity, handgrip strength). Cognitive frailty was defined as the < 10th percentile on global cognitive functioning (based on memory, speed, flexibility). Psychological frailty was defined as having 2 out of 2 criteria (depression, mental health). Social frailty was defined as having ≥ 2 of 3 criteria (loneliness, social support, social participation). BMI was divided into four classes. Analyses were adjusted for sex, age, level of education, and smoking. A U-shaped association was observed between BMI and physical frailty, a small linear association for BMI and cognitive frailty and no association between BMI and psychological and social frailty. The four frailty domains showed only a small proportion of overlap. The prevalence of physical, cognitive and social frailty increased with age, whereas psychological frailty did not. We confirm that not only underweight but also obesity is associated with physical frailty. Obesity also seems to be associated with cognitive frailty. Further, frailty prevention should focus on multiple domains and target individuals at a younger age (<65yrs).
Wang, W; Zhang, W; Jiang, R; Luan, Y
2010-05-01
It is of vital importance to find genetic variants that underlie human complex diseases and locate genes that are responsible for these diseases. Since proteins are typically composed of several structural domains, it is reasonable to assume that harmful genetic variants may alter structures of protein domains, affect functions of proteins and eventually cause disorders. With this understanding, the authors explore the possibility of recovering associations between protein domains and complex diseases. The authors define associations between protein domains and disease families on the basis of associations between non-synonymous single nucleotide polymorphisms (nsSNPs) and complex diseases, similarities between diseases, and relations between proteins and domains. Based on a domain-domain interaction network, the authors propose a 'guilt-by-proximity' principle to rank candidate domains according to their average distance to a set of seed domains in the domain-domain interaction network. The authors validate the method through large-scale cross-validation experiments on simulated linkage intervals, random controls and the whole genome. Results show that areas under receiver operating characteristic curves (AUC scores) can be as high as 77.90%, and the mean rank ratios can be as low as 21.82%. The authors further offer a freely accessible web interface for a genome-wide landscape of associations between domains and disease families.
Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena
2016-10-18
The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains-In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.
Shaner, Lance; Trott, Amy; Goeckeler, Jennifer L; Brodsky, Jeffrey L; Morano, Kevin A
2004-05-21
The Sse1/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a C-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an N-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Delta yeast. Surprisingly, all mutants predicted to abolish ATP hydrolysis (D8N, K69Q, D174N, D203N) complemented the temperature sensitivity of sse1Delta and lethality of sse1Deltasse2Delta cells, whereas mutations in predicted ATP binding residues (G205D, G233D) were non-functional. Complementation ability correlated well with ATP binding assessed in vitro. The extreme C terminus of the Hsp70 family is required for substrate targeting and heterocomplex formation with other chaperones, but mutant Sse1 proteins with a truncation of up to 44 C-terminal residues that were not included in the PBD were active. Remarkably, the two domains of Sse1, when expressed in trans, functionally complement the sse1Delta growth phenotype and interact by coimmunoprecipitation analysis. In addition, a functional PBD was required to stabilize the Sse1 ATPase domain, and stabilization also occurred in trans. These data represent the first structure-function analysis of this abundant but ill defined chaperone, and establish several novel aspects of Sse1/Hsp110 function relative to Hsp70.
Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition.
D'Arcy, Sheena; Davies, Owen R; Blundell, Tom L; Bolanos-Garcia, Victor M
2010-05-07
BubR1 is essential for the mitotic checkpoint that prevents aneuploidy in cellular progeny by triggering anaphase delay in response to kinetochores incorrectly/not attached to the mitotic spindle. Here, we define the molecular architecture of the functionally significant N-terminal region of human BubR1 and present the 1.8 A crystal structure of its tetratricopeptide repeat (TPR) domain. The structure reveals divergence from the classical TPR fold and is highly similar to the TPR domain of budding yeast Bub1. Shared distinctive features include a disordered loop insertion, a 3(10)-helix, a tight turn involving glycine positive Phi angles, and noncanonical packing of and between the TPR motifs. We also define the molecular determinants of the interaction between BubR1 and kinetochore protein Blinkin. We identify a shallow groove on the concave surface of the BubR1 TPR domain that forms multiple discrete and potentially cooperative interactions with Blinkin. Finally, we present evidence for a direct interaction between BubR1 and Bub1 mediated by regions C-terminal to their TPR domains. This interaction provides a mechanism for Bub1-dependent kinetochore recruitment of BubR1. We thus present novel molecular insights into the structure of BubR1 and its interactions at the kinetochore-microtubule interface. Our studies pave the way for future structure-directed engineering aimed at dissecting the roles of kinetochore-bound and other pools of BubR1 in vivo.
Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.
Dove, Katja K; Stieglitz, Benjamin; Duncan, Emily D; Rittinger, Katrin; Klevit, Rachel E
2016-08-01
RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs. © 2016 The Authors.
NASA Astrophysics Data System (ADS)
Faribault, Alexandre; Tschirhart, Hugo; Muller, Nicolas
2016-05-01
In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N-1 spins \\frac{1}{2}, contains one arbitrarily large spin S. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly nonlinear Bethe equations. It can therefore offer significant gains in stability and computation speed.
Active contours on statistical manifolds and texture segmentation
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2005-01-01
A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto a set of probability density functions. In this novel framework, color or texture features are measured at each image point and their statistical...
USDA-ARS?s Scientific Manuscript database
Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...
Active contours on statistical manifolds and texture segmentaiton
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2005-01-01
A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto-a set of probability density functions. In this novel framework, color or texture features are measured at each Image point and their statistical...
Successful Aging: Advancing the Science of Physical Independence in Older Adults
Anton, Stephen D.; Woods, Adam J.; Ashizawa, Tetso; Barb, Diana; Buford, Thomas W.; Carter, Christy S.; Clark, David J.; Cohen, Ronald A.; Corbett, Duane B.; Cruz-Almeida, Yenisel; Dotson, Vonetta; Ebner, Natalie; Efron, Philip A.; Fillingim, Roger B.; Foster, Thomas C.; Gundermann, David M.; Joseph, Anna-Maria; Karabetian, Christy; Leeuwenburgh, Christiaan; Manini, Todd M.; Marsiske, Michael; Mankowski, Robert T.; Mutchie, Heather L.; Perri, Michael G.; Ranka, Sanjay; Rashidi, Parisa; Sandesara, Bhanuprasad; Scarpace, Philip J.; Sibille, Kimberly T.; Solberg, Laurence M.; Someya, Shinichi; Uphold, Connie; Wohlgemuth, Stephanie; Wu, Samuel Shangwu; Pahor, Marco
2015-01-01
The concept of ‘Successful Aging’ has long intrigued the scientific community. Despite this long-standing interest, a consensus definition has proven to be a difficult task, due to the inherent challenge involved in defining such a complex, multi-dimensional phenomenon. The lack of a clear set of defining characteristics for the construct of successful aging has made comparison of findings across studies difficult and has limited advances in aging research. The domain in which consensus on markers of successful aging is furthest developed is the domain of physical functioning. For example, walking speed appears to be an excellent surrogate marker of overall health and predicts the maintenance of physical independence, a cornerstone of successful aging. The purpose of the present article is to provide an overview and discussion of specific health conditions, behavioral factors, and biological mechanisms that mark declining mobility and physical function and promising interventions to counter these effects. With life expectancy continuing to increase in the United States and developed countries throughout the world, there is an increasing public health focus on the maintenance of physical independence among all older adults. PMID:26462882
On B-type Open-Closed Landau-Ginzburg Theories Defined on Calabi-Yau Stein Manifolds
NASA Astrophysics Data System (ADS)
Babalic, Elena Mirela; Doryn, Dmitry; Lazaroiu, Calin Iuliu; Tavakol, Mehdi
2018-05-01
We consider the bulk algebra and topological D-brane category arising from the differential model of the open-closed B-type topological Landau-Ginzburg theory defined by a pair (X,W), where X is a non-compact Calabi-Yau manifold and W is a complex-valued holomorphic function. When X is a Stein manifold (but not restricted to be a domain of holomorphy), we extract equivalent descriptions of the bulk algebra and of the category of topological D-branes which are constructed using only the analytic space associated to X. In particular, we show that the D-brane category is described by projective factorizations defined over the ring of holomorphic functions of X. We also discuss simplifications of the analytic models which arise when X is holomorphically parallelizable and illustrate these in a few classes of examples.
Module Architecture for in Situ Space Laboratories
NASA Technical Reports Server (NTRS)
Sherwood, Brent
2010-01-01
The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.
Determinants of Chromosome Architecture: Insulator Pairing in cis and in trans
Fujioka, Miki; Mistry, Hemlata; Schedl, Paul; Jaynes, James B.
2016-01-01
The chromosomes of multicellular animals are organized into a series of topologically independent looped domains. This domain organization is critical for the proper utilization and propagation of the genetic information encoded by the chromosome. A special set of architectural elements, called boundaries or insulators, are responsible both for subdividing the chromatin into discrete domains and for determining the topological organization of these domains. Central to the architectural functions of insulators are homologous and heterologous insulator:insulator pairing interactions. The former (pairing between copies of the same insulator) dictates the process of homolog alignment and pairing in trans, while the latter (pairing between different insulators) defines the topology of looped domains in cis. To elucidate the principles governing these architectural functions, we use two insulators, Homie and Nhomie, that flank the Drosophila even skipped locus. We show that homologous insulator interactions in trans, between Homie on one homolog and Homie on the other, or between Nhomie on one homolog and Nhomie on the other, mediate transvection. Critically, these homologous insulator:insulator interactions are orientation-dependent. Consistent with a role in the alignment and pairing of homologs, self-pairing in trans is head-to-head. Head-to-head self-interactions in cis have been reported for other fly insulators, suggesting that this is a general principle of self-pairing. Homie and Nhomie not only pair with themselves, but with each other. Heterologous Homie-Nhomie interactions occur in cis, and we show that they serve to delimit a looped chromosomal domain that contains the even skipped transcription unit and its associated enhancers. The topology of this loop is defined by the heterologous pairing properties of Homie and Nhomie. Instead of being head-to-head, which would generate a circular loop, Homie-Nhomie pairing is head-to-tail. Head-to-tail pairing in cis generates a stem-loop, a configuration much like that observed in classical lampbrush chromosomes. These pairing principles provide a mechanistic underpinning for the observed topologies within and between chromosomes. PMID:26910731
Domain organizations of modular extracellular matrix proteins and their evolution.
Engel, J
1996-11-01
Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.
Solving three-body-breakup problems with outgoing-flux asymptotic conditions
NASA Astrophysics Data System (ADS)
Randazzo, J. M.; Buezas, F.; Frapiccini, A. L.; Colavecchia, F. D.; Gasaneo, G.
2011-11-01
An analytically solvable three-body collision system (s wave) model is used to test two different theoretical methods. The first one is a configuration interaction expansion of the scattering wave function using a basis set of Generalized Sturmian Functions (GSF) with purely outgoing flux (CISF), introduced recently in A. L. Frapicinni, J. M. Randazzo, G. Gasaneo, and F. D. Colavecchia [J. Phys. B: At. Mol. Opt. Phys.JPAPEH0953-407510.1088/0953-4075/43/10/101001 43, 101001 (2010)]. The second one is a finite element method (FEM) calculation performed with a commercial code. Both methods are employed to analyze different ways of modeling the asymptotic behavior of the wave function in finite computational domains. The asymptotes can be simulated very accurately by choosing hyperspherical or rectangular contours with the FEM software. In contrast, the CISF method can be defined both in an infinite domain or within a confined region in space. We found that the hyperspherical (rectangular) FEM calculation and the infinite domain (confined) CISF evaluation are equivalent. Finally, we apply these models to the Temkin-Poet approach of hydrogen ionization.
Zhao, Chunyu; Burge, James H
2007-12-24
Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.
Topological domain walls in helimagnets
NASA Astrophysics Data System (ADS)
Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.
2018-05-01
Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.
Cascioferro, Alessandro; Donà, Valentina; Delogu, Giovanni; Palù, Giorgio; Bitter, Wilbert; Manganelli, Riccardo
2011-01-01
PE are peculiar exported mycobacterial proteins over-represented in pathogenic mycobacterial species. They are characterized by an N-terminal domain of about 110 amino acids (PE domain) which has been demonstrated to be responsible for their export and localization. In this paper, we characterize the PE domain of PE_PGRS33 (PERv1818c), one of the best characterized PE proteins. We constructed several mutated proteins in which portions of the PE domain were deleted or subjected to defined mutations. These proteins were expressed in different mycobacterial species and their localization was characterized. We confirmed that the PE domain is essential for PE_PGRS33 surface localization, and demonstrated that a PE domain lacking its first 30 amino acids loses its function. However, single amino acid substitutions in two regions extremely well conserved within the N-terminal domain of all PE proteins had some effect on the stability of PE_PGRS33, but not on its localization. Using Mycobacterium marinum we could show that the type VII secretion system ESX-5 is essential for PE_PGRS33 export. Moreover, in M. marinum, but not in Mycobacterium bovis BCG and in Mycobacterium tuberculosis, the PE domain of PE_PGRS33 is processed and secreted into the culture medium when expressed in the absence of the PGRS domain. Finally, using chimeric proteins in which different portions of the PERv1818c domain were fused to the N-terminus of the green fluorescent protein, we could hypothesize that the first 30 amino acids of the PE domain contain a sequence that allows protein translocation. PMID:22110736
Application of new type of distributed multimedia databases to networked electronic museum
NASA Astrophysics Data System (ADS)
Kuroda, Kazuhide; Komatsu, Naohisa; Komiya, Kazumi; Ikeda, Hiroaki
1999-01-01
Recently, various kinds of multimedia application systems have actively been developed based on the achievement of advanced high sped communication networks, computer processing technologies, and digital contents-handling technologies. Under this background, this paper proposed a new distributed multimedia database system which can effectively perform a new function of cooperative retrieval among distributed databases. The proposed system introduces a new concept of 'Retrieval manager' which functions as an intelligent controller so that the user can recognize a set of distributed databases as one logical database. The logical database dynamically generates and performs a preferred combination of retrieving parameters on the basis of both directory data and the system environment. Moreover, a concept of 'domain' is defined in the system as a managing unit of retrieval. The retrieval can effectively be performed by cooperation of processing among multiple domains. Communication language and protocols are also defined in the system. These are used in every action for communications in the system. A language interpreter in each machine translates a communication language into an internal language used in each machine. Using the language interpreter, internal processing, such internal modules as DBMS and user interface modules can freely be selected. A concept of 'content-set' is also introduced. A content-set is defined as a package of contents. Contents in the content-set are related to each other. The system handles a content-set as one object. The user terminal can effectively control the displaying of retrieved contents, referring to data indicating the relation of the contents in the content- set. In order to verify the function of the proposed system, a networked electronic museum was experimentally built. The results of this experiment indicate that the proposed system can effectively retrieve the objective contents under the control to a number of distributed domains. The result also indicate that the system can effectively work even if the system becomes large.
Parsons, Susan K; Fairclough, Diane L; Wang, Jim; Hinds, Pamela S
2012-06-01
Health-related quality of life (HRQoL) information from children facing rare and/or life-threatening disease serves important clinical functions. Longitudinal HRQoL ratings from 222 child-parent dyads collected at four time points during the first 16 weeks of cancer treatment are presented. Patient and parent HRQoL reports at the domain level, based on the Pediatric Quality of Life Inventory™ 4.0 Generic Core Scales, were compared over time, and variation in child/parent agreement by age, treatment intensity, and time on treatment was explored. Analyses included consideration of missingness, differences between child and parent group mean domain scores averaged over assessments, agreement between individual child and parent, compared to group averages, and within-subject changes between assessments. Children consistently reported higher functioning than their parents with differences varying by child age and HRQoL domain and diminishing over time. No differences were found by intensity of treatment. The between-subject correlation ranged from 0.61 (social functioning) to 0.86 (physical functioning) across time. Agreement within groups, defined by age, treatment intensity, and time were generally similar. Results indicate moderate-to-good child/parent agreement with variability by domain of HRQoL. Findings underscore the complexity of self- and proxy-based report and support the use of information from both raters.
Seal, R P; Leighton, B H; Amara, S G
2000-03-01
Excitatory amino acid transporters (EAATs) function as both substrate transporters and ligand-gated anion channels. Characterization of the transporter's general topology is the first requisite step in defining the structural bases for these distinct activities. While the first six hydrophobic domains can be readily modeled as conventional transmembrane segments, the organization of the C-terminal hydrophobic domains, which have been implicated in both substrate and ion interactions, has been controversial. Here, we report the results of a comprehensive evaluation of the C-terminal topology of EAAT1 determined by the chemical modification of introduced cysteine residues. Our data support a model in which two membrane-spanning domains flank a central region that is highly accessible to the extracellular milieu and contains at least one reentrant loop domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T Yeh; C Lee; L Amzel
Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both inmore » Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.« less
Storch, Daniela; Menzel, Lena; Frickenhaus, Stephan; Pörtner, Hans-O
2014-10-01
Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean. © 2014 John Wiley & Sons Ltd.
Sumer, Huseyin; Craig, Jeffrey M.; Sibson, Mandy; Choo, K.H. Andy
2003-01-01
Human neocentromeres are fully functional centromeres that arise at previously noncentromeric regions of the genome. We have tested a rapid procedure of genomic array analysis of chromosome scaffold/matrix attachment regions (S/MARs), involving the isolation of S/MAR DNA and hybridization of this DNA to a genomic BAC/PAC array. Using this procedure, we have defined a 2.5-Mb domain of S/MAR-enriched chromatin that fully encompasses a previously mapped centromere protein-A (CENP-A)-associated domain at a human neocentromere. We have independently verified this procedure using a previously established fluorescence in situ hybridization method on salt-treated metaphase chromosomes. In silico sequence analysis of the S/MAR-enriched and surrounding regions has revealed no outstanding sequence-related predisposition. This study defines the S/MAR-enriched domain of a higher eukaryotic centromere and provides a method that has broad application for the mapping of S/MAR attachment sites over large genomic regions or throughout a genome. PMID:12840048
Crystal Structure of the GRAS Domain of SCARECROW-LIKE7 in Oryza sativa
Li, Shengping; Zhao, Yanhe; Zhao, Zheng; Wu, Xiuling; Sun, Lifang; Liu, Qingsong; Wu, Yunkun
2016-01-01
GRAS proteins belong to a plant-specific protein family with many members and play essential roles in plant growth and development, functioning primarily in transcriptional regulation. Proteins in the family are minimally defined as containing the conserved GRAS domain. Here, we determined the structure of the GRAS domain of Os-SCL7 from rice (Oryza sativa) to 1.82 Å. The structure includes cap and core subdomains and elucidates the features of the conserved GRAS LRI, VHIID, LRII, PFYRE, and SAW motifs. The structure is a dimer, with a clear groove to accommodate double-stranded DNA. Docking a DNA segment into the groove to generate an Os-SCL7/DNA complex provides insight into the DNA binding mechanism of GRAS proteins. Furthermore, the in vitro DNA binding property of Os-SCL7 and model-defined recognition residues are assessed by electrophoretic mobility shift analysis and mutagenesis assays. These studies reveal the structure and preliminary DNA interaction mechanisms of GRAS proteins and open the door to in-depth investigation and understanding of the individual pathways in which they play important roles. PMID:27081181
A Concept for Run-Time Support of the Chapel Language
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A document presents a concept for run-time implementation of other concepts embodied in the Chapel programming language. (Now undergoing development, Chapel is intended to become a standard language for parallel computing that would surpass older such languages in both computational performance in the efficiency with which pre-existing code can be reused and new code written.) The aforementioned other concepts are those of distributions, domains, allocations, and access, as defined in a separate document called "A Semantic Framework for Domains and Distributions in Chapel" and linked to a language specification defined in another separate document called "Chapel Specification 0.3." The concept presented in the instant report is recognition that a data domain that was invented for Chapel offers a novel approach to distributing and processing data in a massively parallel environment. The concept is offered as a starting point for development of working descriptions of functions and data structures that would be necessary to implement interfaces to a compiler for transforming the aforementioned other concepts from their representations in Chapel source code to their run-time implementations.
Stoyanova, Tanya; Goldstein, Andrew S; Cai, Houjian; Drake, Justin M; Huang, Jiaoti; Witte, Owen N
2012-10-15
The cell surface protein Trop2 is expressed on immature stem/progenitor-like cells and is overexpressed in many epithelial cancers. However the biological function of Trop2 in tissue maintenance and tumorigenesis remains unclear. In this study, we demonstrate that Trop2 is a regulator of self-renewal, proliferation, and transformation. Trop2 controls these processes through a mechanism of regulated intramembrane proteolysis that leads to cleavage of Trop2, creating two products: the extracellular domain and the intracellular domain. The intracellular domain of Trop2 is released from the membrane and accumulates in the nucleus. Heightened expression of the Trop2 intracellular domain promotes stem/progenitor self-renewal through signaling via β-catenin and is sufficient to initiate precursor lesions to prostate cancer in vivo. Importantly, we demonstrate that loss of β-catenin or Trop2 loss-of-function cleavage mutants abrogates Trop2-driven self-renewal and hyperplasia in the prostate. These findings suggest that heightened expression of Trop2 is selected for in epithelial cancers to enhance the stem-like properties of self-renewal and proliferation. Defining the mechanism of Trop2 function in self-renewal and transformation is essential to identify new therapeutic strategies to block Trop2 activation in cancer.
Stoyanova, Tanya; Goldstein, Andrew S.; Cai, Houjian; Drake, Justin M.; Huang, Jiaoti; Witte, Owen N.
2012-01-01
The cell surface protein Trop2 is expressed on immature stem/progenitor-like cells and is overexpressed in many epithelial cancers. However the biological function of Trop2 in tissue maintenance and tumorigenesis remains unclear. In this study, we demonstrate that Trop2 is a regulator of self-renewal, proliferation, and transformation. Trop2 controls these processes through a mechanism of regulated intramembrane proteolysis that leads to cleavage of Trop2, creating two products: the extracellular domain and the intracellular domain. The intracellular domain of Trop2 is released from the membrane and accumulates in the nucleus. Heightened expression of the Trop2 intracellular domain promotes stem/progenitor self-renewal through signaling via β-catenin and is sufficient to initiate precursor lesions to prostate cancer in vivo. Importantly, we demonstrate that loss of β-catenin or Trop2 loss-of-function cleavage mutants abrogates Trop2-driven self-renewal and hyperplasia in the prostate. These findings suggest that heightened expression of Trop2 is selected for in epithelial cancers to enhance the stem-like properties of self-renewal and proliferation. Defining the mechanism of Trop2 function in self-renewal and transformation is essential to identify new therapeutic strategies to block Trop2 activation in cancer. PMID:23070813
Streamline integration as a method for two-dimensional elliptic grid generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less
Broad-Enrich: functional interpretation of large sets of broad genomic regions.
Cavalcante, Raymond G; Lee, Chee; Welch, Ryan P; Patil, Snehal; Weymouth, Terry; Scott, Laura J; Sartor, Maureen A
2014-09-01
Functional enrichment testing facilitates the interpretation of Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) data in terms of pathways and other biological contexts. Previous methods developed and used to test for key gene sets affected in ChIP-seq experiments treat peaks as points, and are based on the number of peaks associated with a gene or a binary score for each gene. These approaches work well for transcription factors, but histone modifications often occur over broad domains, and across multiple genes. To incorporate the unique properties of broad domains into functional enrichment testing, we developed Broad-Enrich, a method that uses the proportion of each gene's locus covered by a peak. We show that our method has a well-calibrated false-positive rate, performing well with ChIP-seq data having broad domains compared with alternative approaches. We illustrate Broad-Enrich with 55 ENCODE ChIP-seq datasets using different methods to define gene loci. Broad-Enrich can also be applied to other datasets consisting of broad genomic domains such as copy number variations. http://broad-enrich.med.umich.edu for Web version and R package. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
A family of cellular proteins related to snake venom disintegrins.
Weskamp, G; Blobel, C P
1994-03-29
Disintegrins are short soluble integrin ligands that were initially identified in snake venom. A previously recognized cellular protein with a disintegrin domain was the guinea pig sperm protein PH-30, a protein implicated in sperm-egg membrane binding and fusion. Here we present peptide sequences that are characteristic for several cellular disintegrin-domain proteins. These peptide sequences were deduced from cDNA sequence tags that were generated by polymerase chain reaction from various mouse tissue and a mouse muscle cell line. Northern blot analysis with four sequence tags revealed distinct mRNA expression patterns. Evidently, cellular proteins containing a disintegrin domain define a superfamily of potential integrin ligands that are likely to function in important cell-cell and cell-matrix interactions.
Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin
NASA Technical Reports Server (NTRS)
Bernards, M. A.; Lopez, M. L.; Zajicek, J.; Lewis, N. G.
1995-01-01
Suberin is an abundant, complex, intractable, plant cell wall polymeric network that forms both protective and wound-healing layers. Its function is, therefore, critical to the survival of all vascular plants. Its chemical structure and biosynthesis are poorly defined, although it is known to consist of both aromatic and aliphatic domains. While the composition of the aliphatic component has been fairly well characterized, that of the phenolic component has not. Using a combination of specific carbon-13 labeling techniques, and in situ solid state 13C NMR spectroscopic analysis, we now provide the first direct evidence for the nature of the phenolic domain of suberin and report here that it is almost exclusively comprised of a covalently linked, hydroxycinnamic acid-derived polymeric matrix.
Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves; Einav, Shirit
2016-11-01
Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether envelopment of HCV and other viruses lacking defined late domains is ESCRT mediated and, if so, what the entry points into the ESCRT pathway are remain unknown. Here, we report the interaction network of HCV with the ESCRT machinery and a critical role for HRS, an ESCRT-0 complex component, in HCV envelopment. Viral protein ubiquitination was discovered to be a signal for HRS binding and HCV assembly, thereby functionally compensating for the absence of late domains. These findings characterize how a virus lacking defined late domains co-opts ESCRT to bud intracellularly. Since the ESCRT machinery is essential for the life cycle of multiple viruses, better understanding of this virus-host interplay may yield targets for broad-spectrum antiviral therapies. Copyright © 2016 Barouch-Bentov et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, R.N.; Robinson, H.; Klauer, A. A.
The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch-like domain that is specific to Mtr4 and Ski2 (the cytosolic homologue of Mtr4). In vivo and in vitro analyses demonstrate that the Mtr4 arch domain is required for proper 5.8S rRNA processing, and suggest that the arch functions independently of canonicalmore » helicase activity. In addition, extensive conservation along the face of the putative RNA exit site highlights a potential interface with the exosome. These studies provide a molecular framework for understanding fundamental aspects of helicase function in exosome activation, and more broadly define the molecular architecture of Ski2-like helicases.« less
Structural, Functional and Evolutionary Aspects of Seed Globulins.
Kesari, Pooja; Neetu; Sharma, Anchal; Katiki, Madhusudhanarao; Kumar, Pramod; Gurjar, Bhola R; Tomar, Shailly; Sharma, Ashwani K; Kumar, Pravindra
2017-01-01
Globulins are a major class of seed storage proteins which were thought to be enzymatically inactive. These proteins belong to the most ancient cupin superfamily. They can be graded into 11S legumin type and 7S vicilin type based on their sedimentation coefficients. Members from both classes share structural homology are thought to have evolved from either one-domain germin predecessor by duplication or by horizontal gene transfer of two-domain gene from bacteria to eukaryotes. Globulins are known to define the nutritional quality of the seeds, however, they are also involved in sucrose binding, desiccation, defense against microbes, hormone binding and oxidative stress etc. Major drawback with globulins is their tendency to bind to IgE. Studying structural-functional behavior of such protein can help in modifying proteins for enhanced functionality in food processing industries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Semantic Web Service Delivery in Healthcare Based on Functional and Non-Functional Properties.
Schweitzer, Marco; Gorfer, Thilo; Hörbst, Alexander
2017-01-01
In the past decades, a lot of endeavor has been made on the trans-institutional exchange of healthcare data through electronic health records (EHR) in order to obtain a lifelong, shared accessible health record of a patient. Besides basic information exchange, there is a growing need for Information and Communication Technology (ICT) to support the use of the collected health data in an individual, case-specific workflow-based manner. This paper presents the results on how workflows can be used to process data from electronic health records, following a semantic web service approach that enables automatic discovery, composition and invocation of suitable web services. Based on this solution, the user (physician) can define its needs from a domain-specific perspective, whereas the ICT-system fulfills those needs with modular web services. By involving also non-functional properties for the service selection, this approach is even more suitable for the dynamic medical domain.
Engineering intelligent tutoring systems
NASA Technical Reports Server (NTRS)
Warren, Kimberly C.; Goodman, Bradley A.
1993-01-01
We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.
Harper, Stephen; Besong, Tabot M D; Emsley, Jonas; Scott, David J; Dreveny, Ingrid
2011-09-20
Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 Å resolution crystal structure of the human USP15 N-terminal domains revealing a 80 Å elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening β-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among β-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily. © 2011 American Chemical Society
2014-04-01
Neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J Biol Chem 273: 7757-64. 25. Shaw, R.J...McClatchey, A.I., and Jacks, T. (1998) Localization and functional domains of the Neurofibromatosis type II tumor suppressor, merlin. Cell Growth Diff 9
USDA-ARS?s Scientific Manuscript database
Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins that are defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Nout-Cin orientation. The molecular mechanisms by which TA p...
Signatures of DNA target selectivity by ETS transcription factors
Kim, Hye Mi
2017-01-01
ABSTRACT The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation. PMID:28301293
Signatures of DNA target selectivity by ETS transcription factors.
Poon, Gregory M K; Kim, Hye Mi
2017-05-27
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
NASA Astrophysics Data System (ADS)
Alimorad D., H.; Fakharzadeh J., A.
2017-07-01
In this paper, a new approach is proposed for designing the nearly-optimal three dimensional symmetric shapes with desired physical center of mass. Herein, the main goal is to find such a shape whose image in ( r, θ)-plane is a divided region into a fixed and variable part. The nearly optimal shape is characterized in two stages. Firstly, for each given domain, the nearly optimal surface is determined by changing the problem into a measure-theoretical one, replacing this with an equivalent infinite dimensional linear programming problem and approximating schemes; then, a suitable function that offers the optimal value of the objective function for any admissible given domain is defined. In the second stage, by applying a standard optimization method, the global minimizer surface and its related domain will be obtained whose smoothness is considered by applying outlier detection and smooth fitting methods. Finally, numerical examples are presented and the results are compared to show the advantages of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Chang; S Xiang; K Xiang
The 5' {yields} 3' exoribonucleases (XRNs) have important functions in transcription, RNA metabolism and RNA interference. The structure of Rat1 (also known as Xrn2) showed that the two highly conserved regions of XRNs form a single, large domain that defines the active site of the enzyme. Xrn1 has a 510-residue segment after the conserved regions that is required for activity but is absent from Rat1/Xrn2. Here we report the crystal structures of Kluyveromyces lactis Xrn1 (residues 1-1,245, E178Q mutant), alone and in complex with a Mn{sup 2+} ion in the active site. The 510-residue segment contains four domains (D1-D4), locatedmore » far from the active site. Our mutagenesis and biochemical studies show that their functional importance results from their ability to stabilize the conformation of the N-terminal segment of Xrn1. These domains might also constitute a platform that interacts with protein partners of Xrn1.« less
Design of Functional Materials based on Liquid Crystalline Droplets.
Miller, Daniel S; Wang, Xiaoguang; Abbott, Nicholas L
2014-01-14
This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems.
[Elementary structure of a study].
Bachmann, L M
2007-12-01
Medical research provides evidence in three gnostic domains; etiognosis, diagnosis and prognosis. The occurrence relation, the domain and the study population characterize every medical study. The determinant and the outcome define the occurrence relation. The domain defines the type of situation in which the occurrence relation is explored. The study population contains representatives of the domain whose experience is captured within the study.
Around and beyond 53BP1 Nuclear Bodies.
Fernandez-Vidal, Anne; Vignard, Julien; Mirey, Gladys
2017-12-05
Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction.
Adaptive identifier for uncertain complex nonlinear systems based on continuous neural networks.
Alfaro-Ponce, Mariel; Cruz, Amadeo Argüelles; Chairez, Isaac
2014-03-01
This paper presents the design of a complex-valued differential neural network identifier for uncertain nonlinear systems defined in the complex domain. This design includes the construction of an adaptive algorithm to adjust the parameters included in the identifier. The algorithm is obtained based on a special class of controlled Lyapunov functions. The quality of the identification process is characterized using the practical stability framework. Indeed, the region where the identification error converges is derived by the same Lyapunov method. This zone is defined by the power of uncertainties and perturbations affecting the complex-valued uncertain dynamics. Moreover, this convergence zone is reduced to its lowest possible value using ideas related to the so-called ellipsoid methodology. Two simple but informative numerical examples are developed to show how the identifier proposed in this paper can be used to approximate uncertain nonlinear systems valued in the complex domain.
Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl
2015-07-15
Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.
Kopitz, Jürgen; Vértesy, Sabine; André, Sabine; Fiedler, Sabine; Schnölzer, Martina; Gabius, Hans-Joachim
2014-09-01
Many human proteins have a modular design with receptor and structural domains. Using adhesion/growth-regulatory galectin-3 as model, we describe an interdisciplinary strategy to define the functional significance of its tail established by nine non-triple helical collagen-like repeats (I-IX) and the N-terminal peptide. Genetic engineering with sophisticated mass spectrometric product analysis provided the tools for biotesting, i.e. eight protein variants with different degrees of tail truncation. Evidently,various aspects of galectin-3 activity (cis binding and cell bridging) are affected by tail shortening in a different manner. Thus, this combined approach reveals an unsuspected complexity of structure-function relationship, encouraging further application beyond this chimera-type galectin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
A development framework for distributed artificial intelligence
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1989-01-01
The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.
Structural insights into SAM domain-mediated tankyrase oligomerization.
DaRosa, Paul A; Ovchinnikov, Sergey; Xu, Wenqing; Klevit, Rachel E
2016-09-01
Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP-ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain-mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head-to-tail polymer that facilitates TNKS self-association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM-TNKS2 SAM) hetero-oligomeric structures mediated by their SAM domains. Though wild-type tankyrase proteins have very low solubility, model-based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP-ribosyl)ation (PARylation) and PARylation-dependent ubiquitylation. © 2016 The Protein Society.
Inducing morphological changes in lipid bilayer membranes with microfabricated substrates
NASA Astrophysics Data System (ADS)
Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick
2016-11-01
Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.
Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21
Wang, Yuefeng; Fisher, John C.; Mathew, Rose; Ou, Li; Otieno, Steve; Sublett, Jack; Xiao, Limin; Chen, Jianhan; Roussel, Martine F.; Kriwacki, Richard W.
2011-01-01
Traditionally, well-defined three-dimensional structure was thought to be essential for protein function. However, myriad biological functions are performed by highly dynamic, intrinsically disordered proteins (IDPs). IDPs often fold upon binding their biological targets and frequently exhibit “binding diversity” by targeting multiple ligands. We sought to understand the physical basis of IDP binding diversity and herein report that the cyclin-dependent kinase (Cdk) inhibitor, p21Cip1, adaptively binds to and inhibits the various Cdk/cyclin complexes that regulate eukaryotic cell division. Based on results from NMR spectroscopy, and biochemical and cellular assays, we show that structural adaptability of a helical sub-domain within p21 termed LH enables two other sub-domains termed D1 and D2 to specifically bind conserved surface features of the cyclin and Cdk subunits, respectively, within otherwise structurally distinct Cdk/cyclin complexes. Adaptive folding upon binding is likely to mediate the diverse biological functions of the thousands of IDPs present in eukaryotes. PMID:21358637
Del Prete, Dolores; Lombino, Franco; Liu, Xinran; D'Adamio, Luciano
2014-01-01
Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisach,E.; Wang, L.; Burroughs, A.
2008-01-01
The haloacid dehalogenase (HAD) superfamily is a large family of proteins dominated by phosphotransferases. Thirty-three sequence families within the HAD superfamily (HADSF) have been identified to assist in function assignment. One such family includes the enzyme phosphoacetaldehyde hydrolase (phosphonatase). Phosphonatase possesses the conserved Rossmanniod core domain and a C1-type cap domain. Other members of this family do not possess a cap domain and because the cap domain of phosphonatase plays an important role in active site desolvation and catalysis, the function of the capless family members must be unique. A representative of the capless subfamily, PSPTO{_}2114, from the plant pathogenmore » Pseudomonas syringae, was targeted for catalytic activity and structure analyses. The X-ray structure of PSPTO{_}2114 reveals a capless homodimer that conserves some but not all of the intersubunit contacts contributed by the core domains of the phosphonatase homodimer. The region of the PSPTO{_}2114 that corresponds to the catalytic scaffold of phosphonatase (and other HAD phosphotransfereases) positions amino acid residues that are ill suited for Mg+2 cofactor binding and mediation of phosphoryl group transfer between donor and acceptor substrates. The absence of phosphotransferase activity in PSPTO{_}2114 was confirmed by kinetic assays. To explore PSPTO{_}2114 function, the conservation of sequence motifs extending outside of the HADSF catalytic scaffold was examined. The stringently conserved residues among PSPTO{_}2114 homologs were mapped onto the PSPTO{_}2114 three-dimensional structure to identify a surface region unique to the family members that do not possess a cap domain. The hypothesis that this region is used in protein-protein recognition is explored to define, for the first time, HADSF proteins which have acquired a function other than that of a catalyst. Proteins 2008.« less
De novo design and engineering of non-ribosomal peptide synthetases
NASA Astrophysics Data System (ADS)
Bozhüyük, Kenan A. J.; Fleischhacker, Florian; Linck, Annabell; Wesche, Frank; Tietze, Andreas; Niesert, Claus-Peter; Bode, Helge B.
2018-03-01
Peptides derived from non-ribosomal peptide synthetases (NRPSs) represent an important class of pharmaceutically relevant drugs. Methods to generate novel non-ribosomal peptides or to modify peptide natural products in an easy and predictable way are therefore of great interest. However, although the overall modular structure of NRPSs suggests the possibility of adjusting domain specificity and selectivity, only a few examples have been reported and these usually show a severe drop in production titre. Here we report a new strategy for the modification of NRPSs that uses defined exchange units (XUs) and not modules as functional units. XUs are fused at specific positions that connect the condensation and adenylation domains and respect the original specificity of the downstream module to enable the production of the desired peptides. We also present the use of internal condensation domains as an alternative to other peptide-chain-releasing domains for the production of cyclic peptides.
Domain size and structure in exchange coupled [Co/Pt]/NiO/[Co/Pt] multilayers.
Baruth, A; Adenwalla, S
2011-09-21
We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and the interlayer exchange coupling, including the regions where interlayer coupling goes through zero. We see significant changes in domain structure based on the sign of coupling, and also show that magnetic domain size is directly related to the magnitude of the interlayer exchange coupling energy, which generally dominates over the magnetostatic interactions. When magnetostatic interactions become comparable to the interlayer exchange coupling, a delicate interplay between the differing energy contributions is apparent and energy scales are extracted. The results are of intense interest to the magnetic recording industry and also illustrate a relatively new avenue of undiscovered physics, primarily dealing with the delicate balance of energies in the formation of magnetic domains for coupled systems with PMA, defining limits on domain size as well as the interplay between roughness, domains and magnetic coupling.
Geriatric Assessment and Functional Decline in Older Patients with Lung Cancer.
Decoster, L; Kenis, C; Schallier, D; Vansteenkiste, J; Nackaerts, K; Vanacker, L; Vandewalle, N; Flamaing, J; Lobelle, J P; Milisen, K; De Grève, J; Wildiers, H
2017-10-01
Older patients with lung cancer are a heterogeneous population making treatment decisions complex. This study aims to evaluate the value of geriatric assessment (GA) as well as the evolution of functional status (FS) in older patients with lung cancer, and to identify predictors associated with functional decline and overall survival (OS). At baseline, GA was performed in patients ≥70 years with newly diagnosed lung cancer. FS measured by activities of daily living (ADL) and instrumental activities of daily living (IADL) was reassessed at follow-up to define functional decline and OS was collected. Predictors for functional decline and OS were determined. Two hundred and forty-five patients were included in this study. At baseline, GA deficiencies were present in all domains and ADL and IADL were impaired in 51 and 63% of patients, respectively. At follow-up, functional decline in ADL was observed in 23% and in IADL in 45% of patients. In multivariable analysis, radiotherapy was predictive for ADL decline. No other predictors for ADL or IADL decline were identified. Stage and baseline performance status were predictive for OS. Older patients with lung cancer present with multiple deficiencies covering all geriatric domains. During treatment, functional decline is observed in almost half of the patients. None of the specific domains of the GA were predictive for functional decline or survival, probably because of the high impact of the aggressiveness of this tumor type leading to a poor prognosis.
McCune, Broc T; Tang, Wei; Lu, Jia; Eaglesham, James B; Thorne, Lucy; Mayer, Anne E; Condiff, Emily; Nice, Timothy J; Goodfellow, Ian; Krezel, Andrzej M; Virgin, Herbert W
2017-07-11
The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine-phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication. IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the VAPA host protein. The NS1/2-VAPA interaction is conserved between murine and human noroviruses and was important for early steps in murine norovirus replication. Using structure-function analysis, we found that NS1/2 contains a short sequence that molecularly mimics the FFAT motif that is found in multiple host proteins that bind VAPA. This represents to our knowledge the first example of functionally important mimicry of a host FFAT motif by a microbial protein. Copyright © 2017 McCune et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan Ping; Leser, George P.; Demeler, Borries
2008-09-01
The mechanism by which the paramyxovirus hemagglutinin-neuraminidase (HN) protein couples receptor binding to activation of virus entry remains to be fully understood, but the HN stalk is thought to play an important role in the process. We have characterized ectodomain constructs of the parainfluenza virus 5 HN to understand better the underlying architecture and oligomerization properties that may influence HN functions. The PIV 5 neuraminidase (NA) domain is monomeric whereas the ectodomain forms a well-defined tetramer. The HN stalk also forms tetramers and higher order oligomers with high {alpha}-helical content. Together, the data indicate that the globular NA domains formmore » weak intersubunit interactions at the end of the HN stalk tetramer, while stabilizing the stalk and overall oligomeric state of the ectodomain. Electron microscopy of the HN ectodomain reveals flexible arrangements of the NA and stalk domains, which may be important for understanding how these two HN domains impact virus entry.« less
The role of domain-general cognitive control in language comprehension
Fedorenko, Evelina
2014-01-01
What role does domain-general cognitive control play in understanding linguistic input? Although much evidence has suggested that domain-general cognitive control and working memory resources are sometimes recruited during language comprehension, many aspects of this relationship remain elusive. For example, how frequently do cognitive control mechanisms get engaged when we understand language? And is this engagement necessary for successful comprehension? I here (a) review recent brain imaging evidence for the neural separability of the brain regions that support high-level linguistic processing vs. those that support domain-general cognitive control abilities; (b) define the space of possibilities for the relationship between these sets of brain regions; and (c) review the available evidence that constrains these possibilities to some extent. I argue that we should stop asking whether domain-general cognitive control mechanisms play a role in language comprehension, and instead focus on characterizing the division of labor between the cognitive control brain regions and the more functionally specialized language regions. PMID:24803909
Milanesi, Luciano; Petrillo, Mauro; Sepe, Leandra; Boccia, Angelo; D'Agostino, Nunzio; Passamano, Myriam; Di Nardo, Salvatore; Tasco, Gianluca; Casadio, Rita; Paolella, Giovanni
2005-01-01
Background Protein kinases are a well defined family of proteins, characterized by the presence of a common kinase catalytic domain and playing a significant role in many important cellular processes, such as proliferation, maintenance of cell shape, apoptosys. In many members of the family, additional non-kinase domains contribute further specialization, resulting in subcellular localization, protein binding and regulation of activity, among others. About 500 genes encode members of the kinase family in the human genome, and although many of them represent well known genes, a larger number of genes code for proteins of more recent identification, or for unknown proteins identified as kinase only after computational studies. Results A systematic in silico study performed on the human genome, led to the identification of 5 genes, on chromosome 1, 11, 13, 15 and 16 respectively, and 1 pseudogene on chromosome X; some of these genes are reported as kinases from NCBI but are absent in other databases, such as KinBase. Comparative analysis of 483 gene regions and subsequent computational analysis, aimed at identifying unannotated exons, indicates that a large number of kinase may code for alternately spliced forms or be incorrectly annotated. An InterProScan automated analysis was perfomed to study domain distribution and combination in the various families. At the same time, other structural features were also added to the annotation process, including the putative presence of transmembrane alpha helices, and the cystein propensity to participate into a disulfide bridge. Conclusion The predicted human kinome was extended by identifiying both additional genes and potential splice variants, resulting in a varied panorama where functionality may be searched at the gene and protein level. Structural analysis of kinase proteins domains as defined in multiple sources together with transmembrane alpha helices and signal peptide prediction provides hints to function assignment. The results of the human kinome analysis are collected in the KinWeb database, available for browsing and searching over the internet, where all results from the comparative analysis and the gene structure annotation are made available, alongside the domain information. Kinases may be searched by domain combinations and the relative genes may be viewed in a graphic browser at various level of magnification up to gene organization on the full chromosome set. PMID:16351747
Zhang, Chongxu; Nielsen, Maria E. O.; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J.; Andersen, Jens S.; Yao, Gang
2013-01-01
Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1’s defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made. PMID:22836166
Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang
2012-09-01
Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.
Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir
The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.
TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis
Anderson, Ryan G.; Cherkis, Karen A.; Law, Terry F.; Liu, Qingli L.; Machius, Mischa; Nimchuk, Zachary L.; Yang, Li; Chung, Eui-Hwan; El Kasmi, Farid; Hyunh, Michael; Sondek, John E.; Dangl, Jeffery L.
2017-01-01
Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll–interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 (RBA1), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain of Pasteurella multocida toxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR–TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that “truncated” NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system. PMID:28137883
Sensor-Generated Time Series Events: A Definition Language
Anguera, Aurea; Lara, Juan A.; Lizcano, David; Martínez, Maria Aurora; Pazos, Juan
2012-01-01
There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time series contains hardly any useful information. In these domains, there is a need for mechanisms to identify and locate such events. In this paper, we propose an events definition language that is general enough to be used to easily and naturally define events in time series recorded by sensors in any domain. The proposed language has been applied to the definition of time series events generated within the branch of medicine dealing with balance-related functions in human beings. A device, called posturograph, is used to study balance-related functions. The platform has four sensors that record the pressure intensity being exerted on the platform, generating four interrelated time series. As opposed to the existing ad hoc proposals, the results confirm that the proposed language is valid, that is generally applicable and accurate, for identifying the events contained in the time series.
ERIC Educational Resources Information Center
Jagodzinski, Wolfgang
2010-01-01
This paper investigates the influence of the economic, social, and cultural variables on life satisfaction in Asia and Europe. The second section sets a unifying theoretical framework for all three domains by defining life satisfaction as a function of aspirations and expectations which in turn are affected by micro- and macro-level variables. On…
Cortical Thickness in Fusiform Face Area Predicts Face and Object Recognition Performance
McGugin, Rankin W.; Van Gulick, Ana E.; Gauthier, Isabel
2016-01-01
The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to non-face objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here we show an effect of expertise with non-face objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally-defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. While subjects with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects, but rather living and non-living objects. PMID:26439272
Non-canonical dynamic mechanisms of interaction between the p66Shc protein and Met receptor
Landry, Mélissa; Pomerleau, Véronique; Saucier, Caroline
2016-01-01
Met receptor tyrosine kinase (RTK) is known to bind to the three distinct protein isoforms encoded by the ShcA (Shc) gene. Structure–function studies have unveiled critical roles for p52Shc-dependent signalling pathways in Met-regulated biological functions. The molecular basis of the interaction between the Met and p52Shc proteins is well-defined, but not for the longest protein isoform, p66Shc. In the present study, co-immunoprecipitation assays were performed in human embryonic kidney 293 (HEK293) cells, transiently co-transfected with Met and p66Shc mutants, in order to define the molecular determinants involved in mediating Met–p66Shc interaction. Our results show that p66Shc interacts constitutively with the receptor Met, and the Grb2 (growth factor receptor-bound protein-2) and Gab1 (Grb2-associated binder-1) adaptor proteins. Although its phosphotyrosine-binding domain (PTB) and Src homology 2 (SH2) domains co-ordinate p66Shc binding to non-activated Met receptor, these phosphotyrosine-binding modules, and its collagen homology domain 2 (CH2) region, exert negative constraints. In contrast, p66Shc interaction with the activated Met depends mainly on the integrity of its PTB domain, and to a lesser extent of its SH2 domain. Even though not required for the recruitment of p66Shc, tyrosine phosphorylation of p66Shc by activated Met enhances these interactions by mechanisms not reliant on the integrity of the Met multisubstrate-binding site. In turn, this increases phosphotyrosine-dependent p66Shc–Grb2–Gab1 complex formation away from the receptor, while blocking Grb2 and Gab1 recruitment to activated Met. In conclusion, we identify, for the first time, a novel non-canonical dynamic mode of interaction between Met and the p66 protein isoform of Shc and its effects on rewiring binding effector complexes according to the activation state of the receptor. PMID:27048591
Complex mode indication function and its applications to spatial domain parameter estimation
NASA Astrophysics Data System (ADS)
Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.
1988-10-01
This paper introduces the concept of the Complex Mode Indication Function (CMIF) and its application in spatial domain parameter estimation. The concept of CMIF is developed by performing singular value decomposition (SVD) of the Frequency Response Function (FRF) matrix at each spectral line. The CMIF is defined as the eigenvalues, which are the square of the singular values, solved from the normal matrix formed from the FRF matrix, [ H( jω)] H[ H( jω)], at each spectral line. The CMIF appears to be a simple and efficient method for identifying the modes of the complex system. The CMIF identifies modes by showing the physical magnitude of each mode and the damped natural frequency for each root. Since multiple reference data is applied in CMIF, repeated roots can be detected. The CMIF also gives global modal parameters, such as damped natural frequencies, mode shapes and modal participation vectors. Since CMIF works in the spatial domain, uneven frequency spacing data such as data from spatial sine testing can be used. A second-stage procedure for accurate damped natural frequency and damping estimation as well as mode shape scaling is also discussed in this paper.
A Variational Approach to Simultaneous Image Segmentation and Bias Correction.
Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong
2015-08-01
This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.
Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I
1995-03-15
Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions.
Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I
1995-01-01
Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions. Images PMID:7720715
New quantum number for the many-electron Dirac-Coulomb Hamiltonian
NASA Astrophysics Data System (ADS)
Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš
2016-11-01
By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG; a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a `repeat` sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, Darrell; Azevado, Stephen
1986-06-01
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
NASA Astrophysics Data System (ADS)
Cao, Bochao
Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.
Spencer, Richard G
2010-09-01
A type of "matched filter" (MF), used extensively in the processing of one-dimensional spectra, is defined by multiplication of a free-induction decay (FID) by a decaying exponential with the same time constant as that of the FID. This maximizes, in a sense to be defined, the signal-to-noise ratio (SNR) in the spectrum obtained after Fourier transformation. However, a different entity known also as the matched filter was introduced by van Vleck in the context of pulse detection in the 1940's and has become widely integrated into signal processing practice. These two types of matched filters appear to be quite distinct. In the NMR case, the "filter", that is, the exponential multiplication, is defined by the characteristics of, and applied to, a time domain signal in order to achieve improved SNR in the spectral domain. In signal processing, the filter is defined by the characteristics of a signal in the spectral domain, and applied in order to improve the SNR in the temporal (pulse) domain. We reconcile these two distinct implementations of the matched filter, demonstrating that the NMR "matched filter" is a special case of the matched filter more rigorously defined in the signal processing literature. In addition, two limitations in the use of the MF are highlighted. First, application of the MF distorts resonance ratios as defined by amplitudes, although not as defined by areas. Second, the MF maximizes SNR with respect to resonance amplitude, while intensities are often more appropriately defined by areas. Maximizing the SNR with respect to area requires a somewhat different approach to matched filtering.
Albrecht, K. H.; Eicher, E. M.
1997-01-01
The Sry (sex determining region, Y chromosome) open reading frame from mice representing four species of the genus Mus was sequenced in an effort to understand the conditional dysfunction of some M. domesticus Sry alleles when present on the C57BL/6J inbred strain genetic background and to delimit the functionally important protein regions. Twenty-two Sry alleles were sequenced, most from wild-derived Y chromosomes, including 11 M. domesticus alleles, seven M. musculus alleles and two alleles each from the related species M. spicilegus and M. spretus. We found that the HMG domain (high mobility group DNA binding domain) and the unique regions are well conserved, while the glutamine repeat cluster (GRC) region is quite variable. No correlation was found between the predicted protein isoforms and the ability of a Sry allele to allow differentiation of ovarian tissue when on the C57BL/6J genetic background, strongly suggesting that the cause of this sex reversal is not the Sry protein itself, but rather the regulation of SRY expression. Furthermore, our interspecies sequence analysis provides compelling evidence that the M. musculus and M. domesticus SRY functional domain is contained in the first 143 amino acids, which includes the HMG domain and adjacent unique region (UR-2). PMID:9383069
Differential pleiotropy and HOX functional organization.
Sivanantharajah, Lovesha; Percival-Smith, Anthony
2015-02-01
Key studies led to the idea that transcription factors are composed of defined modular protein motifs or domains, each with separable, unique function. During evolution, the recombination of these modular domains could give rise to transcription factors with new properties, as has been shown using recombinant molecules. This archetypic, modular view of transcription factor organization is based on the analyses of a few transcription factors such as GAL4, which may represent extreme exemplars rather than an archetype or the norm. Recent work with a set of Homeotic selector (HOX) proteins has revealed differential pleiotropy: the observation that highly-conserved HOX protein motifs and domains make small, additive, tissue specific contributions to HOX activity. Many of these differentially pleiotropic HOX motifs may represent plastic sequence elements called short linear motifs (SLiMs). The coupling of differential pleiotropy with SLiMs, suggests that protein sequence changes in HOX transcription factors may have had a greater impact on morphological diversity during evolution than previously believed. Furthermore, differential pleiotropy may be the genetic consequence of an ensemble nature of HOX transcription factor allostery, where HOX proteins exist as an ensemble of states with the capacity to integrate an extensive array of developmental information. Given a new structural model for HOX functional domain organization, the properties of the archetypic TF may require reassessment. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional domains of the human splicing factor ASF/SF2.
Zuo, P; Manley, J L
1993-01-01
The human splicing factor ASF/SF2 displays two predominant activities in in vitro splicing assays: (i) it is an essential factor apparently required for all splices and (ii) it is able to switch utilization of alternative 5' splice sites in a concentration-dependent manner. ASF/SF2 is the prototype of a family of proteins typified by the presence of one or two RNP-type RNA binding domains (RBDs) and a region highly enriched in repeating arginine-serine dipeptides (RS regions). Here we describe a functional analysis of ASF/SF2, which defines several regions essential for one, or both, of its two principal activities, and provides insights into how this type of protein functions in splicing. Two isoforms of the protein, which arise from alternative splicing, are by themselves inactive, but each can block the activity of ASF/SF2, thereby functioning as splicing repressors. Some, but not all, mutations in the RS region prevent ASF/SF2 from functioning as an essential splicing factor. However, the entire RS region can be deleted without reducing splice site switching activity, indicating that it is not absolutely required for interaction with other splicing factors. Experiments with deletion and substitution mutants reveal that the protein contains two related, but highly diverged, RBDs, and that both are essential for activity. Each RBD by itself retains the ability to bind RNA, although optimal binding requires both domains. Images PMID:8223481
PNUTS functions as a proto-oncogene by sequestering PTEN
Kavela, Sridhar; Shinde, Swapnil R; Ratheesh, Raman; Viswakalyan, Kotapalli; Bashyam, Murali D; Gowrishankar, Swarnalata; Vamsy, Mohana; Pattnaik, Sujit; Rao, Subramanyeshwar; Sastry, Regulagadda A; Srinivasulu, Mukta; Chen, Junjie; Maddika, Subbareddy
2012-01-01
PTEN is a well-defined tumor suppressor gene that antagonizes the PI3K/Akt pathway to regulate a multitude of cellular processes such as survival, growth, motility, invasiveness and angiogenesis. While the functions of PTEN have been studied extensively, the regulation of its activity during normal and disease conditions still remains incompletely understood. In this study, we identified the protein phosphatase-1 nuclear targeting subunit PNUTS (PPP1R10) as a PTEN associated protein. PNUTS directly interacted with the lipid-binding domain (C2 domain) of PTEN and sequestered it in the nucleus. Depletion of PNUTS leads to increased apoptosis and reduced cellular proliferation in a PTEN-dependent manner. PNUTS expression was elevated in certain cancers compared to matched normal tissues. Collectively, our studies reveal PNUTS as a novel PTEN regulator and a likely oncogene. PMID:23117887
Nelms, M D; Cronin, M T D; Schultz, T W; Enoch, S J
2013-01-01
This study outlines how a combination of in chemico and Tetrahymena pyriformis data can be used to define the applicability domain of selected structural alerts within the profilers of the OECD QSAR Toolbox. Thirty-three chemicals were profiled using the OECD and OASIS profilers, enabling the applicability domain of six structural alerts to be defined, the alerts being: epoxides, lactones, nitrosos, nitros, aldehydes and ketones. Analysis of the experimental data showed the applicability domains for the epoxide, nitroso, aldehyde and ketone structural alerts to be well defined. In contrast, the data showed the applicability domains for the lactone and nitro structural alerts needed modifying. The accurate definition of the applicability domain for structural alerts within in silico profilers is important due to their use in the chemical category in predictive and regulatory toxicology. This study highlights the importance of utilizing multiple profilers in category formation.
NASA Astrophysics Data System (ADS)
Strack, O. D. L.
2009-01-01
We present in this paper a new method for deriving discharge potentials for groundwater flow. Discharge potentials are two-dimensional functions; the discharge potential to be presented represents steady groundwater flow with an elliptical pond of constant rate of extraction or infiltration. The method relies on Wirtinger calculus. We demonstrate that it is possible, in principle, to construct a holomorphic function Ω(z), defined so as to produce the same gradient vector in two dimensions as that obtained from an arbitrary function F(x, y) along any Jordan curve ?. We will call Ω(z) the holomorphic match of F(x, y) along ?. Let the line ? be a closed contour bounding a domain ?, and let F(x, y) be defined in ? and represent the discharge potential for some case of divergent groundwater flow. Holomorphic matching makes it possible to create a function Ω(z), valid outside ?, such that ?Ω equals F(x, y) and the gradient of ?Ω equals that of F(x, y) along ?. (Note that the technique applies also if ? is the domain outside ?.) We can use this technique to construct solutions for cases of flow where there is nonzero divergence (due to infiltration or leakage, for example) in ? but zero divergence outside ?. The special case that the divergence within ? is constant and is zero outside ? is chosen to illustrate the approach and to obtain a solution that, to the knowledge of the author, does not exist in the field of groundwater flow.
Iida, Satoshi; Chen, Wei; Nakadai, Tomoyoshi; Ohkuma, Yoshiaki; Roeder, Robert G
2015-02-01
PR domain-containing 16 (PRDM16) induces expression of brown fat-specific genes in brown and beige adipocytes, although the underlying transcription-related mechanisms remain largely unknown. Here, in vitro studies show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex, is recruited to the enhancer of the brown fat-specific uncoupling protein 1 (Ucp1) gene through this interaction, and enhances thyroid hormone receptor (TR)-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. Complementary cell-based studies show that upon forskolin treatment, PRDM16 induces Ucp1 expression in undifferentiated murine embryonic fibroblasts, that this induction depends on MED1 and TR, and, consistent with a direct effect, that PRDM16 is recruited to the Ucp1 enhancer. Related studies have defined MED1 and PRDM16 interaction domains important for Ucp1 versus Ppargc1a induction by PRDM16. These results reveal novel mechanisms for PRDM16 function through the Mediator complex. © 2015 Iida et al.; Published by Cold Spring Harbor Laboratory Press.
Dimers in Piecewise Temperleyan Domains
NASA Astrophysics Data System (ADS)
Russkikh, Marianna
2018-03-01
We study the large-scale behavior of the height function in the dimer model on the square lattice. Richard Kenyon has shown that the fluctuations of the height function on Temperleyan discretizations of a planar domain converge in the scaling limit (as the mesh size tends to zero) to the Gaussian Free Field with Dirichlet boundary conditions. We extend Kenyon's result to a more general class of discretizations. Moreover, we introduce a new factorization of the coupling function of the double-dimer model into two discrete holomorphic functions, which are similar to discrete fermions defined in Smirnov (Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, 2006; Ann Math (2) 172:1435-1467, 2010). For Temperleyan discretizations with appropriate boundary modifications, the results of Kenyon imply that the expectation of the double-dimer height function converges to a harmonic function in the scaling limit. We use the above factorization to extend this result to the class of all polygonal discretizations, that are not necessarily Temperleyan. Furthermore, we show that, quite surprisingly, the expectation of the double-dimer height function in the Temperleyan case is exactly discrete harmonic (for an appropriate choice of Laplacian) even before taking the scaling limit.
Cole-Davidson dynamics of simple chain models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotson, Taylor C.; McCoy, John Dwane; Adolf, Douglas Brian
2008-10-01
Rotational relaxation functions of the end-to-end vector of short, freely jointed and freely rotating chains were determined from molecular dynamics simulations. The associated response functions were obtained from the one-sided Fourier transform of the relaxation functions. The Cole-Davidson function was used to fit the response functions with extensive use being made of Cole-Cole plots in the fitting procedure. For the systems studied, the Cole-Davidson function provided remarkably accurate fits [as compared to the transform of the Kohlrausch-Williams-Watts (KWW) function]. The only appreciable deviations from the simulation results were in the high frequency limit and were due to ballistic or freemore » rotation effects. The accuracy of the Cole-Davidson function appears to be the result of the transition in the time domain from stretched exponential behavior at intermediate time to single exponential behavior at long time. Such a transition can be explained in terms of a distribution of relaxation times with a well-defined longest relaxation time. Since the Cole-Davidson distribution has a sharp cutoff in relaxation time (while the KWW function does not), it makes sense that the Cole-Davidson would provide a better frequency-domain description of the associated response function than the KWW function does.« less
Investigating ion channel conformational changes using voltage clamp fluorometry.
Talwar, Sahil; Lynch, Joseph W
2015-11-01
Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jerome, Gerald J; Glass, Thomas A; Mielke, Michelle; Xue, Qian-Li; Andersen, Ross E; Fried, Linda P
2006-11-01
Physical activity is important for maintaining functional independence of older persons, especially for those with existing functional deficits. Since such deficits may pose barriers to activity, it would be instructive to examine activity patterns in relation to specific types of deficits to determine the amount and type of physical activity older women pursue. This study sought to identify categories of functional deficits associated with activity levels and evaluated the potential for older women to increase their physical activity levels. Community-dwelling women, aged 70-79 years, from the Women's Health and Aging Studies I and II (N = 710), were assessed for self-reported physical activity, functional deficits and chronic conditions, along with objective measures of muscle strength. Both type (household chores, exercise, and recreational activity) and amount of physical activity (min/wk) were examined. Meeting physical activity recommendations was defined as > or =150 minutes per week of moderate intensity physical activity, and inactivity was defined as no weekly moderate intensity physical activity. Hierarchical categories of functional deficits were based on self-reported difficulty in four functional domains (i.e., mobility/exercise tolerance, upper extremity, higher functioning, and self-care), and self-reports ranged from no difficulty to difficulty in all four domains. The prevalence of inactivity and meeting activity recommendations were 14.4% and 12.7%, respectively. Severity of functional deficits was associated with increased risk of inactivity (adjusted odds ratios [ORs(adj)] = 3.14-17.61) and reduced likelihood of meeting activity recommendations (ORs(adj) =.11-.40). Even among those with higher functioning or self-care difficulties, 30% reported walking for exercise. There was evidence that older women with functional deficits can remain physically active. However, for some of these women, meeting the recommended levels of activity may be unrealistic. Efforts to increase physical activity levels among older adults should include treatment or management of functional deficits, chronic conditions, and poor strength.
Evidence of reduced recombination rate in human regulatory domains.
Liu, Yaping; Sarkar, Abhishek; Kheradpour, Pouya; Ernst, Jason; Kellis, Manolis
2017-10-20
Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate. We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a "recombination rate valley" of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy. Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.
Ramírez-Escudero, Mercedes; del Pozo, Mercedes V.; Marín-Navarro, Julia; González, Beatriz; Golyshin, Peter N.; Polaina, Julio; Ferrer, Manuel; Sanz-Aparicio, Julia
2016-01-01
Metagenomics has opened up a vast pool of genes for putative, yet uncharacterized, enzymes. It widens our knowledge on the enzyme diversity world and discloses new families for which a clear classification is still needed, as is exemplified by glycoside hydrolase family-3 (GH3) proteins. Herein, we describe a GH3 enzyme (GlyA1) from resident microbial communities in strained ruminal fluid. The enzyme is a β-glucosidase/β-xylosidase that also shows β-galactosidase, β-fucosidase, α-arabinofuranosidase, and α-arabinopyranosidase activities. Short cello- and xylo-oligosaccharides, sophorose and gentibiose, are among the preferred substrates, with the large polysaccharide lichenan also being hydrolyzed by GlyA1. The determination of the crystal structure of the enzyme in combination with deletion and site-directed mutagenesis allowed identification of its unusual domain composition and the active site architecture. Complexes of GlyA1 with glucose, galactose, and xylose allowed picturing the catalytic pocket and illustrated the molecular basis of the substrate specificity. A hydrophobic platform defined by residues Trp-711 and Trp-106, located in a highly mobile loop, appears able to allocate differently β-linked bioses. GlyA1 includes an additional C-terminal domain previously unobserved in GH3 members, but crystallization of the full-length enzyme was unsuccessful. Therefore, small angle x-ray experiments have been performed to investigate the molecular flexibility and overall putative shape. This study provided evidence that GlyA1 defines a new subfamily of GH3 proteins with a novel permuted domain topology. Phylogenetic analysis indicates that this topology is associated with microbes inhabiting the digestive tracts of ruminants and other animals, feeding on chemically diverse plant polymeric materials. PMID:27679487
Concepts, Structures, and Goals: Redefining Ill-Definedness
ERIC Educational Resources Information Center
Lynch, Collin; Ashley, Kevin D.; Pinkwart, Niels; Aleven, Vincent
2009-01-01
In this paper we consider prior definitions of the terms "ill-defined domain" and "ill-defined problem". We then present alternate definitions that better support research at the intersection of Artificial Intelligence and Education. In our view both problems and domains are ill-defined when essential concepts, relations, or criteria are un- or…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikatendu, Kumar Singh; Zhang, Xuejun; Kinch, Lisa
The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. The structure of SA1388 has been solved to 2.0{angstrom} resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals.more » It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric 'lids' formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The six PII-like domains form two trimeric 'lids' that cap the central cavity of the toroid on either side and provide only small openings to allow regulated entry of small molecules into the occluded chamber. The presence of the electron density of the bound ligand may provide important clues on the likely function of NIF3-like proteins.« less
Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.
Samai, Poulami; Shuman, Stewart
2011-06-24
Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.
Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling; Wang, Xianhui; Kang, Le
2017-06-01
The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain-containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. © The Authors 2017. Published by Oxford University Press.
Lakshminarasimhan, Mahadevan; Curth, Ute; Moniot, Sebastien; Mosalaganti, Shyamal; Raunser, Stefan; Steegborn, Clemens
2013-01-01
Sirtuins are NAD+-dependent protein deacetylases regulating metabolism, stress responses and ageing processes. Among the seven mammalian Sirtuins, Sirt1 is the physiologically best-studied isoform. It regulates nuclear functions such as chromatin remodelling and gene transcription, and it appears to mediate beneficial effects of a low calorie diet which can partly be mimicked by the Sirt1 activating polyphenol resveratrol. The molecular details of Sirt1 domain architecture and regulation, however, are little understood. It has a unique N-terminal domain and CTD (C-terminal domain) flanking a conserved Sirtuin catalytic core and these extensions are assumed to mediate Sirt1-specific features such as homo-oligomerization and activation by resveratrol. To analyse the architecture of human Sirt1 and functions of its N- and C-terminal extensions, we recombinantly produced Sirt1 and Sirt1 deletion constructs as well as the AROS (active regulator of Sirt1) protein. We then studied Sirt1 features such as molecular size, secondary structure and stimulation by small molecules and AROS. We find that Sirt1 is monomeric and has extended conformations in its flanking domains, likely disordered especially in the N-terminus, resulting in an increased hydrodynamic radius. Nevertheless, both termini increase Sirt1 deacetylase activity, indicating a regulatory function. We also find an unusual but defined conformation for AROS protein, which fails, however, to stimulate Sirt1. Resveratrol, in contrast, activates the Sirt1 catalytic core independent of the terminal domains, indicating a binding site within the catalytic core and suggesting that small molecule activators for other isoforms might also exist. PMID:23548308
The Effects of Poor Sleep Quality on Cognitive Function of Patients with Cirrhosis
Stewart, Charmaine A.; Auger, Robert; Enders, Felicity T. B.; Felmlee-Devine, Donna; Smith, Glenn E.
2014-01-01
Objectives: This study was conducted to assess the ill-defined relationship between sleep quality and multiple, specific domains of cognitive function in patients with cirrhosis. Methods: A comprehensive battery of neuropsychological tests (divided into six neurocognitive domains) and a standardized, validated measure of sleep quality (Pittsburgh Sleep Quality Index [PSQI]) were administered to patients with cirrhosis and without evidence of overt hepatic encephalopathy, recruited from liver transplant and advanced liver disease clinics (n = 34). An inflammatory bowel disease (IBD) control group (n = 23) was similarly recruited and evaluated to control for the secondary effect of a chronic illness on cognition. PSQI global and component scores were used to predict cognitive function in each neurocognitive domain, using linear regression Results: Global PSQI scores were significantly higher (indicating poorer sleep quality) in the cirrhosis group (median [range] = 10 [1-19]) than in IBD controls = 5 (1-14); p = 0.002). After controlling for age and education, short duration of sleep was associated with impaired memory for patients with cirrhosis; the use of soporific agents was associated with poor visual-perceptual function in patients with IBD. Conclusions: Poor sleep was associated with worsening of the already impaired cognitive function of patients with cirrhosis. Citation: Stewart CA; Auger R; Enders FTB; Felmlee-Devine D; Smith GE. The effects of poor sleep quality on cognitive function of patients with cirrhosis. J Clin Sleep Med 2014;10(1):21-26. PMID:24426816
Electronic health record "super-users" and "under-users" in ambulatory care practices.
Rumball-Smith, Juliet; Shekelle, Paul; Damberg, Cheryl L
2018-01-01
This study explored variation in the extent of use of electronic health record (EHR)-based health information technology (IT) functionalities across US ambulatory care practices. Use of health IT functionalities in ambulatory care is important for delivering high-quality care, including that provided in coordination with multiple practitioners. We used data from the 2014 Healthcare Information and Management Systems Society Analytics survey. The responses of 30,123 ambulatory practices with an operational EHR were analyzed to examine the extent of use of EHR-based health IT functionalities for each practice. We created a novel framework for classifying ambulatory care practices employing 7 domains of health IT functionality. Drawing from the survey responses, we created a composite "use" variable indicating the extent of health IT functionality use across these domains. "Super-user" practices were defined as having near-full employment of the 7 domains of health IT functionalities and "under-users" as those with minimal or no use of health IT functionalities. We used multivariable logistic regression to investigate how the odds of super-use and under-use varied by practice size, type, urban or rural location, and geographic region. Seventy-three percent of practices were not using EHR technologies to their full capability, and nearly 40% were classified as under-users. Under-user practices were more likely to be of smaller size, situated in the West, and located outside a metropolitan area. To achieve the broader benefits of the EHR and health IT, health systems and policy makers need to identify and address barriers to full use of health IT functionalities.
NASA Astrophysics Data System (ADS)
Yang, X.; Scheibe, T. D.; Chen, X.; Hammond, G. E.; Song, X.
2015-12-01
The zone in which river water and groundwater mix plays an important role in natural ecosystems as it regulates the mixing of nutrients that control biogeochemical transformations. Subsurface heterogeneity leads to local hotspots of microbial activity that are important to system function yet difficult to resolve computationally. To address this challenge, we are testing a hybrid multiscale approach that couples models at two distinct scales, based on field research at the U. S. Department of Energy's Hanford Site. The region of interest is a 400 x 400 x 20 m macroscale domain that intersects the aquifer and the river and contains a contaminant plume. However, biogeochemical activity is high in a thin zone (mud layer, <1 m thick) immediately adjacent to the river. This microscale domain is highly heterogeneous and requires fine spatial resolution to adequately represent the effects of local mixing on reactions. It is not computationally feasible to resolve the full macroscale domain at the fine resolution needed in the mud layer, and the reaction network needed in the mud layer is much more complex than that needed in the rest of the macroscale domain. Hence, a hybrid multiscale approach is used to efficiently and accurately predict flow and reactive transport at both scales. In our simulations, models at both scales are simulated using the PFLOTRAN code. Multiple microscale simulations in dynamically defined sub-domains (fine resolution, complex reaction network) are executed and coupled with a macroscale simulation over the entire domain (coarse resolution, simpler reaction network). The objectives of the research include: 1) comparing accuracy and computing cost of the hybrid multiscale simulation with a single-scale simulation; 2) identifying hot spots of microbial activity; and 3) defining macroscopic quantities such as fluxes, residence times and effective reaction rates.
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective. PMID:24349105
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.
Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan
2013-01-01
This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.
Nora, Elphège P; Goloborodko, Anton; Valton, Anne-Laure; Gibcus, Johan H; Uebersohn, Alec; Abdennur, Nezar; Dekker, Job; Mirny, Leonid A; Bruneau, Benoit G
2017-05-18
The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization. Copyright © 2017 Elsevier Inc. All rights reserved.
Nora, Elphège P.; Goloborodko, Anton; Valton, Anne-Laure; Gibcus, Johan H.; Uebersohn, Alec; Abdennur, Nezar; Dekker, Job; Mirny, Leonid A.; Bruneau, Benoit G.
2017-01-01
Summary The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Further, our data support that CTCF mediates transcriptional insulator function through enhancer-blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding these results provide new fundamental insights into the rules governing mammalian genome organization. PMID:28525758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, J.; Malchiodi, E; Cho, S
2009-01-01
Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less
NASA Astrophysics Data System (ADS)
Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre
2016-06-01
Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.
Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.
Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi
2016-02-01
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Extreme Lagrangian acceleration in confined turbulent flow.
Kadoch, Benjamin; Bos, Wouter J T; Schneider, Kai
2008-05-09
A Lagrangian study of two-dimensional turbulence for two different geometries, a periodic and a confined circular geometry, is presented to investigate the influence of solid boundaries on the Lagrangian dynamics. It is found that the Lagrangian acceleration is even more intermittent in the confined domain than in the periodic domain. The flatness of the Lagrangian acceleration as a function of the radius shows that the influence of the wall on the Lagrangian dynamics becomes negligible in the center of the domain, and it also reveals that the wall is responsible for the increased intermittency. The transition in the Lagrangian statistics between this region, not directly influenced by the walls, and a critical radius which defines a Lagrangian boundary layer is shown to be very sharp with a sudden increase of the acceleration flatness from about 5 to about 20.
ERIC Educational Resources Information Center
Le, Nguyen-Thinh; Menzel, Wolfgang
2009-01-01
In this paper, we introduce logic programming as a domain that exhibits some characteristics of being ill-defined. In order to diagnose student errors in such a domain, we need a means to hypothesise the student's intention, that is the strategy underlying her solution. This is achieved by weighting constraints, so that hypotheses about solution…
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
2012-01-01
Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331
Monteiro, Renato C; Van De Winkel, Jan G J
2003-01-01
The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.
Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin
2013-01-01
The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858
Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media
Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.
2009-01-01
Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.
Convergence Rates for Multivariate Smoothing Spline Functions.
1982-10-01
GAI (,T) g (T)dT - g In order to show convergence of the series and obtain bounds on the terms, we need to estimate £ Now (1 + Ay v) AyV ( g ,#V...Cox* Technical Summary Report #2437 October 1982 ABSTRACT Given data z i - g (ti ) + ci, 1 4 i 4 n, where g is the unknown function, the ti are unknown...d-dimensional variables in a domain fl, and the ei are i.i.d. random errors, the smoothing spline estimate g n is defined to be the
Faller, Nicolas; Gautschi, Ivan; Schild, Laurent
2014-01-01
Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.
Core outcome domains for clinical trials in non-specific low back pain.
Chiarotto, Alessandro; Deyo, Richard A; Terwee, Caroline B; Boers, Maarten; Buchbinder, Rachelle; Corbin, Terry P; Costa, Leonardo O P; Foster, Nadine E; Grotle, Margreth; Koes, Bart W; Kovacs, Francisco M; Lin, Chung-Wei Christine; Maher, Chris G; Pearson, Adam M; Peul, Wilco C; Schoene, Mark L; Turk, Dennis C; van Tulder, Maurits W; Ostelo, Raymond W
2015-06-01
Inconsistent reporting of outcomes in clinical trials of patients with non-specific low back pain (NSLBP) hinders comparison of findings and the reliability of systematic reviews. A core outcome set (COS) can address this issue as it defines a minimum set of outcomes that should be reported in all clinical trials. In 1998, Deyo et al. recommended a standardized set of outcomes for LBP clinical research. The aim of this study was to update these recommendations by determining which outcome domains should be included in a COS for clinical trials in NSLBP. An International Steering Committee established the methodology to develop this COS. The OMERACT Filter 2.0 framework was used to draw a list of potential core domains that were presented in a Delphi study. Researchers, care providers and patients were invited to participate in three Delphi rounds and were asked to judge which domains were core. A priori criteria for consensus were established before each round and were analysed together with arguments provided by panellists on importance, overlap, aggregation and/or addition of potential core domains. The Steering Committee discussed the final results and made final decisions. A set of 280 experts was invited to participate in the Delphi; response rates in the three rounds were 52, 50 and 45%. Of 41 potential core domains presented in the first round, 13 had sufficient support to be presented for rating in the third round. Overall consensus was reached for the inclusion of three domains in this COS: 'physical functioning', 'pain intensity' and 'health-related quality of life'. Consensus on 'physical functioning' and 'pain intensity' was consistent across all stakeholders, 'health-related quality of life' was not supported by the patients, and all the other domains were not supported by two or more groups of stakeholders. Weighting all possible argumentations, the Steering Committee decided to include in the COS the three domains that reached overall consensus and the domain 'number of deaths'. The following outcome domains were included in this updated COS: 'physical functioning', 'pain intensity', 'health-related quality of life' and 'number of deaths'. The next step for the development of this COS will be to determine which measurement instruments best measure these domains.
Around and beyond 53BP1 Nuclear Bodies
Fernandez-Vidal, Anne; Vignard, Julien
2017-01-01
Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction. PMID:29206178
A terracing operator for physical property mapping with potential field data
Cordell, L.; McCafferty, A.E.
1989-01-01
The terracing operator works iteratively on gravity or magnetic data, using the sense of the measured field's local curvature, to produce a field comprised of uniform domains separated by abrupt domain boundaries. The result is crudely proportional to a physical-property function defined in one (profile case) or two (map case) horizontal dimensions. This result can be extended to a physical-property model if its behavior in the third (vertical) dimension is defined, either arbitrarily or on the basis of the local geologic situation. The terracing algorithm is computationally fast and appropriate to use with very large digital data sets. The terracing operator was applied separately to aeromagnetic and gravity data from a 136km x 123km area in eastern Kansas. Results provide a reasonable good physical representation of both the gravity and the aeromagnetic data. Superposition of the results from the two data sets shows many areas of agreement that can be referenced to geologic features within the buried Precambrian crystalline basement. -from Authors
From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction
NASA Astrophysics Data System (ADS)
de Tilière, Béatrice
2013-04-01
Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version {{G}} of this graph (Fisher in J Math Phys 7:1776-1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain {{G}_1}. Our main result consists in explicitly constructing CRSFs of {{G}_1} counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon's critical weight function (Kenyon in Invent Math 150(2):409-439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.
Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function.
Valsecchi, Federica; Konrad, Csaba; D'Aurelio, Marilena; Ramos-Espiritu, Lavoisier S; Stepanova, Anna; Burstein, Suzanne R; Galkin, Alexander; Magranè, Jordi; Starkov, Anatoly; Buck, Jochen; Levin, Lonny R; Manfredi, Giovanni
2017-11-01
cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca 2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca 2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca 2+ signaling. © 2017. Published by The Company of Biologists Ltd.
Semantic layers for illustrative volume rendering.
Rautek, Peter; Bruckner, Stefan; Gröller, Eduard
2007-01-01
Direct volume rendering techniques map volumetric attributes (e.g., density, gradient magnitude, etc.) to visual styles. Commonly this mapping is specified by a transfer function. The specification of transfer functions is a complex task and requires expert knowledge about the underlying rendering technique. In the case of multiple volumetric attributes and multiple visual styles the specification of the multi-dimensional transfer function becomes more challenging and non-intuitive. We present a novel methodology for the specification of a mapping from several volumetric attributes to multiple illustrative visual styles. We introduce semantic layers that allow a domain expert to specify the mapping in the natural language of the domain. A semantic layer defines the mapping of volumetric attributes to one visual style. Volumetric attributes and visual styles are represented as fuzzy sets. The mapping is specified by rules that are evaluated with fuzzy logic arithmetics. The user specifies the fuzzy sets and the rules without special knowledge about the underlying rendering technique. Semantic layers allow for a linguistic specification of the mapping from attributes to visual styles replacing the traditional transfer function specification.
Stonefish toxin defines an ancient branch of the perforin-like superfamily
Ellisdon, Andrew M.; Reboul, Cyril F.; Huynh, Kitmun; Oellig, Christine A.; Winter, Kelly L.; Hodgson, Wayne C.; Seymour, Jamie; Dearden, Peter K.; Tweten, Rodney K.; Whisstock, James C.; McGowan, Sheena
2015-01-01
The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and β), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom. PMID:26627714
Evolution of synthetic signaling scaffolds by recombination of modular protein domains.
Lai, Andicus; Sato, Paloma M; Peisajovich, Sergio G
2015-06-19
Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.
Tes, a specific Mena interacting partner, breaks the rules for EVH1 binding.
Boëda, Batiste; Briggs, David C; Higgins, Theresa; Garvalov, Boyan K; Fadden, Andrew J; McDonald, Neil Q; Way, Michael
2007-12-28
The intracellular targeting of Ena/VASP family members is achieved via the interaction of their EVH1 domain with FPPPP sequence motifs found in a variety of cytoskeletal proteins, including lamellipodin, vinculin, and zyxin. Here we show that the LIM3 domain of Tes, which lacks the FPPPP motif, binds to the EVH1 domain of Mena, but not to those of VASP or Evl. The structure of the LIM3:EVH1 complex reveals that Tes occludes the FPPPP-binding site and competes with FPPPP-containing proteins for EVH1 binding. Structure-based gain-of-function experiments define the molecular basis for the specificity of the Tes-Mena interaction. Consistent with in vitro observations, the LIM3 domain displaces Mena, but not VASP, from the leading edge and focal adhesions. It also regulates cell migration through a Mena-dependent mechanism. Our observations identify Tes as an atypical EVH1 binding partner and a regulator specific to a single Ena/VASP family member.
Crystallographic analysis of CD40 recognition and signaling by human TRAF2
McWhirter, Sarah M.; Pullen, Steven S.; Holton, James M.; Crute, James J.; Kehry, Marilyn R.; Alber, Tom
1999-01-01
Tumor necrosis factor receptor superfamily members convey signals that promote diverse cellular responses. Receptor trimerization by extracellular ligands initiates signaling by recruiting members of the tumor necrosis factor receptor-associated factor (TRAF) family of adapter proteins to the receptor cytoplasmic domains. We report the 2.4-Å crystal structure of a 22-kDa, receptor-binding fragment of TRAF2 complexed with a functionally defined peptide from the cytoplasmic domain of the CD40 receptor. TRAF2 forms a mushroom-shaped trimer consisting of a coiled coil and a unique β-sandwich domain. Both domains mediate trimerization. The CD40 peptide binds in an extended conformation with every side chain in contact with a complementary groove on the rim of each TRAF monomer. The spacing between the CD40 binding sites on TRAF2 supports an elegant signaling mechanism in which trimeric, extracellular ligands preorganize the receptors to simultaneously recognize three sites on the TRAF trimer. PMID:10411888
Working With the Wave Equation in Aeroacoustics: The Pleasures of Generalized Functions
NASA Technical Reports Server (NTRS)
Farassat, F.; Brentner, Kenneth S.; Dunn, mark H.
2007-01-01
The theme of this paper is the applications of generalized function (GF) theory to the wave equation in aeroacoustics. We start with a tutorial on GFs with particular emphasis on viewing functions as continuous linear functionals. We next define operations on GFs. The operation of interest to us in this paper is generalized differentiation. We give many applications of generalized differentiation, particularly for the wave equation. We discuss the use of GFs in finding Green s function and some subtleties that only GF theory can clarify without ambiguities. We show how the knowledge of the Green s function of an operator L in a given domain D can allow us to solve a whole range of problems with operator L for domains situated within D by the imbedding method. We will show how we can use the imbedding method to find the Kirchhoff formulas for stationary and moving surfaces with ease and elegance without the use of the four-dimensional Green s theorem, which is commonly done. Other subjects covered are why the derivatives in conservation laws should be viewed as generalized derivatives and what are the consequences of doing this. In particular we show how we can imbed a problem in a larger domain for the identical differential equation for which the Green s function is known. The primary purpose of this paper is to convince the readers that GF theory is absolutely essential in aeroacoustics because of its powerful operational properties. Furthermore, learning the subject and using it can be fun.
Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems
Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas
2012-01-01
Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. PMID:22586357
NASA Astrophysics Data System (ADS)
Li, Ming; Yin, Hongxi; Xing, Fangyuan; Wang, Jingchao; Wang, Honghuan
2016-02-01
With the features of network virtualization and resource programming, Software Defined Optical Network (SDON) is considered as the future development trend of optical network, provisioning a more flexible, efficient and open network function, supporting intraconnection and interconnection of data centers. Meanwhile cloud platform can provide powerful computing, storage and management capabilities. In this paper, with the coordination of SDON and cloud platform, a multi-domain SDON architecture based on cloud control plane has been proposed, which is composed of data centers with database (DB), path computation element (PCE), SDON controller and orchestrator. In addition, the structure of the multidomain SDON orchestrator and OpenFlow-enabled optical node are proposed to realize the combination of centralized and distributed effective management and control platform. Finally, the functional verification and demonstration are performed through our optical experiment network.
Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck.
Stanishneva-Konovalova, Tatiana B; Kelley, Charlotte F; Eskin, Tania L; Messelaar, Emily M; Wasserman, Steven A; Sokolova, Olga S; Rodal, Avital A
2016-09-20
Membrane remodeling by Fes/Cip4 homology-Bin/Amphiphysin/Rvs167 (F-BAR) proteins is regulated by autoinhibitory interactions between their SRC homology 3 (SH3) and F-BAR domains. The structural basis of autoregulation, and whether it affects interactions of SH3 domains with other cellular ligands, remain unclear. Here we used single-particle electron microscopy to determine the structure of the F-BAR protein Nervous Wreck (Nwk) in both soluble and membrane-bound states. On membrane binding, Nwk SH3 domains do not completely dissociate from the F-BAR dimer, but instead shift from its concave surface to positions on either side of the dimer. Unexpectedly, along with controlling membrane binding, these autoregulatory interactions inhibit the ability of Nwk-SH3a to activate Wiskott-Aldrich syndrome protein (WASp)/actin related protein (Arp) 2/3-dependent actin filament assembly. In Drosophila neurons, Nwk autoregulation restricts SH3a domain-dependent synaptopod formation, synaptic growth, and actin organization. Our results define structural rearrangements in Nwk that control F-BAR-membrane interactions as well as SH3 domain activities, and suggest that these two functions are tightly coordinated in vitro and in vivo.
The eisosome core is composed of BAR domain proteins
Olivera-Couto, Agustina; Graña, Martin; Harispe, Laura; Aguilar, Pablo S.
2011-01-01
Eisosomes define sites of plasma membrane organization. In Saccharomyces cerevisiae, eisosomes delimit furrow-like plasma membrane invaginations that concentrate sterols, transporters, and signaling molecules. Eisosomes are static macromolecular assemblies composed of cytoplasmic proteins, most of which have no known function. In this study, we used a bioinformatics approach to analyze a set of 20 eisosome proteins. We found that the core components of eisosomes, paralogue proteins Pil1 and Lsp1, are distant homologues of membrane-sculpting Bin/amphiphysin/Rvs (BAR) proteins. Consistent with this finding, purified recombinant Pil1 and Lsp1 tubulated liposomes and formed tubules when the proteins were overexpressed in mammalian cells. Structural homology modeling and site-directed mutagenesis indicate that Pil1 positively charged surface patches are needed for membrane binding and liposome tubulation. Pil1 BAR domain mutants were defective in both eisosome assembly and plasma membrane domain organization. In addition, we found that eisosome-associated proteins Slm1 and Slm2 have F-BAR domains and that these domains are needed for targeting to furrow-like plasma membrane invaginations. Our results support a model in which BAR domain protein–mediated membrane bending leads to clustering of lipids and proteins within the plasma membrane. PMID:21593205
Functional requirements regarding medical registries--preliminary results.
Oberbichler, Stefan; Hörbst, Alexander
2013-01-01
The term medical registry is used to reference tools and processes to support clinical or epidemiologic research or provide a data basis for decisions regarding health care policies. In spite of this wide range of applications the term registry and the functional requirements which a registry should support are not clearly defined. This work presents preliminary results of a literature review to discover functional requirements which form a registry. To extract these requirements a set of peer reviewed articles was collected. These set of articles was screened by using methods from qualitative research. Up to now most discovered functional requirements focus on data quality (e. g. prevent transcription error by conducting automatic domain checks).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatiblemore » with the momentum and other sum rules for the nuclear parton distribution functions.« less
Evaluating an Intelligent Tutoring System for Making Legal Arguments with Hypotheticals
ERIC Educational Resources Information Center
Pinkwart, Niels; Ashley, Kevin; Lynch, Collin; Aleven, Vincent
2009-01-01
Argumentation is a process that occurs often in ill-defined domains and that helps deal with the ill-definedness. Typically a notion of "correctness" for an argument in an ill-defined domain is impossible to define or verify formally because the underlying concepts are open-textured and the quality of the argument may be subject to discussion or…
Social psychology as a natural kind
Mitchell, Jason P.
2010-01-01
Summary Although typically defined as the study of how people and groups interact, the field of social psychology comprises a number of disparate domains that make only indirect contributions to understanding interpersonal interaction, such as emotion, attitudes, and the self. Although these various phenomena may appear to have little in common, recent evidence suggests that the topics at the core of social psychology form a natural group of domains with a common functional neuroanatomy, centered on the medial prefrontal cortex. That self-referential, attitudinal, affective, and other social phenomena converge on this region may reflect their shared reliance on inexact and internally-generated estimates that differ from the more precise representations underlying other psychological phenomena. PMID:19427258
The Aryl hydrocarbon receptor (AhR) is a ligand-activated, transcription factor with a basic region/helix (bHLH) motif. hR has been sequenced and the functional domains defined and there is information on the formation of complexes with other peptides and interactions with DNA, a...
ERIC Educational Resources Information Center
Dochy, F. J. R. C.; Bouwens, M. R. J.
This paper reports an investigation that was done ex post facto, examining the hypothesis that within economics courses defined economics students achieved better results than did law students in the same courses. This should not be the case if the courses are truly multifunctional. Information on an economics and money course and a course on the…
Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A
2007-01-01
Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706
Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; ...
2016-04-06
Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun
Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less
Martin, Magali Saint; Sforza, Emilia; Roche, Frédéric; Barthélémy, Jean Claude; Thomas-Anterion, Catherine
2015-02-01
Sleep breathing disorder (SBD) may be an important factor in age-related cognitive decline. In a cohort of healthy elderly subjects, we performed an 8-y longitudinal study to assess whether changes in cognitive function occur in untreated elderly patients with SBD and without dementia and the factors implicated in these changes. A population-based longitudinal study. Clinical research settings. A total of 559 participants of the PROOF study aged 67 y at the study entry and free from neurological disorders were examined. N/A. Abnormal breathing events were defined by an apnea-hypopnea index (AHI) > 15. The raw cognitive data and averaged Z-scores for the attentional, executive, and memory functions were collected at the baseline and follow-up. At baseline, AHI > 15 was found in 54% of subjects with 18% having an AHI > 30. At follow-up, the presence of abnormal breathing events was associated with a slight but significant decline in the attentional domain (P = 0.01), which was more evident in the subjects with an AHI > 30 (P = 0.004). No significant changes over time were observed in the executive and memory functions. Several indices of chronic hypoxemia, defined either as a cumulative peripheral oxygen saturation (SpO2) < 90% or a minimal SpO2, accounted for portions of the variance in the decline in attention. All observed effects were small, accounting for 4-7% of variance in multivariate models. In healthy elderly subjects, various components of sleep breathing disorder at baseline were associated with small changes in selected cognitive functions specific to the attention domain after controlling for multiple comorbidities, such as sleepiness, hypertension, diabetes, anxiety, and depression. ClinicalTrials.gov identifiers NCT 00759304 and NCT 00766584. © 2015 Associated Professional Sleep Societies, LLC.
Identification of the Kelch Family Protein Nd1-L as a Novel Molecular Interactor of KRIT1
Cutano, Valentina; Martino, Chiara
2012-01-01
Loss-of-function mutations of the KRIT1 gene (CCM1) have been associated with the Cerebral Cavernous Malformation (CCM) disease, which is characterized by serious alterations of brain capillary architecture. The KRIT1 protein contains multiple interaction domains and motifs, suggesting that it might act as a scaffold for the assembly of functional protein complexes involved in signaling networks. In previous work, we defined structure-function relationships underlying KRIT1 intramolecular and intermolecular interactions and nucleocytoplasmic shuttling, and found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. Here we report the identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. This interaction was discovered through yeast two-hybrid screening of a mouse embryo cDNA library, and confirmed by pull-down and co-immunoprecipitation assays of recombinant proteins, as well as by co-immunoprecipitation of endogenous proteins in human endothelial cells. Furthermore, using distinct KRIT1 isoforms and mutants, we defined the role of KRIT1 domains in the Nd1-L/KRIT1 interaction. Finally, functional assays showed that Nd1-L may contribute to the regulation of KRIT1 nucleocytoplasmic shuttling and cooperate with KRIT1 in modulating the expression levels of the antioxidant protein SOD2, opening a novel avenue for future mechanistic studies. The identification of Nd1-L as a novel KRIT1 interacting protein provides a novel piece of the molecular puzzle involving KRIT1 and suggests a potential functional cooperation in cellular responses to oxidative stress, thus expanding the framework of molecular complexes and mechanisms that may underlie the pathogenesis of CCM disease. PMID:22970292
Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei
2016-01-01
One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. PMID:26951433
Structure-Function Analysis of the OB and Latch Domains of Chlorella Virus DNA Ligase*
Samai, Poulami; Shuman, Stewart
2011-01-01
Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5′-phosphate nucleotide and the 3′-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps. PMID:21527793
Groome, James R; Winston, Vern
2013-05-01
The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.
Comparative analysis of the XopD T3S effector family in plant pathogenic bacteria
Kim, Jung-Gun; Taylor, Kyle W.; Mudgett, Mary Beth
2011-01-01
SUMMARY XopD is a type III effector protein that is required for Xanthomonas campestris pathovar vesicatoria (Xcv) growth in tomato. It is a modular protein consisting of an N-terminal DNA-binding domain, two EAR transcriptional repressor motifs, and a C-terminal SUMO protease. In tomato, XopD functions as a transcriptional repressor, resulting in the suppression of defense responses at late stages of infection. A survey of available genome sequences for phytopathogenic bacteria revealed that XopD homologs are limited to species within three Genera of Proteobacteria – Xanthomonas, Acidovorax, and Pseudomonas. While the EAR motif(s) and SUMO protease domain are conserved in all the XopD-like proteins, variation exists in the length and sequence identity of the N-terminal domains. Comparative analysis of the DNA sequences surrounding xopD and xopD-like genes led to revised annotation of the xopD gene. Edman degradation sequence analysis and functional complementation studies confirmed that the xopD gene from Xcv encodes a 760 amino acid protein with a longer N-terminal domain than previously predicted. None of the XopD-like proteins studied complemented Xcv ΔxopD mutant phenotypes in tomato leaves suggesting that the N-terminus of XopD defines functional specificity. Xcv ΔxopD strains expressing chimeric fusion proteins containing the N-terminus of XopD fused to the EAR motif(s) and SUMO protease domain of the XopD-like protein from Xanthomonas campestris pathovar campestris strain B100 were fully virulent in tomato demonstrating that the N-terminus of XopD controls specificity in tomato. PMID:21726373
Evidence of benzenoid domains in nanographenes.
Baldoni, Matteo; Mercuri, Francesco
2015-01-21
Calculations based on density functional theory demonstrate the occurrence of local deformations of the perfect honeycomb lattice in nanographenes to form arrangements, with triangular symmetry, composed of six-membered ring patterns. The formation of these locally regular superstructures, which can be considered as benzenoid-like domains on the 2D graphene lattice, is ascribed to the gain in resonance energy deriving from aromaticity. The relationship between the atomic morphology of nanographenes and details of the relaxed structure is rationalized in terms of Clar's theory of the aromatic sextet and by extending concepts borrowed from valence bond theory to 2D carbon nanostructures. Namely, two regular arrangements can be evidenced, defined as Clar (fully benzenoid) and Kekulé domains, which correspond to two different regular bond patterns in sets of adjacent six-membered rings. Our findings are compatible with recent experiments and have potentially relevant consequences in the development of novel electronic devices based on graphene materials.
Fault Injection Validation of a Safety-Critical TMR Sysem
NASA Astrophysics Data System (ADS)
Irrera, Ivano; Madeira, Henrique; Zentai, Andras; Hergovics, Beata
2016-08-01
Digital systems and their software are the core technology for controlling and monitoring industrial systems in practically all activity domains. Functional safety standards such as the European standard EN 50128 for railway applications define the procedures and technical requirements for the development of software for railway control and protection systems. The validation of such systems is a highly demanding task. In this paper we discuss the use of fault injection techniques, which have been used extensively in several domains, particularly in the space domain, to complement the traditional procedures to validate a SIL (Safety Integrity Level) 4 system for railway signalling, implementing a TMR (Triple Modular Redundancy) architecture. The fault injection tool is based on JTAG technology. The results of our injection campaign showed a high degree of tolerance to most of the injected faults, but several cases of unexpected behaviour have also been observed, helping understanding worst-case scenarios.
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina; Ryashko, Lev; Ryazanova, Tatyana
2017-09-01
A problem of the analysis of the noise-induced extinction in multidimensional population systems is considered. For the investigation of conditions of the extinction caused by random disturbances, a new approach based on the stochastic sensitivity function technique and confidence domains is suggested, and applied to tritrophic population model of interacting prey, predator and top predator. This approach allows us to analyze constructively the probabilistic mechanisms of the transition to the noise-induced extinction from both equilibrium and oscillatory regimes of coexistence. In this analysis, a method of principal directions for the reducing of the dimension of confidence domains is suggested. In the dispersion of random states, the principal subspace is defined by the ratio of eigenvalues of the stochastic sensitivity matrix. A detailed analysis of two scenarios of the noise-induced extinction in dependence on parameters of considered tritrophic system is carried out.
Neurodevelopmental functioning in children with FAS, pFAS, and ARND.
Chasnoff, Ira J; Wells, Anne M; Telford, Erin; Schmidt, Christine; Messer, Gwendolyn
2010-04-01
The purpose of this article is to compare the neurodevelopmental profiles of 78 foster and adopted children with fetal alcohol syndrome (FAS), partial FAS (pFAS), or alcohol-related neurodevelopmental disorder (ARND). Seventy-eight foster and adopted children underwent a comprehensive diagnostic evaluation. By using criteria more stringent than those required by current guidelines, the children were placed in 1 of 3 diagnostic categories: FAS, pFAS, or ARND. Each child was evaluated across the domains of neuropsychological functioning most frequently affected by prenatal exposure to alcohol. Multivariate analyses of variance were conducted to examine differences in neuropsychological functioning between the 3 diagnostic groups. Descriptive discriminant analyses were performed in follow-up to the multivariate analyses of variance. The children in the 3 diagnostic categories were similar for descriptive and child welfare variables. Children with FAS had significantly decreased mean weight, height, and head circumference. Children with FAS exhibited the most impaired level of general intelligence, significantly worse language-based memory compared with children with ARND, and significantly poorer functional communication skills than children with pFAS. On executive functioning, the FAS group of children performed significantly worse on sequencing and shift than either the pFAS or ARND groups. Children with pFAS and ARND were similar in all neurodevelopmental domains that were tested. The children who met tightly defined physical criteria for a diagnosis of FAS demonstrated significantly poorer neurodevelopmental functioning than children with pFAS and ARND. Children in these latter 2 groups were similar in all neurodevelopmental domains that were tested.
Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib
2016-11-01
To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.
Discrete event simulation tool for analysis of qualitative models of continuous processing systems
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)
1990-01-01
An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.
Functional innovation from changes in protein domains and their combinations.
Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A
2016-06-01
Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Bayesian Sampler for Optimization of Protein Domain Hierarchies
2014-01-01
Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo or to an existing hierarchy. When applied to 60 protein domains from multiple starting points in this way, it converged on similar solutions with nearly identical log-likelihood ratio scores, suggesting that it typically finds the optimal peak in the posterior probability distribution. Similarities and differences between independently generated, nearly optimal hierarchies for a given domain help distinguish robust from statistically uncertain features. Thus, a future application of the sampler is to provide confidence measures for various features of a domain hierarchy. PMID:24494927
Partial protein domains: evolutionary insights and bioinformatics challenges.
Kelley, Lawrence A; Sternberg, Michael J E
2015-05-19
Protein domains are generally thought to correspond to units of evolution. New research raises questions about how such domains are defined with bioinformatics tools and sheds light on how evolution has enabled partial domains to be viable.
Techniques for determining physical zones of influence
Hamann, Hendrik F; Lopez-Marrero, Vanessa
2013-11-26
Techniques for analyzing flow of a quantity in a given domain are provided. In one aspect, a method for modeling regions in a domain affected by a flow of a quantity is provided which includes the following steps. A physical representation of the domain is provided. A grid that contains a plurality of grid-points in the domain is created. Sources are identified in the domain. Given a vector field that defines a direction of flow of the quantity within the domain, a boundary value problem is defined for each of one or more of the sources identified in the domain. Each of the boundary value problems is solved numerically to obtain a solution for the boundary value problems at each of the grid-points. The boundary problem solutions are post-processed to model the regions affected by the flow of the quantity on the physical representation of the domain.
Protein domain definition should allow for conditional disorder
Yegambaram, Kavestri; Bulloch, Esther MM; Kingston, Richard L
2013-01-01
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding. PMID:23963781
Evolution of SH2 domains and phosphotyrosine signalling networks
Liu, Bernard A.; Nash, Piers D.
2012-01-01
Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907
Defining recovery in chronic fatigue syndrome: a critical review.
Adamowicz, Jenna L; Caikauskaite, Indre; Friedberg, Fred
2014-11-01
In chronic fatigue syndrome (CFS), the lack of consensus on how recovery should be defined or interpreted has generated controversy and confusion. The purpose of this paper was to systematically review, compare, and evaluate the definitions of recovery reported in the CFS literature and to make recommendations about the scope of recovery assessments. A search was done using the MEDLINE, PubMed, PsycINFO, CINAHL, and Cochrane databases for peer review papers that contained the search terms "chronic fatigue syndrome" and "recovery," "reversal," "remission," and/or "treatment response." From the 22 extracted studies, recovery was operationally defined by reference with one or more of these domains: (1) pre-morbid functioning; (2) both fatigue and function; (3) fatigue (or related symptoms) alone; (4) function alone; and/or (5) brief global assessment. Almost all of the studies measuring recovery in CFS did so differently. The brief global assessment was the most common outcome measure used to define recovery. Estimates of recovery ranged from 0 to 66 % in intervention studies and 2.6 to 62 % in naturalistic studies. Given that the term "recovery" was often based on limited assessments and less than full restoration of health, other more precise and accurate labels (e.g., clinically significant improvement) may be more appropriate and informative. In keeping with common understandings of the term recovery, we recommend a consistent definition that captures a broad-based return to health with assessments of both fatigue and function as well as the patient's perceptions of his/her recovery status.
The goal of this project is to use an eight-gene expression profile to define functional signatures for small molecules and natural products with heretofore undefined mechanism of action. Two genes in the eight gene set are used as internal controls and do not vary across gene expression array data collected from the public domain. The remaining six genes are found to vary independently across a large collection of publically available gene expression array datasets. Read the abstract
Intracellular dynamics during directional sensing of chemotactic cells
NASA Astrophysics Data System (ADS)
Amselem, Gabriel; Bodenschatz, Eberhard; Beta, Carsten
2007-03-01
We use an experimental approach based on the photo-chemical release of signaling molecules in microfluidic environments to expose chemotactic cells to well controlled chemoattractant stimuli. We apply this technique to study intracellular translocation of fluorescently labeled PH-domain proteins in the social ameba Dictyostelium discoideum. Single chemotactic Dictyostelium cells are exposed to localized, well defined gradients in the chemoattractant cAMP and their translocation response is quantified as a function of the external gradient.
A verification library for multibody simulation software
NASA Technical Reports Server (NTRS)
Kim, Sung-Soo; Haug, Edward J.; Frisch, Harold P.
1989-01-01
A multibody dynamics verification library, that maintains and manages test and validation data is proposed, based on RRC Robot arm and CASE backhoe validation and a comparitive study of DADS, DISCOS, and CONTOPS that are existing public domain and commercial multibody dynamic simulation programs. Using simple representative problems, simulation results from each program are cross checked, and the validation results are presented. Functionalities of the verification library are defined, in order to automate validation procedure.
Vergauwe, Evie; Hartstra, Egbert; Barrouillet, Pierre; Brass, Marcel
2015-07-15
Working memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating evidence that, when memory items have to be maintained while performing a concurrent activity, memory performance depends on the cognitive load of this activity, independently of the domain involved. The present study used fMRI to identify regions in the brain that are sensitive to variations in cognitive load in a domain-general way. More precisely, we aimed at identifying brain areas that activate during maintenance of memory items as a direct function of the cognitive load induced by both verbal and spatial concurrent tasks. Results show that the right IFJ and bilateral SPL/IPS are the only areas showing an increased involvement as cognitive load increases and do so in a domain general manner. When correlating the fMRI signal with the approximated cognitive load as defined by the TBRS model, it was shown that the main focus of the cognitive load-related activation is located in the right IFJ. The present findings indicate that the IFJ makes domain-general contributions to time-based resource-sharing in working memory and allowed us to generate the novel hypothesis by which the IFJ might be the neural basis for the process of rapid switching. We argue that the IFJ might be a crucial part of a central attentional bottleneck in the brain because of its inability to upload more than one task rule at once. Copyright © 2015 Elsevier Inc. All rights reserved.
Fennell, B J; Darmanin-Sheehan, A; Hufton, S E; Calabro, V; Wu, L; Müller, M R; Cao, W; Gill, D; Cunningham, O; Finlay, W J J
2010-07-09
The shark antigen-binding V(NAR) domain has the potential to provide an attractive alternative to traditional biotherapeutics based on its small size, advantageous physiochemical properties, and unusual ability to target clefts in enzymes or cell surface molecules. The V(NAR) shares many of the properties of the well-characterised single-domain camelid V(H)H but is much less understood at the molecular level. We chose the hen-egg-lysozyme-specific archetypal Type I V(NAR) 5A7 and used ribosome display in combination with error-prone mutagenesis to interrogate the entire sequence space. We found a high level of mutational plasticity across the V(NAR) domain, particularly within the framework 2 and hypervariable region 2 regions. A number of residues important for affinity were identified, and a triple mutant combining A1D, S61R, and G62R resulted in a K(D) of 460 pM for hen egg lysozyme, a 20-fold improvement over wild-type 5A7, and the highest K(D) yet reported for V(NAR)-antigen interactions. These findings were rationalised using structural modelling and indicate the importance of residues outside the classical complementarity determining regions in making novel antigen contacts that modulate affinity. We also located two solvent-exposed residues (G15 and G42), distant from the V(NAR) paratope, which retain function upon mutation to cysteine and have the potential to be exploited as sites for targeted covalent modification. Our findings with 5A7 were extended to all known NAR structures using an in-depth bioinformatic analysis of sequence data available in the literature and a newly generated V(NAR) database. This study allowed us to identify, for the first time, both V(NAR)-specific and V(NAR)/Ig V(L)/TCR V(alpha) overlapping hallmark residues, which are critical for the structural and functional integrity of the single domain. Intriguingly, each of our designated V(NAR)-specific hallmarks align precisely with previously defined mutational 'cold spots' in natural nurse shark cDNA sequences. These findings will aid future V(NAR) engineering and optimisation studies towards the development of V(NAR) single-domain proteins as viable biotherapeutics. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains.
Sudhakaran, Indulekha P; Ramaswami, Mani
2017-05-04
Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs function in synapse specific plasticity underlying LTM.
Brzovic, Peter S; Heikaus, Clemens C; Kisselev, Leonid; Vernon, Robert; Herbig, Eric; Pacheco, Derek; Warfield, Linda; Littlefield, Peter; Baker, David; Klevit, Rachel E; Hahn, Steven
2011-12-23
The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets. Copyright © 2011 Elsevier Inc. All rights reserved.
Recovery: what does this mean to patients with low back pain?
Hush, Julia M; Refshauge, Kathryn; Sullivan, Gerard; De Souza, Lorraine; Maher, Christopher G; McAuley, James H
2009-01-15
To explore patients' perceptions of recovery from low back pain, about which little is known. A qualitative study was conducted in which 36 participants, either recovered or unrecovered from low back pain, participated in focus groups. Interviews were audiorecorded and transcribed verbatim. Framework analysis was used to identify emergent themes and domains of recovery. Patients' views of recovery encompassed a range of factors that can be broadly classified into the domains of symptom attenuation, improved capacity to perform a broad scope of self-defined functional activities, and achievement of an acceptable quality of life. An interactive model is proposed to describe the relationships between these domains, cognitive appraisal of the pain experience, and self-rated recovery. Pain attenuation alone was not a reliable indicator of recovery. The construct of recovery for typical back pain patients seeking primary care is more complex than previously recognized and is a highly individual construct, determined by appraisal of the impact of symptoms on daily functional activities as well as quality of life factors. These findings will be valuable for reassessing how to optimize measures of recovery from low back pain by addressing the spectrum of factors patients consider meaningful.
A Method to Find Longevity-Selected Positions in the Mammalian Proteome
Semeiks, Jeremy; Grishin, Nick V.
2012-01-01
Evolutionary theory suggests that the force of natural selection decreases with age. To explore the extent to which this prediction directly affects protein structure and function, we used multiple regression to find longevity-selected positions, defined as the columns of a sequence alignment conserved in long-lived but not short-lived mammal species. We analyzed 7,590 orthologous protein families in 33 mammalian species, accounting for body mass, phylogeny, and species-specific mutation rate. Overall, we found that the number of longevity-selected positions in the mammalian proteome is much higher than would be expected by chance. Further, these positions are enriched in domains of several proteins that interact with one another in inflammation and other aging-related processes, as well as in organismal development. We present as an example the kinase domain of anti-Müllerian hormone type-2 receptor (AMHR2). AMHR2 inhibits ovarian follicle recruitment and growth, and a homology model of the kinase domain shows that its longevity-selected positions cluster near a SNP associated with delayed human menopause. Distinct from its canonical role in development, this region of AMHR2 may function to regulate the protein’s activity in a lifespan-specific manner. PMID:22701678
TADs are 3D structural units of higher-order chromosome organization in Drosophila
Szabo, Quentin; Jost, Daniel; Chang, Jia-Ming; Cattoni, Diego I.; Papadopoulos, Giorgio L.; Bonev, Boyan; Sexton, Tom; Gurgo, Julian; Jacquier, Caroline; Nollmann, Marcelo; Bantignies, Frédéric; Cavalli, Giacomo
2018-01-01
Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes. PMID:29503869
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
Generalized vector calculus on convex domain
NASA Astrophysics Data System (ADS)
Agrawal, Om P.; Xu, Yufeng
2015-06-01
In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.
Structure-function analysis of myomaker domains required for myoblast fusion.
Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N
2016-02-23
During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.
Musyoki, Abednego Moki; Shi, Zhongyu; Xuan, Chunling; Lu, Guangwen; Qi, Jianxun; Gao, Feng; Zheng, Beiwen; Zhang, Qiangmin; Li, Yan; Haywood, Joel; Liu, Cuihua; Yan, Jinghua; Shi, Yi; Gao, George F
2016-11-29
The anchorless fibronectin-binding proteins (FnBPs) are a group of important virulence factors for which the structures are not available and the functions are not well defined. In this study we performed comprehensive studies on a prototypic member of this group: the fibronectin-/fibrinogen-binding protein from Streptococcus suis (FBPS). The structures of the N- and C-terminal halves (FBPS-N and FBPS-C), which together cover the full-length protein in sequence, were solved at a resolution of 2.1 and 2.6 Å, respectively, and each was found to be composed of two domains with unique folds. Furthermore, we have elucidated the organization of these domains by small-angle X-ray scattering. We further showed that the fibronectin-binding site is located in FBPS-C and that FBPS promotes the adherence of S suis to host cells by attaching the bacteria via FBPS-N. Finally, we demonstrated that FBPS functions both as an adhesin, promoting S suis attachment to host cells, and as a bacterial factor, activating signaling pathways via β1 integrin receptors to induce chemokine production.
Boehringer, Jonas; Riedinger, Christiane; Paraskevopoulos, Konstantinos; Johnson, Eachan O. D.; Lowe, Edward D.; Khoudian, Christina; Smith, Dominique; Noble, Martin E. M.; Gordon, Colin; Endicott, Jane A.
2012-01-01
The ubiquitin–proteasome system targets selected proteins for degradation by the 26S proteasome. Rpn12 is an essential component of the 19S regulatory particle and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. In the present paper we report the crystal structure of Rpn12, a proteasomal PCI-domain-containing protein. The structure helps to define a core structural motif for the PCI domain and identifies potential sites through which Rpn12 might form protein–protein interactions. We demonstrate that mutating residues at one of these sites impairs Rpn12 binding to Rpn10 in vitro and reduces Rpn10 incorporation into proteasomes in vivo. PMID:22906049
Andersson, Helena M.; Arantes, Márcia J.; Crawley, James T. B.; Luken, Brenda M.; Tran, Sinh; Dahlbäck, Björn; Rezende, Suely M.
2010-01-01
Protein S has an established role in the protein C anticoagulant pathway, where it enhances the factor Va (FVa) and factor VIIIa (FVIIIa) inactivating property of activated protein C (APC). Despite its physiological role and clinical importance, the molecular basis of its action is not fully understood. To clarify the mechanism of the protein S interaction with APC, we have constructed and expressed a library of composite or point variants of human protein S, with residue substitutions introduced into the Gla, thrombin-sensitive region (TSR), epidermal growth factor 1 (EGF1), and EGF2 domains. Cofactor activity for APC was evaluated by calibrated automated thrombography (CAT) using protein S–deficient plasma. Of 27 variants tested initially, only one, protein S D95A (within the EGF1 domain), was largely devoid of functional APC cofactor activity. Protein S D95A was, however, γ-carboxylated and bound phospholipids with an apparent dissociation constant (Kdapp) similar to that of wild-type (WT) protein S. In a purified assay using FVa R506Q/R679Q, purified protein S D95A was shown to have greatly reduced ability to enhance APC-induced cleavage of FVa Arg306. It is concluded that residue Asp95 within EGF1 is critical for APC cofactor function of protein S and could define a principal functional interaction site for APC. PMID:20308596
Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis?
Taylor, Lorna J; Brown, Richard G; Tsermentseli, Stella; Al-Chalabi, Ammar; Shaw, Christopher E; Ellis, Catherine M; Leigh, P Nigel; Goldstein, Laura H
2013-05-01
Systematic explorations of language abilities in patients with amyotrophic lateral sclerosis (ALS) are lacking in the context of wider cognitive change. Neuropsychological assessment data were obtained from 51 patients with ALS and 35 healthy controls matched for age, gender and IQ. Composite scores were derived for the domains of language and executive functioning. Domain impairment was defined as a composite score ≤5th centile relative to the control mean. Cognitive impairment was also classified using recently published consensus criteria. The patients with ALS were impaired on language and executive composite scores. Language domain impairment was found in 43% of patients with ALS, and executive domain impairment in 31%. Standardised language and executive composite scores correlated in the ALS group (r=0.68, p<0.001). Multiple regression analyses indicated that scores on the executive composite accounted for 44% of the variance in language composite scores. Language impairments are at least as prevalent as executive dysfunction in ALS. While the two domains are strongly associated, executive dysfunction does not fully account for the profile of language impairments observed, further highlighting the heterogeneity of cognitive impairment in non-demented patients with ALS.
Single Domain Antibodies as New Biomarker Detectors
Fischer, Katja; Leow, Chiuan Yee; Chuah, Candy; McCarthy, James
2017-01-01
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described. PMID:29039819
A discrete model of Drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects.
Fauré, Adrien; Vreede, Barbara M I; Sucena, Elio; Chaouiya, Claudine
2014-03-01
The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.
A domain-centric solution to functional genomics via dcGO Predictor
2013-01-01
Background Computational/manual annotations of protein functions are one of the first routes to making sense of a newly sequenced genome. Protein domain predictions form an essential part of this annotation process. This is due to the natural modularity of proteins with domains as structural, evolutionary and functional units. Sometimes two, three, or more adjacent domains (called supra-domains) are the operational unit responsible for a function, e.g. via a binding site at the interface. These supra-domains have contributed to functional diversification in higher organisms. Traditionally functional ontologies have been applied to individual proteins, rather than families of related domains and supra-domains. We expect, however, to some extent functional signals can be carried by protein domains and supra-domains, and consequently used in function prediction and functional genomics. Results Here we present a domain-centric Gene Ontology (dcGO) perspective. We generalize a framework for automatically inferring ontological terms associated with domains and supra-domains from full-length sequence annotations. This general framework has been applied specifically to primary protein-level annotations from UniProtKB-GOA, generating GO term associations with SCOP domains and supra-domains. The resulting 'dcGO Predictor', can be used to provide functional annotation to protein sequences. The functional annotation of sequences in the Critical Assessment of Function Annotation (CAFA) has been used as a valuable opportunity to validate our method and to be assessed by the community. The functional annotation of all completely sequenced genomes has demonstrated the potential for domain-centric GO enrichment analysis to yield functional insights into newly sequenced or yet-to-be-annotated genomes. This generalized framework we have presented has also been applied to other domain classifications such as InterPro and Pfam, and other ontologies such as mammalian phenotype and disease ontology. The dcGO and its predictor are available at http://supfam.org/SUPERFAMILY/dcGO including an enrichment analysis tool. Conclusions As functional units, domains offer a unique perspective on function prediction regardless of whether proteins are multi-domain or single-domain. The 'dcGO Predictor' holds great promise for contributing to a domain-centric functional understanding of genomes in the next generation sequencing era. PMID:23514627
Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling
2017-01-01
Abstract The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. PMID:28444351
Output-Sensitive Construction of Reeb Graphs.
Doraiswamy, H; Natarajan, V
2012-01-01
The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.
Functional Ankle Instability and Health-Related Quality of Life
Arnold, Brent L.; Wright, Cynthia J.; Ross, Scott E.
2011-01-01
Context: To our knowledge, no authors have assessed health-related quality of life (HR-QOL) in participants with functional ankle instability (FAI). Furthermore, the relationships between measures of ankle functional limitation and HR-QOL are unknown. Objective: To use the Short Form–36v2 Health Survey (SF-36) to compare HR-QOL in participants with or without FAI and to determine whether HR-QOL was related to functional limitation. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Sixty-eight participants with FAI (defined as at least 1 lateral ankle sprain and 1 episode of giveway per month) or without FAI were recruited (FAI group: n = 34, age = 25 ± 5 years, height = 1.71 ± 0.08 m, mass = 74.39 ± 12.78 kg, Cumberland Ankle Instability Tool score = 19.3 ± 4; uninjured [UI] group: n = 34, age = 23 ± 4 years, height = 1.69 ± 0.08 m, mass = 67.94 ± 11.27 kg, Cumberland Ankle Instability Tool score = 29.4 ± 1). Main Outcome Measure(s): All participants completed the SF-36 as a measure of HR-QOL and the Foot and Ankle Ability Measure (FAAM) and the FAAM Sport version (FAAMS) as assessments of functional limitation. To compare the FAI and UI groups, we calculated multiple analyses of variance followed by univariate tests. Additionally, we correlated the SF-36 summary component scale and domain scales with the FAAM and FAAMS scores. Results: Participants with FAI had lower scores on the SF-36 physical component summary (FAI = 54.4 ± 5.1, UI = 57.8 ± 3.7, P = .005), physical function domain scale (FAI = 54.5 ± 3.8, UI = 56.6 ± 1.2, P = .004), and bodily pain domain scale (FAI = 52.0 ± 6.7, UI = 58.5 ± 5.3, P < .005). Similarly, participants with FAI had lower scores on the FAAM (FAI = 93.7 ± 8.4, UI = 99.5 ± 1.4, P < .005) and FAAMS (FAI = 84.5 ± 8.4, UI = 99.8 ± 0.72, P < .005) than did the UI group. The FAAM score was correlated with the physical component summary scale (r = 0.42, P = .001) and the physical function domain scale (r = 0.61, P < .005). The FAAMS score was correlated with the physical function domain scale (r = 0.47, P < .005) and the vitality domain scale (r = 0.36, P = .002). Conclusions: Compared with UI participants, those with FAI had less HR-QOL and more functional limitations. Furthermore, positive correlations were found between HR-QOL and functional limitation measures. This suggests that ankle impairment may reduce overall HR-QOL. PMID:22488189
Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making
Tremel, Joshua J.; Wheeler, Mark E.
2015-01-01
During a perceptual decision, neuronal activity can change as a function of time-integrated evidence. Such neurons may serve as decision variables, signaling a choice when activity reaches a boundary. Because the signals occur on a millisecond timescale, translating to human decision-making using functional neuroimaging has been challenging. Previous neuroimaging work in humans has identified patterns of neural activity consistent with an accumulation account. However, the degree to which the accumulating neuroimaging signals reflect specific sources of perceptual evidence is unknown. Using an extended face/house discrimination task in conjunction with cognitive modeling, we tested whether accumulation signals, as measured using functional magnetic resonance imaging (fMRI), are stimulus-specific. Accumulation signals were defined as a change in the slope of the rising edge of activation corresponding with response time (RT), with higher slopes associated with faster RTs. Consistent with an accumulation account, fMRI activity in face- and house-selective regions in the inferior temporal cortex increased at a rate proportional to decision time in favor of the preferred stimulus. This finding indicates that stimulus-specific regions perform an evidence integrative function during goal-directed behavior and that different sources of evidence accumulate separately. We also assessed the decision-related function of other regions throughout the brain and found that several regions were consistent with classifications from prior work, suggesting a degree of domain generality in decision processing. Taken together, these results provide support for an integration-to-boundary decision mechanism and highlight possible roles of both domain-specific and domain-general regions in decision evidence evaluation. PMID:25562821
Wells, Ruth; Swaminathan, Vaidy; Sundram, Suresh; Weinberg, Danielle; Bruggemann, Jason; Jacomb, Isabella; Cropley, Vanessa; Lenroot, Rhoshel; Pereira, Avril M; Zalesky, Andrew; Bousman, Chad; Pantelis, Christos; Weickert, Cynthia Shannon; Weickert, Thomas W
2015-01-01
Background: Cognitive heterogeneity among people with schizophrenia has been defined on the basis of premorbid and current intelligence quotient (IQ) estimates. In a relatively large, community cohort, we aimed to independently replicate and extend cognitive subtyping work by determining the extent of symptom severity and functional deficits in each group. Methods: A total of 635 healthy controls and 534 patients with a diagnosis of schizophrenia or schizoaffective disorder were recruited through the Australian Schizophrenia Research Bank. Patients were classified into cognitive subgroups on the basis of the Wechsler Test of Adult Reading (a premorbid IQ estimate) and current overall cognitive abilities into preserved, deteriorated, and compromised groups using both clinical and empirical (k-means clustering) methods. Additional cognitive, functional, and symptom outcomes were compared among the resulting groups. Results: A total of 157 patients (29%) classified as ‘preserved’ performed within one s.d. of control means in all cognitive domains. Patients classified as ‘deteriorated’ (n=239, 44%) performed more than one s.d. below control means in all cognitive domains except estimated premorbid IQ and current visuospatial abilities. A separate 138 patients (26%), classified as ‘compromised,’ performed more than one s.d. below control means in all cognitive domains and displayed greater impairment than other groups on symptom and functional measures. Conclusions: In the present study, we independently replicated our previous cognitive classifications of people with schizophrenia. In addition, we extended previous work by demonstrating worse functional outcomes and symptom severity in the compromised group. PMID:27336046
Sun, Wenxian; Cao, Yangrong; Jansen Labby, Kristin; Bittel, Pascal; Boller, Thomas; Bent, Andrew F.
2012-01-01
FLAGELLIN SENSING2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extracellular leucine rich repeat (LRR) domain in FLS2 and many other LRR receptors, and we find that the Cys pair N-terminal to the FLS2 LRR is required for normal processing, stability, and function, possibly due to undescribed endoplasmic reticulum quality control mechanisms. By contrast, disruption of the membrane-proximal Cys pair does not block FLS2 function, instead increasing responsiveness to flg22, as indicated by a stronger oxidative burst. There was no evidence for intermolecular FLS2-FLS2 disulfide bridges. Truncated FLS2 containing only the intracellular domain associates with full-length FLS2 and exerts a dominant-negative effect on wild-type FLS2 function that is dependent on expression level but independent of the protein kinase capacity of the truncated protein. FLS2 is insensitive to disruption of multiple N-glycosylation sites, in contrast with the related receptor EF-Tu RECEPTOR that can be rendered nonfunctional by disruption of single glycosylation sites. These and additional findings more precisely define the molecular mechanisms of FLS2 receptor function. PMID:22388452
Formal Language Design in the Context of Domain Engineering
2000-03-28
73 Related Work 75 5.1 Feature oriented domain analysis ( FODA ) 75 5.2 Organizational domain modeling (ODM) 76 5.3 Domain-Specific Software...However there are only a few that are well defined and used repeatedly in practice. These include: Feature oriented domain analysis ( FODA ), Organizational...Feature oriented domain analysis ( FODA ) Feature oriented domain analysis ( FODA ) is a domain analysis method being researched and applied by the SEI
Software-defined microwave photonic filter with high reconfigurable resolution
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-01-01
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062
Software-defined microwave photonic filter with high reconfigurable resolution.
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-10-19
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.
NASA Astrophysics Data System (ADS)
Mobarakeh, Pouyan Shakeri; Grinchenko, Victor T.
2015-06-01
The majority of practical cases of acoustics problems requires solving the boundary problems in non-canonical domains. Therefore construction of analytical solutions of mathematical physics boundary problems for non-canonical domains is both lucrative from the academic viewpoint, and very instrumental for elaboration of efficient algorithms of quantitative estimation of the field characteristics under study. One of the main solving ideologies for such problems is based on the superposition method that allows one to analyze a wide class of specific problems with domains which can be constructed as the union of canonically-shaped subdomains. It is also assumed that an analytical solution (or quasi-solution) can be constructed for each subdomain in one form or another. However, this case implies some difficulties in the construction of calculation algorithms, insofar as the boundary conditions are incompletely defined in the intervals, where the functions appearing in the general solution are orthogonal to each other. We discuss several typical examples of problems with such difficulties, we study their nature and identify the optimal methods to overcome them.
Recent Development of Anticancer Therapeutics Targeting Akt
Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Mash, Eugene A.; Powis, Garth; Zhang, Shuxing
2013-01-01
The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches. PMID:21110830
Galectin-3 in angiogenesis and metastasis
Funasaka, Tatsuyoshi; Raz, Avraham; Nangia-Makker, Pratima
2014-01-01
Galectin-3 is a member of the family of β-galactoside-binding lectins characterized by evolutionarily conserved sequences defined by structural similarities in their carbohydrate-recognition domains. Galectin-3 is a unique, chimeric protein consisting of three distinct structural motifs: (i) a short NH2 terminal domain containing a serine phosphorylation site; (ii) a repetitive proline-rich collagen-α-like sequence cleavable by matrix metalloproteases; and (iii) a globular COOH-terminal domain containing a carbohydrate-binding motif and an NWGR anti-death motif. It is ubiquitously expressed and has diverse biological functions depending on its subcellular localization. Galectin-3 is mainly found in the cytoplasm, also seen in the nucleus and can be secreted by non-classical, secretory pathways. In general, secreted galectin-3 mediates cell migration, cell adhesion and cell–cell interactions through the binding with high affinity to galactose-containing glycoproteins on the cell surface. Cytoplasmic galectin-3 exhibits anti-apoptotic activity and regulates several signal transduction pathways, whereas nuclear galectin-3 has been associated with pre-mRNA splicing and gene expression. Its unique chimeric structure enables it to interact with a plethora of ligands and modulate diverse functions such as cell growth, adhesion, migration, invasion, angiogenesis, immune function, apoptosis and endocytosis emphasizing its significance in the process of tumor progression. In this review, we have focused on the role of galectin-3 in tumor metastasis with special emphasis on angiogenesis. PMID:25138305
Elmore, Zachary C; Guillen, Rodrigo X; Gould, Kathleen L
2018-05-09
CK1 protein kinases contribute to multiple biological processes, but how they are tailored to function in compartmentalized signaling events is largely unknown. Hhp1 and Hhp2 (Hhp1/2) are the soluble CK1 family members in Schizosaccharomyces pombe. One of their functions is to inhibit the septation initiation network (SIN) during a mitotic checkpoint arrest. The SIN is assembled by Sid4 at spindle pole bodies (SPBs), and though Hhp1/2 co-localize there, it is not known how they are targeted there nor if their SPB localization is required for SIN inhibition. Here, we establish that Hhp1/2 localize throughout the cell cycle to SPBs, as well as to the nucleus, cell tips, and division site. We find that their catalytic domains but not enzymatic function are used for SPB targeting and that this targeting strategy is conserved in human CK1δ/ε localization to centrosomes. Further, we pinpoint amino acids in the Hhp1 catalytic domain required for SPB interaction; mutation of these residues disrupts Hhp1 association with the core SPB protein Ppc89, and the inhibition of cytokinesis in the setting of spindle stress. Taken together, we have defined a molecular mechanism used by CK1 enzymes to target to a specific cellular locale for compartmentalized signaling.
Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Knox, Lenora A.
The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.
Evolution of columns, modules, and domains in the neocortex of primates.
Kaas, Jon H
2012-06-26
The specialized regions of neocortex of mammals, called areas, have been divided into smaller functional units called minicolumns, columns, modules, and domains. Here we describe some of these functional subdivisions of areas in primates and suggest when they emerged in mammalian evolution. We distinguish several types of these smaller subdivisions. Minicolumns, vertical arrays of neurons that are more densely interconnected with each other than with laterally neighboring neurons, are present in all cortical areas. Classic columns are defined by a repeating pattern of two or more types of cortex distinguished by having different inputs and neurons with different response properties. Sensory stimuli that continuously vary along a stimulus dimension may activate groups of neurons that vary continuously in location, producing "columns" without specific boundaries. Other groups or columns of cortical neurons are separated by narrow septa of fibers that reflect discontinuities in the receptor sheet. Larger regions of posterior parietal cortex and frontal motor cortex are parts of networks devoted to producing different sequences of movements. We distinguish these larger functionally distinct regions as domains. Columns of several types have evolved independently a number of times. Some of the columns found in primates likely emerged with the first primates, whereas others likely were present in earlier ancestors. The sizes and shapes of columns seem to depend on the balance of neuron activation patterns and molecular signals during development.
A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim
Rose, Annkatrin; Meier, Iris
2001-01-01
Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface. PMID:11752475
Setoh, Yin Xiang; Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A; Slonchak, Andrii; Khromykh, Alexander A
2017-11-02
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles.
Chao, Kinlin L; Kulakova, Liudmila; Herzberg, Osnat
2017-02-14
The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn's disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88 DNVD 91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport.
Chao, Kinlin L.; Kulakova, Liudmila; Herzberg, Osnat
2017-01-01
The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn’s disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88DNVD91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport. PMID:28154144
Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A.; Slonchak, Andrii; Khromykh, Alexander A.
2017-01-01
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles. PMID:29099073
Lee, Kyounghwan; Harris, Samantha P.; Sadayappan, Sakthivel; Craig, Roger
2014-01-01
Myosin binding protein-C is a thick filament protein of vertebrate striated muscle. The cardiac isoform (cMyBP-C) is essential for normal cardiac function, and mutations in cMyBP-C cause cardiac muscle disease. The rod-shaped molecule is composed primarily of 11 immunoglobulin- or fibronectin-like domains, and is located at 9 sites, 43 nm apart, in each half of the A-band. To understand how cMyBP-C functions, it is important to know its structural organization in the sarcomere, as this will affect its ability to interact with other sarcomeric proteins. Several models have been proposed, in which cMyBP-C wraps around, extends radially from, or runs axially along the thick filament. Our goal was to define cMyBP-C orientation by determining the relative axial positions of different cMyBP-C domains. Immuno-electron microscopy was performed using mouse cardiac myofibrils labeled with antibodies specific to the N- and C-terminal domains and to the middle of cMyBP-C. Antibodies to all regions of the molecule, except the C-terminus, labeled at the same nine axial positions in each half A-band, consistent with a circumferential and/or radial rather than an axial orientation of the bulk of the molecule. The C-terminal antibody stripes were slightly displaced axially, demonstrating an axial orientation of the C-terminal 3 domains, with the C-terminus closer to the M-line. These results, combined with previous studies, suggest that the C-terminal domains of cMyBP-C run along the thick filament surface, while the N-terminus extends towards neighboring thin filaments. This organization provides a structural framework for understanding cMyBP-C’s modulation of cardiac muscle contraction. PMID:25451032
Lim, J H; Choi, J; Kim, W; Ahn, B Y; Han, Y S
2001-04-15
We constructed nine deletion mutants of NAD+-dependent DNA ligase from Aquifex pyrophilus to characterize the functional domains. All of DNA ligase deletion mutants were analyzed in biochemical assays for NAD+-dependent self-adenylation, DNA binding, and nick-closing activity. Although the mutant lsub1 (91-362) included the active site lysine (KxDG), self-adenylation was not shown. However, the mutants lsub6 (1-362), lsub7 (1-516), and lsub9 (1-635) showed the same adenylation activity as that of wild type. The lsub5 (91-719), which has the C-terminal domain (487-719) as to lsub4 (91-486), showed minimal adenylation activity. These results suggest that the presence of N-terminal 90 residues is essential for the formation of an enzyme-AMP complex, while C-terminal domain (487-719) appears to play a minimal role in adenylation. It was found that the presence of C-terminal domain (487-719) is indispensable for DNA binding activity of lsub5 (91-719). The mutant lsub9 (1-635) showed reduced DNA binding activity compared to that of wild type, suggesting the contribution of the domain (636-719) for the DNA binding activity. Thus, we concluded that the N-terminal 90 residues and C-terminal domain (487-719) of NAD+-dependent DNA ligase from A. pyrophilus are mutually indispensable for binding of DNA substrate.
Extensive interactions between HIV TAT and TAF(II)250.
Weissman, J D; Hwang, J R; Singer, D S
2001-03-09
The HIV transactivator, Tat, has been shown to be capable of potent repression of transcription initiation. Repression is mediated by the C-terminal segment of Tat, which binds the TFIID component, TAF(II)250, although the site(s) of interaction were not defined previously. We now report that the interaction between Tat and TAF(II)250 is extensive and involves multiple contacts between the Tat protein and TAF(II)250. The C-terminal domain of Tat, which is necessary for repression of transcription initiation, binds to a segment of TAF(II)250 that encompasses its acetyl transferase (AT) domain (885-1034 amino acids (aa)). Surprisingly, the N-terminal segment of Tat, which contains its activation domains, also binds to TAF(II)250 and interacts with two discontinuous segments of TAF(II)250 located between 885 and 984 aa and 1120 and 1279 aa. Binding of Tat to the 885-984 aa segment of TAF(II)250 requires the cysteine-rich domain of Tat, but not the acidic or glutamine-rich domains. Binding by the N-terminal domain of Tat to the 1120-1279 aa TAF(II)250 segment does not involve the acidic, cysteine- or glutamine-rich domains. Repression of transcription initiation by Tat requires functional TAF(II)250. We now demonstrate that transcription of the HIV LTR does not depend on TAF(II)250 which may account for its resistance to Tat mediated repression.
NASA Astrophysics Data System (ADS)
Asai, Kazuto
2009-02-01
We determine essentially all partial differential equations satisfied by superpositions of tree type and of a further special type. These equations represent necessary and sufficient conditions for an analytic function to be locally expressible as an analytic superposition of the type indicated. The representability of a real analytic function by a superposition of this type is independent of whether that superposition involves real-analytic functions or C^{\\rho}-functions, where the constant \\rho is determined by the structure of the superposition. We also prove that the function u defined by u^n=xu^a+yu^b+zu^c+1 is generally non-representable in any real (resp. complex) domain as f\\bigl(g(x,y),h(y,z)\\bigr) with twice differentiable f and differentiable g, h (resp. analytic f, g, h).
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Li, Yajie; Wang, Xinbo; Chen, Bowen; Zhang, Jie
2016-09-01
A hierarchical software-defined networking (SDN) control architecture is designed for multi-domain optical networks with the Open Daylight (ODL) controller. The OpenFlow-based Control Virtual Network Interface (CVNI) protocol is deployed between the network orchestrator and the domain controllers. Then, a dynamic bandwidth on demand (BoD) provisioning solution is proposed based on time scheduling in software-defined multi-domain optical networks (SD-MDON). Shared Risk Link Groups (SRLG)-disjoint routing schemes are adopted to separate each tenant for reliability. The SD-MDON testbed is built based on the proposed hierarchical control architecture. Then the proposed time scheduling-based BoD (Ts-BoD) solution is experimentally demonstrated on the testbed. The performance of the Ts-BoD solution is evaluated with respect to blocking probability, resource utilization, and lightpath setup latency.
PROMIS®-29 v2.0 profile physical and mental health summary scores.
Hays, Ron D; Spritzer, Karen L; Schalet, Benjamin D; Cella, David
2018-03-22
The PROMIS-29 v2.0 profile assesses pain intensity using a single 0-10 numeric rating item and seven health domains (physical function, fatigue, pain interference, depressive symptoms, anxiety, ability to participate in social roles and activities, and sleep disturbance) using four items per domain. This paper describes the development of physical and mental health summary scores for the PROMIS-29 v2.0. We conducted factor analyses of PROMIS-29 scales on data collected from two internet panels (n = 3000 and 2000). Confirmatory factor analyses provided support for a physical health factor defined by physical function, pain (interference and intensity), and ability to participate in social roles and activities, and a mental health factor defined primarily by emotional distress (anxiety and depressive symptoms). Reliabilities for these two summary scores were 0.98 (physical health) and 0.97 (mental health). Correlations of the PROMIS-29 v2.0 physical and mental health summary scores with chronic conditions and other health-related quality of life measures were consistent with a priori hypotheses. This study develops and provides preliminary evidence supporting the reliability and validity of PROMIS-29 v2.0 physical and mental health summary scores that can be used in future studies to assess impacts of health care interventions and track changes in health over time. Further evaluation of these and alternative summary measures is recommended.
Khan, Anzalee; Keefe, Richard S. E.
2017-01-01
Background: Reduced emotional experience and expression are two domains of negative symptoms. The authors assessed these two domains of negative symptoms using previously developed Positive and Negative Syndrome Scale (PANSS) factors. Using an existing dataset, the authors predicted three different elements of everyday functioning (social, vocational, and everyday activities) with these two factors, as well as with performance on measures of functional capacity. Methods: A large (n=630) sample of people with schizophrenia was used as the data source of this study. Using regression analyses, the authors predicted the three different aspects of everyday functioning, first with just the two Positive and Negative Syndrome Scale factors and then with a global negative symptom factor. Finally, we added neurocognitive performance and functional capacity as predictors. Results: The Positive and Negative Syndrome Scale reduced emotional experience factor accounted for 21 percent of the variance in everyday social functioning, while reduced emotional expression accounted for no variance. The total Positive and Negative Syndrome Scale negative symptom factor accounted for less variance (19%) than the reduced experience factor alone. The Positive and Negative Syndrome Scale expression factor accounted for, at most, one percent of the variance in any of the functional outcomes, with or without the addition of other predictors. Implications: Reduced emotional experience measured with the Positive and Negative Syndrome Scale, often referred to as “avolition and anhedonia,” specifically predicted impairments in social outcomes. Further, reduced experience predicted social impairments better than emotional expression or the total Positive and Negative Syndrome Scale negative symptom factor. In this cross-sectional study, reduced emotional experience was specifically related with social outcomes, accounting for essentially no variance in work or everyday activities, and being the sole meaningful predictor of impairment in social outcomes. PMID:29410933
The Layer-Oriented Approach to Declarative Languages for Biological Modeling
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language. PMID:22615554
The layer-oriented approach to declarative languages for biological modeling.
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language.
Mendoza Lopez, Pablo; Golby, Paul; Wooff, Esen; Garcia, Javier Nunez; Garcia Pelayo, M. Carmen; Conlon, Kevin; Gema Camacho, Ana; Hewinson, R. Glyn; Polaina, Julio; Suárez García, Antonio; Gordon, Stephen V.
2010-01-01
A number of single-nucleotide polymorphisms (SNPs) have been identified in the genome of Mycobacterium bovis BCG Pasteur compared with the sequenced strain M. bovis 2122/97. The functional consequences of many of these mutations remain to be described; however, mutations in genes encoding regulators may be particularly relevant to global phenotypic changes such as loss of virulence, since alteration of a regulator's function will affect the expression of a wide range of genes. One such SNP falls in bcg3145, encoding a member of the AfsR/DnrI/SARP class of global transcriptional regulators, that replaces a highly conserved glutamic acid residue at position 159 (E159G) with glycine in a tetratricopeptide repeat (TPR) located in the bacterial transcriptional activation (BTA) domain of BCG3145. TPR domains are associated with protein–protein interactions, and a conserved core (helices T1–T7) of the BTA domain seems to be required for proper function of SARP-family proteins. Structural modelling predicted that the E159G mutation perturbs the third α-helix of the BTA domain and could therefore have functional consequences. The E159G SNP was found to be present in all BCG strains, but absent from virulent M. bovis and Mycobacterium tuberculosis strains. By overexpressing BCG3145 and Rv3124 in BCG and H37Rv and monitoring transcriptome changes using microarrays, we determined that BCG3145/Rv3124 acts as a positive transcriptional regulator of the molybdopterin biosynthesis moa1 locus, and we suggest that rv3124 be renamed moaR1. The SNP in bcg3145 was found to have a subtle effect on the activity of MoaR1, suggesting that this mutation is not a key event in the attenuation of BCG. PMID:20378651
Distributed wavefront reconstruction with SABRE for real-time large scale adaptive optics control
NASA Astrophysics Data System (ADS)
Brunner, Elisabeth; de Visser, Cornelis C.; Verhaegen, Michel
2014-08-01
We present advances on Spline based ABerration REconstruction (SABRE) from (Shack-)Hartmann (SH) wavefront measurements for large-scale adaptive optics systems. SABRE locally models the wavefront with simplex B-spline basis functions on triangular partitions which are defined on the SH subaperture array. This approach allows high accuracy through the possible use of nonlinear basis functions and great adaptability to any wavefront sensor and pupil geometry. The main contribution of this paper is a distributed wavefront reconstruction method, D-SABRE, which is a 2 stage procedure based on decomposing the sensor domain into sub-domains each supporting a local SABRE model. D-SABRE greatly decreases the computational complexity of the method and removes the need for centralized reconstruction while obtaining a reconstruction accuracy for simulated E-ELT turbulences within 1% of the global method's accuracy. Further, a generalization of the methodology is proposed making direct use of SH intensity measurements which leads to an improved accuracy of the reconstruction compared to centroid algorithms using spatial gradients.
A general transfer-function approach to noise filtering in open-loop quantum control
NASA Astrophysics Data System (ADS)
Viola, Lorenza
2015-03-01
Hamiltonian engineering via unitary open-loop quantum control provides a versatile and experimentally validated framework for manipulating a broad class of non-Markovian open quantum systems of interest, with applications ranging from dynamical decoupling and dynamically corrected quantum gates, to noise spectroscopy and quantum simulation. In this context, transfer-function techniques directly motivated by control engineering have proved invaluable for obtaining a transparent picture of the controlled dynamics in the frequency domain and for quantitatively analyzing performance. In this talk, I will show how to identify a computationally tractable set of ``fundamental filter functions,'' out of which arbitrary filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. I will show, in particular, how the resulting notion of ``filtering order'' reveals conceptually distinct, albeit complementary, features of the controlled dynamics as compared to the ``cancellation order,'' traditionally defined in the Magnus sense. Implications for current quantum control experiments will be discussed. Work supported by the U.S. Army Research Office under Contract No. W911NF-14-1-0682.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N.
The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length.more » Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully functionally characterized. On the basis of prior work, we predicted that cTHAP4 is composed of a heme-binding nitrobindin domain, making THAP4 the only human THAP protein predicted to bind a cofactor. Nitrobindin, a recently characterized protein from Arabidopsis thaliana, is structurally similar and exhibits nitric oxide (NO)-binding properties that resemble the heme-binding nitrophorins. Nitrophorins use a heme moiety to store, transport, and release NO in a pH-specific manner. Although the exact function of nitrobindin is not fully known, the similarities between the well-characterized nitrophorins imply a role in NO transport, sensing, or metabolism. To better elucidate the possible function of THAP4, we solved the hemebound structure of cTHAP4 to a resolution of 1.79 {angstrom}.« less
Hamm, Danielle C; Bondra, Eliana R; Harrison, Melissa M
2015-02-06
Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Argonaute identity defines the length of mature mammalian microRNAs.
Juvvuna, Prasanna Kumar; Khandelia, Piyush; Lee, Li Ming; Makeyev, Eugene V
2012-08-01
MicroRNAs (miRNAs) are 19- to 25-nt-long non-coding RNAs that regulate gene expression by base-pairing with target mRNAs and reducing their stability or translational efficiency. Mammalian miRNAs function in association with four closely related Argonaute proteins, AGO1-4. All four proteins contain the PAZ and the MID domains interacting with the miRNA 3' and 5' termini, respectively, as well as the PIWI domain comprising an mRNA 'slicing' activity in the case of AGO2 but not AGO1, AGO3 and AGO4. However, the slicing mode of the miRNA-programmed AGO2 is rarely realized in vivo and the four Argonautes are thought to play largely overlapping roles in the mammalian miRNA pathway. Here, we show that the average length of many miRNAs is diminished during nervous system development as a result of progressive shortening of the miRNA 3' ends. We link this modification with an increase in the fractional abundance of Ago2 in the adult brain and identify a specific structural motif within the PAZ domain that enables efficient trimming of miRNAs associated with this but not the other three Argonautes. Taken together, our data suggest that mammalian Argonautes may define the length and possibly biological activity of mature mammalian miRNAs in a developmentally controlled manner.
Argonaute identity defines the length of mature mammalian microRNAs
Juvvuna, Prasanna Kumar; Khandelia, Piyush; Lee, Li Ming; Makeyev, Eugene V.
2012-01-01
MicroRNAs (miRNAs) are 19- to 25-nt-long non-coding RNAs that regulate gene expression by base-pairing with target mRNAs and reducing their stability or translational efficiency. Mammalian miRNAs function in association with four closely related Argonaute proteins, AGO1–4. All four proteins contain the PAZ and the MID domains interacting with the miRNA 3′ and 5′ termini, respectively, as well as the PIWI domain comprising an mRNA ‘slicing’ activity in the case of AGO2 but not AGO1, AGO3 and AGO4. However, the slicing mode of the miRNA-programmed AGO2 is rarely realized in vivo and the four Argonautes are thought to play largely overlapping roles in the mammalian miRNA pathway. Here, we show that the average length of many miRNAs is diminished during nervous system development as a result of progressive shortening of the miRNA 3′ ends. We link this modification with an increase in the fractional abundance of Ago2 in the adult brain and identify a specific structural motif within the PAZ domain that enables efficient trimming of miRNAs associated with this but not the other three Argonautes. Taken together, our data suggest that mammalian Argonautes may define the length and possibly biological activity of mature mammalian miRNAs in a developmentally controlled manner. PMID:22505576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Bohyun; Kim, Inki; Nam, Ja-Ae
EFC-1 integrase is a site-specific recombinase that belongs to the large family of serine recombinase. In previously study, we isolated the temperate phage EFC-1, and characterized its genomic sequence. Within its genome, Orf28 was predicted encode a 464 amino acid of a putative integrase gene. In this study, EFC-1 integrase was characterized in vitro and in vivo. In vitro assay was performed using purified His-tag fusion integrase. Also, to identify which serine is involved in the catalytic domain, we used site-directed mutagenesis and analyzed by a recombination assay in vitro. In vivo assay involved PCR and confocal microscopy in HEK293 cells, and determined the minimal lengthsmore » of attP and attB sites. According to our results, the EFC-1 integrase-mediated recombination was site-specific and unidirectional system in vitro and in vivo. Serine 21 of EFC-1 integrase plays a major role in the catalytic domain, and minimal sizes of attB and attP was defined 48 and 54 bp. Our finding may help develop a useful tool for gene therapy and gene delivery system. - Highlights: • EFC-1 integrase-mediated recombination was site-specific and unidirectional system. • Serine 21 of EFC-1 integrase plays a major role in the catalytic domain. • The functional minimal sizes of attB and attP was defined 48 and 54 bp.« less
Lee, Sun Hwa; Cho, AJin; Min, Yang-Ki; Lee, Young-Ki; Jung, San
2018-11-01
Cognitive impairment in end-stage renal disease patients is associated with an increased risk of mortality. We examined the cognitive function in hemodialysis (HD) patients and compared the Korean versions of the Montreal Cognitive Assessment (K-MoCA) and of the Mini-Mental State Examination (K-MMSE) to identify the better cognitive screening instrument in these patients. Thirty patients undergoing hemodialysis and 30 matched reference group of apparently healthy control were included. All subjects underwent the K-MoCA, K-MMSE and a neuropsychological test battery to measure attention, visuospatial function, language, memory and executive function. All cognitive data were converted to z-scores with appropriate age and education level prior to group comparisons. Cognitive performance 1.0 SD below the mean was defined as modest cognitve impairment while 1.5 below the mean was defined as severe cognitive impairment. Modest cognitive impairment in memory plus other cognitive domains was detected in 27 patients (90%) while severe cognitive impairment in memory plus other cognitive domains was detected in 23 (77%) patients. Total scores in the K-MoCA were significantly lower in HD patients than in the reference group. However, no significant group difference was found in the K-MMSE. The K-MMSE ROC AUC (95% confidence interval) was 0.72 (0.59-0.85) and K-MoCA ROC AUC was 0.77 (0.65-0.89). Cognitive impairment is common but under-diagnosed in this population. The K-MoCA seems to be more sensitive than the K-MMSE in HD patients.
Mendez, Lucas C; Raman, Srinivas; Wan, Bo Angela; da Silva, José Luiz Padilha; Moraes, Fábio Y; Lima, Kennya M L B; Silva, Maurício F; Diz, Maria Del Pilar Estevez; Chow, Edward; Marta, Gustavo Nader
2017-08-01
Bone metastases cause pain, suffering and impaired quality of life (QoL). Palliative radiotherapy (RT) and/or chemotherapy are effective methods in controlling pain, reducing analgesics use and improving QoL. This study goal was to investigate the changes in QoL scores among patients who responded to palliative treatment. A prospective study evaluating the role of radiation therapy in a public academic hospital in São Paulo-Brazil recorded patients' opioid use, pain score, Portuguese version of QLQ-BM22 and QLQ-C30 before and 2 months after radiotherapy. Analgesic use and pain score were used to calculate international pain response category. Overall response was defined as the sum of complete response (CR) and partial response (PR). CR was defined as pain score of 0 with no increase in analgesic intake whereas PR was defined as pain reduction ≥2 without analgesic increase or analgesic reduction in ≥25% without increase in pain at the treated site. From September 2014 to October 2015, 25 patients with bone metastases responded to RT or chemotherapy (1 CR, 24 PR). There were 8 male and 17 female patients. The median age of the 25 patients was 59 (range, 22 to 80) years old. Patient's primary cancer site was breast [11], prostate [5], lung [2], others [7]. For QLQ-BM 22, the mean scores of 4 categories at baseline were: pain site (PS) 39, pain characteristics (PC) 61, function interference (FI) 49 and psycho-social aspects (PA) 57. At 2 month follow up, the scores were PS 27, PC 37, FI 70 and PA 59. Statistical significant improvement (P<0.05) was seen in PS, PC, FI but not PA. In the QLQ-C30, the scores were not statistically different for all categories, except for pain that demonstrated a 33 point decrease in the median pain score domain (66 to 33). Responders to RT at 2 months presented improvement in BM22 and C30 pain domains, and also improvement in functional interference domain of the BM22 questionnaire.
Models versus theories as a primary carrier of nursing knowledge: A philosophical argument.
Bender, Miriam
2018-01-01
Theories and models are not equivalent. I argue that an orientation towards models as a primary carrier of nursing knowledge overcomes many ongoing challenges in philosophy of nursing science, including the theory-practice divide and the paradoxical pursuit of predictive theories in a discipline that is defined by process and a commitment to the non-reducibility of the health/care experience. Scientific models describe and explain the dynamics of specific phenomenon. This is distinct from theory, which is traditionally defined as propositions that explain and/or predict the world. The philosophical case has been made against theoretical universalism, showing that a theory can be true in its domain, but that no domain is universal. Subsequently, philosophers focused on scientific models argued that they do the work of defining the boundary conditions-the domain(s)-of a theory. Further analysis has shown the ways models can be constructed and function independent of theory, meaning models can comprise distinct, autonomous "carriers of scientific knowledge." Models are viewed as representations of the active dynamics, or mechanisms, of a phenomenon. Mechanisms are entities and activities organized such that they are productive of regular changes. Importantly, mechanisms are by definition not static: change may alter the mechanism and thereby alter or create entirely new phenomena. Orienting away from theory, and towards models, focuses scholarly activity on dynamics and change. This makes models arguably critical to nursing science, enabling the production of actionable knowledge about the dynamics of process and change in health/care. I briefly explore the implications for nursing-and health/care-knowledge and practice. © 2017 John Wiley & Sons Ltd.
A lightweight, flow-based toolkit for parallel and distributed bioinformatics pipelines
2011-01-01
Background Bioinformatic analyses typically proceed as chains of data-processing tasks. A pipeline, or 'workflow', is a well-defined protocol, with a specific structure defined by the topology of data-flow interdependencies, and a particular functionality arising from the data transformations applied at each step. In computer science, the dataflow programming (DFP) paradigm defines software systems constructed in this manner, as networks of message-passing components. Thus, bioinformatic workflows can be naturally mapped onto DFP concepts. Results To enable the flexible creation and execution of bioinformatics dataflows, we have written a modular framework for parallel pipelines in Python ('PaPy'). A PaPy workflow is created from re-usable components connected by data-pipes into a directed acyclic graph, which together define nested higher-order map functions. The successive functional transformations of input data are evaluated on flexibly pooled compute resources, either local or remote. Input items are processed in batches of adjustable size, all flowing one to tune the trade-off between parallelism and lazy-evaluation (memory consumption). An add-on module ('NuBio') facilitates the creation of bioinformatics workflows by providing domain specific data-containers (e.g., for biomolecular sequences, alignments, structures) and functionality (e.g., to parse/write standard file formats). Conclusions PaPy offers a modular framework for the creation and deployment of parallel and distributed data-processing workflows. Pipelines derive their functionality from user-written, data-coupled components, so PaPy also can be viewed as a lightweight toolkit for extensible, flow-based bioinformatics data-processing. The simplicity and flexibility of distributed PaPy pipelines may help users bridge the gap between traditional desktop/workstation and grid computing. PaPy is freely distributed as open-source Python code at http://muralab.org/PaPy, and includes extensive documentation and annotated usage examples. PMID:21352538
A lightweight, flow-based toolkit for parallel and distributed bioinformatics pipelines.
Cieślik, Marcin; Mura, Cameron
2011-02-25
Bioinformatic analyses typically proceed as chains of data-processing tasks. A pipeline, or 'workflow', is a well-defined protocol, with a specific structure defined by the topology of data-flow interdependencies, and a particular functionality arising from the data transformations applied at each step. In computer science, the dataflow programming (DFP) paradigm defines software systems constructed in this manner, as networks of message-passing components. Thus, bioinformatic workflows can be naturally mapped onto DFP concepts. To enable the flexible creation and execution of bioinformatics dataflows, we have written a modular framework for parallel pipelines in Python ('PaPy'). A PaPy workflow is created from re-usable components connected by data-pipes into a directed acyclic graph, which together define nested higher-order map functions. The successive functional transformations of input data are evaluated on flexibly pooled compute resources, either local or remote. Input items are processed in batches of adjustable size, all flowing one to tune the trade-off between parallelism and lazy-evaluation (memory consumption). An add-on module ('NuBio') facilitates the creation of bioinformatics workflows by providing domain specific data-containers (e.g., for biomolecular sequences, alignments, structures) and functionality (e.g., to parse/write standard file formats). PaPy offers a modular framework for the creation and deployment of parallel and distributed data-processing workflows. Pipelines derive their functionality from user-written, data-coupled components, so PaPy also can be viewed as a lightweight toolkit for extensible, flow-based bioinformatics data-processing. The simplicity and flexibility of distributed PaPy pipelines may help users bridge the gap between traditional desktop/workstation and grid computing. PaPy is freely distributed as open-source Python code at http://muralab.org/PaPy, and includes extensive documentation and annotated usage examples.
Plants and fungi in the era of heterogeneous plasma membranes.
Opekarová, M; Malinsky, J; Tanner, W
2010-09-01
Examples from yeast and plant cells are described that show that their plasma membrane is laterally compartmented. Distinct lateral domains encompassing both specific lipids and integral proteins coexist within the plane of the plasma membrane. The compartments are either spatially stable and include distinct sets of proteins, or they are transiently formed to accomplish diverse functions. They are not related to lipid rafts or their clusters, as defined for mammalian cells. This review summarises only well-documented compartments of plasma membranes from plants and fungi, which have been recognised using microscopic approaches. In several cases, physiological functions of the membrane compartmentation are revealed.
The goal of this project is to use an eight-gene expression profile to define functional signatures for small molecules and natural products with heretofore undefined mechanism of action. Two genes in the eight gene set are used as internal controls and do not vary across gene expression array data collected from the public domain. The remaining six genes are found to vary independently across a large collection of publically available gene expression array datasets. Read the abstract
Sheldon, S; Vandermorris, S; Al-Haj, M; Cohen, S; Winocur, G; Moscovitch, M
2015-02-01
It is well accepted that the medial temporal lobes (MTL), and the hippocampus specifically, support episodic memory processes. Emerging evidence suggests that these processes also support the ability to effectively solve ill-defined problems which are those that do not have a set routine or solution. To test the relation between episodic memory and problem solving, we examined the ability of individuals with single domain amnestic mild cognitive impairment (aMCI), a condition characterized by episodic memory impairment, to solve ill-defined social problems. Participants with aMCI and age and education matched controls were given a battery of tests that included standardized neuropsychological measures, the Autobiographical Interview (Levine et al., 2002) that scored for episodic content in descriptions of past personal events, and a measure of ill-defined social problem solving. Corroborating previous findings, the aMCI group generated less episodically rich narratives when describing past events. Individuals with aMCI also generated less effective solutions when solving ill-defined problems compared to the control participants. Correlation analyses demonstrated that the ability to recall episodic elements from autobiographical memories was positively related to the ability to effectively solve ill-defined problems. The ability to solve these ill-defined problems was related to measures of activities of daily living. In conjunction with previous reports, the results of the present study point to a new functional role of episodic memory in ill-defined goal-directed behavior and other non-memory tasks that require flexible thinking. Our findings also have implications for the cognitive and behavioural profile of aMCI by suggesting that the ability to effectively solve ill-defined problems is related to sustained functional independence. Copyright © 2015 Elsevier Ltd. All rights reserved.
A reusable knowledge acquisition shell: KASH
NASA Technical Reports Server (NTRS)
Westphal, Christopher; Williams, Stephen; Keech, Virginia
1991-01-01
KASH (Knowledge Acquisition SHell) is proposed to assist a knowledge engineer by providing a set of utilities for constructing knowledge acquisition sessions based on interviewing techniques. The information elicited from domain experts during the sessions is guided by a question dependency graph (QDG). The QDG defined by the knowledge engineer, consists of a series of control questions about the domain that are used to organize the knowledge of an expert. The content information supplies by the expert, in response to the questions, is represented in the form of a concept map. These maps can be constructed in a top-down or bottom-up manner by the QDG and used by KASH to generate the rules for a large class of expert system domains. Additionally, the concept maps can support the representation of temporal knowledge. The high degree of reusability encountered in the QDG and concept maps can vastly reduce the development times and costs associated with producing intelligent decision aids, training programs, and process control functions.
Bui, Huyen T.; Karren, Mary A.; Bhar, Debjani
2012-01-01
To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms. PMID:23148233
Interaction Analysis through Proteomic Phage Display
2014-01-01
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance. PMID:25295249
Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins
Krojer, Tobias; Pangerl, Karen; Kurt, Juliane; Sawa, Justyna; Stingl, Christoph; Mechtler, Karl; Huber, Robert; Ehrmann, Michael; Clausen, Tim
2008-01-01
Aberrant proteins represent an extreme hazard to cells. Therefore, molecular chaperones and proteases have to carry out protein quality control in each cellular compartment. In contrast to the ATP-dependent cytosolic proteases and chaperones, the molecular mechanisms of extracytosolic factors are largely unknown. To address this question, we studied the protease function of DegP, the central housekeeping protein in the bacterial envelope. Our data reveal that DegP processively degrades misfolded proteins into peptides of defined size by employing a molecular ruler comprised of the PDZ1 domain and the proteolytic site. Furthermore, peptide binding to the PDZ domain transforms the resting protease into its active state. This allosteric activation mechanism ensures the regulated and rapid elimination of misfolded proteins upon folding stress. In comparison to the cytosolic proteases, the regulatory features of DegP are established by entirely different mechanisms reflecting the convergent evolution of an extracytosolic housekeeping protease. PMID:18505836
Extracellular chloride signals collagen IV network assembly during basement membrane formation
Cummings, Christopher F.; Pedchenko, Vadim; Brown, Kyle L.; Colon, Selene; Rafi, Mohamed; Jones-Paris, Celestial; Pokydeshava, Elena; Liu, Min; Pastor-Pareja, Jose C.; Stothers, Cody; Ero-Tolliver, Isi A.; McCall, A. Scott; Vanacore, Roberto; Bhave, Gautam; Santoro, Samuel; Blackwell, Timothy S.; Zent, Roy; Pozzi, Ambra
2016-01-01
Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl− ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl− in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl− and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains. PMID:27216258
Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination.
Groves, Benjamin; Khakhar, Arjun; Nadel, Cory M; Gardner, Richard G; Seelig, Georg
2016-08-15
Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form.
Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation
Tang, Matthew Y.; Vranas, Marta; Krahn, Andrea I.; Pundlik, Shayal; Trempe, Jean- François; Fon, Edward A.
2017-01-01
Parkin and PINK1 function in a common pathway to clear damaged mitochondria. Parkin exists in an auto-inhibited conformation stabilized by multiple interdomain interactions. The binding of PINK1-generated phospho-ubiquitin and the phosphorylation of the ubiquitin-like (Ubl) domain of Parkin at Ser65 release its auto-inhibition, but how and when these events take place in cells remain to be defined. Here we show that mutations that we designed to activate Parkin by releasing the Repressor Element of Parkin (REP) domain, or by disrupting the interface between the RING0:RING2 domains, can completely rescue mutations in the Parkin Ubl that are defective in mitochondrial autophagy. Using a FRET reporter assay we show that Parkin undergoes a conformational change upon phosphorylation that can be mimicked by mutating Trp403 in the REP. We propose a hierarchical model whereby pUb binding on mitochondria enables Parkin phosphorylation, which, in turn, leads to REP removal, E3 ligase activation and mitophagy. PMID:28276439
Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation.
Tang, Matthew Y; Vranas, Marta; Krahn, Andrea I; Pundlik, Shayal; Trempe, Jean-François; Fon, Edward A
2017-03-09
Parkin and PINK1 function in a common pathway to clear damaged mitochondria. Parkin exists in an auto-inhibited conformation stabilized by multiple interdomain interactions. The binding of PINK1-generated phospho-ubiquitin and the phosphorylation of the ubiquitin-like (Ubl) domain of Parkin at Ser65 release its auto-inhibition, but how and when these events take place in cells remain to be defined. Here we show that mutations that we designed to activate Parkin by releasing the Repressor Element of Parkin (REP) domain, or by disrupting the interface between the RING0:RING2 domains, can completely rescue mutations in the Parkin Ubl that are defective in mitochondrial autophagy. Using a FRET reporter assay we show that Parkin undergoes a conformational change upon phosphorylation that can be mimicked by mutating Trp403 in the REP. We propose a hierarchical model whereby pUb binding on mitochondria enables Parkin phosphorylation, which, in turn, leads to REP removal, E3 ligase activation and mitophagy.
Díaz-Guerra, M; Rivas, C; Esteban, M
1999-02-01
To define protein domains important for activation of the interferon (IFN)-induced enzyme 2-5A-dependent RNaseL, we have generated vaccinia virus (VV) recombinants able to express in cultured cells truncated forms of this protein and compared their biologic activities with those producing the wild-type enzyme, with and without coexpression of 2-5A synthetase. Our results show that full activation of RNaseL requires binding of 2-5A oligonucleotides within amino acid positions 212-339, corresponding to ankyrin repeats 6 to 9. The protein kinase and ribonuclease domains of RNaseL, amino acids 340-741, are sufficient for a constitutively active enzyme that is unresponsive to excess 2-5A. These results demonstrate in vivo the importance of the ankyrin domains in the biologic function of RNaseL. We suggest that ankyrin repeats act as key modulators of RNaseL activity.
Jacobsen, Matthew M; Tokareva, Olena S; Ebrahimi, Davoud; Huang, Wenwen; Ling, Shengjie; Dinjaski, Nina; Li, David; Simon, Marc; Staii, Cristian; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-09-01
Accurate prediction and validation of the assembly of bioinspired peptide sequences into fibers with defined mechanical characteristics would aid significantly in designing and creating materials with desired properties. This process may also be utilized to provide insight into how the molecular architecture of many natural protein fibers is assembled. In this work, computational modeling and experimentation are used in tandem to determine how peptide terminal modification affects a fiber-forming core domain. Modeling shows that increased terminal molecular weight and hydrophilicity improve peptide chain alignment under shearing conditions and promote consolidation of semicrystalline domains. Mechanical analysis shows acute improvements to strength and elasticity, but significantly reduced extensibility and overall toughness. These results highlight an important entropic function that terminal domains of fiber-forming peptides exhibit as chain alignment promoters, which ultimately has notable consequences on the mechanical behavior of the final fiber products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kit Luk, Chuen; Chesi, Graziano
2015-11-01
This paper addresses the estimation of the domain of attraction for discrete-time nonlinear systems where the vector field is subject to changes. First, the paper considers the case of switched systems, where the vector field is allowed to arbitrarily switch among the elements of a finite family. Second, the paper considers the case of hybrid systems, where the state space is partitioned into several regions described by polynomial inequalities, and the vector field is defined on each region independently from the other ones. In both cases, the problem consists of computing the largest sublevel set of a Lyapunov function included in the domain of attraction. An approach is proposed for solving this problem based on convex programming, which provides a guaranteed inner estimate of the sought sublevel set. The conservatism of the provided estimate can be decreased by increasing the size of the optimisation problem. Some numerical examples illustrate the proposed approach.
COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal
Xu, Peng; Hankins, Hannah M; MacDonald, Chris; Erlinger, Samuel J; Frazier, Meredith N; Diab, Nicholas S; Piper, Robert C; Jackson, Lauren P; MacGurn, Jason A
2017-01-01
The COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI binds K63-linked polyubiquitin and this interaction is crucial for trafficking of a ubiquitinated yeast SNARE (Snc1). Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through the endocytic pathway to the Golgi for reuse in exocytosis. Removal of ubiquitin from Snc1, or deletion of a β'-COP subunit propeller domain that binds K63-linked polyubiquitin, disrupts Snc1 recycling causing aberrant accumulation in internal compartments. Moreover, replacement of the β'-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles in a non-degradative pathway. PMID:29058666
Adaptive Peircean decision aid project summary assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senglaub, Michael E.
2007-01-01
This efforts objective was to identify and hybridize a suite of technologies enabling the development of predictive decision aids for use principally in combat environments but also in any complex information terrain. The technologies required included formal concept analysis for knowledge representation and information operations, Peircean reasoning to support hypothesis generation, Mill's's canons to begin defining information operators that support the first two technologies and co-evolutionary game theory to provide the environment/domain to assess predictions from the reasoning engines. The intended application domain is the IED problem because of its inherent evolutionary nature. While a fully functioning integrated algorithm wasmore » not achieved the hybridization and demonstration of the technologies was accomplished and demonstration of utility provided for a number of ancillary queries.« less
A switching control law approach for cancer immunotherapy of an evolutionary tumor growth model.
Doban, Alina I; Lazar, Mircea
2017-02-01
We propose a new approach for tumor immunotherapy which is based on a switching control strategy defined on domains of attraction of equilibria of interest. For this, we consider a recently derived model which captures the effects of the tumor cells on the immune system and viceversa, through predator-prey competition terms. Additionally, it incorporates the immune system's mechanism for producing hunting immune cells, which makes the model suitable for immunotherapy strategies analysis and design. For computing domains of attraction for the tumor nonlinear dynamics, and thus, for deriving immunotherapeutic strategies we employ rational Lyapunov functions. Finally, we apply the switching control strategy to destabilize an invasive tumor equilibrium and steer the system trajectories to tumor dormancy. Copyright © 2016 Elsevier Inc. All rights reserved.
Jing, Hui; Song, Jingyuan; Zheng, Junnian
2018-03-01
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by various types of collagens that performs a critical role in cell attachment, migration, survival and proliferation. The functions of DDR1 in various types of tumor have been studied extensively. However, in breast carcinoma, the roles of collagen-evoked DDR1 remain ill defined. Although a number of studies have reported that DDR1 promotes apoptosis and inhibits migration in breast carcinoma, it has also been reported to be associated with tumor cell survival, chemoresistance to genotoxic drugs and the facilitation of invasion. The present review summarizes current progress and the complex effects of DDR1 in the field of breast carcinoma, and presents DDR1 as a promising therapeutic target.
Rand, Tim A.; Ginalski, Krzysztof; Grishin, Nick V.; Wang, Xiaodong
2004-01-01
RNA interference is carried out by the small double-stranded RNA-induced silencing complex (RISC). The RISC-bound small RNA guides the RISC complex to identify and cleave mRNAs with complementary sequences. The proteins that make up the RISC complex and cleave mRNA have not been unequivocally defined. Here, we report the biochemical purification of RISC activity to homogeneity from Drosophila Schnieder 2 cell extracts. Argonaute 2 (Ago-2) is the sole protein component present in the purified, functional RISC. By using a bioinformatics method that combines sequence-profile analysis with predicted protein secondary structure, we found homology between the PIWI domain of Ago-2 and endonuclease V and identified potential active-site amino acid residues within the PIWI domain of Ago-2. PMID:15452342
Rand, Tim A; Ginalski, Krzysztof; Grishin, Nick V; Wang, Xiaodong
2004-10-05
RNA interference is carried out by the small double-stranded RNA-induced silencing complex (RISC). The RISC-bound small RNA guides the RISC complex to identify and cleave mRNAs with complementary sequences. The proteins that make up the RISC complex and cleave mRNA have not been unequivocally defined. Here, we report the biochemical purification of RISC activity to homogeneity from Drosophila Schnieder 2 cell extracts. Argonaute 2 (Ago-2) is the sole protein component present in the purified, functional RISC. By using a bioinformatics method that combines sequence-profile analysis with predicted protein secondary structure, we found homology between the PIWI domain of Ago-2 and endonuclease V and identified potential active-site amino acid residues within the PIWI domain of Ago-2.
Eilbeck, Karen L; Lipstein, Julie; McGarvey, Sunanda; Staes, Catherine J
2014-01-01
The Reportable Condition Knowledge Management System (RCKMS) is envisioned to be a single, comprehensive, authoritative, real-time portal to author, view and access computable information about reportable conditions. The system is designed for use by hospitals, laboratories, health information exchanges, and providers to meet public health reporting requirements. The RCKMS Knowledge Representation Workgroup was tasked to explore the need for ontologies to support RCKMS functionality. The workgroup reviewed relevant projects and defined criteria to evaluate candidate knowledge domain areas for ontology development. The use of ontologies is justified for this project to unify the semantics used to describe similar reportable events and concepts between different jurisdictions and over time, to aid data integration, and to manage large, unwieldy datasets that evolve, and are sometimes externally managed.
Free-form geometric modeling by integrating parametric and implicit PDEs.
Du, Haixia; Qin, Hong
2007-01-01
Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.
Jeon, Jouhyun; Arnold, Roland; Singh, Fateh; Teyra, Joan; Braun, Tatjana; Kim, Philip M
2016-04-01
The identification of structured units in a protein sequence is an important first step for most biochemical studies. Importantly for this study, the identification of stable structured region is a crucial first step to generate novel synthetic antibodies. While many approaches to find domains or predict structured regions exist, important limitations remain, such as the optimization of domain boundaries and the lack of identification of non-domain structured units. Moreover, no integrated tool exists to find and optimize structural domains within protein sequences. Here, we describe a new tool, PAT ( http://www.kimlab.org/software/pat ) that can efficiently identify both domains (with optimized boundaries) and non-domain putative structured units. PAT automatically analyzes various structural properties, evaluates the folding stability, and reports possible structural domains in a given protein sequence. For reliability evaluation of PAT, we applied PAT to identify antibody target molecules based on the notion that soluble and well-defined protein secondary and tertiary structures are appropriate target molecules for synthetic antibodies. PAT is an efficient and sensitive tool to identify structured units. A performance analysis shows that PAT can characterize structurally well-defined regions in a given sequence and outperforms other efforts to define reliable boundaries of domains. Specially, PAT successfully identifies experimentally confirmed target molecules for antibody generation. PAT also offers the pre-calculated results of 20,210 human proteins to accelerate common queries. PAT can therefore help to investigate large-scale structured domains and improve the success rate for synthetic antibody generation.
French consensus procedure for assessing cognitive function in Parkinson's disease.
Dujardin, K; Auzou, N; Lhommée, E; Czernecki, V; Dubois, B; Fradet, A; Maltete, D; Meyer, M; Pineau, F; Schmitt, E; Sellal, F; Tison, F; Vidal, T; Azulay, J-P; Welter, M-L; Corvol, J-C; Durif, F; Rascol, O
2016-11-01
One of the objectives of the French expert centers for Parkinson's disease (NS-Park) network was to determine a consensus procedure for assessing cognitive function in patients with Parkinson's. This article presents this procedure and briefly describes the selected tests. A group of 13 experts used the Delphi method for consensus building to define the overall structure and components of the assessment procedure. For inclusion in the battery, tests had to be validated in the French language, require little motor participation, have normative data and be recognized by the international community. Experimental tasks and tests requiring specific devices were excluded. Two possibilities were identified, depending on whether an abbreviated or comprehensive assessment of cognitive function was necessary. For an abbreviated assessment, the experts recommended the Montreal Cognitive Assessment (MoCA) as a screening test for cognitive impairment or dementia. For a comprehensive neuropsychological assessment, the experts recommended assessing global efficiency plus the five main cognitive domains (attention and working memory, executive function, episodic memory, visuospatial function and language) that may be impaired in Parkinson's disease, using two tests for each domain. A common procedure for assessing cognitive function is now available across the French network dedicated to Parkinson's disease, and is recommended for both research and clinical practice. It will also help to promote standardization of the neuropsychological assessment of Parkinson's disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Exact density functional and wave function embedding schemes based on orbital localization
NASA Astrophysics Data System (ADS)
Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály
2016-08-01
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
Drosophila Heartless Acts with Heartbroken/Dof in Muscle Founder Differentiation
Dutta, Devkanya; Shaw, Sanjeev; Maqbool, Tariq; Pandya, Hetal
2005-01-01
The formation of a multi-nucleate myofibre is directed, in Drosophila, by a founder cell. In the embryo, founders are selected by Notch-mediated lateral inhibition, while during adult myogenesis this mechanism of selection does not appear to operate. We show, in the muscles of the adult abdomen, that the Fibroblast growth factor pathway mediates founder cell choice in a novel manner. We suggest that the developmental patterns of Heartbroken/Dof and Sprouty result in defining the domain and timing of activation of the Fibroblast growth factor receptor Heartless in specific myoblasts, thereby converting them into founder cells. Our results point to a way in which muscle differentiation could be initiated and define a critical developmental function for Heartbroken/Dof in myogenesis. PMID:16207075
Identification and preliminary characterization of a protein motif related to the zinc finger.
Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S
1993-01-01
We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583
An improved level set method for brain MR images segmentation and bias correction.
Chen, Yunjie; Zhang, Jianwei; Macione, Jim
2009-10-01
Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.
Functional Elements on SIRPα IgV domain Mediate Cell Surface Binding to CD47
Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J.; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J.; Zen, Ke
2007-01-01
Summary SIRPα and SIRPβ1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPα with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPβ1 shares highly homologous extracellular IgV structure with SIRPα, it does not bind to CD47. In this study, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPα, but not SIRPβ1, which determine the extracellular binding interaction of SIRPα to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPα directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPα extracellular binding mediated cell interactions and cell migration. Another SIRPα-specific residue, Met102, appears to assist SIRPα IgV binding through Gln67 and Ala/Val57. An essential role of these amino acids in SIRPα binding to CD47 was further confirmed by introducing these residues into the SIRPβ1 IgV domain, which dramatically converts SIRPβ1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPα selectively binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses. PMID:17070842
Functional elements on SIRPalpha IgV domain mediate cell surface binding to CD47.
Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J; Yang, Yang; Zen, Ke
2007-01-19
SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.
Amaral, Paulo P; Leonardi, Tommaso; Han, Namshik; Viré, Emmanuelle; Gascoigne, Dennis K; Arias-Carrasco, Raúl; Büscher, Magdalena; Pandolfini, Luca; Zhang, Anda; Pluchino, Stefano; Maracaja-Coutinho, Vinicius; Nakaya, Helder I; Hemberg, Martin; Shiekhattar, Ramin; Enright, Anton J; Kouzarides, Tony
2018-03-15
The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.
MacRae, T H
2000-06-01
Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.
Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE).
Buyannemekh, Dolgorsuren; Nham, Sang-Uk
2017-05-31
The β2 integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of β2 integrin, αMβ2 and αXβ2, share the leukocyte distribution profile and integrin αXβ2 is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. Receptor for advanced glycation end products (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and αXβ2 play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of αXβ2, we characterize the binding nature and the interacting moieties of αX I-domain and RAGE. Their binding requires divalent cations (Mg 2+ and Mn 2+ ) and shows an affinity on the sub-micro molar level: the dissociation constant of αX I-domains binding to RAGE being 0.49 μM. Furthermore, the αX I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of αX I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to αX I-domain. In conclusion, the main mechanism of αX I-domain binding to RAGE is a charge interaction, in which the acidic moieties of αX I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.
Caveolins and caveolae in ocular physiology and pathophysiology.
Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H
2017-01-01
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unique and shared functions of nuclear lamina LEM domain proteins in Drosophila.
Barton, Lacy J; Wilmington, Shameika R; Martin, Melinda J; Skopec, Hannah M; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K
2014-06-01
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. Copyright © 2014 by the Genetics Society of America.
Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in Drosophila
Barton, Lacy J.; Wilmington, Shameika R.; Martin, Melinda J.; Skopec, Hannah M.; Lovander, Kaylee E.; Pinto, Belinda S.; Geyer, Pamela K.
2014-01-01
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. PMID:24700158
Caveolins and caveolae in ocular physiology and pathophysiology
Gu, Xiaowu; Reagan, Alaina M.; McClellan, Mark E.; Elliott, Michael H.
2016-01-01
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., “lipid rafts”) have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signalling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. PMID:27664379
Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H
2004-03-01
Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; Petkoski, Spase; Raeder, Johan; Smith, Andrew F.; McClintock, Peter V. E.; Stefanovska, Aneta
2016-05-01
The precise mechanisms underlying general anaesthesia pose important and still open questions. To address them, we have studied anaesthesia induced by the widely used (intravenous) propofol and (inhalational) sevoflurane anaesthetics, computing cross-frequency coupling functions between neuronal, cardiac and respiratory oscillations in order to determine their mutual interactions. The phase domain coupling function reveals the form of the function defining the mechanism of an interaction, as well as its coupling strength. Using a method based on dynamical Bayesian inference, we have thus identified and analysed the coupling functions for six relationships. By quantitative assessment of the forms and strengths of the couplings, we have revealed how these relationships are altered by anaesthesia, also showing that some of them are differently affected by propofol and sevoflurane. These findings, together with the novel coupling function analysis, offer a new direction in the assessment of general anaesthesia and neurophysiological interactions, in general.
Structural insights into SAM domain‐mediated tankyrase oligomerization
DaRosa, Paul A.; Ovchinnikov, Sergey
2016-01-01
Abstract Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP‐ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain‐mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head‐to‐tail polymer that facilitates TNKS self‐association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM‐TNKS2 SAM) hetero‐oligomeric structures mediated by their SAM domains. Though wild‐type tankyrase proteins have very low solubility, model‐based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP‐ribosyl)ation (PARylation) and PARylation‐dependent ubiquitylation. PMID:27328430
Fenton, Bradford W.; Grey, Scott F.; Tossone, Krystel; McCarroll, Michele; Von Gruenigen, Vivian E.
2015-01-01
Chronic pelvic pain affects multiple aspects of a patient's physical, social, and emotional functioning. Latent class analysis (LCA) of Patient Reported Outcome Measures Information System (PROMIS) domains has the potential to improve clinical insight into these patients' pain. Based on the 11 PROMIS domains applied to n=613 patients referred for evaluation in a chronic pelvic pain specialty center, exploratory factor analysis (EFA) was used to identify unidimensional superdomains. Latent profile analysis (LPA) was performed to identify the number of homogeneous classes present and to further define the pain classification system. The EFA combined the 11 PROMIS domains into four unidimensional superdomains of biopsychosocial dysfunction: Pain, Negative Affect, Fatigue, and Social Function. Based on multiple fit criteria, a latent class model revealed four distinct classes of CPP: No dysfunction (3.2%); Low Dysfunction (17.8%); Moderate Dysfunction (53.2%); and High Dysfunction (25.8%). This study is the first description of a novel approach to the complex disease process such as chronic pelvic pain and was validated by demographic, medical, and psychosocial variables. In addition to an essentially normal class, three classes of increasing biopsychosocial dysfunction were identified. The LCA approach has the potential for application to other complex multifactorial disease processes. PMID:26355825
Simon, Matthew J; Murchison, Charles; Iliff, Jeffrey J
2018-02-01
Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes. © 2017 Wiley Periodicals, Inc.
Structure of Human GIVD Cytosolic Phospholipase A2 Reveals Insights into Substrate Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Klein, Michael G.; Snell, Gyorgy
Cytosolic phospholipases A2 (cPLA2s) consist of a family of calcium-sensitive enzymes that function to generate lipid second messengers through hydrolysis of membrane-associated glycerophospholipids. The GIVD cPLA2 (cPLA2δ) is a potential drug target for developing a selective therapeutic agent for the treatment of psoriasis. Here, we present two X-ray structures of human cPLA2δ, capturing an apo state, and in complex with a substrate-like inhibitor. Comparison of the apo and inhibitor-bound structures reveals conformational changes in a flexible cap that allows the substrate to access the relatively buried active site, providing new insight into the mechanism for substrate recognition. The cPLA2δ structuremore » reveals an unexpected second C2 domain that was previously unrecognized from sequence alignments, placing cPLA2δ into the class of membrane-associated proteins that contain a tandem pair of C2 domains. Furthermore, our structures elucidate novel inter-domain interactions and define three potential calcium-binding sites that are likely important for regulation and activation of enzymatic activity. These findings provide novel insights into the molecular mechanisms governing cPLA2's function in signal transduction.« less
Expanding the Space of Plausible Solutions in a Medical Tutoring System for Problem-Based Learning
ERIC Educational Resources Information Center
Kazi, Hameedullah; Haddawy, Peter; Suebnukarn, Siriwan
2009-01-01
In well-defined domains such as Physics, Mathematics, and Chemistry, solutions to a posed problem can objectively be classified as correct or incorrect. In ill-defined domains such as medicine, the classification of solutions to a patient problem as correct or incorrect is much more complex. Typical tutoring systems accept only a small set of…
Pelassa, Ilaria; Fiumara, Ferdinando
2015-01-01
Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping the interaction networks of the human proteome, and define proteome-wide knowledge that may guide the informed biological exploration of the role of AARs in protein interactions. PMID:26734058
NASA Technical Reports Server (NTRS)
Nakayama, S.; Moncrief, N. D.; Kretsinger, R. H.
1992-01-01
In the first report in this series we described the relationships and evolution of 152 individual proteins of the EF-hand subfamilies. Here we add 66 additional proteins and define eight (CDC, TPNV, CLNB, LPS, DGK, 1F8, VIS, TCBP) new subfamilies and seven (CAL, SQUD, CDPK, EFH5, TPP, LAV, CRGP) new unique proteins, which we assume represent new subfamilies. The main focus of this study is the classification of individual EF-hand domains. Five subfamilies--calmodulin, troponin C, essential light chain, regulatory light chain, CDC31/caltractin--and three uniques--call, squidulin, and calcium-dependent protein kinase--are congruent in that all evolved from a common four-domain precursor. In contrast calpain and sarcoplasmic calcium-binding protein (SARC) each evolved from its own one-domain precursor. The remaining 19 subfamilies and uniques appear to have evolved by translocation and splicing of genes encoding the EF-hand domains that were precursors to the congruent eight and to calpain and to SARC. The rates of evolution of the EF-hand domains are slower following formation of the subfamilies and establishment of their functions. Subfamilies are not readily classified by patterns of calcium coordination, interdomain linker stability, and glycine and proline distribution. There are many homoplasies indicating that similar variants of the EF-hand evolved by independent pathways.
Concomitant prediction of function and fold at the domain level with GO-based profiles.
Lopez, Daniel; Pazos, Florencio
2013-01-01
Predicting the function of newly sequenced proteins is crucial due to the pace at which these raw sequences are being obtained. Almost all resources for predicting protein function assign functional terms to whole chains, and do not distinguish which particular domain is responsible for the allocated function. This is not a limitation of the methodologies themselves but it is due to the fact that in the databases of functional annotations these methods use for transferring functional terms to new proteins, these annotations are done on a whole-chain basis. Nevertheless, domains are the basic evolutionary and often functional units of proteins. In many cases, the domains of a protein chain have distinct molecular functions, independent from each other. For that reason resources with functional annotations at the domain level, as well as methodologies for predicting function for individual domains adapted to these resources are required.We present a methodology for predicting the molecular function of individual domains, based on a previously developed database of functional annotations at the domain level. The approach, which we show outperforms a standard method based on sequence searches in assigning function, concomitantly predicts the structural fold of the domains and can give hints on the functionally important residues associated to the predicted function.
Götz, Frank; Roske, Yvette; Schulz, Maike Svenja; Autenrieth, Karolin; Bertinetti, Daniela; Faelber, Katja; Zühlke, Kerstin; Kreuchwig, Annika; Kennedy, Eileen J.; Krause, Gerd; Daumke, Oliver; Herberg, Friedrich W.; Heinemann, Udo; Klussmann, Enno
2016-01-01
A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18β bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18β outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions. PMID:27102985
Au, Hilda H T; Jan, Eric
2012-01-01
The intergenic region internal ribosome entry site (IGR IRES) of the Dicistroviridae family adopts an overlapping triple pseudoknot structure to directly recruit the 80S ribosome in the absence of initiation factors. The pseudoknot I (PKI) domain of the IRES mimics a tRNA-like codon:anticodon interaction in the ribosomal P site to direct translation initiation from a non-AUG initiation codon in the A site. In this study, we have performed a comprehensive mutational analysis of this region to delineate the molecular parameters that drive IRES translation. We demonstrate that IRES-mediated translation can initiate at an alternate adjacent and overlapping start site, provided that basepairing interactions within PKI remain intact. Consistent with this, IGR IRES translation tolerates increases in the variable loop region that connects the anticodon- and codon-like elements within the PKI domain, as IRES activity remains relatively robust up to a 4-nucleotide insertion in this region. Finally, elements from an authentic tRNA anticodon stem-loop can functionally supplant corresponding regions within PKI. These results verify the importance of the codon:anticodon interaction of the PKI domain and further define the specific elements within the tRNA-like domain that contribute to optimal initiator Met-tRNA(i)-independent IRES translation.
Insights into Factorless Translational Initiation by the tRNA-Like Pseudoknot Domain of a Viral IRES
Au, Hilda H. T.; Jan, Eric
2012-01-01
The intergenic region internal ribosome entry site (IGR IRES) of the Dicistroviridae family adopts an overlapping triple pseudoknot structure to directly recruit the 80S ribosome in the absence of initiation factors. The pseudoknot I (PKI) domain of the IRES mimics a tRNA-like codon:anticodon interaction in the ribosomal P site to direct translation initiation from a non-AUG initiation codon in the A site. In this study, we have performed a comprehensive mutational analysis of this region to delineate the molecular parameters that drive IRES translation. We demonstrate that IRES-mediated translation can initiate at an alternate adjacent and overlapping start site, provided that basepairing interactions within PKI remain intact. Consistent with this, IGR IRES translation tolerates increases in the variable loop region that connects the anticodon- and codon-like elements within the PKI domain, as IRES activity remains relatively robust up to a 4-nucleotide insertion in this region. Finally, elements from an authentic tRNA anticodon stem-loop can functionally supplant corresponding regions within PKI. These results verify the importance of the codon:anticodon interaction of the PKI domain and further define the specific elements within the tRNA-like domain that contribute to optimal initiator Met-tRNAi-independent IRES translation. PMID:23236506
Winston, Richard B.; Voss, Clifford I.
2004-01-01
This report describes SutraGUI, a flexible graphical user-interface (GUI) that supports two-dimensional (2D) and three-dimensional (3D) simulation with the U.S. Geological Survey (USGS) SUTRA ground-water-flow and transport model (Voss and Provost, 2002). SutraGUI allows the user to create SUTRA ground-water models graphically. SutraGUI provides all of the graphical functionality required for setting up and running SUTRA simulations that range from basic to sophisticated, but it is also possible for advanced users to apply programmable features within Argus ONE to meet the unique demands of particular ground-water modeling projects. SutraGUI is a public-domain computer program designed to run with the proprietary Argus ONE? package, which provides 2D Geographic Information System (GIS) and meshing support. For 3D simulation, GIS and meshing support is provided by programming contained within SutraGUI. When preparing a 3D SUTRA model, the model and all of its features are viewed within Argus 1 in 2D projection. For 2D models, SutraGUI is only slightly changed in functionality from the previous 2D-only version (Voss and others, 1997) and it provides visualization of simulation results. In 3D, only model preparation is supported by SutraGUI, and 3D simulation results may be viewed in SutraPlot (Souza, 1999) or Model Viewer (Hsieh and Winston, 2002). A comprehensive online Help system is included in SutraGUI. For 3D SUTRA models, the 3D model domain is conceptualized as bounded on the top and bottom by 2D surfaces. The 3D domain may also contain internal surfaces extending across the model that divide the domain into tabular units, which can represent hydrogeologic strata or other features intended by the user. These surfaces can be non-planar and non-horizontal. The 3D mesh is defined by one or more 2D meshes at different elevations that coincide with these surfaces. If the nodes in the 3D mesh are vertically aligned, only a single 2D mesh is needed. For nonaligned meshes, two or more 2D meshes of similar connectivity are used. Between each set of 2D meshes (and model surfaces), the vertical space in the 3D mesh is evenly divided into a user-specified number of layers of finite elements. Boundary conditions may be specified for 3D models in SutraGUI using a variety of geometric shapes that may be located freely within the 3D model domain. These shapes include points, lines, sheets, and solids. These are represented by 2D contours (within the vertically-projected Argus ONE view) with user-defined elevations. In addition, boundary conditions may be specified for 3D models as points, lines, and areas that are located exactly within the surfaces that define the model top and the bottoms of the tabular units. Aquifer properties may be specified separately for each tabular unit. If the aquifer properties vary vertically within a unit, SutraGUI provides the Sutra_Z function that can be used to specify such variation.
Challenges in Requirements Engineering: A Research Agenda for Conceptual Modeling
NASA Astrophysics Data System (ADS)
March, Salvatore T.; Allen, Gove N.
Domains for which information systems are developed deal primarily with social constructions—conceptual objects and attributes created by human intentions and for human purposes. Information systems play an active role in these domains. They document the creation of new conceptual objects, record and ascribe values to their attributes, initiate actions within the domain, track activities performed, and infer conclusions based on the application of rules that govern how the domain is affected when socially-defined and identified causal events occur. Emerging applications of information technologies evaluate such business rules, learn from experience, and adapt to changes in the domain. Conceptual modeling grammars aimed at representing their system requirements must include conceptual objects, socially-defined events, and the rules pertaining to them. We identify challenges to conceptual modeling research and pose an ontology of the artificial as a step toward meeting them.
Origins and Structural Properties of Novel and De Novo Protein Domains During Insect Evolution.
Klasberg, Steffen; Bitard-Feildel, Tristan; Callebaut, Isabelle; Bornberg-Bauer, Erich
2018-05-26
Over long time scales, protein evolution is characterised by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 my. We use established domain models and foldable domains delineated by Hydrophobic-Cluster-Analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, i.e. from previously non-coding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonisation of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multi-domain arrangements. Young domains, such as most HCA defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of denovo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterised by cross-species comparisons alone. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Khadake, Jyoti; Heggestad, Arnold D.; Ma, Xiaojie; Johnstone, Karen A.; Resnick, James L.; Yang, Thomas P.
2013-01-01
The Angelman/Prader-Willi syndrome (AS/PWS) domain contains at least 8 imprinted genes regulated by a bipartite imprinting center (IC) associated with the SNRPN gene. One component of the IC, the PWS-IC, governs the paternal epigenotype and expression of paternal genes. The mechanisms by which imprinting and expression of paternal genes within the AS/PWS domain – such as MKRN3 and NDN – are regulated by the PWS-IC are unclear. The syntenic region in the mouse is organized and imprinted similarly to the human domain with the murine PWS-IC defined by a 6 kb interval within the Snrpn locus that includes the promoter. To identify regulatory elements that may mediate PWS-IC function, we mapped the location and allele-specificity of DNase I hypersensitive (DH) sites within the PWS-IC in brain cells, then identified transcription factor binding sites within a subset of these DH sites. Six major paternal-specific DH sites were detected in the Snrpn gene, five of which map within the 6 kb PWS-IC. We postulate these five DH sites represent functional components of the murine PWS-IC. Analysis of transcription factor binding within multiple DH sites detected nuclear respiratory factors (NRF's) and YY1 specifically on the paternal allele. NRF's and YY1 were also detected in the paternal promoter region of the murine Mrkn3 and Ndn genes. These results suggest that NRF's and YY1 may facilitate PWS-IC function and coordinately regulate expression of paternal genes. The presence of NRF's also suggests a link between transcriptional regulation within the AS/PWS domain and regulation of respiration. 3C analyses indicated Mkrn3 lies in close proximity to the PWS-IC on the paternal chromosome, evidence that the PWS-IC functions by allele-specific interaction with its distal target genes. This could occur by allele-specific co-localization of the PWS-IC and its target genes to transcription factories containing NRF's and YY1. PMID:23390487
The gene and the genon concept: a functional and information-theoretic analysis
Scherrer, Klaus; Jost, Jürgen
2007-01-01
‘Gene' has become a vague and ill-defined concept. To set the stage for mathematical analysis of gene storage and expression, we return to the original concept of the gene as a function encoded in the genome, basis of genetic analysis, that is a polypeptide or other functional product. The additional information needed to express a gene is contained within each mRNA as an ensemble of signals, added to or superimposed onto the coding sequence. To designate this programme, we introduce the term ‘genon'. Individual genons are contained in the pre-mRNA forming a pre-genon. A genomic domain contains a proto-genon, with the signals of transcription activation in addition to the pre-genon in the transcripts. Some contain several mRNAs and hence genons, to be singled out by RNA processing and differential splicing. The programme in the genon in cis is implemented by corresponding factors of protein or RNA nature contained in the transgenon of the cell or organism. The gene, the cis programme contained in the individual domain and transcript, and the trans programme of factors, can be analysed by information theory. PMID:17353929
Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN
Elf, Shannon; Abdelfattah, Nouran S.; Baral, April J.; Beeson, Danielle; Rivera, Jeanne F.; Ko, Amy; Florescu, Natalie; Birrane, Gabriel; Chen, Edwin
2018-01-01
Mutations in calreticulin (CALR) are phenotypic drivers in the pathogenesis of myeloproliferative neoplasms. Mechanistic studies have demonstrated that mutant CALR binds to the thrombopoietin receptor MPL, and that the positive electrostatic charge of the mutant CALR C terminus is required for mutant CALR-mediated activation of JAK-STAT signaling. Here we demonstrate that although binding between mutant CALR and MPL is required for mutant CALR to transform hematopoietic cells; binding alone is insufficient for cytokine independent growth. We further show that the threshold of positive charge in the mutant CALR C terminus influences both binding of mutant CALR to MPL and activation of MPL signaling. We find that mutant CALR binds to the extracellular domain of MPL and that 3 tyrosine residues within the intracellular domain of MPL are required to activate signaling. With respect to mutant CALR function, we show that its lectin-dependent function is required for binding to MPL and for cytokine independent growth, whereas its chaperone and polypeptide-binding functionalities are dispensable. Together, our findings provide additional insights into the mechanism of the pathogenic mutant CALR-MPL interaction in myeloproliferative neoplasms. PMID:29288169
Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN.
Elf, Shannon; Abdelfattah, Nouran S; Baral, April J; Beeson, Danielle; Rivera, Jeanne F; Ko, Amy; Florescu, Natalie; Birrane, Gabriel; Chen, Edwin; Mullally, Ann
2018-02-15
Mutations in calreticulin ( CALR ) are phenotypic drivers in the pathogenesis of myeloproliferative neoplasms. Mechanistic studies have demonstrated that mutant CALR binds to the thrombopoietin receptor MPL, and that the positive electrostatic charge of the mutant CALR C terminus is required for mutant CALR-mediated activation of JAK-STAT signaling. Here we demonstrate that although binding between mutant CALR and MPL is required for mutant CALR to transform hematopoietic cells; binding alone is insufficient for cytokine independent growth. We further show that the threshold of positive charge in the mutant CALR C terminus influences both binding of mutant CALR to MPL and activation of MPL signaling. We find that mutant CALR binds to the extracellular domain of MPL and that 3 tyrosine residues within the intracellular domain of MPL are required to activate signaling. With respect to mutant CALR function, we show that its lectin-dependent function is required for binding to MPL and for cytokine independent growth, whereas its chaperone and polypeptide-binding functionalities are dispensable. Together, our findings provide additional insights into the mechanism of the pathogenic mutant CALR-MPL interaction in myeloproliferative neoplasms. © 2018 by The American Society of Hematology.
RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes
Rose, Nathan R; King, Hamish W; Blackledge, Neil P; Fursova, Nadezda A; Ember, Katherine JI; Fischer, Roman; Kessler, Benedikt M; Klose, Robert J
2016-01-01
Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI: http://dx.doi.org/10.7554/eLife.18591.001 PMID:27705745
Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A; Nash, Piers; Tafuri, Anna; Gertler, Frank B; Pawson, Tony
2003-07-01
Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.
Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.
Shifman, Yair; Leviatan, Yehuda
2004-03-01
Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.
Theisen, Katherine M; Fuller, Thomas W; Rusilko, Paul
2018-06-01
To assess postoperative patient-reported quality of life outcomes after surgical management of adult-acquired buried penis (AABP). We hypothesize that surgical treatment of AABP results in improvements in urinary and sexual quality of life. Patients that underwent surgical treatment of AABP were retrospectively identified. The Expanded Prostate Cancer Index (EPIC) questionnaire was completed at ≥3 months postoperatively, and completed retrospectively to define preoperative symptoms. EPIC is validated for local treatment of prostate cancer. Urinary and sexual domains were utilized. Questions are scored on a 5-point Likert scale, with higher scores indicating better quality of life. Preoperative scores were compared with postoperative scores. Sixteen patients completed pre- and postoperative questionnaires. Mean time from surgery to questionnaire was 12.6 months. There was a significant improvement in 10 of 12 urinary domain questions and 10 of 13 sexual domain questions. Fourteen of 16 patients (87.5%) reported significant improvement in overall sexual function (median score changed from 1.5 to 5, P <.0001). Similarly, 14 of 16 patients (87.5%) reported significant improvement in overall urinary function (median score changed from 1 to 4, P <.0001). AABP is a challenging condition to treat and often requires surgical intervention to improve hygiene and function. There are limited data on patient-reported quality of life outcomes. We found that surgical management of AABP results in significant improvements in both urinary and sexual quality of life outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Xinru; Tang, Ding; Li, Ming; Wang, Kejian; Cheng, Zhukuan
2013-01-01
Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and leaf angle by controlling the adaxial growth of tiller node and lamina joint. LPA1 was also found to affect shoot gravitropism. Expression pattern analysis suggested that LPA1 influences plant architecture by affecting the gravitropism of leaf sheath pulvinus and lamina joint. However, LPA1 only influences gravity perception or signal transduction in coleoptile gravitropism by regulating the sedimentation rate of amyloplasts, distinct from the actions of LAZY1. LPA1 encodes a plant-specific INDETERMINATE DOMAIN protein and defines a novel subfamily of 28 INDETERMINATE DOMAIN proteins with several unique conserved features. LPA1 is localized in the nucleus and functions as an active transcriptional repressor, an activity mainly conferred by a conserved ethylene response factor-associated amphiphilic repression-like motif. Further analysis suggests that LPA1 participates in a complicated transcriptional and protein interaction network and has evolved novel functions distinct from SGR5. This study not only facilitates the understanding of gravitropism mechanisms but also generates a useful genetic material for rice breeding. PMID:23124325
Wu, Xinru; Tang, Ding; Li, Ming; Wang, Kejian; Cheng, Zhukuan
2013-01-01
Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and leaf angle by controlling the adaxial growth of tiller node and lamina joint. LPA1 was also found to affect shoot gravitropism. Expression pattern analysis suggested that LPA1 influences plant architecture by affecting the gravitropism of leaf sheath pulvinus and lamina joint. However, LPA1 only influences gravity perception or signal transduction in coleoptile gravitropism by regulating the sedimentation rate of amyloplasts, distinct from the actions of LAZY1. LPA1 encodes a plant-specific INDETERMINATE DOMAIN protein and defines a novel subfamily of 28 INDETERMINATE DOMAIN proteins with several unique conserved features. LPA1 is localized in the nucleus and functions as an active transcriptional repressor, an activity mainly conferred by a conserved ethylene response factor-associated amphiphilic repression-like motif. Further analysis suggests that LPA1 participates in a complicated transcriptional and protein interaction network and has evolved novel functions distinct from SGR5. This study not only facilitates the understanding of gravitropism mechanisms but also generates a useful genetic material for rice breeding.
Buszard, Bree J; Johnson, Travis K; Meng, Tzu-Ching; Burke, Richard; Warr, Coral G; Tiganis, Tony
2013-04-01
The protein tyrosine phosphatases (PTPs) T cell PTP (TCPTP) and PTP1B share a high level of catalytic domain sequence and structural similarity yet display distinct differences in substrate recognition and function. Their noncatalytic domains contribute to substrate selectivity and function by regulating TCPTP nucleocytoplasmic shuttling and targeting PTP1B to the endoplasmic reticulum (ER). The Drosophila TCPTP/PTP1B orthologue PTP61F has two variants with identical catalytic domains that are differentially targeted to the ER and nucleus. Here we demonstrate that the PTP61F variants differ in their ability to negatively regulate insulin signaling in vivo, with the nucleus-localized form (PTP61Fn) being more effective than the ER-localized form (PTP61Fm). We report that PTP61Fm is reliant on the adaptor protein Dock to attenuate insulin signaling in vivo. Also, we show that the PTP61F variants differ in their capacities to regulate growth, with PTP61Fn but not PTP61Fm attenuating cellular proliferation. Furthermore, we generate a mutant lacking both PTP61F variants, which displays a reduction in median life span and a decrease in female fecundity, and show that both variants are required to rescue these mutant phenotypes. Our findings define the role of PTP61F in life span and fecundity and reinforce the importance of subcellular localization in mediating PTP function in vivo.
1991-12-01
34 foreign keys" ,which are keys inherited from conlected entities, the keys would already be defined in the connected entity’s domain primiti le definition...defined for the rootnode re!ationship because all attributes are foreign keys and they are already defined in the connected entities domain primitive...can exchange data with other tools including other tools in the tool vendor’s tool 99 Upper CASE Tool Charactcrizcs set. The important attributes are
Heterogeneity in ADHD: Neurocognitive predictors of peer, family, and academic functioning.
Kofler, Michael J; Sarver, Dustin E; Spiegel, Jamie A; Day, Taylor N; Harmon, Sherelle L; Wells, Erica L
2017-08-01
Childhood attention-deficit/hyperactivity disorder (ADHD) is associated with impairments in peer, family, and academic functioning. Although impairment is required for diagnosis, children with ADHD vary significantly in the areas in which they demonstrate clinically significant impairment. However, relatively little is known about the mechanisms and processes underlying these individual differences. The current study examined neurocognitive predictors of heterogeneity in peer, family, and academic functioning in a well-defined sample of 44 children with ADHD aged 8-13 years (M = 10.31, SD = 1.42; 31 boys, 13 girls; 81% Caucasian). Reliable change analysis indicated that 98% of the sample demonstrated objectively-defined impairment on at least one assessed outcome measure; 65% were impaired in two or all three areas of functioning. ADHD children with quantifiable deficits in academic success and family functioning performed worse on tests of working memory (d = 0.68 to 1.09), whereas children with impaired parent-reported social functioning demonstrated slower processing speed (d = 0.53). Dimensional analyses identified additional predictors of peer, family, and academic functioning. Working memory abilities were associated with individual differences in all three functional domains, processing speed predicted social functioning, and inhibitory control predicted family functioning. These results add to a growing literature implicating neurocognitive abilities not only in explaining behavioral differences between ADHD and non-ADHD groups, but also in the substantial heterogeneity in ecologically-valid functional outcomes associated with the disorder.
Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro.
Bacha, Usman; Barrila, Jennifer; Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto
2004-05-04
SARS (severe acute respiratory syndrome) is caused by a newly discovered coronavirus. A key enzyme for the maturation of this virus and, therefore, a target for drug development is the main protease 3CL(pro) (also termed SARS-CoV 3CL(pro)). We have cloned and expressed in Escherichia coli the full-length SARS-CoV 3CL(pro) as well as a truncated form containing only the catalytic domains. The recombinant proteins have been characterized enzymatically using a fluorescently labeled substrate; their structural stability in solution has been determined by differential scanning calorimetry, and novel inhibitors have been discovered. Expression of the catalytic region alone yields a protein with a reduced catalytic efficiency consistent with the proposed regulatory role of the alpha-helical domain. Differential scanning calorimetry indicates that the alpha-helical domain does not contribute to the structural stability of the catalytic domains. Analysis of the active site cavity reveals the presence of subsites that can be targeted with specific chemical functionalities. In particular, a cluster of serine residues (Ser139, Ser144, and Ser147) was identified near the active site cavity and was susceptible to being targeted by compounds containing boronic acid. This cluster is highly conserved in similar proteases from other coronaviruses, defining an attractive target for drug development. It was found that bifunctional aryl boronic acid compounds were particularly effective at inhibiting the protease, with inhibition constants as strong as 40 nM. Isothermal titration microcalorimetric experiments indicate that these inhibitors bind reversibly to 3CL(pro) in an enthalpically favorable fashion, implying that they establish strong interactions with the protease molecule, thus defining attractive molecular scaffolds for further optimization.
Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marasini, Carlotta, E-mail: marasini@ge.ibf.cnr.it; Galeno, Lauretta; Moran, Oscar
2012-07-06
Highlights: Black-Right-Pointing-Pointer CFTR mutations produce cystic fibrosis. Black-Right-Pointing-Pointer Chloride transport depends on the regulatory domain phosphorylation. Black-Right-Pointing-Pointer Regulatory domain is intrinsically disordered. Black-Right-Pointing-Pointer Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may bemore » important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and {beta}-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of {alpha}-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two conditions, monitoring the changes of the mean residue ellipticity measured at 222 nm as a function of temperature, between 20 and 95 Degree-Sign C. The thermodynamic analysis of the denaturation curves shows that phosphorylation of the protein induces a state of lower stability of R domain, characterized by a lower transition temperature, and by a smaller Gibbs free energy difference between the native and the unfolded states.« less
Nowak, Izabela; Sabariego, Carla; Świtaj, Piotr; Anczewska, Marta
2016-07-11
Schizophrenia is a disabling disease that impacts all major life areas. There is a growing need for meeting the challenge of disability from a perspective that extends symptomatic reduction. Therefore, this study aimed to systematically review the extent to which traditional and "third wave" cognitive - behavioral (CBT) interventions address the whole scope of disabilities experienced by people with lived experience of schizophrenia using the WHO's International Classification of Functioning, Disability and Health (ICF) as a frame of reference. It also explores if current CBT interventions focus on recovery and what is their impact on disability domains. Medline and PsycINFO databases were searched for studies published in English between January 2009 and December 2015. Abstracts and full papers were screened against pre-defined selection criteria by two reviewers. Methodological quality of included studies was assessed by two independent raters using the Effective Public Health Practice Project Quality assessment tool for quantitative studies (EPHPP) guidelines. A total of 50 studies were included, 35 studies evaluating traditional CBT interventions and 15 evaluating "third wave" approaches. Overall, traditional CBT interventions addressed more disability domains than "third wave" approaches and mostly focused on mental functions reflecting schizophrenia psychopathology. Seven studies met the inclusion criteria of recovery-oriented interventions. The majority of studies evaluating these interventions had however a high risk of bias, therefore evidence on their effectiveness is inconclusive. Traditional CBT interventions address more disability domains than "third wave" therapies, however both approaches focus mostly on mental functions that reflect schizophrenia psychopathology. There are also few interventions that focus on recovery. These results indicate that CBT interventions going beyond symptom reduction are still needed. Recovery-focused CBT interventions seem to be a promising treatment approach as they target disability from a broader perspective including activity and participation domains. Although their effectiveness is inconclusive, they reflect users' views of recovery and trends towards improvement of mood, negative symptoms and functioning are shown.
Limit order book and its modeling in terms of Gibbs Grand-Canonical Ensemble
NASA Astrophysics Data System (ADS)
Bicci, Alberto
2016-12-01
In the domain of so called Econophysics some attempts have been already made for applying the theory of thermodynamics and statistical mechanics to economics and financial markets. In this paper a similar approach is made from a different perspective, trying to model the limit order book and price formation process of a given stock by the Grand-Canonical Gibbs Ensemble for the bid and ask orders. The application of the Bose-Einstein statistics to this ensemble allows then to derive the distribution of the sell and buy orders as a function of price. As a consequence we can define in a meaningful way expressions for the temperatures of the ensembles of bid orders and of ask orders, which are a function of minimum bid, maximum ask and closure prices of the stock as well as of the exchanged volume of shares. It is demonstrated that the difference between the ask and bid orders temperatures can be related to the VAO (Volume Accumulation Oscillator), an indicator empirically defined in Technical Analysis of stock markets. Furthermore the derived distributions for aggregate bid and ask orders can be subject to well defined validations against real data, giving a falsifiable character to the model.
Defaus, Sira; Avilés, Manuel; Andreu, David; Gutiérrez-Gallego, Ricardo
2018-04-04
Seminal plasma proteins are relevant for sperm functionality and some appear responsible for establishing sperm interactions with the various environments along the female genital tract towards the oocyte. In recent years, research has focused on characterizing the role of these proteins in the context of reproductive biology, fertility diagnostics and treatment of related problems. Herein, we focus on the main protein of bovine seminal plasma, PDC-109 (BSP-A1/-A2), which by virtue of its lectin properties is involved in fertilization. By means of surface plasmon resonance, the interaction of PDC-109 with a panel of the most relevant glycosidic epitopes of mammals has been qualitatively and quantitatively characterized, and a higher affinity for carbohydrates containing fucose has been observed, in line with previous studies. Additionally, using the orthogonal technique of Carbohydrate REcognition Domain EXcision-Mass Spectrometry (CREDEX-MS), the recognition domain of the interaction complexes between PDC-109 and all fucosylated disaccharides [(Fuc-α1,(3,4,6)-GlcNAc)] has been defined, revealing the specific glycotope and the peptide domain likely to act as the PDC-109 carbohydrate binding site.
Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR.
Zou, Chao; Naider, Fred; Zerbe, Oliver
2008-12-01
The human Y4 receptor, a class A G-protein coupled receptor (GPCR) primarily targeted by the pancreatic polypeptide (PP), is involved in a large number of physiologically important functions. This paper investigates a Y4 receptor fragment (N-TM1-TM2) comprising the N-terminal domain, the first two transmembrane (TM) helices and the first extracellular loop followed by a (His)(6) tag, and addresses synthetic problems encountered when recombinantly producing such fragments from GPCRs in Escherichia coli. Rigorous purification and usage of the optimized detergent mixture 28 mM dodecylphosphocholine (DPC)/118 mM% 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG) resulted in high quality TROSY spectra indicating protein conformational homogeneity. Almost complete assignment of the backbone, including all TM residue resonances was obtained. Data on internal backbone dynamics revealed a high secondary structure content for N-TM1-TM2. Secondary chemical shifts and sequential amide proton nuclear Overhauser effects defined the TM helices. Interestingly, the properties of the N-terminal domain of this large fragment are highly similar to those determined on the isolated N-terminal domain in the presence of DPC micelles.
Engert, Christoph G; Droste, Rita; van Oudenaarden, Alexander; Horvitz, H Robert
2018-04-01
To better understand the tissue-specific regulation of chromatin state in cell-fate determination and animal development, we defined the tissue-specific expression of all 36 C. elegans presumptive lysine methyltransferase (KMT) genes using single-molecule fluorescence in situ hybridization (smFISH). Most KMTs were expressed in only one or two tissues. The germline was the tissue with the broadest KMT expression. We found that the germline-expressed C. elegans protein SET-17, which has a SET domain similar to that of the PRDM9 and PRDM7 SET-domain proteins, promotes fertility by regulating gene expression in primary spermatocytes. SET-17 drives the transcription of spermatocyte-specific genes from four genomic clusters to promote spermatid development. SET-17 is concentrated in stable chromatin-associated nuclear foci at actively transcribed msp (major sperm protein) gene clusters, which we term msp locus bodies. Our results reveal the function of a PRDM9/7-family SET-domain protein in spermatocyte transcription. We propose that the spatial intranuclear organization of chromatin factors might be a conserved mechanism in tissue-specific control of transcription.
Rao, Mala V.; Campbell, Jabbar; Yuan, Aidong; Kumar, Asok; Gotow, Takahiro; Uchiyama, Yasuo; Nixon, Ralph A.
2003-01-01
The phosphorylated carboxyl-terminal “tail” domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681–693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail–deleted (NF-MtailΔ) mutant mice using an embryonic stem cell–mediated “gene knockin” approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailΔ mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail–mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M. PMID:14662746
Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.
Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F
2011-02-11
FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.
Technical aspects of virtual liver resection planning.
Glombitza, G; Lamadé, W; Demiris, A M; Göpfert, M R; Mayer, A; Bahner, M L; Meinzer, H P; Richter, G; Lehnert, T; Herfarth, C
1998-01-01
Operability of a liver tumor is depending on its three dimensional relation to the intrahepatic vascular trees which define autonomously functioning liver (sub-)segments. Precise operation planning is complicated by anatomic variability, distortion of the vascular trees by the tumor or preceding liver resections. Because of the missing possibility to track the deformation of the liver during the operation an integration of the resection planning system into an intra-operative navigation system is not feasible. So the main task of an operation planning system in this domain is a quantifiable patient selection by exact prediction of post-operative liver function and a quantifiable resection proposal. The system quantifies the organ structures and resection volumes by means of absolute and relative values. It defines resection planes depending on security margins and the vascular trees and presents the data in visualized form as a 3D movie. The new 3D operation planning system offers quantifiable liver resection proposals based on individualized liver anatomy. The results are visualized in digital movies as well as in quantitative reports.
Quantitative approach for defining basic color terms and color category best exemplars.
Fider, Nicole; Narens, Louis; Jameson, Kimberly A; Komarova, Natalia L
2017-08-01
A new method is presented that identifies basic color terms (BCTs) from color-naming data. A function is defined that measures how well a term is understood by a communicating population. BCTs are then separated from other color terms by a threshold value applied to this function. A new mathematical algorithm is proposed and analyzed for determining the best exemplar associated with each BCT. Using data provided by the World Color Survey, comparisons are made between the paper's methods and those from other studies. These comparisons show that the paper's new definition of "basicness" mostly agrees with the typical definition found in the color categorization literature, which was originally due to Kay and colleagues. The new definition, unlike the typical one, has the advantage of not relying on syntactic or semantic features of languages or color lexicons. This permits the methodology developed to be generalizable and applied to other category domains for which a construct of "basicness" could have an important role.
Smyth, Redmond P; Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe; von Kleist, Max; Marquet, Roland
2018-05-18
Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.
Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe
2018-01-01
Abstract Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5′ region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5′ PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production. PMID:29514260
Magupalli, Venkat G.; Mochida, Sumiko; Yan, Jin; Jiang, Xin; Westenbroek, Ruth E.; Nairn, Angus C.; Scheuer, Todd; Catterall, William A.
2013-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. PMID:23255606
de las Heras, Jose I.; Czapiewski, Rafal; Sivakumar, Aishwarya; Kerr, Alastair R.W.; Schirmer, Eric C.
2017-01-01
The 3D organization of the genome changes concomitantly with expression changes during hematopoiesis and immune activation. Studies have focused either on lamina-associated domains (LADs) or on topologically associated domains (TADs), defined by preferential local chromatin interactions, and chromosome compartments, defined as higher-order interactions between TADs sharing functionally similar states. However, few studies have investigated how these affect one another. To address this, we mapped LADs using Lamin B1–DamID during Jurkat T-cell activation, finding significant genome reorganization at the nuclear periphery dominated by release of loci frequently important for T-cell function. To assess how these changes at the nuclear periphery influence wider genome organization, our DamID data sets were contrasted with TADs and compartments. Features of specific repositioning events were then tested by fluorescence in situ hybridization during T-cell activation. First, considerable overlap between TADs and LADs was observed with the TAD repositioning as a unit. Second, A1 and A2 subcompartments are segregated in 3D space through differences in proximity to LADs along chromosomes. Third, genes and a putative enhancer in LADs that were released from the periphery during T-cell activation became preferentially associated with A2 subcompartments and were constrained to the relative proximity of the lamina. Thus, lamina associations influence internal nuclear organization, and changes in LADs during T-cell activation may provide an important additional mode of gene regulation. PMID:28424353
FunTree: advances in a resource for exploring and contextualising protein function evolution.
Sillitoe, Ian; Furnham, Nicholas
2016-01-04
FunTree is a resource that brings together protein sequence, structure and functional information, including overall chemical reaction and mechanistic data, for structurally defined domain superfamilies. Developed in tandem with the CATH database, the original FunTree contained just 276 superfamilies focused on enzymes. Here, we present an update of FunTree that has expanded to include 2340 superfamilies including both enzymes and proteins with non-enzymatic functions annotated by Gene Ontology (GO) terms. This allows the investigation of how novel functions have evolved within a structurally defined superfamily and provides a means to analyse trends across many superfamilies. This is done not only within the context of a protein's sequence and structure but also the relationships of their functions. New measures of functional similarity have been integrated, including for enzymes comparisons of overall reactions based on overall bond changes, reaction centres (the local environment atoms involved in the reaction) and the sub-structure similarities of the metabolites involved in the reaction and for non-enzymes semantic similarities based on the GO. To identify and highlight changes in function through evolution, ancestral character estimations are made and presented. All this is accessible through a new re-designed web interface that can be found at http://www.funtree.info. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Technical Reports Server (NTRS)
McComas, David; Stark, Michael; Leake, Stephen; White, Michael; Morisio, Maurizio; Travassos, Guilherme H.; Powers, Edward I. (Technical Monitor)
2000-01-01
The NASA Goddard Space Flight Center Flight Software Branch (FSB) is developing a Guidance, Navigation, and Control (GNC) Flight Software (FSW) product line. The demand for increasingly more complex flight software in less time while maintaining the same level of quality has motivated us to look for better FSW development strategies. The GNC FSW product line has been planned to address the core GNC FSW functionality very similar on many recent low/near Earth missions in the last ten years. Unfortunately these missions have not accomplished significant drops in development cost since a systematic approach towards reuse has not been adopted. In addition, new demands are continually being placed upon the FSW which means the FSB must become more adept at providing GNC FSW functionality's core so it can accommodate additional requirements. These domain features together with engineering concepts are influencing the specification, description and evaluation of FSW product line. Domain engineering is the foundation for emerging product line software development approaches. A product line is 'A family of products designed to take advantage of their common aspects and predicted variabilities'. In our product line approach, domain engineering includes the engineering activities needed to produce reusable artifacts for a domain. Application engineering refers to developing an application in the domain starting from reusable artifacts. The focus of this paper is regarding the software process, lessons learned and on how the GNC FSW product line manages variability. Existing domain engineering approaches do not enforce any specific notation for domain analysis or commonality and variability analysis. Usually, natural language text is the preferred tool. The advantage is the flexibility and adapt ability of natural language. However, one has to be ready to accept also its well-known drawbacks, such as ambiguity, inconsistency, and contradictions. While most domain analysis approaches are functionally oriented, the idea of applying the object-oriented approach in domain analysis is not new. Some authors propose to use UML as the notation underlying domain analysis. Our work is based on the same idea of merging UML and domain analysis. Further, we propose a few extensions to UML in order to express variability, and we define precisely their semantics so that a tool can support them. The extensions are designed to be implemented on the API of a popular industrial CASE tool, with obvious advantages in cost and availability of tool support. The paper outlines the product line processes and identifies where variability must be addressed. Then it describes the product line products with respect to how they accommodate variability. The Celestial Body subdomain is used as a working example. Our results to date are summarized and plans for the future are described.
Harvey, Philip D; Khan, Anzalee; Keefe, Richard S E
2017-12-01
Background: Reduced emotional experience and expression are two domains of negative symptoms. The authors assessed these two domains of negative symptoms using previously developed Positive and Negative Syndrome Scale (PANSS) factors. Using an existing dataset, the authors predicted three different elements of everyday functioning (social, vocational, and everyday activities) with these two factors, as well as with performance on measures of functional capacity. Methods: A large (n=630) sample of people with schizophrenia was used as the data source of this study. Using regression analyses, the authors predicted the three different aspects of everyday functioning, first with just the two Positive and Negative Syndrome Scale factors and then with a global negative symptom factor. Finally, we added neurocognitive performance and functional capacity as predictors. Results: The Positive and Negative Syndrome Scale reduced emotional experience factor accounted for 21 percent of the variance in everyday social functioning, while reduced emotional expression accounted for no variance. The total Positive and Negative Syndrome Scale negative symptom factor accounted for less variance (19%) than the reduced experience factor alone. The Positive and Negative Syndrome Scale expression factor accounted for, at most, one percent of the variance in any of the functional outcomes, with or without the addition of other predictors. Implications: Reduced emotional experience measured with the Positive and Negative Syndrome Scale, often referred to as "avolition and anhedonia," specifically predicted impairments in social outcomes. Further, reduced experience predicted social impairments better than emotional expression or the total Positive and Negative Syndrome Scale negative symptom factor. In this cross-sectional study, reduced emotional experience was specifically related with social outcomes, accounting for essentially no variance in work or everyday activities, and being the sole meaningful predictor of impairment in social outcomes.
Twistor interpretation of slice regular functions
NASA Astrophysics Data System (ADS)
Altavilla, Amedeo
2018-01-01
Given a slice regular function f : Ω ⊂ H → H, with Ω ∩ R ≠ ∅, it is possible to lift it to surfaces in the twistor space CP3 of S4 ≃ H ∪ { ∞ } (see Gentili et al., 2014). In this paper we show that the same result is true if one removes the hypothesis Ω ∩ R ≠ ∅ on the domain of the function f. Moreover we find that if a surface S ⊂CP3 contains the image of the twistor lift of a slice regular function, then S has to be ruled by lines. Starting from these results we find all the projective classes of algebraic surfaces up to degree 3 in CP3 that contain the lift of a slice regular function. In addition we extend and further explore the so-called twistor transform, that is a curve in Gr2(C4) which, given a slice regular function, returns the arrangement of lines whose lift carries on. With the explicit expression of the twistor lift and of the twistor transform of a slice regular function we exhibit the set of slice regular functions whose twistor transform describes a rational line inside Gr2(C4) , showing the role of slice regular functions not defined on R. At the end we study the twistor lift of a particular slice regular function not defined over the reals. This example shows the effectiveness of our approach and opens some questions.
Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis.
Wei, Wenhui; Srinivas, Swaminath; Lin, Jingxia; Tang, Zichen; Wang, Shihua; Ullah, Saif; Kota, Vishnu Goutham; Feng, Youjun
2018-05-14
Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance.
Marquardt, Joseph R.; Perkins, Jennifer L.; Beuoy, Kyle J.; Fisk, Harold A.
2016-01-01
Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus. PMID:27339139
Marquardt, Joseph R; Perkins, Jennifer L; Beuoy, Kyle J; Fisk, Harold A
2016-07-12
Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus.
NASA Astrophysics Data System (ADS)
Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver
2018-05-01
Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell-cell signaling. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver
2018-04-01
Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell-cell signaling. [Figure not available: see fulltext.
Ito, Morihiro; Ohtsuka, Junpei; Hara, Kenichiro; Komada, Hiroshi; Nishio, Machiko; Nosaka, Tetsuya
2015-01-01
ABSTRACT Virus-specific interaction between the attachment protein (HN) and the fusion protein (F) is prerequisite for the induction of membrane fusion by parainfluenza viruses. This HN-F interaction presumably is mediated by particular amino acids in the HN stalk domain and those in the F head domain. We found in the present study, however, that a simian virus 41 (SV41) F-specific chimeric HPIV2 HN protein, SCA, whose cytoplasmic, transmembrane, and stalk domains were derived from the SV41 HN protein, could not induce cell-cell fusion of BHK-21 cells when coexpressed with an SV41 HN-specific chimeric PIV5 F protein, no. 36. Similarly, a headless form of the SV41 HN protein failed to induce fusion with chimera no. 36, whereas it was able to induce fusion with the SV41 F protein. Interestingly, replacement of 13 amino acids of the SCA head domain, which are located at or around the dimer interface of the head domain, with SV41 HN counterparts resulted in a chimeric HN protein, SCA-RII, which induced fusion with chimera no. 36 but not with the SV41 F protein. More interestingly, retroreplacement of 11 out of the 13 amino acids of SCA-RII with the SCA counterparts resulted in another chimeric HN protein, IM18, which induced fusion either with chimera no. 36 or with the SV41 F protein, similar to the SV41 HN protein. Thus, we conclude that the F protein specificity of the HN protein that is observed in the fusion event is not solely defined by the primary structure of the HN stalk domain. IMPORTANCE It is appreciated that the HN head domain initially conceals the HN stalk domain but exposes it after the head domain has bound to the receptors, which allows particular amino acids in the stalk domain to interact with the F protein and trigger it to induce fusion. However, other regulatory roles of the HN head domain in the fusion event have been ill defined. We have shown in the current study that removal of the head domain or amino acid substitutions in a particular region of the head domain drastically change the F protein specificity of the HN protein, suggesting that the ability of a given HN protein to interact with an F protein is defined not only by the primary structure of the HN stalk domain but also by its conformation. This notion seems to account for the unidirectional substitutability among rubulavirus HN proteins in triggering noncognate F proteins. PMID:26423949
Functional diversity of Csk, Chk, and Src SH2 domains due to a single residue variation.
Ayrapetov, Marina K; Nam, Nguyen Hai; Ye, Guofeng; Kumar, Anil; Parang, Keykavous; Sun, Gongqin
2005-07-08
The C-terminal Src kinase (Csk) family of protein tyrosine kinases contains two members: Csk and Csk homologous kinase (Chk). Both phosphorylate and inactivate Src family kinases. Recent reports suggest that the Src homology (SH) 2 domains of Csk and Chk may bind to different phosphoproteins, which provides a basis for different cellular functions for Csk and Chk. To verify and characterize such a functional divergence, we compared the binding properties of the Csk, Chk, and Src SH2 domains and investigated the structural basis for the functional divergence. First, the study demonstrated striking functional differences between the Csk and Chk SH2 domains and revealed functional similarities between the Chk and Src SH2 domains. Second, structural analysis and mutagenic studies revealed that the functional differences among the three SH2 domains were largely controlled by one residue, Glu127 in Csk, Ile167 in Chk, and Lys200 in Src. Mutating these residues in the Csk or Chk SH2 domain to the Src counterpart resulted in dramatic gain of function similar to Src SH2 domain, whereas mutating Lys200 in Src SH2 domain to Glu (the Csk counterpart) resulted in loss of Src SH2 function. Third, a single point mutation of E127K rendered Csk responsive to activation by a Src SH2 domain ligand. Finally, the optimal phosphopeptide sequence for the Chk SH2 domain was determined. These results provide a compelling explanation for the functional differences between two homologous protein tyrosine kinases and reveal a new structure-function relationship for the SH2 domains.
Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases
2012-01-01
Background The 2-oxoglutarate dependent superfamily is a diverse group of non-haem dioxygenases, and is present in prokaryotes, eukaryotes, and archaea. The enzymes differ in substrate preference and reaction chemistry, a factor that precludes their classification by homology studies and electronic annotation schemes alone. In this work, I propose and explore the rationale of using substrates to classify structurally similar alpha-ketoglutarate dependent enzymes. Findings Differential catalysis in phylogenetic clades of 2-OG dependent enzymes, is determined by the interactions of a subset of active-site amino acids. Identifying these with existing computational methods is challenging and not feasible for all proteins. A clustering protocol based on validated mechanisms of catalysis of known molecules, in tandem with group specific hidden markov model profiles is able to differentiate and sequester these enzymes. Access to this repository is by a web server that compares user defined unknown sequences to these pre-defined profiles and outputs a list of predicted catalytic domains. The server is free and is accessible at the following URL ( http://comp-biol.theacms.in/H2OGpred.html). Conclusions The proposed stratification is a novel attempt at classifying and predicting 2-oxoglutarate dependent function. In addition, the server will provide researchers with a tool to compare their data to a comprehensive list of HMM profiles of catalytic domains. This work, will aid efforts by investigators to screen and characterize putative 2-OG dependent sequences. The profile database will be updated at regular intervals. PMID:22862831
TMV nanorods with programmed longitudinal domains of differently addressable coat proteins
NASA Astrophysics Data System (ADS)
Geiger, Fania C.; Eber, Fabian J.; Eiben, Sabine; Mueller, Anna; Jeske, Holger; Spatz, Joachim P.; Wege, Christina
2013-04-01
The spacing of functional nanoscopic elements may play a fundamental role in nanotechnological and biomedical applications, but is so far rarely achieved on this scale. In this study we show that tobacco mosaic virus (TMV) and the RNA-guided self-assembly process of its coat protein (CP) can be used to establish new nanorod scaffolds that can be loaded not only with homogeneously distributed functionalities, but with distinct molecule species grouped and ordered along the longitudinal axis. The arrangement of the resulting domains and final carrier rod length both were governed by RNA-templated two-step in vitro assembly. Two selectively addressable TMV CP mutants carrying either thiol (TMVCys) or amino (TMVLys) groups on the exposed surface were engineered and shown to retain reactivity towards maleimides or NHS esters, respectively, after acetic acid-based purification and re-assembly to novel carrier rod types. Stepwise combination of CPCys and CPLys with RNA allowed fabrication of TMV-like nanorods with a controlled total length of 300 or 330 nm, respectively, consisting of adjacent longitudinal 100-to-200 nm domains of differently addressable CP species. This technology paves the way towards rod-shaped scaffolds with pre-defined, selectively reactive barcode patterns on the nanometer scale.The spacing of functional nanoscopic elements may play a fundamental role in nanotechnological and biomedical applications, but is so far rarely achieved on this scale. In this study we show that tobacco mosaic virus (TMV) and the RNA-guided self-assembly process of its coat protein (CP) can be used to establish new nanorod scaffolds that can be loaded not only with homogeneously distributed functionalities, but with distinct molecule species grouped and ordered along the longitudinal axis. The arrangement of the resulting domains and final carrier rod length both were governed by RNA-templated two-step in vitro assembly. Two selectively addressable TMV CP mutants carrying either thiol (TMVCys) or amino (TMVLys) groups on the exposed surface were engineered and shown to retain reactivity towards maleimides or NHS esters, respectively, after acetic acid-based purification and re-assembly to novel carrier rod types. Stepwise combination of CPCys and CPLys with RNA allowed fabrication of TMV-like nanorods with a controlled total length of 300 or 330 nm, respectively, consisting of adjacent longitudinal 100-to-200 nm domains of differently addressable CP species. This technology paves the way towards rod-shaped scaffolds with pre-defined, selectively reactive barcode patterns on the nanometer scale. Electronic supplementary information (ESI) available: Two supplementary figures, showing (a) the phenotype of different Nicotiana plant species systemically infected with TMVwt, TMVCys, or TMVLys at 9 and 15 days post-inoculation, and (b) the length distribution of partially and completely assembled VLPs with a second type of RNA template (TMVwt RNA); and one supplementary table listing the sequences of primers used for site-specific mutagenesis of the TMV CP ORF and for sequencing. See DOI: 10.1039/c3nr33724c
Vishwanath, Sneha
2018-01-01
The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in function or regulatory properties. PMID:29432415
Vishwanath, Sneha; de Brevern, Alexandre G; Srinivasan, Narayanaswamy
2018-02-01
The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in function or regulatory properties.
la Paglia, Filippo; la Cascia, Caterina; Rizzo, Rosalinda; Riva, Giuseppe; la Barbera, Daniele
2015-01-01
Neuropsychological disorders are common in Obsessive-Compulsive Disorder (OCD) patients. Executive functions, verbal fluency and verbal memory, shifting attention from one aspect of stimuli to others, mental flexibility, engaging in executive planning and decision making, are the most involved cognitive domains. We focus on two aspects of neuropsychological function: decision making and cognitive behavioral flexibility, assessed through a virtual version of the Multiple Errand Test (V-MET), developed using the NeuroVR software. Thirty OCD patients were compared with thirty matched control subjects. The results showed the presence of difficulties in OCD patients with tasks where the goal is not clear, the information is incomplete or the parameters are ill-defined.
Cascade morphology transition in bcc metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Selby, A.; Juslin, Niklas
2015-06-10
Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent,more » $b$, in the defect production curve as a function of cascade energy ($$N_F$$$ \\sim$$$E_{MD}^b$$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $$\\mu$$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $$\\mu$$ as a function of displacement threshold energy, $$E_d$$, is presented for bcc metals.« less
Cascade morphology transition in bcc metals
Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; ...
2015-05-18
Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d,more » is presented for bcc metals.« less
An Ontology Based Approach to Information Security
NASA Astrophysics Data System (ADS)
Pereira, Teresa; Santos, Henrique
The semantically structure of knowledge, based on ontology approaches have been increasingly adopted by several expertise from diverse domains. Recently ontologies have been moved from the philosophical and metaphysics disciplines to be used in the construction of models to describe a specific theory of a domain. The development and the use of ontologies promote the creation of a unique standard to represent concepts within a specific knowledge domain. In the scope of information security systems the use of an ontology to formalize and represent the concepts of security information challenge the mechanisms and techniques currently used. This paper intends to present a conceptual implementation model of an ontology defined in the security domain. The model presented contains the semantic concepts based on the information security standard
Combi, Carlo; Mantovani, Matteo; Sabaini, Alberto; Sala, Pietro; Amaddeo, Francesco; Moretti, Ugo; Pozzi, Giuseppe
2015-07-01
Functional dependencies (FDs) typically represent associations over facts stored by a database, such as "patients with the same symptom get the same therapy." In more recent years, some extensions have been introduced to represent both temporal constraints (temporal functional dependencies - TFDs), as "for any given month, patients with the same symptom must have the same therapy, but their therapy may change from one month to the next one," and approximate properties (approximate functional dependencies - AFDs), as "patients with the same symptomgenerallyhave the same therapy." An AFD holds most of the facts stored by the database, enabling some data to deviate from the defined property: the percentage of data which violate the given property is user-defined. According to this scenario, in this paper we introduce approximate temporal functional dependencies (ATFDs) and use them to mine clinical data. Specifically, we considered the need for deriving new knowledge from psychiatric and pharmacovigilance data. ATFDs may be defined and measured either on temporal granules (e.g.grouping data by day, week, month, year) or on sliding windows (e.g.a fixed-length time interval which moves over the time axis): in this regard, we propose and discuss some specific and efficient data mining techniques for ATFDs. We also developed two running prototypes and showed the feasibility of our proposal by mining two real-world clinical data sets. The clinical interest of the dependencies derived considering the psychiatry and pharmacovigilance domains confirms the soundness and the usefulness of the proposed techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cooperative interactions at the SLP-76 complex are critical for actin polymerization.
Barda-Saad, Mira; Shirasu, Naoto; Pauker, Maor H; Hassan, Nirit; Perl, Orly; Balbo, Andrea; Yamaguchi, Hiroshi; Houtman, Jon C D; Appella, Ettore; Schuck, Peter; Samelson, Lawrence E
2010-07-21
T-cell antigen receptor (TCR) engagement induces formation of multi-protein signalling complexes essential for regulating T-cell functions. Generation of a complex of SLP-76, Nck and VAV1 is crucial for regulation of the actin machinery. We define the composition, stoichiometry and specificity of interactions in the SLP-76, Nck and VAV1 complex. Our data reveal that this complex can contain one SLP-76 molecule, two Nck and two VAV1 molecules. A direct interaction between Nck and VAV1 is mediated by binding between the C-terminal SH3 domain of Nck and the VAV1 N-terminal SH3 domain. Disruption of the VAV1:Nck interaction deleteriously affected actin polymerization. These novel findings shed new light on the mechanism of actin polymerization after T-cell activation.
Eilbeck, Karen L.; Lipstein, Julie; McGarvey, Sunanda; Staes, Catherine J.
2014-01-01
The Reportable Condition Knowledge Management System (RCKMS) is envisioned to be a single, comprehensive, authoritative, real-time portal to author, view and access computable information about reportable conditions. The system is designed for use by hospitals, laboratories, health information exchanges, and providers to meet public health reporting requirements. The RCKMS Knowledge Representation Workgroup was tasked to explore the need for ontologies to support RCKMS functionality. The workgroup reviewed relevant projects and defined criteria to evaluate candidate knowledge domain areas for ontology development. The use of ontologies is justified for this project to unify the semantics used to describe similar reportable events and concepts between different jurisdictions and over time, to aid data integration, and to manage large, unwieldy datasets that evolve, and are sometimes externally managed. PMID:25954354
Emerging concepts on the role of innate immunity in the prevention and control of HIV infection.
Ackerman, Margaret E; Dugast, Anne-Sophie; Alter, Galit
2012-01-01
While neutralizing antibodies can provide sterilizing protection from HIV infection via their variable domains, the antibody constant domain provides a functional link between innate and adaptive immunity and offers a means to harness the potent antiviral properties of a wide spectrum of innate immune effector cells. There has been a growing appreciation of the role of these effector mechanisms across fields from cancer immunotherapy to autoimmunity and infectious disease, as well as speculation that this mechanism may be responsible for the protection observed in the RV144 HIV vaccine trial. This review summarizes these extraneutralizing humoral immune activities, progress in defining the importance of these effector mechanisms during progression in HIV infection, and the potential impact that such vaccine-induced immune responses may have on protection from infection.
EHD proteins: Key conductors of endocytic transport
Naslavsky, Naava; Caplan, Steve
2010-01-01
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently, less was known about the four mammalian dynamin-like C-terminal Eps15 Homology Domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field. PMID:21067929
A Christoffel function weighted least squares algorithm for collocation approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Akil; Jakeman, John D.; Zhou, Tao
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
A Christoffel function weighted least squares algorithm for collocation approximations
Narayan, Akil; Jakeman, John D.; Zhou, Tao
2016-11-28
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
An information theory framework for dynamic functional domain connectivity.
Vergara, Victor M; Miller, Robyn; Calhoun, Vince
2017-06-01
Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Using Evolution to Guide Protein Engineering: The Devil IS in the Details.
Swint-Kruse, Liskin
2016-07-12
For decades, protein engineers have endeavored to reengineer existing proteins for novel applications. Overall, protein folds and gross functions can be readily transferred from one protein to another by transplanting large blocks of sequence (i.e., domain recombination). However, predictably fine-tuning function (e.g., by adjusting ligand affinity, specificity, catalysis, and/or allosteric regulation) remains a challenge. One approach has been to use the sequences of protein families to identify amino acid positions that change during the evolution of functional variation. The rationale is that these nonconserved positions could be mutated to predictably fine-tune function. Evolutionary approaches to protein design have had some success, but the engineered proteins seldom replicate the functional performances of natural proteins. This Biophysical Perspective reviews several complexities that have been revealed by evolutionary and experimental studies of protein function. These include 1) challenges in defining computational and biological thresholds that define important amino acids; 2) the co-occurrence of many different patterns of amino acid changes in evolutionary data; 3) difficulties in mapping the patterns of amino acid changes to discrete functional parameters; 4) the nonconventional mutational outcomes that occur for a particular group of functionally important, nonconserved positions; 5) epistasis (nonadditivity) among multiple mutations; and 6) the fact that a large fraction of a protein's amino acids contribute to its overall function. To overcome these challenges, new goals are identified for future studies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Glinsky, Gennadi V
2018-03-01
Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both regulatory complexity and functional precision of GRNs by creating predominantly a single gene (or a set of functionally linked genes) per regulatory domain structures. Collectively, present analyses reveal critical evolutionary contributions of transposable elements and distal enhancers to creation of thousands primate- and human-specific elements of a chromatin folding code, which defines the 3D context of interphase chromatin both restricting and facilitating biological functions of GRNs.
Chemically tunable mucin chimeras assembled on living cells
Kramer, Jessica R.; Onoa, Bibiana; Bustamante, Carlos; ...
2015-09-29
Mucins are a family of secreted and transmembrane glycoproteins characterized by a massive domain of dense O-glycosylation on serine and threonine residues. Mucins are intimately involved in immunity and cancer, yet elucidation of the biological roles of their glycodomains has been complicated by their massive size, domain polymorphisms, and variable glycosylation patterns. Here we developed a synthetic route to a library of compositionally defined, high-molecular weight, dual end-functionalized mucin glycodomain constructs via N-carboxyanhydride polymerization. These glycopolypeptides are the first synthetic analogs to our knowledge to feature the native α-GalNAc linkage to serine with molecular weights similar to native mucins, solvingmore » a nearly 50-year synthetic challenge. Physical characterization of the mimics revealed insights into the structure and properties of mucins. The synthetic glycodomains were end-functionalized with an optical probe and a tetrazine moiety, which allowed site-specific bioorthogonal conjugation to an engineered membrane protein on live mammalian cells. Lastly, this strategy in protein engineering will open avenues to explore the biological roles of cell surface mucins.« less
Improving cognitive outcomes for pediatric stroke.
Greenham, Mardee; Anderson, Vicki; Mackay, Mark T
2017-04-01
The past 20 years have seen a 35% increase in prevalence of pediatric stroke. Contrary to widely held views, children do not recover better than adults. This review explores the impact of pediatric stroke on cognitive domains, including intellectual and executive functions, memory and behavior, and the influence of age, lesion characteristics, and comorbidities on outcome. Cognitive problems occur in up to half of ischemic and hemorrhagic stroke survivors. Single-center studies have shown intelligence quotient scores skewed to the lower end of the average range, with greater impairment in performance than verbal domains. Executive function, such as attention and processing speed are particularly vulnerable to the effects of pediatric stroke. Age at stroke, larger infarct size, cortical/subcortical lesion location, epilepsy, and comorbid physical deficits are associated with poorer cognitive outcomes. Cognitive impairment occurs relatively frequently following pediatric stroke but the nature, severity, and predictors of specific deficits are not well defined. Improving understanding of outcomes following pediatric stroke is a key priority for families but a paucity of data limits the ability to develop targeted disease, and age-specific pediatric rehabilitation strategies to optimize cognitive outcomes following pediatric stroke.
Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET
Kubota, Tomoya; Durek, Thomas; Dang, Bobo; Finol-Urdaneta, Rocio K.; Craik, David J.; Kent, Stephen B. H.; French, Robert J.; Bezanilla, Francisco; Correa, Ana M.
2017-01-01
Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating. PMID:28202723
Importance of sequence specific hydrophobicity in synthetic protein transduction domain mimics.
Sgolastra, Federica; Minter, Lisa M; Osborne, Barbara A; Tew, Gregory N
2014-03-10
A new series of synthetic protein transduction domain mimics (PTDMs) was designed to analyze the importance of guanidine and phenyl group segregation along the backbone on their membrane interaction and cellular internalization abilities. ROMP was utilized to synthesize three polymers: nonsegregated homopolymers, intermediately segregated gradient copolymers, and strongly segregated block copolymers. In order to understand the role of functional group segregation on activity, it was important to design monomers that enabled these three different polymer topologies, or constitutional macromolecular isomers, to be prepared with identical chemical compositions. The structure-activity relationships were evaluated by both a biophysical assay, using dye-loaded vesicles, and by in vitro cellular uptake studies of fluorescently labeled chains. The results showed that functional group segregation impacts activity. In general, the nonsegregated homopolymer was the most active in both assays but also showed larger, ill-defined aggregates compared to either the gradient or block copolymers. It was also the most cytotoxic of the three isomers. As a result, the gradient copolymer with intermediate segregation optimizes activity and solubility with low cytotoxicity. This study gives new design guidelines for the development of PTDMs.
Juskaite, Victoria; Corcoran, David S; Leitinger, Birgit
2017-01-01
The collagen-binding receptor tyrosine kinase DDR1 (discoidin domain receptor 1) is a drug target for a wide range of human diseases, but the molecular mechanism of DDR1 activation is poorly defined. Here we co-expressed different types of signalling-incompetent DDR1 mutants (‘receiver’) with functional DDR1 (‘donor’) and demonstrate phosphorylation of receiver DDR1 by donor DDR1 in response to collagen. Making use of enforced covalent DDR1 dimerisation, which does not affect receptor function, we show that receiver dimers are phosphorylated in trans by the donor; this process requires the kinase activity of the donor but not that of the receiver. The receiver ectodomain is not required, but phosphorylation in trans is abolished by mutation of the transmembrane domain. Finally, we show that mutant DDR1 that cannot bind collagen is recruited into DDR1 signalling clusters. Our results support an activation mechanism whereby collagen induces lateral association of DDR1 dimers and phosphorylation between dimers. DOI: http://dx.doi.org/10.7554/eLife.25716.001 PMID:28590245
Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET.
Kubota, Tomoya; Durek, Thomas; Dang, Bobo; Finol-Urdaneta, Rocio K; Craik, David J; Kent, Stephen B H; French, Robert J; Bezanilla, Francisco; Correa, Ana M
2017-03-07
Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating.
DeFord-Watts, Laura M.; Tassin, Tara C.; Becker, Amy M.; Medeiros, Jennifer J.; Albanesi, Joseph P.; Love, Paul E.; Wülfing, Christoph; van Oers, Nicolai S. C.
2010-01-01
The CD3 ε subunit of the TCR complex contains two defined signaling domains, a proline-rich sequence and an ITAM. We identified a third signaling sequence in CD3 ε, termed the basic-rich stretch (BRS). Herein, we show that the positively charged residues of the BRS enable this region of CD3 ε to complex a subset of acidic phospholipids, including PI(3)P, PI(4)P, PI(5)P, PI(3,4,5)P3, and PI(4,5)P2. Transgenic mice containing mutations of the BRS exhibited varying developmental defects, ranging from reduced thymic cellularity to a complete block in T cell development. Peripheral T cells from BRS-modified mice also exhibited several defects, including decreased TCR surface expression, reduced TCR-mediated signaling responses to agonist peptide-loaded APCs, and delayed CD3 ε localization to the immunological synapse. Overall, these findings demonstrate a functional role for the CD3 ε lipid-binding domain in T cell biology. PMID:19542373
Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch
Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.
2014-01-01
In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763
Molecular basis of Kar9-Bim1 complex function during mating and spindle positioning
Manatschal, Cristina; Farcas, Ana-Maria; Degen, Miriam Steiner; Bayer, Mathias; Kumar, Anil; Landgraf, Christiane; Volkmer, Rudolf; Barral, Yves; Steinmetz, Michel O.
2016-01-01
The Kar9 pathway promotes nuclear fusion during mating and spindle alignment during metaphase in budding yeast. How Kar9 supports the different outcome of these two divergent processes is an open question. Here, we show that three sites in the C-terminal disordered domain of Kar9 mediate tight Kar9 interaction with the C-terminal dimerization domain of Bim1 (EB1 orthologue). Site1 and Site2 contain SxIP motifs; however, Site3 defines a novel type of EB1-binding site. Whereas Site2 and Site3 mediate Kar9 recruitment to microtubule tips, nuclear movement, and karyogamy, only Site2 functions in spindle positioning during metaphase. Site1 in turn plays an inhibitory role during mating. Additionally, the Kar9-Bim1 complex is involved in microtubule-independent activities during mating. Together, our data reveal how multiple and partially redundant EB1-binding sites provide a microtubule-associated protein with the means to modulate its biochemical properties to promote different molecular processes during cell proliferation and differentiation. PMID:27682587
A Novel Function of the Fe65 Neuronal Adaptor in Estrogen Receptor Action in Breast Cancer Cells*
Sun, Yuefeng; Kasiappan, Ravi; Tang, Jinfu; Webb, Panida L.; Quarni, Waise; Zhang, Xiaohong; Bai, Wenlong
2014-01-01
Fe65 is a multidomain adaptor with established functions in neuronal cells and neurodegeneration diseases. It binds to the C terminus of the Aβ amyloid precursor protein and is involved in regulating gene transcription. The present studies show that Fe65 is expressed in breast cancer (BCa) cells and acts as an ERα transcriptional coregulator that is recruited by 17β-estradiol to the promoters of estrogen target genes. Deletion analyses mapped the ERα binding domain to the phosphotyrosine binding domain 2 (PTB2). Ectopic Fe65 increased the transcriptional activity of the ERα in a PTB2-dependent manner in reporter assays. Fe65 knockdown decreased, whereas its stable expression increased the transcriptional activity of endogenous ERα in BCa cells and the ability of estrogens to stimulate target gene expression, ERα, and coactivator recruitment to target gene promoters and cell growth. Furthermore, Fe65 expression decreased the antagonistic activity of tamoxifen (TAM), suggesting a role for Fe65 in TAM resistance. Overall, the studies define a novel role for the neuronal adaptor in estrogen actions in BCa cells. PMID:24619425
Chemically tunable mucin chimeras assembled on living cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Jessica R.; Onoa, Bibiana; Bustamante, Carlos
Mucins are a family of secreted and transmembrane glycoproteins characterized by a massive domain of dense O-glycosylation on serine and threonine residues. Mucins are intimately involved in immunity and cancer, yet elucidation of the biological roles of their glycodomains has been complicated by their massive size, domain polymorphisms, and variable glycosylation patterns. Here we developed a synthetic route to a library of compositionally defined, high-molecular weight, dual end-functionalized mucin glycodomain constructs via N-carboxyanhydride polymerization. These glycopolypeptides are the first synthetic analogs to our knowledge to feature the native α-GalNAc linkage to serine with molecular weights similar to native mucins, solvingmore » a nearly 50-year synthetic challenge. Physical characterization of the mimics revealed insights into the structure and properties of mucins. The synthetic glycodomains were end-functionalized with an optical probe and a tetrazine moiety, which allowed site-specific bioorthogonal conjugation to an engineered membrane protein on live mammalian cells. Lastly, this strategy in protein engineering will open avenues to explore the biological roles of cell surface mucins.« less
Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis[W][OA
Yin, Xiao-Jun; Volk, Sara; Ljung, Karin; Mehlmer, Norbert; Dolezal, Karel; Ditengou, Franck; Hanano, Shigeru; Davis, Seth J.; Schmelzer, Elmon; Sandberg, Göran; Teige, Markus; Palme, Klaus; Pickart, Cecile; Bachmair, Andreas
2007-01-01
Lys-63–linked multiubiquitin chains play important roles in signal transduction in yeast and in mammals, but the functions for this type of chain in plants remain to be defined. The RING domain protein RGLG2 (for RING domain Ligase2) from Arabidopsis thaliana can be N-terminally myristoylated and localizes to the plasma membrane. It can form Lys-63–linked multiubiquitin chains in an in vitro reaction. RGLG2 has overlapping functions with its closest sequelog, RGLG1, and single mutants in either gene are inconspicuous. rglg1 rglg2 double mutant plants exhibit loss of apical dominance and altered phyllotaxy, two traits critically influenced by the plant hormone auxin. Auxin and cytokinin levels are changed, and the plants show a decreased response to exogenously added auxin. Changes in the abundance of PIN family auxin transport proteins and synthetic lethality with a mutation in the auxin transport regulator BIG suggest that the directional flow of auxin is modulated by RGLG activity. Modification of proteins by Lys-63–linked multiubiquitin chains is thus important for hormone-regulated, basic plant architecture. PMID:17586653