Science.gov

Sample records for define optimal sampling

  1. Peptide storage: are you getting the best return on your investment? Defining optimal storage conditions for proteomics samples.

    PubMed

    Kraut, Alexandra; Marcellin, Marlène; Adrait, Annie; Kuhn, Lauriane; Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Lebert, Dorothée; Masselon, Christophe D; Dupuis, Alain; Bruley, Christophe; Jaquinod, Michel; Garin, Jérôme; Gallagher-Gambarelli, Maighread

    2009-07-01

    To comply with current proteomics guidelines, it is often necessary to analyze the same peptide samples several times. Between analyses, the sample must be stored in such a way as to conserve its intrinsic properties, without losing either peptides or signal intensity. This article describes two studies designed to define the optimal storage conditions for peptide samples between analyses. With the use of a label-free strategy, peptide conservation was compared over a 28-day period in three different recipients: standard plastic tubes, glass tubes, and low-adsorption plastic tubes. The results of this study showed that standard plastic tubes are unsuitable for peptide storage over the period studied. Glass tubes were found to perform better than standard plastic, but optimal peptide recovery was achieved using low-adsorption plastic tubes. The peptides showing poor recovery following storage were mainly hydrophobic in nature. The differences in peptide recovery between glass and low-adsorption plastic tubes were further studied using isotopically labeled proteins. This study allowed accurate comparison of peptide recovery between the two tube types within the same LC-MS run. The results of the label-free study were confirmed. Further, it was possible to demonstrate that peptide recovery in low-adsorption plastic tubes was optimal whatever the peptide concentration stored.

  2. Annotating user-defined abstractions for optimization

    SciTech Connect

    Quinlan, D; Schordan, M; Vuduc, R; Yi, Q

    2005-12-05

    This paper discusses the features of an annotation language that we believe to be essential for optimizing user-defined abstractions. These features should capture semantics of function, data, and object-oriented abstractions, express abstraction equivalence (e.g., a class represents an array abstraction), and permit extension of traditional compiler optimizations to user-defined abstractions. Our future work will include developing a comprehensive annotation language for describing the semantics of general object-oriented abstractions, as well as automatically verifying and inferring the annotated semantics.

  3. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    SciTech Connect

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  4. Defining a region of optimization based on engine usage data

    SciTech Connect

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-08-04

    Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.

  5. Defining Predictive Probability Functions for Species Sampling Models

    PubMed Central

    Lee, Jaeyong; Quintana, Fernando A.; Müller, Peter; Trippa, Lorenzo

    2013-01-01

    We review the class of species sampling models (SSM). In particular, we investigate the relation between the exchangeable partition probability function (EPPF) and the predictive probability function (PPF). It is straightforward to define a PPF from an EPPF, but the converse is not necessarily true. In this paper we introduce the notion of putative PPFs and show novel conditions for a putative PPF to define an EPPF. We show that all possible PPFs in a certain class have to define (unnormalized) probabilities for cluster membership that are linear in cluster size. We give a new necessary and sufficient condition for arbitrary putative PPFs to define an EPPF. Finally, we show posterior inference for a large class of SSMs with a PPF that is not linear in cluster size and discuss a numerical method to derive its PPF. PMID:24368874

  6. Logical definability and asymptotic growth in optimization and counting problems

    SciTech Connect

    Compton, K.

    1994-12-31

    There has recently been a great deal of interest in the relationship between logical definability and NP-optimization problems. Let MS{sub n} (resp. MP{sub n}) be the class of problems to compute, for given a finite structure A, the maximum number of tuples {bar x} in A satisfying a {Sigma}{sub n} (resp. II{sub n}) formula {psi}({bar x}, {bar S}) as {bar S} ranges over predicates on A. Kolaitis and Thakur showed that the classes MS{sub n} and MP{sub n} collapse to a hierarchy of four levels. Papadimitriou and Yannakakis previously showed that problems in the two lowest levels MS{sub 0} and MS{sub 1} (which they called Max Snp and Max Np) are approximable to within a contrast factor in polynomial time. Similarly, Saluja, Subrahmanyam, and Thakur defined SS{sub n} (resp. SP{sub n}) to be the class of problems to compute, for given a finite structure A, the number of tuples ({bar T}, {bar S}) satisfying a given {Sigma}{sub n} (resp. II{sub n}) formula {psi}({bar T}, {bar c}) in A. They showed that the classes SS{sub n} and SP{sub n} collapse to a hierarchy of five levels and that problems in the two lowest levels SS{sub 0} and SS{sub 1} have a fully polynomial time randomized approximation scheme. We define extended classes MSF{sub n}, MPF{sub n} SSF{sub n}, and SPF{sub n} by allowing formulae to contain predicates definable in a logic known as least fixpoint logic. The resulting hierarchies classes collapse to the same number of levels and problems in the bottom levels can be approximated as before, but now some problems descend from the highest levels in the original hierarchies to the lowest levels in the new hierarchies. We introduce a method characterizing rates of growth of average solution sizes thereby showing a number of important problems do not belong MSF{sub 1} and SSF{sub 1}. This method is related to limit laws for logics and the probabilistic method from combinatorics.

  7. Optimal sampling ratios in comparative diagnostic trials

    PubMed Central

    Dong, Ting; Tang, Liansheng Larry; Rosenberger, William F.

    2014-01-01

    Summary A subjective sampling ratio between the case and the control groups is not always an efficient choice to maximize the power or to minimize the total required sample size in comparative diagnostic trials.We derive explicit expressions for an optimal sampling ratio based on a common variance structure shared by several existing summary statistics of the receiver operating characteristic curve. We propose a two-stage procedure to estimate adaptively the optimal ratio without pilot data. We investigate the properties of the proposed method through theoretical proofs, extensive simulation studies and a real example in cancer diagnostic studies. PMID:24948841

  8. Urine sampling and collection system optimization and testing

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Geating, J. A.; Koesterer, M. G.

    1975-01-01

    A Urine Sampling and Collection System (USCS) engineering model was developed to provide for the automatic collection, volume sensing and sampling of urine from each micturition. The purpose of the engineering model was to demonstrate verification of the system concept. The objective of the optimization and testing program was to update the engineering model, to provide additional performance features and to conduct system testing to determine operational problems. Optimization tasks were defined as modifications to minimize system fluid residual and addition of thermoelectric cooling.

  9. Defining the Mars Ascent Problem for Sample Return

    SciTech Connect

    Whitehead, J

    2008-07-31

    Lifting geology samples off of Mars is both a daunting technical problem for propulsion experts and a cultural challenge for the entire community that plans and implements planetary science missions. The vast majority of science spacecraft require propulsive maneuvers that are similar to what is done routinely with communication satellites, so most needs have been met by adapting hardware and methods from the satellite industry. While it is even possible to reach Earth from the surface of the moon using such traditional technology, ascending from the surface of Mars is beyond proven capability for either solid or liquid propellant rocket technology. Miniature rocket stages for a Mars ascent vehicle would need to be over 80 percent propellant by mass. It is argued that the planetary community faces a steep learning curve toward nontraditional propulsion expertise, in order to successfully accomplish a Mars sample return mission. A cultural shift may be needed to accommodate more technical risk acceptance during the technology development phase.

  10. Ecological and sampling constraints on defining landscape fire severity

    USGS Publications Warehouse

    Key, C.H.

    2006-01-01

    Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal

  11. SEARCH, blackbox optimization, and sample complexity

    SciTech Connect

    Kargupta, H.; Goldberg, D.E.

    1996-05-01

    The SEARCH (Search Envisioned As Relation and Class Hierarchizing) framework developed elsewhere (Kargupta, 1995; Kargupta and Goldberg, 1995) offered an alternate perspective toward blackbox optimization -- optimization in presence of little domain knowledge. The SEARCH framework investigates the conditions essential for transcending the limits of random enumerative search using a framework developed in terms of relations, classes and partial ordering. This paper presents a summary of some of the main results of that work. A closed form bound on the sample complexity in terms of the cardinality of the relation space, class space, desired quality of the solution and the reliability is presented. This also leads to the identification of the class of order-k delineable problems that can be solved in polynomial sample complexity. These results are applicable to any blackbox search algorithms, including evolutionary optimization techniques.

  12. Sampling design optimization for spatial functions

    USGS Publications Warehouse

    Olea, R.A.

    1984-01-01

    A new procedure is presented for minimizing the sampling requirements necessary to estimate a mappable spatial function at a specified level of accuracy. The technique is based on universal kriging, an estimation method within the theory of regionalized variables. Neither actual implementation of the sampling nor universal kriging estimations are necessary to make an optimal design. The average standard error and maximum standard error of estimation over the sampling domain are used as global indices of sampling efficiency. The procedure optimally selects those parameters controlling the magnitude of the indices, including the density and spatial pattern of the sample elements and the number of nearest sample elements used in the estimation. As an illustration, the network of observation wells used to monitor the water table in the Equus Beds of Kansas is analyzed and an improved sampling pattern suggested. This example demonstrates the practical utility of the procedure, which can be applied equally well to other spatial sampling problems, as the procedure is not limited by the nature of the spatial function. ?? 1984 Plenum Publishing Corporation.

  13. Optimization of Eosine Analyses in Water Samples

    NASA Astrophysics Data System (ADS)

    Kola, Liljana

    2010-01-01

    The fluorescence ability of Eosine enables its using as artificial tracer in the water system studies. The fluorescence intensity of fluorescent dyes in water samples depends on their physical and chemical properties, such as pH, temperature, presence of oxidants, etc. This paper presents the experience of the Center of Applied Nuclear Physics, Tirana, in this field. The problem is dealt with in relation to applying Eosine to trace and determine water movements within the karstic system and underground waters. We have used for this study the standard solutions of Eosine. The method we have elaborated to this purpose made it possible to optimize procedures we use to analyze samples for the presence of Eosine and measure its content, even in trace levels, by the means of a Perkin Elmer LS 55 Luminescence Spectrometer.

  14. Learning approach to sampling optimization: Applications in astrodynamics

    NASA Astrophysics Data System (ADS)

    Henderson, Troy Allen

    A new, novel numerical optimization algorithm is developed, tested, and used to solve difficult numerical problems from the field of astrodynamics. First, a brief review of optimization theory is presented and common numerical optimization techniques are discussed. Then, the new method, called the Learning Approach to Sampling Optimization (LA) is presented. Simple, illustrative examples are given to further emphasize the simplicity and accuracy of the LA method. Benchmark functions in lower dimensions are studied and the LA is compared, in terms of performance, to widely used methods. Three classes of problems from astrodynamics are then solved. First, the N-impulse orbit transfer and rendezvous problems are solved by using the LA optimization technique along with derived bounds that make the problem computationally feasible. This marriage between analytical and numerical methods allows an answer to be found for an order of magnitude greater number of impulses than are currently published. Next, the N-impulse work is applied to design periodic close encounters (PCE) in space. The encounters are defined as an open rendezvous, meaning that two spacecraft must be at the same position at the same time, but their velocities are not necessarily equal. The PCE work is extended to include N-impulses and other constraints, and new examples are given. Finally, a trajectory optimization problem is solved using the LA algorithm and comparing performance with other methods based on two models---with varying complexity---of the Cassini-Huygens mission to Saturn. The results show that the LA consistently outperforms commonly used numerical optimization algorithms.

  15. Continuous Cultivation for Apparent Optimization of Defined Media for Cellulomonas sp. and Bacillus cereus

    PubMed Central

    Summers, R. J.; Boudreaux, D. P.; Srinivasan, V. R.

    1979-01-01

    Steady-state continuous culture was used to optimize lean chemically defined media for a Cellulomonas sp. and Bacillus cereus strain T. Both organisms were extremely sensitive to variations in trace-metal concentrations. However, medium optimization by this technique proved rapid, and multifactor screening was easily conducted by using a minimum of instrumentation. The optimized media supported critical dilution rates of 0.571 and 0.467 h−1 for Cellulomonas and Bacillus, respectively. These values approximated maximum growth rate values observed in batch culture. PMID:16345417

  16. Sample size and optimal sample design in tuberculosis surveys

    PubMed Central

    Sánchez-Crespo, J. L.

    1967-01-01

    Tuberculosis surveys sponsored by the World Health Organization have been carried out in different communities during the last few years. Apart from the main epidemiological findings, these surveys have provided basic statistical data for use in the planning of future investigations. In this paper an attempt is made to determine the sample size desirable in future surveys that include one of the following examinations: tuberculin test, direct microscopy, and X-ray examination. The optimum cluster sizes are found to be 100-150 children under 5 years of age in the tuberculin test, at least 200 eligible persons in the examination for excretors of tubercle bacilli (direct microscopy) and at least 500 eligible persons in the examination for persons with radiological evidence of pulmonary tuberculosis (X-ray). Modifications of the optimum sample size in combined surveys are discussed. PMID:5300008

  17. Optimal policy for labeling training samples

    NASA Astrophysics Data System (ADS)

    Lipsky, Lester; Lopresti, Daniel; Nagy, George

    2013-01-01

    Confirming the labels of automatically classified patterns is generally faster than entering new labels or correcting incorrect labels. Most labels assigned by a classifier, even if trained only on relatively few pre-labeled patterns, are correct. Therefore the overall cost of human labeling can be decreased by interspersing labeling and classification. Given a parameterized model of the error rate as an inverse power law function of the size of the training set, the optimal splits can be computed rapidly. Projected savings in operator time are over 60% for a range of empirical error functions for hand-printed digit classification with ten different classifiers.

  18. The optimal sampling strategy for unfamiliar prey.

    PubMed

    Sherratt, Thomas N

    2011-07-01

    Precisely how predators solve the problem of sampling unfamiliar prey types is central to our understanding of the evolution of a variety of antipredator defenses, ranging from Müllerian mimicry to polymorphism. When predators encounter a novel prey item then they must decide whether to take a risk and attack it, thereby gaining a potential meal and valuable information, or avoid such prey altogether. Moreover, if predators initially attack the unfamiliar prey, then at some point(s) they should decide to cease sampling if evidence mounts that the type is on average unprofitable to attack. Here, I cast this problem as a "two-armed bandit," the standard metaphor for exploration-exploitation trade-offs. I assume that as predators encounter and attack unfamiliar prey they use Bayesian inference to update both their beliefs as to the likelihood that individuals of this type are chemically defended, and the probability of seeing the prey type in the future. I concurrently use dynamic programming to identify the critical informational states at which predator should cease sampling. The model explains why predators sample more unprofitable prey before complete rejection when the prey type is common and explains why predators exhibit neophobia when the unfamiliar prey type is perceived to be rare.

  19. The complexities of defining optimal sleep: empirical and theoretical considerations with a special emphasis on children.

    PubMed

    Blunden, Sarah; Galland, Barbara

    2014-10-01

    The main aim of this paper is to consider relevant theoretical and empirical factors defining optimal sleep, and assess the relative importance of each in developing a working definition for, or guidelines about, optimal sleep, particularly in children. We consider whether optimal sleep is an issue of sleep quantity or of sleep quality. Sleep quantity is discussed in terms of duration, timing, variability and dose-response relationships. Sleep quality is explored in relation to continuity, sleepiness, sleep architecture and daytime behaviour. Potential limitations of sleep research in children are discussed, specifically the loss of research precision inherent in sleep deprivation protocols involving children. We discuss which outcomes are the most important to measure. We consider the notion that insufficient sleep may be a totally subjective finding, is impacted by the age of the reporter, driven by socio-cultural patterns and sleep-wake habits, and that, in some individuals, the driver for insufficient sleep can be viewed in terms of a cost-benefit relationship, curtailing sleep in order to perform better while awake. We conclude that defining optimal sleep is complex. The only method of capturing this elusive concept may be by somnotypology, taking into account duration, quality, age, gender, race, culture, the task at hand, and an individual's position in both sleep-alert and morningness-eveningness continuums. At the experimental level, a unified approach by researchers to establish standardized protocols to evaluate optimal sleep across paediatric age groups is required.

  20. Realization theory and quadratic optimal controllers for systems defined over Banach and Frechet algebras

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.

    1980-01-01

    It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.

  1. Optimal flexible sample size design with robust power.

    PubMed

    Zhang, Lanju; Cui, Lu; Yang, Bo

    2016-08-30

    It is well recognized that sample size determination is challenging because of the uncertainty on the treatment effect size. Several remedies are available in the literature. Group sequential designs start with a sample size based on a conservative (smaller) effect size and allow early stop at interim looks. Sample size re-estimation designs start with a sample size based on an optimistic (larger) effect size and allow sample size increase if the observed effect size is smaller than planned. Different opinions favoring one type over the other exist. We propose an optimal approach using an appropriate optimality criterion to select the best design among all the candidate designs. Our results show that (1) for the same type of designs, for example, group sequential designs, there is room for significant improvement through our optimization approach; (2) optimal promising zone designs appear to have no advantages over optimal group sequential designs; and (3) optimal designs with sample size re-estimation deliver the best adaptive performance. We conclude that to deal with the challenge of sample size determination due to effect size uncertainty, an optimal approach can help to select the best design that provides most robust power across the effect size range of interest. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26999385

  2. A Source-to-Source Architecture for User-Defined Optimizations

    SciTech Connect

    Schordan, M; Quinlan, D

    2003-02-06

    The performance of object-oriented applications often suffers from the inefficient use of high-level abstractions provided by underlying libraries. Since these library abstractions are user-defined and not part of the programming language itself only limited information on their high-level semantics can be leveraged through program analysis by the compiler and thus most often no appropriate high-level optimizations are performed. In this paper we outline an approach based on source-to-source transformation to allow users to define optimizations which are not performed by the compiler they use. These techniques are intended to be as easy and intuitive as possible for potential users; i.e. for designers of object-oriented libraries, people most often only with basic compiler expertise.

  3. Implicit learning is better at subjectively defined non-optimal time of day.

    PubMed

    Delpouve, Julie; Schmitz, Rémy; Peigneux, Philippe

    2014-09-01

    Individual preferences in morningness-eveningness rhythms modulate temporal fluctuations of cognitive performance over a normal day. Besides enhanced cognitive performance at individual's peak time as derived from morningness-eveningness questionnaires, a few studies have shown increased implicit memory abilities at a non-optimal (NOP) time of day. Various subjective factors might also determine the clock time for high or low cognitive efficiency. Using an artificial grammar learning (AGL) task, we show enhanced implicit learning of high-order information at NOP [vs optimal (OP)] time of day as subjectively defined by participants, irrespective of morningness-eveningness scores. Our results suggest that subjectively defined efficiency periods are a modulating factor in the testing of cognitive functions.

  4. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    PubMed

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571

  5. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks

    PubMed Central

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571

  6. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    PubMed

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  7. Towards optimal sampling schedules for integral pumping tests

    NASA Astrophysics Data System (ADS)

    Leschik, Sebastian; Bayer-Raich, Marti; Musolff, Andreas; Schirmer, Mario

    2011-06-01

    Conventional point sampling may miss plumes in groundwater due to an insufficient density of sampling locations. The integral pumping test (IPT) method overcomes this problem by increasing the sampled volume. One or more wells are pumped for a long duration (several days) and samples are taken during pumping. The obtained concentration-time series are used for the estimation of average aquifer concentrations Cav and mass flow rates MCP. Although the IPT method is a well accepted approach for the characterization of contaminated sites, no substantiated guideline for the design of IPT sampling schedules (optimal number of samples and optimal sampling times) is available. This study provides a first step towards optimal IPT sampling schedules by a detailed investigation of 30 high-frequency concentration-time series. Different sampling schedules were tested by modifying the original concentration-time series. The results reveal that the relative error in the Cav estimation increases with a reduced number of samples and higher variability of the investigated concentration-time series. Maximum errors of up to 22% were observed for sampling schedules with the lowest number of samples of three. The sampling scheme that relies on constant time intervals ∆t between different samples yielded the lowest errors.

  8. Sampling optimization for printer characterization by direct search.

    PubMed

    Bianco, Simone; Schettini, Raimondo

    2012-12-01

    Printer characterization usually requires many printer inputs and corresponding color measurements of the printed outputs. In this brief, a sampling optimization for printer characterization on the basis of direct search is proposed to maintain high color accuracy with a reduction in the number of characterization samples required. The proposed method is able to match a given level of color accuracy requiring, on average, a characterization set cardinality which is almost one-fourth of that required by the uniform sampling, while the best method in the state of the art needs almost one-third. The number of characterization samples required can be further reduced if the proposed algorithm is coupled with a sequential optimization method that refines the sample values in the device-independent color space. The proposed sampling optimization method is extended to deal with multiple substrates simultaneously, giving statistically better colorimetric accuracy (at the α = 0.05 significance level) than sampling optimization techniques in the state of the art optimized for each individual substrate, thus allowing use of a single set of characterization samples for multiple substrates.

  9. In-depth analysis of sampling optimization methods

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Han, Sangjun; Kim, Myoungsoo; Habets, Boris; Buhl, Stefan; Guhlemann, Steffen; Rößiger, Martin; Bellmann, Enrico; Kim, Seop

    2016-03-01

    High order overlay and alignment models require good coverage of overlay or alignment marks on the wafer. But dense sampling plans are not possible for throughput reasons. Therefore, sampling plan optimization has become a key issue. We analyze the different methods for sampling optimization and discuss the different knobs to fine-tune the methods to constraints of high volume manufacturing. We propose a method to judge sampling plan quality with respect to overlay performance, run-to-run stability and dispositioning criteria using a number of use cases from the most advanced lithography processes.

  10. Optimal Sampling Strategies for Detecting Zoonotic Disease Epidemics

    PubMed Central

    Ferguson, Jake M.; Langebrake, Jessica B.; Cannataro, Vincent L.; Garcia, Andres J.; Hamman, Elizabeth A.; Martcheva, Maia; Osenberg, Craig W.

    2014-01-01

    The early detection of disease epidemics reduces the chance of successful introductions into new locales, minimizes the number of infections, and reduces the financial impact. We develop a framework to determine the optimal sampling strategy for disease detection in zoonotic host-vector epidemiological systems when a disease goes from below detectable levels to an epidemic. We find that if the time of disease introduction is known then the optimal sampling strategy can switch abruptly between sampling only from the vector population to sampling only from the host population. We also construct time-independent optimal sampling strategies when conducting periodic sampling that can involve sampling both the host and the vector populations simultaneously. Both time-dependent and -independent solutions can be useful for sampling design, depending on whether the time of introduction of the disease is known or not. We illustrate the approach with West Nile virus, a globally-spreading zoonotic arbovirus. Though our analytical results are based on a linearization of the dynamical systems, the sampling rules appear robust over a wide range of parameter space when compared to nonlinear simulation models. Our results suggest some simple rules that can be used by practitioners when developing surveillance programs. These rules require knowledge of transition rates between epidemiological compartments, which population was initially infected, and of the cost per sample for serological tests. PMID:24968100

  11. Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure

    SciTech Connect

    Wilborn, Bill; Marutzky, Sam; Knapp, Kathryn

    2013-02-24

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

  12. Optimization of enrichment processes of pentachlorophenol (PCP) from water samples.

    PubMed

    Li, Ping; Liu, Jun-xin

    2004-01-01

    The method of enriching PCP(pentachlorophenol) from aquatic environment by solid phase extraction(SPE) was studied. Several factors affecting the recoveries of PCP, including sample pH, eluting solvent, eluting volume and flow rate of water sample, were optimized by orthogonal array design(OAD). The optimized results were sample pH 4; eluting solvent, 100% methanol; eluting solvent volume, 2 ml and flow rate of water sample, 4 ml/min. A comparison is made between SPE and liquid-liquid extraction(LLE) method. The recoveries of PCP were in the range of 87.6%-133.6% and 79%-120.3% for SPE and LLE, respectively. Important advantages of the SPE compared with the LLE include the short extraction time and reduced consumption of organic solvents. SPE can replace LLE for isolating and concentrating PCP from water samples.

  13. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.

    PubMed

    Chen, Yu; Dong, Fengqing; Wang, Yonghong

    2016-09-01

    With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved. PMID:27262567

  14. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells.

    PubMed

    Kishishita, Shohei; Katayama, Satoshi; Kodaira, Kunihiko; Takagi, Yoshinori; Matsuda, Hiroki; Okamoto, Hiroshi; Takuma, Shinya; Hirashima, Chikashi; Aoyagi, Hideki

    2015-07-01

    Chinese hamster ovary (CHO) cells are the most commonly used mammalian host for large-scale commercial production of therapeutic monoclonal antibodies (mAbs). Chemically defined media are currently used for CHO cell-based mAb production. An adequate supply of nutrients, especially specific amino acids, is required for cell growth and mAb production, and chemically defined fed-batch processes that support rapid cell growth, high cell density, and high levels of mAb production is still challenging. Many studies have highlighted the benefits of various media designs, supplements, and feed addition strategies in cell cultures. In the present study, we used a strategy involving optimization of a chemically defined feed medium to improve mAb production. Amino acids that were consumed in substantial amounts during a control culture were added to the feed medium as supplements. Supplementation was controlled to minimize accumulation of waste products such as lactate and ammonia. In addition, we evaluated supplementation with tyrosine, which has poor solubility, in the form of a dipeptide or tripeptide to improve its solubility. Supplementation with serine, cysteine, and tyrosine enhanced mAb production, cell viability, and metabolic profiles. A cysteine-tyrosine-serine tripeptide showed high solubility and produced beneficial effects similar to those observed with the free amino acids and with a dipeptide in improving mAb titers and metabolic profiles.

  15. Investigation of Archean microfossil preservation for defining science objectives for Mars sample return missions

    NASA Astrophysics Data System (ADS)

    Lorber, K.; Czaja, A. D.

    2014-12-01

    Recent studies suggest that Mars contains more potentially life-supporting habitats (either in the present or past), than once thought. The key to finding life on Mars, whether extinct or extant, is to first understand which biomarkers and biosignatures are strictly biogenic in origin. Studying ancient habitats and fossil organisms of the early Earth can help to characterize potential Martian habitats and preserved life. This study, which focuses on the preservation of fossil microorganisms from the Archean Eon, aims to help define in part the science methods needed for a Mars sample return mission, of which, the Mars 2020 rover mission is the first step.Here is reported variations in the geochemical and morphological preservation of filamentous fossil microorganisms (microfossils) collected from the 2.5-billion-year-old Gamohaan Formation of the Kaapvaal Craton of South Africa. Samples of carbonaceous chert were collected from outcrop and drill core within ~1 km of each other. Specimens from each location were located within thin sections and their biologic morphologies were confirmed using confocal laser scanning microscopy. Raman spectroscopic analyses documented the carbonaceous nature of the specimens and also revealed variations in the level of geochemical preservation of the kerogen that comprises the fossils. The geochemical preservation of kerogen is principally thought to be a function of thermal alteration, but the regional geology indicates all of the specimens experienced the same thermal history. It is hypothesized that the fossils contained within the outcrop samples were altered by surface weathering, whereas the drill core samples, buried to a depth of ~250 m, were not. This differential weathering is unusual for cherts that have extremely low porosities. Through morphological and geochemical characterization of the earliest known forms of fossilized life on the earth, a greater understanding of the origin of evolution of life on Earth is gained

  16. spsann - optimization of sample patterns using spatial simulated annealing

    NASA Astrophysics Data System (ADS)

    Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia

    2015-04-01

    There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a

  17. Optimization of protein samples for NMR using thermal shift assays.

    PubMed

    Kozak, Sandra; Lercher, Lukas; Karanth, Megha N; Meijers, Rob; Carlomagno, Teresa; Boivin, Stephane

    2016-04-01

    Maintaining a stable fold for recombinant proteins is challenging, especially when working with highly purified and concentrated samples at temperatures >20 °C. Therefore, it is worthwhile to screen for different buffer components that can stabilize protein samples. Thermal shift assays or ThermoFluor(®) provide a high-throughput screening method to assess the thermal stability of a sample under several conditions simultaneously. Here, we describe a thermal shift assay that is designed to optimize conditions for nuclear magnetic resonance studies, which typically require stable samples at high concentration and ambient (or higher) temperature. We demonstrate that for two challenging proteins, the multicomponent screen helped to identify ingredients that increased protein stability, leading to clear improvements in the quality of the spectra. Thermal shift assays provide an economic and time-efficient method to find optimal conditions for NMR structural studies. PMID:26984476

  18. Optimal procedures for detecting analytic bias using patient samples.

    PubMed

    Smith, F A; Kroft, S H

    1997-09-01

    We recently described the performance characteristics of the exponentially adjusted moving mean (EAMM), a patient-data, moving block mean procedure, which is a generalized algorithm that unifies Bull's algorithm and the classic average of normals (AON) procedure. Herein we describe the trend EAMM (TEAMM), a continuous signal analog of the EAMM procedure related to classic trend analysis. Using computer simulation, we have compared EAMM and TEAMM over a range of biases for various sample sizes (N or equivalent smoothing factor alpha) and exponential parameters (P) under conditions of equivalent false rejection (fixed on a per patient sample basis). We found optimal pairs of N and P for each level of bias by determination of minimum mean patient samples to rejection. Overall optimal algorithms were determined through calculation of undetected lost medical utility (ULMU), a novel function that quantifies the medical damage due to analytic bias. The ULMU function was calculated based on lost test specificity in a normal population. We found that optimized TEAMM was superior to optimized EAMM for all levels of analytic bias. If these observations hold true for non-Gaussian populations, TEAMM procedures are the method of choice for detecting bias using patient samples or as an event gauge to trigger use of known-value control materials.

  19. Optimizing Sampling Efficiency for Biomass Estimation Across NEON Domains

    NASA Astrophysics Data System (ADS)

    Abercrombie, H. H.; Meier, C. L.; Spencer, J. J.

    2013-12-01

    Over the course of 30 years, the National Ecological Observatory Network (NEON) will measure plant biomass and productivity across the U.S. to enable an understanding of terrestrial carbon cycle responses to ecosystem change drivers. Over the next several years, prior to operational sampling at a site, NEON will complete construction and characterization phases during which a limited amount of sampling will be done at each site to inform sampling designs, and guide standardization of data collection across all sites. Sampling biomass in 60+ sites distributed among 20 different eco-climatic domains poses major logistical and budgetary challenges. Traditional biomass sampling methods such as clip harvesting and direct measurements of Leaf Area Index (LAI) involve collecting and processing plant samples, and are time and labor intensive. Possible alternatives include using indirect sampling methods for estimating LAI such as digital hemispherical photography (DHP) or using a LI-COR 2200 Plant Canopy Analyzer. These LAI estimations can then be used as a proxy for biomass. The biomass estimates calculated can then inform the clip harvest sampling design during NEON operations, optimizing both sample size and number so that standardized uncertainty limits can be achieved with a minimum amount of sampling effort. In 2011, LAI and clip harvest data were collected from co-located sampling points at the Central Plains Experimental Range located in northern Colorado, a short grass steppe ecosystem that is the NEON Domain 10 core site. LAI was measured with a LI-COR 2200 Plant Canopy Analyzer. The layout of the sampling design included four, 300 meter transects, with clip harvests plots spaced every 50m, and LAI sub-transects spaced every 10m. LAI was measured at four points along 6m sub-transects running perpendicular to the 300m transect. Clip harvest plots were co-located 4m from corresponding LAI transects, and had dimensions of 0.1m by 2m. We conducted regression analyses

  20. 'Optimal thermal range' in ectotherms: Defining criteria for tests of the temperature-size-rule.

    PubMed

    Walczyńska, Aleksandra; Kiełbasa, Anna; Sobczyk, Mateusz

    2016-08-01

    Thermal performance curves for population growth rate r (a measure of fitness) were estimated over a wide range of temperature for three species: Coleps hirtus (Protista), Lecane inermis (Rotifera) and Aeolosoma hemprichi (Oligochaeta). We measured individual body size and examined if predictions for the temperature-size rule (TSR) were valid for different temperatures. All three organisms investigated follow the TSR, but only over a specific range between minimal and optimal temperatures, while maintenance at temperatures beyond this range showed the opposite pattern in these taxa. We consider minimal and optimal temperatures to be species-specific, and moreover delineate a physiological range outside of which an ectotherm is constrained against displaying size plasticity in response to temperature. This thermal range concept has important implications for general size-temperature studies. Furthermore, the concept of 'operating thermal conditions' may provide a new approach to (i) defining criteria required for investigating and interpreting temperature effects, and (ii) providing a novel interpretation for many cases in which species do not conform to the TSR. PMID:27503715

  1. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  2. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics

    SciTech Connect

    Pikulski, M. Shiroka, T.; Ott, H.-R.; Mesot, J.

    2014-09-15

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.

  3. Optimization of tapered fiber sample for laser cooling of solids

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2009-02-01

    The physical mechanism of radiation cooling by anti-Stokes fluorescence was originally proposed in 1929 and experimentally observed in solid materials in 1995 by Epstein's research team in ytterbium-doped ZBLANP glass. Some specific combinations of the ions, host materials, and the wavelength of the incident radiation can provide anti-Stokes interaction resulting in phonon absorption accompanied by the cooling of the host material. Although the optical cooling of the Yb3+-doped ZBLANP sample was already observed there are broad possibilities for its improvement to increase the temperature-drop of the sample by optimization of the geometrical parameters of the cooling sample. We propose a theoretical model for an optimized tapered fiber structure for use as a sample in anti-Stokes laser cooling of solids. This tapered fiber has a fluorozirconate glass ZBLANP with a core doped with Yb3+ or Tm3+ ions. As evident from the results of our work, the appropriate choice of the fiber core and the fiber cladding radii can significantly increase the temperature-drop of the sample for any fixed pump power. The value of the maximum of the temperature-drop of the sample increases with an increase in the pump power. The depletion of the pump power causes a temperature gradient along the length of the cooled sample.

  4. SamACO: variable sampling ant colony optimization algorithm for continuous optimization.

    PubMed

    Hu, Xiao-Min; Zhang, Jun; Chung, Henry Shu-Hung; Li, Yun; Liu, Ou

    2010-12-01

    An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discrete (combinatorial) optimization problems, the ACO procedure is also applicable to continuous optimization. This paper presents a new way of extending ACO to solving continuous optimization problems by focusing on continuous variable sampling as a key to transforming ACO from discrete optimization to continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e., the generation of candidate variable values for selection, the ants' solution construction, and the pheromone update process. The distinct characteristics of SamACO are the cooperation of a novel sampling method for discretizing the continuous search space and an efficient incremental solution construction method based on the sampled values. The performance of SamACO is tested using continuous numerical functions with unimodal and multimodal features. Compared with some state-of-the-art algorithms, including traditional ant-based algorithms and representative computational intelligence algorithms for continuous optimization, the performance of SamACO is seen competitive and promising.

  5. Optimal regulation in systems with stochastic time sampling

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Lee, P. S.

    1980-01-01

    An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.

  6. Defining Adult Experiences: Perspectives of a Diverse Sample of Young Adults.

    PubMed

    Lowe, Sarah R; Dillon, Colleen O; Rhodes, Jean E; Zwiebach, Liza

    2013-01-01

    This study explored the roles and psychological experiences identified as defining adult moments using mixed methods with a racially, ethnically, and socioeconomically diverse sample of young adults both enrolled and not enrolled in college (N = 726; ages 18-35). First, we evaluated results from a single survey item that asked participants to rate how adult they feel. Consistent with previous research, the majority of participants (56.9%) reported feeling "somewhat like an adult," and older participants had significantly higher subjective adulthood, controlling for other demographic variables. Next, we analyzed responses from an open-ended question asking participants to describe instances in which they felt like an adult. Responses covered both traditional roles (e.g., marriage, childbearing; 36.1%) and nontraditional social roles and experiences (e.g., moving out of parent's home, cohabitation; 55.6%). Although we found no differences by age and college status in the likelihood of citing a traditional or nontraditional role, participants who had achieved more traditional roles were more likely to cite them in their responses. In addition, responses were coded for psychological experiences, including responsibility for self (19.0%), responsibility for others (15.3%), self-regulation (31.1%), and reflected appraisals (5.1%). Older participants were significantly more likely to include self-regulation and reflected appraisals, whereas younger participants were more likely to include responsibility for self. College students were more likely than noncollege students to include self-regulation and reflected appraisals. Implications for research and practice are discussed. PMID:23554545

  7. Defining Adult Experiences: Perspectives of a Diverse Sample of Young Adults

    PubMed Central

    Lowe, Sarah R.; Dillon, Colleen O.; Rhodes, Jean E.; Zwiebach, Liza

    2013-01-01

    This study explored the roles and psychological experiences identified as defining adult moments using mixed methods with a racially, ethnically, and socioeconomically diverse sample of young adults both enrolled and not enrolled in college (N = 726; ages 18-35). First, we evaluated results from a single survey item that asked participants to rate how adult they feel. Consistent with previous research, the majority of participants (56.9%) reported feeling “somewhat like an adult,” and older participants had significantly higher subjective adulthood, controlling for other demographic variables. Next, we analyzed responses from an open-ended question asking participants to describe instances in which they felt like an adult. Responses covered both traditional roles (e.g., marriage, childbearing; 36.1%) and nontraditional social roles and experiences (e.g., moving out of parent’s home, cohabitation; 55.6%). Although we found no differences by age and college status in the likelihood of citing a traditional or nontraditional role, participants who had achieved more traditional roles were more likely to cite them in their responses. In addition, responses were coded for psychological experiences, including responsibility for self (19.0%), responsibility for others (15.3%), self-regulation (31.1%), and reflected appraisals (5.1%). Older participants were significantly more likely to include self-regulation and reflected appraisals, whereas younger participants were more likely to include responsibility for self. College students were more likely than noncollege students to include self-regulation and reflected appraisals. Implications for research and practice are discussed. PMID:23554545

  8. Defining the National Interest: A Sample Lesson on Current International Affairs from Choices Education Project.

    ERIC Educational Resources Information Center

    Brown Univ., Providence, RI. Thomas J. Watson, Jr. Inst. for International Studies.

    Clearly, the United States cannot respond to every crisis, but what is meant precisely by the phrase "American interests"? How is the U.S. national interest defined and by whom? Does its definition affect the decision of how to respond to a crisis? This lesson deals with these complex and intertwined questions. By defining the national interest…

  9. Classifier-Guided Sampling for Complex Energy System Optimization

    SciTech Connect

    Backlund, Peter B.; Eddy, John P.

    2015-09-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of o bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.

  10. Efficient infill sampling for unconstrained robust optimization problems

    NASA Astrophysics Data System (ADS)

    Rehman, Samee Ur; Langelaar, Matthijs

    2016-08-01

    A novel infill sampling criterion is proposed for efficient estimation of the global robust optimum of expensive computer simulation based problems. The algorithm is especially geared towards addressing problems that are affected by uncertainties in design variables and problem parameters. The method is based on constructing metamodels using Kriging and adaptively sampling the response surface via a principle of expected improvement adapted for robust optimization. Several numerical examples and an engineering case study are used to demonstrate the ability of the algorithm to estimate the global robust optimum using a limited number of expensive function evaluations.

  11. Optimizing passive acoustic sampling of bats in forests.

    PubMed

    Froidevaux, Jérémy S P; Zellweger, Florian; Bollmann, Kurt; Obrist, Martin K

    2014-12-01

    Passive acoustic methods are increasingly used in biodiversity research and monitoring programs because they are cost-effective and permit the collection of large datasets. However, the accuracy of the results depends on the bioacoustic characteristics of the focal taxa and their habitat use. In particular, this applies to bats which exhibit distinct activity patterns in three-dimensionally structured habitats such as forests. We assessed the performance of 21 acoustic sampling schemes with three temporal sampling patterns and seven sampling designs. Acoustic sampling was performed in 32 forest plots, each containing three microhabitats: forest ground, canopy, and forest gap. We compared bat activity, species richness, and sampling effort using species accumulation curves fitted with the clench equation. In addition, we estimated the sampling costs to undertake the best sampling schemes. We recorded a total of 145,433 echolocation call sequences of 16 bat species. Our results indicated that to generate the best outcome, it was necessary to sample all three microhabitats of a given forest location simultaneously throughout the entire night. Sampling only the forest gaps and the forest ground simultaneously was the second best choice and proved to be a viable alternative when the number of available detectors is limited. When assessing bat species richness at the 1-km(2) scale, the implementation of these sampling schemes at three to four forest locations yielded highest labor cost-benefit ratios but increasing equipment costs. Our study illustrates that multiple passive acoustic sampling schemes require testing based on the target taxa and habitat complexity and should be performed with reference to cost-benefit ratios. Choosing a standardized and replicated sampling scheme is particularly important to optimize the level of precision in inventories, especially when rare or elusive species are expected. PMID:25558363

  12. Simultaneous beam sampling and aperture shape optimization for SPORT

    SciTech Connect

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei; Ye, Yinyu

    2015-02-15

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  13. Optimized robust plasma sampling for glomerular filtration rate studies.

    PubMed

    Murray, Anthony W; Gannon, Mark A; Barnfield, Mark C; Waller, Michael L

    2012-09-01

    In the presence of abnormal fluid collection (e.g. ascites), the measurement of glomerular filtration rate (GFR) based on a small number (1-4) of plasma samples fails. This study investigated how a few samples will allow adequate characterization of plasma clearance to give a robust and accurate GFR measurement. A total of 68 nine-sample GFR tests (from 45 oncology patients) with abnormal clearance of a glomerular tracer were audited to develop a Monte Carlo model. This was used to generate 20 000 synthetic but clinically realistic clearance curves, which were sampled at the 10 time points suggested by the British Nuclear Medicine Society. All combinations comprising between four and 10 samples were then used to estimate the area under the clearance curve by nonlinear regression. The audited clinical plasma curves were all well represented pragmatically as biexponential curves. The area under the curve can be well estimated using as few as five judiciously timed samples (5, 10, 15, 90 and 180 min). Several seven-sample schedules (e.g. 5, 10, 15, 60, 90, 180 and 240 min) are tolerant to any one sample being discounted without significant loss of accuracy or precision. A research tool has been developed that can be used to estimate the accuracy and precision of any pattern of plasma sampling in the presence of 'third-space' kinetics. This could also be used clinically to estimate the accuracy and precision of GFR calculated from mistimed or incomplete sets of samples. It has been used to identify optimized plasma sampling schedules for GFR measurement. PMID:22825040

  14. Sampling optimization for printer characterization by greedy search.

    PubMed

    Morovic, Ján; Arnabat, Jordi; Richard, Yvan; Albarrán, Angel

    2010-10-01

    Printer color characterization, e.g., in the form of an ICC output profile or other proprietary mechanism linking printer RGB/CMYK inputs to resulting colorimetry, is fundamental to a printing system delivering output that is acceptable to its recipients. Due to the inherently nonlinear and complex relationship between a printing system's inputs and the resulting color output, color characterization typically requires a large sample of printer inputs (e.g., RGB/CMYK) and corresponding color measurements of printed output. Simple sampling techniques here lead to inefficiency and a low return for increases in sampling density. While effective solutions have been proposed to this problem very recently, they either do not exploit the full possibilities of the 3-D/4-D space being sampled or they make assumptions about the underlying relationship being sampled . The approach presented here does not make assumptions beyond those inherent in the subsequent tessellation and interpolation applied to the resulting samples. Instead, the tradeoff here is the great computational cost of the initial optimization, which, however, only needs to be performed during the printing system's engineering and is transparent to its end users. Results show a significant reduction in the number of samples needed to match a given level of color accuracy.

  15. Determining the Bayesian optimal sampling strategy in a hierarchical system.

    SciTech Connect

    Grace, Matthew D.; Ringland, James T.; Boggs, Paul T.; Pebay, Philippe Pierre

    2010-09-01

    Consider a classic hierarchy tree as a basic model of a 'system-of-systems' network, where each node represents a component system (which may itself consist of a set of sub-systems). For this general composite system, we present a technique for computing the optimal testing strategy, which is based on Bayesian decision analysis. In previous work, we developed a Bayesian approach for computing the distribution of the reliability of a system-of-systems structure that uses test data and prior information. This allows for the determination of both an estimate of the reliability and a quantification of confidence in the estimate. Improving the accuracy of the reliability estimate and increasing the corresponding confidence require the collection of additional data. However, testing all possible sub-systems may not be cost-effective, feasible, or even necessary to achieve an improvement in the reliability estimate. To address this sampling issue, we formulate a Bayesian methodology that systematically determines the optimal sampling strategy under specified constraints and costs that will maximally improve the reliability estimate of the composite system, e.g., by reducing the variance of the reliability distribution. This methodology involves calculating the 'Bayes risk of a decision rule' for each available sampling strategy, where risk quantifies the relative effect that each sampling strategy could have on the reliability estimate. A general numerical algorithm is developed and tested using an example multicomponent system. The results show that the procedure scales linearly with the number of components available for testing.

  16. A General Investigation of Optimized Atmospheric Sample Duration

    SciTech Connect

    Eslinger, Paul W.; Miley, Harry S.

    2012-11-28

    ABSTRACT The International Monitoring System (IMS) consists of up to 80 aerosol and xenon monitoring systems spaced around the world that have collection systems sensitive enough to detect nuclear releases from underground nuclear tests at great distances (CTBT 1996; CTBTO 2011). Although a few of the IMS radionuclide stations are closer together than 1,000 km (such as the stations in Kuwait and Iran), many of them are 2,000 km or more apart. In the absence of a scientific basis for optimizing the duration of atmospheric sampling, historically scientists used a integration times from 24 hours to 14 days for radionuclides (Thomas et al. 1977). This was entirely adequate in the past because the sources of signals were far away and large, meaning that they were smeared over many days by the time they had travelled 10,000 km. The Fukushima event pointed out the unacceptable delay time (72 hours) between the start of sample acquisition and final data being shipped. A scientific basis for selecting a sample duration time is needed. This report considers plume migration of a nondecaying tracer using archived atmospheric data for 2011 in the HYSPLIT (Draxler and Hess 1998; HYSPLIT 2011) transport model. We present two related results: the temporal duration of the majority of the plume as a function of distance and the behavior of the maximum plume concentration as a function of sample collection duration and distance. The modeled plume behavior can then be combined with external information about sampler design to optimize sample durations in a sampling network.

  17. Adaptive Sampling of Spatiotemporal Phenomena with Optimization Criteria

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Thompson, David R.; Hsiang, Kian

    2013-01-01

    This work was designed to find a way to optimally (or near optimally) sample spatiotemporal phenomena based on limited sensing capability, and to create a model that can be run to estimate uncertainties, as well as to estimate covariances. The goal was to maximize (or minimize) some function of the overall uncertainty. The uncertainties and covariances were modeled presuming a parametric distribution, and then the model was used to approximate the overall information gain, and consequently, the objective function from each potential sense. These candidate sensings were then crosschecked against operation costs and feasibility. Consequently, an operations plan was derived that combined both operational constraints/costs and sensing gain. Probabilistic modeling was used to perform an approximate inversion of the model, which enabled calculation of sensing gains, and subsequent combination with operational costs. This incorporation of operations models to assess cost and feasibility for specific classes of vehicles is unique.

  18. Fixed-sample optimization using a probability density function

    SciTech Connect

    Barnett, R.N.; Sun, Zhiwei; Lester, W.A. Jr. |

    1997-12-31

    We consider the problem of optimizing parameters in a trial function that is to be used in fixed-node diffusion Monte Carlo calculations. We employ a trial function with a Boys-Handy correlation function and a one-particle basis set of high quality. By employing sample points picked from a positive definite distribution, parameters that determine the nodes of the trial function can be varied without introducing singularities into the optimization. For CH as a test system, we find that a trial function of high quality is obtained and that this trial function yields an improved fixed-node energy. This result sheds light on the important question of how to improve the nodal structure and, thereby, the accuracy of diffusion Monte Carlo.

  19. Searching for the Optimal Sampling Solution: Variation in Invertebrate Communities, Sample Condition and DNA Quality

    PubMed Central

    Gossner, Martin M.; Struwe, Jan-Frederic; Sturm, Sarah; Max, Simeon; McCutcheon, Michelle; Weisser, Wolfgang W.; Zytynska, Sharon E.

    2016-01-01

    There is a great demand for standardising biodiversity assessments in order to allow optimal comparison across research groups. For invertebrates, pitfall or flight-interception traps are commonly used, but sampling solution differs widely between studies, which could influence the communities collected and affect sample processing (morphological or genetic). We assessed arthropod communities with flight-interception traps using three commonly used sampling solutions across two forest types and two vertical strata. We first considered the effect of sampling solution and its interaction with forest type, vertical stratum, and position of sampling jar at the trap on sample condition and community composition. We found that samples collected in copper sulphate were more mouldy and fragmented relative to other solutions which might impair morphological identification, but condition depended on forest type, trap type and the position of the jar. Community composition, based on order-level identification, did not differ across sampling solutions and only varied with forest type and vertical stratum. Species richness and species-level community composition, however, differed greatly among sampling solutions. Renner solution was highly attractant for beetles and repellent for true bugs. Secondly, we tested whether sampling solution affects subsequent molecular analyses and found that DNA barcoding success was species-specific. Samples from copper sulphate produced the fewest successful DNA sequences for genetic identification, and since DNA yield or quality was not particularly reduced in these samples additional interactions between the solution and DNA must also be occurring. Our results show that the choice of sampling solution should be an important consideration in biodiversity studies. Due to the potential bias towards or against certain species by Ethanol-containing sampling solution we suggest ethylene glycol as a suitable sampling solution when genetic analysis

  20. Searching for the Optimal Sampling Solution: Variation in Invertebrate Communities, Sample Condition and DNA Quality.

    PubMed

    Gossner, Martin M; Struwe, Jan-Frederic; Sturm, Sarah; Max, Simeon; McCutcheon, Michelle; Weisser, Wolfgang W; Zytynska, Sharon E

    2016-01-01

    There is a great demand for standardising biodiversity assessments in order to allow optimal comparison across research groups. For invertebrates, pitfall or flight-interception traps are commonly used, but sampling solution differs widely between studies, which could influence the communities collected and affect sample processing (morphological or genetic). We assessed arthropod communities with flight-interception traps using three commonly used sampling solutions across two forest types and two vertical strata. We first considered the effect of sampling solution and its interaction with forest type, vertical stratum, and position of sampling jar at the trap on sample condition and community composition. We found that samples collected in copper sulphate were more mouldy and fragmented relative to other solutions which might impair morphological identification, but condition depended on forest type, trap type and the position of the jar. Community composition, based on order-level identification, did not differ across sampling solutions and only varied with forest type and vertical stratum. Species richness and species-level community composition, however, differed greatly among sampling solutions. Renner solution was highly attractant for beetles and repellent for true bugs. Secondly, we tested whether sampling solution affects subsequent molecular analyses and found that DNA barcoding success was species-specific. Samples from copper sulphate produced the fewest successful DNA sequences for genetic identification, and since DNA yield or quality was not particularly reduced in these samples additional interactions between the solution and DNA must also be occurring. Our results show that the choice of sampling solution should be an important consideration in biodiversity studies. Due to the potential bias towards or against certain species by Ethanol-containing sampling solution we suggest ethylene glycol as a suitable sampling solution when genetic analysis

  1. Validation of genetic algorithm-based optimal sampling for ocean data assimilation

    NASA Astrophysics Data System (ADS)

    Heaney, Kevin D.; Lermusiaux, Pierre F. J.; Duda, Timothy F.; Haley, Patrick J.

    2016-08-01

    Regional ocean models are capable of forecasting conditions for usefully long intervals of time (days) provided that initial and ongoing conditions can be measured. In resource-limited circumstances, the placement of sensors in optimal locations is essential. Here, a nonlinear optimization approach to determine optimal adaptive sampling that uses the genetic algorithm (GA) method is presented. The method determines sampling strategies that minimize a user-defined physics-based cost function. The method is evaluated using identical twin experiments, comparing hindcasts from an ensemble of simulations that assimilate data selected using the GA adaptive sampling and other methods. For skill metrics, we employ the reduction of the ensemble root mean square error (RMSE) between the "true" data-assimilative ocean simulation and the different ensembles of data-assimilative hindcasts. A five-glider optimal sampling study is set up for a 400 km × 400 km domain in the Middle Atlantic Bight region, along the New Jersey shelf-break. Results are compared for several ocean and atmospheric forcing conditions.

  2. Validation of genetic algorithm-based optimal sampling for ocean data assimilation

    NASA Astrophysics Data System (ADS)

    Heaney, Kevin D.; Lermusiaux, Pierre F. J.; Duda, Timothy F.; Haley, Patrick J.

    2016-10-01

    Regional ocean models are capable of forecasting conditions for usefully long intervals of time (days) provided that initial and ongoing conditions can be measured. In resource-limited circumstances, the placement of sensors in optimal locations is essential. Here, a nonlinear optimization approach to determine optimal adaptive sampling that uses the genetic algorithm (GA) method is presented. The method determines sampling strategies that minimize a user-defined physics-based cost function. The method is evaluated using identical twin experiments, comparing hindcasts from an ensemble of simulations that assimilate data selected using the GA adaptive sampling and other methods. For skill metrics, we employ the reduction of the ensemble root mean square error (RMSE) between the "true" data-assimilative ocean simulation and the different ensembles of data-assimilative hindcasts. A five-glider optimal sampling study is set up for a 400 km × 400 km domain in the Middle Atlantic Bight region, along the New Jersey shelf-break. Results are compared for several ocean and atmospheric forcing conditions.

  3. Optimal blood sampling time windows for parameter estimation using a population approach: design of a phase II clinical trial.

    PubMed

    Chenel, Marylore; Ogungbenro, Kayode; Duval, Vincent; Laveille, Christian; Jochemsen, Roeline; Aarons, Leon

    2005-12-01

    The objective of this paper is to determine optimal blood sampling time windows for the estimation of pharmacokinetic (PK) parameters by a population approach within the clinical constraints. A population PK model was developed to describe a reference phase II PK dataset. Using this model and the parameter estimates, D-optimal sampling times were determined by optimising the determinant of the population Fisher information matrix (PFIM) using PFIM_ _M 1.2 and the modified Fedorov exchange algorithm. Optimal sampling time windows were then determined by allowing the D-optimal windows design to result in a specified level of efficiency when compared to the fixed-times D-optimal design. The best results were obtained when K(a) and IIV on K(a) were fixed. Windows were determined using this approach assuming 90% level of efficiency and uniform sample distribution. Four optimal sampling time windows were determined as follow: at trough between 22 h and new drug administration; between 2 and 4 h after dose for all patients; and for 1/3 of the patients only 2 sampling time windows between 4 and 10 h after dose, equal to [4 h-5 h 05] and [9 h 10-10 h]. This work permitted the determination of an optimal design, with suitable sampling time windows which was then evaluated by simulations. The sampling time windows will be used to define the sampling schedule in a prospective phase II study.

  4. Modified Direct Insertion/Cancellation Method Based Sample Rate Conversion for Software Defined Radio

    NASA Astrophysics Data System (ADS)

    Bostamam, Anas Muhamad; Sanada, Yukitoshi; Minami, Hideki

    In this paper, a new fractional sample rate conversion (SRC) scheme based on a direct insertion/cancellation scheme is proposed. This scheme is suitable for signals that are sampled at a high sample rate and converted to a lower sample rate. The direct insertion/cancellation scheme may achieve low-complexity and lower power consumption as compared to the other SRC techniques. However, the direct insertion/cancellation technique suffers from large aliasing and distortion. The aliasing from an adjacent channel interferes the desired signal and degrades the performance. Therefore, a modified direct insertion/cancellation scheme is proposed in order to realize high performance resampling.

  5. Optimal Sample Complexity for Blind Gain and Phase Calibration

    NASA Astrophysics Data System (ADS)

    Li, Yanjun; Lee, Kiryung; Bresler, Yoram

    2016-11-01

    Blind gain and phase calibration (BGPC) is a structured bilinear inverse problem, which arises in many applications, including inverse rendering in computational relighting (albedo estimation with unknown lighting), blind phase and gain calibration in sensor array processing, and multichannel blind deconvolution. The fundamental question of the uniqueness of the solutions to such problems has been addressed only recently. In a previous paper, we proposed studying the identifiability in bilinear inverse problems up to transformation groups. In particular, we studied several special cases of blind gain and phase calibration, including the cases of subspace and joint sparsity models on the signals, and gave sufficient and necessary conditions for identifiability up to certain transformation groups. However, there were gaps between the sample complexities in the sufficient conditions and the necessary conditions. In this paper, under a mild assumption that the signals and models are generic, we bridge the gaps by deriving tight sufficient conditions with optimal sample complexities.

  6. Decision Models for Determining the Optimal Life Test Sampling Plans

    NASA Astrophysics Data System (ADS)

    Nechval, Nicholas A.; Nechval, Konstantin N.; Purgailis, Maris; Berzins, Gundars; Strelchonok, Vladimir F.

    2010-11-01

    Life test sampling plan is a technique, which consists of sampling, inspection, and decision making in determining the acceptance or rejection of a batch of products by experiments for examining the continuous usage time of the products. In life testing studies, the lifetime is usually assumed to be distributed as either a one-parameter exponential distribution, or a two-parameter Weibull distribution with the assumption that the shape parameter is known. Such oversimplified assumptions can facilitate the follow-up analyses, but may overlook the fact that the lifetime distribution can significantly affect the estimation of the failure rate of a product. Moreover, sampling costs, inspection costs, warranty costs, and rejection costs are all essential, and ought to be considered in choosing an appropriate sampling plan. The choice of an appropriate life test sampling plan is a crucial decision problem because a good plan not only can help producers save testing time, and reduce testing cost; but it also can positively affect the image of the product, and thus attract more consumers to buy it. This paper develops the frequentist (non-Bayesian) decision models for determining the optimal life test sampling plans with an aim of cost minimization by identifying the appropriate number of product failures in a sample that should be used as a threshold in judging the rejection of a batch. The two-parameter exponential and Weibull distributions with two unknown parameters are assumed to be appropriate for modelling the lifetime of a product. A practical numerical application is employed to demonstrate the proposed approach.

  7. Neurocognition in psychometrically defined college Schizotypy samples: we are not measuring the "right stuff".

    PubMed

    Chun, Charlotte A; Minor, Kyle S; Cohen, Alex S

    2013-03-01

    Although neurocognitive deficits are an integral characteristic of schizophrenia, there is inconclusive evidence as to whether they manifest across the schizophrenia-spectrum. We conducted two studies and a meta-analysis comparing neurocognitive functioning between psychometrically defined schizotypy and control groups recruited from a college population. Study One compared groups on measures of specific and global neurocognition, and subjective and objective quality of life. Study Two examined working memory and subjective cognitive complaints. Across both studies, the schizotypy group showed notably decreased subjective (d51.52) and objective (d51.02) quality of life and greater subjective cognitive complaints (d51.88); however, neurocognition was normal across all measures (d’s,.35). Our meta-analysis of 33 studies examining neurocognition in at-risk college students revealed between-group differences in the negligible effect size range for most domains. The schizotypy group demonstrated deficits of a small effect size for working memory and set-shifting abilities. Although at-risk individuals report relatively profound neurocognitive deficits and impoverished quality of life, neurocognitive functioning assessed behaviorally is largely intact. Our data suggest that traditionally defined neurocognitive deficits do not approximate the magnitude of subjective complaints associated with psychometrically defined schizotypy.

  8. Optimization of Evans blue quantitation in limited rat tissue samples

    NASA Astrophysics Data System (ADS)

    Wang, Hwai-Lee; Lai, Ted Weita

    2014-10-01

    Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting.

  9. Optimal CCD readout by digital correlated double sampling

    NASA Astrophysics Data System (ADS)

    Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.

    2016-01-01

    Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.

  10. Neuro-genetic system for optimization of GMI samples sensitivity.

    PubMed

    Pitta Botelho, A C O; Vellasco, M M B R; Hall Barbosa, C R; Costa Silva, E

    2016-03-01

    Magnetic sensors are largely used in several engineering areas. Among them, magnetic sensors based on the Giant Magnetoimpedance (GMI) effect are a new family of magnetic sensing devices that have a huge potential for applications involving measurements of ultra-weak magnetic fields. The sensitivity of magnetometers is directly associated with the sensitivity of their sensing elements. The GMI effect is characterized by a large variation of the impedance (magnitude and phase) of a ferromagnetic sample, when subjected to a magnetic field. Recent studies have shown that phase-based GMI magnetometers have the potential to increase the sensitivity by about 100 times. The sensitivity of GMI samples depends on several parameters, such as sample length, external magnetic field, DC level and frequency of the excitation current. However, this dependency is yet to be sufficiently well-modeled in quantitative terms. So, the search for the set of parameters that optimizes the samples sensitivity is usually empirical and very time consuming. This paper deals with this problem by proposing a new neuro-genetic system aimed at maximizing the impedance phase sensitivity of GMI samples. A Multi-Layer Perceptron (MLP) Neural Network is used to model the impedance phase and a Genetic Algorithm uses the information provided by the neural network to determine which set of parameters maximizes the impedance phase sensitivity. The results obtained with a data set composed of four different GMI sample lengths demonstrate that the neuro-genetic system is able to correctly and automatically determine the set of conditioning parameters responsible for maximizing their phase sensitivities.

  11. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    PubMed

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  12. Sample size matters: Investigating the optimal sample size for a logistic regression debris flow susceptibility model

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Gegg, Katharina; Becht, Michael

    2013-04-01

    Statistical approaches to landslide susceptibility modelling on the catchment and regional scale are used very frequently compared to heuristic and physically based approaches. In the present study, we deal with the problem of the optimal sample size for a logistic regression model. More specifically, a stepwise approach has been chosen in order to select those independent variables (from a number of derivatives of a digital elevation model and landcover data) that explain best the spatial distribution of debris flow initiation zones in two neighbouring central alpine catchments in Austria (used mutually for model calculation and validation). In order to minimise problems arising from spatial autocorrelation, we sample a single raster cell from each debris flow initiation zone within an inventory. In addition, as suggested by previous work using the "rare events logistic regression" approach, we take a sample of the remaining "non-event" raster cells. The recommendations given in the literature on the size of this sample appear to be motivated by practical considerations, e.g. the time and cost of acquiring data for non-event cases, which do not apply to the case of spatial data. In our study, we aim at finding empirically an "optimal" sample size in order to avoid two problems: First, a sample too large will violate the independent sample assumption as the independent variables are spatially autocorrelated; hence, a variogram analysis leads to a sample size threshold above which the average distance between sampled cells falls below the autocorrelation range of the independent variables. Second, if the sample is too small, repeated sampling will lead to very different results, i.e. the independent variables and hence the result of a single model calculation will be extremely dependent on the choice of non-event cells. Using a Monte-Carlo analysis with stepwise logistic regression, 1000 models are calculated for a wide range of sample sizes. For each sample size

  13. Problems associated with using filtration to define dissolved trace element concentrations in natural water samples

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.

  14. Clever particle filters, sequential importance sampling and the optimal proposal

    NASA Astrophysics Data System (ADS)

    Snyder, Chris

    2014-05-01

    Particle filters rely on sequential importance sampling and it is well known that their performance can depend strongly on the choice of proposal distribution from which new ensemble members (particles) are drawn. The use of clever proposals has seen substantial recent interest in the geophysical literature, with schemes such as the implicit particle filter and the equivalent-weights particle filter. Both these schemes employ proposal distributions at time tk+1 that depend on the state at tk and the observations at time tk+1. I show that, beginning with particles drawn randomly from the conditional distribution of the state at tk given observations through tk, the optimal proposal (the distribution of the state at tk+1 given the state at tk and the observations at tk+1) minimizes the variance of the importance weights for particles at tk overall all possible proposal distributions. This means that bounds on the performance of the optimal proposal, such as those given by Snyder (2011), also bound the performance of the implicit and equivalent-weights particle filters. In particular, in spite of the fact that they may be dramatically more effective than other particle filters in specific instances, those schemes will suffer degeneracy (maximum importance weight approaching unity) unless the ensemble size is exponentially large in a quantity that, in the simplest case that all degrees of freedom in the system are i.i.d., is proportional to the system dimension. I will also discuss the behavior to be expected in more general cases, such as global numerical weather prediction, and how that behavior depends qualitatively on the observing network. Snyder, C., 2012: Particle filters, the "optimal" proposal and high-dimensional systems. Proceedings, ECMWF Seminar on Data Assimilation for Atmosphere and Ocean., 6-9 September 2011.

  15. Optimal Extraction with Sub-sampled Line-Spread Functions

    NASA Technical Reports Server (NTRS)

    Collins, Nicholas R.; Gull, Theodore; Bowers, Chuck; Lindler, Don

    2002-01-01

    STIS long-slit medium resolution spectra reduced in CALSTIS extended-source mode with narrow extraction heights (GWIDTH=3 pixels) show photometric uncertainties of +/- 3% relative to point-source extractions. These uncertainties are introduced through interpolation in the spectral image rectification processing stage, and are correlated with the number of pixel crossings the spectral profile core encounters in the spatial direction. The line-spread-function may be determined as a function of pixel crossing- position from calibration data sub-sampled in the spatial direction. This line spread function will be applied to science data to perform optimal extractions and point- source de-blending. Wavelength and breathing effects will be studied. Viability of the method to de-convolve extended source 'blobs' will be investigated.

  16. Determination of optimal sampling times for a two blood sample clearance method using (51)Cr-EDTA in cats.

    PubMed

    Vandermeulen, Eva; De Sadeleer, Carlos; Piepsz, Amy; Ham, Hamphrey R; Dobbeleir, André A; Vermeire, Simon T; Van Hoek, Ingrid M; Daminet, Sylvie; Slegers, Guido; Peremans, Kathelijne Y

    2010-08-01

    Estimation of the glomerular filtration rate (GFR) is a useful tool in the evaluation of kidney function in feline medicine. GFR can be determined by measuring the rate of tracer disappearance from the blood, and although these measurements are generally performed by multi-sampling techniques, simplified methods are more convenient in clinical practice. The optimal times for a simplified sampling strategy with two blood samples (2BS) for GFR measurement in cats using plasma (51)chromium ethylene diamine tetra-acetic acid ((51)Cr-EDTA) clearance were investigated. After intravenous administration of (51)Cr-EDTA, seven blood samples were obtained in 46 cats (19 euthyroid and 27 hyperthyroid cats, none with previously diagnosed chronic kidney disease (CKD)). The plasma clearance was then calculated from the seven point blood kinetics (7BS) and used for comparison to define the optimal sampling strategy by correlating different pairs of time points to the reference method. Mean GFR estimation for the reference method was 3.7+/-2.5 ml/min/kg (mean+/-standard deviation (SD)). Several pairs of sampling times were highly correlated with this reference method (r(2) > or = 0.980), with the best results when the first sample was taken 30 min after tracer injection and the second sample between 198 and 222 min after injection; or with the first sample at 36 min and the second at 234 or 240 min (r(2) for both combinations=0.984). Because of the similarity of GFR values obtained with the 2BS method in comparison to the values obtained with the 7BS reference method, the simplified method may offer an alternative for GFR estimation. Although a wide range of GFR values was found in the included group of cats, the applicability should be confirmed in cats suspected of renal disease and with confirmed CKD. Furthermore, although no indications of age-related effect were found in this study, a possible influence of age should be included in future studies. PMID:20452793

  17. Damage identification in beams using speckle shearography and an optimal spatial sampling

    NASA Astrophysics Data System (ADS)

    Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.

    2016-10-01

    Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.

  18. Optimization for Peptide Sample Preparation for Urine Peptidomics

    SciTech Connect

    Sigdel, Tara K.; Nicora, Carrie D.; Hsieh, Szu-Chuan; Dai, Hong; Qian, Weijun; Camp, David G.; Sarwal, Minnie M.

    2014-02-25

    when utilizing the conventional SPE method. In conclusion, the mSPE method was found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis due to the optimized sample clean up that provided improved experimental inference from the confidently identified peptides.

  19. Empirically defined subtypes of alcohol dependence in an Irish family sample.

    PubMed

    Sintov, Nicole D; Kendler, Kenneth S; Young-Wolff, Kelly C; Walsh, Dermot; Patterson, Diana G; Prescott, Carol A

    2010-03-01

    Alcohol dependence (AD) is clinically and etiologically heterogeneous. The goal of this study was to explore AD subtypes among a sample of 1221 participants in the Irish Affected Sib Pair Study of Alcohol Dependence, all of whom met DSM-IV criteria for AD. Variables used to identify the subtypes included major depressive disorder, antisocial personality disorder, illicit drug dependence (cannabis, sedatives, stimulants, cocaine, opioids, and hallucinogens), nicotine dependence, the personality traits of neuroticism and novelty seeking, and early alcohol use. Using latent class analysis, a 3-class solution was identified as the most parsimonious description of the data. Individuals in a Mild class were least likely to have comorbid psychopathology, whereas a severe class had highest probabilities of all comorbid psychopathology. The third class was characterized by high probabilities of major depression and higher neuroticism scores, but lower likelihood of other comorbid disorders than seen in the severe class. Overall, sibling pair resemblance for class was stronger within than between classes, and was greatest for siblings within the severe class, suggesting a stronger familial etiology for this class. These findings are consistent with the affective regulation and behavioral disinhibition subtypes of alcoholism, and are in line with prior work suggesting familial influences on subtype etiology.

  20. Optimal cross-sectional sampling for river modelling with bridges: An information theory-based method

    NASA Astrophysics Data System (ADS)

    Ridolfi, E.; Alfonso, L.; Di Baldassarre, G.; Napolitano, F.

    2016-06-01

    The description of river topography has a crucial role in accurate one-dimensional (1D) hydraulic modelling. Specifically, cross-sectional data define the riverbed elevation, the flood-prone area, and thus, the hydraulic behavior of the river. Here, the problem of the optimal cross-sectional spacing is solved through an information theory-based concept. The optimal subset of locations is the one with the maximum information content and the minimum amount of redundancy. The original contribution is the introduction of a methodology to sample river cross sections in the presence of bridges. The approach is tested on the Grosseto River (IT) and is compared to existing guidelines. The results show that the information theory-based approach can support traditional methods to estimate rivers' cross-sectional spacing.

  1. Defining the Enterovirus Diversity Landscape of a Fecal Sample: A Methodological Challenge?

    PubMed

    Faleye, Temitope Oluwasegun Cephas; Adewumi, Moses Olubusuyi; Adeniji, Johnson Adekunle

    2016-01-12

    Enteroviruses are a group of over 250 naked icosahedral virus serotypes that have been associated with clinical conditions that range from intrauterine enterovirus transmission withfataloutcome through encephalitis and meningitis, to paralysis. Classically, enterovirus detection was done by assaying for the development of the classic enterovirus-specific cytopathic effect in cell culture. Subsequently, the isolates were historically identified by a neutralization assay. More recently, identification has been done by reverse transcriptase-polymerase chain reaction (RT-PCR). However, in recent times, there is a move towards direct detection and identification of enteroviruses from clinical samples using the cell culture-independent RT semi-nested PCR (RT-snPCR) assay. This RT-snPCR procedure amplifies the VP1 gene, which is then sequenced and used for identification. However, while cell culture-based strategies tend to show a preponderance of certain enterovirus species depending on the cell lines included in the isolation protocol, the RT-snPCR strategies tilt in a different direction. Consequently, it is becoming apparent that the diversity observed in certain enterovirus species, e.g., enterovirus species B(EV-B), might not be because they are the most evolutionarily successful. Rather, it might stem from cell line-specific bias accumulated over several years of use of the cell culture-dependent isolation protocols. Furthermore, it might also be a reflection of the impact of the relative genome concentration on the result of pan-enterovirus VP1 RT-snPCR screens used during the identification of cell culture isolates. This review highlights the impact of these two processes on the current diversity landscape of enteroviruses and the need to re-assess enterovirus detection and identification algorithms in a bid to better balance our understanding of the enterovirus diversity landscape.

  2. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  3. How 'Optimal' are Optimal Sampling Times for Tyrosine Kinase Inhibitors in Cancer? Practical Considerations.

    PubMed

    Ward, Michael B; Reuter, Stephanie E; Martin, Jennifer H

    2016-10-01

    Tyrosine kinase inhibitors have been marketed as a fixed dose, 'one size fits all' treatment strategy. Physicians have also been interested in this method of dosing, knowing the complex planning of other current cancer therapies administered on a mg/m(2) or mg/kg basis and subsequent occurrence of dosing error or concern for underdosing. The 'simple and safe' strategy of a single dose of tyrosine kinase inhibitor for cancer has thus been widely adopted. However, the benefits purported to exist in the clinical trials do not appear to be borne out in clinical practice, particularly in solid tumours. In order to investigate whether pharmacokinetic variability is a contributor to the variable outcomes, pharmacokinetic targets to enable individualisation of tyrosine kinase inhibitor administration are now emerging. Evidence suggests there is not a clear relationship of a single dose to maximum plasma concentration (C max), steady-state trough concentration (C trough) or area under the curve (AUC). Furthermore, a significant number of questions remain related to the specific timing and frequency of sample collection required to achieve optimal outcomes. This article reviews the wide variability in the literature on this topic, specifically the different pharmacokinetic targets of the same drug for different cancers, for different states of cancer, and changing pharmacokinetic parameters over a treatment interval in cancer. It appears the optimal sampling times to enable appropriate dose recommendations across patients and diseases may vary, and are not always trough concentrations at steady state. Importantly, the need to be pragmatic in a clinical setting is paramount. Lastly, international collaborations to increase sample size are highly recommended to ensure enough patients are sampled to be sure of a clinical benefit from this concentration-directed methodology.

  4. How 'Optimal' are Optimal Sampling Times for Tyrosine Kinase Inhibitors in Cancer? Practical Considerations.

    PubMed

    Ward, Michael B; Reuter, Stephanie E; Martin, Jennifer H

    2016-10-01

    Tyrosine kinase inhibitors have been marketed as a fixed dose, 'one size fits all' treatment strategy. Physicians have also been interested in this method of dosing, knowing the complex planning of other current cancer therapies administered on a mg/m(2) or mg/kg basis and subsequent occurrence of dosing error or concern for underdosing. The 'simple and safe' strategy of a single dose of tyrosine kinase inhibitor for cancer has thus been widely adopted. However, the benefits purported to exist in the clinical trials do not appear to be borne out in clinical practice, particularly in solid tumours. In order to investigate whether pharmacokinetic variability is a contributor to the variable outcomes, pharmacokinetic targets to enable individualisation of tyrosine kinase inhibitor administration are now emerging. Evidence suggests there is not a clear relationship of a single dose to maximum plasma concentration (C max), steady-state trough concentration (C trough) or area under the curve (AUC). Furthermore, a significant number of questions remain related to the specific timing and frequency of sample collection required to achieve optimal outcomes. This article reviews the wide variability in the literature on this topic, specifically the different pharmacokinetic targets of the same drug for different cancers, for different states of cancer, and changing pharmacokinetic parameters over a treatment interval in cancer. It appears the optimal sampling times to enable appropriate dose recommendations across patients and diseases may vary, and are not always trough concentrations at steady state. Importantly, the need to be pragmatic in a clinical setting is paramount. Lastly, international collaborations to increase sample size are highly recommended to ensure enough patients are sampled to be sure of a clinical benefit from this concentration-directed methodology. PMID:27085335

  5. Dynamics of hepatitis C under optimal therapy and sampling based analysis

    NASA Astrophysics Data System (ADS)

    Pachpute, Gaurav; Chakrabarty, Siddhartha P.

    2013-08-01

    We examine two models for hepatitis C viral (HCV) dynamics, one for monotherapy with interferon (IFN) and the other for combination therapy with IFN and ribavirin. Optimal therapy for both the models is determined using the steepest gradient method, by defining an objective functional which minimizes infected hepatocyte levels, virion population and side-effects of the drug(s). The optimal therapies for both the models show an initial period of high efficacy, followed by a gradual decline. The period of high efficacy coincides with a significant decrease in the viral load, whereas the efficacy drops after hepatocyte levels are restored. We use the Latin hypercube sampling technique to randomly generate a large number of patient scenarios and study the dynamics of each set under the optimal therapy already determined. Results show an increase in the percentage of responders (indicated by drop in viral load below detection levels) in case of combination therapy (72%) as compared to monotherapy (57%). Statistical tests performed to study correlations between sample parameters and time required for the viral load to fall below detection level, show a strong monotonic correlation with the death rate of infected hepatocytes, identifying it to be an important factor in deciding individual drug regimens.

  6. Immune modulators with defined molecular targets: cornerstone to optimize rational vaccine design.

    PubMed

    Ebensen, Thomas; Guzmán, Carlos A

    2008-01-01

    Vaccination remains the most valuable tool for preventing infectious diseases. However, the performance of many existing vaccines should be improved and there are diseases for which vaccines are still not available. The use of well-defined antigens for the generation of subunit vaccines has led to products with an improved safety profile. However, purified antigens are usually poorly immunogenic, making essential the use of adjuvants. Despite the fact that adjuvants have been used to increase the immunogenicity of vaccines for more than 70 years, only a handful has been licensed for human use (e.g., aluminium salts, the micro-fluidized squalene-in-water emulsion MF59 and monophosphoryl lipid A). Thus, the development of new adjuvants which are able to promote broad and sustained immune responses at systemic and mucosal levels still remains as a major challenge in vaccinology. Recent advances in our understanding of the immune system have facilitated the identification of new biological targets for screening programs aimed at the discovery of novel immune stimulators. This resulted in the identification of new candidate adjuvants, which made possible the modulation of the immune responses elicited according to specific needs. A number of promising adjuvants which are currently under preclinical or clinical development will be described in this review. PMID:18376145

  7. Immune modulators with defined molecular targets: cornerstone to optimize rational vaccine design.

    PubMed

    Ebensen, Thomas; Guzmán, Carlos A

    2009-01-01

    Vaccination remains the most valuable tool for preventing infectious diseases. However, the performance of many existing vaccines should be improved and there are diseases for which vaccines are still not available. The use of well-defined antigens for the generation of subunit vaccines has led to products with an improved safety profile. However, purified antigens are usually poorly immunogenic, making essential the use of adjuvants. Despite the fact that adjuvants have been used to increase the immunogenicity of vaccines for more than 70 years, only a handful has been licensed for human use (e.g., aluminium salts, the micro-fluidized squalene-in-water emulsion MF59 and monophosphoryl lipid A). Thus, the development of new adjuvants which are able to promote broad and sustained immune responses at systemic and mucosal levels still remains as a major challenge in vaccinology. Recent advances in our understanding of the immune system have facilitated the identification of new biological targets for screening programs aimed at the discovery of novel immune stimulators. This resulted in the identification of new candidate adjuvants, which made possible the modulation of the immune responses elicited according to specific needs. A number of promising adjuvants which are currently under preclinical or clinical development will be described in this chapter. PMID:20047042

  8. Defining a sample preparation workflow for advanced virus detection and understanding sensitivity by next-generation sequencing.

    PubMed

    Wang, Christopher J; Feng, Szi Fei; Duncan, Paul

    2014-01-01

    The application of next-generation sequencing (also known as deep sequencing or massively parallel sequencing) for adventitious agent detection is an evolving field that is steadily gaining acceptance in the biopharmaceutical industry. In order for this technology to be successfully applied, a robust method that can isolate viral nucleic acids from a variety of biological samples (such as host cell substrates, cell-free culture fluids, viral vaccine harvests, and animal-derived raw materials) must be established by demonstrating recovery of model virus spikes. In this report, we implement the sample preparation workflow developed by Feng et. al. and assess the sensitivity of virus detection in a next-generation sequencing readout using the Illumina MiSeq platform. We describe a theoretical model to estimate the detection of a target virus in a cell lysate or viral vaccine harvest sample. We show that nuclease treatment can be used for samples that contain a high background of non-relevant nucleic acids (e.g., host cell DNA) in order to effectively increase the sensitivity of sequencing target viruses and reduce the complexity of data analysis. Finally, we demonstrate that at defined spike levels, nucleic acids from a panel of model viruses spiked into representative cell lysate and viral vaccine harvest samples can be confidently recovered by next-generation sequencing.

  9. Defining the optimal animal model for translational research using gene set enrichment analysis.

    PubMed

    Weidner, Christopher; Steinfath, Matthias; Opitz, Elisa; Oelgeschläger, Michael; Schönfelder, Gilbert

    2016-01-01

    The mouse is the main model organism used to study the functions of human genes because most biological processes in the mouse are highly conserved in humans. Recent reports that compared identical transcriptomic datasets of human inflammatory diseases with datasets from mouse models using traditional gene-to-gene comparison techniques resulted in contradictory conclusions regarding the relevance of animal models for translational research. To reduce susceptibility to biased interpretation, all genes of interest for the biological question under investigation should be considered. Thus, standardized approaches for systematic data analysis are needed. We analyzed the same datasets using gene set enrichment analysis focusing on pathways assigned to inflammatory processes in either humans or mice. The analyses revealed a moderate overlap between all human and mouse datasets, with average positive and negative predictive values of 48 and 57% significant correlations. Subgroups of the septic mouse models (i.e., Staphylococcus aureus injection) correlated very well with most human studies. These findings support the applicability of targeted strategies to identify the optimal animal model and protocol to improve the success of translational research. PMID:27311961

  10. Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.

    PubMed

    Chapman, Robert F; Karlsen, Trine; Resaland, Geir K; Ge, R-L; Harber, Matthew P; Witkowski, Sarah; Stray-Gundersen, James; Levine, Benjamin D

    2014-03-15

    Chronic living at altitudes of ∼2,500 m causes consistent hematological acclimatization in most, but not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a given altitude show substantial individual variability. We hypothesized that athletes living at higher altitudes would experience greater improvements in sea level performance, secondary to greater hematological acclimatization, compared with athletes living at lower altitudes. After 4 wk of group sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m). All athletes trained together daily at a common altitude from 1,250-3,000 m following a modified live high-train low model. Subjects completed hematological, metabolic, and performance measures at sea level, before and after altitude training; EPO was assessed at various time points while at altitude. On return from altitude, 3,000-m time trial performance was significantly improved in groups living at the middle two altitudes (2,085 and 2,454 m), but not in groups living at 1,780 and 2,800 m. EPO was significantly higher in all groups at 24 and 48 h, but returned to sea level baseline after 72 h in the 1,780-m group. Erythrocyte volume was significantly higher within all groups after return from altitude and was not different between groups. These data suggest that, when completing a 4-wk altitude camp following the live high-train low model, there is a target altitude between 2,000 and 2,500 m that produces an optimal acclimatization response for sea level performance.

  11. Defining the face processing network: optimization of the functional localizer in fMRI.

    PubMed

    Fox, Christopher J; Iaria, Giuseppe; Barton, Jason J S

    2009-05-01

    Functional localizers that contrast brain signal when viewing faces versus objects are commonly used in functional magnetic resonance imaging studies of face processing. However, current protocols do not reliably show all regions of the core system for face processing in all subjects when conservative statistical thresholds are used, which is problematic in the study of single subjects. Furthermore, arbitrary variations in the applied thresholds are associated with inconsistent estimates of the size of face-selective regions-of-interest (ROIs). We hypothesized that the use of more natural dynamic facial images in localizers might increase the likelihood of identifying face-selective ROIs in individual subjects, and we also investigated the use of a method to derive the statistically optimal ROI cluster size independent of thresholds. We found that dynamic facial stimuli were more effective than static stimuli, identifying 98% (versus 72% for static) of ROIs in the core face processing system and 69% (versus 39% for static) of ROIs in the extended face processing system. We then determined for each core face processing ROI, the cluster size associated with maximum statistical face-selectivity, which on average was approximately 50 mm(3) for the fusiform face area, the occipital face area, and the posterior superior temporal sulcus. We suggest that the combination of (a) more robust face-related activity induced by a dynamic face localizer and (b) a cluster-size determination based on maximum face-selectivity increases both the sensitivity and the specificity of the characterization of face-related ROIs in individual subjects.

  12. Defining the face processing network: optimization of the functional localizer in fMRI.

    PubMed

    Fox, Christopher J; Iaria, Giuseppe; Barton, Jason J S

    2009-05-01

    Functional localizers that contrast brain signal when viewing faces versus objects are commonly used in functional magnetic resonance imaging studies of face processing. However, current protocols do not reliably show all regions of the core system for face processing in all subjects when conservative statistical thresholds are used, which is problematic in the study of single subjects. Furthermore, arbitrary variations in the applied thresholds are associated with inconsistent estimates of the size of face-selective regions-of-interest (ROIs). We hypothesized that the use of more natural dynamic facial images in localizers might increase the likelihood of identifying face-selective ROIs in individual subjects, and we also investigated the use of a method to derive the statistically optimal ROI cluster size independent of thresholds. We found that dynamic facial stimuli were more effective than static stimuli, identifying 98% (versus 72% for static) of ROIs in the core face processing system and 69% (versus 39% for static) of ROIs in the extended face processing system. We then determined for each core face processing ROI, the cluster size associated with maximum statistical face-selectivity, which on average was approximately 50 mm(3) for the fusiform face area, the occipital face area, and the posterior superior temporal sulcus. We suggest that the combination of (a) more robust face-related activity induced by a dynamic face localizer and (b) a cluster-size determination based on maximum face-selectivity increases both the sensitivity and the specificity of the characterization of face-related ROIs in individual subjects. PMID:18661501

  13. Relation of optimal lead positioning as defined by three-dimensional echocardiography to long-term benefit of cardiac resynchronization.

    PubMed

    Becker, Michael; Hoffmann, Rainer; Schmitz, Fabian; Hundemer, Anne; Kühl, Harald; Schauerte, Patrick; Kelm, Malte; Franke, Andreas

    2007-12-01

    We sought to define the impact of echocardiographically defined left ventricular (LV) lead position on the efficacy of cardiac resynchronization therapy (CRT) in a serial study using 3-dimensional echocardiography. Fifty-eight consecutive patients (53+/-9 years of age; 37 men) with heart failure were included in the study. Echocardiograms were obtained before CRT, within 7 days after implantation, and at 12+/-2 months of follow-up using a 3-dimensional digital ultrasound scanner (iE33, Philips, Andover, Massachusetts). Analysis of the temporal course of contraction in 16 LV segments was performed offline using a semiautomatic contour tracing software (LV Analysis, TomTec, Unterschleissheim, Germany). Based on the resulting volume/time curves the segment with the latest minimum of systolic volume in each patient was identified preoperatively (segment A). In addition, the temporal difference between the pre- and postoperative (within 7 days) minimum of systolic volume was determined for each segment. The segment with the longest temporal difference was defined to show the greatest effect of CRT. Location of the LV lead tip was assumed to be within this segment (segment B). LV lead position was defined as optimal when segments A and B were equal and as nonoptimal when they were far from each other. Using this definition, 26 patients had a nonoptimal and 32 patients an optimal LV lead position. Before CRT ejection fraction (32+/-4% vs 31+/-6%), LV end-systolic and end-diastolic volumes (242+/-92 vs 246+/-88 ml, 315+/-82 vs 323+/-90 ml), and peak oxygen consumption (14.3+/-1.4 vs 14.6+/-1.5 ml/min/kg) were equal in the 2 groups. At 12+/-2 months of follow-up, patients with an assumed optimal LV lead position showed greater increases of ejection fraction (10+/-2% vs 6+/-3%) and peak oxygen consumption (2.4+/-0.3 vs 1.5+/-0.4 ml/min/kg) and greater decreases of LV end-systolic (32+/-7 vs 21+/-5 ml) and end-diastolic (20+/-7 vs 13+/-6 ml) volumes. In conclusion

  14. Optimized Linear Prediction for Radial Sampled Multidimensional NMR Experiments

    PubMed Central

    Gledhill, John M.; Kasinath, Vignesh; Wand, A. Joshua

    2011-01-01

    Radial sampling in multidimensional NMR experiments offers greatly decreased acquisition times while also providing an avenue for increased sensitivity. Digital resolution remains concern and depends strongly upon the extent of sampling of individual radial angles. Truncated time domain data leads to spurious peaks (artifacts) upon FT and 2D FT. Linear prediction is commonly employed to improve resolution in Cartesian sampled NMR experiments. Here, we adapt the linear prediction method to radial sampling. Significantly more accurate estimates of linear prediction coefficients are obtained by combining quadrature frequency components from the multiple angle spectra. This approach results in significant improvement in both resolution and removal of spurious peaks as compared to traditional linear prediction methods applied to radial sampled data. The ‘averaging linear prediction’ (ALP) method is demonstrated as a general tool for resolution improvement in multidimensional radial sampled experiments. PMID:21767968

  15. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data.

    PubMed

    Bhalala, Utpal S; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A G M; Allen, Robert H; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0-28 days) and young infants (age: 29 days-4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144-150°. PMID:27003759

  16. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data.

    PubMed

    Bhalala, Utpal S; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A G M; Allen, Robert H; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0-28 days) and young infants (age: 29 days-4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144-150°.

  17. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data

    PubMed Central

    Bhalala, Utpal S.; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A. G. M.; Allen, Robert H.; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0–28 days) and young infants (age: 29 days–4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144–150°. PMID:27003759

  18. Sparse Recovery Optimization in Wireless Sensor Networks with a Sub-Nyquist Sampling Rate.

    PubMed

    Brunelli, Davide; Caione, Carlo

    2015-07-10

    Compressive sensing (CS) is a new technology in digital signal processing capable of high-resolution capture of physical signals from few measurements, which promises impressive improvements in the field of wireless sensor networks (WSNs). In this work, we extensively investigate the effectiveness of compressive sensing (CS) when real COTSresource-constrained sensor nodes are used for compression, evaluating how the different parameters can affect the energy consumption and the lifetime of the device. Using data from a real dataset, we compare an implementation of CS using dense encoding matrices, where samples are gathered at a Nyquist rate, with the reconstruction of signals sampled at a sub-Nyquist rate. The quality of recovery is addressed, and several algorithms are used for reconstruction exploiting the intra- and inter-signal correlation structures. We finally define an optimal under-sampling ratio and reconstruction algorithm capable of achieving the best reconstruction at the minimum energy spent for the compression. The results are verified against a set of different kinds of sensors on several nodes used for environmental monitoring.

  19. Sparse Recovery Optimization in Wireless Sensor Networks with a Sub-Nyquist Sampling Rate

    PubMed Central

    Brunelli, Davide; Caione, Carlo

    2015-01-01

    Compressive sensing (CS) is a new technology in digital signal processing capable of high-resolution capture of physical signals from few measurements, which promises impressive improvements in the field of wireless sensor networks (WSNs). In this work, we extensively investigate the effectiveness of compressive sensing (CS) when real COTSresource-constrained sensor nodes are used for compression, evaluating how the different parameters can affect the energy consumption and the lifetime of the device. Using data from a real dataset, we compare an implementation of CS using dense encoding matrices, where samples are gathered at a Nyquist rate, with the reconstruction of signals sampled at a sub-Nyquist rate. The quality of recovery is addressed, and several algorithms are used for reconstruction exploiting the intra- and inter-signal correlation structures. We finally define an optimal under-sampling ratio and reconstruction algorithm capable of achieving the best reconstruction at the minimum energy spent for the compression. The results are verified against a set of different kinds of sensors on several nodes used for environmental monitoring. PMID:26184203

  20. Optimized design and analysis of sparse-sampling FMRI experiments.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S

    2013-01-01

    Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase

  1. Ant colony optimization as a method for strategic genotype sampling.

    PubMed

    Spangler, M L; Robbins, K R; Bertrand, J K; Macneil, M; Rekaya, R

    2009-06-01

    A simulation study was carried out to develop an alternative method of selecting animals to be genotyped. Simulated pedigrees included 5000 animals, each assigned genotypes for a bi-allelic single nucleotide polymorphism (SNP) based on assumed allelic frequencies of 0.7/0.3 and 0.5/0.5. In addition to simulated pedigrees, two beef cattle pedigrees, one from field data and the other from a research population, were used to test selected methods using simulated genotypes. The proposed method of ant colony optimization (ACO) was evaluated based on the number of alleles correctly assigned to ungenotyped animals (AK(P)), the probability of assigning true alleles (AK(G)) and the probability of correctly assigning genotypes (APTG). The proposed animal selection method of ant colony optimization was compared to selection using the diagonal elements of the inverse of the relationship matrix (A(-1)). Comparisons of these two methods showed that ACO yielded an increase in AK(P) ranging from 4.98% to 5.16% and an increase in APTG from 1.6% to 1.8% using simulated pedigrees. Gains in field data and research pedigrees were slightly lower. These results suggest that ACO can provide a better genotyping strategy, when compared to A(-1), with different pedigree sizes and structures. PMID:19220227

  2. Sample of CFD optimization of a centrifugal compressor stage

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Drozdov, A.

    2015-08-01

    Industrial centrifugal compressor stage is a complicated object for gas dynamic design when the goal is to achieve maximum efficiency. The Authors analyzed results of CFD performance modeling (NUMECA Fine Turbo calculations). Performance prediction in a whole was modest or poor in all known cases. Maximum efficiency prediction was quite satisfactory to the contrary. Flow structure in stator elements was in a good agreement with known data. The intermediate type stage “3D impeller + vaneless diffuser+ return channel” was designed with principles well proven for stages with 2D impellers. CFD calculations of vaneless diffuser candidates demonstrated flow separation in VLD with constant width. The candidate with symmetrically tampered inlet part b3 / b2 = 0,73 appeared to be the best. Flow separation takes place in the crossover with standard configuration. The alternative variant was developed and numerically tested. The obtained experience was formulated as corrected design recommendations. Several candidates of the impeller were compared by maximum efficiency of the stage. The variant with gas dynamic standard principles of blade cascade design appeared to be the best. Quasi - 3D non-viscid calculations were applied to optimize blade velocity diagrams - non-incidence inlet, control of the diffusion factor and of average blade load. “Geometric” principle of blade formation with linear change of blade angles along its length appeared to be less effective. Candidates’ with different geometry parameters were designed by 6th math model version and compared. The candidate with optimal parameters - number of blades, inlet diameter and leading edge meridian position - is 1% more effective than the stage of the initial design.

  3. Optimization conditions of samples saponification for tocopherol analysis.

    PubMed

    Souza, Aloisio Henrique Pereira; Gohara, Aline Kirie; Rodrigues, Ângela Claudia; Ströher, Gisely Luzia; Silva, Danielle Cristina; Visentainer, Jesuí Vergílio; Souza, Nilson Evelázio; Matsushita, Makoto

    2014-09-01

    A full factorial design 2(2) (two factors at two levels) with duplicates was performed to investigate the influence of the factors agitation time (2 and 4 h) and the percentage of KOH (60% and 80% w/v) in the saponification of samples for the determination of α, β and γ+δ-tocopherols. The study used samples of peanuts (cultivar armadillo), produced and marketed in Maringá, PR. The factors % KOH and agitation time were significant, and an increase in their values contributed negatively to the responses. The interaction effect was not significant for the response δ-tocopherol, and the contribution of this effect to the other responses was positive, but less than 10%. The ANOVA and response surfaces analysis showed that the most efficient saponification procedure was obtained using a 60% (w/v) solution of KOH and with an agitation time of 2 h.

  4. Determination and optimization of spatial samples for distributed measurements.

    SciTech Connect

    Huo, Xiaoming; Tran, Hy D.; Shilling, Katherine Meghan; Kim, Heeyong

    2010-10-01

    There are no accepted standards for determining how many measurements to take during part inspection or where to take them, or for assessing confidence in the evaluation of acceptance based on these measurements. The goal of this work was to develop a standard method for determining the number of measurements, together with the spatial distribution of measurements and the associated risks for false acceptance and false rejection. Two paths have been taken to create a standard method for selecting sampling points. A wavelet-based model has been developed to select measurement points and to determine confidence in the measurement after the points are taken. An adaptive sampling strategy has been studied to determine implementation feasibility on commercial measurement equipment. Results using both real and simulated data are presented for each of the paths.

  5. Optimized Sampling Strategies For Non-Proliferation Monitoring: Report

    SciTech Connect

    Kurzeja, R.; Buckley, R.; Werth, D.; Chiswell, S.

    2015-10-20

    Concentration data collected from the 2013 H-Canyon effluent reprocessing experiment were reanalyzed to improve the source term estimate. When errors in the model-predicted wind speed and direction were removed, the source term uncertainty was reduced to 30% of the mean. This explained the factor of 30 difference between the source term size derived from data at 5 km and 10 km downwind in terms of the time history of dissolution. The results show a path forward to develop a sampling strategy for quantitative source term calculation.

  6. Optimal sampling of visual information for lightness judgments

    PubMed Central

    Toscani, Matteo; Valsecchi, Matteo; Gegenfurtner, Karl R.

    2013-01-01

    The variable resolution and limited processing capacity of the human visual system requires us to sample the world with eye movements and attentive processes. Here we show that where observers look can strongly modulate their reports of simple surface attributes, such as lightness. When observers matched the color of natural objects they based their judgments on the brightest parts of the objects; at the same time, they tended to fixate points with above-average luminance. When we forced participants to fixate a specific point on the object using a gaze-contingent display setup, the matched lightness was higher when observers fixated bright regions. This finding indicates a causal link between the luminance of the fixated region and the lightness match for the whole object. Simulations with rendered physical lighting show that higher values in an object’s luminance distribution are particularly informative about reflectance. This sampling strategy is an efficient and simple heuristic for the visual system to achieve accurate and invariant judgments of lightness. PMID:23776251

  7. Optimizing fish sampling for fish - mercury bioaccumulation factors

    USGS Publications Warehouse

    Scudder Eikenberry, Barbara C.; Riva-Murray, Karen; Knightes, Christopher D.; Journey, Celeste A.; Chasar, Lia C.; Brigham, Mark E.; Bradley, Paul M.

    2015-01-01

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish sample numbers on BAF estimates. Fish length, followed by weight, was most correlated to adult top-predator Hgfish. Site-specific BAFs based on length-normalized and standardized Hgfish estimates demonstrated up to 50% less variability than those based on non-normalized Hgfish. Permutation analysis indicated that length-normalized and standardized Hgfish estimates based on at least 8 trout or 5 bass resulted in mean Hgfish coefficients of variation less than 20%. These results are intended to support regulatory mercury monitoring and load-reduction program improvements.

  8. Image artifacts in Single Molecule Localization Microscopy: why optimization of sample preparation protocols matters

    PubMed Central

    Whelan, Donna R.; Bell, Toby D. M.

    2015-01-01

    Single molecule localization microscopy (SMLM) techniques allow for sub-diffraction imaging with spatial resolutions better than 10 nm reported. Much has been discussed relating to different variations of SMLM and all-inclusive microscopes can now be purchased, removing the need for in-house software or hardware development. However, little discussion has occurred examining the reliability and quality of the images being produced, as well as the potential for overlooked preparative artifacts. As a result of the up to an order-of-magnitude improvement in spatial resolution, substantially more detail is observed, including changes in distribution and ultrastructure caused by the many steps required to fix, permeabilize, and stain a sample. Here we systematically investigate many of these steps including different fixatives, fixative concentration, permeabilization concentration and timing, antibody concentration, and buffering. We present three well-optimized fixation protocols for staining microtubules, mitochondria and actin in a mammalian cell line and then discuss various artifacts in relation to images obtained from samples prepared using the protocols. The potential for such errors to go undetected in SMLM images and the complications in defining a ‘good’ image using previous parameters applied to confocal microscopy are also discussed. PMID:25603780

  9. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters.

    PubMed

    Whelan, Donna R; Bell, Toby D M

    2015-01-21

    Single molecule localization microscopy (SMLM) techniques allow for sub-diffraction imaging with spatial resolutions better than 10 nm reported. Much has been discussed relating to different variations of SMLM and all-inclusive microscopes can now be purchased, removing the need for in-house software or hardware development. However, little discussion has occurred examining the reliability and quality of the images being produced, as well as the potential for overlooked preparative artifacts. As a result of the up to an order-of-magnitude improvement in spatial resolution, substantially more detail is observed, including changes in distribution and ultrastructure caused by the many steps required to fix, permeabilize, and stain a sample. Here we systematically investigate many of these steps including different fixatives, fixative concentration, permeabilization concentration and timing, antibody concentration, and buffering. We present three well-optimized fixation protocols for staining microtubules, mitochondria and actin in a mammalian cell line and then discuss various artifacts in relation to images obtained from samples prepared using the protocols. The potential for such errors to go undetected in SMLM images and the complications in defining a 'good' image using previous parameters applied to confocal microscopy are also discussed.

  10. A Sequential Optimization Sampling Method for Metamodels with Radial Basis Functions

    PubMed Central

    Pan, Guang; Ye, Pengcheng; Yang, Zhidong

    2014-01-01

    Metamodels have been widely used in engineering design to facilitate analysis and optimization of complex systems that involve computationally expensive simulation programs. The accuracy of metamodels is strongly affected by the sampling methods. In this paper, a new sequential optimization sampling method is proposed. Based on the new sampling method, metamodels can be constructed repeatedly through the addition of sampling points, namely, extrema points of metamodels and minimum points of density function. Afterwards, the more accurate metamodels would be constructed by the procedure above. The validity and effectiveness of proposed sampling method are examined by studying typical numerical examples. PMID:25133206

  11. Optimal Sampling of a Reaction Coordinate in Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Estimating how free energy changes with the state of a system is a central goal in applications of statistical mechanics to problems of chemical or biological interest. From these free energy changes it is possible, for example, to establish which states of the system are stable, what are their probabilities and how the equilibria between these states are influenced by external conditions. Free energies are also of great utility in determining kinetics of transitions between different states. A variety of methods have been developed to compute free energies of condensed phase systems. Here, I will focus on one class of methods - those that allow for calculating free energy changes along one or several generalized coordinates in the system, often called reaction coordinates or order parameters . Considering that in almost all cases of practical interest a significant computational effort is required to determine free energy changes along such coordinates it is hardly surprising that efficiencies of different methods are of great concern. In most cases, the main difficulty is associated with its shape along the reaction coordinate. If the free energy changes markedly along this coordinate Boltzmann sampling of its different values becomes highly non-uniform. This, in turn, may have considerable, detrimental effect on the performance of many methods for calculating free energies.

  12. About Optimal Fractional Hold Circuits for Inter-sample Output Reconstruction in Sampled-data Systems

    PubMed Central

    De la Sen, Manuel

    2007-01-01

    The design of fractional order-holds (FROH) of correcting gains β ∈[−1,1] (potentially and possibly including zero-order-holds, ZOH with β=0, and first-order-holds, FROH with β=1) is discussed related to achieving output deviations being close with respect to its sampled values. A squared error time- integral between the current output and its sampled values is minimized to yield the appropriate correcting gain of the FROH in an analytic way.

  13. Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-Seed Derived Proanthocyanidin Extract

    PubMed Central

    Serrano, Joan; Casanova-Martí, Àngela; Blay, Mayte; Terra, Ximena; Ardévol, Anna; Pinent, Montserrat

    2016-01-01

    Food intake depends on homeostatic and non-homeostatic factors. In order to use grape seed proanthocyanidins (GSPE) as food intake limiting agents, it is important to define the key characteristics of their bioactivity within this complex function. We treated rats with acute and chronic treatments of GSPE at different doses to identify the importance of eating patterns and GSPE dose and the mechanistic aspects of GSPE. GSPE-induced food intake inhibition must be reproduced under non-stressful conditions and with a stable and synchronized feeding pattern. A minimum dose of around 350 mg GSPE/kg body weight (BW) is needed. GSPE components act by activating the Glucagon-like peptide-1 (GLP-1) receptor because their effect is blocked by Exendin 9-39. GSPE in turn acts on the hypothalamic center of food intake control probably because of increased GLP-1 production in the intestine. To conclude, GSPE inhibits food intake through GLP-1 signaling, but it needs to be dosed under optimal conditions to exert this effect. PMID:27775601

  14. Optimal designs of the median run length based double sampling X chart for minimizing the average sample size.

    PubMed

    Teoh, Wei Lin; Khoo, Michael B C; Teh, Sin Yin

    2013-01-01

    Designs of the double sampling (DS) X chart are traditionally based on the average run length (ARL) criterion. However, the shape of the run length distribution changes with the process mean shifts, ranging from highly skewed when the process is in-control to almost symmetric when the mean shift is large. Therefore, we show that the ARL is a complicated performance measure and that the median run length (MRL) is a more meaningful measure to depend on. This is because the MRL provides an intuitive and a fair representation of the central tendency, especially for the rightly skewed run length distribution. Since the DS X chart can effectively reduce the sample size without reducing the statistical efficiency, this paper proposes two optimal designs of the MRL-based DS X chart, for minimizing (i) the in-control average sample size (ASS) and (ii) both the in-control and out-of-control ASSs. Comparisons with the optimal MRL-based EWMA X and Shewhart X charts demonstrate the superiority of the proposed optimal MRL-based DS X chart, as the latter requires a smaller sample size on the average while maintaining the same detection speed as the two former charts. An example involving the added potassium sorbate in a yoghurt manufacturing process is used to illustrate the effectiveness of the proposed MRL-based DS X chart in reducing the sample size needed. PMID:23935873

  15. Optimal Designs of the Median Run Length Based Double Sampling X̄ Chart for Minimizing the Average Sample Size

    PubMed Central

    Teoh, Wei Lin; Khoo, Michael B. C.; Teh, Sin Yin

    2013-01-01

    Designs of the double sampling (DS) chart are traditionally based on the average run length (ARL) criterion. However, the shape of the run length distribution changes with the process mean shifts, ranging from highly skewed when the process is in-control to almost symmetric when the mean shift is large. Therefore, we show that the ARL is a complicated performance measure and that the median run length (MRL) is a more meaningful measure to depend on. This is because the MRL provides an intuitive and a fair representation of the central tendency, especially for the rightly skewed run length distribution. Since the DS chart can effectively reduce the sample size without reducing the statistical efficiency, this paper proposes two optimal designs of the MRL-based DS chart, for minimizing (i) the in-control average sample size (ASS) and (ii) both the in-control and out-of-control ASSs. Comparisons with the optimal MRL-based EWMA and Shewhart charts demonstrate the superiority of the proposed optimal MRL-based DS chart, as the latter requires a smaller sample size on the average while maintaining the same detection speed as the two former charts. An example involving the added potassium sorbate in a yoghurt manufacturing process is used to illustrate the effectiveness of the proposed MRL-based DS chart in reducing the sample size needed. PMID:23935873

  16. Improved nonparametric estimation of the optimal diagnostic cut-off point associated with the Youden index under different sampling schemes.

    PubMed

    Yin, Jingjing; Samawi, Hani; Linder, Daniel

    2016-07-01

    A diagnostic cut-off point of a biomarker measurement is needed for classifying a random subject to be either diseased or healthy. However, the cut-off point is usually unknown and needs to be estimated by some optimization criteria. One important criterion is the Youden index, which has been widely adopted in practice. The Youden index, which is defined as the maximum of (sensitivity + specificity -1), directly measures the largest total diagnostic accuracy a biomarker can achieve. Therefore, it is desirable to estimate the optimal cut-off point associated with the Youden index. Sometimes, taking the actual measurements of a biomarker is very difficult and expensive, while ranking them without the actual measurement can be relatively easy. In such cases, ranked set sampling can give more precise estimation than simple random sampling, as ranked set samples are more likely to span the full range of the population. In this study, kernel density estimation is utilized to numerically solve for an estimate of the optimal cut-off point. The asymptotic distributions of the kernel estimators based on two sampling schemes are derived analytically and we prove that the estimators based on ranked set sampling are relatively more efficient than that of simple random sampling and both estimators are asymptotically unbiased. Furthermore, the asymptotic confidence intervals are derived. Intensive simulations are carried out to compare the proposed method using ranked set sampling with simple random sampling, with the proposed method outperforming simple random sampling in all cases. A real data set is analyzed for illustrating the proposed method.

  17. Improved nonparametric estimation of the optimal diagnostic cut-off point associated with the Youden index under different sampling schemes.

    PubMed

    Yin, Jingjing; Samawi, Hani; Linder, Daniel

    2016-07-01

    A diagnostic cut-off point of a biomarker measurement is needed for classifying a random subject to be either diseased or healthy. However, the cut-off point is usually unknown and needs to be estimated by some optimization criteria. One important criterion is the Youden index, which has been widely adopted in practice. The Youden index, which is defined as the maximum of (sensitivity + specificity -1), directly measures the largest total diagnostic accuracy a biomarker can achieve. Therefore, it is desirable to estimate the optimal cut-off point associated with the Youden index. Sometimes, taking the actual measurements of a biomarker is very difficult and expensive, while ranking them without the actual measurement can be relatively easy. In such cases, ranked set sampling can give more precise estimation than simple random sampling, as ranked set samples are more likely to span the full range of the population. In this study, kernel density estimation is utilized to numerically solve for an estimate of the optimal cut-off point. The asymptotic distributions of the kernel estimators based on two sampling schemes are derived analytically and we prove that the estimators based on ranked set sampling are relatively more efficient than that of simple random sampling and both estimators are asymptotically unbiased. Furthermore, the asymptotic confidence intervals are derived. Intensive simulations are carried out to compare the proposed method using ranked set sampling with simple random sampling, with the proposed method outperforming simple random sampling in all cases. A real data set is analyzed for illustrating the proposed method. PMID:26756282

  18. Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores.

    PubMed

    Lonsinger, Robert C; Gese, Eric M; Dempsey, Steven J; Kluever, Bryan M; Johnson, Timothy R; Waits, Lisette P

    2015-07-01

    Noninvasive genetic sampling, or noninvasive DNA sampling (NDS), can be an effective monitoring approach for elusive, wide-ranging species at low densities. However, few studies have attempted to maximize sampling efficiency. We present a model for combining sample accumulation and DNA degradation to identify the most efficient (i.e. minimal cost per successful sample) NDS temporal design for capture-recapture analyses. We use scat accumulation and faecal DNA degradation rates for two sympatric carnivores, kit fox (Vulpes macrotis) and coyote (Canis latrans) across two seasons (summer and winter) in Utah, USA, to demonstrate implementation of this approach. We estimated scat accumulation rates by clearing and surveying transects for scats. We evaluated mitochondrial (mtDNA) and nuclear (nDNA) DNA amplification success for faecal DNA samples under natural field conditions for 20 fresh scats/species/season from <1-112 days. Mean accumulation rates were nearly three times greater for coyotes (0.076 scats/km/day) than foxes (0.029 scats/km/day) across seasons. Across species and seasons, mtDNA amplification success was ≥95% through day 21. Fox nDNA amplification success was ≥70% through day 21 across seasons. Coyote nDNA success was ≥70% through day 21 in winter, but declined to <50% by day 7 in summer. We identified a common temporal sampling frame of approximately 14 days that allowed species to be monitored simultaneously, further reducing time, survey effort and costs. Our results suggest that when conducting repeated surveys for capture-recapture analyses, overall cost-efficiency for NDS may be improved with a temporal design that balances field and laboratory costs along with deposition and degradation rates.

  19. Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores.

    PubMed

    Lonsinger, Robert C; Gese, Eric M; Dempsey, Steven J; Kluever, Bryan M; Johnson, Timothy R; Waits, Lisette P

    2015-07-01

    Noninvasive genetic sampling, or noninvasive DNA sampling (NDS), can be an effective monitoring approach for elusive, wide-ranging species at low densities. However, few studies have attempted to maximize sampling efficiency. We present a model for combining sample accumulation and DNA degradation to identify the most efficient (i.e. minimal cost per successful sample) NDS temporal design for capture-recapture analyses. We use scat accumulation and faecal DNA degradation rates for two sympatric carnivores, kit fox (Vulpes macrotis) and coyote (Canis latrans) across two seasons (summer and winter) in Utah, USA, to demonstrate implementation of this approach. We estimated scat accumulation rates by clearing and surveying transects for scats. We evaluated mitochondrial (mtDNA) and nuclear (nDNA) DNA amplification success for faecal DNA samples under natural field conditions for 20 fresh scats/species/season from <1-112 days. Mean accumulation rates were nearly three times greater for coyotes (0.076 scats/km/day) than foxes (0.029 scats/km/day) across seasons. Across species and seasons, mtDNA amplification success was ≥95% through day 21. Fox nDNA amplification success was ≥70% through day 21 across seasons. Coyote nDNA success was ≥70% through day 21 in winter, but declined to <50% by day 7 in summer. We identified a common temporal sampling frame of approximately 14 days that allowed species to be monitored simultaneously, further reducing time, survey effort and costs. Our results suggest that when conducting repeated surveys for capture-recapture analyses, overall cost-efficiency for NDS may be improved with a temporal design that balances field and laboratory costs along with deposition and degradation rates. PMID:25454561

  20. A model for estimating the value of sampling programs and the optimal number of samples for contaminated soil

    NASA Astrophysics Data System (ADS)

    Back, Pär-Erik

    2007-04-01

    A model is presented for estimating the value of information of sampling programs for contaminated soil. The purpose is to calculate the optimal number of samples when the objective is to estimate the mean concentration. A Bayesian risk-cost-benefit decision analysis framework is applied and the approach is design-based. The model explicitly includes sample uncertainty at a complexity level that can be applied to practical contaminated land problems with limited amount of data. Prior information about the contamination level is modelled by probability density functions. The value of information is expressed in monetary terms. The most cost-effective sampling program is the one with the highest expected net value. The model was applied to a contaminated scrap yard in Göteborg, Sweden, contaminated by metals. The optimal number of samples was determined to be in the range of 16-18 for a remediation unit of 100 m2. Sensitivity analysis indicates that the perspective of the decision-maker is important, and that the cost of failure and the future land use are the most important factors to consider. The model can also be applied for other sampling problems, for example, sampling and testing of wastes to meet landfill waste acceptance procedures.

  1. Optimizing the triple-axis spectrometer PANDA at the MLZ for small samples and complex sample environment conditions

    NASA Astrophysics Data System (ADS)

    Utschick, C.; Skoulatos, M.; Schneidewind, A.; Böni, P.

    2016-11-01

    The cold-neutron triple-axis spectrometer PANDA at the neutron source FRM II has been serving an international user community studying condensed matter physics problems. We report on a new setup, improving the signal-to-noise ratio for small samples and pressure cell setups. Analytical and numerical Monte Carlo methods are used for the optimization of elliptic and parabolic focusing guides. They are placed between the monochromator and sample positions, and the flux at the sample is compared to the one achieved by standard monochromator focusing techniques. A 25 times smaller spot size is achieved, associated with a factor of 2 increased intensity, within the same divergence limits, ± 2 ° . This optional neutron focusing guide shall establish a top-class spectrometer for studying novel exotic properties of matter in combination with more stringent sample environment conditions such as extreme pressures associated with small sample sizes.

  2. Optimal sampling efficiency in Monte Carlo sampling with an approximate potential

    SciTech Connect

    Coe, Joshua D; Shaw, M Sam; Sewell, Thomas D

    2009-01-01

    Building on the work of Iftimie et al., Boltzmann sampling of an approximate potential (the 'reference' system) is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is evaluated at a higher level of approximation (the 'full' system) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. For reference system chains of sufficient length, consecutive full energies are statistically decorrelated and thus far fewer are required to build ensemble averages with a given variance. Without modifying the original algorithm, however, the maximum reference chain length is too short to decorrelate full configurations without dramatically lowering the acceptance probability of the composite move. This difficulty stems from the fact that the reference and full potentials sample different statistical distributions. By manipulating the thermodynamic variables characterizing the reference system (pressure and temperature, in this case), we maximize the average acceptance probability of composite moves, lengthening significantly the random walk between consecutive full energy evaluations. In this manner, the number of full energy evaluations needed to precisely characterize equilibrium properties is dramatically reduced. The method is applied to a model fluid, but implications for sampling high-dimensional systems with ab initio or density functional theory (DFT) potentials are discussed.

  3. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    SciTech Connect

    Zarepisheh, M; Li, R; Xing, L; Ye, Y; Boyd, S

    2014-06-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  4. Optimal sampling with prior information of the image geometry in microfluidic MRI.

    PubMed

    Han, S H; Cho, H; Paulsen, J L

    2015-03-01

    Recent advances in MRI acquisition for microscopic flows enable unprecedented sensitivity and speed in a portable NMR/MRI microfluidic analysis platform. However, the application of MRI to microfluidics usually suffers from prolonged acquisition times owing to the combination of the required high resolution and wide field of view necessary to resolve details within microfluidic channels. When prior knowledge of the image geometry is available as a binarized image, such as for microfluidic MRI, it is possible to reduce sampling requirements by incorporating this information into the reconstruction algorithm. The current approach to the design of the partial weighted random sampling schemes is to bias toward the high signal energy portions of the binarized image geometry after Fourier transformation (i.e. in its k-space representation). Although this sampling prescription is frequently effective, it can be far from optimal in certain limiting cases, such as for a 1D channel, or more generally yield inefficient sampling schemes at low degrees of sub-sampling. This work explores the tradeoff between signal acquisition and incoherent sampling on image reconstruction quality given prior knowledge of the image geometry for weighted random sampling schemes, finding that optimal distribution is not robustly determined by maximizing the acquired signal but from interpreting its marginal change with respect to the sub-sampling rate. We develop a corresponding sampling design methodology that deterministically yields a near optimal sampling distribution for image reconstructions incorporating knowledge of the image geometry. The technique robustly identifies optimal weighted random sampling schemes and provides improved reconstruction fidelity for multiple 1D and 2D images, when compared to prior techniques for sampling optimization given knowledge of the image geometry.

  5. Optimal sampling with prior information of the image geometry in microfluidic MRI

    NASA Astrophysics Data System (ADS)

    Han, S. H.; Cho, H.; Paulsen, J. L.

    2015-03-01

    Recent advances in MRI acquisition for microscopic flows enable unprecedented sensitivity and speed in a portable NMR/MRI microfluidic analysis platform. However, the application of MRI to microfluidics usually suffers from prolonged acquisition times owing to the combination of the required high resolution and wide field of view necessary to resolve details within microfluidic channels. When prior knowledge of the image geometry is available as a binarized image, such as for microfluidic MRI, it is possible to reduce sampling requirements by incorporating this information into the reconstruction algorithm. The current approach to the design of the partial weighted random sampling schemes is to bias toward the high signal energy portions of the binarized image geometry after Fourier transformation (i.e. in its k-space representation). Although this sampling prescription is frequently effective, it can be far from optimal in certain limiting cases, such as for a 1D channel, or more generally yield inefficient sampling schemes at low degrees of sub-sampling. This work explores the tradeoff between signal acquisition and incoherent sampling on image reconstruction quality given prior knowledge of the image geometry for weighted random sampling schemes, finding that optimal distribution is not robustly determined by maximizing the acquired signal but from interpreting its marginal change with respect to the sub-sampling rate. We develop a corresponding sampling design methodology that deterministically yields a near optimal sampling distribution for image reconstructions incorporating knowledge of the image geometry. The technique robustly identifies optimal weighted random sampling schemes and provides improved reconstruction fidelity for multiple 1D and 2D images, when compared to prior techniques for sampling optimization given knowledge of the image geometry.

  6. Optimal sampling with prior information of the image geometry in microfluidic MRI.

    PubMed

    Han, S H; Cho, H; Paulsen, J L

    2015-03-01

    Recent advances in MRI acquisition for microscopic flows enable unprecedented sensitivity and speed in a portable NMR/MRI microfluidic analysis platform. However, the application of MRI to microfluidics usually suffers from prolonged acquisition times owing to the combination of the required high resolution and wide field of view necessary to resolve details within microfluidic channels. When prior knowledge of the image geometry is available as a binarized image, such as for microfluidic MRI, it is possible to reduce sampling requirements by incorporating this information into the reconstruction algorithm. The current approach to the design of the partial weighted random sampling schemes is to bias toward the high signal energy portions of the binarized image geometry after Fourier transformation (i.e. in its k-space representation). Although this sampling prescription is frequently effective, it can be far from optimal in certain limiting cases, such as for a 1D channel, or more generally yield inefficient sampling schemes at low degrees of sub-sampling. This work explores the tradeoff between signal acquisition and incoherent sampling on image reconstruction quality given prior knowledge of the image geometry for weighted random sampling schemes, finding that optimal distribution is not robustly determined by maximizing the acquired signal but from interpreting its marginal change with respect to the sub-sampling rate. We develop a corresponding sampling design methodology that deterministically yields a near optimal sampling distribution for image reconstructions incorporating knowledge of the image geometry. The technique robustly identifies optimal weighted random sampling schemes and provides improved reconstruction fidelity for multiple 1D and 2D images, when compared to prior techniques for sampling optimization given knowledge of the image geometry. PMID:25676820

  7. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  8. Optimal and maximin sample sizes for multicentre cost-effectiveness trials.

    PubMed

    Manju, Md Abu; Candel, Math J J M; Berger, Martijn P F

    2015-10-01

    This paper deals with the optimal sample sizes for a multicentre trial in which the cost-effectiveness of two treatments in terms of net monetary benefit is studied. A bivariate random-effects model, with the treatment-by-centre interaction effect being random and the main effect of centres fixed or random, is assumed to describe both costs and effects. The optimal sample sizes concern the number of centres and the number of individuals per centre in each of the treatment conditions. These numbers maximize the efficiency or power for given research costs or minimize the research costs at a desired level of efficiency or power. Information on model parameters and sampling costs are required to calculate these optimal sample sizes. In case of limited information on relevant model parameters, sample size formulas are derived for so-called maximin sample sizes which guarantee a power level at the lowest study costs. Four different maximin sample sizes are derived based on the signs of the lower bounds of two model parameters, with one case being worst compared to others. We numerically evaluate the efficiency of the worst case instead of using others. Finally, an expression is derived for calculating optimal and maximin sample sizes that yield sufficient power to test the cost-effectiveness of two treatments. PMID:25656551

  9. Optimization of low-background alpha spectrometers for analysis of thick samples.

    PubMed

    Misiaszek, M; Pelczar, K; Wójcik, M; Zuzel, G; Laubenstein, M

    2013-11-01

    Results of alpha spectrometric measurements performed deep underground and above ground with and without active veto show that the underground measurement of thick samples is the most sensitive method due to significant reduction of the muon-induced background. In addition, the polonium diffusion requires for some samples an appropriate selection of an energy region in the registered spectrum. On the basis of computer simulations the best counting conditions are selected for a thick lead sample in order to optimize the detection limit.

  10. Defining the Optimal Planning Target Volume in Image-Guided Stereotactic Radiosurgery of Brain Metastases: Results of a Randomized Trial

    SciTech Connect

    Kirkpatrick, John P.; Wang, Zhiheng; Sampson, John H.; McSherry, Frances; Herndon, James E.; Allen, Karen J.; Duffy, Eileen; Hoang, Jenny K.; Chang, Zheng; Yoo, David S.; Kelsey, Chris R.; Yin, Fang-Fang

    2015-01-01

    Purpose: To identify an optimal margin about the gross target volume (GTV) for stereotactic radiosurgery (SRS) of brain metastases, minimizing toxicity and local recurrence. Methods and Materials: Adult patients with 1 to 3 brain metastases less than 4 cm in greatest dimension, no previous brain radiation therapy, and Karnofsky performance status (KPS) above 70 were eligible for this institutional review board–approved trial. Individual lesions were randomized to 1- or 3- mm uniform expansion of the GTV defined on contrast-enhanced magnetic resonance imaging (MRI). The resulting planning target volume (PTV) was treated to 24, 18, or 15 Gy marginal dose for maximum PTV diameters less than 2, 2 to 2.9, and 3 to 3.9 cm, respectively, using a linear accelerator–based image-guided system. The primary endpoint was local recurrence (LR). Secondary endpoints included neurocognition Mini-Mental State Examination, Trail Making Test Parts A and B, quality of life (Functional Assessment of Cancer Therapy-Brain), radionecrosis (RN), need for salvage radiation therapy, distant failure (DF) in the brain, and overall survival (OS). Results: Between February 2010 and November 2012, 49 patients with 80 brain metastases were treated. The median age was 61 years, the median KPS was 90, and the predominant histologies were non–small cell lung cancer (25 patients) and melanoma (8). Fifty-five, 19, and 6 lesions were treated to 24, 18, and 15 Gy, respectively. The PTV/GTV ratio, volume receiving 12 Gy or more, and minimum dose to PTV were significantly higher in the 3-mm group (all P<.01), and GTV was similar (P=.76). At a median follow-up time of 32.2 months, 11 patients were alive, with median OS 10.6 months. LR was observed in only 3 lesions (2 in the 1 mm group, P=.51), with 6.7% LR 12 months after SRS. Biopsy-proven RN alone was observed in 6 lesions (5 in the 3-mm group, P=.10). The 12-month DF rate was 45.7%. Three months after SRS, no significant change in

  11. Confronting the ironies of optimal design: Nonoptimal sampling designs with desirable properties

    NASA Astrophysics Data System (ADS)

    Casman, Elizabeth A.; Naiman, Daniel Q.; Chamberlin, Charles E.

    1988-03-01

    Two sampling designs are developed for the improvement of parameter estimate precision in nonlinear regression, one for when there is uncertainty in the parameter values, and the other for when the correct model formulation is unknown. Although based on concepts of optimal design theory, the design criteria emphasize efficiency rather than optimality. The development is illustrated using a Streeter-Phelps dissolved oxygen-biochemical oxygen demand model.

  12. Optimization of Sample Points for Monitoring Arable Land Quality by Simulated Annealing while Considering Spatial Variations

    PubMed Central

    Wang, Junxiao; Wang, Xiaorui; Zhou, Shenglu; Wu, Shaohua; Zhu, Yan; Lu, Chunfeng

    2016-01-01

    With China’s rapid economic development, the reduction in arable land has emerged as one of the most prominent problems in the nation. The long-term dynamic monitoring of arable land quality is important for protecting arable land resources. An efficient practice is to select optimal sample points while obtaining accurate predictions. To this end, the selection of effective points from a dense set of soil sample points is an urgent problem. In this study, data were collected from Donghai County, Jiangsu Province, China. The number and layout of soil sample points are optimized by considering the spatial variations in soil properties and by using an improved simulated annealing (SA) algorithm. The conclusions are as follows: (1) Optimization results in the retention of more sample points in the moderate- and high-variation partitions of the study area; (2) The number of optimal sample points obtained with the improved SA algorithm is markedly reduced, while the accuracy of the predicted soil properties is improved by approximately 5% compared with the raw data; (3) With regard to the monitoring of arable land quality, a dense distribution of sample points is needed to monitor the granularity. PMID:27706051

  13. Protocol for Optimal Quality and Quantity Pollen DNA Isolation from Honey Samples

    PubMed Central

    Lalhmangaihi, Ralte; Ghatak, Souvik; Laha, Ramachandra; Gurusubramanian, Guruswami; Kumar, Nachimuthu Senthil

    2014-01-01

    The present study illustrates an optimized sample preparation method for an efficient DNA isolation from low quantities of honey samples. A conventional PCR-based method was validated, which potentially enables characterization of plant species from as low as 3 ml bee-honey samples. In the present study, an anionic detergent was used to lyse the hard outer pollen shell, and DTT was used for isolation of thiolated DNA, as it might facilitate protein digestion and assists in releasing the DNA into solution, as well as reduce cross-links between DNA and other biomolecules. Optimization of both the quantity of honey sample and time duration for DNA isolation was done during development of this method. With the use of this method, chloroplast DNA was successfully PCR amplified and sequenced from honey DNA samples. PMID:25365793

  14. Optimization of proteomic sample preparation procedures for comprehensive protein characterization of pathogenic systems.

    PubMed

    Mottaz-Brewer, Heather M; Norbeck, Angela D; Adkins, Joshua N; Manes, Nathan P; Ansong, Charles; Shi, Liang; Rikihisa, Yasuko; Kikuchi, Takane; Wong, Scott W; Estep, Ryan D; Heffron, Fred; Pasa-Tolic, Ljiljana; Smith, Richard D

    2008-12-01

    Mass spectrometry-based proteomics is a powerful analytical tool for investigating pathogens and their interactions within a host. The sensitivity of such analyses provides broad proteome characterization, but the sample-handling procedures must first be optimized to ensure compatibility with the technique and to maximize the dynamic range of detection. The decision-making process for determining optimal growth conditions, preparation methods, sample analysis methods, and data analysis techniques in our laboratory is discussed herein with consideration of the balance in sensitivity, specificity, and biomass losses during analysis of host-pathogen systems.

  15. XAFSmass: a program for calculating the optimal mass of XAFS samples

    NASA Astrophysics Data System (ADS)

    Klementiev, K.; Chernikov, R.

    2016-05-01

    We present a new implementation of the XAFSmass program that calculates the optimal mass of XAFS samples. It has several improvements as compared to the old Windows based program XAFSmass: 1) it is truly platform independent, as provided by Python language, 2) it has an improved parser of chemical formulas that enables parentheses and nested inclusion-to-matrix weight percentages. The program calculates the absorption edge height given the total optical thickness, operates with differently determined sample amounts (mass, pressure, density or sample area) depending on the aggregate state of the sample and solves the inverse problem of finding the elemental composition given the experimental absorption edge jump and the chemical formula.

  16. Optimal sample size allocation for Welch's test in one-way heteroscedastic ANOVA.

    PubMed

    Shieh, Gwowen; Jan, Show-Li

    2015-06-01

    The determination of an adequate sample size is a vital aspect in the planning stage of research studies. A prudent strategy should incorporate all of the critical factors and cost considerations into sample size calculations. This study concerns the allocation schemes of group sizes for Welch's test in a one-way heteroscedastic ANOVA. Optimal allocation approaches are presented for minimizing the total cost while maintaining adequate power and for maximizing power performance for a fixed cost. The commonly recommended ratio of sample sizes is proportional to the ratio of the population standard deviations or the ratio of the population standard deviations divided by the square root of the ratio of the unit sampling costs. Detailed numerical investigations have shown that these usual allocation methods generally do not give the optimal solution. The suggested procedures are illustrated using an example of the cost-efficiency evaluation in multidisciplinary pain centers.

  17. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater

    PubMed Central

    Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal

    2016-01-01

    Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016

  18. Optimization of dielectrophoretic separation and concentration of pathogens in complex biological samples

    NASA Astrophysics Data System (ADS)

    Bisceglia, E.; Cubizolles, M.; Mallard, F.; Pineda, F.; Francais, O.; Le Pioufle, B.

    2013-05-01

    Sample preparation is a key issue of modern analytical methods for in vitro diagnostics of diseases with microbiological origins: methods to separate bacteria from other elements of the complex biological samples are of great importance. In the present study, we investigated the DEP force as a way to perform such a de-complexification of the sample by extracting micro-organisms from a complex biological sample under a highly non-uniform electric field in a micro-system based on an interdigitated electrodes array. Different parameters were investigated to optimize the capture efficiency, such as the size of the gap between the electrodes and the height of the capture channel. These parameters are decisive for the distribution of the electric field inside the separation chamber. To optimize these relevant parameters, we performed numerical simulations using COMSOL Multiphysics and correlated them with experimental results. The optimization of the capture efficiency of the device has first been tested on micro-organisms solution but was also investigated on human blood samples spiked with micro-organisms, thereby mimicking real biological samples.

  19. Optimization of sampling effort for a fishery-independent survey with multiple goals.

    PubMed

    Xu, Binduo; Zhang, Chongliang; Xue, Ying; Ren, Yiping; Chen, Yong

    2015-05-01

    Fishery-independent surveys are essential for collecting high quality data to support fisheries management. For fish populations with low abundance and aggregated distribution in a coastal ecosystem, high intensity bottom trawl surveys may result in extra mortality and disturbance to benthic community, imposing unnecessarily large negative impacts on the populations and ecosystem. Optimization of sampling design is necessary to acquire cost-effective sampling efforts, which, however, may not be straightforward for a survey with multiple goals. We developed a simulation approach to evaluate and optimize sampling efforts for a stratified random survey with multiple goals including estimation of abundance indices of individual species and fish groups and species diversity indices. We compared the performances of different sampling efforts when the target estimation indices had different spatial variability over different survey seasons. This study suggests that sampling efforts in a stratified random survey can be reduced while still achieving relatively high precision and accuracy for most indices measuring abundance and biodiversity, which can reduce survey mortality. This study also shows that optimal sampling efforts for a stratified random design may vary with survey objectives. A postsurvey analysis, such as this study, can improve survey designs to achieve the most important survey goals.

  20. Optimal sample preparation conditions for the determination of uranium in biological samples by kinetic phosphorescence analysis (KPA).

    PubMed

    Ejnik, J W; Hamilton, M M; Adams, P R; Carmichael, A J

    2000-12-15

    Kinetic phosphorescence analysis (KPA) is a proven technique for rapid, precise, and accurate determination of uranium in aqueous solutions. Uranium analysis of biological samples require dry-ashing in a muffle furnace between 400 and 600 degrees C followed by wet-ashing with concentrated nitric acid and hydrogen peroxide to digest the organic component in the sample that interferes with uranium determination by KPA. The optimal dry-ashing temperature was determined to be 450 degrees C. At dry-ashing temperatures greater than 450 degrees C, uranium loss was attributed to vaporization. High temperatures also caused increased background values that were attributed to uranium leaching from the glass vials. Dry-ashing temperatures less than 450 degrees C result in the samples needing additional wet-ashing steps. The recovery of uranium in urine samples was 99.2+/-4.02% between spiked concentrations of 1.98-1980 ng (0.198-198 microg l(-1)) uranium, whereas the recovery in whole blood was 89.9+/-7.33% between the same spiked concentrations. The limit of quantification in which uranium in urine and blood could be accurately measured above the background was determined to be 0.05 and 0.6 microg l(-1), respectively. PMID:11130202

  1. Optimization of Sampling Positions for Measuring Ventilation Rates in Naturally Ventilated Buildings Using Tracer Gas

    PubMed Central

    Shen, Xiong; Zong, Chao; Zhang, Guoqiang

    2012-01-01

    Finding out the optimal sampling positions for measurement of ventilation rates in a naturally ventilated building using tracer gas is a challenge. Affected by the wind and the opening status, the representative positions inside the building may change dynamically at any time. An optimization procedure using the Response Surface Methodology (RSM) was conducted. In this method, the concentration field inside the building was estimated by a three-order RSM polynomial model. The experimental sampling positions to develop the model were chosen from the cross-section area of a pitched-roof building. The Optimal Design method which can decrease the bias of the model was adopted to select these sampling positions. Experiments with a scale model building were conducted in a wind tunnel to achieve observed values of those positions. Finally, the models in different cases of opening states and wind conditions were established and the optimum sampling position was obtained with a desirability level up to 92% inside the model building. The optimization was further confirmed by another round of experiments.

  2. A Novel Method of Failure Sample Selection for Electrical Systems Using Ant Colony Optimization

    PubMed Central

    Tian, Shulin; Yang, Chenglin; Liu, Cheng

    2016-01-01

    The influence of failure propagation is ignored in failure sample selection based on traditional testability demonstration experiment method. Traditional failure sample selection generally causes the omission of some failures during the selection and this phenomenon could lead to some fearful risks of usage because these failures will lead to serious propagation failures. This paper proposes a new failure sample selection method to solve the problem. First, the method uses a directed graph and ant colony optimization (ACO) to obtain a subsequent failure propagation set (SFPS) based on failure propagation model and then we propose a new failure sample selection method on the basis of the number of SFPS. Compared with traditional sampling plan, this method is able to improve the coverage of testing failure samples, increase the capacity of diagnosis, and decrease the risk of using. PMID:27738424

  3. Optimal Sampling-Based Motion Planning under Differential Constraints: the Driftless Case

    PubMed Central

    Schmerling, Edward; Janson, Lucas; Pavone, Marco

    2015-01-01

    Motion planning under differential constraints is a classic problem in robotics. To date, the state of the art is represented by sampling-based techniques, with the Rapidly-exploring Random Tree algorithm as a leading example. Yet, the problem is still open in many aspects, including guarantees on the quality of the obtained solution. In this paper we provide a thorough theoretical framework to assess optimality guarantees of sampling-based algorithms for planning under differential constraints. We exploit this framework to design and analyze two novel sampling-based algorithms that are guaranteed to converge, as the number of samples increases, to an optimal solution (namely, the Differential Probabilistic RoadMap algorithm and the Differential Fast Marching Tree algorithm). Our focus is on driftless control-affine dynamical models, which accurately model a large class of robotic systems. In this paper we use the notion of convergence in probability (as opposed to convergence almost surely): the extra mathematical flexibility of this approach yields convergence rate bounds — a first in the field of optimal sampling-based motion planning under differential constraints. Numerical experiments corroborating our theoretical results are presented and discussed. PMID:26618041

  4. Optimization of low-level LS counter Quantulus 1220 for tritium determination in water samples

    NASA Astrophysics Data System (ADS)

    Jakonić, Ivana; Todorović, Natasa; Nikolov, Jovana; Bronić, Ines Krajcar; Tenjović, Branislava; Vesković, Miroslav

    2014-05-01

    Liquid scintillation counting (LSC) is the most commonly used technique for measuring tritium. To optimize tritium analysis in waters by ultra-low background liquid scintillation spectrometer Quantulus 1220 the optimization of sample/scintillant ratio, choice of appropriate scintillation cocktail and comparison of their efficiency, background and minimal detectable activity (MDA), the effect of chemi- and photoluminescence and combination of scintillant/vial were performed. ASTM D4107-08 (2006) method had been successfully applied in our laboratory for two years. During our last preparation of samples a serious quench effect in count rates of samples that could be consequence of possible contamination by DMSO was noticed. The goal of this paper is to demonstrate development of new direct method in our laboratory proposed by Pujol and Sanchez-Cabeza (1999), which turned out to be faster and simpler than ASTM method while we are dealing with problem of neutralization of DMSO in apparatus. The minimum detectable activity achieved was 2.0 Bq l-1 for a total counting time of 300 min. In order to test the optimization of system for this method tritium level was determined in Danube river samples and also for several samples within intercomparison with Ruđer Bošković Institute (IRB).

  5. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    NASA Astrophysics Data System (ADS)

    Chapon, Arnaud; Pigrée, Gilbert; Putmans, Valérie; Rogel, Gwendal

    Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples' characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters.

  6. Sampling design optimization for multivariate soil mapping, case study from Hungary

    NASA Astrophysics Data System (ADS)

    Szatmári, Gábor; Pásztor, László; Barta, Károly

    2014-05-01

    Direct observations of the soil are important for two main reasons in Digital Soil Mapping (DSM). First, they are used to characterize the relationship between the soil property of interest and the auxiliary information. Second, they are used to improve the predictions based on the auxiliary information. Hence there is a strong necessity to elaborate a well-established soil sampling strategy based on geostatistical tools, prior knowledge and available resources before the samples are actually collected from the area of interest. Fieldwork and laboratory analyses are the most expensive and labor-intensive part of DSM, meanwhile the collected samples and the measured data have a remarkable influence on the spatial predictions and their uncertainty. Numerous sampling strategy optimization techniques developed in the past decades. One of these optimization techniques is Spatial Simulated Annealing (SSA) that has been frequently used in soil surveys to minimize the average universal kriging variance. The benefit of the technique is, that the surveyor can optimize the sampling design for fixed number of observations taking auxiliary information, previously collected samples and inaccessible areas into account. The requirements are the known form of the regression model and the spatial structure of the residuals of the model. Another restriction is, that the technique is able to optimize the sampling design for just one target soil variable. However, in practice a soil survey usually aims to describe the spatial distribution of not just one but several pedological variables. In the recent paper we present a procedure developed in R-code to simultaneously optimize the sampling design by SSA for two soil variables using spatially averaged universal kriging variance as optimization criterion. Soil Organic Matter (SOM) content and rooting depth were chosen for this purpose. The methodology is illustrated with a legacy data set from a study area in Central Hungary. Legacy soil

  7. A stochastic optimization method to estimate the spatial distribution of a pathogen from a sample.

    PubMed

    Parnell, S; Gottwald, T R; Irey, M S; Luo, W; van den Bosch, F

    2011-10-01

    Information on the spatial distribution of plant disease can be utilized to implement efficient and spatially targeted disease management interventions. We present a pathogen-generic method to estimate the spatial distribution of a plant pathogen using a stochastic optimization process which is epidemiologically motivated. Based on an initial sample, the method simulates the individual spread processes of a pathogen between patches of host to generate optimized spatial distribution maps. The method was tested on data sets of Huanglongbing of citrus and was compared with a kriging method from the field of geostatistics using the well-established kappa statistic to quantify map accuracy. Our method produced accurate maps of disease distribution with kappa values as high as 0.46 and was able to outperform the kriging method across a range of sample sizes based on the kappa statistic. As expected, map accuracy improved with sample size but there was a high amount of variation between different random sample placements (i.e., the spatial distribution of samples). This highlights the importance of sample placement on the ability to estimate the spatial distribution of a plant pathogen and we thus conclude that further research into sampling design and its effect on the ability to estimate disease distribution is necessary. PMID:21916625

  8. An Asymptotically-Optimal Sampling-Based Algorithm for Bi-directional Motion Planning

    PubMed Central

    Starek, Joseph A.; Gomez, Javier V.; Schmerling, Edward; Janson, Lucas; Moreno, Luis; Pavone, Marco

    2015-01-01

    Bi-directional search is a widely used strategy to increase the success and convergence rates of sampling-based motion planning algorithms. Yet, few results are available that merge both bi-directional search and asymptotic optimality into existing optimal planners, such as PRM*, RRT*, and FMT*. The objective of this paper is to fill this gap. Specifically, this paper presents a bi-directional, sampling-based, asymptotically-optimal algorithm named Bi-directional FMT* (BFMT*) that extends the Fast Marching Tree (FMT*) algorithm to bidirectional search while preserving its key properties, chiefly lazy search and asymptotic optimality through convergence in probability. BFMT* performs a two-source, lazy dynamic programming recursion over a set of randomly-drawn samples, correspondingly generating two search trees: one in cost-to-come space from the initial configuration and another in cost-to-go space from the goal configuration. Numerical experiments illustrate the advantages of BFMT* over its unidirectional counterpart, as well as a number of other state-of-the-art planners. PMID:27004130

  9. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  10. Development and evaluation of a Bayesian pharmacokinetic estimator and optimal, sparse sampling strategies for ceftazidime.

    PubMed Central

    Kashuba, A D; Ballow, C H; Forrest, A

    1996-01-01

    Data were gathered during an activity-controlled trial in which seriously ill, elderly patients were randomized to receive intravenous ceftazidime or ciprofloxacin and for which adaptive feedback control of drug concentrations in plasma and activity profiles was prospectively performed. The adaptive feedback control algorithm for ceftazidime used an initial population model, a maximum a posteriori (MAP)-Bayesian pharmacokinetic parameter value estimator, and an optimal, sparse sampling strategy for ceftazidime that had been derived from data in the literature obtained from volunteers. Iterative two-stage population pharmacokinetic analysis was performed to develop an unbiased MAP-Bayesian estimator and updated optimal, sparse sampling strategies. The final median values of the population parameters were follows: the volume of distribution of the central compartment was equal to 0.249 liter/kg, the volume of distribution of the peripheral compartment was equal to 0.173 liter/kg, the distributional clearance between the central and peripheral compartments was equal to 0.2251 liter/h/kg, the slope of the total clearance (CL) versus the creatinine clearance (CLCR) was equal to 0.000736 liter/h/kg of CL/1 ml/min/1.73 m2 of CLCR, and nonrenal clearance was equal to + 0.00527 liter/h/kg. Optimal sampling times were dependent on CLCR; for CLCR of > or = 30 ml/min/1.73 m2, the optimal sampling times were 0.583, 3.0, 7.0, and 16.0 h and, for CLCR of < 30 ml/min/1.73 m2, optimal sampling times were 0.583, 4.15, 11.5, and 24.0 h. The study demonstrates that because pharmacokinetic information from volunteers may often not be reflective of specialty populations such as critically ill elderly individuals, iterative two-stage population pharmacokinetic analysis, MAP-Bayesian parameter estimation, and optimal, sparse sampling strategy can be important tools in characterizing their pharmacokinetics. PMID:8843294

  11. Time optimization of (90)Sr measurements: Sequential measurement of multiple samples during ingrowth of (90)Y.

    PubMed

    Holmgren, Stina; Tovedal, Annika; Björnham, Oscar; Ramebäck, Henrik

    2016-04-01

    The aim of this paper is to contribute to a more rapid determination of a series of samples containing (90)Sr by making the Cherenkov measurement of the daughter nuclide (90)Y more time efficient. There are many instances when an optimization of the measurement method might be favorable, such as; situations requiring rapid results in order to make urgent decisions or, on the other hand, to maximize the throughput of samples in a limited available time span. In order to minimize the total analysis time, a mathematical model was developed which calculates the time of ingrowth as well as individual measurement times for n samples in a series. This work is focused on the measurement of (90)Y during ingrowth, after an initial chemical separation of strontium, in which it is assumed that no other radioactive strontium isotopes are present. By using a fixed minimum detectable activity (MDA) and iterating the measurement time for each consecutive sample the total analysis time will be less, compared to using the same measurement time for all samples. It was found that by optimization, the total analysis time for 10 samples can be decreased greatly, from 21h to 6.5h, when assuming a MDA of 1Bq/L and at a background count rate of approximately 0.8cpm.

  12. Quantification of submarine groundwater discharge and optimal radium sampling distribution in the Lesina Lagoon, Italy

    NASA Astrophysics Data System (ADS)

    Rapaglia, John; Koukoulas, Sotirios; Zaggia, Luca; Lichter, Michal; Manfé, Giorgia; Vafeidis, Athanasios T.

    2012-03-01

    Performing a mass balance of radium isotopes is a commonly employed method for quantifying the flux of groundwater into the sea. However, the spatial variability of 224Ra can compromise the results of mass balances in environmental studies. We address this uncertainty by optimizing the distribution of Ra samples within a surface survey of 224Ra activity in the Lesina Lagoon, Italy. After checking for spatial dependence, location-allocation modeling (LAM) was utilized to determine optimal distribution of samples for thinning the sampling design. Trend surface analysis (TSA) was employed to interpolate the Ra activity throughout the lagoon. No significant change was found when using all 41 samples or only 25 randomly distributed samples. Results from the TSA showed a linear trend and bi-modal distribution in surface 224Ra. This information was utilized to perform mass balances in two separate basins (east and west). SGD was found to be significantly higher in the western basin (4.8 vs. 0.7 cm d - 1 ). Additionally, mass balances were performed using the average 224Ra activity from the trend surface analysis calculated with 41 and 25 samples respectively and total lagoon SGD was found to be 10.4-10.5 m 3 s - 1 . Results show that SGD is significant in the Lesina Lagoon.

  13. Sampling of Ostreopsis cf. ovata using artificial substrates: Optimization of methods for the monitoring of benthic harmful algal blooms.

    PubMed

    Jauzein, Cécile; Fricke, Anna; Mangialajo, Luisa; Lemée, Rodolphe

    2016-06-15

    In the framework of monitoring of benthic harmful algal blooms (BHABs), the most commonly reported sampling strategy is based on the collection of macrophytes. However, this methodology has some inherent problems. A potential alternative method uses artificial substrates that collect resuspended benthic cells. The current study defines main improvements in this technique, through the use of fiberglass screens during a bloom of Ostreopsis cf. ovata. A novel set-up for the deployment of artificial substrates in the field was tested, using an easy clip-in system that helped restrain substrates perpendicular to the water flow. An experiment was run in order to compare the cell collection efficiency of different mesh sizes of fiberglass screens and results suggested an optimal porosity of 1-3mm. The present study goes further on showing artificial substrates, such as fiberglass screens, as efficient tools for the monitoring and mitigation of BHABs. PMID:27048690

  14. Sampling of Ostreopsis cf. ovata using artificial substrates: Optimization of methods for the monitoring of benthic harmful algal blooms.

    PubMed

    Jauzein, Cécile; Fricke, Anna; Mangialajo, Luisa; Lemée, Rodolphe

    2016-06-15

    In the framework of monitoring of benthic harmful algal blooms (BHABs), the most commonly reported sampling strategy is based on the collection of macrophytes. However, this methodology has some inherent problems. A potential alternative method uses artificial substrates that collect resuspended benthic cells. The current study defines main improvements in this technique, through the use of fiberglass screens during a bloom of Ostreopsis cf. ovata. A novel set-up for the deployment of artificial substrates in the field was tested, using an easy clip-in system that helped restrain substrates perpendicular to the water flow. An experiment was run in order to compare the cell collection efficiency of different mesh sizes of fiberglass screens and results suggested an optimal porosity of 1-3mm. The present study goes further on showing artificial substrates, such as fiberglass screens, as efficient tools for the monitoring and mitigation of BHABs.

  15. Sample volume optimization for radon-in-water detection by liquid scintillation counting.

    PubMed

    Schubert, Michael; Kopitz, Juergen; Chałupnik, Stanisław

    2014-08-01

    Radon is used as environmental tracer in a wide range of applications particularly in aquatic environments. If liquid scintillation counting (LSC) is used as detection method the radon has to be transferred from the water sample into a scintillation cocktail. Whereas the volume of the cocktail is generally given by the size of standard LSC vials (20 ml) the water sample volume is not specified. Aim of the study was an optimization of the water sample volume, i.e. its minimization without risking a significant decrease in LSC count-rate and hence in counting statistics. An equation is introduced, which allows calculating the ²²²Rn concentration that was initially present in a water sample as function of the volumes of water sample, sample flask headspace and scintillation cocktail, the applicable radon partition coefficient, and the detected count-rate value. It was shown that water sample volumes exceeding about 900 ml do not result in a significant increase in count-rate and hence counting statistics. On the other hand, sample volumes that are considerably smaller than about 500 ml lead to noticeably lower count-rates (and poorer counting statistics). Thus water sample volumes of about 500-900 ml should be chosen for LSC radon-in-water detection, if 20 ml vials are applied.

  16. Determining Optimal Location and Numbers of Sample Transects for Characterization of UXO Sites

    SciTech Connect

    BILISOLY, ROGER L.; MCKENNA, SEAN A.

    2003-01-01

    Previous work on sample design has been focused on constructing designs for samples taken at point locations. Significantly less work has been done on sample design for data collected along transects. A review of approaches to point and transect sampling design shows that transects can be considered as a sequential set of point samples. Any two sampling designs can be compared through using each one to predict the value of the quantity being measured on a fixed reference grid. The quality of a design is quantified in two ways: computing either the sum or the product of the eigenvalues of the variance matrix of the prediction error. An important aspect of this analysis is that the reduction of the mean prediction error variance (MPEV) can be calculated for any proposed sample design, including one with straight and/or meandering transects, prior to taking those samples. This reduction in variance can be used as a ''stopping rule'' to determine when enough transect sampling has been completed on the site. Two approaches for the optimization of the transect locations are presented. The first minimizes the sum of the eigenvalues of the predictive error, and the second minimizes the product of these eigenvalues. Simulated annealing is used to identify transect locations that meet either of these objectives. This algorithm is applied to a hypothetical site to determine the optimal locations of two iterations of meandering transects given a previously existing straight transect. The MPEV calculation is also used on both a hypothetical site and on data collected at the Isleta Pueblo to evaluate its potential as a stopping rule. Results show that three or four rounds of systematic sampling with straight parallel transects covering 30 percent or less of the site, can reduce the initial MPEV by as much as 90 percent. The amount of reduction in MPEV can be used as a stopping rule, but the relationship between MPEV and the results of excavation versus no

  17. Exponentially adjusted moving mean procedure for quality control. An optimized patient sample control procedure.

    PubMed

    Smith, F A; Kroft, S H

    1996-01-01

    The idea of using patient samples as the basis for control procedures elicits a continuing fascination among laboratorians, particularly in the current environment of cost restriction. Average of normals (AON) procedures, although little used, have been carefully investigated at the theoretical level. The performance characteristics of Bull's algorithm have not been thoroughly delineated, however, despite its widespread use. The authors have generalized Bull's algorithm to use variably sized batches of patient samples and a range of exponential factors. For any given batch size, there is an optimal exponential factor to maximize the overall power of error detection. The optimized exponentially adjusted moving mean (EAMM) procedure, a variant of AON and Bull's algorithm, outperforms both parent procedures. As with any AON procedure, EAMM is most useful when the ratio of population variability to analytical variability (standard deviation ratio, SDR) is low.

  18. Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning.

    PubMed

    Ichnowski, Jeffrey; Prins, Jan F; Alterovitz, Ron

    2014-05-01

    We present CARRT* (Cache-Aware Rapidly Exploring Random Tree*), an asymptotically optimal sampling-based motion planner that significantly reduces motion planning computation time by effectively utilizing the cache memory hierarchy of modern central processing units (CPUs). CARRT* can account for the CPU's cache size in a manner that keeps its working dataset in the cache. The motion planner progressively subdivides the robot's configuration space into smaller regions as the number of configuration samples rises. By focusing configuration exploration in a region for periods of time, nearest neighbor searching is accelerated since the working dataset is small enough to fit in the cache. CARRT* also rewires the motion planning graph in a manner that complements the cache-aware subdivision strategy to more quickly refine the motion planning graph toward optimality. We demonstrate the performance benefit of our cache-aware motion planning approach for scenarios involving a point robot as well as the Rethink Robotics Baxter robot. PMID:25419474

  19. Time-Dependent Selection of an Optimal Set of Sources to Define a Stable Celestial Reference Frame

    NASA Technical Reports Server (NTRS)

    Le Bail, Karine; Gordon, David

    2010-01-01

    Temporal statistical position stability is required for VLBI sources to define a stable Celestial Reference Frame (CRF) and has been studied in many recent papers. This study analyzes the sources from the latest realization of the International Celestial Reference Frame (ICRF2) with the Allan variance, in addition to taking into account the apparent linear motions of the sources. Focusing on the 295 defining sources shows how they are a good compromise of different criteria, such as statistical stability and sky distribution, as well as having a sufficient number of sources, despite the fact that the most stable sources of the entire ICRF2 are mostly in the Northern Hemisphere. Nevertheless, the selection of a stable set is not unique: studying different solutions (GSF005a and AUG24 from GSFC and OPA from the Paris Observatory) over different time periods (1989.5 to 2009.5 and 1999.5 to 2009.5) leads to selections that can differ in up to 20% of the sources. Observing, recording, and network improvement are some of the causes, showing better stability for the CRF over the last decade than the last twenty years. But this may also be explained by the assumption of stationarity that is not necessarily right for some sources.

  20. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples.

    PubMed

    Riediger, Irina N; Hoffmaster, Alex R; Casanovas-Massana, Arnau; Biondo, Alexander W; Ko, Albert I; Stoddard, Robyn A

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from <1 cell /ml for river water to 36 cells/mL for ultrapure water with E. coli as a carrier. In conclusion, we optimized a method to quantify pathogenic Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden. PMID:27487084

  1. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples

    PubMed Central

    Riediger, Irina N.; Hoffmaster, Alex R.; Biondo, Alexander W.; Ko, Albert I.; Stoddard, Robyn A.

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from <1 cell /ml for river water to 36 cells/mL for ultrapure water with E. coli as a carrier. In conclusion, we optimized a method to quantify pathogenic Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden. PMID:27487084

  2. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    PubMed

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-01

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  3. Toward 3D-guided prostate biopsy target optimization: an estimation of tumor sampling probabilities

    NASA Astrophysics Data System (ADS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy aims to reduce the ~23% false negative rate of clinical 2D TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsy still yields false negatives. Therefore, we propose optimization of biopsy targeting to meet the clinician's desired tumor sampling probability, optimizing needle targets within each tumor and accounting for uncertainties due to guidance system errors, image registration errors, and irregular tumor shapes. We obtained multiparametric MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D surfaces that were registered to 3D TRUS. We estimated the probability, P, of obtaining a tumor sample with a single biopsy. Given an RMS needle delivery error of 3.5 mm for a contemporary fusion biopsy system, P >= 95% for 21 out of 81 tumors when the point of optimal sampling probability was targeted. Therefore, more than one biopsy core must be taken from 74% of the tumors to achieve P >= 95% for a biopsy system with an error of 3.5 mm. Our experiments indicated that the effect of error along the needle axis on the percentage of core involvement (and thus the measured tumor burden) was mitigated by the 18 mm core length.

  4. Spectral gap optimization of order parameters for sampling complex molecular systems.

    PubMed

    Tiwary, Pratyush; Berne, B J

    2016-03-15

    In modern-day simulations of many-body systems, much of the computational complexity is shifted to the identification of slowly changing molecular order parameters called collective variables (CVs) or reaction coordinates. A vast array of enhanced-sampling methods are based on the identification and biasing of these low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here, we describe a new algorithm for finding optimal low-dimensional CVs for use in enhanced-sampling biasing methods like umbrella sampling, metadynamics, and related methods, when limited prior static and dynamic information is known about the system, and a much larger set of candidate CVs is specified. The algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. The algorithm is called spectral gap optimization of order parameters (SGOOP). Through multiple practical examples, we show how this postprocessing procedure can lead to optimization of CV and several orders of magnitude improvement in the convergence of the free energy calculated through metadynamics, essentially giving the ability to extract useful information even from unsuccessful metadynamics runs.

  5. Spectral gap optimization of order parameters for sampling complex molecular systems

    PubMed Central

    Tiwary, Pratyush; Berne, B. J.

    2016-01-01

    In modern-day simulations of many-body systems, much of the computational complexity is shifted to the identification of slowly changing molecular order parameters called collective variables (CVs) or reaction coordinates. A vast array of enhanced-sampling methods are based on the identification and biasing of these low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here, we describe a new algorithm for finding optimal low-dimensional CVs for use in enhanced-sampling biasing methods like umbrella sampling, metadynamics, and related methods, when limited prior static and dynamic information is known about the system, and a much larger set of candidate CVs is specified. The algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. The algorithm is called spectral gap optimization of order parameters (SGOOP). Through multiple practical examples, we show how this postprocessing procedure can lead to optimization of CV and several orders of magnitude improvement in the convergence of the free energy calculated through metadynamics, essentially giving the ability to extract useful information even from unsuccessful metadynamics runs. PMID:26929365

  6. SU-E-T-21: A Novel Sampling Algorithm to Reduce Intensity-Modulated Radiation Therapy (IMRT) Optimization Time

    SciTech Connect

    Tiwari, P; Xie, Y; Chen, Y; Deasy, J

    2014-06-01

    Purpose: The IMRT optimization problem requires substantial computer time to find optimal dose distributions because of the large number of variables and constraints. Voxel sampling reduces the number of constraints and accelerates the optimization process, but usually deteriorates the quality of the dose distributions to the organs. We propose a novel sampling algorithm that accelerates the IMRT optimization process without significantly deteriorating the quality of the dose distribution. Methods: We included all boundary voxels, as well as a sampled fraction of interior voxels of organs in the optimization. We selected a fraction of interior voxels using a clustering algorithm, that creates clusters of voxels that have similar influence matrix signatures. A few voxels are selected from each cluster based on the pre-set sampling rate. Results: We ran sampling and no-sampling IMRT plans for de-identified head and neck treatment plans. Testing with the different sampling rates, we found that including 10% of inner voxels produced the good dose distributions. For this optimal sampling rate, the algorithm accelerated IMRT optimization by a factor of 2–3 times with a negligible loss of accuracy that was, on average, 0.3% for common dosimetric planning criteria. Conclusion: We demonstrated that a sampling could be developed that reduces optimization time by more than a factor of 2, without significantly degrading the dose quality.

  7. A Two-Stage Method to Determine Optimal Product Sampling considering Dynamic Potential Market

    PubMed Central

    Hu, Zhineng; Lu, Wei; Han, Bing

    2015-01-01

    This paper develops an optimization model for the diffusion effects of free samples under dynamic changes in potential market based on the characteristics of independent product and presents a two-stage method to figure out the sampling level. The impact analysis of the key factors on the sampling level shows that the increase of the external coefficient or internal coefficient has a negative influence on the sampling level. And the changing rate of the potential market has no significant influence on the sampling level whereas the repeat purchase has a positive one. Using logistic analysis and regression analysis, the global sensitivity analysis gives a whole analysis of the interaction of all parameters, which provides a two-stage method to estimate the impact of the relevant parameters in the case of inaccuracy of the parameters and to be able to construct a 95% confidence interval for the predicted sampling level. Finally, the paper provides the operational steps to improve the accuracy of the parameter estimation and an innovational way to estimate the sampling level. PMID:25821847

  8. A two-stage method to determine optimal product sampling considering dynamic potential market.

    PubMed

    Hu, Zhineng; Lu, Wei; Han, Bing

    2015-01-01

    This paper develops an optimization model for the diffusion effects of free samples under dynamic changes in potential market based on the characteristics of independent product and presents a two-stage method to figure out the sampling level. The impact analysis of the key factors on the sampling level shows that the increase of the external coefficient or internal coefficient has a negative influence on the sampling level. And the changing rate of the potential market has no significant influence on the sampling level whereas the repeat purchase has a positive one. Using logistic analysis and regression analysis, the global sensitivity analysis gives a whole analysis of the interaction of all parameters, which provides a two-stage method to estimate the impact of the relevant parameters in the case of inaccuracy of the parameters and to be able to construct a 95% confidence interval for the predicted sampling level. Finally, the paper provides the operational steps to improve the accuracy of the parameter estimation and an innovational way to estimate the sampling level.

  9. Demonstration and Optimization of BNFL's Pulsed Jet Mixing and RFD Sampling Systems Using NCAW Simulant

    SciTech Connect

    JR Bontha; GR Golcar; N Hannigan

    2000-08-29

    The BNFL Inc. flowsheet for the pretreatment and vitrification of the Hanford High Level Tank waste includes the use of several hundred Reverse Flow Diverters (RFDs) for sampling and transferring the radioactive slurries and Pulsed Jet mixers to homogenize or suspend the tank contents. The Pulsed Jet mixing and the RFD sampling devices represent very simple and efficient methods to mix and sample slurries, respectively, using compressed air to achieve the desired operation. The equipment has no moving parts, which makes them very suitable for mixing and sampling highly radioactive wastes. However, the effectiveness of the mixing and sampling systems are yet to be demonstrated when dealing with Hanford slurries, which exhibit a wide range of physical and theological properties. This report describes the results of the testing of BNFL's Pulsed Jet mixing and RFD sampling systems in a 13-ft ID and 15-ft height dish-bottomed tank at Battelle's 336 building high-bay facility using AZ-101/102 simulants containing up to 36-wt% insoluble solids. The specific objectives of the work were to: Demonstrate the effectiveness of the Pulsed Jet mixing system to thoroughly homogenize Hanford-type slurries over a range of solids loading; Minimize/optimize air usage by changing sequencing of the Pulsed Jet mixers or by altering cycle times; and Demonstrate that the RFD sampler can obtain representative samples of the slurry up to the maximum RPP-WTP baseline concentration of 25-wt%.

  10. [Sampling optimization for tropical invertebrates: an example using dung beetles (Coleoptera: Scarabaeinae) in Venezuela].

    PubMed

    Ferrer-Paris, José Rafael; Sánchez-Mercado, Ada; Rodríguez, Jon Paul

    2013-03-01

    The development of efficient sampling protocols is an essential prerequisite to evaluate and identify priority conservation areas. There are f ew protocols for fauna inventory and monitoring in wide geographical scales for the tropics, where the complexity of communities and high biodiversity levels, make the implementation of efficient protocols more difficult. We proposed here a simple strategy to optimize the capture of dung beetles, applied to sampling with baited traps and generalizable to other sampling methods. We analyzed data from eight transects sampled between 2006-2008 withthe aim to develop an uniform sampling design, that allows to confidently estimate species richness, abundance and composition at wide geographical scales. We examined four characteristics of any sampling design that affect the effectiveness of the sampling effort: the number of traps, sampling duration, type and proportion of bait, and spatial arrangement of the traps along transects. We used species accumulation curves, rank-abundance plots, indicator species analysis, and multivariate correlograms. We captured 40 337 individuals (115 species/morphospecies of 23 genera). Most species were attracted by both dung and carrion, but two thirds had greater relative abundance in traps baited with human dung. Different aspects of the sampling design influenced each diversity attribute in different ways. To obtain reliable richness estimates, the number of traps was the most important aspect. Accurate abundance estimates were obtained when the sampling period was increased, while the spatial arrangement of traps was determinant to capture the species composition pattern. An optimum sampling strategy for accurate estimates of richness, abundance and diversity should: (1) set 50-70 traps to maximize the number of species detected, (2) get samples during 48-72 hours and set trap groups along the transect to reliably estimate species abundance, (3) set traps in groups of at least 10 traps to

  11. Defining Optimal Aerobic Exercise Parameters to Affect Complex Motor and Cognitive Outcomes after Stroke: A Systematic Review and Synthesis

    PubMed Central

    Hasan, S. M. Mahmudul; Rancourt, Samantha N.; Austin, Mark W.; Ploughman, Michelle

    2016-01-01

    Although poststroke aerobic exercise (AE) increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention. PMID:26881101

  12. An optimization based sampling approach for multiple metrics uncertainty analysis using generalized likelihood uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Rurui; Li, Yu; Lu, Di; Liu, Haixing; Zhou, Huicheng

    2016-09-01

    This paper investigates the use of an epsilon-dominance non-dominated sorted genetic algorithm II (ɛ-NSGAII) as a sampling approach with an aim to improving sampling efficiency for multiple metrics uncertainty analysis using Generalized Likelihood Uncertainty Estimation (GLUE). The effectiveness of ɛ-NSGAII based sampling is demonstrated compared with Latin hypercube sampling (LHS) through analyzing sampling efficiency, multiple metrics performance, parameter uncertainty and flood forecasting uncertainty with a case study of flood forecasting uncertainty evaluation based on Xinanjiang model (XAJ) for Qing River reservoir, China. Results obtained demonstrate the following advantages of the ɛ-NSGAII based sampling approach in comparison to LHS: (1) The former performs more effective and efficient than LHS, for example the simulation time required to generate 1000 behavioral parameter sets is shorter by 9 times; (2) The Pareto tradeoffs between metrics are demonstrated clearly with the solutions from ɛ-NSGAII based sampling, also their Pareto optimal values are better than those of LHS, which means better forecasting accuracy of ɛ-NSGAII parameter sets; (3) The parameter posterior distributions from ɛ-NSGAII based sampling are concentrated in the appropriate ranges rather than uniform, which accords with their physical significance, also parameter uncertainties are reduced significantly; (4) The forecasted floods are close to the observations as evaluated by three measures: the normalized total flow outside the uncertainty intervals (FOUI), average relative band-width (RB) and average deviation amplitude (D). The flood forecasting uncertainty is also reduced a lot with ɛ-NSGAII based sampling. This study provides a new sampling approach to improve multiple metrics uncertainty analysis under the framework of GLUE, and could be used to reveal the underlying mechanisms of parameter sets under multiple conflicting metrics in the uncertainty analysis process.

  13. Optimized analysis of DNA methylation and gene expression from small, anatomically-defined areas of the brain.

    PubMed

    Bettscheider, Marc; Kuczynska, Arleta; Almeida, Osborne; Spengler, Dietmar

    2012-07-12

    Exposure to diet, drugs and early life adversity during sensitive windows of life can lead to lasting changes in gene expression that contribute to the display of physiological and behavioural phenotypes. Such environmental programming is likely to increase the susceptibility to metabolic, cardiovascular and mental diseases. DNA methylation and histone modifications are considered key processes in the mediation of the gene-environment dialogue and appear also to underlay environmental programming. In mammals, DNA methylation typically comprises the covalent addition of a methyl group at the 5-position of cytosine within the context of CpG dinucleotides. CpG methylation occurs in a highly tissue- and cell-specific manner making it a challenge to study discrete, small regions of the brain where cellular heterogeneity is high and tissue quantity limited. Moreover, because gene expression and methylation are closely linked events, increased value can be gained by comparing both parameters in the same sample. Here, a step-by-step protocol (Figure 1) for the investigation of epigenetic programming in the brain is presented using the 'maternal separation' paradigm of early life adversity for illustrative purposes. The protocol describes the preparation of micropunches from differentially-aged mouse brains from which DNA and RNA can be simultaneously isolated, thus allowing DNA methylation and gene expression analyses in the same sample.

  14. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil

    USGS Publications Warehouse

    Silvestri, Erin E.; Feldhake, David; Griffin, Dale; Lisle, John T.; Nichols, Tonya L.; Shah, Sanjiv; Pemberton, A; Schaefer III, Frank W

    2016-01-01

    Following a release of Bacillus anthracis spores into the environment, there is a potential for lasting environmental contamination in soils. There is a need for detection protocols for B. anthracis in environmental matrices. However, identification of B. anthracis within a soil is a difficult task. Processing soil samples helps to remove debris, chemical components, and biological impurities that can interfere with microbiological detection. This study aimed to optimize a previously used indirect processing protocol, which included a series of washing and centrifugation steps. Optimization of the protocol included: identifying an ideal extraction diluent, variation in the number of wash steps, variation in the initial centrifugation speed, sonication and shaking mechanisms. The optimized protocol was demonstrated at two laboratories in order to evaluate the recovery of spores from loamy and sandy soils. The new protocol demonstrated an improved limit of detection for loamy and sandy soils over the non-optimized protocol with an approximate matrix limit of detection at 14 spores/g of soil. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol will be robust enough to use at multiple laboratories while achieving comparable recoveries.

  15. Optimization methods for multi-scale sampling of soil moisture and snow in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Zheng, Z.; Zhang, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2015-12-01

    Recent advancements in wireless sensing technologies are enabling real-time application of spatially representative point-scale measurements to model hydrologic processes at the basin scale. A major impediment to the large-scale deployment of these networks is the difficulty of finding representative sensor locations and resilient wireless network topologies in complex terrain. Currently, observatories are structured manually in the field, which provides no metric for the number of sensors required for extrapolation, does not guarantee that point measurements are representative of the basin as a whole, and often produces unreliable wireless networks. We present a methodology that combines LiDAR data, pattern recognition, and stochastic optimization to simultaneously identify representative sampling locations, optimal sensor number, and resilient network topologies prior to field deployment. We compare the results of the algorithm to an existing 55-node wireless snow and soil network at the Southern Sierra Critical Zone Observatory. Existing data show that the algorithm is able to capture a broader range of key attributes affecting snow and soil moisture, defined by a combination of terrain, vegetation and soil attributes, and thus is better suited to basin-wide monitoring. We believe that adopting this structured, analytical approach could improve data quality, increase reliability, and decrease the cost of deployment for future networks.

  16. Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.

    2011-01-01

    Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.

  17. Sampling plan optimization for detection of lithography and etch CD process excursions

    NASA Astrophysics Data System (ADS)

    Elliott, Richard C.; Nurani, Raman K.; Lee, Sung Jin; Ortiz, Luis G.; Preil, Moshe E.; Shanthikumar, J. G.; Riley, Trina; Goodwin, Greg A.

    2000-06-01

    Effective sample planning requires a careful combination of statistical analysis and lithography engineering. In this paper, we present a complete sample planning methodology including baseline process characterization, determination of the dominant excursion mechanisms, and selection of sampling plans and control procedures to effectively detect the yield- limiting excursions with a minimum of added cost. We discuss the results of our novel method in identifying critical dimension (CD) process excursions and present several examples of poly gate Photo and Etch CD excursion signatures. Using these results in a Sample Planning model, we determine the optimal sample plan and statistical process control (SPC) chart metrics and limits for detecting these excursions. The key observations are that there are many different yield- limiting excursion signatures in photo and etch, and that a given photo excursion signature turns into a different excursion signature at etch with different yield and performance impact. In particular, field-to-field variance excursions are shown to have a significant impact on yield. We show how current sampling plan and monitoring schemes miss these excursions and suggest an improved procedure for effective detection of CD process excursions.

  18. Model reduction algorithms for optimal control and importance sampling of diffusions

    NASA Astrophysics Data System (ADS)

    Hartmann, Carsten; Schütte, Christof; Zhang, Wei

    2016-08-01

    We propose numerical algorithms for solving optimal control and importance sampling problems based on simplified models. The algorithms combine model reduction techniques for multiscale diffusions and stochastic optimization tools, with the aim of reducing the original, possibly high-dimensional problem to a lower dimensional representation of the dynamics, in which only a few relevant degrees of freedom are controlled or biased. Specifically, we study situations in which either a reaction coordinate onto which the dynamics can be projected is known, or situations in which the dynamics shows strongly localized behavior in the small noise regime. No explicit assumptions about small parameters or scale separation have to be made. We illustrate the approach with simple, but paradigmatic numerical examples.

  19. Challenges in defining an optimal approach to formula-based allocations of public health funds in the United States

    PubMed Central

    Buehler, James W; Holtgrave, David R

    2007-01-01

    -based versus competitive allocation methods are needed to promote the optimal use of public health funds. In the meantime, those who use formula-based strategies to allocate funds should be familiar with the nuances of this approach. PMID:17394645

  20. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    SciTech Connect

    Stemkens, Bjorn; Tijssen, Rob H.N.; Senneville, Baudouin D. de

    2015-03-01

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.

  1. An S/H circuit with parasitics optimized for IF-sampling

    NASA Astrophysics Data System (ADS)

    Xuqiang, Zheng; Fule, Li; Zhijun, Wang; Weitao, Li; Wen, Jia; Zhihua, Wang; Shigang, Yue

    2016-06-01

    An IF-sampling S/H is presented, which adopts a flip-around structure, bottom-plate sampling technique and improved input bootstrapped switches. To achieve high sampling linearity over a wide input frequency range, the floating well technique is utilized to optimize the input switches. Besides, techniques of transistor load linearization and layout improvement are proposed to further reduce and linearize the parasitic capacitance. The S/H circuit has been fabricated in 0.18-μm CMOS process as the front-end of a 14 bit, 250 MS/s pipeline ADC. For 30 MHz input, the measured SFDR/SNDR of the ADC is 94.7 dB/68. 5dB, which can remain over 84.3 dB/65.4 dB for input frequency up to 400 MHz. The ADC presents excellent dynamic performance at high input frequency, which is mainly attributed to the parasitics optimized S/H circuit. Poject supported by the Shenzhen Project (No. JSGG20150512162029307).

  2. Optimization of Sample Site Selection Imaging for OSIRIS-REx Using Asteroid Surface Analog Images

    NASA Astrophysics Data System (ADS)

    Tanquary, Hannah E.; Sahr, Eric; Habib, Namrah; Hawley, Christopher; Weber, Nathan; Boynton, William V.; Kinney-Spano, Ellyne; Lauretta, Dante

    2014-11-01

    OSIRIS-REx will return a sample of regolith from the surface of asteroid 101955 Bennu. The mission will obtain high resolution images of the asteroid in order to create detailed maps which will satisfy multiple mission objectives. To select a site, we must (i) identify hazards to the spacecraft and (ii) characterize a number of candidate sites to determine the optimal location for sampling. To further characterize the site, a long-term science campaign will be undertaken to constrain the geologic properties. To satisfy these objectives, the distribution and size of blocks at the sample site and backup sample site must be determined. This will be accomplished through the creation of rock size frequency distribution maps. The primary goal of this study is to optimize the creation of these map products by assessing techniques for counting blocks on small bodies, and assessing the methods of analysis of the resulting data. We have produced a series of simulated surfaces of Bennu which have been imaged, and the images processed to simulate Polycam images during the Reconnaissance phase. These surface analog images allow us to explore a wide range of imaging conditions, both ideal and non-ideal. The images have been “degraded”, and are displayed as thumbnails representing the limits of Polycam resolution from an altitude of 225 meters. Specifically, this study addresses the mission requirement that the rock size frequency distribution of regolith grains < 2cm in longest dimension must be determined for the sample sites during Reconnaissance. To address this requirement, we focus on the range of available lighting angles. Varying illumination and phase angles in the simulated images, we can compare the size-frequency distributions calculated from the degraded images with the known size frequency distributions of the Bennu simulant material, and thus determine the optimum lighting conditions for satisfying the 2 cm requirement.

  3. Optimal sampling strategies for detecting linkage of a complex trait with known genetic heterogeneity

    SciTech Connect

    Easton, D.F.; Goldgar, D.E.

    1994-09-01

    As genes underlying susceptibility to human disease are identified through linkage analysis, it is becoming increasingly clear that genetic heterogeneity is the rule rather than the exception. The focus of the present work is to examine the power and optimal sampling design for localizing a second disease gene when one disease gene has previously been identified. In particular, we examined the case when the unknown locus had lower penetrance, but higher frequency, than the known locus. Three scenarios regarding knowledge about locus 1 were examined: no linkage information (i.e. standard heterogeneity analysis), tight linkage with a known highly polymorphic marker locus, and mutation testing. Exact expected LOD scores (ELODs) were calculated for a number of two-locus genetic models under the 3 scenarios of heterogeneity for nuclear families containing 2, 3 or 4 affected children, with 0 or 1 affected parents. A cost function based upon the cost of ascertaining and genotyping sufficient samples to achieve an ELOD of 3.0 was used to evaluate the designs. As expected, the power and the optimal pedigree sampling strategy was dependent on the underlying model and the heterogeneity testing status. When the known locus had higher penetrance than the unknown locus, three affected siblings with unaffected parents proved to be optimal for all levels of heterogeneity. In general, mutation testing at the first locus provided substantially more power for detecting the second locus than linkage evidence alone. However, when both loci had relatively low penetrance, mutation testing provided little improvement in power since most families could be expected to be segregating the high risk allele at both loci.

  4. Optimization of sampling pattern and the design of Fourier ptychographic illuminator.

    PubMed

    Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan

    2015-03-01

    Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology. PMID:25836839

  5. Optimizing the Operating Temperature for an array of MOX Sensors on an Open Sampling System

    NASA Astrophysics Data System (ADS)

    Trincavelli, M.; Vergara, A.; Rulkov, N.; Murguia, J. S.; Lilienthal, A.; Huerta, R.

    2011-09-01

    Chemo-resistive transduction is essential for capturing the spatio-temporal structure of chemical compounds dispersed in different environments. Due to gas dispersion mechanisms, namely diffusion, turbulence and advection, the sensors in an open sampling system, i.e. directly exposed to the environment to be monitored, are exposed to low concentrations of gases with many fluctuations making, as a consequence, the identification and monitoring of the gases even more complicated and challenging than in a controlled laboratory setting. Therefore, tuning the value of the operating temperature becomes crucial for successfully identifying and monitoring the pollutant gases, particularly in applications such as exploration of hazardous areas, air pollution monitoring, and search and rescue1. In this study we demonstrate the benefit of optimizing the sensor's operating temperature when the sensors are deployed in an open sampling system, i.e. directly exposed to the environment to be monitored.

  6. AMORE-HX: a multidimensional optimization of radial enhanced NMR-sampled hydrogen exchange.

    PubMed

    Gledhill, John M; Walters, Benjamin T; Wand, A Joshua

    2009-09-01

    The Cartesian sampled three-dimensional HNCO experiment is inherently limited in time resolution and sensitivity for the real time measurement of protein hydrogen exchange. This is largely overcome by use of the radial HNCO experiment that employs the use of optimized sampling angles. The significant practical limitation presented by use of three-dimensional data is the large data storage and processing requirements necessary and is largely overcome by taking advantage of the inherent capabilities of the 2D-FT to process selective frequency space without artifact or limitation. Decomposition of angle spectra into positive and negative ridge components provides increased resolution and allows statistical averaging of intensity and therefore increased precision. Strategies for averaging ridge cross sections within and between angle spectra are developed to allow further statistical approaches for increasing the precision of measured hydrogen occupancy. Intensity artifacts potentially introduced by over-pulsing are effectively eliminated by use of the BEST approach. PMID:19633974

  7. Advanced overlay: sampling and modeling for optimized run-to-run control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  8. Optimizing the implementation of the target motion sampling temperature treatment technique - How fast can it get?

    SciTech Connect

    Tuomas, V.; Jaakko, L.

    2013-07-01

    This article discusses the optimization of the target motion sampling (TMS) temperature treatment method, previously implemented in the Monte Carlo reactor physics code Serpent 2. The TMS method was introduced in [1] and first practical results were presented at the PHYSOR 2012 conference [2]. The method is a stochastic method for taking the effect of thermal motion into account on-the-fly in a Monte Carlo neutron transport calculation. It is based on sampling the target velocities at collision sites and then utilizing the 0 K cross sections at target-at-rest frame for reaction sampling. The fact that the total cross section becomes a distributed quantity is handled using rejection sampling techniques. The original implementation of the TMS requires 2.0 times more CPU time in a PWR pin-cell case than a conventional Monte Carlo calculation relying on pre-broadened effective cross sections. In a HTGR case examined in this paper the overhead factor is as high as 3.6. By first changing from a multi-group to a continuous-energy implementation and then fine-tuning a parameter affecting the conservativity of the majorant cross section, it is possible to decrease the overhead factors to 1.4 and 2.3, respectively. Preliminary calculations are also made using a new and yet incomplete optimization method in which the temperature of the basis cross section is increased above 0 K. It seems that with the new approach it may be possible to decrease the factors even as low as 1.06 and 1.33, respectively, but its functionality has not yet been proven. Therefore, these performance measures should be considered preliminary. (authors)

  9. Optimization of sample pretreatment for determination of polycyclic aromatic hydrocarbons in estuarine sediments by gas chromatography

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Xianguo; Peng, Xuewei; Tang, Xuli; Deng, Xiaoyan

    2012-06-01

    This study examined levels of polycyclic aromatic hydrocarbons (PAHs) in estuarine sediments in Licun (Qingdao, China) by gas chromatography under optimized conditions for sample pretreatment via ultrasonic extraction, column chromatography, and thin layer chromatography. Methanol and dichloromethane (DCM)/methanol (2:1, v/v) were used in ultrasonic extraction, and DCM was used as eluate for column chromatography. The developing system consisted of n-hexane and DCM at a ratio of 9:1 (v/v), with DCM as the extraction solvent for PAHs-containing silica gel scraped off the plate. When the spiking level is 100 ng, total recoveries of spiked matrices for four target PAHs (phenanthrene, anthracene, pyrene and chrysene) were 83.7%, 76.4%, 85.8%, and 88.7%, respectively, with relative standard deviation (RSD) between 5.0% and 6.5% ( n = 4). When the spiking level is 1000 ng, associated total recoveries were 78.6%, 72.7%, 82.7% and 85.3%, respectively, with RSD between 4.4% and 5.3% ( n = 4). The optimized method was advantageous for determination of PAHs in complex matrix due to its effective sample purification.

  10. Optimization of arsenic extraction in rice samples by Plackett-Burman design and response surface methodology.

    PubMed

    Ma, Li; Wang, Lin; Tang, Jie; Yang, Zhaoguang

    2016-08-01

    Statistical experimental designs were employed to optimize the extraction condition of arsenic species (As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsonic acid (DMA)) in paddy rice by a simple solvent extraction using water as an extraction reagent. The effect of variables were estimated by a two-level Plackett-Burman factorial design. A five-level central composite design was subsequently employed to optimize the significant factors. The desirability parameters of the significant factors were confirmed to 60min of shaking time and 85°C of extraction temperature by compromising the experimental period and extraction efficiency. The analytical performances, such as linearity, method detection limits, relative standard deviation and recovery were examined, and these data exhibited broad linear range, high sensitivity and good precision. The proposed method was applied for real rice samples. The species of As(III), As(V) and DMA were detected in all the rice samples mostly in the order As(III)>As(V)>DMA. PMID:26988503

  11. Optimization of multi-channel neutron focusing guides for extreme sample environments

    NASA Astrophysics Data System (ADS)

    Di Julio, D. D.; Lelièvre-Berna, E.; Courtois, P.; Andersen, K. H.; Bentley, P. M.

    2014-07-01

    In this work, we present and discuss simulation results for the design of multichannel neutron focusing guides for extreme sample environments. A single focusing guide consists of any number of supermirror-coated curved outer channels surrounding a central channel. Furthermore, a guide is separated into two sections in order to allow for extension into a sample environment. The performance of a guide is evaluated through a Monte-Carlo ray tracing simulation which is further coupled to an optimization algorithm in order to find the best possible guide for a given situation. A number of population-based algorithms have been investigated for this purpose. These include particle-swarm optimization, artificial bee colony, and differential evolution. The performance of each algorithm and preliminary results of the design of a multi-channel neutron focusing guide using these methods are described. We found that a three-channel focusing guide offered the best performance, with a gain factor of 2.4 compared to no focusing guide, for the design scenario investigated in this work.

  12. Optimization of b-Value Sampling for Diffusion-Weighted Imaging of the Kidney

    PubMed Central

    Zhang, Jeff L.; Sigmund, Eric E.; Rusinek, Henry; Chandarana, Hersh; Storey, Pippa; Chen, Qun; Lee, Vivian S.

    2016-01-01

    Diffusion-weighted imaging (DWI) involves data acquisitions at multiple b values. In this paper, we presented a method of selecting the b values that maximize estimation precision of the biexponential analysis of renal DWI data. We developed an error propagation factor for the biexponential model, and proposed to optimize the b-value samplings by minimizing the error propagation factor. A prospective study of four healthy human subjects (eight kidneys) was done to verify the feasibility of the proposed protocol and to assess the validity of predicted precision for DWI measures, followed by Monte Carlo simulations of DWI signals based on acquired data from renal lesions of 16 subjects. In healthy subjects, the proposed methods improved precision (P = 0.003) and accuracy (P < 0.001) significantly in region-of-interest based biexponential analysis. In Monte Carlo simulation of renal lesions, the b-sampling optimization lowered estimation error by at least 20–30% compared with uniformly distributed b values, and improved the differentiation between malignant and benign lesions significantly. In conclusion, the proposed method has the potential of maximizing the precision and accuracy of the biexponential analysis of renal DWI. PMID:21702062

  13. Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design

    NASA Astrophysics Data System (ADS)

    Leube, P. C.; Geiges, A.; Nowak, W.

    2012-02-01

    Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically

  14. Optimization of a pre-MEKC separation SPE procedure for steroid molecules in human urine samples.

    PubMed

    Olędzka, Ilona; Kowalski, Piotr; Dziomba, Szymon; Szmudanowski, Piotr; Bączek, Tomasz

    2013-01-01

    Many steroid hormones can be considered as potential biomarkers and their determination in body fluids can create opportunities for the rapid diagnosis of many diseases and disorders of the human body. Most existing methods for the determination of steroids are usually time- and labor-consuming and quite costly. Therefore, the aim of analytical laboratories is to develop a new, relatively low-cost and rapid implementation methodology for their determination in biological samples. Due to the fact that there is little literature data on concentrations of steroid hormones in urine samples, we have made attempts at the electrophoretic determination of these compounds. For this purpose, an extraction procedure for the optimized separation and simultaneous determination of seven steroid hormones in urine samples has been investigated. The isolation of analytes from biological samples was performed by liquid-liquid extraction (LLE) with dichloromethane and compared to solid phase extraction (SPE) with C18 and hydrophilic-lipophilic balance (HLB) columns. To separate all the analytes a micellar electrokinetic capillary chromatography (MECK) technique was employed. For full separation of all the analytes a running buffer (pH 9.2), composed of 10 mM sodium tetraborate decahydrate (borax), 50 mM sodium dodecyl sulfate (SDS), and 10% methanol was selected. The methodology developed in this work for the determination of steroid hormones meets all the requirements of analytical methods. The applicability of the method has been confirmed for the analysis of urine samples collected from volunteers--both men and women (students, amateur bodybuilders, using and not applying steroid doping). The data obtained during this work can be successfully used for further research on the determination of steroid hormones in urine samples. PMID:24232737

  15. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation.

    PubMed

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A; Bouquerel, Hélène

    2016-06-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported. PMID:26998570

  16. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation.

    PubMed

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A; Bouquerel, Hélène

    2016-06-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported.

  17. Motivational predictors of psychometrically-defined schizotypy in a non-clinical sample: goal process representation, approach-avoid temperament, and aberrant salience.

    PubMed

    Karoly, Paul; Jung Mun, Chung; Okun, Morris

    2015-03-30

    Patterns of problematic volitional control in schizotypal personality disorder pertaining to goal process representation (GPR), approach and avoidance temperament, and aberrant salience have not been widely investigated in emerging adults. The present study aimed to provide preliminary evidence for the utility of examining these three motivational constructs as predictors of high versus low levels of psychometrically-defined schizotypy in a non-clinic sample. When college students with high levels of self-reported schizotypy (n = 88) were compared to those with low levels (n = 87) by means of logistic regression, aberrant salience, avoidant temperament, and the self-criticism component of GPR together accounted for 51% of the variance in schizotypy group assignment. Higher score on these three motivational dimensions reflected a proclivity toward higher levels of schizotypy. The current findings justify the continued exploration of goal-related constructs as useful motivational elements in psychopathology research. PMID:25638536

  18. Optimizing Oriented Planar-Supported Lipid Samples for Solid-State Protein NMR

    PubMed Central

    Rainey, Jan K.; Sykes, Brian D.

    2005-01-01

    Sample orientation relative to the static magnetic field of an NMR spectrometer allows study of membrane proteins in the lipid bilayer setting. The straightforward preparation and handling of extremely thin mica substrates with consistent surface properties has prompted us to examine oriented phospholipid bilayer and hexagonal phases on mica. The spectral characteristics of oriented lipid samples formed on mica are as good as or better than those on glass. Nine solvents with varying dielectric constants were used to cast lipid films or for vesicle spreading; film characteristics were then compared, and static solid-state 31P-NMR was used to characterize the degree of orientation of the hydrated lipid species. Lipids with four headgroup chemistries were tested: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Solvent affected orientation of POPG, DOPA, and DOPE, but not POPC. Film characteristics varied with solvent, with ramifications for producing homogeneous oriented lipid samples. POPC was used to optimize the amount of lipid per substrate and compare hydration methods. POPG did not orient reproducibly, whereas POPG-POPC mixtures did. DOPA showed 1–2 oriented states depending upon hydration level and deposition method. DOPE formed an oriented hexagonal phase that underwent a reversible temperature-induced phase transition to the oriented bilayer phase. PMID:16085766

  19. Spatially-Optimized Sequential Sampling Plan for Cabbage Aphids Brevicoryne brassicae L. (Hemiptera: Aphididae) in Canola Fields.

    PubMed

    Severtson, Dustin; Flower, Ken; Nansen, Christian

    2016-08-01

    The cabbage aphid is a significant pest worldwide in brassica crops, including canola. This pest has shown considerable ability to develop resistance to insecticides, so these should only be applied on a "when and where needed" basis. Thus, optimized sampling plans to accurately assess cabbage aphid densities are critically important to determine the potential need for pesticide applications. In this study, we developed a spatially optimized binomial sequential sampling plan for cabbage aphids in canola fields. Based on five sampled canola fields, sampling plans were developed using 0.1, 0.2, and 0.3 proportions of plants infested as action thresholds. Average sample numbers required to make a decision ranged from 10 to 25 plants. Decreasing acceptable error from 10 to 5% was not considered practically feasible, as it substantially increased the number of samples required to reach a decision. We determined the relationship between the proportions of canola plants infested and cabbage aphid densities per plant, and proposed a spatially optimized sequential sampling plan for cabbage aphids in canola fields, in which spatial features (i.e., edge effects) and optimization of sampling effort (i.e., sequential sampling) are combined. Two forms of stratification were performed to reduce spatial variability caused by edge effects and large field sizes. Spatially optimized sampling, starting at the edge of fields, reduced spatial variability and therefore increased the accuracy of infested plant density estimates. The proposed spatially optimized sampling plan may be used to spatially target insecticide applications, resulting in cost savings, insecticide resistance mitigation, conservation of natural enemies, and reduced environmental impact.

  20. Spatially-Optimized Sequential Sampling Plan for Cabbage Aphids Brevicoryne brassicae L. (Hemiptera: Aphididae) in Canola Fields.

    PubMed

    Severtson, Dustin; Flower, Ken; Nansen, Christian

    2016-08-01

    The cabbage aphid is a significant pest worldwide in brassica crops, including canola. This pest has shown considerable ability to develop resistance to insecticides, so these should only be applied on a "when and where needed" basis. Thus, optimized sampling plans to accurately assess cabbage aphid densities are critically important to determine the potential need for pesticide applications. In this study, we developed a spatially optimized binomial sequential sampling plan for cabbage aphids in canola fields. Based on five sampled canola fields, sampling plans were developed using 0.1, 0.2, and 0.3 proportions of plants infested as action thresholds. Average sample numbers required to make a decision ranged from 10 to 25 plants. Decreasing acceptable error from 10 to 5% was not considered practically feasible, as it substantially increased the number of samples required to reach a decision. We determined the relationship between the proportions of canola plants infested and cabbage aphid densities per plant, and proposed a spatially optimized sequential sampling plan for cabbage aphids in canola fields, in which spatial features (i.e., edge effects) and optimization of sampling effort (i.e., sequential sampling) are combined. Two forms of stratification were performed to reduce spatial variability caused by edge effects and large field sizes. Spatially optimized sampling, starting at the edge of fields, reduced spatial variability and therefore increased the accuracy of infested plant density estimates. The proposed spatially optimized sampling plan may be used to spatially target insecticide applications, resulting in cost savings, insecticide resistance mitigation, conservation of natural enemies, and reduced environmental impact. PMID:27371709

  1. Don't Fear Optimality: Sampling for Probabilistic-Logic Sequence Models

    NASA Astrophysics Data System (ADS)

    Thon, Ingo

    One of the current challenges in artificial intelligence is modeling dynamic environments that change due to the actions or activities undertaken by people or agents. The task of inferring hidden states, e.g. the activities or intentions of people, based on observations is called filtering. Standard probabilistic models such as Dynamic Bayesian Networks are able to solve this task efficiently using approximative methods such as particle filters. However, these models do not support logical or relational representations. The key contribution of this paper is the upgrade of a particle filter algorithm for use with a probabilistic logical representation through the definition of a proposal distribution. The performance of the algorithm depends largely on how well this distribution fits the target distribution. We adopt the idea of logical compilation into Binary Decision Diagrams for sampling. This allows us to use the optimal proposal distribution which is normally prohibitively slow.

  2. Optimizing Peirce-Smith Converters Using Thermodynamic Modeling and Plant Sampling

    NASA Astrophysics Data System (ADS)

    Cardona, N.; Mackey, P. J.; Coursol, P.; Parada, R.; Parra, R.

    2012-05-01

    The performance of pyrometallurgical slag cleaning furnaces at many primary copper smelters is dependent in part on the quality of the converter slag, commonly produced in the batch-wise Peirce Smith converter (PSC). In order to understand the impact of converter slag chemistry and at the same time help optimize the converter operation, thermodynamic modeling of molten slag (including any contained slag solid fractions) was carried out on slag produced at the Chagres smelter in Chile. Phase characterization studies on actual plant slag samples were also carried out. The results are provided in the present paper. This work is also considered as a case study example to illustrate the type of work that can be performed to fairly quickly diagnose the quality of converter slag and assess the overall condition of the converter operation.

  3. A Procedure to Determine the Optimal Sensor Positions for Locating AE Sources in Rock Samples

    NASA Astrophysics Data System (ADS)

    Duca, S.; Occhiena, C.; Sambuelli, L.

    2015-03-01

    Within a research work aimed to better understand frost weathering mechanisms of rocks, laboratory tests have been designed to specifically assess a theoretical model of crack propagation due to ice segregation process in water-saturated and thermally microcracked cubic samples of Arolla gneiss. As the formation and growth of microcracks during freezing tests on rock material is accompanied by a sudden release of stored elastic energy, the propagation of elastic waves can be detected, at the laboratory scale, by acoustic emission (AE) sensors. The AE receiver array geometry is a sensitive factor influencing source location errors, for it can greatly amplify the effect of small measurement errors. Despite the large literature on the AE source location, little attention, to our knowledge, has been paid to the description of the experimental design phase. As a consequence, the criteria for sensor positioning are often not declared and not related to location accuracy. In the present paper, a tool for the identification of the optimal sensor position on a cubic shape rock specimen is presented. The optimal receiver configuration is chosen by studying the condition numbers of each of the kernel matrices, used for inverting the arrival time and finding the source location, and obtained for properly selected combinations between sensors and sources positions.

  4. Dynamic simulation tools for the analysis and optimization of novel collection, filtration and sample preparation systems

    SciTech Connect

    Clague, D; Weisgraber, T; Rockway, J; McBride, K

    2006-02-12

    The focus of research effort described here is to develop novel simulation tools to address design and optimization needs in the general class of problems that involve species and fluid (liquid and gas phases) transport through sieving media. This was primarily motivated by the heightened attention on Chem/Bio early detection systems, which among other needs, have a need for high efficiency filtration, collection and sample preparation systems. Hence, the said goal was to develop the computational analysis tools necessary to optimize these critical operations. This new capability is designed to characterize system efficiencies based on the details of the microstructure and environmental effects. To accomplish this, new lattice Boltzmann simulation capabilities where developed to include detailed microstructure descriptions, the relevant surface forces that mediate species capture and release, and temperature effects for both liquid and gas phase systems. While developing the capability, actual demonstration and model systems (and subsystems) of national and programmatic interest were targeted to demonstrate the capability. As a result, where possible, experimental verification of the computational capability was performed either directly using Digital Particle Image Velocimetry or published results.

  5. Optimization and image quality assessment of the alpha-image reconstruction algorithm: iterative reconstruction with well-defined image quality metrics

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergej; Sawall, Stefan; Kuchenbecker, Stefan; Faby, Sebastian; Knaup, Michael; Kachelrieß, Marc

    2015-03-01

    The reconstruction of CT images with low noise and highest spatial resolution is a challenging task. Usually, a trade-off between at least these two demands has to be found or several reconstructions with mutually exclusive properties, i.e. either low noise or high spatial resolution, have to be performed. Iterative reconstruction methods might be suitable tools to overcome these limitations and provide images of highest diagnostic quality with formerly mutually exclusive image properties. While image quality metrics like the modulation transfer function (MTF) or the point spread function (PSF) are well-defined in case of standard reconstructions, e.g. filtered backprojection, the iterative algorithms lack these metrics. To overcome this issue alternate methodologies like the model observers have been proposed recently to allow a quantification of a usually task-dependent image quality metric.1 As an alternative we recently proposed an iterative reconstruction method, the alpha-image reconstruction (AIR), providing well-defined image quality metrics on a per-voxel basis.2 In particular, the AIR algorithm seeks to find weighting images, the alpha-images, that are used to blend between basis images with mutually exclusive image properties. The result is an image with highest diagnostic quality that provides a high spatial resolution and a low noise level. As the estimation of the alpha-images is computationally demanding we herein aim at optimizing this process and highlight the favorable properties of AIR using patient measurements.

  6. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    PubMed

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency. PMID:26211074

  7. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples.

    PubMed

    Verant, Michelle L; Bohuski, Elizabeth A; Lorch, Jeffery M; Blehert, David S

    2016-03-01

    The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid from P. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer-based qPCR test for P. destructans to refine quantification capabilities of this assay. PMID:26965231

  8. A simple optimized microwave digestion method for multielement monitoring in mussel samples

    NASA Astrophysics Data System (ADS)

    Saavedra, Y.; González, A.; Fernández, P.; Blanco, J.

    2004-04-01

    With the aim of obtaining a set of common decomposition conditions allowing the determination of several metals in mussel tissue (Hg by cold vapour atomic absorption spectrometry; Cu and Zn by flame atomic absorption spectrometry; and Cd, PbCr, Ni, As and Ag by electrothermal atomic absorption spectrometry), a factorial experiment was carried out using as factors the sample weight, digestion time and acid addition. It was found that the optimal conditions were 0.5 g of freeze-dried and triturated samples with 6 ml of nitric acid and subjected to microwave heating for 20 min at 180 psi. This pre-treatment, using only one step and one oxidative reagent, was suitable to determine the nine metals studied with no subsequent handling of the digest. It was possible to carry out the determination of atomic absorption using calibrations with aqueous standards and matrix modifiers for cadmium, lead, chromium, arsenic and silver. The accuracy of the procedure was checked using oyster tissue (SRM 1566b) and mussel tissue (CRM 278R) certified reference materials. The method is now used routinely to monitor these metals in wild and cultivated mussels, and found to be good.

  9. Small sample training and test selection method for optimized anomaly detection algorithms in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Mindrup, Frank M.; Friend, Mark A.; Bauer, Kenneth W.

    2012-01-01

    There are numerous anomaly detection algorithms proposed for hyperspectral imagery. Robust parameter design (RPD) techniques provide an avenue to select robust settings capable of operating consistently across a large variety of image scenes. Many researchers in this area are faced with a paucity of data. Unfortunately, there are no data splitting methods for model validation of datasets with small sample sizes. Typically, training and test sets of hyperspectral images are chosen randomly. Previous research has developed a framework for optimizing anomaly detection in HSI by considering specific image characteristics as noise variables within the context of RPD; these characteristics include the Fisher's score, ratio of target pixels and number of clusters. We have developed method for selecting hyperspectral image training and test subsets that yields consistent RPD results based on these noise features. These subsets are not necessarily orthogonal, but still provide improvements over random training and test subset assignments by maximizing the volume and average distance between image noise characteristics. The small sample training and test selection method is contrasted with randomly selected training sets as well as training sets chosen from the CADEX and DUPLEX algorithms for the well known Reed-Xiaoli anomaly detector.

  10. A study of the thermal decomposition of adulterated cocaine samples under optimized aerobic pyrolytic conditions.

    PubMed

    Gostic, T; Klemenc, S; Stefane, B

    2009-05-30

    The pyrolysis behaviour of pure cocaine base as well as the influence of various additives was studied using conditions that are relevant to the smoking of illicit cocaine by humans. For this purpose an aerobic pyrolysis device was developed and the experimental conditions were optimized. In the first part of our study the optimization of some basic experimental parameters of the pyrolysis was performed, i.e., the furnace temperature, the sampling start time, the heating period, the sampling time, and the air-flow rate through the system. The second part of the investigation focused on the volatile products formed during the pyrolysis of a pure cocaine free base and mixtures of cocaine base and adulterants. The anaesthetics lidocaine, benzocaine, procaine, the analgesics phenacetine and paracetamol, and the stimulant caffeine were used as the adulterants. Under the applied experimental conditions complete volatilization of the samples was achieved, i.e., the residuals of the studied compounds were not detected in the pyrolysis cell. Volatilization of the pure cocaine base showed that the cocaine recovery available for inhalation (adsorbed on traps) was approximately 76%. GC-MS and NMR analyses of the smoke condensate revealed the presence of some additional cocaine pyrolytic products, such as anhydroecgonine methyl ester (AEME), benzoic acid (BA) and carbomethoxycycloheptatrienes (CMCHTs). Experiments with different cocaine-adulterant mixtures showed that the addition of the adulterants changed the thermal behaviour of the cocaine. The most significant of these was the effect of paracetamol. The total recovery of the cocaine (adsorbed on traps and in a glass tube) from the 1:1 cocaine-paracetamol mixture was found to be only 3.0+/-0.8%, versus 81.4+/-2.9% for the pure cocaine base. The other adulterants showed less-extensive effects on the recovery of cocaine, but the pyrolysis of the cocaine-procaine mixture led to the formation of some unique pyrolytic products

  11. Bacterial screening of platelet concentrates on day 2 and 3 with flow cytometry: the optimal sampling time point?

    PubMed Central

    Vollmer, Tanja; Schottstedt, Volkmar; Bux, Juergen; Walther-Wenke, Gabriele; Knabbe, Cornelius; Dreier, Jens

    2014-01-01

    Background There is growing concern on the residual risk of bacterial contamination of platelet concentrates in Germany, despite the reduction of the shelf-life of these concentrates and the introduction of bacterial screening. In this study, the applicability of the BactiFlow flow cytometric assay for bacterial screening of platelet concentrates on day 2 or 3 of their shelf-life was assessed in two German blood services. The results were used to evaluate currently implemented or newly discussed screening strategies. Materials and methods Two thousand and ten apheresis platelet concentrates were tested on day 2 or day 3 after donation using BactiFlow flow cytometry. Reactive samples were confirmed by the BacT/Alert culture system. Results Twenty-four of the 2,100 platelet concentrates tested were reactive in the first test by BactiFlow. Of these 24 platelet concentrates, 12 were false-positive and the other 12 were initially reactive. None of the microbiological cultures of the initially reactive samples was positive. Parallel examination of 1,026 platelet concentrates by culture revealed three positive platelet concentrates with bacteria detected only in the anaerobic culture bottle and identified as Staphylococcus species. Two platelet concentrates were confirmed positive for Staphylcoccus epidermidis by culture. Retrospective analysis of the growth kinetics of the bacteria indicated that the bacterial titres were most likely below the diagnostic sensitivity of the BactiFlow assay (<300 CFU/mL) and probably had no transfusion relevance. Conclusions The BactiFlow assay is very convenient for bacterial screening of platelet concentrates independently of the testing day and the screening strategy. Although the optimal screening strategy could not be defined, this study provides further data to help achieve this goal. PMID:24887230

  12. Multivariate optimization of the hollow fibre liquid phase microextraction of muscimol in human urine samples.

    PubMed

    Ncube, Somandla; Poliwoda, Anna; Tutu, Hlanganani; Wieczorek, Piotr; Chimuka, Luke

    2016-10-15

    A liquid phase microextraction based on hollow fibre followed by liquid chromatographic determination was developed for the extraction and quantitation of the hallucinogenic muscimol from urine samples. Method applicability on polar hallucinogens was also tested on two alkaloids, a psychedelic hallucinogen, tryptamine and a polar amino acid, tryptophan which exists in its charged state in the entire pH range. A multivariate design of experiments was used in which a half fractional factorial approach was applied to screen six factors (donor phase pH, acceptor phase HCl concentration, carrier composition, stirring rate, extraction time and salt content) for their extent of vitality in carrier mediated liquid microextractions. Four factors were deemed essential for the effective extraction of each analyte. The vital factors were further optimized for the extraction of single-spiked analyte solutions using a central composite design. When the simultaneous extraction of analytes was performed under universal factor conditions biased towards maximizing the enrichment of muscimol, a good composite desirability value of 0.687 was obtained. The method was finally applied on spiked urine samples with acceptable enrichments of 4.1, 19.7 and 24.1 obtained for muscimol, tryptophan and tryptamine respectively. Matrix-based calibration curves were used to address matrix effects. The r(2) values of the matrix-based linear regression prediction models ranged from 0.9933 to 0.9986. The linearity of the regression line of the matrix-based calibration curves for each analyte was directly linked to the analyte enrichment repeatability which ranged from an RSD value of 8.3-13.1%. Limits of detection for the developed method were 5.12, 3.10 and 0.21ngmL(-1) for muscimol, tryptophan and tryptamine respectively. The developed method has proven to offer a viable alternative for the quantitation of muscimol in human urine samples.

  13. Optimizing stream water mercury sampling for calculation of fish bioaccumulation factors

    USGS Publications Warehouse

    Riva-Murray, Karen; Bradley, Paul M.; Journey, Celeste A.; Brigham, Mark E.; Scudder Eikenberry, Barbara C.; Knightes, Christopher; Button, Daniel T.

    2013-01-01

    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive to sampling and analysis artifacts for fish and water. We evaluated the influence of water sample timing, filtration, and mercury species on the modeled relation between game fish and water mercury concentrations across 11 streams and rivers in five states in order to identify optimum Hgwater sampling approaches. Each model included fish trophic position, to account for a wide range of species collected among sites, and flow-weighted Hgwater estimates. Models were evaluated for parsimony, using Akaike’s Information Criterion. Better models included filtered water methylmercury (FMeHg) or unfiltered water methylmercury (UMeHg), whereas filtered total mercury did not meet parsimony requirements. Models including mean annual FMeHg were superior to those with mean FMeHg calculated over shorter time periods throughout the year. FMeHg models including metrics of high concentrations (80th percentile and above) observed during the year performed better, in general. These higher concentrations occurred most often during the growing season at all sites. Streamflow was significantly related to the probability of achieving higher concentrations during the growing season at six sites, but the direction of influence varied among sites. These findings indicate that streamwater Hg collection can be optimized by evaluating site-specific FMeHg - UMeHg relations, intra-annual temporal variation in their concentrations, and streamflow-Hg dynamics.

  14. Defining optimal cutoff scores for cognitive impairment using Movement Disorder Society Task Force criteria for mild cognitive impairment in Parkinson's disease.

    PubMed

    Goldman, Jennifer G; Holden, Samantha; Bernard, Bryan; Ouyang, Bichun; Goetz, Christopher G; Stebbins, Glenn T

    2013-12-01

    The recently proposed Movement Disorder Society (MDS) Task Force diagnostic criteria for mild cognitive impairment in Parkinson's disease (PD-MCI) represent a first step toward a uniform definition of PD-MCI across multiple clinical and research settings. However, several questions regarding specific criteria remain unanswered, including optimal cutoff scores by which to define impairment on neuropsychological tests. Seventy-six non-demented PD patients underwent comprehensive neuropsychological assessment and were classified as PD-MCI or PD with normal cognition (PD-NC). The concordance of PD-MCI diagnosis by MDS Task Force Level II criteria (comprehensive assessment), using a range of standard deviation (SD) cutoff scores, was compared with our consensus diagnosis of PD-MCI or PD-NC. Sensitivity, specificity, and positive and negative predictive values were examined for each cutoff score. PD-MCI subtype classification and distribution of cognitive domains impaired were evaluated. Concordance for PD-MCI diagnosis was greatest for defining impairment on neuropsychological tests using a 2 SD cutoff score below appropriate norms. This cutoff also provided the best discriminatory properties for separating PD-MCI from PD-NC compared with other cutoff scores. With the MDS PD-MCI criteria, multiple domain impairment was more frequent than single domain impairment, with predominant executive function, memory, and visuospatial function deficits. Application of the MDS Task Force PD-MCI Level II diagnostic criteria demonstrates good sensitivity and specificity at a 2 SD cutoff score. The predominance of multiple domain impairment in PD-MCI with the Level II criteria suggests not only influences of testing abnormality requirements, but also the widespread nature of cognitive deficits within PD-MCI.

  15. Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment.

    PubMed

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Riparip, Lara; Strnadel, Jan; Parihar, Vipan K; Limoli, Charles L

    2015-01-01

    Past preclinical studies have demonstrated the capability of using human stem cell transplantation in the irradiated brain to ameliorate radiation-induced cognitive dysfunction. Intrahippocampal transplantation of human embryonic stem cells and human neural stem cells (hNSCs) was found to functionally restore cognition in rats 1 and 4 months after cranial irradiation. To optimize the potential therapeutic benefits of human stem cell transplantation, we have further defined optimal transplantation windows for maximizing cognitive benefits after irradiation and used induced pluripotent stem cell-derived hNSCs (iPSC-hNSCs) that may eventually help minimize graft rejection in the host brain. For these studies, animals given an acute head-only dose of 10 Gy were grafted with iPSC-hNSCs at 2 days, 2 weeks, or 4 weeks following irradiation. Animals receiving stem cell grafts showed improved hippocampal spatial memory and contextual fear-conditioning performance compared with irradiated sham-surgery controls when analyzed 1 month after transplantation surgery. Importantly, superior performance was evident when stem cell grafting was delayed by 4 weeks following irradiation compared with animals grafted at earlier times. Analysis of the 4-week cohort showed that the surviving grafted cells migrated throughout the CA1 and CA3 subfields of the host hippocampus and differentiated into neuronal (∼39%) and astroglial (∼14%) subtypes. Furthermore, radiation-induced inflammation was significantly attenuated across multiple hippocampal subfields in animals receiving iPSC-hNSCs at 4 weeks after irradiation. These studies expand our prior findings to demonstrate that protracted stem cell grafting provides improved cognitive benefits following irradiation that are associated with reduced neuroinflammation.

  16. Organ sample generator for expected treatment dose construction and adaptive inverse planning optimization

    SciTech Connect

    Nie Xiaobo; Liang Jian; Yan Di

    2012-12-15

    Purpose: To create an organ sample generator (OSG) for expected treatment dose construction and adaptive inverse planning optimization. The OSG generates random samples of organs of interest from a distribution obeying the patient specific organ variation probability density function (PDF) during the course of adaptive radiotherapy. Methods: Principle component analysis (PCA) and a time-varying least-squares regression (LSR) method were used on patient specific geometric variations of organs of interest manifested on multiple daily volumetric images obtained during the treatment course. The construction of the OSG includes the determination of eigenvectors of the organ variation using PCA, and the determination of the corresponding coefficients using time-varying LSR. The coefficients can be either random variables or random functions of the elapsed treatment days depending on the characteristics of organ variation as a stationary or a nonstationary random process. The LSR method with time-varying weighting parameters was applied to the precollected daily volumetric images to determine the function form of the coefficients. Eleven h and n cancer patients with 30 daily cone beam CT images each were included in the evaluation of the OSG. The evaluation was performed using a total of 18 organs of interest, including 15 organs at risk and 3 targets. Results: Geometric variations of organs of interest during h and n cancer radiotherapy can be represented using the first 3 {approx} 4 eigenvectors. These eigenvectors were variable during treatment, and need to be updated using new daily images obtained during the treatment course. The OSG generates random samples of organs of interest from the estimated organ variation PDF of the individual. The accuracy of the estimated PDF can be improved recursively using extra daily image feedback during the treatment course. The average deviations in the estimation of the mean and standard deviation of the organ variation PDF for h

  17. Alignment estimation performances of merit function regression with differential wavefront sampling in multiple design configuration optimization

    NASA Astrophysics Data System (ADS)

    Oh, Eunsong; Kim, Sug-Whan; Cho, Seongick; Ryu, Joo-Hyung

    2011-10-01

    In our earlier study[12], we suggested a new alignment algorithm called Multiple Design Configuration Optimization (MDCO hereafter) method combining the merit function regression (MFR) computation with the differential wavefront sampling method (DWS). In this study, we report alignment state estimation performances of the method for three target optical systems (i.e. i) a two-mirror Cassegrain telescope of 58mm in diameter for deep space earth observation, ii) a three-mirror anastigmat of 210mm in aperture for ocean monitoring from the geostationary orbit, and iii) on-axis/off-axis pairs of a extremely large telescope of 27.4m in aperture). First we introduced known amounts of alignment state disturbances to the target optical system elements. Example alignment parameter ranges may include, but not limited to, from 800microns to 10mm in decenter, and from 0.1 to 1.0 degree in tilt. We then ran alignment state estimation simulation using MDCO, MFR and DWS. The simulation results show that MDCO yields much better estimation performance than MFR and DWS over the alignment disturbance level of up to 150 times larger than the required tolerances. In particular, with its simple single field measurement, MDCO exhibits greater practicality and application potentials for shop floor optical testing environment than MFR and DWS.

  18. Defining the Optimal Selenium Dose for Prostate Cancer Risk Reduction: Insights from the U-Shaped Relationship between Selenium Status, DNA Damage, and Apoptosis

    PubMed Central

    Chiang, Emily C.; Shen, Shuren; Kengeri, Seema S.; Xu, Huiping; Combs, Gerald F.; Morris, J. Steven; Bostwick, David G.; Waters, David J.

    2009-01-01

    Our work in dogs has revealed a U-shaped dose response between selenium status and prostatic DNA damage that remarkably parallels the relationship between dietary selenium and prostate cancer risk in men, suggesting that more selenium is not necessarily better. Herein, we extend this canine work to show that the selenium dose that minimizes prostatic DNA damage also maximizes apoptosis—a cancer-suppressing death switch used by prostatic epithelial cells. These provocative findings suggest a new line of thinking about how selenium can reduce cancer risk. Mid-range selenium status (.67–.92 ppm in toenails) favors a process we call “homeostatic housecleaning”—an upregulated apoptosis that preferentially purges damaged prostatic cells. Also, the U-shaped relationship provides valuable insight into stratifying individuals as selenium-responsive or selenium-refractory, based upon the likelihood of reducing their cancer risk by additional selenium. By studying elderly dogs, the only non-human animal model of spontaneous prostate cancer, we have established a robust experimental approach bridging the gap between laboratory and human studies that can help to define the optimal doses of cancer preventives for large-scale human trials. Moreover, our observations bring much needed clarity to the null results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) and set a new research priority: testing whether men with low, suboptimal selenium levels less than 0.8 ppm in toenails can achieve cancer risk reduction through daily supplementation. PMID:20877485

  19. Optimization of the in-needle extraction device for the direct flow of the liquid sample through the sorbent layer.

    PubMed

    Pietrzyńska, Monika; Voelkel, Adam

    2014-11-01

    In-needle extraction was applied for preparation of aqueous samples. This technique was used for direct isolation of analytes from liquid samples which was achieved by forcing the flow of the sample through the sorbent layer: silica or polymer (styrene/divinylbenzene). Specially designed needle was packed with three different sorbents on which the analytes (phenol, p-benzoquinone, 4-chlorophenol, thymol and caffeine) were retained. Acceptable sampling conditions for direct analysis of liquid sample were selected. Experimental data collected from the series of liquid samples analysis made with use of in-needle device showed that the effectiveness of the system depends on various parameters such as breakthrough volume and the sorption capacity, effect of sampling flow rate, solvent effect on elution step, required volume of solvent for elution step. The optimal sampling flow rate was in range of 0.5-2 mL/min, the minimum volume of solvent was at 400 µL level. PMID:25127610

  20. Defining “Normophilic” and “Paraphilic” Sexual Fantasies in a Population‐Based Sample: On the Importance of Considering Subgroups

    PubMed Central

    2015-01-01

    criteria for paraphilia are too inclusive. Suggestions are given to improve the definition of pathological sexual interests, and the crucial difference between SF and sexual interest is underlined. Joyal CC. Defining “normophilic” and “paraphilic” sexual fantasies in a population‐based sample: On the importance of considering subgroups. Sex Med 2015;3:321–330. PMID:26797067

  1. Defining "Development".

    PubMed

    Pradeu, Thomas; Laplane, Lucie; Prévot, Karine; Hoquet, Thierry; Reynaud, Valentine; Fusco, Giuseppe; Minelli, Alessandro; Orgogozo, Virginie; Vervoort, Michel

    2016-01-01

    Is it possible, and in the first place is it even desirable, to define what "development" means and to determine the scope of the field called "developmental biology"? Though these questions appeared crucial for the founders of "developmental biology" in the 1950s, there seems to be no consensus today about the need to address them. Here, in a combined biological, philosophical, and historical approach, we ask whether it is possible and useful to define biological development, and, if such a definition is indeed possible and useful, which definition(s) can be considered as the most satisfactory.

  2. Defining Infertility

    MedlinePlus

    ... of the American Society for Reproductive Medicine Defining infertility What is infertility? Infertility is “the inability to conceive after 12 months ... to conceive after 6 months is generally considered infertility. How common is it? Infertility affects 10%-15% ...

  3. Optimal transport time and conditions for cartilage tissue samples and expanded chondrocyte suspensions.

    PubMed

    Yilmaz, Banu Coskun; Yilmaz, Cengiz; Yilmaz, Necat S; Balli, Ebru; Tasdelen, Bahar

    2010-01-01

    For autologous chondrocyte implantation, the chondral tissue obtained is transferred from the operating room to the laboratory using specialized carrier systems within 24 hours. Similar expenses are used for the transport of cultured chondrocytes. The purpose of this study was to find the optimal temperature, size of tissue, and time that the chondrocytes can stand without losing viability and proliferative capacity. Fresh calf cartilage was harvested and divided into 24 groups. Half of the samples were diced into 1- to 2-mm(3) pieces. All 12 groups were kept at either 4 degrees C, 25 degrees C, or 37 degrees C for 1, 3, 5, or 7 days and were seeded for cell culture. Times to reach confluence values were compared. Produced cell suspensions were grouped similarly and tested similarly. Neither the temperature nor the waiting days caused any difference in the proliferative capacity of the cells. Diced tissues yielded a shorter time to reach confluence values. Chondral tissue obtained from the patient can be transferred to the laboratory at temperatures ranging from 4 degrees C to 37 degrees C in up to 7 days. These conditions did not affect the proliferative capacity or the viability of the chondrocytes. Dicing the tissue prior to transport will shorten total culturing time. The expanded cell suspensions should be transferred at temperatures from 4 degrees C to 25 degrees C within 3 days. Specialized carrier systems to get the chondral tissue from the operating room to the laboratory and to take the expanded chondrocytes back to the operating room within hours may not be necessary.

  4. Persistent Organic Pollutant Determination in Killer Whale Scat Samples: Optimization of a Gas Chromatography/Mass Spectrometry Method and Application to Field Samples.

    PubMed

    Lundin, Jessica I; Dills, Russell L; Ylitalo, Gina M; Hanson, M Bradley; Emmons, Candice K; Schorr, Gregory S; Ahmad, Jacqui; Hempelmann, Jennifer A; Parsons, Kim M; Wasser, Samuel K

    2016-01-01

    Biologic sample collection in wild cetacean populations is challenging. Most information on toxicant levels is obtained from blubber biopsy samples; however, sample collection is invasive and strictly regulated under permit, thus limiting sample numbers. Methods are needed to monitor toxicant levels that increase temporal and repeat sampling of individuals for population health and recovery models. The objective of this study was to optimize measuring trace levels (parts per billion) of persistent organic pollutants (POPs), namely polychlorinated-biphenyls (PCBs), polybrominated-diphenyl-ethers (PBDEs), dichlorodiphenyltrichloroethanes (DDTs), and hexachlorocyclobenzene, in killer whale scat (fecal) samples. Archival scat samples, initially collected, lyophilized, and extracted with 70 % ethanol for hormone analyses, were used to analyze POP concentrations. The residual pellet was extracted and analyzed using gas chromatography coupled with mass spectrometry. Method detection limits ranged from 11 to 125 ng/g dry weight. The described method is suitable for p,p'-DDE, PCBs-138, 153, 180, and 187, and PBDEs-47 and 100; other POPs were below the limit of detection. We applied this method to 126 scat samples collected from Southern Resident killer whales. Scat samples from 22 adult whales also had known POP concentrations in blubber and demonstrated significant correlations (p < 0.01) between matrices across target analytes. Overall, the scat toxicant measures matched previously reported patterns from blubber samples of decreased levels in reproductive-age females and a decreased p,p'-DDE/∑PCB ratio in J-pod. Measuring toxicants in scat samples provides an unprecedented opportunity to noninvasively evaluate contaminant levels in wild cetacean populations; these data have the prospect to provide meaningful information for vital management decisions. PMID:26298464

  5. Persistent Organic Pollutant Determination in Killer Whale Scat Samples: Optimization of a Gas Chromatography/Mass Spectrometry Method and Application to Field Samples.

    PubMed

    Lundin, Jessica I; Dills, Russell L; Ylitalo, Gina M; Hanson, M Bradley; Emmons, Candice K; Schorr, Gregory S; Ahmad, Jacqui; Hempelmann, Jennifer A; Parsons, Kim M; Wasser, Samuel K

    2016-01-01

    Biologic sample collection in wild cetacean populations is challenging. Most information on toxicant levels is obtained from blubber biopsy samples; however, sample collection is invasive and strictly regulated under permit, thus limiting sample numbers. Methods are needed to monitor toxicant levels that increase temporal and repeat sampling of individuals for population health and recovery models. The objective of this study was to optimize measuring trace levels (parts per billion) of persistent organic pollutants (POPs), namely polychlorinated-biphenyls (PCBs), polybrominated-diphenyl-ethers (PBDEs), dichlorodiphenyltrichloroethanes (DDTs), and hexachlorocyclobenzene, in killer whale scat (fecal) samples. Archival scat samples, initially collected, lyophilized, and extracted with 70 % ethanol for hormone analyses, were used to analyze POP concentrations. The residual pellet was extracted and analyzed using gas chromatography coupled with mass spectrometry. Method detection limits ranged from 11 to 125 ng/g dry weight. The described method is suitable for p,p'-DDE, PCBs-138, 153, 180, and 187, and PBDEs-47 and 100; other POPs were below the limit of detection. We applied this method to 126 scat samples collected from Southern Resident killer whales. Scat samples from 22 adult whales also had known POP concentrations in blubber and demonstrated significant correlations (p < 0.01) between matrices across target analytes. Overall, the scat toxicant measures matched previously reported patterns from blubber samples of decreased levels in reproductive-age females and a decreased p,p'-DDE/∑PCB ratio in J-pod. Measuring toxicants in scat samples provides an unprecedented opportunity to noninvasively evaluate contaminant levels in wild cetacean populations; these data have the prospect to provide meaningful information for vital management decisions.

  6. Interplanetary program to optimize simulated trajectories (IPOST). Volume 4: Sample cases

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization are performed using the Standard NPSOL algorithm. The IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  7. Defining cure.

    PubMed

    Hilton, Paul; Robinson, Dudley

    2011-06-01

    This paper is a summary of the presentations made as Proposal 2-"Defining cure" to the 2nd Annual meeting of the ICI-Research Society, in Bristol, 16th June 2010. It reviews definitions of 'cure' and 'outcome', and considers the impact that varying definition may have on prevalence studies and cure rates. The difference between subjective and objective outcomes is considered, and the significance that these different outcomes may have for different stakeholders (e.g. clinicians, patients, carers, industry etc.) is discussed. The development of patient reported outcome measures and patient defined goals is reviewed, and consideration given to the use of composite end-points. A series of proposals are made by authors and discussants as to how currently validated outcomes should be applied, and where our future research activity in this area might be directed.

  8. Defining biobank.

    PubMed

    Hewitt, Robert; Watson, Peter

    2013-10-01

    The term "biobank" first appeared in the scientific literature in 1996 and for the next five years was used mainly to describe human population-based biobanks. In recent years, the term has been used in a more general sense and there are currently many different definitions to be found in reports, guidelines and regulatory documents. Some definitions are general, including all types of biological sample collection facilities. Others are specific and limited to collections of human samples, sometimes just to population-based collections. In order to help resolve the confusion on this matter, we conducted a survey of the opinions of people involved in managing sample collections of all types. This survey was conducted using an online questionnaire that attracted 303 responses. The results show that there is consensus that the term biobank may be applied to biological collections of human, animal, plant or microbial samples; and that the term biobank should only be applied to sample collections with associated sample data, and to collections that are managed according to professional standards. There was no consensus on whether a collection's purpose, size or level of access should determine whether it is called a biobank. Putting these findings into perspective, we argue that a general, broad definition of biobank is here to stay, and that attention should now focus on the need for a universally-accepted, systematic classification of the different biobank types. PMID:24835262

  9. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method

    NASA Astrophysics Data System (ADS)

    Sun, Jianfeng; Yang, Yongqiang; Wang, Di

    2013-07-01

    In this study, a selective laser melting experiment was carried out with Ti6Al4V alloy powders. To produce samples with maximum density, selective laser melting parameters of laser power, scanning speed, powder thickness, hatching space and scanning strategy were carefully selected. As a statistical design of experimental technique, the Taguchi method was used to optimize the selected parameters. The results were analyzed using analyses of variance (ANOVA) and the signal-to-noise (S/N) ratios by design-expert software for the optimal parameters, and a regression model was established. The regression equation revealed a linear relationship among the density, laser power, scanning speed, powder thickness and scanning strategy. From the experiments, sample with density higher than 95% was obtained. The microstructure of obtained sample was mainly composed of acicular martensite, α phase and β phase. The micro-hardness was 492 HV0.2.

  10. Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling.

    PubMed

    Chaudhary, Neha; Tøndel, Kristin; Bhatnagar, Rakesh; dos Santos, Vítor A P Martins; Puchałka, Jacek

    2016-03-01

    Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them.

  11. Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling.

    PubMed

    Chaudhary, Neha; Tøndel, Kristin; Bhatnagar, Rakesh; dos Santos, Vítor A P Martins; Puchałka, Jacek

    2016-03-01

    Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them. PMID

  12. ROLE OF LABORATORY SAMPLING DEVICES AND LABORATORY SUBSAMPLING METHODS IN OPTIMIZING REPRESENTATIVENESS STRATEGIES

    EPA Science Inventory

    Sampling is the act of selecting items from a specified population in order to estimate the parameters of that population (e.g., selecting soil samples to characterize the properties at an environmental site). Sampling occurs at various levels and times throughout an environmenta...

  13. Defining chaos

    SciTech Connect

    Hunt, Brian R.; Ott, Edward

    2015-09-15

    In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call “expansion entropy,” and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.

  14. Optimization of Sample Preparation for the Identification and Quantification of Saxitoxin in Proficiency Test Mussel Sample using Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Burrell, Stephen; Luginbühl, Werner; Vanninen, Paula

    2015-11-25

    Saxitoxin (STX) and some selected paralytic shellfish poisoning (PSP) analogues in mussel samples were identified and quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample extraction and purification methods of mussel sample were optimized for LC-MS/MS analysis. The developed method was applied to the analysis of the homogenized mussel samples in the proficiency test (PT) within the EQuATox project (Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk). Ten laboratories from eight countries participated in the STX PT. Identification of PSP toxins in naturally contaminated mussel samples was performed by comparison of product ion spectra and retention times with those of reference standards. The quantitative results were obtained with LC-MS/MS by spiking reference standards in toxic mussel extracts. The results were within the z-score of ±1 when compared to the results measured with the official AOAC (Association of Official Analytical Chemists) method 2005.06, pre-column oxidation high-performance liquid chromatography with fluorescence detection (HPLC-FLD).

  15. Optimizing MRI-targeted fusion prostate biopsy: the effect of systematic error and anisotropy on tumor sampling

    NASA Astrophysics Data System (ADS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2015-03-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy aims to reduce the 21-47% false negative rate of clinical 2D TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsy still has a substantial false negative rate. Therefore, we propose optimization of biopsy targeting to meet the clinician's desired tumor sampling probability, optimizing needle targets within each tumor and accounting for uncertainties due to guidance system errors, image registration errors, and irregular tumor shapes. As a step toward this optimization, we obtained multiparametric MRI (mpMRI) and 3D TRUS images from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D surfaces that were registered to 3D TRUS. We estimated the probability, P, of obtaining a tumor sample with a single biopsy, and investigated the effects of systematic errors and anisotropy on P. Our experiments indicated that a biopsy system's lateral and elevational errors have a much greater effect on sampling probabilities, relative to its axial error. We have also determined that for a system with RMS error of 3.5 mm, tumors of volume 1.9 cm3 and smaller may require more than one biopsy core to ensure 95% probability of a sample with 50% core involvement, and tumors 1.0 cm3 and smaller may require more than two cores.

  16. Optimal sampling design for estimating spatial distribution and abundance of a freshwater mussel population

    USGS Publications Warehouse

    Pooler, P.S.; Smith, D.R.

    2005-01-01

    We compared the ability of simple random sampling (SRS) and a variety of systematic sampling (SYS) designs to estimate abundance, quantify spatial clustering, and predict spatial distribution of freshwater mussels. Sampling simulations were conducted using data obtained from a census of freshwater mussels in a 40 X 33 m section of the Cacapon River near Capon Bridge, West Virginia, and from a simulated spatially random population generated to have the same abundance as the real population. Sampling units that were 0.25 m 2 gave more accurate and precise abundance estimates and generally better spatial predictions than 1-m2 sampling units. Systematic sampling with ???2 random starts was more efficient than SRS. Estimates of abundance based on SYS were more accurate when the distance between sampling units across the stream was less than or equal to the distance between sampling units along the stream. Three measures for quantifying spatial clustering were examined: Hopkins Statistic, the Clumping Index, and Morisita's Index. Morisita's Index was the most reliable, and the Hopkins Statistic was prone to false rejection of complete spatial randomness. SYS designs with units spaced equally across and up stream provided the most accurate predictions when estimating the spatial distribution by kriging. Our research indicates that SYS designs with sampling units equally spaced both across and along the stream would be appropriate for sampling freshwater mussels even if no information about the true underlying spatial distribution of the population were available to guide the design choice. ?? 2005 by The North American Benthological Society.

  17. Relationships between depressive symptoms and perceived social support, self-esteem, & optimism in a sample of rural adolescents.

    PubMed

    Weber, Scott; Puskar, Kathryn Rose; Ren, Dianxu

    2010-09-01

    Stress, developmental changes and social adjustment problems can be significant in rural teens. Screening for psychosocial problems by teachers and other school personnel is infrequent but can be a useful health promotion strategy. We used a cross-sectional survey descriptive design to examine the inter-relationships between depressive symptoms and perceived social support, self-esteem, and optimism in a sample of rural school-based adolescents. Depressive symptoms were negatively correlated with peer social support, family social support, self-esteem, and optimism. Findings underscore the importance for teachers and other school staff to provide health education. Results can be used as the basis for education to improve optimism, self-esteem, social supports and, thus, depression symptoms of teens.

  18. Development of optimal liquid based cytology sample processing methods for HPV testing: minimising the 'inadequate' test result.

    PubMed

    Peevor, R; Jones, J; Fiander, A N; Hibbitts, S

    2011-05-01

    Incorporation of HPV testing into cervical screening is anticipated and robust methods for DNA extraction from liquid based cytology (LBC) samples are required. This study compared QIAamp extraction with Proteinase K digestion and developed methods to address DNA extraction failure (β-globin PCR negative) from clinical specimens. Proteinase K and QIAamp extraction methods in paired LBC samples were comparable with adequate DNA retrieved from 93.3% of clinical specimens. An HPV prevalence cohort (n=10,000) found 7% (n=676) LBC samples tested negative for β-globin, and were classified as inadequate. This 'failure' rate is unsuitable for population screening, particularly as the sampling method is intrusive. 379/676 samples were assessed to determine the cause of test failure. Re-testing confirmed adequate DNA in 21.6% of the original extracts; re-extraction from stored material identified 56.2% samples contained adequate material; dilution to overcome sample inhibition (1:10) resolved 51.7% cases in original extracts and 28% in new extracts. A standardised approach to HPV testing with an optimal DNA concentration input rather than standard volume input is recommended. Samples failing initial DNA extraction should be repeat extracted and assessed for sample inhibition to reduce the 7% of HPV tests being reported as inadequate and reduce the need for retesting of those women to <1%.

  19. Optimal protein extraction methods from diverse sample types for protein profiling by using Two-Dimensional Electrophoresis (2DE).

    PubMed

    Tan, A A; Azman, S N; Abdul Rani, N R; Kua, B C; Sasidharan, S; Kiew, L V; Othman, N; Noordin, R; Chen, Y

    2011-12-01

    There is a great diversity of protein samples types and origins, therefore the optimal procedure for each sample type must be determined empirically. In order to obtain a reproducible and complete sample presentation which view as many proteins as possible on the desired 2DE gel, it is critical to perform additional sample preparation steps to improve the quality of the final results, yet without selectively losing the proteins. To address this, we developed a general method that is suitable for diverse sample types based on phenolchloroform extraction method (represented by TRI reagent). This method was found to yield good results when used to analyze human breast cancer cell line (MCF-7), Vibrio cholerae, Cryptocaryon irritans cyst and liver abscess fat tissue. These types represent cell line, bacteria, parasite cyst and pus respectively. For each type of samples, several attempts were made to methodically compare protein isolation methods using TRI-reagent Kit, EasyBlue Kit, PRO-PREP™ Protein Extraction Solution and lysis buffer. The most useful protocol allows the extraction and separation of a wide diversity of protein samples that is reproducible among repeated experiments. Our results demonstrated that the modified TRI-reagent Kit had the highest protein yield as well as the greatest number of total proteins spots count for all type of samples. Distinctive differences in spot patterns were also observed in the 2DE gel of different extraction methods used for each type of sample. PMID:22433892

  20. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  1. Optimizing Sampling Strategies for Riverine Nitrate Using High-Frequency Data in Agricultural Watersheds.

    PubMed

    Reynolds, Kaycee N; Loecke, Terrance D; Burgin, Amy J; Davis, Caroline A; Riveros-Iregui, Diego; Thomas, Steven A; St Clair, Martin A; Ward, Adam S

    2016-06-21

    Understanding linked hydrologic and biogeochemical processes such as nitrate loading to agricultural streams requires that the sampling bias and precision of monitoring strategies be known. An existing spatially distributed, high-frequency nitrate monitoring network covering ∼40% of Iowa provided direct observations of in situ nitrate concentrations at a temporal resolution of 15 min. Systematic subsampling of nitrate records allowed for quantification of uncertainties (bias and precision) associated with estimates of various nitrate parameters, including: mean nitrate concentration, proportion of samples exceeding the nitrate drinking water standard (DWS), peak (>90th quantile) nitrate concentration, and nitrate flux. We subsampled continuous records for 47 site-year combinations mimicking common, but labor-intensive, water-sampling regimes (e.g., time-interval, stage-triggered, and dynamic-discharge storm sampling). Our results suggest that time-interval sampling most efficiently characterized all nitrate parameters, except at coarse frequencies for nitrate flux. Stage-triggered storm sampling most precisely captured nitrate flux when less than 0.19% of possible 15 min observations for a site-year were used. The time-interval strategy had the greatest return on sampling investment by most precisely and accurately quantifying nitrate parameters per sampling effort. These uncertainty estimates can aid in designing sampling strategies focused on nitrate monitoring in the tile-drained Midwest or similar agricultural regions.

  2. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis

    NASA Astrophysics Data System (ADS)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.

    2013-12-01

    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  3. Optimized nested Markov chain Monte Carlo sampling: application to the liquid nitrogen Hugoniot using density functional theory

    SciTech Connect

    Shaw, Milton Sam; Coe, Joshua D; Sewell, Thomas D

    2009-01-01

    An optimized version of the Nested Markov Chain Monte Carlo sampling method is applied to the calculation of the Hugoniot for liquid nitrogen. The 'full' system of interest is calculated using density functional theory (DFT) with a 6-31 G* basis set for the configurational energies. The 'reference' system is given by a model potential fit to the anisotropic pair interaction of two nitrogen molecules from DFT calculations. The EOS is sampled in the isobaric-isothermal (NPT) ensemble with a trial move constructed from many Monte Carlo steps in the reference system. The trial move is then accepted with a probability chosen to give the full system distribution. The P's and T's of the reference and full systems are chosen separately to optimize the computational time required to produce the full system EOS. The method is numerically very efficient and predicts a Hugoniot in excellent agreement with experimental data.

  4. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis.

    PubMed

    Yi, Xinzhu; Bayen, Stéphane; Kelly, Barry C; Li, Xu; Zhou, Zhi

    2015-12-01

    A solid-phase extraction/liquid chromatography/electrospray ionization/multi-stage mass spectrometry (SPE-LC-ESI-MS/MS) method was optimized in this study for sensitive and simultaneous detection of multiple antibiotics in urban surface waters and soils. Among the seven classes of tested antibiotics, extraction efficiencies of macrolides, lincosamide, chloramphenicol, and polyether antibiotics were significantly improved under optimized sample extraction pH. Instead of only using acidic extraction in many existing studies, the results indicated that antibiotics with low pK a values (<7) were extracted more efficiently under acidic conditions and antibiotics with high pK a values (>7) were extracted more efficiently under neutral conditions. The effects of pH were more obvious on polar compounds than those on non-polar compounds. Optimization of extraction pH resulted in significantly improved sample recovery and better detection limits. Compared with reported values in the literature, the average reduction of minimal detection limits obtained in this study was 87.6% in surface waters (0.06-2.28 ng/L) and 67.1% in soils (0.01-18.16 ng/g dry wt). This method was subsequently applied to detect antibiotics in environmental samples in a heavily populated urban city, and macrolides, sulfonamides, and lincomycin were frequently detected. Antibiotics with highest detected concentrations were sulfamethazine (82.5 ng/L) in surface waters and erythromycin (6.6 ng/g dry wt) in soils. The optimized sample extraction strategy can be used to improve the detection of a variety of antibiotics in environmental surface waters and soils.

  5. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  6. Optimization of field-amplified sample injection for analysis of peptides by capillary electrophoresis-mass spectrometry.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W

    2006-07-15

    A versatile experimental approach is described to achieve very high sensitivity analysis of peptides by capillary electrophoresis-mass spectrometry with sheath flow configuration based on optimization of field-amplified sample injection. Compared to traditional hydrodynamic injection methods, signal enhancement in terms of detection sensitivity of the bioanalytes by more than 3000-fold can be achieved. The effects of injection conditions, composition of the acid and organic solvent in the sample solution, length of the water plug, sample injection time, and voltage on the efficiency of the sample stacking have been systematically investigated, with peptides in the low-nanomolar (10(-9) M) range readily detected under the optimized conditions. Linearity of the established stacking method was found to be excellent over 2 orders of magnitude of concentration. The method was further evaluated for the analysis of low concentration bioactive peptide mixtures and tryptic digests of proteins. A distinguishing feature of the described approach is that it can be employed directly for the analysis of low-abundance protein fragments generated by enzymatic digestion and a reversed-phase-based sample-desalting procedure. Thus, rapid identification of protein fragments as low-abundance analytes can be achieved with this new approach by comparison of the actual tandem mass spectra of selected peptides with the predicted fragmentation patterns using online database searching algorithms. PMID:16841892

  7. Diversity in Müllerian mimicry: The optimal predator sampling strategy explains both local and regional polymorphism in prey.

    PubMed

    Aubier, Thomas G; Sherratt, Thomas N

    2015-11-01

    The convergent evolution of warning signals in unpalatable species, known as Müllerian mimicry, has been observed in a wide variety of taxonomic groups. This form of mimicry is generally thought to have arisen as a consequence of local frequency-dependent selection imposed by sampling predators. However, despite clear evidence for local selection against rare warning signals, there appears an almost embarrassing amount of polymorphism in natural warning colors, both within and among populations. Because the model of predator cognition widely invoked to explain Müllerian mimicry (Müller's "fixed n(k)" model) is highly simplified and has not been empirically supported; here, we explore the dynamical consequences of the optimal strategy for sampling unfamiliar prey. This strategy, based on a classical exploration-exploitation trade-off, not only allows for a variable number of prey sampled, but also accounts for predator neophobia under some conditions. In contrast to Müller's "fixed n(k)" sampling rule, the optimal sampling strategy is capable of generating a variety of dynamical outcomes, including mimicry but also regional and local polymorphism. Moreover, the heterogeneity of predator behavior across space and time that a more nuanced foraging strategy allows, can even further facilitate the emergence of both local and regional polymorphism in prey warning color.

  8. Reconstruction of compressively sampled ray space by using DCT basis and statistically weighted L1 norm optimization

    NASA Astrophysics Data System (ADS)

    Yao, Qiang; Takahashi, Keita; Fujii, Toshiaki

    2013-03-01

    In recent years, ray space (or light field in other literatures) photography has gained a great popularity in the area of computer vision and image processing, and an efficient acquisition of a ray space is of great significance in the practical application. In order to handle the huge data problem in the acquisition process, in this paper, we propose a method of compressively sampling and reconstructing one ray space. In our method, one weighted matrix which reflects the amplitude structure of non-zero coefficients in 2D-DCT domain is designed and generated by using statistics from available data set. The weighted matrix is integrated in ι1 norm optimization to reconstruct the ray space, and we name this method as statistically-weighted ι1 norm optimization. Experimental result shows that the proposed method achieves better reconstruction result at both low (0.1 of original sampling rate) and high (0.5 of original sampling rate) subsampling rates. In addition, the reconstruction time is also reduced by 25% compared to the reconstruction time by plain ι1 norm optimization.

  9. Pushpoint sampling for defining spatial and temporal variations in contaminant concentrations in sediment pore water near the ground-water / surface-water interface

    USGS Publications Warehouse

    Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.

    2005-01-01

    During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a

  10. Improved estimates of forest vegetation structure and biomass with a LiDAR-optimized sampling design

    NASA Astrophysics Data System (ADS)

    Hawbaker, Todd J.; Keuler, Nicholas S.; Lesak, Adrian A.; Gobakken, Terje; Contrucci, Kirk; Radeloff, Volker C.

    2009-06-01

    LiDAR data are increasingly available from both airborne and spaceborne missions to map elevation and vegetation structure. Additionally, global coverage may soon become available with NASA's planned DESDynI sensor. However, substantial challenges remain to using the growing body of LiDAR data. First, the large volumes of data generated by LiDAR sensors require efficient processing methods. Second, efficient sampling methods are needed to collect the field data used to relate LiDAR data with vegetation structure. In this paper, we used low-density LiDAR data, summarized within pixels of a regular grid, to estimate forest structure and biomass across a 53,600 ha study area in northeastern Wisconsin. Additionally, we compared the predictive ability of models constructed from a random sample to a sample stratified using mean and standard deviation of LiDAR heights. Our models explained between 65 to 88% of the variability in DBH, basal area, tree height, and biomass. Prediction errors from models constructed using a random sample were up to 68% larger than those from the models built with a stratified sample. The stratified sample included a greater range of variability than the random sample. Thus, applying the random sample model to the entire population violated a tenet of regression analysis; namely, that models should not be used to extrapolate beyond the range of data from which they were constructed. Our results highlight that LiDAR data integrated with field data sampling designs can provide broad-scale assessments of vegetation structure and biomass, i.e., information crucial for carbon and biodiversity science.

  11. IMPROVEMENTS IN POLLUTANT MONITORING: OPTIMIZING SILICONE FOR CO-DEPLOYMENT WITH POLYETHYLENE PASSIVE SAMPLING DEVICES

    PubMed Central

    O’Connell, Steven G.; McCartney, Melissa A.; Paulik, L. Blair; Allan, Sarah E.; Tidwell, Lane G.; Wilson, Glenn; Anderson, Kim A.

    2014-01-01

    Sequestering semi-polar compounds can be difficult with low-density polyethylene (LDPE), but those pollutants may be more efficiently absorbed using silicone. In this work, optimized methods for cleaning, infusing reference standards, and polymer extraction are reported along with field comparisons of several silicone materials for polycyclic aromatic hydrocarbons (PAHs) and pesticides. In a final field demonstration, the most optimal silicone material is coupled with LDPE in a large-scale study to examine PAHs in addition to oxygenated-PAHs (OPAHs) at a Superfund site. OPAHs exemplify a sensitive range of chemical properties to compare polymers (log Kow 0.2–5.3), and transformation products of commonly studied parent PAHs. On average, while polymer concentrations differed nearly 7-fold, water-calculated values were more similar (about 3.5-fold or less) for both PAHs (17) and OPAHs (7). Individual water concentrations of OPAHs differed dramatically between silicone and LDPE, highlighting the advantages of choosing appropriate polymers and optimized methods for pollutant monitoring. PMID:25009960

  12. Optimization of the Sampling Periods and the Quantization Bit Lengths for Networked Estimation

    PubMed Central

    Suh, Young Soo; Ro, Young Sik; Kang, Hee Jun

    2010-01-01

    This paper is concerned with networked estimation, where sensor data are transmitted over a network of limited transmission rate. The transmission rate depends on the sampling periods and the quantization bit lengths. To investigate how the sampling periods and the quantization bit lengths affect the estimation performance, an equation to compute the estimation performance is provided. An algorithm is proposed to find sampling periods and quantization bit lengths combination, which gives good estimation performance while satisfying the transmission rate constraint. Through the numerical example, the proposed algorithm is verified. PMID:22163557

  13. OPTIMIZING MINIRHIZOTRON SAMPLE FREQUENCY FOR ESTIMATING FINE ROOT PRODUCTION AND TURNOVER

    EPA Science Inventory

    The most frequent reason for using minirhizotrons in natural ecosystems is the determination of fine root production and turnover. Our objective is to determine the optimum sampling frequency for estimating fine root production and turnover using data from evergreen (Pseudotsuga ...

  14. Efficiency enhancement of optimized Latin hypercube sampling strategies: Application to Monte Carlo uncertainty analysis and meta-modeling

    NASA Astrophysics Data System (ADS)

    Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad; Janssen, Hans

    2015-02-01

    The majority of literature regarding optimized Latin hypercube sampling (OLHS) is devoted to increasing the efficiency of these sampling strategies through the development of new algorithms based on the combination of innovative space-filling criteria and specialized optimization schemes. However, little attention has been given to the impact of the initial design that is fed into the optimization algorithm, on the efficiency of OLHS strategies. Previous studies, as well as codes developed for OLHS, have relied on one of the following two approaches for the selection of the initial design in OLHS: (1) the use of random points in the hypercube intervals (random LHS), and (2) the use of midpoints in the hypercube intervals (midpoint LHS). Both approaches have been extensively used, but no attempt has been previously made to compare the efficiency and robustness of their resulting sample designs. In this study we compare the two approaches and show that the space-filling characteristics of OLHS designs are sensitive to the initial design that is fed into the optimization algorithm. It is also illustrated that the space-filling characteristics of OLHS designs based on midpoint LHS are significantly better those based on random LHS. The two approaches are compared by incorporating their resulting sample designs in Monte Carlo simulation (MCS) for uncertainty propagation analysis, and then, by employing the sample designs in the selection of the training set for constructing non-intrusive polynomial chaos expansion (NIPCE) meta-models which subsequently replace the original full model in MCSs. The analysis is based on two case studies involving numerical simulation of density dependent flow and solute transport in porous media within the context of seawater intrusion in coastal aquifers. We show that the use of midpoint LHS as the initial design increases the efficiency and robustness of the resulting MCSs and NIPCE meta-models. The study also illustrates that this

  15. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples

    USGS Publications Warehouse

    Verant, Michelle; Bohuski, Elizabeth A.; Lorch, Jeffrey M.; Blehert, David

    2016-01-01

    The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid fromP. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer–based qPCR test for P. destructans to refine quantification capabilities of this assay.

  16. An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy.

    PubMed

    Bai, Fang; Liao, Sha; Gu, Junfeng; Jiang, Hualiang; Wang, Xicheng; Li, Honglin

    2015-04-27

    Metalloproteins, particularly zinc metalloproteins, are promising therapeutic targets, and recent efforts have focused on the identification of potent and selective inhibitors of these proteins. However, the ability of current drug discovery and design technologies, such as molecular docking and molecular dynamics simulations, to probe metal-ligand interactions remains limited because of their complicated coordination geometries and rough treatment in current force fields. Herein we introduce a robust, multiobjective optimization algorithm-driven metalloprotein-specific docking program named MpSDock, which runs on a scheme similar to consensus scoring consisting of a force-field-based scoring function and a knowledge-based scoring function. For this purpose, in this study, an effective knowledge-based zinc metalloprotein-specific scoring function based on the inverse Boltzmann law was designed and optimized using a dynamic sampling and iteration optimization strategy. This optimization strategy can dynamically sample and regenerate decoy poses used in each iteration step of refining the scoring function, thus dramatically improving both the effectiveness of the exploration of the binding conformational space and the sensitivity of the ranking of the native binding poses. To validate the zinc metalloprotein-specific scoring function and its special built-in docking program, denoted MpSDockZn, an extensive comparison was performed against six universal, popular docking programs: Glide XP mode, Glide SP mode, Gold, AutoDock, AutoDock4Zn, and EADock DSS. The zinc metalloprotein-specific knowledge-based scoring function exhibited prominent performance in accurately describing the geometries and interactions of the coordination bonds between the zinc ions and chelating agents of the ligands. In addition, MpSDockZn had a competitive ability to sample and identify native binding poses with a higher success rate than the other six docking programs.

  17. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  18. Mate choice and optimal search behavior: fitness returns under the fixed sample and sequential search strategies.

    PubMed

    Wiegmann, Daniel D; Seubert, Steven M; Wade, Gordon A

    2010-02-21

    The behavior of a female in search of a mate determines the likelihood that she encounters a high-quality male in the search process. The fixed sample (best-of-n) search strategy and the sequential search (fixed threshold) strategy are two prominent models of search behavior. The sequential search strategy dominates the former strategy--yields an equal or higher expected net fitness return to searchers--when search costs are nontrivial and the distribution of quality among prospective mates is uniform or truncated normal. In this paper our objective is to determine whether there are any search costs or distributions of male quality for which the sequential search strategy is inferior to the fixed sample search strategy. The two search strategies are derived under general conditions in which females evaluate encountered males by inspection of an indicator character that has some functional relationship to male quality. The solutions are identical to the original models when the inspected male attribute is itself male quality. The sequential search strategy is shown to dominate the fixed sample search strategy for all search costs and distributions of male quality. Low search costs have been implicated to explain empirical observations that are consistent with the use of a fixed sample search strategy, but under conditions in which the original models were derived there is no search cost or distribution of male quality that favors the fixed sample search strategy. Plausible alternative explanations for the apparent use of this search strategy are discussed.

  19. Optimizing sampling design to deal with mist-net avoidance in Amazonian birds and bats.

    PubMed

    Marques, João Tiago; Ramos Pereira, Maria J; Marques, Tiago A; Santos, Carlos David; Santana, Joana; Beja, Pedro; Palmeirim, Jorge M

    2013-01-01

    Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas.

  20. Optimization of the first order gradiometer for small sample magnetization measurements using pulse integrating magnetometer

    SciTech Connect

    Trojanowski, S.; Ciszek, M.

    2009-10-15

    In the paper we present an analytical calculation method for determination of the sensitivity of a pulse field magnetometer working with a first order gradiometer. Our considerations here are especially focused on a case of magnetic moment measurements of very small samples. Derived in the work analytical equations allow for a quick estimation of the magnetometer's sensitivity and give also the way to its calibration using the sample simulation coil method. On the base of the given in the paper calculations we designed and constructed a simple homemade magnetometer and performed its sensitivity calibration.

  1. Shotgun Proteomics of Tomato Fruits: Evaluation, Optimization and Validation of Sample Preparation Methods and Mass Spectrometric Parameters.

    PubMed

    Kilambi, Himabindu V; Manda, Kalyani; Sanivarapu, Hemalatha; Maurya, Vineet K; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2016-01-01

    An optimized protocol was developed for shotgun proteomics of tomato fruit, which is a recalcitrant tissue due to a high percentage of sugars and secondary metabolites. A number of protein extraction and fractionation techniques were examined for optimal protein extraction from tomato fruits followed by peptide separation on nanoLCMS. Of all evaluated extraction agents, buffer saturated phenol was the most efficient. In-gel digestion [SDS-PAGE followed by separation on LCMS (GeLCMS)] of phenol-extracted sample yielded a maximal number of proteins. For in-solution digested samples, fractionation by strong anion exchange chromatography (SAX) also gave similar high proteome coverage. For shotgun proteomic profiling, optimization of mass spectrometry parameters such as automatic gain control targets (5E+05 for MS, 1E+04 for MS/MS); ion injection times (500 ms for MS, 100 ms for MS/MS); resolution of 30,000; signal threshold of 500; top N-value of 20 and fragmentation by collision-induced dissociation yielded the highest number of proteins. Validation of the above protocol in two tomato cultivars demonstrated its reproducibility, consistency, and robustness with a CV of < 10%. The protocol facilitated the detection of five-fold higher number of proteins compared to published reports in tomato fruits. The protocol outlined would be useful for high-throughput proteome analysis from tomato fruits and can be applied to other recalcitrant tissues. PMID:27446192

  2. Method optimization for non-equilibrium solid phase microextraction sampling of HAPs for GC/MS analysis

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Del Negro, L. A.

    2010-12-01

    Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.

  3. Shotgun Proteomics of Tomato Fruits: Evaluation, Optimization and Validation of Sample Preparation Methods and Mass Spectrometric Parameters

    PubMed Central

    Kilambi, Himabindu V.; Manda, Kalyani; Sanivarapu, Hemalatha; Maurya, Vineet K.; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2016-01-01

    An optimized protocol was developed for shotgun proteomics of tomato fruit, which is a recalcitrant tissue due to a high percentage of sugars and secondary metabolites. A number of protein extraction and fractionation techniques were examined for optimal protein extraction from tomato fruits followed by peptide separation on nanoLCMS. Of all evaluated extraction agents, buffer saturated phenol was the most efficient. In-gel digestion [SDS-PAGE followed by separation on LCMS (GeLCMS)] of phenol-extracted sample yielded a maximal number of proteins. For in-solution digested samples, fractionation by strong anion exchange chromatography (SAX) also gave similar high proteome coverage. For shotgun proteomic profiling, optimization of mass spectrometry parameters such as automatic gain control targets (5E+05 for MS, 1E+04 for MS/MS); ion injection times (500 ms for MS, 100 ms for MS/MS); resolution of 30,000; signal threshold of 500; top N-value of 20 and fragmentation by collision-induced dissociation yielded the highest number of proteins. Validation of the above protocol in two tomato cultivars demonstrated its reproducibility, consistency, and robustness with a CV of < 10%. The protocol facilitated the detection of five-fold higher number of proteins compared to published reports in tomato fruits. The protocol outlined would be useful for high-throughput proteome analysis from tomato fruits and can be applied to other recalcitrant tissues. PMID:27446192

  4. A systematic random sampling scheme optimized to detect the proportion of rare synapses in the neuropil.

    PubMed

    da Costa, Nuno Maçarico; Hepp, Klaus; Martin, Kevan A C

    2009-05-30

    Synapses can only be morphologically identified by electron microscopy and this is often a very labor-intensive and time-consuming task. When quantitative estimates are required for pathways that contribute a small proportion of synapses to the neuropil, the problems of accurate sampling are particularly severe and the total time required may become prohibitive. Here we present a sampling method devised to count the percentage of rarely occurring synapses in the neuropil using a large sample (approximately 1000 sampling sites), with the strong constraint of doing it in reasonable time. The strategy, which uses the unbiased physical disector technique, resembles that used in particle physics to detect rare events. We validated our method in the primary visual cortex of the cat, where we used biotinylated dextran amine to label thalamic afferents and measured the density of their synapses using the physical disector method. Our results show that we could obtain accurate counts of the labeled synapses, even when they represented only 0.2% of all the synapses in the neuropil.

  5. Optimal Sampling of Units in Three-Level Cluster Randomized Designs: An Ancova Framework

    ERIC Educational Resources Information Center

    Konstantopoulos, Spyros

    2011-01-01

    Field experiments with nested structures assign entire groups such as schools to treatment and control conditions. Key aspects of such cluster randomized experiments include knowledge of the intraclass correlation structure and the sample sizes necessary to achieve adequate power to detect the treatment effect. The units at each level of the…

  6. Optimism

    PubMed Central

    Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.

    2010-01-01

    Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998

  7. Fast Marching Tree: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions*

    PubMed Central

    Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco

    2015-01-01

    In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT

  8. Optimized methods for extracting circulating small RNAs from long-term stored equine samples.

    PubMed

    Unger, Lucia; Fouché, Nathalie; Leeb, Tosso; Gerber, Vincent; Pacholewska, Alicja

    2016-01-01

    Circulating miRNAs in body fluids, particularly serum, are promising candidates for future routine biomarker profiling in various pathologic conditions in human and veterinary medicine. However, reliable standardized methods for miRNA extraction from equine serum and fresh or archived whole blood are sorely lacking. We systematically compared various miRNA extraction methods from serum and whole blood after short and long-term storage without addition of RNA stabilizing additives prior to freezing. Time of storage at room temperature prior to freezing did not affect miRNA quality in serum. Furthermore, we showed that miRNA of NGS-sufficient quality can be recovered from blood samples after >10 years of storage at -80 °C. This allows retrospective analyses of miRNAs from archived samples. PMID:27356979

  9. Optimization of proteomic sample preparation procedures for comprehensive protein characterization of pathogenic systems

    SciTech Connect

    Brewer, Heather M.; Norbeck, Angela D.; Adkins, Joshua N.; Manes, Nathan P.; Ansong, Charles; Shi, Liang; Rikihisa, Yasuko; Kikuchi, Takane; Wong, Scott; Estep, Ryan D.; Heffron, Fred; Pasa-Tolic, Ljiljana; Smith, Richard D.

    2008-12-19

    The elucidation of critical functional pathways employed by pathogens and hosts during an infectious cycle is both challenging and central to our understanding of infectious diseases. In recent years, mass spectrometry-based proteomics has been used as a powerful tool to identify key pathogenesis-related proteins and pathways. Despite the analytical power of mass spectrometry-based technologies, samples must be appropriately prepared to characterize the functions of interest (e.g. host-response to a pathogen or a pathogen-response to a host). The preparation of these protein samples requires multiple decisions about what aspect of infection is being studied, and it may require the isolation of either host and/or pathogen cellular material.

  10. Application of trajectory optimization techniques to upper atmosphere sampling flights using the F-15 Eagle aircraft

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.

    1976-01-01

    Atmospheric sampling has been carried out by flights using an available high-performance supersonic aircraft. Altitude potential of an off-the-shelf F-15 aircraft is examined. It is shown that the standard F-15 has a maximum altitude capability in excess of 100,000 feet for routine flight operation by NASA personnel. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants.

  11. Optimal sample storage and extraction procotols for reliable multilocus genotyping of the human parasite Schistosoma mansoni.

    PubMed

    Van den Broeck, F; Geldof, S; Polman, K; Volckaert, F A M; Huyse, T

    2011-08-01

    Genotyping individual larval stages and eggs of natural parasite populations is complicated by the difficulty of obtaining reliable genotypes from low quantity DNA template. A suitable storage and extraction protocol, together with a thorough quantification of genotyping errors are therefore crucial for molecular epidemiological studies. Here we test the robustness, handling time, ease of use, cost effectiveness and success rate of various fixation (Whatman FTA(®) Classic and Elute Cards, 70% EtOH and RNAlater(®)) and subsequent DNA extraction methods (commercial kits and proteinase K protocol). None of these methods require a cooling chain and are therefore suitable for field collection. Based on a multiplex microsatellite PCR with nine loci the success and reliability of each technique is evaluated by the proportion of samples with at least eight scored loci and the proportion of genotyping errors. If only the former is taken into account, FTA(®) Elute is recommended (83% success; 44% genotyping error; 0.2 €/sample; 1h 20 m handling time). However, when also considering the genotyping errors, handling time and ease of use, we opt for 70% EtOH with the 96-well plate technology followed by a simple proteinase K extraction (73% success; 0% genotyping error; 0.2 €/sample; 15m handling time). For eggs we suggest (1) to pool all eggs per person in 1.5 ml tubes filled with 70% EtOH for transport and (2) to identify each egg to species level prior to genotyping. To this end we extended the Rapid diagnostic PCR developed by Webster et al. (2010) with a S. mansoni-specific primer to discriminate between S. mansoni, S. haematobium and S. bovis in a single PCR reaction. The success rate of genotyping eggs was 75% (0% genotyping error). This is the first study to incorporate genotyping errors through re-amplification for the evaluation of schistosome sampling protocols and the identification of error-prone loci.

  12. Size exclusion chromatography for analyses of fibroin in silk: optimization of sampling and separation conditions

    NASA Astrophysics Data System (ADS)

    Pawcenis, Dominika; Koperska, Monika A.; Milczarek, Jakub M.; Łojewski, Tomasz; Łojewska, Joanna

    2014-02-01

    A direct goal of this paper was to improve the methods of sample preparation and separation for analyses of fibroin polypeptide with the use of size exclusion chromatography (SEC). The motivation for the study arises from our interest in natural polymers included in historic textile and paper artifacts, and is a logical response to the urgent need for developing rationale-based methods for materials conservation. The first step is to develop a reliable analytical tool which would give insight into fibroin structure and its changes caused by both natural and artificial ageing. To investigate the influence of preparation conditions, two sets of artificially aged samples were prepared (with and without NaCl in sample solution) and measured by the means of SEC with multi angle laser light scattering detector. It was shown that dialysis of fibroin dissolved in LiBr solution allows removal of the salt which destroys stacks chromatographic columns and prevents reproducible analyses. Salt rich (NaCl) water solutions of fibroin improved the quality of chromatograms.

  13. Correlated Spatio-Temporal Data Collection in Wireless Sensor Networks Based on Low Rank Matrix Approximation and Optimized Node Sampling

    PubMed Central

    Piao, Xinglin; Hu, Yongli; Sun, Yanfeng; Yin, Baocai; Gao, Junbin

    2014-01-01

    The emerging low rank matrix approximation (LRMA) method provides an energy efficient scheme for data collection in wireless sensor networks (WSNs) by randomly sampling a subset of sensor nodes for data sensing. However, the existing LRMA based methods generally underutilize the spatial or temporal correlation of the sensing data, resulting in uneven energy consumption and thus shortening the network lifetime. In this paper, we propose a correlated spatio-temporal data collection method for WSNs based on LRMA. In the proposed method, both the temporal consistence and the spatial correlation of the sensing data are simultaneously integrated under a new LRMA model. Moreover, the network energy consumption issue is considered in the node sampling procedure. We use Gini index to measure both the spatial distribution of the selected nodes and the evenness of the network energy status, then formulate and resolve an optimization problem to achieve optimized node sampling. The proposed method is evaluated on both the simulated and real wireless networks and compared with state-of-the-art methods. The experimental results show the proposed method efficiently reduces the energy consumption of network and prolongs the network lifetime with high data recovery accuracy and good stability. PMID:25490583

  14. Defining Effective Teaching

    ERIC Educational Resources Information Center

    Layne, L.

    2012-01-01

    The author looks at the meaning of specific terminology commonly used in student surveys: "effective teaching." The research seeks to determine if there is a difference in how "effective teaching" is defined by those taking student surveys and those interpreting the results. To investigate this difference, a sample group of professors and students…

  15. Optimization of methods for detecting Mycobacterium avium subsp. paratuberculosis in environmental samples using quantitative, real-time PCR.

    PubMed

    Cook, Kimberly L; Britt, Jenks S

    2007-04-01

    Detection of Johne's disease, an enteric infection of cattle caused by Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis), has been impeded by the lack of rapid, reliable detection methods. The goal of this study was to optimize methodologies for detecting M. paratuberculosis in manure from an infected dairy cow or in contaminated soil samples using a quantitative, real-time PCR (QRT-PCR) based analysis. Three different nucleic acid extraction techniques, the efficiency of direct versus indirect sample extraction, and sample pooling were assessed. The limit of detection was investigated by adding dilutions of M. paratuberculosis to soil. Results show that the highest yield (19.4+/-2.3 microg(-1) DNA extract) and the highest copy number of the targeted M. paratuberculosis IS900 sequence (1.3+/-0.2x10(8) copies g(-1) manure) were obtained with DNA extracted from manure using Qbiogene's Fast DNA Spin kit for soil. Pooling ten samples of M. paratuberculosis-contaminated soil improved the limit of detection ten fold (between 20 and 115 M. paratuberculosis cells g(-1) soil). Detection was between 65% and 95% higher when samples were extracted directly using bead-beating than when using pre-treatment with cell extraction buffers. The final soil-sampling and extraction regime was applied for detection of M. paratuberculosis in pasture soil after the removal of a M. paratuberculosis culture positive dairy cow. M. paratuberculosis remained in the pasture soil for more than 200 days. Results from these studies suggest that DNA extraction method, sampling protocol and PCR conditions each critically influence the outcome and validity of the QRT-PCR analysis of M. paratuberculosis concentrations in environmental samples.

  16. Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint

    SciTech Connect

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-08-01

    An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

  17. Soil moisture optimal sampling strategy for Sentinel 1 validation super-sites in Poland

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Lipiec, Jerzy; Usowicz, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Soil moisture (SM) exhibits a high temporal and spatial variability that is dependent not only on the rainfall distribution, but also on the topography of the area, physical properties of soil and vegetation characteristics. Large variability does not allow on certain estimation of SM in the surface layer based on ground point measurements, especially in large spatial scales. Remote sensing measurements allow estimating the spatial distribution of SM in the surface layer on the Earth, better than point measurements, however they require validation. This study attempts to characterize the SM distribution by determining its spatial variability in relation to the number and location of ground point measurements. The strategy takes into account the gravimetric and TDR measurements with different sampling steps, abundance and distribution of measuring points on scales of arable field, wetland and commune (areas: 0.01, 1 and 140 km2 respectively), taking into account the different status of SM. Mean values of SM were lowly sensitive on changes in the number and arrangement of sampling, however parameters describing the dispersion responded in a more significant manner. Spatial analysis showed autocorrelations of the SM, which lengths depended on the number and the distribution of points within the adopted grids. Directional analysis revealed a differentiated anisotropy of SM for different grids and numbers of measuring points. It can therefore be concluded that both the number of samples, as well as their layout on the experimental area, were reflected in the parameters characterizing the SM distribution. This suggests the need of using at least two variants of sampling, differing in the number and positioning of the measurement points, wherein the number of them must be at least 20. This is due to the value of the standard error and range of spatial variability, which show little change with the increase in the number of samples above this figure. Gravimetric method

  18. Optimization of source-sample-detector geometries for bulk hydrogen analysis using epithermal neutrons.

    PubMed

    Csikai, J; Dóczi, R

    2009-01-01

    The advantages and limitations of epithermal neutrons in qualification of hydrocarbons via their H contents and C/H atomic ratios have been investigated systematically. Sensitivity of this method and the dimensions of the interrogated regions were determined for various types of hydrogenous samples. Results clearly demonstrate the advantages of direct neutron detection, e.g. by BF(3) counters as compared to the foil activation method in addition to using the hardness of the spectral shape of Pu-Be neutrons to that from a (252)Cf source.

  19. Design Of A Sorbent/desorbent Unit For Sample Pre-treatment Optimized For QMB Gas Sensors

    SciTech Connect

    Pennazza, G.; Cristina, S.; Santonico, M.; Martinelli, E.; Di Natale, C.; D'Amico, A.; Paolesse, R.

    2009-05-23

    Sample pre-treatment is a typical procedure in analytical chemistry aimed at improving the performance of analytical systems. In case of gas sensors sample pre-treatment systems are devised to overcome sensors limitations in terms of selectivity and sensitivity. For this purpose, systems based on adsorption and desorption processes driven by temperature conditioning have been illustrated. The involvement of large temperature ranges may pose problems when QMB gas sensors are used. In this work a study of such influences on the overall sensing properties of QMB sensors are illustrated. The results allowed the design of a pre-treatment unit coupled with a QMB gas sensors array optimized to operate in a suitable temperatures range. The performance of the system are illustrated by the partially separation of water vapor in a gas mixture, and by substantial improvement of the signal to noise ratio.

  20. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution.

    PubMed

    Baden, Tom; Schubert, Timm; Chang, Le; Wei, Tao; Zaichuk, Mariana; Wissinger, Bernd; Euler, Thomas

    2013-12-01

    For efficient coding, sensory systems need to adapt to the distribution of signals to which they are exposed. In vision, natural scenes above and below the horizon differ in the distribution of chromatic and achromatic features. Consequently, many species differentially sample light in the sky and on the ground using an asymmetric retinal arrangement of short- (S, "blue") and medium- (M, "green") wavelength-sensitive photoreceptor types. Here, we show that in mice this photoreceptor arrangement provides for near-optimal sampling of natural achromatic contrasts. Two-photon population imaging of light-driven calcium signals in the synaptic terminals of cone-photoreceptors expressing a calcium biosensor revealed that S, but not M cones, preferred dark over bright stimuli, in agreement with the predominance of dark contrasts in the sky but not on the ground. Therefore, the different cone types do not only form the basis of "color vision," but in addition represent distinct (achromatic) contrast-selective channels.

  1. Design Of A Sorbent/desorbent Unit For Sample Pre-treatment Optimized For QMB Gas Sensors

    NASA Astrophysics Data System (ADS)

    Pennazza, G.; Santonico, M.; Martinelli, E.; Paolesse, R.; Di Natale, C.; Cristina, S.; D'Amico, A.

    2009-05-01

    Sample pre-treatment is a typical procedure in analytical chemistry aimed at improving the performance of analytical systems. In case of gas sensors sample pre-treatment systems are devised to overcome sensors limitations in terms of selectivity and sensitivity. For this purpose, systems based on adsorption and desorption processes driven by temperature conditioning have been illustrated. The involvement of large temperature ranges may pose problems when QMB gas sensors are used. In this work a study of such influences on the overall sensing properties of QMB sensors are illustrated. The results allowed the design of a pret-reatment unit coupled with a QMB gas sensors array optimized to operate in a suitable temperatures range. The performance of the system are illustrated by the partially separation of water vapor in a gas mixture, and by substantial improvement of the signal to noise ratio.

  2. Fractional Factorial Design of MALDI-TOF-MS Sample Preparations for the Optimized Detection of Phospholipids and Acylglycerols.

    PubMed

    AlMasoud, Najla; Correa, Elon; Trivedi, Drupad K; Goodacre, Royston

    2016-06-21

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has successfully been used for the analysis of high molecular weight compounds, such as proteins and nucleic acids. By contrast, analysis of low molecular weight compounds with this technique has been less successful due to interference from matrix peaks which have a similar mass to the target analyte(s). Recently, a variety of modified matrices and matrix additives have been used to overcome these limitations. An increased interest in lipid analysis arose from the feasibility of correlating these components with many diseases, e.g. atherosclerosis and metabolic dysfunctions. Lipids have a wide range of chemical properties making their analysis difficult with traditional methods. MALDI-TOF-MS shows excellent potential for sensitive and rapid analysis of lipids, and therefore this study focuses on computational-analytical optimization of the analysis of five lipids (4 phospholipids and 1 acylglycerol) in complex mixtures using MALDI-TOF-MS with fractional factorial design (FFD) and Pareto optimality. Five different experimental factors were investigated using FFD which reduced the number of experiments performed by identifying 720 key experiments from a total of 8064 possible analyses. Factors investigated included the following: matrices, matrix preparations, matrix additives, additive concentrations, and deposition methods. This led to a significant reduction in time and cost of sample analysis with near optimal conditions. We discovered that the key factors used to produce high quality spectra were the matrix and use of appropriate matrix additives. PMID:27228355

  3. Optimization of a low-cost defined medium for alcoholic fermentation--a case study for potential application in bioethanol production from industrial wastewaters.

    PubMed

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A

    2016-01-25

    In bioethanol production processes, the media composition has an impact on product concentration, yields and the overall process economics. The main purpose of this research was to develop a low-cost mineral-based supplement for successful alcoholic fermentation in an attempt to provide an economically feasible alternative to produce bioethanol from novel sources, for example, sugary industrial wastewaters. Statistical experimental designs were used to select essential nutrients for yeast fermentation, and its optimal concentrations were estimated by Response Surface Methodology. Fermentations were performed on synthetic media inoculated with 2.0 g L(-1) of yeast, and the evolution of biomass, sugar, ethanol, CO2 and glycerol were monitored over time. A mix of salts [10.6 g L(-1) (NH4)2HPO4; 6.4 g L(-1) MgSO4·7H2O and 7.5 mg L(-1) ZnSO4·7H2O] was found to be optimal. It led to the complete fermentation of the sugars in less than 12h with an average ethanol yield of 0.42 g ethanol/g sugar. A general C-balance indicated that no carbonaceous compounds different from biomass, ethanol, CO2 or glycerol were produced in significant amounts in the fermentation process. Similar results were obtained when soft drink wastewaters were tested to evaluate the potential industrial application of this supplement. The ethanol yields were very close to those obtained when yeast extract was used as the supplement, but the optimized mineral-based medium is six times cheaper, which favorably impacts the process economics and makes this supplement more attractive from an industrial viewpoint. PMID:26391675

  4. Optimization of a low-cost defined medium for alcoholic fermentation--a case study for potential application in bioethanol production from industrial wastewaters.

    PubMed

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A

    2016-01-25

    In bioethanol production processes, the media composition has an impact on product concentration, yields and the overall process economics. The main purpose of this research was to develop a low-cost mineral-based supplement for successful alcoholic fermentation in an attempt to provide an economically feasible alternative to produce bioethanol from novel sources, for example, sugary industrial wastewaters. Statistical experimental designs were used to select essential nutrients for yeast fermentation, and its optimal concentrations were estimated by Response Surface Methodology. Fermentations were performed on synthetic media inoculated with 2.0 g L(-1) of yeast, and the evolution of biomass, sugar, ethanol, CO2 and glycerol were monitored over time. A mix of salts [10.6 g L(-1) (NH4)2HPO4; 6.4 g L(-1) MgSO4·7H2O and 7.5 mg L(-1) ZnSO4·7H2O] was found to be optimal. It led to the complete fermentation of the sugars in less than 12h with an average ethanol yield of 0.42 g ethanol/g sugar. A general C-balance indicated that no carbonaceous compounds different from biomass, ethanol, CO2 or glycerol were produced in significant amounts in the fermentation process. Similar results were obtained when soft drink wastewaters were tested to evaluate the potential industrial application of this supplement. The ethanol yields were very close to those obtained when yeast extract was used as the supplement, but the optimized mineral-based medium is six times cheaper, which favorably impacts the process economics and makes this supplement more attractive from an industrial viewpoint.

  5. Optimization of microwave-assisted extraction with saponification (MAES) for the determination of polybrominated flame retardants in aquaculture samples.

    PubMed

    Fajar, N M; Carro, A M; Lorenzo, R A; Fernandez, F; Cela, R

    2008-08-01

    The efficiency of microwave-assisted extraction with saponification (MAES) for the determination of seven polybrominated flame retardants (polybrominated biphenyls, PBBs; and polybrominated diphenyl ethers, PBDEs) in aquaculture samples is described and compared with microwave-assisted extraction (MAE). Chemometric techniques based on experimental designs and desirability functions were used for simultaneous optimization of the operational parameters used in both MAES and MAE processes. Application of MAES to this group of contaminants in aquaculture samples, which had not been previously applied to this type of analytes, was shown to be superior to MAE in terms of extraction efficiency, extraction time and lipid content extracted from complex matrices (0.7% as against 18.0% for MAE extracts). PBBs and PBDEs were determined by gas chromatography with micro-electron capture detection (GC-muECD). The quantification limits for the analytes were 40-750 pg g(-1) (except for BB-15, which was 1.43 ng g(-1)). Precision for MAES-GC-muECD (%RSD < 11%) was significantly better than for MAE-GC-muECD (%RSD < 20%). The accuracy of both optimized methods was satisfactorily demonstrated by analysis of appropriate certified reference material (CRM), WMF-01.

  6. Optimization of microwave-assisted extraction with saponification (MAES) for the determination of polybrominated flame retardants in aquaculture samples.

    PubMed

    Fajar, N M; Carro, A M; Lorenzo, R A; Fernandez, F; Cela, R

    2008-08-01

    The efficiency of microwave-assisted extraction with saponification (MAES) for the determination of seven polybrominated flame retardants (polybrominated biphenyls, PBBs; and polybrominated diphenyl ethers, PBDEs) in aquaculture samples is described and compared with microwave-assisted extraction (MAE). Chemometric techniques based on experimental designs and desirability functions were used for simultaneous optimization of the operational parameters used in both MAES and MAE processes. Application of MAES to this group of contaminants in aquaculture samples, which had not been previously applied to this type of analytes, was shown to be superior to MAE in terms of extraction efficiency, extraction time and lipid content extracted from complex matrices (0.7% as against 18.0% for MAE extracts). PBBs and PBDEs were determined by gas chromatography with micro-electron capture detection (GC-muECD). The quantification limits for the analytes were 40-750 pg g(-1) (except for BB-15, which was 1.43 ng g(-1)). Precision for MAES-GC-muECD (%RSD < 11%) was significantly better than for MAE-GC-muECD (%RSD < 20%). The accuracy of both optimized methods was satisfactorily demonstrated by analysis of appropriate certified reference material (CRM), WMF-01. PMID:18608498

  7. Regionalized variable theory and assessment of the consequences of uncertainty in optimal design of water-quality sampling networks

    SciTech Connect

    Morris, R.D.

    1986-01-01

    As the task of environmental planning and management becomes increasingly complex and costly, the amount and quality of data it requires grows accordingly. The vast-majority of water-quality sampling networks are designed through a ill-defined, qualitative approach. This dissertation develops the theoretical background for a quantitative approach to the design, testing, and enhancement of water-quality sampling and monitoring networks. The method uses a technique derived from regionalized variable theory known as universal kriging to provide a measure of the uncertainty of estimates at unsampled locations for a particular sampling network. Regionalized variable theory provides a powerful tool for the analysis of spatially auto correlated data. Essentially all aquatic parameters exhibit some degree of autocorrelation due to the nature of hydrodynamic mixing and advection processes. This allows for the adaptation of regionalized variable theory for use in the design of water-quality-sampling networks. By providing a variance for estimates at unsampled locations, kriging gives a measure of uncertainty. A curve depicting the relative severity of water quality in the region of interest is used in conjunction with the kriging variance to develop a function which describes the consequences of the uncertainty of these estimates.

  8. Optimized Field Sampling and Monitoring of Airborne Hazardous Transport Plumes; A Geostatistical Simulation Approach

    SciTech Connect

    Chen, DI-WEN

    2001-11-21

    Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are mostly of unknown composition and concentration until measurements are taken of post-accident ground concentrations from plume-ground deposition of constituents. Unfortunately, measurements often are days post-incident and rely on hazardous manned air-vehicle measurements. Before this happens, computational plume migration models are the only source of information on the plume characteristics, constituents, concentrations, directions of travel, ground deposition, etc. A mobile ''lighter than air'' (LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response in emergency conditions. These interactive and remote unmanned air vehicles will carry light-weight detectors and weather instrumentation to measure the conditions during and after plume release. This requires a cooperative computationally organized, GPS-controlled set of LTA's that self-coordinate around the objectives in an emergency situation in restricted time frames. A critical step before an optimum and cost-effective field sampling and monitoring program proceeds is the collection of data that provides statistically significant information, collected in a reliable and expeditious manner. Efficient aerial arrangements of the detectors taking the data (for active airborne release conditions) are necessary for plume identification, computational 3-dimensional reconstruction, and source distribution functions. This report describes the application of stochastic or geostatistical simulations to delineate the plume for guiding subsequent sampling and monitoring designs. A case study is presented of building digital plume images, based on existing ''hard'' experimental data and ''soft'' preliminary transport modeling results of Prairie Grass Trials Site. Markov Bayes Simulation, a coupled Bayesian/geostatistical methodology, quantitatively combines soft information

  9. Optimization of a Novel Non-invasive Oral Sampling Technique for Zoonotic Pathogen Surveillance in Nonhuman Primates

    PubMed Central

    Smiley Evans, Tierra; Barry, Peter A.; Gilardi, Kirsten V.; Goldstein, Tracey; Deere, Jesse D.; Fike, Joseph; Yee, JoAnn; Ssebide, Benard J; Karmacharya, Dibesh; Cranfield, Michael R.; Wolking, David; Smith, Brett; Mazet, Jonna A. K.; Johnson, Christine K.

    2015-01-01

    Free-ranging nonhuman primates are frequent sources of zoonotic pathogens due to their physiologic similarity and in many tropical regions, close contact with humans. Many high-risk disease transmission interfaces have not been monitored for zoonotic pathogens due to difficulties inherent to invasive sampling of free-ranging wildlife. Non-invasive surveillance of nonhuman primates for pathogens with high potential for spillover into humans is therefore critical for understanding disease ecology of existing zoonotic pathogen burdens and identifying communities where zoonotic diseases are likely to emerge in the future. We developed a non-invasive oral sampling technique using ropes distributed to nonhuman primates to target viruses shed in the oral cavity, which through bite wounds and discarded food, could be transmitted to people. Optimization was performed by testing paired rope and oral swabs from laboratory colony rhesus macaques for rhesus cytomegalovirus (RhCMV) and simian foamy virus (SFV) and implementing the technique with free-ranging terrestrial and arboreal nonhuman primate species in Uganda and Nepal. Both ubiquitous DNA and RNA viruses, RhCMV and SFV, were detected in oral samples collected from ropes distributed to laboratory colony macaques and SFV was detected in free-ranging macaques and olive baboons. Our study describes a technique that can be used for disease surveillance in free-ranging nonhuman primates and, potentially, other wildlife species when invasive sampling techniques may not be feasible. PMID:26046911

  10. Optimization of a dispersive liquid-liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples.

    PubMed

    Pena, Ma Teresa; Vecino-Bello, X; Casais, Ma Carmen; Mejuto, Ma Carmen; Cela, Rafael

    2012-02-01

    A simple and rapid dispersive liquid-liquid microextraction method has been developed for the determination of 11 benzotriazoles and benzothiazoles in water samples. Tri-n-butylphosphate (TBP) was used as extractant, thus avoiding the use of toxic water-immiscible chlorinated solvents. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, sample pH, ionic strength, etc.) on the performance of the sample preparation step was systematically evaluated. Analytical determinations were carried out by high-performance liquid chromatography with fluorescence and UV detection and liquid chromatography-electrospray ionization-tandem mass spectrometry. The optimized method exhibited a good precision level with relative standard deviation values between 3.7% and 8.4%. Extraction yields ranging from 67% to 97% were obtained for all of these considered compounds. Finally, the proposed method was successfully applied to the analysis of benzotriazoles and benzothiazoles in real water samples (tap, river, industrial waters, and treated and raw wastewaters). PMID:22134495

  11. [Optimizing health care using the example of rehabilitation. Intended goals have to be defined and achieved goals have to be confirmed].

    PubMed

    Porzsolt, Franz; Zimmermann, Theo

    2010-05-01

    In this article, the authors try to apply the actual problem of health care financing to the area of rehabilitation medicine. It is shown that there are considerable reserves in this system - like in any other area of health care -, which should not be saved but should be rather transformed into efficient health services. If we save these resources, the problems will remain the same but it will be easier to pay for them. If, however, we consider how to generate additional health care values, we will solve more problems than before.The article shows that these improvements require a clear definition of goals of health care. Goals of health care can be attained only if they are defined, and the conditions which have to be met for goal attainment can be identified only if the attained goals are quantified. There is need for action if it is unknown how often intended goals can really be attained.

  12. Defining Tiger Parenting in Chinese Americans

    PubMed Central

    Kim, Su Yeong

    2016-01-01

    “Tiger” parenting, as described by Amy Chua [2011], has instigated scholarly discourse on this phenomenon and its possible effects on families. Our eight-year longitudinal study, published in the Asian American Journal of Psychology [Kim, Wang, Orozco-Lapray, Shen, & Murtuza, 2013b], demonstrates that tiger parenting is not a common parenting profile in a sample of 444 Chinese American families. Tiger parenting also does not relate to superior academic performance in children. In fact, the best developmental outcomes were found among children of supportive parents. We examine the complexities around defining tiger parenting by reviewing classical literature on parenting styles and scholarship on Asian American parenting, along with Amy Chua’s own description of her parenting method, to develop, define, and categorize variability in parenting in a sample of Chinese American families. We also provide evidence that supportive parenting is important for the optimal development of Chinese American adolescents. PMID:27182075

  13. Optimization of dynamic headspace extraction system for measurement of halogenated volatile organic compounds in liquid or viscous samples

    NASA Astrophysics Data System (ADS)

    Taniai, G.; Oda, H.; Kurihara, M.; Hashimoto, S.

    2010-12-01

    Halogenated volatile organic compounds (HVOCs) produced in the marine environment are thought to play a key role in atmospheric reactions, particularly those involved in the global radiation budget and the depression of tropospheric and stratospheric ozone. To evaluate HVOCs concentrations in the various natural samples, we developed an automated dynamic headspace extraction method for the determination of 15 HVOCs, such as chloromethane, bromomethane, bromoethane, iodomethane, iodoethane, bromochloromethane, 1-iodopropane, 2-iodopropane, dibromomethane, bromodichloromethane, chloroiodomethane, chlorodibromomethane, bromoiodomethane, tribromomethane, and diiodomethane. Dynamic headspace system (GERSTEL DHS) was used to purge the gas phase above samples and to trap HVOCs on the adsorbent column from the purge gas. We measured the HVOCs concentrations in the adsorbent column with gas chromatograph (Agilent 6890N)- mass spectrometer (Agilent 5975C). In dynamic headspace system, an glass tube containing Tenax TA or Tenax GR was used as adsorbent column for the collection of 15 HVOCs. The parameters for purge and trap extraction, such as purge flow rate (ml/min), purge volume (ml), incubation time (min), and agitator speed (rpm), were optimized. The detection limits of HVOCs in water samples were 1270 pM (chloromethane), 103 pM (bromomethane), 42.1 pM (iodomethane), and 1.4 to 10.2 pM (other HVOCs). The repeatability (relative standard deviation) for 15 HVOCs were < 9 % except chloromethane (16.2 %) and bromomethane (11.0 %). On the basis of the measurements for various samples, we concluded that this analytical method is useful for the determination of wide range of HVOCs with boiling points between - 24°C (chloromethane) and 181°C (diiodomethane) for the liquid or viscous samples.

  14. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results.

  15. Tuberculosis and mass gatherings-opportunities for defining burden, transmission risk, and the optimal surveillance, prevention, and control measures at the annual Hajj pilgrimage.

    PubMed

    Zumla, Alimuddin; Saeed, Abdulaziz Bin; Alotaibi, Badriah; Yezli, Saber; Dar, Osman; Bieh, Kingsley; Bates, Matthew; Tayeb, Tamara; Mwaba, Peter; Shafi, Shuja; McCloskey, Brian; Petersen, Eskild; Azhar, Esam I

    2016-06-01

    Tuberculosis (TB) is now the most common infectious cause of death worldwide. In 2014, an estimated 9.6 million people developed active TB. There were an estimated three million people with active TB including 360000 with multidrug-resistant TB (MDR-TB) who were not diagnosed, and such people continue to fuel TB transmission in the community. Accurate data on the actual burden of TB and the transmission risk associated with mass gatherings are scarce and unreliable due to the small numbers studied and methodological issues. Every year, an estimated 10 million pilgrims from 184 countries travel to the Kingdom of Saudi Arabia (KSA) to perform the Hajj and Umrah pilgrimages. A large majority of pilgrims come from high TB burden and MDR-TB endemic areas and thus many may have undiagnosed active TB, sub-clinical TB, and latent TB infection. The Hajj pilgrimage provides unique opportunities for the KSA and the 184 countries from which pilgrims originate, to conduct high quality priority research studies on TB under the remit of the Global Centre for Mass Gatherings Medicine. Research opportunities are discussed, including those related to the definition of the TB burden, transmission risk, and the optimal surveillance, prevention, and control measures at the annual Hajj pilgrimage. The associated data are required to develop international recommendations and guidelines for TB management and control at mass gathering events. PMID:26873277

  16. Tuberculosis and mass gatherings-opportunities for defining burden, transmission risk, and the optimal surveillance, prevention, and control measures at the annual Hajj pilgrimage.

    PubMed

    Zumla, Alimuddin; Saeed, Abdulaziz Bin; Alotaibi, Badriah; Yezli, Saber; Dar, Osman; Bieh, Kingsley; Bates, Matthew; Tayeb, Tamara; Mwaba, Peter; Shafi, Shuja; McCloskey, Brian; Petersen, Eskild; Azhar, Esam I

    2016-06-01

    Tuberculosis (TB) is now the most common infectious cause of death worldwide. In 2014, an estimated 9.6 million people developed active TB. There were an estimated three million people with active TB including 360000 with multidrug-resistant TB (MDR-TB) who were not diagnosed, and such people continue to fuel TB transmission in the community. Accurate data on the actual burden of TB and the transmission risk associated with mass gatherings are scarce and unreliable due to the small numbers studied and methodological issues. Every year, an estimated 10 million pilgrims from 184 countries travel to the Kingdom of Saudi Arabia (KSA) to perform the Hajj and Umrah pilgrimages. A large majority of pilgrims come from high TB burden and MDR-TB endemic areas and thus many may have undiagnosed active TB, sub-clinical TB, and latent TB infection. The Hajj pilgrimage provides unique opportunities for the KSA and the 184 countries from which pilgrims originate, to conduct high quality priority research studies on TB under the remit of the Global Centre for Mass Gatherings Medicine. Research opportunities are discussed, including those related to the definition of the TB burden, transmission risk, and the optimal surveillance, prevention, and control measures at the annual Hajj pilgrimage. The associated data are required to develop international recommendations and guidelines for TB management and control at mass gathering events.

  17. Active SAmpling Protocol (ASAP) to Optimize Individual Neurocognitive Hypothesis Testing: A BCI-Inspired Dynamic Experimental Design

    PubMed Central

    Sanchez, Gaëtan; Lecaignard, Françoise; Otman, Anatole; Maby, Emmanuel; Mattout, Jérémie

    2016-01-01

    The relatively young field of Brain-Computer Interfaces has promoted the use of electrophysiology and neuroimaging in real-time. In the meantime, cognitive neuroscience studies, which make extensive use of functional exploration techniques, have evolved toward model-based experiments and fine hypothesis testing protocols. Although these two developments are mostly unrelated, we argue that, brought together, they may trigger an important shift in the way experimental paradigms are being designed, which should prove fruitful to both endeavors. This change simply consists in using real-time neuroimaging in order to optimize advanced neurocognitive hypothesis testing. We refer to this new approach as the instantiation of an Active SAmpling Protocol (ASAP). As opposed to classical (static) experimental protocols, ASAP implements online model comparison, enabling the optimization of design parameters (e.g., stimuli) during the course of data acquisition. This follows the well-known principle of sequential hypothesis testing. What is radically new, however, is our ability to perform online processing of the huge amount of complex data that brain imaging techniques provide. This is all the more relevant at a time when physiological and psychological processes are beginning to be approached using more realistic, generative models which may be difficult to tease apart empirically. Based upon Bayesian inference, ASAP proposes a generic and principled way to optimize experimental design adaptively. In this perspective paper, we summarize the main steps in ASAP. Using synthetic data we illustrate its superiority in selecting the right perceptual model compared to a classical design. Finally, we briefly discuss its future potential for basic and clinical neuroscience as well as some remaining challenges. PMID:27458364

  18. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation

    SciTech Connect

    Yu, Yuqi; Wang, Jinan; Shao, Qiang E-mail: Jiye.Shi@ucb.com Zhu, Weiliang E-mail: Jiye.Shi@ucb.com; Shi, Jiye E-mail: Jiye.Shi@ucb.com

    2015-03-28

    The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.

  19. An Optimized Adsorbent Sampling Combined to Thermal Desorption GC-MS Method for Trimethylsilanol in Industrial Environments

    PubMed Central

    Lee, Jae Hwan; Jia, Chunrong; Kim, Yong Doo; Kim, Hong Hyun; Pham, Tien Thang; Choi, Young Seok; Seo, Young Un; Lee, Ike Woo

    2012-01-01

    Trimethylsilanol (TMSOH) can cause damage to surfaces of scanner lenses in the semiconductor industry, and there is a critical need to measure and control airborne TMSOH concentrations. This study develops a thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) method for measuring trace-level TMSOH in occupational indoor air. Laboratory method optimization obtained best performance when using dual-bed tube configuration (100 mg of Tenax TA followed by 100 mg of Carboxen 569), n-decane as a solvent, and a TD temperature of 300°C. The optimized method demonstrated high recovery (87%), satisfactory precision (<15% for spiked amounts exceeding 1 ng), good linearity (R2 = 0.9999), a wide dynamic mass range (up to 500 ng), low method detection limit (2.8 ng m−3 for a 20-L sample), and negligible losses for 3-4-day storage. The field study showed performance comparable to that in laboratory and yielded first measurements of TMSOH, ranging from 1.02 to 27.30 μg/m3, in the semiconductor industry. We suggested future development of real-time monitoring techniques for TMSOH and other siloxanes for better maintenance and control of scanner lens in semiconductor wafer manufacturing. PMID:22966229

  20. Design and Sampling Plan Optimization for RT-qPCR Experiments in Plants: A Case Study in Blueberry.

    PubMed

    Die, Jose V; Roman, Belen; Flores, Fernando; Rowland, Lisa J

    2016-01-01

    The qPCR assay has become a routine technology in plant biotechnology and agricultural research. It is unlikely to be technically improved, but there are still challenges which center around minimizing the variability in results and transparency when reporting technical data in support of the conclusions of a study. There are a number of aspects of the pre- and post-assay workflow that contribute to variability of results. Here, through the study of the introduction of error in qPCR measurements at different stages of the workflow, we describe the most important causes of technical variability in a case study using blueberry. In this study, we found that the stage for which increasing the number of replicates would be the most beneficial depends on the tissue used. For example, we would recommend the use of more RT replicates when working with leaf tissue, while the use of more sampling (RNA extraction) replicates would be recommended when working with stems or fruits to obtain the most optimal results. The use of more qPCR replicates provides the least benefit as it is the most reproducible step. By knowing the distribution of error over an entire experiment and the costs at each step, we have developed a script to identify the optimal sampling plan within the limits of a given budget. These findings should help plant scientists improve the design of qPCR experiments and refine their laboratory practices in order to conduct qPCR assays in a more reliable-manner to produce more consistent and reproducible data. PMID:27014296

  1. Design and Sampling Plan Optimization for RT-qPCR Experiments in Plants: A Case Study in Blueberry.

    PubMed

    Die, Jose V; Roman, Belen; Flores, Fernando; Rowland, Lisa J

    2016-01-01

    The qPCR assay has become a routine technology in plant biotechnology and agricultural research. It is unlikely to be technically improved, but there are still challenges which center around minimizing the variability in results and transparency when reporting technical data in support of the conclusions of a study. There are a number of aspects of the pre- and post-assay workflow that contribute to variability of results. Here, through the study of the introduction of error in qPCR measurements at different stages of the workflow, we describe the most important causes of technical variability in a case study using blueberry. In this study, we found that the stage for which increasing the number of replicates would be the most beneficial depends on the tissue used. For example, we would recommend the use of more RT replicates when working with leaf tissue, while the use of more sampling (RNA extraction) replicates would be recommended when working with stems or fruits to obtain the most optimal results. The use of more qPCR replicates provides the least benefit as it is the most reproducible step. By knowing the distribution of error over an entire experiment and the costs at each step, we have developed a script to identify the optimal sampling plan within the limits of a given budget. These findings should help plant scientists improve the design of qPCR experiments and refine their laboratory practices in order to conduct qPCR assays in a more reliable-manner to produce more consistent and reproducible data.

  2. Design and Sampling Plan Optimization for RT-qPCR Experiments in Plants: A Case Study in Blueberry

    PubMed Central

    Die, Jose V.; Roman, Belen; Flores, Fernando; Rowland, Lisa J.

    2016-01-01

    The qPCR assay has become a routine technology in plant biotechnology and agricultural research. It is unlikely to be technically improved, but there are still challenges which center around minimizing the variability in results and transparency when reporting technical data in support of the conclusions of a study. There are a number of aspects of the pre- and post-assay workflow that contribute to variability of results. Here, through the study of the introduction of error in qPCR measurements at different stages of the workflow, we describe the most important causes of technical variability in a case study using blueberry. In this study, we found that the stage for which increasing the number of replicates would be the most beneficial depends on the tissue used. For example, we would recommend the use of more RT replicates when working with leaf tissue, while the use of more sampling (RNA extraction) replicates would be recommended when working with stems or fruits to obtain the most optimal results. The use of more qPCR replicates provides the least benefit as it is the most reproducible step. By knowing the distribution of error over an entire experiment and the costs at each step, we have developed a script to identify the optimal sampling plan within the limits of a given budget. These findings should help plant scientists improve the design of qPCR experiments and refine their laboratory practices in order to conduct qPCR assays in a more reliable-manner to produce more consistent and reproducible data. PMID:27014296

  3. Selection of Specific Protein Binders for Pre-Defined Targets from an Optimized Library of Artificial Helicoidal Repeat Proteins (alphaRep)

    PubMed Central

    Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe

    2013-01-01

    We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a “filtration” procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×109 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties. PMID:24014183

  4. Detection of the Inflammation Biomarker C-Reactive Protein in Serum Samples: Towards an Optimal Biosensor Formula

    PubMed Central

    Fakanya, Wellington M.; Tothill, Ibtisam E.

    2014-01-01

    The development of an electrochemical immunosensor for the biomarker, C-reactive protein (CRP), is reported in this work. CRP has been used to assess inflammation and is also used in a multi-biomarker system as a predictive biomarker for cardiovascular disease risk. A gold-based working electrode sensor was developed, and the types of electrode printing inks and ink curing techniques were then optimized. The electrodes with the best performance parameters were then employed for the construction of an immunosensor for CRP by immobilizing anti-human CRP antibody on the working electrode surface. A sandwich enzyme-linked immunosorbent assay (ELISA) was then constructed after sample addition by using anti-human CRP antibody labelled with horseradish peroxidase (HRP). The signal was generated by the addition of a mediator/substrate system comprised of 3,3,5',5'-Tetramethylbenzidine dihydrochloride (TMB) and hydrogen peroxide (H2O2). Measurements were conducted using chronoamperometry at −200 mV against an integrated Ag/AgCl reference electrode. A CRP limit of detection (LOD) of 2.2 ng·mL−1 was achieved in spiked serum samples, and performance agreement was obtained with reference to a commercial ELISA kit. The developed CRP immunosensor was able to detect a diagnostically relevant range of the biomarker in serum without the need for signal amplification using nanoparticles, paving the way for future development on a cardiac panel electrochemical point-of-care diagnostic device. PMID:25587427

  5. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  6. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations.

    PubMed

    Heidarizadi, Elham; Tabaraki, Reza

    2016-01-01

    A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples. PMID:26653445

  7. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations.

    PubMed

    Heidarizadi, Elham; Tabaraki, Reza

    2016-01-01

    A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples.

  8. Structure change of β-hairpin induced by turn optimization: an enhanced sampling molecular dynamics simulation study.

    PubMed

    Shao, Qiang; Yang, Lijiang; Gao, Yi Qin

    2011-12-21

    Our previous study showed that for the tested polypeptides which have similar β-hairpin structures but different sequences, their folding free energy pathways are dominantly determined by the turn conformational propensity. In this study, we study how the turn conformational propensity affects the structure of hairpins. The folding of two mutants of GB1p peptide (GB1m2 and GB1m3), which have the optimized turn sequence ((6)DDATK(11)T → (6)NPATG(11)K) with native structures unsolved, were simulated using integrated tempering sampling molecular dynamics simulations and the predicted stable structures were compared to wild-type GB1p. It was observed that the turn optimization of GB1p generates a more favored 5-residue type I(') turn in addition to the 6-residue type I turn in wild-type GB1p. As a result two distinctly different hairpin structures are formed corresponding to the "misfolded" (M) and the "folded" (F) states. M state is a one-residue-shifted asymmetric β-hairpin structure whereas F state has the similar symmetric hairpin structure as wild-type GB1p. The formation of the favored type I(') turn has a small free energy barrier and leads to the shifted β-hairpin structure, following the modified "zipping" model. The presence of disfavored type I turn structure makes the folding of a β-hairpin consistent with the "hydrophobic-core-centric" model. On the other hand, the folding simulations on other two GB1p mutants (GB1r1 and GBr2), which have the position of the hydrophobic core cluster further away from the turn compared to wild-type GB1p, showed that moving the hydrophobic core cluster away from the turn region destabilizes but does not change the hairpin structure. Therefore, the present study showed that the turn conformational propensity is a key factor in affecting not only the folding pathways but also the stable structure of β-hairpins, and the turn conformational change induced by the turn optimization leads to significant changes of

  9. Applications of Experimental Design to the Optimization of Microextraction Sample Preparation Parameters for the Analysis of Pesticide Residues in Fruits and Vegetables.

    PubMed

    Abdulra'uf, Lukman Bola; Sirhan, Ala Yahya; Tan, Guan Huat

    2015-01-01

    Sample preparation has been identified as the most important step in analytical chemistry and has been tagged as the bottleneck of analytical methodology. The current trend is aimed at developing cost-effective, miniaturized, simplified, and environmentally friendly sample preparation techniques. The fundamentals and applications of multivariate statistical techniques for the optimization of microextraction sample preparation and chromatographic analysis of pesticide residues are described in this review. The use of Placket-Burman, Doehlert matrix, and Box-Behnken designs are discussed. As observed in this review, a number of analytical chemists have combined chemometrics and microextraction techniques, which has helped to streamline sample preparation and improve sample throughput. PMID:26525235

  10. Carbonyl compounds emitted by a diesel engine fuelled with diesel and biodiesel-diesel blends: Sampling optimization and emissions profile

    NASA Astrophysics Data System (ADS)

    Guarieiro, Lílian Lefol Nani; Pereira, Pedro Afonso de Paula; Torres, Ednildo Andrade; da Rocha, Gisele Olimpio; de Andrade, Jailson B.

    Biodiesel is emerging as a renewable fuel, hence becoming a promising alternative to fossil fuels. Biodiesel can form blends with diesel in any ratio, and thus could replace partially, or even totally, diesel fuel in diesel engines what would bring a number of environmental, economical and social advantages. Although a number of studies are available on regulated substances, there is a gap of studies on unregulated substances, such as carbonyl compounds, emitted during the combustion of biodiesel, biodiesel-diesel and/or ethanol-biodiesel-diesel blends. CC is a class of hazardous pollutants known to be participating in photochemical smog formation. In this work a comparison was carried out between the two most widely used CC collection methods: C18 cartridges coated with an acid solution of 2,4-dinitrophenylhydrazine (2,4-DNPH) and impinger bottles filled in 2,4-DNPH solution. Sampling optimization was performed using a 2 2 factorial design tool. Samples were collected from the exhaust emissions of a diesel engine with biodiesel and operated by a steady-state dynamometer. In the central body of factorial design, the average of the sum of CC concentrations collected using impingers was 33.2 ppmV but it was only 6.5 ppmV for C18 cartridges. In addition, the relative standard deviation (RSD) was 4% for impingers and 37% for C18 cartridges. Clearly, the impinger system is able to collect CC more efficiently, with lower error than the C18 cartridge system. Furthermore, propionaldehyde was nearly not sampled by C18 system at all. For these reasons, the impinger system was chosen in our study. The optimized sampling conditions applied throughout this study were: two serially connected impingers each containing 10 mL of 2,4-DNPH solution at a flow rate of 0.2 L min -1 during 5 min. A profile study of the C1-C4 vapor-phase carbonyl compound emissions was obtained from exhaust of pure diesel (B0), pure biodiesel (B100) and biodiesel-diesel mixtures (B2, B5, B10, B20, B50, B

  11. Optimizing Frozen Sample Preparation for Laser Microdissection: Assessment of CryoJane Tape-Transfer System®.

    PubMed

    Golubeva, Yelena G; Smith, Roberta M; Sternberg, Lawrence R

    2013-01-01

    Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc.) and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone) during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection) and membrane (laser cutting microdissection) slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction that facilitated

  12. Optimal selection of sib pairs from random samples for linkage analysis of a QTL using the EDAC test.

    PubMed

    Dolan, C V; Boomsma, D I

    1998-05-01

    Percentages of extremely concordant and extremely discordant sib pairs are calculated that maximize the power to detect a quantitative trait locus (QTL) under a variety of circumstances using the EDAC test. We assume a large fixed number of randomly sampled sib pairs, such as one would hope to find in the large twin registries, and limited resources to genotype a certain number of selected sib pairs. Our aim is to investigate whether optimal selection can be achieved when prior knowledge concerning the QTL gene action, QTL allele frequency, QTL effect size, and background (residual) sib correlation is limited or absent. To this end we calculate the best selection percentages for a large number of models, which differ in QTL gene action allele frequency, background correlation, and QTL effect size. By averaging these percentages over gene action, over allele frequency, over gene action, and over allele frequencies, we arrive at general recommendations concerning selection percentages. The soundness of these recommendations is subsequently in a number of test cases. PMID:9670595

  13. Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS.

    PubMed

    Masson, Perrine; Alves, Alexessander Couto; Ebbels, Timothy M D; Nicholson, Jeremy K; Want, Elizabeth J

    2010-09-15

    A series of six protocols were evaluated for UPLC-MS based untargeted metabolic profiling of liver extracts in terms of reproducibility and number of metabolite features obtained. These protocols, designed to extract both polar and nonpolar metabolites, were based on (i) a two stage extraction approach or (ii) a simultaneous extraction in a biphasic mixture, employing different volumes and combinations of extraction and resuspension solvents. A multivariate statistical strategy was developed to allow comparison of the multidimensional variation between the methods. The optimal protocol for profiling both polar and nonpolar metabolites was found to be an aqueous extraction with methanol/water followed by an organic extraction with dichloromethane/methanol, with resuspension of the dried extracts in methanol/water before UPLC-MS analysis. This protocol resulted in a median CV of feature intensities among experimental replicates of <20% for aqueous extracts and <30% for organic extracts. These data demonstrate the robustness of the proposed protocol for extracting metabolites from liver samples and make it well suited for untargeted liver profiling in studies exploring xenobiotic hepatotoxicity and clinical investigations of liver disease. The generic nature of this protocol facilitates its application to other tissues, for example, brain or lung, enhancing its utility in clinical and toxicological studies. PMID:20715759

  14. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: cuckoo optimization algorithm-artificial neural network.

    PubMed

    Khajeh, Mostafa; Golzary, Ali Reza

    2014-10-15

    In this work, zinc nanoparticles-chitosan based solid phase extraction has been developed for separation and preconcentration of trace amount of methyl orange from water samples. Artificial neural network-cuckoo optimization algorithm has been employed to develop the model for simulation and optimization of this method. The pH, volume of elution solvent, mass of zinc oxide nanoparticles-chitosan, flow rate of sample and elution solvent were the input variables, while recovery of methyl orange was the output. The optimum conditions were obtained by cuckoo optimization algorithm. At the optimum conditions, the limit of detections of 0.7μgL(-1)was obtained for the methyl orange. The developed procedure was then applied to the separation and preconcentration of methyl orange from water samples. PMID:24835725

  15. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: cuckoo optimization algorithm-artificial neural network.

    PubMed

    Khajeh, Mostafa; Golzary, Ali Reza

    2014-10-15

    In this work, zinc nanoparticles-chitosan based solid phase extraction has been developed for separation and preconcentration of trace amount of methyl orange from water samples. Artificial neural network-cuckoo optimization algorithm has been employed to develop the model for simulation and optimization of this method. The pH, volume of elution solvent, mass of zinc oxide nanoparticles-chitosan, flow rate of sample and elution solvent were the input variables, while recovery of methyl orange was the output. The optimum conditions were obtained by cuckoo optimization algorithm. At the optimum conditions, the limit of detections of 0.7μgL(-1)was obtained for the methyl orange. The developed procedure was then applied to the separation and preconcentration of methyl orange from water samples.

  16. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: Cuckoo optimization algorithm-artificial neural network

    NASA Astrophysics Data System (ADS)

    Khajeh, Mostafa; Golzary, Ali Reza

    2014-10-01

    In this work, zinc nanoparticles-chitosan based solid phase extraction has been developed for separation and preconcentration of trace amount of methyl orange from water samples. Artificial neural network-cuckoo optimization algorithm has been employed to develop the model for simulation and optimization of this method. The pH, volume of elution solvent, mass of zinc oxide nanoparticles-chitosan, flow rate of sample and elution solvent were the input variables, while recovery of methyl orange was the output. The optimum conditions were obtained by cuckoo optimization algorithm. At the optimum conditions, the limit of detections of 0.7 μg L-1was obtained for the methyl orange. The developed procedure was then applied to the separation and preconcentration of methyl orange from water samples.

  17. Optimized sampling strategy of Wireless sensor network for validation of remote sensing products over heterogeneous coarse-resolution pixel

    NASA Astrophysics Data System (ADS)

    Peng, J.; Liu, Q.; Wen, J.; Fan, W.; Dou, B.

    2015-12-01

    Coarse-resolution satellite albedo products are increasingly applied in geographical researches because of their capability to characterize the spatio-temporal patterns of land surface parameters. In the long-term validation of coarse-resolution satellite products with ground measurements, the scale effect, i.e., the mismatch between point measurement and pixel observation becomes the main challenge, particularly over heterogeneous land surfaces. Recent advances in Wireless Sensor Networks (WSN) technologies offer an opportunity for validation using multi-point observations instead of single-point observation. The difficulty is to ensure the representativeness of the WSN in heterogeneous areas with limited nodes. In this study, the objective is to develop a ground-based spatial sampling strategy through consideration of the historical prior knowledge and avoidance of the information redundancy between different sensor nodes. Taking albedo as an example. First, we derive monthly local maps of albedo from 30-m HJ CCD images a 3-year period. Second, we pick out candidate points from the areas with higher temporal stability which helps to avoid the transition or boundary areas. Then, the representativeness (r) of each candidate point is evaluated through the correlational analysis between the point-specific and area-average time sequence albedo vector. The point with the highest r was noted as the new sensor point. Before electing a new point, the vector component of the selected points should be taken out from the vectors in the following correlational analysis. The selection procedure would be ceased once if the integral representativeness (R) meets the accuracy requirement. Here, the sampling method is adapted to both single-parameter and multi-parameter situations. Finally, it is shown that this sampling method has been effectively worked in the optimized layout of Huailai remote sensing station in China. The coarse resolution pixel covering this station could be

  18. Sample-interpolation timing: an optimized technique for the digital measurement of time of flight for γ rays and neutrons at relatively low sampling rates

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Mackin, R. O.; Jarrah, Z.; Boston, A. J.; Nolan, P. J.; Peyton, A. J.; Hawkes, N. P.

    2009-01-01

    A unique, digital time pick-off method, known as sample-interpolation timing (SIT) is described. This method demonstrates the possibility of improved timing resolution for the digital measurement of time of flight compared with digital replica-analogue time pick-off methods for signals sampled at relatively low rates. Three analogue timing methods have been replicated in the digital domain (leading-edge, crossover and constant-fraction timing) for pulse data sampled at 8 GSa s-1. Events arising from the 7Li(p, n)7Be reaction have been detected with an EJ-301 organic liquid scintillator and recorded with a fast digital sampling oscilloscope. Sample-interpolation timing was developed solely for the digital domain and thus performs more efficiently on digital signals compared with analogue time pick-off methods replicated digitally, especially for fast signals that are sampled at rates that current affordable and portable devices can achieve. Sample interpolation can be applied to any analogue timing method replicated digitally and thus also has the potential to exploit the generic capabilities of analogue techniques with the benefits of operating in the digital domain. A threshold in sampling rate with respect to the signal pulse width is observed beyond which further improvements in timing resolution are not attained. This advance is relevant to many applications in which time-of-flight measurement is essential.

  19. Optimal sampling theory and population modelling - Application to determination of the influence of the microgravity environment on drug distribution and elimination

    NASA Technical Reports Server (NTRS)

    Drusano, George L.

    1991-01-01

    The optimal sampling theory is evaluated in applications to studies related to the distribution and elimination of several drugs (including ceftazidime, piperacillin, and ciprofloxacin), using the SAMPLE module of the ADAPT II package of programs developed by D'Argenio and Schumitzky (1979, 1988) and comparing the pharmacokinetic parameter values with results obtained by traditional ten-sample design. The impact of the use of optimal sampling was demonstrated in conjunction with NONMEM (Sheiner et al., 1977) approach, in which the population is taken as the unit of analysis, allowing even fragmentary patient data sets to contribute to population parameter estimates. It is shown that this technique is applicable in both the single-dose and the multiple-dose environments. The ability to study real patients made it possible to show that there was a bimodal distribution in ciprofloxacin nonrenal clearance.

  20. A Closed-Loop Optimal Neural-Network Controller to Optimize Rotorcraft Aeromechanical Behaviour. Volume 2; Output from Two Sample Cases

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    2001-01-01

    A closed-loop optimal neural-network controller technique was developed to optimize rotorcraft aeromechanical behaviour. This technique utilities a neural-network scheme to provide a general non-linear model of the rotorcraft. A modem constrained optimisation method is used to determine and update the constants in the neural-network plant model as well as to determine the optimal control vector. Current data is read, weighted, and added to a sliding data window. When the specified maximum number of data sets allowed in the data window is exceeded, the oldest data set is and the remaining data sets are re-weighted. This procedure provides at least four additional degrees-of-freedom in addition to the size and geometry of the neural-network itself with which to optimize the overall operation of the controller. These additional degrees-of-freedom are: 1. the maximum length of the sliding data window, 2. the frequency of neural-network updates, 3. the weighting of the individual data sets within the sliding window, and 4. the maximum number of optimisation iterations used for the neural-network updates.

  1. Selection, Optimization, and Compensation: The Structure, Reliability, and Validity of Forced-Choice versus Likert-Type Measures in a Sample of Late Adolescents

    ERIC Educational Resources Information Center

    Geldhof, G. John; Gestsdottir, Steinunn; Stefansson, Kristjan; Johnson, Sara K.; Bowers, Edmond P.; Lerner, Richard M.

    2015-01-01

    Intentional self-regulation (ISR) undergoes significant development across the life span. However, our understanding of ISR's development and function remains incomplete, in part because the field's conceptualization and measurement of ISR vary greatly. A key sample case involves how Baltes and colleagues' Selection, Optimization,…

  2. Optimization and calibration of atomic force microscopy sensitivity in terms of tip-sample interactions in high-order dynamic atomic force microscopy

    SciTech Connect

    Liu Yu; Guo Qiuquan; Nie Hengyong; Lau, W. M.; Yang Jun

    2009-12-15

    The mechanism of dynamic force modes has been successfully applied to many atomic force microscopy (AFM) applications, such as tapping mode and phase imaging. The high-order flexural vibration modes are recent advancement of AFM dynamic force modes. AFM optical lever detection sensitivity plays a major role in dynamic force modes because it determines the accuracy in mapping surface morphology, distinguishing various tip-surface interactions, and measuring the strength of the tip-surface interactions. In this work, we have analyzed optimization and calibration of the optical lever detection sensitivity for an AFM cantilever-tip ensemble vibrating in high-order flexural modes and simultaneously experiencing a wide range and variety of tip-sample interactions. It is found that the optimal detection sensitivity depends on the vibration mode, the ratio of the force constant of tip-sample interactions to the cantilever stiffness, as well as the incident laser spot size and its location on the cantilever. It is also found that the optimal detection sensitivity is less dependent on the strength of tip-sample interactions for high-order flexural modes relative to the fundamental mode, i.e., tapping mode. When the force constant of tip-sample interactions significantly exceeds the cantilever stiffness, the optimal detection sensitivity occurs only when the laser spot locates at a certain distance from the cantilever-tip end. Thus, in addition to the 'globally optimized detection sensitivity', the 'tip optimized detection sensitivity' is also determined. Finally, we have proposed a calibration method to determine the actual AFM detection sensitivity in high-order flexural vibration modes against the static end-load sensitivity that is obtained traditionally by measuring a force-distance curve on a hard substrate in the contact mode.

  3. A flexible Bayesian assessment for the expected impact of data on prediction confidence for optimal sampling designs

    NASA Astrophysics Data System (ADS)

    Leube, Philipp; Geiges, Andreas; Nowak, Wolfgang

    2010-05-01

    Incorporating hydrogeological data, such as head and tracer data, into stochastic models of subsurface flow and transport helps to reduce prediction uncertainty. Considering limited financial resources available for the data acquisition campaign, information needs towards the prediction goal should be satisfied in a efficient and task-specific manner. For finding the best one among a set of design candidates, an objective function is commonly evaluated, which measures the expected impact of data on prediction confidence, prior to their collection. An appropriate approach to this task should be stochastically rigorous, master non-linear dependencies between data, parameters and model predictions, and allow for a wide variety of different data types. Existing methods fail to fulfill all these requirements simultaneously. For this reason, we introduce a new method, denoted as CLUE (Cross-bred Likelihood Uncertainty Estimator), that derives the essential distributions and measures of data utility within a generalized, flexible and accurate framework. The method makes use of Bayesian GLUE (Generalized Likelihood Uncertainty Estimator) and extends it to an optimal design method by marginalizing over the yet unknown data values. Operating in a purely Bayesian Monte-Carlo framework, CLUE is a strictly formal information processing scheme free of linearizations. It provides full flexibility associated with the type of measurements (linear, non-linear, direct, indirect) and accounts for almost arbitrary sources of uncertainty (e.g. heterogeneity, geostatistical assumptions, boundary conditions, model concepts) via stochastic simulation and Bayesian model averaging. This helps to minimize the strength and impact of possible subjective prior assumptions, that would be hard to defend prior to data collection. Our study focuses on evaluating two different uncertainty measures: (i) expected conditional variance and (ii) expected relative entropy of a given prediction goal. The

  4. Phase II clinical trials with time-to-event endpoints: Optimal two-stage designs with one-sample log-rank test

    PubMed Central

    Kwak, Minjung; Jung, Sin-Ho

    2014-01-01

    Summary Phase II clinical trials are often conducted to determine whether a new treatment is sufficiently promising to warrant a major controlled clinical evaluation against a standard therapy. We consider single-arm phase II clinical trials with right censored survival time responses where the ordinary one-sample logrank test is commonly used for testing the treatment efficacy. For planning such clinical trials this paper presents two-stage designs that are optimal in the sense that the expected sample size is minimized if the new regimen has low efficacy subject to constraints of the type I and type II errors. Two-stage designs which minimize the maximal sample size are also determined. Optimal and minimax designs for a range of design parameters are tabulated along with examples. PMID:24338995

  5. A model for direct laser interference patterning of ZnO:Al - predicting possible sample topographies to optimize light trapping in thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Dyck, Tobias; Haas, Stefan

    2016-04-01

    We present a novel approach to obtaining a quick prediction of a sample's topography after the treatment with direct laser interference patterning (DLIP) . The underlying model uses the parameters of the experimental setup as input, calculates the laser intensity distribution in the interference volume and determines the corresponding heat intake into the material as well as the subsequent heat diffusion within the material. The resulting heat distribution is used to determine the topography of the sample after the DLIP treatment . This output topography is in good agreement with corresponding experiments. The model can be applied in optimization algorithms in which a sample topography needs to be engineered in order to suit the needs of a given device. A prominent example for such an application is the optimization of the light scattering properties of the textured interfaces in a solar cell.

  6. Solid phase microextraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for high-resolution metabolite profiling in apples: implementation of structured separations for optimization of sample preparation procedure in complex samples.

    PubMed

    Risticevic, Sanja; DeEll, Jennifer R; Pawliszyn, Janusz

    2012-08-17

    Metabolomics currently represents one of the fastest growing high-throughput molecular analysis platforms that refer to the simultaneous and unbiased analysis of metabolite pools constituting a particular biological system under investigation. In response to the ever increasing interest in development of reliable methods competent with obtaining a complete and accurate metabolomic snapshot for subsequent identification, quantification and profiling studies, the purpose of the current investigation is to test the feasibility of solid phase microextraction for advanced fingerprinting of volatile and semivolatile metabolites in complex samples. In particular, the current study is focussed on the development and optimization of solid phase microextraction (SPME) - comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-ToFMS) methodology for metabolite profiling of apples (Malus × domestica Borkh.). For the first time, GC × GC attributes in terms of molecular structure-retention relationships and utilization of two-dimensional separation space on orthogonal GC × GC setup were exploited in the field of SPME method optimization for complex sample analysis. Analytical performance data were assessed in terms of method precision when commercial coatings are employed in spiked metabolite aqueous sample analysis. The optimized method consisted of the implementation of direct immersion SPME (DI-SPME) extraction mode and its application to metabolite profiling of apples, and resulted in a tentative identification of 399 metabolites and the composition of a metabolite database far more comprehensive than those obtainable with classical one-dimensional GC approaches. Considering that specific metabolome constituents were for the first time reported in the current study, a valuable approach for future advanced fingerprinting studies in the field of fruit biology is proposed. The current study also intensifies the understanding of SPME

  7. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    NASA Astrophysics Data System (ADS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-05-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  8. A critical assessment of hidden markov model sub-optimal sampling strategies applied to the generation of peptide 3D models.

    PubMed

    Lamiable, A; Thevenet, P; Tufféry, P

    2016-08-01

    Hidden Markov Model derived structural alphabets are a probabilistic framework in which the complete conformational space of a peptidic chain is described in terms of probability distributions that can be sampled to identify conformations of largest probabilities. Here, we assess how three strategies to sample sub-optimal conformations-Viterbi k-best, forward backtrack and a taboo sampling approach-can lead to the efficient generation of peptide conformations. We show that the diversity of sampling is essential to compensate biases introduced in the estimates of the probabilities, and we find that only the forward backtrack and a taboo sampling strategies can efficiently generate native or near-native models. Finally, we also find such approaches are as efficient as former protocols, while being one order of magnitude faster, opening the door to the large scale de novo modeling of peptides and mini-proteins. © 2016 Wiley Periodicals, Inc. PMID:27317417

  9. Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample Case-Control Whole-Exome Sequencing Studies

    PubMed Central

    Lee, Seunggeun; Emond, Mary J.; Bamshad, Michael J.; Barnes, Kathleen C.; Rieder, Mark J.; Nickerson, Deborah A.; Christiani, David C.; Wurfel, Mark M.; Lin, Xihong

    2012-01-01

    We propose in this paper a unified approach for testing the association between rare variants and phenotypes in sequencing association studies. This approach maximizes power by adaptively using the data to optimally combine the burden test and the nonburden sequence kernel association test (SKAT). Burden tests are more powerful when most variants in a region are causal and the effects are in the same direction, whereas SKAT is more powerful when a large fraction of the variants in a region are noncausal or the effects of causal variants are in different directions. The proposed unified test maintains the power in both scenarios. We show that the unified test corresponds to the optimal test in an extended family of SKAT tests, which we refer to as SKAT-O. The second goal of this paper is to develop a small-sample adjustment procedure for the proposed methods for the correction of conservative type I error rates of SKAT family tests when the trait of interest is dichotomous and the sample size is small. Both small-sample-adjusted SKAT and the optimal unified test (SKAT-O) are computationally efficient and can easily be applied to genome-wide sequencing association studies. We evaluate the finite sample performance of the proposed methods using extensive simulation studies and illustrate their application using the acute-lung-injury exome-sequencing data of the National Heart, Lung, and Blood Institute Exome Sequencing Project. PMID:22863193

  10. High-efficiency screen-printed solar cell on edge-defined film-fed grown ribbon silicon through optimized rapid belt co-firing of contacts and high-sheet-resistance emitter

    NASA Astrophysics Data System (ADS)

    Rohatgi, Ajeet; Hilali, Mohamed M.; Nakayashiki, Kenta

    2004-04-01

    High-quality screen-printed contacts were achieved on a high-sheet-resistance emitter (˜100 Ω/sq.) using PV168 Ag paste and rapid co-firing in the belt furnace. The optimized co-firing cycle developed for a 100 Ω/sq. emitter produced 16.1% efficient 4 cm2 planar edge-defined film-fed grown (EFG) ribbon Si cells with a low series-resistance (0.8 Ω cm2), high fill factor of ˜0.77, along with very significant bulk lifetime enhancement from 3 to 100 μs. This represents the highest-efficiency screen-printed EFG Si cells with single-layer antireflection (AR) coating. These cells were fabricated using a simple process involving POCl3 diffusion for a high-sheet-resistance emitter, SiNx AR coating and rapid cofiring of Ag grid and Al-doped back-surface field in a conventional belt furnace. The rapid cofiring process also prevented junction shunting while maintaining very effective SiNx-induced hydrogen passivation of defects, resulting in an average bulk lifetime exceeding 100 μs.

  11. An Improved Transformation and Optimized Sampling Scheme for the Numerical Evaluation of Singular and Near-Singular Potentials

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.

    2007-01-01

    Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.

  12. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA.

    PubMed

    Dorn-In, Samart; Bassitta, Rupert; Schwaiger, Karin; Bauer, Johann; Hölzel, Christina S

    2015-06-01

    Universal primers targeting the bacterial 16S-rRNA-gene allow quantification of the total bacterial load in variable sample types by qPCR. However, many universal primer pairs also amplify DNA of plants or even of archaea and other eukaryotic cells. By using these primers, the total bacterial load might be misevaluated, whenever samples contain high amounts of non-target DNA. Thus, this study aimed to provide primer pairs which are suitable for quantification and identification of bacterial DNA in samples such as feed, spices and sample material from digesters. For 42 primers, mismatches to the sequence of chloroplasts and mitochondria of plants were evaluated. Six primer pairs were further analyzed with regard to the question whether they anneal to DNA of archaea, animal tissue and fungi. Subsequently they were tested with sample matrix such as plants, feed, feces, soil and environmental samples. To this purpose, the target DNA in the samples was quantified by qPCR. The PCR products of plant and feed samples were further processed for the Single Strand Conformation Polymorphism method followed by sequence analysis. The sequencing results revealed that primer pair 335F/769R amplified only bacterial DNA in samples such as plants and animal feed, in which the DNA of plants prevailed.

  13. Optimization of diagnostic RT-PCR protocols and sampling procedures for the reliable and cost-effective detection of Cassava brown streak virus.

    PubMed

    Abarshi, M M; Mohammed, I U; Wasswa, P; Hillocks, R J; Holt, J; Legg, J P; Seal, S E; Maruthi, M N

    2010-02-01

    Sampling procedures and diagnostic protocols were optimized for accurate diagnosis of Cassava brown streak virus (CBSV) (genus Ipomovirus, family Potyviridae). A cetyl trimethyl ammonium bromide (CTAB) method was optimized for sample preparation from infected cassava plants and compared with the RNeasy plant mini kit (Qiagen) for sensitivity, reproducibility and costs. CBSV was detectable readily in total RNAs extracted using either method. The major difference between the two methods was in the cost of consumables, with the CTAB 10x cheaper (0.53 pounds sterling=US$0.80 per sample) than the RNeasy method (5.91 pounds sterling=US$8.86 per sample). A two-step RT-PCR (1.34 pounds sterling=US$2.01 per sample), although less sensitive, was at least 3-times cheaper than a one-step RT-PCR (4.48 pounds sterling=US$6.72). The two RT-PCR tests revealed consistently the presence of CBSV both in symptomatic and asymptomatic leaves and indicated that asymptomatic leaves can be used reliably for virus diagnosis. Depending on the accuracy required, sampling 100-400 plants per field is an appropriate recommendation for CBSD diagnosis, giving a 99.9% probability of detecting a disease incidence of 6.7-1.7%, respectively. CBSV was detected at 10(-4)-fold dilutions in composite sampling, indicating that the most efficient way to index many samples for CBSV will be to screen pooled samples. The diagnostic protocols described below are reliable and the most cost-effective methods available currently for detecting CBSV.

  14. Fast simulated annealing and adaptive Monte Carlo sampling based parameter optimization for dense optical-flow deformable image registration of 4DCT lung anatomy

    NASA Astrophysics Data System (ADS)

    Dou, Tai H.; Min, Yugang; Neylon, John; Thomas, David; Kupelian, Patrick; Santhanam, Anand P.

    2016-03-01

    Deformable image registration (DIR) is an important step in radiotherapy treatment planning. An optimal input registration parameter set is critical to achieve the best registration performance with the specific algorithm. Methods In this paper, we investigated a parameter optimization strategy for Optical-flow based DIR of the 4DCT lung anatomy. A novel fast simulated annealing with adaptive Monte Carlo sampling algorithm (FSA-AMC) was investigated for solving the complex non-convex parameter optimization problem. The metric for registration error for a given parameter set was computed using landmark-based mean target registration error (mTRE) between a given volumetric image pair. To reduce the computational time in the parameter optimization process, a GPU based 3D dense optical-flow algorithm was employed for registering the lung volumes. Numerical analyses on the parameter optimization for the DIR were performed using 4DCT datasets generated with breathing motion models and open-source 4DCT datasets. Results showed that the proposed method efficiently estimated the optimum parameters for optical-flow and closely matched the best registration parameters obtained using an exhaustive parameter search method.

  15. Clear line of sight (CLOS) statistics within cloudy regions and optimal sampling strategies for space-based lidars

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Seze, G.

    1991-01-01

    Simulated cloud/hole fields as well as Landsat imagery are used in a computer model to evaluate several proposed sampling patterns and shot management schemes for pulsed space-based Doppler lidars. Emphasis is placed on two proposed sampling strategies - one obtained from a conically scanned single telescope and the other from four fixed telescopes that are sequentially used by one laser. The question of whether there are any sampling patterns that maximize the number of resolution areas with vertical soundings to the PBL is addressed.

  16. Multivariate optimization of a method for antimony determination by hydride generation atomic fluorescence spectrometry in hair samples of patients undergoing chemotherapy against Leishmaniasis.

    PubMed

    Cardozo, Manuelle C; Cavalcante, Dannuza D; Silva, Daniel L F; Santos, Walter N L Dos; Bezerra, Marcos A

    2016-09-01

    A method was developed for determination of total antimony in hair samples from patients undergoing chemotherapy against Leishmaniasis based on the administration of pentavalent antimonial drugs. The method is based on microwave assisted digestion of the samples in a pressurized system, reduction of Sb5+ to Sb3+ with KI solution (10% w/v) in ascorbic acid (2%, w/v) and its subsequent determination by hydride generation atomic fluorescence spectrometry (HG-AFS). The proportions of each component (HCl, HNO3 and water) used in the digestion were studied applying a constrained mixtures design. The optimal proportions found were 50% water, 25% HNO3 and 25% HCl. Variables involved in the generation of antimony hydride were optimized using a Doehlert design revealing that good sensitivity is found when using 2.0% w/v NaBH4 and 4.4 mol L-1 HCl. Under the optimum experimental conditions, the method allows the determination of antimony in hair samples with detection and quantification limits of 1.4 and 4.6 ng g-1, respectively, and precision expressed as relative standard deviation (RSD) of 2.8% (n = 10 to 10.0 mg L-1). The developed method was applied in the analysis of hair samples from patients who take medication against Leishmaniasis. PMID:27580363

  17. Simultaneous determination of trace polycyclic and nitro musks in water samples using optimized solid-phase extraction by gas chromatography and mass spectrometry.

    PubMed

    Lv, Yan; Yuan, Tao; Hu, Jiangyong; Wang, Wenhua

    2009-09-01

    This study intended to develop a robust and sensitive method for simultaneous determination of polycyclic musks (HHCB and AHTN) and nitro musks (musk xylene (MX) and musk ketone (MK)) in water samples using optimized solid-phase extraction (SPE) by gas chromatography and mass spectrometry (GC-MS). The SPE procedure was optimized in terms of selections of SPE cartridge, sample pH, elution process, etc. The method detection limits (MDLs) were from 0.09 to 0.18 ng L(-1) for the analytes. The recoveries ranged from 88.3 to 104.1% in spiked deionized water and from 86.4 to 106.8% in groundwater samples, respectively. The proposed approach was also validated by detecting real samples. The results revealed that HHCB and AHTN were ubiquitous in the local aquatic matrices. Furthermore, nitro musks were found in some aquatic matrices, which is consistent with the fact that nitro musks are still being produced and applied in China.

  18. Multivariate optimization of a method for antimony determination by hydride generation atomic fluorescence spectrometry in hair samples of patients undergoing chemotherapy against Leishmaniasis.

    PubMed

    Cardozo, Manuelle C; Cavalcante, Dannuza D; Silva, Daniel L F; Santos, Walter N L Dos; Bezerra, Marcos A

    2016-09-01

    A method was developed for determination of total antimony in hair samples from patients undergoing chemotherapy against Leishmaniasis based on the administration of pentavalent antimonial drugs. The method is based on microwave assisted digestion of the samples in a pressurized system, reduction of Sb5+ to Sb3+ with KI solution (10% w/v) in ascorbic acid (2%, w/v) and its subsequent determination by hydride generation atomic fluorescence spectrometry (HG-AFS). The proportions of each component (HCl, HNO3 and water) used in the digestion were studied applying a constrained mixtures design. The optimal proportions found were 50% water, 25% HNO3 and 25% HCl. Variables involved in the generation of antimony hydride were optimized using a Doehlert design revealing that good sensitivity is found when using 2.0% w/v NaBH4 and 4.4 mol L-1 HCl. Under the optimum experimental conditions, the method allows the determination of antimony in hair samples with detection and quantification limits of 1.4 and 4.6 ng g-1, respectively, and precision expressed as relative standard deviation (RSD) of 2.8% (n = 10 to 10.0 mg L-1). The developed method was applied in the analysis of hair samples from patients who take medication against Leishmaniasis.

  19. Strategies for selecting optimal sampling and work-up procedures for analysing alkylphenol polyethoxylates in effluents from non-activated sludge biofilm reactors.

    PubMed

    Stenholm, Ake; Holmström, Sara; Hjärthag, Sandra; Lind, Ola

    2012-01-01

    Trace-level analysis of alkylphenol polyethoxylates (APEOs) in wastewater containing sludge requires the prior removal of contaminants and preconcentration. In this study, the effects on optimal work-up procedures of the types of alkylphenols present, their degree of ethoxylation, the biofilm wastewater treatment and the sample matrix were investigated for these purposes. The sampling spot for APEO-containing specimens from an industrial wastewater treatment plant was optimized, including a box that surrounded the tubing outlet carrying the wastewater, to prevent sedimented sludge contaminating the collected samples. Following these changes, the sampling precision (in terms of dry matter content) at a point just under the tubing leading from the biofilm reactors was 0.7% RSD. The findings were applied to develop a work-up procedure for use prior to a high-performance liquid chromatography-fluorescence detection analysis method capable of quantifying nonylphenol polyethoxylates (NPEOs) and poorly investigated dinonylphenol polyethoxylates (DNPEOs) at low microg L(-1) concentrations in effluents from non-activated sludge biofilm reactors. The selected multi-step work-up procedure includes lyophilization and pressurized fluid extraction (PFE) followed by strong ion exchange solid phase extraction (SPE). The yields of the combined procedure, according to tests with NP10EO-spiked effluent from a wastewater treatment plant, were in the 62-78% range. PMID:22519096

  20. Passive airborne dust sampling with the electrostatic dustfall collector: optimization of storage and extraction procedures for endotoxin and glucan measurement.

    PubMed

    Noss, Ilka; Doekes, Gert; Sander, Ingrid; Heederik, Dick J J; Thorne, Peter S; Wouters, Inge M

    2010-08-01

    We recently introduced a passive dust sampling method for airborne endotoxin and glucan exposure assessment-the electrostatic dustfall collector (EDC). In this study, we assessed the effects of different storage and extraction procedures on measured endotoxin and glucan levels, using 12 parallel EDC samples from 10 low exposed indoor environments. Additionally, we compared 2- and 4-week sampling with the prospect of reaching higher dust yields. Endotoxin concentrations were highest after extraction with pyrogen-free water (pf water) + Tween. Phosphate-buffered saline (PBS)-Tween yielded significantly (44%) lower levels, and practically no endotoxin was detected after extraction in pf water without Tween. Glucan levels were highest after extraction in PBS-Tween at 120 degrees C, whereas extracts made in NaOH at room temperature or 120 degrees C were completely negative. Direct extraction from the EDC cloth or sequential extraction after a preceding endotoxin extraction yielded comparable glucan levels. Sample storage at different temperatures before extraction did not affect endotoxin and glucan concentrations. Doubling the sampling duration yielded similar endotoxin and only 50% higher glucan levels. In conclusion, of the tested variables, the extraction medium was the predominant factor affecting endotoxin and glucan yields.

  1. Determination of total iodine in serum and urine samples by ion chromatography with pulsed amperometric detection - studies on analyte loss, optimization of sample preparation procedures, and validation of analytical method.

    PubMed

    Błażewicz, Anna; Klatka, Maria; Dolliver, Wojciech; Kocjan, Ryszard

    2014-07-01

    A fast, accurate and precise ion chromatography method with pulsed amperometric detection was applied to evaluate a variety of parameters affecting the determination of total iodine in serum and urine of 81 subjects, including 56 obese and 25 healthy Polish children. The sample pretreatment methods were carried out in a closed system and with the assistance of microwaves. Both alkaline and acidic digestion procedures were developed and optimized to find the simplest combination of reagents and the appropriate parameters for digestion that would allow for the fastest, least time consuming and most cost-effective way of analysis. A good correlation between the certified and the measured concentrations was achieved. The best recoveries (96.8% for urine and 98.8% for serum samples) were achieved using 1ml of 25% tetramethylammonium hydroxide solution within 6min for 0.1ml of serum/urine samples. Using 0.5ml of 65% nitric acid solution the best recovery (95.3%) was obtained when 7min of effective digestion time was used. Freeze-thaw stability and long-term stability were checked. After 24 weeks 14.7% loss of iodine in urine, and 10.9% in serum samples occurred. For urine samples, better correlation (R(2)=0.9891) of various sample preparation procedures (alkaline digestion and application of OnGuard RP cartidges) was obtained. Significantly lower iodide content was found in samples taken from obese children. Serum iodine content in obese children was markedly variable in comparison with the healthy group, whereas the difference was less evident when urine samples were analyzed. The mean content in serum was 59.12±8.86μg/L, and in urine 98.26±25.93 for obese children when samples were prepared by the use of optimized alkaline digestion reinforced by microwaves. In healthy children the mean content in serum was 82.58±6.01μg/L, and in urine 145.76±31.44μg/L.

  2. Rapid parameter optimization of low signal-to-noise samples in NMR spectroscopy using rapid CPMG pulsing during acquisition: application to recycle delays.

    PubMed

    Farooq, Hashim; Courtier-Murias, Denis; Soong, Ronald; Masoom, Hussain; Maas, Werner; Fey, Michael; Kumar, Rajeev; Monette, Martine; Stronks, Henry; Simpson, Myrna J; Simpson, André J

    2013-03-01

    A method is presented that combines Carr-Purcell-Meiboom-Gill (CPMG) during acquisition with either selective or nonselective excitation to produce a considerable intensity enhancement and a simultaneous loss in chemical shift information. A range of parameters can theoretically be optimized very rapidly on the basis of the signal from the entire sample (hard excitation) or spectral subregion (soft excitation) and should prove useful for biological, environmental, and polymer samples that often exhibit highly dispersed and broad spectral profiles. To demonstrate the concept, we focus on the application of our method to T(1) determination, specifically for the slowest relaxing components in a sample, which ultimately determines the optimal recycle delay in quantitative NMR. The traditional inversion recovery (IR) pulse program is combined with a CPMG sequence during acquisition. The slowest relaxing components are selected with a shaped pulse, and then, low-power CPMG echoes are applied during acquisition with intervals shorter than chemical shift evolution (RCPMG) thus producing a single peak with an SNR commensurate with the sum of the signal integrals in the selected region. A traditional (13)C IR experiment is compared with the selective (13)C IR-RCPMG sequence and yields the same T(1) values for samples of lysozyme and riverine dissolved organic matter within error. For lysozyme, the RCPMG approach is ~70 times faster, and in the case of dissolved organic matter is over 600 times faster. This approach can be adapted for the optimization of a host of parameters where chemical shift information is not necessary, such as cross-polarization/mixing times and pulse lengths.

  3. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method

    PubMed Central

    Duhaime, Melissa B; Deng, Li; Poulos, Bonnie T; Sullivan, Matthew B

    2012-01-01

    Metagenomics generates and tests hypotheses about dynamics and mechanistic drivers in wild populations, yet commonly suffers from insufficient (< 1 ng) starting genomic material for sequencing. Current solutions for amplifying sufficient DNA for metagenomics analyses include linear amplification for deep sequencing (LADS), which requires more DNA than is normally available, linker-amplified shotgun libraries (LASLs), which is prohibitively low throughput, and whole-genome amplification, which is significantly biased and thus non-quantitative. Here, we adapt the LASL approach to next generation sequencing by offering an alternate polymerase for challenging samples, developing a more efficient sizing step, integrating a ‘reconditioning PCR’ step to increase yield and minimize late-cycle PCR artefacts, and empirically documenting the quantitative capability of the optimized method with both laboratory isolate and wild community viral DNA. Our optimized linker amplification method requires as little as 1 pg of DNA and is the most precise and accurate available, with G + C content amplification biases less than 1.5-fold, even for complex samples as diverse as a wild virus community. While optimized here for 454 sequencing, this linker amplification method can be used to prepare metagenomics libraries for sequencing with next-generation platforms, including Illumina and Ion Torrent, the first of which we tested and present data for here. PMID:22713159

  4. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method.

    PubMed

    Duhaime, Melissa B; Deng, Li; Poulos, Bonnie T; Sullivan, Matthew B

    2012-09-01

    Metagenomics generates and tests hypotheses about dynamics and mechanistic drivers in wild populations, yet commonly suffers from insufficient (< 1 ng) starting genomic material for sequencing. Current solutions for amplifying sufficient DNA for metagenomics analyses include linear amplification for deep sequencing (LADS), which requires more DNA than is normally available, linker-amplified shotgun libraries (LASLs), which is prohibitively low throughput, and whole-genome amplification, which is significantly biased and thus non-quantitative. Here, we adapt the LASL approach to next generation sequencing by offering an alternate polymerase for challenging samples, developing a more efficient sizing step, integrating a 'reconditioning PCR' step to increase yield and minimize late-cycle PCR artefacts, and empirically documenting the quantitative capability of the optimized method with both laboratory isolate and wild community viral DNA. Our optimized linker amplification method requires as little as 1 pg of DNA and is the most precise and accurate available, with G + C content amplification biases less than 1.5-fold, even for complex samples as diverse as a wild virus community. While optimized here for 454 sequencing, this linker amplification method can be used to prepare metagenomics libraries for sequencing with next-generation platforms, including Illumina and Ion Torrent, the first of which we tested and present data for here.

  5. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-06-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors.

  6. Defining Early Adolescent Childbearing.

    ERIC Educational Resources Information Center

    Phipps, Maureen G.; Sowers, MaryFran

    2002-01-01

    Determined the age group for defining early adolescent childbearing based on rates of adverse clinical outcomes. Data on infant mortality, very low birth weight, and very pre-term delivery per 1,000 live births for women age 12-23 years in the 1995 U.S. birth cohort indicate that early adolescent childbearing is best defined as giving birth at age…

  7. Optimizing the models for rapid determination of chlorogenic acid, scopoletin and rutin in plant samples by near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Zhiyi; Shan, Ruifeng; Wang, Jiajun; Cai, Wensheng; Shao, Xueguang

    2014-07-01

    Polyphenols in plant samples have been extensively studied because phenolic compounds are ubiquitous in plants and can be used as antioxidants in promoting human health. A method for rapid determination of three phenolic compounds (chlorogenic acid, scopoletin and rutin) in plant samples using near-infrared diffuse reflectance spectroscopy (NIRDRS) is studied in this work. Partial least squares (PLS) regression was used for building the calibration models, and the effects of spectral preprocessing and variable selection on the models are investigated for optimization of the models. The results show that individual spectral preprocessing and variable selection has no or slight influence on the models, but the combination of the techniques can significantly improve the models. The combination of continuous wavelet transform (CWT) for removing the variant background, multiplicative scatter correction (MSC) for correcting the scattering effect and randomization test (RT) for selecting the informative variables was found to be the best way for building the optimal models. For validation of the models, the polyphenol contents in an independent sample set were predicted. The correlation coefficients between the predicted values and the contents determined by high performance liquid chromatography (HPLC) analysis are as high as 0.964, 0.948 and 0.934 for chlorogenic acid, scopoletin and rutin, respectively.

  8. Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2

    NASA Astrophysics Data System (ADS)

    Metzger, Stefan; Burba, George; Burns, Sean P.; Blanken, Peter D.; Li, Jiahong; Luo, Hongyan; Zulueta, Rommel C.

    2016-03-01

    Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) are set to provide the ability of unbiased ecological inference across ecoclimatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analyzers are widely employed for eddy covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation varies with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system can substantially contribute to such high-frequency attenuation, but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5-16.5 Hz for CO2, 2.4-14.3 Hz for H2O, and 8.3-21.8 Hz for CO2, 1.4-19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60 %) by 50 % in the infrared gas analyzer cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor-capacitor theory, and NEON's final gas sampling system was developed on this

  9. Is Using the Strengths and Difficulties Questionnaire in a Community Sample the Optimal Way to Assess Mental Health Functioning?

    PubMed Central

    Vaz, Sharmila; Cordier, Reinie; Boyes, Mark; Parsons, Richard; Joosten, Annette; Ciccarelli, Marina; Falkmer, Marita; Falkmer, Torbjorn

    2016-01-01

    An important characteristic of a screening tool is its discriminant ability or the measure’s accuracy to distinguish between those with and without mental health problems. The current study examined the inter-rater agreement and screening concordance of the parent and teacher versions of SDQ at scale, subscale and item-levels, with the view of identifying the items that have the most informant discrepancies; and determining whether the concordance between parent and teacher reports on some items has the potential to influence decision making. Cross-sectional data from parent and teacher reports of the mental health functioning of a community sample of 299 students with and without disabilities from 75 different primary schools in Perth, Western Australia were analysed. The study found that: a) Intraclass correlations between parent and teacher ratings of children’s mental health using the SDQ at person level was fair on individual child level; b) The SDQ only demonstrated clinical utility when there was agreement between teacher and parent reports using the possible or 90% dichotomisation system; and c) Three individual items had positive likelihood ratio scores indicating clinical utility. Of note was the finding that the negative likelihood ratio or likelihood of disregarding the absence of a condition when both parents and teachers rate the item as absent was not significant. Taken together, these findings suggest that the SDQ is not optimised for use in community samples and that further psychometric evaluation of the SDQ in this context is clearly warranted. PMID:26771673

  10. Is Using the Strengths and Difficulties Questionnaire in a Community Sample the Optimal Way to Assess Mental Health Functioning?

    PubMed

    Vaz, Sharmila; Cordier, Reinie; Boyes, Mark; Parsons, Richard; Joosten, Annette; Ciccarelli, Marina; Falkmer, Marita; Falkmer, Torbjorn

    2016-01-01

    An important characteristic of a screening tool is its discriminant ability or the measure's accuracy to distinguish between those with and without mental health problems. The current study examined the inter-rater agreement and screening concordance of the parent and teacher versions of SDQ at scale, subscale and item-levels, with the view of identifying the items that have the most informant discrepancies; and determining whether the concordance between parent and teacher reports on some items has the potential to influence decision making. Cross-sectional data from parent and teacher reports of the mental health functioning of a community sample of 299 students with and without disabilities from 75 different primary schools in Perth, Western Australia were analysed. The study found that: a) Intraclass correlations between parent and teacher ratings of children's mental health using the SDQ at person level was fair on individual child level; b) The SDQ only demonstrated clinical utility when there was agreement between teacher and parent reports using the possible or 90% dichotomisation system; and c) Three individual items had positive likelihood ratio scores indicating clinical utility. Of note was the finding that the negative likelihood ratio or likelihood of disregarding the absence of a condition when both parents and teachers rate the item as absent was not significant. Taken together, these findings suggest that the SDQ is not optimised for use in community samples and that further psychometric evaluation of the SDQ in this context is clearly warranted. PMID:26771673

  11. Defining Overweight and Obesity

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Defining Adult Overweight and ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How ...

  12. CIP10 optimization for 4,4-methylene diphenyl diisocyanate aerosol sampling and field comparison with impinger method.

    PubMed

    Puscasu, Silvia; Aubin, Simon; Cloutier, Yves; Sarazin, Philippe; Tra, Huu V; Gagné, Sébastien

    2015-04-01

    4,4-methylene diphenyl diisocyanate (MDI) aerosol exposure evaluation in spray foam insulation application is known as being a challenge because the spray foam application actually involves a fast-curing process. Available techniques are either not user-friendly or are inaccurate or not validated for this application. To address these issues, a new approach using a CIP10M was developed to appropriately collect MDI aerosol in spray foam insulation while being suitable for personal sampling. The CIP10M is a commercially available personal aerosol sampler that has been validated for the collection of microbial spores into a liquid medium. Tributylphosphate with 1-(2-methoxyphenyl)piperazine (MOPIP) was introduced into the CIP10M to collect and stabilize the MDI aerosols. The limit of detection and limit of quantification of the method were 0.007 and 0.024 μg ml(-1), respectively. The dynamic range was from 0.024 to 0.787 μg ml(-1) (with R (2) ≥ 0.990), which corresponds to concentrations in the air from 0.04 to 1.3 µg m(-3), assuming 60 min of sampling at 10 l min(-1). The intraday and interday analytical precisions were <2% for all of the concentration levels tested, and the accuracy was within an appropriate range of 98 ± 1%. No matrix effect was observed, and a total recovery of 99% was obtained. Parallel sampling was performed in a real MDI foam spraying environment with a CIP10M and impingers containing toluene/MOPIP (reference method). The results obtained show that the CIP10M provides levels of MDI monomer in the same range as the impingers, and higher levels of MDI oligomers. The negative bias observed for MDI monomer was between 2 and 26%, whereas the positive bias observed for MDI oligomers was between 76 and 113%, with both biases calculated with a confidence level of 95%. The CIP10M seems to be a promising approach for MDI aerosol exposure evaluation in spray foam applications.

  13. Optimization of a gas sampling system for measuring eddy-covariance fluxes of H2O and CO2

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Burba, G.; Burns, S. P.; Blanken, P. D.; Li, J.; Luo, H.; Zulueta, R. C.

    2015-10-01

    Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) will provide the ability of unbiased ecological inference across eco-climatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analysers are widely employed for eddy-covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation varies with site properties, and requires correction. Here, we show that the gas sampling system substantially contributes to high-frequency attenuation, which can be minimized by careful design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5-16.5 Hz for CO2, 2.4-14.3 Hz for H2O, and 8.3-21.8 Hz for CO2, 1.4-19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60 %) by 50 % in the infrared gas analyser cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor-capacitor theory, and NEON's final gas sampling system was developed on this basis. The design consists of the stainless steel intake tube, a pleated mesh

  14. Rapid, sensitive, and reproducible screening of liquid milk for adulterants using a portable Raman spectrometer and a simple, optimized sample well.

    PubMed

    Nieuwoudt, M K; Holroyd, S E; McGoverin, C M; Simpson, M C; Williams, D E

    2016-10-01

    We have developed a powerful general spectroscopic method for rapidly screening liquid milk for adulterants by combining reflective focusing wells simply fabricated in aluminum with a small, portable Raman spectrometer with a focusing fiber optic probe. Hemispherical aluminum sample wells were specially designed to optimize internal reflection and sampling volume by matching the focal length of the mirror to the depth of focus of the laser probe. The technique was tested on milk adulterated with 4 different nitrogen-rich compounds (melamine, urea, dicyandiamide, and ammonium sulfate) and sucrose. No sample preparation of the milk was needed, and the total analysis time was 4min. Reliable sample presentation enabled average reproducibility of 8% residual standard deviation. The limit of detection interval measured from partial least squares calibrations ranged between 140 and 520mg/L for the 4 N-rich compounds and between 7,000 and 36,000mg/L (0.7-3.6%) for sucrose. The portability of the system and the reliability and reproducibility of this technique open opportunities for general, reagentless screening of milk for adulterants at the point of collection. PMID:27474982

  15. Optimized Wang-Landau sampling of lattice polymers: ground state search and folding thermodynamics of HP model proteins.

    PubMed

    Wüst, Thomas; Landau, David P

    2012-08-14

    Coarse-grained (lattice-) models have a long tradition in aiding efforts to decipher the physical or biological complexity of proteins. Despite the simplicity of these models, however, numerical simulations are often computationally very demanding and the quest for efficient algorithms is as old as the models themselves. Expanding on our previous work [T. Wüst and D. P. Landau, Phys. Rev. Lett. 102, 178101 (2009)], we present a complete picture of a Monte Carlo method based on Wang-Landau sampling in combination with efficient trial moves (pull, bond-rebridging, and pivot moves) which is particularly suited to the study of models such as the hydrophobic-polar (HP) lattice model of protein folding. With this generic and fully blind Monte Carlo procedure, all currently known putative ground states for the most difficult benchmark HP sequences could be found. For most sequences we could also determine the entire energy density of states and, together with suitably designed structural observables, explore the thermodynamics and intricate folding behavior in the virtually inaccessible low-temperature regime. We analyze the differences between random and protein-like heteropolymers for sequence lengths up to 500 residues. Our approach is powerful both in terms of robustness and speed, yet flexible and simple enough for the study of many related problems in protein folding.

  16. An approach to optimize sample preparation for MALDI imaging MS of FFPE sections using fractional factorial design of experiments.

    PubMed

    Oetjen, Janina; Lachmund, Delf; Palmer, Andrew; Alexandrov, Theodore; Becker, Michael; Boskamp, Tobias; Maass, Peter

    2016-09-01

    A standardized workflow for matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging MS) is a prerequisite for the routine use of this promising technology in clinical applications. We present an approach to develop standard operating procedures for MALDI imaging MS sample preparation of formalin-fixed and paraffin-embedded (FFPE) tissue sections based on a novel quantitative measure of dataset quality. To cover many parts of the complex workflow and simultaneously test several parameters, experiments were planned according to a fractional factorial design of experiments (DoE). The effect of ten different experiment parameters was investigated in two distinct DoE sets, each consisting of eight experiments. FFPE rat brain sections were used as standard material because of low biological variance. The mean peak intensity and a recently proposed spatial complexity measure were calculated for a list of 26 predefined peptides obtained by in silico digestion of five different proteins and served as quality criteria. A five-way analysis of variance (ANOVA) was applied on the final scores to retrieve a ranking of experiment parameters with increasing impact on data variance. Graphical abstract MALDI imaging experiments were planned according to fractional factorial design of experiments for the parameters under study. Selected peptide images were evaluated by the chosen quality metric (structure and intensity for a given peak list), and the calculated values were used as an input for the ANOVA. The parameters with the highest impact on the quality were deduced and SOPs recommended. PMID:27485623

  17. SU-C-207-03: Optimization of a Collimator-Based Sparse Sampling Technique for Low-Dose Cone-Beam CT

    SciTech Connect

    Lee, T; Cho, S; Kim, I; Han, B

    2015-06-15

    Purpose: In computed tomography (CT) imaging, radiation dose delivered to the patient is one of the major concerns. Sparse-view CT takes projections at sparser view angles and provides a viable option to reducing dose. However, a fast power switching of an X-ray tube, which is needed for the sparse-view sampling, can be challenging in many CT systems. We have earlier proposed a many-view under-sampling (MVUS) technique as an alternative to sparse-view CT. In this study, we investigated the effects of collimator parameters on the image quality and aimed to optimize the collimator design. Methods: We used a bench-top circular cone-beam CT system together with a CatPhan600 phantom, and took 1440 projections from a single rotation. The multi-slit collimator made of tungsten was mounted on the X-ray source for beam blocking. For image reconstruction, we used a total-variation minimization (TV) algorithm and modified the backprojection step so that only the measured data through the collimator slits are to be used in the computation. The number of slits and the reciprocation frequency have been varied and the effects of them on the image quality were investigated. We also analyzed the sampling efficiency: the sampling density and data incoherence in each case. We tested three sets of slits with their number of 6, 12 and 18, each at reciprocation frequencies of 10, 30, 50 and 70 Hz/ro. Results: Consistent results in the image quality have been produced with the sampling efficiency, and the optimum condition was found to be using 12 slits at 30 Hz/ro. As image quality indices, we used the CNR and the detectability. Conclusion: We conducted an experiment with a moving multi-slit collimator to realize a sparse-sampled cone-beam CT. Effects of collimator parameters on the image quality have been systematically investigated, and the optimum condition has been reached.

  18. Performance of an Optimized Paper-Based Test for Rapid Visual Measurement of Alanine Aminotransferase (ALT) in Fingerstick and Venipuncture Samples

    PubMed Central

    Noubary, Farzad; Coonahan, Erin; Schoeplein, Ryan; Baden, Rachel; Curry, Michael; Afdhal, Nezam; Kumar, Shailendra; Pollock, Nira R.

    2015-01-01

    Background A paper-based, multiplexed, microfluidic assay has been developed to visually measure alanine aminotransferase (ALT) in a fingerstick sample, generating rapid, semi-quantitative results. Prior studies indicated a need for improved accuracy; the device was subsequently optimized using an FDA-approved automated platform (Abaxis Piccolo Xpress) as a comparator. Here, we evaluated the performance of the optimized paper test for measurement of ALT in fingerstick blood and serum, as compared to Abaxis and Roche/Hitachi platforms. To evaluate feasibility of remote results interpretation, we also compared reading cell phone camera images of completed tests to reading the device in real time. Methods 96 ambulatory patients with varied baseline ALT concentration underwent fingerstick testing using the paper device; cell phone images of completed devices were taken and texted to a blinded off-site reader. Venipuncture serum was obtained from 93/96 participants for routine clinical testing (Roche/Hitachi); subsequently, 88/93 serum samples were captured and applied to paper and Abaxis platforms. Paper test and reference standard results were compared by Bland-Altman analysis. Findings For serum, there was excellent agreement between paper test and Abaxis results, with negligible bias (+4.5 U/L). Abaxis results were systematically 8.6% lower than Roche/Hitachi results. ALT values in fingerstick samples tested on paper were systematically lower than values in paired serum tested on paper (bias -23.6 U/L) or Abaxis (bias -18.4 U/L); a correction factor was developed for the paper device to match fingerstick blood to serum. Visual reads of cell phone images closely matched reads made in real time (bias +5.5 U/L). Conclusions The paper ALT test is highly accurate for serum testing, matching the reference method against which it was optimized better than the reference methods matched each other. A systematic difference exists between ALT values in fingerstick and paired

  19. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    SciTech Connect

    Hu, Lingzhi E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr. E-mail: raymond.muzic@case.edu

    2014-10-15

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in

  20. Defining departmental mission.

    PubMed

    Hartman, M D; Barrow, J A; Sawyer, W R

    1990-02-01

    Mission statements have long been recognized by corporate America as a way to define an enterprise. The necessary business orientation of the health care industry requires that hospitals and hospital departments define their scope of services and reason for existence. The accelerating reprofessionalization affecting departments of pharmacy requires the same. "Improving the quality of patient care" can no longer represent a euphemism for simply reacting to external factors or acting on a whim without clear meaningful intent. Professional departments and hospitals must demonstrate a sense of direction and purpose and be able to justify costs to a budget-conscious management and skeptical public. Mission statements are not substitutes for a clearly defined sense of professional mission. However, well-constructed mission statements contribute to clarity of departmental and professional purpose and effective achievement of goals. PMID:10128549

  1. Defining Risk Drinking

    PubMed Central

    Dawson, Deborah A.

    2011-01-01

    Many efforts to prevent alcohol-related harm are aimed at reducing risk drinking. This article outlines the many conceptual and methodological challenges to defining risk drinking. It summarizes recent evidence regarding associations of various aspects of alcohol consumption with chronic and acute alcohol-related harms, including mortality, morbidity, injury, and alcohol use disorders, and summarizes the study designs most appropriate to defining risk thresholds for these types of harm. In addition, it presents an international overview of low-risk drinking guidelines from more than 20 countries, illustrating the wide range of interpretations of the scientific evidence related to risk drinking. This article also explores the impact of drink size on defining risk drinking and describes variation in what is considered to be a standard drink across populations. Actual and standard drink sizes differ in the United States, and this discrepancy affects definitions of risk drinking and prevention efforts. PMID:22330212

  2. Defining the Human Microbiome

    PubMed Central

    Ursell, Luke K; Metcalf, Jessica L; Parfrey, Laura Wegener; Knight, Rob

    2012-01-01

    Rapidly developing sequencing methods and analytical techniques are enhancing our ability to understand the human microbiome, and, indeed, how we define the microbiome and its constituents. In this review we highlight recent research that expands our ability to understand the human microbiome on different spatial and temporal scales, including daily timeseries datasets spanning months. Furthermore, we discuss emerging concepts related to defining operational taxonomic units, diversity indices, core versus transient microbiomes and the possibility of enterotypes. Additional advances in sequencing technology and in our understanding of the microbiome will provide exciting prospects for exploiting the microbiota for personalized medicine. PMID:22861806

  3. Dose optimization with first-order total-variation minimization for dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT)

    SciTech Connect

    Kim, Hojin; Li Ruijiang; Lee, Rena; Goldstein, Thomas; Boyd, Stephen; Candes, Emmanuel; Xing Lei

    2012-07-15

    Purpose: A new treatment scheme coined as dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT) has recently been proposed to bridge the gap between IMRT and VMAT. By increasing the angular sampling of radiation beams while eliminating dispensable segments of the incident fields, DASSIM-RT is capable of providing improved conformity in dose distributions while maintaining high delivery efficiency. The fact that DASSIM-RT utilizes a large number of incident beams represents a major computational challenge for the clinical applications of this powerful treatment scheme. The purpose of this work is to provide a practical solution to the DASSIM-RT inverse planning problem. Methods: The inverse planning problem is formulated as a fluence-map optimization problem with total-variation (TV) minimization. A newly released L1-solver, template for first-order conic solver (TFOCS), was adopted in this work. TFOCS achieves faster convergence with less memory usage as compared with conventional quadratic programming (QP) for the TV form through the effective use of conic forms, dual-variable updates, and optimal first-order approaches. As such, it is tailored to specifically address the computational challenges of large-scale optimization in DASSIM-RT inverse planning. Two clinical cases (a prostate and a head and neck case) are used to evaluate the effectiveness and efficiency of the proposed planning technique. DASSIM-RT plans with 15 and 30 beams are compared with conventional IMRT plans with 7 beams in terms of plan quality and delivery efficiency, which are quantified by conformation number (CN), the total number of segments and modulation index, respectively. For optimization efficiency, the QP-based approach was compared with the proposed algorithm for the DASSIM-RT plans with 15 beams for both cases. Results: Plan quality improves with an increasing number of incident beams, while the total number of segments is maintained to be about the

  4. Defining Faculty Work.

    ERIC Educational Resources Information Center

    Gray, Peter J.; Diamond, Robert M.

    1994-01-01

    A process of planned change is proposed for redefining college faculty work. Legitimate faculty work is defined in broad terms, and information sources and methods for collecting information to support redefinition are identified. The final step in the redefinition process is the development of new mission statements for the institution and its…

  5. Defining Child Abuse.

    ERIC Educational Resources Information Center

    Giovannoni, Jeanne M.; Becerra, Rosina M.

    In seeking to clarify the meaning of the terms "child abuse" and "child neglect" it has been assumed that, like other forms of social deviance, they are socially defined phenomena. Interviews were conducted with those professionals (lawyers, pediatricians, police officers, and social workers) who daily handle the problems of abuse and neglect for…

  6. Defined by Limitations

    ERIC Educational Resources Information Center

    Arriola, Sonya; Murphy, Katy

    2010-01-01

    Undocumented students are a population defined by limitations. Their lack of legal residency and any supporting paperwork (e.g., Social Security number, government issued identification) renders them essentially invisible to the American and state governments. They cannot legally work. In many states, they cannot legally drive. After the age of…

  7. Defining and Assessing Quality.

    ERIC Educational Resources Information Center

    Fincher, Cameron, Ed.

    The seven papers in this monograph focus on defining and assessing quality. The paper are: (1) "Reflections on Design Ideals" (E. Grady Bogue), which addresses some "governing ideals" of collegiate quality; (2) "Between a Rock and a Hard Place: Investment and Quality in Higher Education" (Sven Groennings), which sees the competitive quality of…

  8. On Defining Literacy.

    ERIC Educational Resources Information Center

    Sherritt, Caroline A.

    Defining literacy is a compelling challenge to educators. They generally use three models: instrumental, functional, and empowerment. The latter two approaches, which were increasingly evident in the 1980s, identify literacy by the social functions required in a given context or by the qualities needed for illiterate people to take control of…

  9. On Defining Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2011-01-01

    Though central to any pedagogical development of physics, the concept of mass is still not well understood. Properly defining mass has proven to be far more daunting than contemporary textbooks would have us believe. And yet today the origin of mass is one of the most aggressively pursued areas of research in all of physics. Much of the excitement…

  10. Defining Equality in Education

    ERIC Educational Resources Information Center

    Benson, Ronald E.

    1977-01-01

    Defines equality of education in three areas: 1) by the degree of integration of school systems; 2) by a comparison of material resources and assets in education; and 3) by the effects of schooling as measured by the mean scores of groups on standardized tests. Available from: College of Education, 107 Quadrangle, Iowa State University, Ames, Iowa…

  11. Optimization of solid-phase-extraction cleanup and validation of quantitative determination of eugenol in fish samples by gas chromatography-tandem mass spectrometry.

    PubMed

    Li, Jincheng; Zhang, Jing; Liu, Yang

    2015-08-01

    This paper describes a rapid and sensitive method for the determination of eugenol in fish samples, based on solid-phase extraction (SPE) and gas chromatography-tandem mass spectrometry (GC-MS-MS). Samples were extracted with acetonitrile, and then cleanup was performed using C18 solid-phase extraction (SPE). The determination of eugenol was achieved using an electron-ionization source (EI) in multiple-reaction-monitoring (MRM) mode. Under optimized conditions, the average recoveries of eugenol were in the range 94.85-103.61 % and the relative standard deviation (RSD) was lower than 12.0 %. The limit of detection (LOD) was 2.5 μg kg(-1) and the limit of quantification (LOQ) was 5.0 μg kg(-1). This method was applied to an exposure study of eugenol residue in carp muscle tissues. The results revealed that eugenol was nearly totally eliminated within 96 h. Graphical Abstract Flow diagram for sample pretreatment.

  12. Optimization of the β LACTA test for the detection of extended-spectrum-β-lactamase-producing bacteria directly in urine samples.

    PubMed

    Amzalag, Jonas; Mizrahi, Assaf; Naouri, Diane; Nguyen, Jean Claude; Ganansia, Olivier; Le Monnier, Alban

    2016-09-01

    The β LACTA™ test (BLT) is a chromogenic test detecting resistance to third-generation cephalosporins on bacterial colonies. Some studies have shown that this test can be used directly in urine samples. The aim of this study was to determine the optimal conditions of use of this test in order to detect the ESBL-producing bacteria directly in urine samples. During a 4-months period, a total of 365 consecutive urine samples were tested with the BLT using the recommendation of the manufacturer. We isolated 56 ESBL-producing bacteria and 17 AmpC-overproducing bacteria. ESBL- and/or AmpC β-lactamase-producing bacteria isolates were systematically characterized by disc diffusion antibiotic susceptibility testing interpreted according to the guidelines of EUCAST. The sensitivity and the specificity for 3GC-resistance detection, regardless the mechanism of resistance, were, respectively, 60.3% and 100%, whereas for ESBL detection, it was, respectively, 75.4% and 99.7%. We applied then modification of the initial protocol considering urines with a bacteriuria >1000/μL, a reading time at 30 min and considering any change of the initial colour as positive. The overall sensitivity was 81% and the sensitivity for ESBL-detection raised to 95.7%.

  13. Electron-beam induced disorder effects in optimally doped Bi2Sr2CaCu2O8+x single crystal samples

    NASA Astrophysics Data System (ADS)

    Vobornik, I.; Berger, H.; Pavuna, D.; Margaritondo, G.; Forro, L.; Grioni, M.; Rullier-Albenque, F.; Onellion, M.; EPFL Collaboration; Laboratoire Des Solides Irradiés Collaboration

    2000-03-01

    We report on the effects of electron-beam induced disorder in optimally doped Bi2Sr2CaCu2O8+x single crystal samples, measured with angle-resolved photoemission. In the superconducting state, the disorder fills in the gap, without changing the binding energy or the width of the narrow coherent feature.[1] In the normal state, disorder leads to an anisotropic pseudogap in angle-resolved photoemission, with the largest pseudogap near the (0,p) point and no pseudogap in the direction.[2,3] We discuss implications of these data. 1. I. Vobornik et.al., Phys. Rev. Lett. 82 , 3128 (1999). 2. I. Vobornik, Ph.D. thesis, EPFL, Lausanne, Switzerland, October, 1999. 3. I. Vobornik et.al., unpublished.

  14. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis.

    PubMed

    Chan, Leo Lai; Lo, Samuel Chun-Lap; Hodgkiss, Ivor John

    2002-09-01

    A comprehensive study to find the optimal sample preparation conditions for two-dimensional electrophoresis (2-DE) analysis of Prorocentrum triestinum, a model causative agent of harmful algal blooms (HABs) was carried out. The four major sample preparation steps for 2-DE: (a) cell disruption: i.e. sonication and homogenization with glass beads; (b) protein extraction : i.e. sequential and independent extraction procedures; (c) pre-electrophoretic treatment: these included (i) treatment with RNAase/DNAase or benzonase; (ii) ultracentrifugation to sediment large macromolecules such as DNA; (iii) desalting and concentration by ultrafiltration through a Microcon centrifugal filter device (MWCO: 3000 daltons); and (iv) desalting by a micro BioSpin chromatography column (MWCO: 6000 daltons); and (d) rehydration buffers, reducing agents and sample application in the first dimension isoelectric focussing were studied. Our results showed that sonication is easy to perform and resulted in a higher protein yield. Among the four extraction buffers, the urea containing buffers resulted in the extraction of the highest amount of protein while tris(hydroxymethyl)aminomethane buffers and trichloroacetic acid (TCA)/acetone precipitation allowed detection of a higher number of protein species (i.e. protein spots). Desalting by BioSpin and ultrafiltration have improved the 2-DE resolution of the water soluble fraction but have less effect on urea containing fractions. TCA/acetone precipitation was able to desalt all protein fractions independent of the extraction media, however extended exposure to this low pH medium has caused protein modification. Introduction of either DNase/RNase or benzonase treatment did not improve the discriminatory power of the 2-DE but this treatment did yield 2-DE with the clearest background. Proteolytic digestion was inhibited by addition of a protease inhibitor cocktail. Taken overall, a combination of sequential extraction and desalting by Bio

  15. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis.

    PubMed

    Chan, Leo Lai; Lo, Samuel Chun-Lap; Hodgkiss, Ivor John

    2002-09-01

    A comprehensive study to find the optimal sample preparation conditions for two-dimensional electrophoresis (2-DE) analysis of Prorocentrum triestinum, a model causative agent of harmful algal blooms (HABs) was carried out. The four major sample preparation steps for 2-DE: (a) cell disruption: i.e. sonication and homogenization with glass beads; (b) protein extraction : i.e. sequential and independent extraction procedures; (c) pre-electrophoretic treatment: these included (i) treatment with RNAase/DNAase or benzonase; (ii) ultracentrifugation to sediment large macromolecules such as DNA; (iii) desalting and concentration by ultrafiltration through a Microcon centrifugal filter device (MWCO: 3000 daltons); and (iv) desalting by a micro BioSpin chromatography column (MWCO: 6000 daltons); and (d) rehydration buffers, reducing agents and sample application in the first dimension isoelectric focussing were studied. Our results showed that sonication is easy to perform and resulted in a higher protein yield. Among the four extraction buffers, the urea containing buffers resulted in the extraction of the highest amount of protein while tris(hydroxymethyl)aminomethane buffers and trichloroacetic acid (TCA)/acetone precipitation allowed detection of a higher number of protein species (i.e. protein spots). Desalting by BioSpin and ultrafiltration have improved the 2-DE resolution of the water soluble fraction but have less effect on urea containing fractions. TCA/acetone precipitation was able to desalt all protein fractions independent of the extraction media, however extended exposure to this low pH medium has caused protein modification. Introduction of either DNase/RNase or benzonase treatment did not improve the discriminatory power of the 2-DE but this treatment did yield 2-DE with the clearest background. Proteolytic digestion was inhibited by addition of a protease inhibitor cocktail. Taken overall, a combination of sequential extraction and desalting by Bio

  16. Multivariate optimization and simultaneous determination of hydride and non-hydride-forming elements in samples of a wide pH range using dual-mode sample introduction with plasma techniques: application on leachates from cement mortar material.

    PubMed

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Asfaw, Alemayehu

    2009-02-01

    Analytical methods have been developed for the simultaneous determination of hydride-forming (As, Sb) and non-hydride-forming (Cr, Mo, V) elements in aqueous samples of a wide pH range (pH 3-13). The methods used dual-mode (DM) sample introduction with ICP-AES and ICP-MS instruments. The effect of selected experimental variables, i.e., sample pH and concentrations of HNO(3), thiourea, and NaBH(4), were studied in a multivariate way using face-centered central composite design (FC-CCD). Compromised optimum values of the experimental parameters were identified using a response optimizer. The statistically found optimum values were verified experimentally. The methods provided improved sensitivities for the hydride-forming elements compared with the respective conventional nebulization (Neb) systems by factors of 67 (As) and 64 (Sb) for ICP-AES and 36 (As) and 54 (Sb) for ICP-MS. Slight sensitivity improvements were also observed for the non-hydride-forming elements. The limits of detection (LOD) of As and Sb were lowered, respectively, to 0.8 and 0.9 microg L(-1) with the DM-ICP-AES system and to 0.01 and 0.02 microg L(-1) with the DM-ICP-MS system. The short-term stabilities of both methods were between 2.1 and 5.4%. The methods were applied for the analysis of leachates of a cement mortar material prepared in the pH range 3-13. The elemental concentration of the leachates determined by the two DM methods were statistically compared with the values obtained from Neb-ICP-MS analysis; the values showed good agreement at the 95% confidence level. Quantitative spike recoveries were obtained for the analytes from most of the leachates using both DM methods.

  17. Multivariate approach in the optimization procedures for the direct determination of manganese in serum samples by graphite furnace atomic absorption spectrometry.

    PubMed

    Fabrino, Henrique José Ferraz; Silveira, Josianne Nicácio; Neto, Waldomiro Borges; Goes, Alfredo Miranda; Beinner, Mark Anthony; da Silva, José Bento Borba

    2011-10-01

    A method for direct determination of manganese (Mn) in human serum by graphite furnace atomic absorption spectrometry (GFAAS) was proposed in this work. The samples were only diluted 1:4 with nitric acid 1% (v/v) and Triton(®) X-100 0.1% (v/v). The optimization of the instrumental conditions was made using multivariate approach. A factorial design (2(3)) was employed to investigate the tendency of the most intense absorbance signal. The pyrolysis and atomization temperatures and the use of modifier were available and only the parameter modifier use did not have a significant effect on the response. A Center Composed Design (CCD) presented best temperatures of 430 °C and 2568 °C for pyrolysis and atomization, respectively. The method allowed the determination of manganese with a curve varying from 0.7 to 3.3 μg/L. Recovery studies in three concentration levels (n=7 for each level) presented results from 98 ± 5 to 102 ± 7 %. The detection limit was 0.2 μg/L, the quantifying limit was 0.7 μg/L, and the characteristic mass, 1.3 ± 0.2 pg. Intra- and interassay studies showed coefficients of variation of 4.7-7.0% (n=21) and 6-8%(n=63), respectively. The method was applied for the determination of manganese in 53 samples obtaining concentrations from 3.9 to 13.7 μg/L.

  18. Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake.

    PubMed

    Kiefer, Isabel; Odermatt, Daniel; Anneville, Orlane; Wüest, Alfred; Bouffard, Damien

    2015-09-15

    Directives and legislations worldwide aim at representatively and continuously monitoring the ecological status of surface waters. In many countries, chlorophyll-a concentrations (CHL) are used as an indicator of phytoplankton abundance and the trophic level of lakes or reservoirs. In-situ measurements of water quality parameters, however, are time-consuming, costly and of unknown but naturally limited spatial representativeness. In addition, the variety of the involved lab and field measurement methods and instruments complicates comparability and reproducibility. Taking Lake Geneva as an example, 1234 satellite images from the MERIS sensor on the Envisat satellite from 2002 to 2012 are used to quantify the spatial and temporal variations of CHL concentrations. Based on histograms of spring, summer and autumn CHL estimates, the spatial representativeness of two existing in-situ measurement locations is analysed. Appropriate sampling frequencies to capture CHL peaks are examined by means of statistical resampling. The approaches proposed allow determining optimal in-situ sampling locations and frequencies. Their generic nature allows for adaptation to other lakes, especially to establish new survey programmes where no previous records are available.

  19. [Optimization of sample pretreatment method for the determination of typical artificial sweeteners in soil by high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Feng, Biting; Gan, Zhiwei; Hu, Hongwei; Sun, Hongwen

    2014-09-01

    The sample pretreatment method for the determination of four typical artificial sweeteners (ASs) including sucralose, saccharin, cyclamate, and acesulfame in soil by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was optimized. Different conditions of extraction, including four extractants (methanol, acetonitrile, acetone, deionized water), three kinds of ionic strength of sodium acetate solution (0.001, 0.01, 0.1 mol/L), four pH values (3, 4, 5 and 6) of 0.01 mol/L acetate-sodium acetate solution, four set durations of extraction (20, 40, 60, 120 min) and number of extraction times (1, 2, 3, 4 times) were compared. The optimal sample pretreatment method was finally set up. The sam- ples were extracted twice with 25 mL 0.01 mol/L sodium acetate solution (pH 4) for 20 min per cycle. The extracts were combined and then purified and concentrated by CNW Poly-Sery PWAX cartridges with methanol containing 1 mmol/L tris (hydroxymethyl) amino methane (Tris) and 5% (v/v) ammonia hydroxide as eluent. The analytes were determined by HPLC-MS/MS. The recoveries were obtained by spiked soil with the four artificial sweeteners at 1, 10, 100 μg/kg (dry weight), separately. The average recoveries of the analytes ranged from 86.5% to 105%. The intra-day and inter-day precisions expressed as relative standard deviations (RSDs) were in the range of 2.56%-5.94% and 3.99%-6.53%, respectively. Good linearities (r2 > 0.995) were observed between 1-100 μg/kg (dry weight) for all the compounds. The limits of detection were 0.01-0.21 kg/kg and the limits of quantification were 0.03-0.70 μg/kg for the analytes. The four artificial sweeteners were determined in soil samples from farmland contaminated by wastewater in Tianjin. This method is rapid, reliable, and suitable for the investigation of artificial sweeteners in soil. PMID:25752083

  20. Defining responsibility for screening.

    PubMed

    Sifri, R; Wender, R

    1999-10-01

    Patients commonly receive medical care from multiple providers and confusion as to who is responsible for cancer screening undoubtedly contributes to inadequate recommendations. Effective screening requires successful implementation of a series of steps that begin with the initial discussion of a screening test and proceed through obtaining results and instituting appropriate follow-up. Clear definition of generalist and specialist physician roles are necessary to optimally screen the public. This article explores the differences in how generalists and specialists approach screening, describes models of care that facilitate shared responsibility for screening, and suggests strategies on how to improve communication between physicians to maximize screening performance. PMID:10452930

  1. Defining periodontal health

    PubMed Central

    2015-01-01

    Assessment of the periodontium has relied exclusively on a variety of physical measurements (e.g., attachment level, probing depth, bone loss, mobility, recession, degree of inflammation, etc.) in relation to various case definitions of periodontal disease. Periodontal health was often an afterthought and was simply defined as the absence of the signs and symptoms of a periodontal disease. Accordingly, these strict and sometimes disparate definitions of periodontal disease have resulted in an idealistic requirement of a pristine periodontium for periodontal health, which makes us all diseased in one way or another. Furthermore, the consequence of not having a realistic definition of health has resulted in potentially questionable recommendations. The aim of this manuscript was to assess the biological, environmental, sociological, economic, educational and psychological relationships that are germane to constructing a paradigm that defines periodontal health using a modified wellness model. The paradigm includes four cardinal characteristics, i.e., 1) a functional dentition, 2) the painless function of a dentition, 3) the stability of the periodontal attachment apparatus, and 4) the psychological and social well-being of the individual. Finally, strategies and policies that advocate periodontal health were appraised. I'm not sick but I'm not well, and it's a sin to live so well. Flagpole Sitta, Harvey Danger PMID:26390888

  2. Optimal Appearance Model for Visual Tracking.

    PubMed

    Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao

    2016-01-01

    Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639

  3. Optimal Appearance Model for Visual Tracking.

    PubMed

    Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao

    2016-01-01

    Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models.

  4. TAPERED DEFINING SLOT

    DOEpatents

    Pressey, F.W.

    1959-09-01

    An improvement is reported in the shape and formation of the slot or opening in the collimating slot member which forms part of an ion source of the type wherein a vapor of the material to be ionized is bombarded by electrons in a magnetic field to strike an arc-producing ionization. The defining slot is formed so as to have a substantial taper away from the cathode, causing the electron bombardment from the cathode to be dispersed over a greater area reducing its temperature and at the same time bringing the principal concentration of heat from the electron bombardment nearer the anode side of the slot, thus reducing deterioration and prolonging the life of the slot member during operation.

  5. Defining the mobilome.

    PubMed

    Siefert, Janet L

    2009-01-01

    This chapter defines the agents that provide for the movement of genetic material which fuels the adaptive potential of life on our planet. The chapter has been structured to be broadly comprehensive, arbitrarily categorizing the mobilome into four classes: (1) transposons, (2) plasmids, (3) bacteriophage, and (4) self-splicing molecular parasites.Our increasing understanding of the mobilome is as dynamic as the mobilome itself. With continuing discovery, it is clear that nature has not confined these genomic agents of change to neat categories, but rather the classification categories overlap and intertwine. Massive sequencing efforts and their published analyses are continuing to refine our understanding of the extent of the mobilome. This chapter provides a framework to describe our current understanding of the mobilome and a foundation on which appreciation of its impact on genome evolution can be understood.

  6. Defining critical thoughts.

    PubMed

    Lovatt, Abbie

    2014-05-01

    Nursing education has long struggled to define critical thinking and explain how the process of critical thinking fits into the context of nursing. Despite this long time struggle, nurses and nurse educators continue to strive to foster critical thinking skills in nursing students as intuitively most nurses believe that critical thinking is necessary to function competently in the workplace. This article explores the most recent work of Dr. Stephen Brookfield and ties the concepts which are explored in Brookfield's work to nursing practice. Brookfield identifies that learners understand the meaning of critical thinking the best when the process is first demonstrated. Role modeling is a method educators can use to demonstrate critical thinking and is a strategy which nurses often use in the clinical area to train and mentor new nursing staff. Although it is not a new strategy in nursing education, it is a valuable strategy to engage learners in critical thinking activities. PMID:24418065

  7. Defining clinical 'workstation'.

    PubMed

    Safran, C

    1994-01-01

    Interest in the physician's workstation has increased, yet often seems to focus on technological issues. At Boston's Beth Israel Hospital, the Center for Clinical Computing includes heavily used clinical workstations. Their evolution over the past 20 years suggests design criteria: the workstation must be patient-centered, the interface must be uniform, and data acquisition must be addressed at a system level. However, it is clinical function that really defines a workstation. The workstation should do the following: display patient information rapidly and flexibly; assist with administrative tasks; facilitate communication; and provide four important types of decision support: access to literature, access to databases, clinical calculation, and 'synthetic vision,' or different views of patient data. The solutions to our healthcare problems are not in 'workboxes' we can buy, but in creative approaches we can imagine. We need a patient-centered infrastructure and a reduced workload for the clinician-perhaps a 'worklesstation'. PMID:8125637

  8. Defining the Anthropocene

    NASA Astrophysics Data System (ADS)

    Lewis, Simon; Maslin, Mark

    2016-04-01

    Time is divided by geologists according to marked shifts in Earth's state. Recent global environmental changes suggest that Earth may have entered a new human-dominated geological epoch, the Anthropocene. Should the Anthropocene - the idea that human activity is a force acting upon the Earth system in ways that mean that Earth will be altered for millions of years - be defined as a geological time-unit at the level of an Epoch? Here we appraise the data to assess such claims, first in terms of changes to the Earth system, with particular focus on very long-lived impacts, as Epochs typically last millions of years. Can Earth really be said to be in transition from one state to another? Secondly, we then consider the formal criteria used to define geological time-units and move forward through time examining whether currently available evidence passes typical geological time-unit evidence thresholds. We suggest two time periods likely fit the criteria (1) the aftermath of the interlinking of the Old and New Worlds, which moved species across continents and ocean basins worldwide, a geologically unprecedented and permanent change, which is also the globally synchronous coolest part of the Little Ice Age (in Earth system terms), and the beginning of global trade and a new socio-economic "world system" (in historical terms), marked as a golden spike by a temporary drop in atmospheric CO2, centred on 1610 CE; and (2) the aftermath of the Second World War, when many global environmental changes accelerated and novel long-lived materials were increasingly manufactured, known as the Great Acceleration (in Earth system terms) and the beginning of the Cold War (in historical terms), marked as a golden spike by the peak in radionuclide fallout in 1964. We finish by noting that the Anthropocene debate is politically loaded, thus transparency in the presentation of evidence is essential if a formal definition of the Anthropocene is to avoid becoming a debate about bias. The

  9. Optimal space trajectories

    NASA Astrophysics Data System (ADS)

    Marec, J. P.

    The optimization of rendezvous and transfer orbits is introduced. Optimal transfer is defined and propulsion system modeling is outlined. Parameter optimization, including the Hohmann transfer, is discussed. Optimal transfer in general, uniform, and central gravitational fields is covered. Interplanetary rendezvous is treated.

  10. [Determination of 51 carbamate pesticide residues in vegetables by liquid chromatography-tandem mass spectrometry based on optimization of QuEChERS sample preparation method].

    PubMed

    Wang, Lianzhu; Zhou, Yu; Huang, Xiaoyan; Wang, Ruilong; Lin, Zixu; Chen, Yong; Wang, Dengfei; Lin, Dejuan; Xu, Dunming

    2013-12-01

    The raw extracts of six vegetables (tomato, green bean, shallot, broccoli, ginger and carrot) were analyzed using gas chromatography-mass spectrometry (GC-MS) in full scan mode combined with NIST library search to confirm main matrix compounds. The effects of cleanup and adsorption mechanisms of primary secondary amine (PSA) , octadecylsilane (C18) and PSA + C18 on co-extractives were studied by the weight of evaporation residue for extracts before and after cleanup. The suitability of the two versions of QuEChERS method for sample preparation was evaluated for the extraction of 51 carbamate pesticides in the six vegetables. One of the QuEChERS methods was the original un-buffered method published in 2003, and the other was AOAC Official Method 2007.01 using acetate buffer. As a result, the best effects were obtained from using the combination of C18 and PSA for extract cleanup in vegetables. The acetate-buffered version was suitable for the determination of all pesticides except dioxacarb. Un-buffered QuEChERS method gave satisfactory results for determining dioxacarb. Based on these results, the suitable QuEChERS sample preparation method and liquid chromatography-positive electrospray ionization-tandem mass spectrometry under the optimized conditions were applied to determine the 51 carbamate pesticide residues in six vegetables. The analytes were quantified by matrix-matched standard solution. The recoveries at three levels of 10, 20 and 100 microg/kg spiked in six vegetables ranged from 58.4% to 126% with the relative standard deviations of 3.3%-26%. The limits of quantification (LOQ, S/N > or = 10) were 0.2-10 microg/kg except that the LOQs of cartap and thiofanox were 50 microg/kg. The method is highly efficient, sensitive and suitable for monitoring the 51 carbamate pesticide residues in vegetables.

  11. [Determination of 51 carbamate pesticide residues in vegetables by liquid chromatography-tandem mass spectrometry based on optimization of QuEChERS sample preparation method].

    PubMed

    Wang, Lianzhu; Zhou, Yu; Huang, Xiaoyan; Wang, Ruilong; Lin, Zixu; Chen, Yong; Wang, Dengfei; Lin, Dejuan; Xu, Dunming

    2013-12-01

    The raw extracts of six vegetables (tomato, green bean, shallot, broccoli, ginger and carrot) were analyzed using gas chromatography-mass spectrometry (GC-MS) in full scan mode combined with NIST library search to confirm main matrix compounds. The effects of cleanup and adsorption mechanisms of primary secondary amine (PSA) , octadecylsilane (C18) and PSA + C18 on co-extractives were studied by the weight of evaporation residue for extracts before and after cleanup. The suitability of the two versions of QuEChERS method for sample preparation was evaluated for the extraction of 51 carbamate pesticides in the six vegetables. One of the QuEChERS methods was the original un-buffered method published in 2003, and the other was AOAC Official Method 2007.01 using acetate buffer. As a result, the best effects were obtained from using the combination of C18 and PSA for extract cleanup in vegetables. The acetate-buffered version was suitable for the determination of all pesticides except dioxacarb. Un-buffered QuEChERS method gave satisfactory results for determining dioxacarb. Based on these results, the suitable QuEChERS sample preparation method and liquid chromatography-positive electrospray ionization-tandem mass spectrometry under the optimized conditions were applied to determine the 51 carbamate pesticide residues in six vegetables. The analytes were quantified by matrix-matched standard solution. The recoveries at three levels of 10, 20 and 100 microg/kg spiked in six vegetables ranged from 58.4% to 126% with the relative standard deviations of 3.3%-26%. The limits of quantification (LOQ, S/N > or = 10) were 0.2-10 microg/kg except that the LOQs of cartap and thiofanox were 50 microg/kg. The method is highly efficient, sensitive and suitable for monitoring the 51 carbamate pesticide residues in vegetables. PMID:24669707

  12. Using Soil Apparent Electrical Conductivity to Optimize Sampling of Soil Penetration Resistance and to Improve the Estimations of Spatial Patterns of Soil Compaction

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from −0.36 to −0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging. PMID:25610899

  13. Using soil apparent electrical conductivity to optimize sampling of soil penetration resistance and to improve the estimations of spatial patterns of soil compaction.

    PubMed

    Machado Siqueira, Glécio; Dafonte Dafonte, Jorge; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from -0.36 to -0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging.

  14. Defining an emerging disease.

    PubMed

    Moutou, F; Pastoret, P-P

    2015-04-01

    Defining an emerging disease is not straightforward, as there are several different types of disease emergence. For example, there can be a 'real' emergence of a brand new disease, such as the emergence of bovine spongiform encephalopathy in the 1980s, or a geographic emergence in an area not previously affected, such as the emergence of bluetongue in northern Europe in 2006. In addition, disease can emerge in species formerly not considered affected, e.g. the emergence of bovine tuberculosis in wildlife species since 2000 in France. There can also be an unexpected increase of disease incidence in a known area and a known species, or there may simply be an increase in our knowledge or awareness of a particular disease. What all these emerging diseases have in common is that human activity frequently has a role to play in their emergence. For example, bovine spongiform encephalopathy very probably emerged as a result of changes in the manufacturing of meat-and-bone meal, bluetongue was able to spread to cooler climes as a result of uncontrolled trade in animals, and a relaxation of screening and surveillance for bovine tuberculosis enabled the disease to re-emerge in areas that had been able to drastically reduce the number of cases. Globalisation and population growth will continue to affect the epidemiology of diseases in years to come and ecosystems will continue to evolve. Furthermore, new technologies such as metagenomics and high-throughput sequencing are identifying new microorganisms all the time. Change is the one constant, and diseases will continue to emerge, and we must consider the causes and different types of emergence as we deal with these diseases in the future. PMID:26470448

  15. Defining an emerging disease.

    PubMed

    Moutou, F; Pastoret, P-P

    2015-04-01

    Defining an emerging disease is not straightforward, as there are several different types of disease emergence. For example, there can be a 'real' emergence of a brand new disease, such as the emergence of bovine spongiform encephalopathy in the 1980s, or a geographic emergence in an area not previously affected, such as the emergence of bluetongue in northern Europe in 2006. In addition, disease can emerge in species formerly not considered affected, e.g. the emergence of bovine tuberculosis in wildlife species since 2000 in France. There can also be an unexpected increase of disease incidence in a known area and a known species, or there may simply be an increase in our knowledge or awareness of a particular disease. What all these emerging diseases have in common is that human activity frequently has a role to play in their emergence. For example, bovine spongiform encephalopathy very probably emerged as a result of changes in the manufacturing of meat-and-bone meal, bluetongue was able to spread to cooler climes as a result of uncontrolled trade in animals, and a relaxation of screening and surveillance for bovine tuberculosis enabled the disease to re-emerge in areas that had been able to drastically reduce the number of cases. Globalisation and population growth will continue to affect the epidemiology of diseases in years to come and ecosystems will continue to evolve. Furthermore, new technologies such as metagenomics and high-throughput sequencing are identifying new microorganisms all the time. Change is the one constant, and diseases will continue to emerge, and we must consider the causes and different types of emergence as we deal with these diseases in the future.

  16. Defining the Stimulus - A Memoir

    PubMed Central

    Terrace, Herbert

    2010-01-01

    The eminent psychophysicist, S. S. Stevens, once remarked that, “the basic problem of psychology was the definition of the stimulus” (Stevens, 1951, p. 46). By expanding the traditional definition of the stimulus, the study of animal learning has metamorphosed into animal cognition. The main impetus for that change was the recognition that it is often necessary to postulate a representation between the traditional S and R of learning theory. Representations allow a subject to re-present a stimulus it learned previously that is currently absent. Thus, in delayed-matching-to-sample, one has to assume that a subject responds to a representation of the sample during test if it responds correctly. Other examples, to name but a few, include concept formation, spatial memory, serial memory, learning a numerical rule, imitation and metacognition. Whereas a representation used to be regarded as a mentalistic phenomenon that was unworthy of scientific inquiry, it can now be operationally defined. To accommodate representations, the traditional discriminative stimulus has to be expanded to allow for the role of representations. The resulting composite can account for a significantly larger portion of the variance of performance measures than the exteroceptive stimulus could by itself. PMID:19969047

  17. Evaluation of immunochemical drug screenings of whole blood samples. A retrospective optimization of cutoff levels after confirmation-analysis on GC-MS and HPLC-DAD.

    PubMed

    Kroener, Lars; Musshoff, Frank; Madea, Burkhard

    2003-01-01

    Four commonly used immunoassay kits were evaluated for their efficiency in screening for drugs of abuse in whole blood. Six groups of illicit drugs (opiates, cannabinoids, amphetamines, cocain and benzoylecgonine, benzodiazepines, and methadone) were determined by using the homogenous assays ADx and CEDIA DAU and compared with the results produced by means of the inhomogenous assays MTP and Pyxis 24. The measured 86 blood samples were taken from authentic routine analyses between February and September, 2000. Chromatographic confirmation analyses were carried out in all cases (positive and negative immunochemical pretesting). The cutoff levels were retrospectively optimized to reduce false-negative results with priority. Furthermore, false-positive pretests were minimized in order to decrease laboratory work under economical aspects. Specificity and sensitivity were determined for each parameter and assay. For the ADx assay, specificities of 54% (cannabinoids) to 97% (cocaine and metabolite) and sensitivities of about 67% (amphetamine class) to 94% (opiates) were found. The CEDIA assay revealed specificities of 77% (methadone) up to 100% (benzodiazepines) and 75-96% sensitivities for amphetamines and opiates. The MTP immunoassay resulted in specificities of 52% (methadone) to 95% (opiates, cocain, and metabolite) and sensitivities of 92% (amphetamines) up to 100% (methadone). The evaluation of the Pyxis 24 resulted in specificities of 70-96% (benzodiazepines and amphetamines) and sensitivities of 75% (amphetamines) up to 100% (cannabinoids and methadone), respectively. In conclusion, the microtiterplate immunoassays revealed higher sensitivities and have proved to be at an advantage detecting the lowest concentrations of drugs. However, especially for clinical applications in emergency cases with acute intoxications, when screening results are urgently required, homogenic assays such as ADx or Cedia provide preferable alternatives with faster and easier handling.

  18. Family Life and Human Development: Sample Units, K-6. Revised.

    ERIC Educational Resources Information Center

    Prince George's County Public Schools, Upper Marlboro, MD.

    Sample unit outlines, designed for kindergarten through grade six, define the content, activities, and assessment tasks appropriate to specific grade levels. The units have been extracted from the Board-approved curriculum, Health Education: The Curricular Approach to Optimal Health. The instructional guidelines for grade one are: describing a…

  19. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  20. Optimal Fluoridation

    PubMed Central

    Lee, John R.

    1975-01-01

    Optimal fluoridation has been defined as that fluoride exposure which confers maximal cariostasis with minimal toxicity and its values have been previously determined to be 0.5 to 1 mg per day for infants and 1 to 1.5 mg per day for an average child. Total fluoride ingestion and urine excretion were studied in Marin County, California, children in 1973 before municipal water fluoridation. Results showed fluoride exposure to be higher than anticipated and fulfilled previously accepted criteria for optimal fluoridation. Present and future water fluoridation plans need to be reevaluated in light of total environmental fluoride exposure. PMID:1130041

  1. Evaluating the interaction of faecal pellet deposition rates and DNA degradation rates to optimize sampling design for DNA-based mark-recapture analysis of Sonoran pronghorn.

    PubMed

    Woodruff, S P; Johnson, T R; Waits, L P

    2015-07-01

    Knowledge of population demographics is important for species management but can be challenging in low-density, wide-ranging species. Population monitoring of the endangered Sonoran pronghorn (Antilocapra americana sonoriensis) is critical for assessing the success of recovery efforts, and noninvasive DNA sampling (NDS) could be more cost-effective and less intrusive than traditional methods. We evaluated faecal pellet deposition rates and faecal DNA degradation rates to maximize sampling efficiency for DNA-based mark-recapture analyses. Deposition data were collected at five watering holes using sampling intervals of 1-7 days and averaged one pellet pile per pronghorn per day. To evaluate nuclear DNA (nDNA) degradation, 20 faecal samples were exposed to local environmental conditions and sampled at eight time points from one to 124 days. Average amplification success rates for six nDNA microsatellite loci were 81% for samples on day one, 63% by day seven, 2% by day 14 and 0% by day 60. We evaluated the efficiency of different sampling intervals (1-10 days) by estimating the number of successful samples, success rate of individual identification and laboratory costs per successful sample. Cost per successful sample increased and success and efficiency declined as the sampling interval increased. Results indicate NDS of faecal pellets is a feasible method for individual identification, population estimation and demographic monitoring of Sonoran pronghorn. We recommend collecting samples <7 days old and estimate that a sampling interval of four to seven days in summer conditions (i.e., extreme heat and exposure to UV light) will achieve desired sample sizes for mark-recapture analysis while also maximizing efficiency [Corrected]. PMID:25522240

  2. Evaluating the interaction of faecal pellet deposition rates and DNA degradation rates to optimize sampling design for DNA-based mark-recapture analysis of Sonoran pronghorn.

    PubMed

    Woodruff, S P; Johnson, T R; Waits, L P

    2015-07-01

    Knowledge of population demographics is important for species management but can be challenging in low-density, wide-ranging species. Population monitoring of the endangered Sonoran pronghorn (Antilocapra americana sonoriensis) is critical for assessing the success of recovery efforts, and noninvasive DNA sampling (NDS) could be more cost-effective and less intrusive than traditional methods. We evaluated faecal pellet deposition rates and faecal DNA degradation rates to maximize sampling efficiency for DNA-based mark-recapture analyses. Deposition data were collected at five watering holes using sampling intervals of 1-7 days and averaged one pellet pile per pronghorn per day. To evaluate nuclear DNA (nDNA) degradation, 20 faecal samples were exposed to local environmental conditions and sampled at eight time points from one to 124 days. Average amplification success rates for six nDNA microsatellite loci were 81% for samples on day one, 63% by day seven, 2% by day 14 and 0% by day 60. We evaluated the efficiency of different sampling intervals (1-10 days) by estimating the number of successful samples, success rate of individual identification and laboratory costs per successful sample. Cost per successful sample increased and success and efficiency declined as the sampling interval increased. Results indicate NDS of faecal pellets is a feasible method for individual identification, population estimation and demographic monitoring of Sonoran pronghorn. We recommend collecting samples <7 days old and estimate that a sampling interval of four to seven days in summer conditions (i.e., extreme heat and exposure to UV light) will achieve desired sample sizes for mark-recapture analysis while also maximizing efficiency [Corrected].

  3. Considerations and Challenges in Defining Optimal Iron Utilization in Hemodialysis

    PubMed Central

    Pai, Amy Barton; Chan, Christopher T.; Coyne, Daniel W.; Hung, Adriana M.; Kovesdy, Csaba P.; Fishbane, Steven

    2015-01-01

    Trials raising concerns about erythropoiesis-stimulating agents, revisions to their labeling, and changes to practice guidelines and dialysis payment systems have provided strong stimuli to decrease erythropoiesis-stimulating agent use and increase intravenous iron administration in recent years. These factors have been associated with a rise in iron utilization, particularly among hemodialysis patients, and an unprecedented increase in serum ferritin concentrations. The mean serum ferritin concentration among United States dialysis patients in 2013 exceeded 800 ng/ml, with 18% of patients exceeding 1200 ng/ml. Although these changes are broad based, the wisdom of these practices is uncertain. Herein, we examine influences on and trends in intravenous iron utilization and assess the clinical trial, epidemiologic, and experimental evidence relevant to its safety and efficacy in the setting of maintenance dialysis. These data suggest a potential for harm from increasing use of parenteral iron in dialysis-dependent patients. In the absence of well powered, randomized clinical trials, available evidence will remain inadequate for making reliable conclusions about the effect of a ubiquitous therapy on mortality or other outcomes of importance to dialysis patients. Nephrology stakeholders have an urgent obligation to initiate well designed investigations of intravenous iron in order to ensure the safety of the dialysis population. PMID:25542967

  4. Clinical perspectives of platelet transfusions: defining the optimal dose.

    PubMed

    Strauss, R G

    1995-01-01

    To halt bleeding in patients with severe thrombocytopenia due to bone marrow failure, it is desirable to achieve a post-transfusion blood platelet count of 40 x 10(9)/L by platelet transfusions. Based on calculations of corrected count increments, each 1 x 10(11) platelets transfused will increase the blood platelet count approximately 10 x 10(9)/L per each square meter of patient body surface area. Thus, the post-transfusion blood platelet count will be approximately 20 x 10(9)/L following transfusion of 3 x 10(11) platelets to a 5 foot, 8 inch patient weighing 170 pounds (2.0 m2), who is bleeding because of a pre-transfusion platelet count of 5 x 10(9)/L. The post-transfusion platelet count likely will be even lower in sick patients (sepsis, amphotericin B plus antibiotic therapy, splenomegaly, graft-vs.-host disease, etc.) or if platelets are lost from the unit by leukofiltration before transfusion. Although a dose of 3 x 10(11) platelets is acceptable, in a regulatory sense for product quality, it is inadequate to control bleeding in most thrombocytopenic adult patients. Adjusting dose for body size, bleeding patients with pre-transfusion blood platelet of < 10 x 10(9)/L and weighing > 120 pounds should receive approximately 6 x 10(11) platelets, those weighing 30 to 120 pounds should receive 3 x 10(11) platelets, and infants weighing < 30 pounds (15 kg) should receive 5-10 ml/kg of platelet concentrate.

  5. Optimization and application of a custom microarray for the detection and genotyping of E. coli O157:H7 in fresh meat samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA microarrays are promising high-throughput tools for multiple pathogen detection. Currently, the performance and cost of this platform has limited its broad application in identifying microbial contaminants in foods. In this study, an optimized custom DNA microarray with flexibility in design and...

  6. Defined Syllabuses in Modern Languages

    ERIC Educational Resources Information Center

    Harding, Ann; Honnor, Sylvia

    1974-01-01

    The advantages of a defined syllabus in second language teaching, especially in relation to public examinations, are discussed. The origin and development of the York defined syllabuses are described, and extracts are given from the introductory document and the French and Russian syllabuses. (RM)

  7. Clarifying and Defining Library Services.

    ERIC Educational Resources Information Center

    Shubert, Joseph F., Ed.; Josey, E. J., Ed.

    1991-01-01

    This issue presents articles which, in some way, help to clarify and define library services. It is hoped that this clarification in library service will serve to secure the resources libraries need to serve the people of New York. The following articles are presented: (1) Introduction: "Clarifying and Defining Library Services" (Joseph F.…

  8. Optimal space trajectories

    NASA Astrophysics Data System (ADS)

    Marec, J. P.

    Techniques for the optimization (in terms of minimal mass loss) of spacecraft trajectories are developed. The optimal transfer is defined; a model of the propulsion system is presented; the two-impulse Hohmann transfer between coplanar circular orbits is shown to be the optimal trajectory for that case; and the problems of optimal transfer in general, uniform, and central gravitational fields are analyzed. A number of specific cases are examined and illustrated with diagrams and graphs.

  9. The Problem of Defining Intelligence.

    ERIC Educational Resources Information Center

    Lubar, David

    1981-01-01

    The major philosophical issues surrounding the concept of intelligence are reviewed with respect to the problems surrounding the process of defining and developing artificial intelligence (AI) in computers. Various current definitions and problems with these definitions are presented. (MP)

  10. The optimal reconstruction from blurred and nonuniformly sampled data based on the optimum discrete approximation minimizing various worst-case measures of error

    NASA Astrophysics Data System (ADS)

    Kida, Yuichi; Kida, Takuro

    2006-08-01

    Extended interpolatory approximation is discussed for some classes of n-dimensional vector signals. Firstly, we present two sufficient conditions of the optimum approximation and prove that the proposed optimum approximation using fixed finite number of sample values satisfies these two conditions. Secondly, we discuss the optimum running approximation of n-dimensional time-limited vector signals based on a certain one-to-one correspondence between a vector signal and the corresponding vector error signal of approximation. The proposed optimum approximation has the minimum measure of error among almost all the linear and the nonlinear approximations using the same measure of error and generalized sample values. Note that the proposed optimum approximation can be realized by flexible FIR filter bank. The term "flexible" means that we can widely choose the number of paths and frequency response of time-invariant FIR analysis filters. Moreover, we can use sample points that are distributed on an arbitrary periodical pattern.

  11. Separation of very hydrophobic analytes by micellar electrokinetic chromatography. I. Optimization of the composition of the sample solution for the determination of the aromatic ingredients of sassafras and other essential oils of forensic interest.

    PubMed

    Huhn, Carolin; Pütz, Michael; Holthausen, Ivie; Pyell, Ute

    2008-01-01

    A micellar electrokinetic chromatographic method using UV and (UV)LIF detection in-line was developed for the determination of aromatic constituents, mainly allylbenzenes in essential oils. The method optimization included the optimization of the composition of the separation electrolyte using ACN and urea to reduce retention factors and CaCl(2) to widen the migration time window. In addition, it was necessary to optimize the composition of the sample solution which included the addition of a neutral surfactant at high concentration. With the optimized method, the determination of minor constituents in essential oils was possible despite of the presence of a structurally related compound being in a molar ratio excess of 1000:1. The use of UV and LIF-detection in-line enabled the direct comparison of the two detection traces using an electrophoretic mobility x-axis instead of the normal time-based scale. This simplifies the assignment of signals and enhances repeatability. The method developed was successfully applied to the determination of minor and major constituents in herbal essential oils, some of them being forensically relevant as sources of precursors for synthetic drugs.

  12. LENGTH-HETEROGENEITY POLYMERASE CHAIN REACTION (LH-PCR) AS AN INDICATOR OF STREAM SANITARY AND ECOLOGICAL CONDITION: OPTIMAL SAMPLE SIZE AND HOLDING CONDITIONS

    EPA Science Inventory

    The use of coliform plate count data to assess stream sanitary and ecological condition is limited by the need to store samples at 4oC and analyze them within a 24-hour period. We are testing LH-PCR as an alternative tool to assess the bacterial load of streams, offering a cost ...

  13. Defining the states of consciousness.

    PubMed

    Tassi, P; Muzet, A

    2001-03-01

    Consciousness remains an elusive concept due to the difficulty to define what has been regarded for many years as a subjective experience, therefore irrelevant for scientific study. Recent development in this field of research has allowed to provide some new insight to a possible way to define consciousness. Going through the extensive literature in this domain, several perspectives are proposed to define this concept. (1) Consciousness and Attention may not reflect the same process. (2) Consciousness during wake and sleep may not involve the same mechanisms. (3) Besides physiological states of consciousness, human beings can experience modified states of consciousness either by self-training (transcendental meditation, hypnosis, etc.) or by drug intake (hallucinogens, anaesthetics, etc.). Altogether, we address the question of a more precise terminology, given the theoretical weight words can convey. To this respect, we propose different definitions for concepts like consciousness, vigilance, arousal and alertness as candidates to separate functional entities.

  14. What do we need to measure, how much, and where? A quantitative assessment of terrestrial data needs across North American biomes through data-model fusion and sampling optimization

    NASA Astrophysics Data System (ADS)

    Dietze, M. C.; Davidson, C. D.; Desai, A. R.; Feng, X.; Kelly, R.; Kooper, R.; LeBauer, D. S.; Mantooth, J.; McHenry, K.; Serbin, S. P.; Wang, D.

    2012-12-01

    Ecosystem models are designed to synthesize our current understanding of how ecosystems function and to predict responses to novel conditions, such as climate change. Reducing uncertainties in such models can thus improve both basic scientific understanding and our predictive capacity, but rarely have the models themselves been employed in the design of field campaigns. In the first part of this paper we provide a synthesis of uncertainty analyses conducted using the Predictive Ecosystem Analyzer (PEcAn) ecoinformatics workflow on the Ecosystem Demography model v2 (ED2). This work spans a number of projects synthesizing trait databases and using Bayesian data assimilation techniques to incorporate field data across temperate forests, grasslands, agriculture, short rotation forestry, boreal forests, and tundra. We report on a number of data needs that span a wide array diverse biomes, such as the need for better constraint on growth respiration. We also identify other data needs that are biome specific, such as reproductive allocation in tundra, leaf dark respiration in forestry and early-successional trees, and root allocation and turnover in mid- and late-successional trees. Future data collection needs to balance the unequal distribution of past measurements across biomes (temperate biased) and processes (aboveground biased) with the sensitivities of different processes. In the second part we present the development of a power analysis and sampling optimization module for the the PEcAn system. This module uses the results of variance decomposition analyses to estimate the further reduction in model predictive uncertainty for different sample sizes of different variables. By assigning a cost to each measurement type, we apply basic economic theory to optimize the reduction in model uncertainty for any total expenditure, or to determine the cost required to reduce uncertainty to a given threshold. Using this system we find that sampling switches among multiple

  15. Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples: kinetic study of the degradation and optimization using response surface methodology.

    PubMed

    Mitsika, Elena E; Christophoridis, Christophoros; Fytianos, Konstantinos

    2013-11-01

    The aims of this study were (a) to evaluate the degradation of acetamiprid with the use of Fenton reaction, (b) to investigate the effect of different concentrations of H2O2 and Fe(2+), initial pH and various iron salts, on the degradation of acetamiprid and (c) to apply response surface methodology for the evaluation of degradation kinetics. The kinetic study revealed a two-stage process, described by pseudo- first and second order kinetics. Different H2O2:Fe(2+) molar ratios were examined for their effect on acetamiprid degradation kinetics. The ratio of 3 mg L(-1) Fe(2+): 40 mg L(-1) H2O2 was found to completely remove acetamiprid at less than 10 min. Degradation rate was faster at lower pH, with the optimal value at pH 2.9, while Mohr salt appeared to degrade acetamiprid faster. A central composite design was selected in order to observe the effects of Fe(2+) and H2O2 initial concentration on acetamiprid degradation kinetics. A quadratic model fitted the experimental data, with satisfactory regression and fit. The most significant effect on the degradation of acetamiprid, was induced by ferrous iron concentration followed by H2O2. Optimization, aiming to minimize the applied ferrous concentration and the process time, proposed a ratio of 7.76 mg L(-1) Fe(II): 19.78 mg L(-1) H2O2. DOC is reduced much more slowly and requires more than 6h of processing for 50% degradation. The use to zero valent iron, demonstrated fast kinetic rates with acetamiprid degradation occurring in 10 min and effective DOC removal. PMID:23871596

  16. New optimized DNA extraction protocol for fingerprints deposited on a special self-adhesive security seal and other latent samples used for human identification.

    PubMed

    Kopka, Julieta; Leder, Monika; Jaureguiberry, Stella M; Brem, Gottfried; Boselli, Gabriel O

    2011-09-01

    Obtaining complete short tandem repeat (STR) profiles from fingerprints containing minimal amounts of DNA, using standard extraction techniques, can be difficult. The aim of this study was to evaluate a new kit, Fingerprint DNA Finder (FDF Kit), recently launched for the extraction of DNA and STR profiling from fingerprints placed on a special device known as Self-Adhesive Security Seal Sticker(®) and other latent fingerprints on forensic evidentiary material like metallic guns. The DNA extraction system is based on a reversal of the silica principle, and all the potential inhibiting substances are retained on the surface of a special adsorbent, while nucleic acids are not bound and remain in solution dramatically improving DNA recovery. DNA yield was quite variable among the samples tested, rendering in most of the cases (>90%) complete STR profiles, free of PCR inhibitors, and devoid of artifacts. Even samples with DNA amount below 100 pg could be successfully analyzed.

  17. Characterization of the olfactory impact around a wastewater treatment plant: optimization and validation of a hydrogen sulfide determination procedure based on passive diffusion sampling.

    PubMed

    Colomer, Fernando Llavador; Espinós-Morató, Héctor; Iglesias, Enrique Mantilla; Pérez, Tatiana Gómez; Campos-Candel, Andreu; Lozano, Caterina Coll

    2012-08-01

    A monitoring program based on an indirect method was conducted to assess the approximation of the olfactory impact in several wastewater treatment plants (in the present work, only one is shown). The method uses H2S passive sampling using Palmes-type diffusion tubes impregnated with silver nitrate and fluorometric analysis employing fluorescein mercuric acetate. The analytical procedure was validated in the exposure chamber. Exposure periods ofat least 4 days are recommended. The quantification limit of the procedure is 0.61 ppb for a 5-day sampling, which allows the H2S immission (ground concentration) level to be measured within its low odor threshold, from 0.5 to 300 ppb. Experimental results suggest an exposure time greater than 4 days, while recovery efficiency of the procedure, 93.0+/-1.8%, seems not to depend on the amount of H2S collected by the samplers within their application range. The repeatability, expressed as relative standard deviation, is lower than 7%, which is within the limits normally accepted for this type of sampler. Statistical comparison showed that this procedure and the reference method provide analogous accuracy. The proposed procedure was applied in two experimental campaigns, one intensive and the other extensive, and concentrations within the H2S low odor threshold were quantified at each sampling point. From these results, it can be concluded that the procedure shows good potential for monitoring the olfactory impact around facilities where H2S emissions are dominant. PMID:22916433

  18. Application and optimization of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for sensitive determination of polyamines in turkey breast meat samples.

    PubMed

    Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar

    2016-01-01

    A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method.

  19. Defining "Folklore" in the Classroom.

    ERIC Educational Resources Information Center

    Falke, Anne

    Folklore, a body of traditional beliefs of a people conveyed orally or by means of custom, is very much alive, involves all people, and is not the study of popular culture. In studying folklore, the principal tasks of the folklorist have been defined as determining definition, classification, source (the folk), origin (who composed folklore),…

  20. Defining and Measuring Psychomotor Performance

    ERIC Educational Resources Information Center

    Autio, Ossi

    2007-01-01

    Psychomotor performance is fundamental to human existence. It is important in many real world activities and nowadays psychomotor tests are used in several fields of industry, army, and medical sciences in employee selection. This article tries to define psychomotor activity by introducing some psychomotor theories. Furthermore the…

  1. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. III. Separation mechanism and gradient optimization.

    PubMed

    Mengerink, Y; Peters, R; van der Wal, Sj; Claessens, H A; Cramers, C A

    2002-03-01

    The first six linear and cyclic oligomers of polyamide-6 can be quantitatively determined in the polymer using HPLC with the sandwich injection method and an aqueous acetonitrile gradient. In this final part of the triptych concerning the determination of the oligomers in polyamide-6, the irregular elution behavior of the cyclic monomer compared to the cyclic oligomers was investigated. We also optimized the separation of the involved polyamide oligomers, with respect to gradient steepness, stationary phase, column temperature and mobile phase pH. The irregular elution behavior of the cyclic monomer could be caused by its relatively large exposed/accessible hydrophobic surface, which permits relatively easy penetration into the hydrophobic stationary phase giving extra retention. The dipole moment of the different oligomers was used as a measure for this exposed/accessible hydrophobic area to correlate the retention factors using quantitative structure-retention relationships. We also studied the retention behavior of the polyamide, which is injected each run directly onto the column and modifies the stationary phase. Using a 250-microl post gradient injection zone of formic acid on a 250x3 mm Zorbax SB-C18 column, the polyamide could be effectively removed from the stationary phase after each separation. The linear solvent strength (LSS) model was used to optimize the separation of the first six linear and cyclic oligomers. As the LSS model assumes a linear correlation between the modifier concentration and the logarithm of the retention factor and the cyclic monomer and dimer show extreme curvation of this relation in the eluting region, we investigated different models to predict gradient elution from isocratic data. A direct translation of the isocratic data to gradient retention times did not yield adequate retention times using the LSS model. It was found that the LSS model worked acceptably if gradient retention times were used as input data. Even for fast

  2. Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples.

    PubMed

    Yeşiller, Semira Unal; Yalçın, Serife

    2013-04-01

    A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments.

  3. Defining the Polar Field Reversal

    NASA Technical Reports Server (NTRS)

    Upton, Lisa; Hathaway, David H.

    2013-01-01

    The polar fields on the Sun are directly related to solar cycle variability. Recently there has been interest in studying an important characteristic of the polar fields: the timing of the polar field reversals. However this characteristic has been poorly defined, mostly due to the limitations of early observations. In the past, the reversals have been calculated by averaging the flux above some latitude (i.e. 55deg or 75deg). Alternatively, the reversal could be defined by the time in which the previous polarity is completely canceled and replaced by the new polarity at 90de, precisely at the pole. We will use a surface flux transport model to illustrate the differences in the timing of the polar field reversal based on each of these definitions and propose standardization in the definition of the polar field reversal. The ability to predict the timing of the polar field reversal using a surface flux transport model will also be discussed.

  4. Homotopy optimization methods for global optimization.

    SciTech Connect

    Dunlavy, Daniel M.; O'Leary, Dianne P. (University of Maryland, College Park, MD)

    2005-12-01

    We define a new method for global optimization, the Homotopy Optimization Method (HOM). This method differs from previous homotopy and continuation methods in that its aim is to find a minimizer for each of a set of values of the homotopy parameter, rather than to follow a path of minimizers. We define a second method, called HOPE, by allowing HOM to follow an ensemble of points obtained by perturbation of previous ones. We relate this new method to standard methods such as simulated annealing and show under what circumstances it is superior. We present results of extensive numerical experiments demonstrating performance of HOM and HOPE.

  5. Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2

    DOE PAGES

    Metzger, Stefan; Burba, George; Burns, Sean P.; Blanken, Peter D.; Li, Jiahong; Luo, Hongyan; Zulueta, Rommel C.

    2016-03-31

    Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) are set to provide the ability of unbiased ecological inference across ecoclimatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analyzers are widely employed for eddy covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation variesmore » with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system can substantially contribute to such high-frequency attenuation, but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5–16.5 Hz for CO2, 2.4–14.3 Hz for H2O, and 8.3–21.8 Hz for CO2, 1.4–19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60 %) by 50 % in the infrared gas analyzer cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor–capacitor theory, and NEON's final gas sampling system was

  6. How do people define moderation?

    PubMed

    vanDellen, Michelle R; Isherwood, Jennifer C; Delose, Julie E

    2016-06-01

    Eating in moderation is considered to be sound and practical advice for weight maintenance or prevention of weight gain. However, the concept of moderation is ambiguous, and the effect of moderation messages on consumption has yet to be empirically examined. The present manuscript examines how people define moderate consumption. We expected that people would define moderate consumption in ways that justified their current or desired consumption rather than view moderation as an objective standard. In Studies 1 and 2, moderate consumption was perceived to involve greater quantities of an unhealthy food (chocolate chip cookies, gummy candies) than perceptions of how much one should consume. In Study 3, participants generally perceived themselves to eat in moderation and defined moderate consumption as greater than their personal consumption. Furthermore, definitions of moderate consumption were related to personal consumption behaviors. Results suggest that the endorsement of moderation messages allows for a wide range of interpretations of moderate consumption. Thus, we conclude that moderation messages are unlikely to be effective messages for helping people maintain or lose weight. PMID:26964691

  7. How do people define moderation?

    PubMed

    vanDellen, Michelle R; Isherwood, Jennifer C; Delose, Julie E

    2016-06-01

    Eating in moderation is considered to be sound and practical advice for weight maintenance or prevention of weight gain. However, the concept of moderation is ambiguous, and the effect of moderation messages on consumption has yet to be empirically examined. The present manuscript examines how people define moderate consumption. We expected that people would define moderate consumption in ways that justified their current or desired consumption rather than view moderation as an objective standard. In Studies 1 and 2, moderate consumption was perceived to involve greater quantities of an unhealthy food (chocolate chip cookies, gummy candies) than perceptions of how much one should consume. In Study 3, participants generally perceived themselves to eat in moderation and defined moderate consumption as greater than their personal consumption. Furthermore, definitions of moderate consumption were related to personal consumption behaviors. Results suggest that the endorsement of moderation messages allows for a wide range of interpretations of moderate consumption. Thus, we conclude that moderation messages are unlikely to be effective messages for helping people maintain or lose weight.

  8. Evaluating the laws defining blindness.

    PubMed

    Hoppe, E

    1992-06-01

    The law defining legal blindness was written in 1935, and has not been updated since. A historical view of the background in the development of this law and a comparison to laws used in other countries helps to point out some problems with the current definition. As the population gets older, the prevalence of visual impairment will be increasing. To administer programs, distribute funding, and ensure adequate care, the problems inherent in the definition of legal blindness must be addressed, and the law must be revised. PMID:1634739

  9. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.

    PubMed

    Asadollahzadeh, Mehdi; Tavakoli, Hamed; Torab-Mostaedi, Meisam; Hosseini, Ghaffar; Hemmati, Alireza

    2014-06-01

    Dispersive-solidification liquid-liquid microextraction (DSLLME) coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of inorganic arsenic (III, V) in water samples. At pH=1, As(III) formed complex with ammonium pyrrolidine dithiocarbamate (APDC) and extracted into the fine droplets of 1-dodecanol (extraction solvent) which were dispersed with ethanol (disperser solvent) into the water sample solution. After extraction, the organic phase was separated by centrifugation, and was solidified by transferring into an ice bath. The solidified solvent was transferred to a conical vial and melted quickly at room temperature. As(III) was determined in the melted organic phase while As(V) remained in the aqueous layer. Total inorganic As was determined after the reduction of the pentavalent forms of arsenic with sodium thiosulphate and potassium iodide. As(V) was calculated by difference between the concentration of total inorganic As and As(III). The variable of interest in the DSLLME method, such as the volume of extraction solvent and disperser solvent, pH, concentration of APDC (chelating agent), extraction time and salt effect, was optimized with the aid of chemometric approaches. First, in screening experiments, fractional factorial design (FFD) was used for selecting the variables which significantly affected the extraction procedure. Afterwards, the significant variables were optimized using response surface methodology (RSM) based on central composite design (CCD). In the optimum conditions, the proposed method has been successfully applied to the determination of inorganic arsenic in different environmental water samples and certified reference material (NIST RSM 1643e). PMID:24725860

  10. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.

    PubMed

    Asadollahzadeh, Mehdi; Tavakoli, Hamed; Torab-Mostaedi, Meisam; Hosseini, Ghaffar; Hemmati, Alireza

    2014-06-01

    Dispersive-solidification liquid-liquid microextraction (DSLLME) coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of inorganic arsenic (III, V) in water samples. At pH=1, As(III) formed complex with ammonium pyrrolidine dithiocarbamate (APDC) and extracted into the fine droplets of 1-dodecanol (extraction solvent) which were dispersed with ethanol (disperser solvent) into the water sample solution. After extraction, the organic phase was separated by centrifugation, and was solidified by transferring into an ice bath. The solidified solvent was transferred to a conical vial and melted quickly at room temperature. As(III) was determined in the melted organic phase while As(V) remained in the aqueous layer. Total inorganic As was determined after the reduction of the pentavalent forms of arsenic with sodium thiosulphate and potassium iodide. As(V) was calculated by difference between the concentration of total inorganic As and As(III). The variable of interest in the DSLLME method, such as the volume of extraction solvent and disperser solvent, pH, concentration of APDC (chelating agent), extraction time and salt effect, was optimized with the aid of chemometric approaches. First, in screening experiments, fractional factorial design (FFD) was used for selecting the variables which significantly affected the extraction procedure. Afterwards, the significant variables were optimized using response surface methodology (RSM) based on central composite design (CCD). In the optimum conditions, the proposed method has been successfully applied to the determination of inorganic arsenic in different environmental water samples and certified reference material (NIST RSM 1643e).

  11. Defining Life: The Virus Viewpoint

    NASA Astrophysics Data System (ADS)

    Forterre, Patrick

    2010-04-01

    Are viruses alive? Until very recently, answering this question was often negative and viruses were not considered in discussions on the origin and definition of life. This situation is rapidly changing, following several discoveries that have modified our vision of viruses. It has been recognized that viruses have played (and still play) a major innovative role in the evolution of cellular organisms. New definitions of viruses have been proposed and their position in the universal tree of life is actively discussed. Viruses are no more confused with their virions, but can be viewed as complex living entities that transform the infected cell into a novel organism—the virus—producing virions. I suggest here to define life (an historical process) as the mode of existence of ribosome encoding organisms (cells) and capsid encoding organisms (viruses) and their ancestors. I propose to define an organism as an ensemble of integrated organs (molecular or cellular) producing individuals evolving through natural selection. The origin of life on our planet would correspond to the establishment of the first organism corresponding to this definition.

  12. Defining life: the virus viewpoint.

    PubMed

    Forterre, Patrick

    2010-04-01

    Are viruses alive? Until very recently, answering this question was often negative and viruses were not considered in discussions on the origin and definition of life. This situation is rapidly changing, following several discoveries that have modified our vision of viruses. It has been recognized that viruses have played (and still play) a major innovative role in the evolution of cellular organisms. New definitions of viruses have been proposed and their position in the universal tree of life is actively discussed. Viruses are no more confused with their virions, but can be viewed as complex living entities that transform the infected cell into a novel organism-the virus-producing virions. I suggest here to define life (an historical process) as the mode of existence of ribosome encoding organisms (cells) and capsid encoding organisms (viruses) and their ancestors. I propose to define an organism as an ensemble of integrated organs (molecular or cellular) producing individuals evolving through natural selection. The origin of life on our planet would correspond to the establishment of the first organism corresponding to this definition.

  13. Defining Characteristics of Creative Women

    ERIC Educational Resources Information Center

    Bender, Sarah White; Nibbelink, BradyLeigh; Towner-Thyrum, Elizabeth; Vredenburg, Debra

    2013-01-01

    This study was an effort to identify correlates of creativity in women. A sample of 447 college students were given the picture completion subtest of the Torrance Test of Creative Thinking, the "How Do You Think Test," the Revised NEO Personality Inventory, the Multidimensional Self-Esteem Inventory, the Family Environment Scale, and the…

  14. Defining Life: Synthesis and Conclusions

    NASA Astrophysics Data System (ADS)

    Gayon, Jean

    2010-04-01

    The first part of the paper offers philosophical landmarks on the general issue of defining life. §1 defends that the recognition of “life” has always been and remains primarily an intuitive process, for the scientist as for the layperson. However we should not expect, then, to be able to draw a definition from this original experience, because our cognitive apparatus has not been primarily designed for this. §2 is about definitions in general. Two kinds of definition should be carefully distinguished: lexical definitions (based upon current uses of a word), and stipulative or legislative definitions, which deliberately assign a meaning to a word, for the purpose of clarifying scientific or philosophical arguments. The present volume provides examples of these two kinds of definitions. §3 examines three traditional philosophical definitions of life, all of which have been elaborated prior to the emergence of biology as a specific scientific discipline: life as animation (Aristotle), life as mechanism, and life as organization (Kant). All three concepts constitute a common heritage that structures in depth a good deal of our cultural intuitions and vocabulary any time we try to think about “life”. The present volume offers examples of these three concepts in contemporary scientific discourse. The second part of the paper proposes a synthesis of the major debates developed in this volume. Three major questions have been discussed. A first issue (§4) is whether we should define life or not, and why. Most authors are skeptical about the possibility of defining life in a strong way, although all admit that criteria are useful in contexts such as exobiology, artificial life and the origins of life. §5 examines the possible kinds of definitions of life presented in the volume. Those authors who have explicitly defended that a definition of life is needed, can be classified into two categories. The first category (or standard view) refers to two conditions

  15. Defining life: synthesis and conclusions.

    PubMed

    Gayon, Jean

    2010-04-01

    The first part of the paper offers philosophical landmarks on the general issue of defining life. Section 1 defends that the recognition of "life" has always been and remains primarily an intuitive process, for the scientist as for the layperson. However we should not expect, then, to be able to draw a definition from this original experience, because our cognitive apparatus has not been primarily designed for this. Section 2 is about definitions in general. Two kinds of definition should be carefully distinguished: lexical definitions (based upon current uses of a word), and stipulative or legislative definitions, which deliberately assign a meaning to a word, for the purpose of clarifying scientific or philosophical arguments. The present volume provides examples of these two kinds of definitions. Section 3 examines three traditional philosophical definitions of life, all of which have been elaborated prior to the emergence of biology as a specific scientific discipline: life as animation (Aristotle), life as mechanism, and life as organization (Kant). All three concepts constitute a common heritage that structures in depth a good deal of our cultural intuitions and vocabulary any time we try to think about "life". The present volume offers examples of these three concepts in contemporary scientific discourse. The second part of the paper proposes a synthesis of the major debates developed in this volume. Three major questions have been discussed. A first issue (Section 4) is whether we should define life or not, and why. Most authors are skeptical about the possibility of defining life in a strong way, although all admit that criteria are useful in contexts such as exobiology, artificial life and the origins of life. Section 5 examines the possible kinds of definitions of life presented in the volume. Those authors who have explicitly defended that a definition of life is needed, can be classified into two categories. The first category (or standard view) refers

  16. Defining groundwater age: Chapter 3

    USGS Publications Warehouse

    Torgersen, T.; Purtschert, R.; Phillips, F.M.; Plummer, L.N.; Sanford, W.E.; Suckow, A.

    2013-01-01

    This book investigates applications of selected chemical and isotopic substances that can be used to recognize and interpret age information pertaining to ‘old’ groundwater (defined as water that was recharged on a timescale from approximately 1000 to more than 1 000 000 a). However, as discussed below, only estimates of the ‘age’ of water extracted from wells can be inferred. These groundwater age estimates are interpreted from measured concentrations of chemical and isotopic substances in the groundwater. Even then, there are many complicating factors, as discussed in this book. In spite of these limitations, much can be learned about the physics of groundwater flow and about the temporal aspects of groundwater systems from age interpretations of measured concentrations of environmental tracers in groundwater systems. This chapter puts the concept of ‘age’ into context, including its meaning and interpretation, and attempts to provide a unifying usage for the rest of the book.

  17. Defining biocultural approaches to conservation.

    PubMed

    Gavin, Michael C; McCarter, Joe; Mead, Aroha; Berkes, Fikret; Stepp, John Richard; Peterson, Debora; Tang, Ruifei

    2015-03-01

    We contend that biocultural approaches to conservation can achieve effective and just conservation outcomes while addressing erosion of both cultural and biological diversity. Here, we propose a set of guidelines for the adoption of biocultural approaches to conservation. First, we draw lessons from work on biocultural diversity and heritage, social-ecological systems theory, integrated conservation and development, co-management, and community-based conservation to define biocultural approaches to conservation. Second, we describe eight principles that characterize such approaches. Third, we discuss reasons for adopting biocultural approaches and challenges. If used well, biocultural approaches to conservation can be a powerful tool for reducing the global loss of both biological and cultural diversity.

  18. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  19. Optimization of a novel method for determination of benzene, toluene, ethylbenzene, and xylenes in hair and waste water samples by carbon nanotubes reinforced sol-gel based hollow fiber solid phase microextraction and gas chromatography using factorial experimental design.

    PubMed

    Es'haghi, Zarrin; Ebrahimi, Mahmoud; Hosseini, Mohammad-Saeid

    2011-05-27

    A novel design of solid phase microextraction fiber containing carbon nanotube reinforced sol-gel which was protected by polypropylene hollow fiber (HF-SPME) was developed for pre-concentration and determination of BTEX in environmental waste water and human hair samples. The method validation was included and satisfying results with high pre-concentration factors were obtained. In the present study orthogonal array experimental design (OAD) procedure with OA(16) (4(4)) matrix was applied to study the effect of four factors influencing the HF-SPME method efficiency: stirring speed, volume of adsorption organic solvent, extraction and desorption time of the sample solution, by which the effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance (ANOVA) was employed for estimating the main significant factors and their percentage contributions in extraction. Calibration curves were plotted using ten spiking levels of BTEX in the concentration ranges of 0.02-30,000ng/mL with correlation coefficients (r) 0.989-0.9991 for analytes. Under the optimized extraction conditions, the method showed good linearity (0.3-20,000ng/L), repeatability, low limits of detections (0.49-0.7ng/L) and excellent pre-concentration factors (185-1872). The best conditions which were estimated then applied for the analysis of BTEX compounds in the real samples.

  20. The association between combination antiretroviral adherence and AIDS-defining conditions at HIV diagnosis.

    PubMed

    Abara, Winston E; Xu, Junjun; Adekeye, Oluwatoyosi A; Rust, George

    2016-08-01

    Combination antiretroviral therapy (cART) has changed the clinical course of HIV. AIDS-defining conditions (ADC) are suggestive of severe or advanced disease and are a leading cause of HIV-related hospitalizations and death among people living with HIV/AIDS (PLWHA) in the USA. Optimal adherence to cART can mitigate the impact of ADC and disease severity on the health and survivability of PLWHA. The objective of this study was to evaluate the association between ADC at HIV diagnosis and optimal adherence among PLWHA. Using data from the 2008 and 2009 Medicaid data from 29 states, we identified individuals, between 18 and 49 years, recently infected with HIV and with a cART prescription. Frequencies and descriptive statistics were conducted to characterize sample. Univariate and multivariable Poisson regression analyses were employed to evaluate the association optimal cART adherence (defined as ≥ 95% study days covered by cART) and ADC at HIV diagnosis (≥1 ADC) were assessed. Approximately 17% of respondents with ADC at HIV diagnosis reported optimal cART adherence. After adjusting for covariates, respondents with an ADC at HIV diagnosis were less likely to report optimal cART adherence (adjusted prevalence ratio (APR) = 0.64, 95% confidence intervals (CI), 0.54-0.75). Among the covariates, males (APR=1.10, 95% CI, 1.02-1.19) compared to females were significantly more likely to report optimal adherence while younger respondents, 18-29 years (APR=0.67, 95% CI, 0.57-0.77), 30-39 years (APR=0.86, 95% CI, 0.79-0.95) compared to older respondents were significantly less likely to report optimal adherence. PLWHA with ADC at HIV diagnosis are at risk of suboptimal cART adherence. Multiple adherence strategies that include healthcare providers, case managers, and peer navigators should be utilized to improve cART adherence and optimize health outcomes among PLWHA with ADC at HIV diagnosis. Targeted adherence programs and services are required to address

  1. Simultaneous and high-throughput analysis of iodo-trihalomethanes, haloacetonitriles, and halonitromethanes in drinking water using solid-phase microextraction/gas chromatography-mass spectrometry: an optimization of sample preparation.

    PubMed

    Luo, Qian; Chen, Xichao; Wei, Zi; Xu, Xiong; Wang, Donghong; Wang, Zijian

    2014-10-24

    When iodide and natural organic matter are present in raw water, the formation of iodo-trihalomethanes (Iodo-THMs), haloacetonitriles (HANs), and halonitromethanes (HNMs) pose a potential health risk because they have been reported to be more toxic than their brominated or chlorinated analogs. In the work, simultaneous analysis of Iodo-THMs, HANs, and HNMs in drinking water samples in a single cleanup and chromatographic analysis was proposed. The DVB/CAR/PDMS fiber was found to be the most suitable for all target compounds, although 75μm CAR/PDMS was better for chlorinated HANs and 65μm PDMS/DVB for brominated HNMs. After optimization of the SPME parameters (DVB/CAR/PDMS fiber, extraction time of 30min at 40°C, addition of 40% w/v of salt, (NH4)2SO4 as a quenching agent, and desorption time of 3min at 170°C), detection limits ranged from 1 to 50ng/L for different analogs, with a linear range of at least two orders of magnitude. Good recoveries (78.6-104.7%) were obtained for spiked samples of a wide range of treated drinking waters, demonstrating that the method is applicable for analysis of real drinking water samples. Matrix effects were negligible for the treated water samples with total organic carbon concentration of less than 2.9mg/L. An effective survey conducted by two drinking water treatment plants showed the highest proportion of Iodo-THMs, HANs, and HNMs occurred in treated water, and concentrations of 13 detected compounds ranged between the ng/L and the μg/L levels.

  2. Defining, Navigating, and Negotiating Success

    PubMed Central

    Kalet, Adina L; Fletcher, Kathlyn E; Ferdman, Dina J; Bickell, Nina A

    2006-01-01

    BACKGROUND We studied female graduates of the Robert Wood Johnson Clinical Scholars Program (CSP, Class of 1984 to 1989) to explore and describe the complexity of creating balance in the life of mid-career academic woman physicians. METHODS We conducted and qualitatively analyzed (κ 0.35 to 1.0 for theme identification among rater pairs) data from a semi-structured survey of 21 women and obtained their curricula vitae to quantify publications and grant support, measures of academic productivity. RESULTS Sixteen of 21 (76%) women completed the survey. Mean age was 48 (range: 45 to 56). Three were full professors, 10 were associate professors, and 3 had left academic medicine. Eleven women had had children (mean 2.4; range: 1 to 3) and 3 worked part-time. From these data, the conceptual model expands on 3 key themes: (1) defining, navigating, and negotiating success, (2) making life work, and (3) making work work. The women who described themselves as satisfied with their careers (10/16) had clarity of values and goals and a sense of control over their time. Those less satisfied with their careers (6/16) emphasized the personal and professional costs of the struggle to balance their lives and described explicit institutional barriers to fulfillment of their potential. CONCLUSION For this group of fellowship-prepared academic women physicians satisfaction is achieving professional and personal balance. PMID:16918735

  3. Optimal scaling in ductile fracture

    NASA Astrophysics Data System (ADS)

    Fokoua Djodom, Landry

    This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity

  4. Superposition Enhanced Nested Sampling

    NASA Astrophysics Data System (ADS)

    Martiniani, Stefano; Stevenson, Jacob D.; Wales, David J.; Frenkel, Daan

    2014-07-01

    The theoretical analysis of many problems in physics, astronomy, and applied mathematics requires an efficient numerical exploration of multimodal parameter spaces that exhibit broken ergodicity. Monte Carlo methods are widely used to deal with these classes of problems, but such simulations suffer from a ubiquitous sampling problem: The probability of sampling a particular state is proportional to its entropic weight. Devising an algorithm capable of sampling efficiently the full phase space is a long-standing problem. Here, we report a new hybrid method for the exploration of multimodal parameter spaces exhibiting broken ergodicity. Superposition enhanced nested sampling combines the strengths of global optimization with the unbiased or athermal sampling of nested sampling, greatly enhancing its efficiency with no additional parameters. We report extensive tests of this new approach for atomic clusters that are known to have energy landscapes for which conventional sampling schemes suffer from broken ergodicity. We also introduce a novel parallelization algorithm for nested sampling.

  5. Defining Neighborhood Boundaries for Urban Health Research

    PubMed Central

    Weiss, Linda; Ompad, Danielle; Galea, Sandro; Vlahov, David

    2008-01-01

    The body of literature exploring neighborhood effects on health has increased rapidly in recent years, yet a number of methodological concerns remain, including preferred methods for identification and delineation of study neighborhoods. In research combining census or other publicly available data with surveys of residents and/or street-level observations, questions regarding neighborhood definition take on added significance. Neighborhoods must be identified and delineated in such a way as to optimize quality and availability of data from each of these sources. IMPACT, a multi-level study examining associations between features of the urban environment and mental health, drug use, and sexual behavior, utilized a multi-step neighborhood definition process including development of census block group maps, review of land use and census tract data, and field visits and observation in each of the targeted communities. Field observations were guided by a pre-identified list of environmental features focused on the potential for recruitment (e.g. pedestrian volume); characteristics commonly used to define neighborhood boundaries (e.g. obstructions to pedestrian traffic, changes in land use), and characteristics that have been associated in the literature with health behaviors and health outcomes (such as housing type, maintenance and use of open spaces). This process, implemented in February through July 2005, proved feasible and offered the opportunity to identify neighborhoods appropriate to study objectives and to collect descriptive information that can be used as a context for understanding study results. PMID:17543706

  6. Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions

    PubMed Central

    2013-01-01

    Background With the growing popularity of using QSAR predictions towards regulatory purposes, such predictive models are now required to be strictly validated, an essential feature of which is to have the model’s Applicability Domain (AD) defined clearly. Although in recent years several different approaches have been proposed to address this goal, no optimal approach to define the model’s AD has yet been recognized. Results This study proposes a novel descriptor-based AD method which accounts for the data distribution and exploits k-Nearest Neighbours (kNN) principle to derive a heuristic decision rule. The proposed method is a three-stage procedure to address several key aspects relevant in judging the reliability of QSAR predictions. Inspired from the adaptive kernel method for probability density function estimation, the first stage of the approach defines a pattern of thresholds corresponding to the various training samples and these thresholds are later used to derive the decision rule. Criterion deciding if a given test sample will be retained within the AD is defined in the second stage of the approach. Finally, the last stage tries reflecting upon the reliability in derived results taking model statistics and prediction error into account. Conclusions The proposed approach addressed a novel strategy that integrated the kNN principle to define the AD of QSAR models. Relevant features that characterize the proposed AD approach include: a) adaptability to local density of samples, useful when the underlying multivariate distribution is asymmetric, with wide regions of low data density; b) unlike several kernel density estimators (KDE), effectiveness also in high-dimensional spaces; c) low sensitivity to the smoothing parameter k; and d) versatility to implement various distances measures. The results derived on a case study provided a clear understanding of how the approach works and defines the model’s AD for reliable predictions. PMID:23721648

  7. [Carotid plaque assessment using inversion recovery T1 weighted-3 dimensions variable refocus flip angle turbo spin echo sampling perfection with application optimized contrast using different angle evolutions black blood imaging].

    PubMed

    Inoue, Yuji; Yoneyama, Masami; Nakamura, Masanobu; Ozaki, Satoshi; Ito, Kenjiro; Hiura, Mikio

    2012-01-01

    Vulnerable plaque can be attributed to induction of ischemic symptoms and magnetic resonance imaging of carotid artery is valuable to detect the plaque. Magnetization prepared rapid acquisition with gradient echo (MPRAGE) method could detect hemorrhagic vulnerable plaque as high intensity signal; however, blood flow is not sufficiently masked by this method. The contrast for plaque in T1 weighted image (T1WI) could not be obtained sufficiently with black blood image (BBI) by sampling perfection with application optimized contrast using different angle evolutions (SPACE) method as turbo spin echo (TSE). In addition, an appearance of artifact by slow flow is a problem. Considering these controversial situations in plaque imaging, we examined the modified BBI inversion recovery (IR)-SPACE in which IR was added for SPACE method so that the contrast for plaque in T1WI was optimized. We investigated the application of this method in plaque imaging. As a result of phantom imaging, the contrast for plaque in T1WI was definitely obtained by choosing an appropriate inversion time (TI) for the corresponding repetition time. In clinical cases, blood flow was sufficiently masked by IR-SPACE method and the plaque imaging was clearly obtained in clinical cases to the same extent as MPRAGE method. Since BBI with IR-SPACE method was derived from both IR pulse and flow void effect, this method could obtain the blood flow masking effect definitely. The present study suggested that SPACE method might be applicable to estimate properties of carotid artery plaque.

  8. Phylogenetic effective sample size.

    PubMed

    Bartoszek, Krzysztof

    2016-10-21

    In this paper I address the question-how large is a phylogenetic sample? I propose a definition of a phylogenetic effective sample size for Brownian motion and Ornstein-Uhlenbeck processes-the regression effective sample size. I discuss how mutual information can be used to define an effective sample size in the non-normal process case and compare these two definitions to an already present concept of effective sample size (the mean effective sample size). Through a simulation study I find that the AICc is robust if one corrects for the number of species or effective number of species. Lastly I discuss how the concept of the phylogenetic effective sample size can be useful for biodiversity quantification, identification of interesting clades and deciding on the importance of phylogenetic correlations. PMID:27343033

  9. Generic sequential sampling for metamodel approximations

    SciTech Connect

    Turner, C. J.; Campbell, M. I.

    2003-01-01

    Metamodels approximate complex multivariate data sets from simulations and experiments. These data sets often are not based on an explicitly defined function. The resulting metamodel represents a complex system's behavior for subsequent analysis or optimization. Often an exhaustive data search to obtain the data for the metalnodel is impossible, so an intelligent sampling strategy is necessary. While inultiple approaches have been advocated, the majority of these approaches were developed in support of a particular class of metamodel, known as a Kriging. A more generic, cotninonsense approach to this problem allows sequential sampling techniques to be applied to other types of metamodeis. This research compares recent search techniques for Kriging inetamodels with a generic, inulti-criteria approach combined with a new type of B-spline metamodel. This B-spline metamodel is competitive with prior results obtained with a Kriging metamodel. Furthermore, the results of this research highlight several important features necessary for these techniques to be extended to more complex domains.

  10. Optimization of parameterized lightpipes

    NASA Astrophysics Data System (ADS)

    Koshel, R. John

    2007-01-01

    Parameterization via the bend locus curve allows optimization of single-spherical-bend lightpipes. It takes into account the bend radii, the bend ratio, allowable volume, thickness, and other terms. Parameterization of the lightpipe allows the inclusion of a constrained optimizer to maximize performance of the lightpipe. The simplex method is used for optimization. The standard and optimal simplex methods are used to maximize the standard Lambertian transmission of the lightpipe. A second case presents analogous results when the ray-sample weighted, peak-to-average irradiance uniformity is included with the static Lambertian transmission. These results are compared to a study of the constrained merit space. Results show that both optimizers can locate the optimal solution, but the optimal simplex method accomplishes such with a reduced number of ray-trace evaluations.

  11. Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection

    PubMed Central

    Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi

    2011-01-01

    The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237

  12. Contingency contractor optimization.

    SciTech Connect

    Gearhart, Jared Lee; Adair, Kristin Lynn; Jones, Katherine A.; Bandlow, Alisa; Durfee, Justin David.; Jones, Dean A.; Martin, Nathaniel; Detry, Richard Joseph; Nanco, Alan Stewart; Nozick, Linda Karen

    2013-10-01

    The goal of Phase 3 the OSD ATL Contingency Contractor Optimization (CCO) project is to create an engineering prototype of a tool for the contingency contractor element of total force planning during the Support for Strategic Analysis (SSA). An optimization model was developed to determine the optimal mix of military, Department of Defense (DoD) civilians, and contractors that accomplishes a set of user defined mission requirements at the lowest possible cost while honoring resource limitations and manpower use rules. An additional feature allows the model to understand the variability of the Total Force Mix when there is uncertainty in mission requirements.

  13. Contingency contractor optimization.

    SciTech Connect

    Gearhart, Jared Lee; Adair, Kristin Lynn; Jones, Katherine A.; Bandlow, Alisa; Detry, Richard Joseph; Durfee, Justin David.; Jones, Dean A.; Martin, Nathaniel; Nanco, Alan Stewart; Nozick, Linda Karen

    2013-06-01

    The goal of Phase 3 the OSD ATL Contingency Contractor Optimization (CCO) project is to create an engineering prototype of a tool for the contingency contractor element of total force planning during the Support for Strategic Analysis (SSA). An optimization model was developed to determine the optimal mix of military, Department of Defense (DoD) civilians, and contractors that accomplishes a set of user defined mission requirements at the lowest possible cost while honoring resource limitations and manpower use rules. An additional feature allows the model to understand the variability of the Total Force Mix when there is uncertainty in mission requirements.

  14. Multiobjective genetic approach for optimal control of photoinduced processes

    SciTech Connect

    Bonacina, Luigi; Extermann, Jerome; Rondi, Ariana; Wolf, Jean-Pierre; Boutou, Veronique

    2007-08-15

    We have applied a multiobjective genetic algorithm to the optimization of multiphoton-excited fluorescence. Our study shows the advantages that this approach can offer to experiments based on adaptive shaping of femtosecond pulses. The algorithm outperforms single-objective optimizations, being totally independent from the bias of user defined parameters and giving simultaneous access to a large set of feasible solutions. The global inspection of their ensemble represents a powerful support to unravel the connections between pulse spectral field features and excitation dynamics of the sample.

  15. Eutectic superalloys by edge-defined, film-fed growth

    NASA Technical Reports Server (NTRS)

    Hurley, G. F.

    1975-01-01

    The feasibility of producing directionally solidified eutectic alloy composites by edge-defined, film-fed growth (EFG) was carried out. The three eutectic alloys which were investigated were gamma + delta, gamma/gamma prime + delta, and a Co-base TaC alloy containing Cr and Ni. Investigations into the compatibility and wettability of these metals with various carbides, borides, nitrides, and oxides disclosed that compounds with the largest (negative) heats of formation were most stable but poorest wetting. Nitrides and carbides had suitable stability and low contact angles but capillary rise was observed only with carbides. Oxides would not give capillary rise but would probably fulfill the other wetting requirements of EFG. Tantalum carbide was selected for most of the experimental portion of the program based on its exhibiting spontaneous capillary rise and satisfactory slow rate of degradation in the liquid metals. Samples of all three alloys were grown by EFG with the major experimental effort restricted to gamma + delta and gamma/gamma prime + delta alloys. In the standard, uncooled EFG apparatus, the thermal gradient was inferred from the growth speed and was 150 to 200 C/cm. This value may be compared to typical gradients of less than 100 C/cm normally achieved in a standard Bridgman-type apparatus. When a stream of helium was directed against the side of the bar during growth, the gradient was found to improve to about 250 C/cm. In comparison, a theoretical gradient of 700 C/cm should be possible under ideal conditions, without the use of chills. Methods for optimizing the gradient in EFG are discussed, and should allow attainment of close to the theoretical for a particular configuration.

  16. Sample Design.

    ERIC Educational Resources Information Center

    Ross, Kenneth N.

    1987-01-01

    This article considers various kinds of probability and non-probability samples in both experimental and survey studies. Throughout, how a sample is chosen is stressed. Size alone is not the determining consideration in sample selection. Good samples do not occur by accident; they are the result of a careful design. (Author/JAZ)

  17. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  18. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications. PMID:22065768

  19. Flight plan optimization

    NASA Astrophysics Data System (ADS)

    Dharmaseelan, Anoop; Adistambha, Keyne D.

    2015-05-01

    Fuel cost accounts for 40 percent of the operating cost of an airline. Fuel cost can be minimized by planning a flight on optimized routes. The routes can be optimized by searching best connections based on the cost function defined by the airline. The most common algorithm that used to optimize route search is Dijkstra's. Dijkstra's algorithm produces a static result and the time taken for the search is relatively long. This paper experiments a new algorithm to optimize route search which combines the principle of simulated annealing and genetic algorithm. The experimental results of route search, presented are shown to be computationally fast and accurate compared with timings from generic algorithm. The new algorithm is optimal for random routing feature that is highly sought by many regional operators.

  20. Respiratory motion sampling in 4DCT reconstruction for radiotherapy

    SciTech Connect

    Chi Yuwei; Liang Jian; Qin Xu; Yan Di

    2012-04-15

    Purpose: Phase-based and amplitude-based sorting techniques are commonly used in four-dimensional CT (4DCT) reconstruction. However, effect of these sorting techniques on 4D dose calculation has not been explored. In this study, the authors investigated a candidate 4DCT sorting technique by comparing its 4D dose calculation accuracy with that for phase-based and amplitude-based sorting techniques.Method: An optimization model was formed using organ motion probability density function (PDF) in the 4D dose convolution. The objective function for optimization was defined as the maximum difference between the expected 4D dose in organ of interest and the 4D dose calculated using a 4DCT sorted by a candidate sampling method. Sorting samples, as optimization variables, were selected on the respiratory motion PDF assessed during the CT scanning. Breathing curves obtained from patients' 4DCT scanning, as well as 3D dose distribution from treatment planning, were used in the study. Given the objective function, a residual error analysis was performed, and k-means clustering was found to be an effective sampling scheme to improve the 4D dose calculation accuracy and independent with the patient-specific dose distribution. Results: Patient data analysis demonstrated that the k-means sampling was superior to the conventional phase-based and amplitude-based sorting and comparable to the optimal sampling results. For phase-based sorting, the residual error in 4D dose calculations may not be further reduced to an acceptable accuracy after a certain number of phases, while for amplitude-based sorting, k-means sampling, and the optimal sampling, the residual error in 4D dose calculations decreased rapidly as the number of 4DCT phases increased to 6.Conclusion: An innovative phase sorting method (k-means method) is presented in this study. The method is dependent only on tumor motion PDF. It could provide a way to refine the phase sorting in 4DCT reconstruction and is effective for

  1. Sampling functions for geophysics

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.; Lunquist, C. A.

    1972-01-01

    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  2. 7 CFR 1215.100 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Terms defined. 1215.100 Section 1215.100 Agriculture... CONSUMER INFORMATION Rules and Regulations Definitions § 1215.100 Terms defined. Unless otherwise defined in this subpart, the definitions of terms used in this subpart shall have the same meaning as...

  3. 7 CFR 1206.200 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Terms defined. 1206.200 Section 1206.200 Agriculture... INFORMATION Rules and Regulations § 1206.200 Terms defined. Unless otherwise defined in this subpart, the definitions of terms used in this subpart shall have the same meaning as the definitions of such terms...

  4. 7 CFR 1210.500 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Terms defined. 1210.500 Section 1210.500 Agriculture... PLAN Rules and Regulations Definitions § 1210.500 Terms defined. Unless otherwise defined in this subpart, definitions of terms used in this subpart shall have the same meaning as the definitions of...

  5. Defined contribution: a part of our future.

    PubMed Central

    Baugh, Reginald F.

    2003-01-01

    Rising employer health care costs and consumer backlash against managed care are trends fostering the development of defined contribution plans. Defined contribution plans limit employer responsibility to a fixed financial contribution rather than a benefit program and dramatically increase consumer responsibility for health care decision making. Possible outcomes of widespread adoption of defined contribution plans are presented. PMID:12934869

  6. A Mars Sample Return Sample Handling System

    NASA Technical Reports Server (NTRS)

    Wilson, David; Stroker, Carol

    2013-01-01

    We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory

  7. Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Birge, Brian

    2013-01-01

    The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.

  8. Capillary sample

    MedlinePlus

    ... using capillary blood sampling. Disadvantages to capillary blood sampling include: Only a limited amount of blood can be drawn using this method. The procedure has some risks (see below). Capillary ...

  9. Oscillator metrology with software defined radio.

    PubMed

    Sherman, Jeff A; Jördens, Robert

    2016-05-01

    Analog electrical elements such as mixers, filters, transfer oscillators, isolating buffers, dividers, and even transmission lines contribute technical noise and unwanted environmental coupling in time and frequency measurements. Software defined radio (SDR) techniques replace many of these analog components with digital signal processing (DSP) on rapidly sampled signals. We demonstrate that, generically, commercially available multi-channel SDRs are capable of time and frequency metrology, outperforming purpose-built devices by as much as an order-of-magnitude. For example, for signals at 10 MHz and 6 GHz, we observe SDR time deviation noise floors of about 20 fs and 1 fs, respectively, in under 10 ms of averaging. Examining the other complex signal component, we find a relative amplitude measurement instability of 3 × 10(-7) at 5 MHz. We discuss the scalability of a SDR-based system for simultaneous measurement of many clocks. SDR's frequency agility allows for comparison of oscillators at widely different frequencies. We demonstrate a novel and extreme example with optical clock frequencies differing by many terahertz: using a femtosecond-laser frequency comb and SDR, we show femtosecond-level time comparisons of ultra-stable lasers with zero measurement dead-time. PMID:27250455

  10. Defining seasonal marine microbial community dynamics.

    PubMed

    Gilbert, Jack A; Steele, Joshua A; Caporaso, J Gregory; Steinbrück, Lars; Reeder, Jens; Temperton, Ben; Huse, Susan; McHardy, Alice C; Knight, Rob; Joint, Ian; Somerfield, Paul; Fuhrman, Jed A; Field, Dawn

    2012-02-01

    Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.

  11. Taking Stock of Unrealistic Optimism

    PubMed Central

    Shepperd, James A.; Klein, William M. P.; Waters, Erika A.; Weinstein, Neil D.

    2015-01-01

    Researchers have used terms such as unrealistic optimism and optimistic bias to refer to concepts that are similar but not synonymous. Drawing from three decades of research, we critically discuss how researchers define unrealistic optimism and we identify four types that reflect different measurement approaches: unrealistic absolute optimism at the individual and group level and unrealistic comparative optimism at the individual and group level. In addition, we discuss methodological criticisms leveled against research on unrealistic optimism and note that the criticisms are primarily relevant to only one type—the group form of unrealistic comparative optimism. We further clarify how the criticisms are not nearly as problematic even for unrealistic comparative optimism as they might seem. Finally, we note boundary conditions on the different types of unrealistic optimism and reflect on five broad questions that deserve further attention. PMID:26045714

  12. Optimizing qubit phase estimation

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François

    2016-08-01

    The theory of quantum state estimation is exploited here to investigate the most efficient strategies for this task, especially targeting a complete picture identifying optimal conditions in terms of Fisher information, quantum measurement, and associated estimator. The approach is specified to estimation of the phase of a qubit in a rotation around an arbitrary given axis, equivalent to estimating the phase of an arbitrary single-qubit quantum gate, both in noise-free and then in noisy conditions. In noise-free conditions, we establish the possibility of defining an optimal quantum probe, optimal quantum measurement, and optimal estimator together capable of achieving the ultimate best performance uniformly for any unknown phase. With arbitrary quantum noise, we show that in general the optimal solutions are phase dependent and require adaptive techniques for practical implementation. However, for the important case of the depolarizing noise, we again establish the possibility of a quantum probe, quantum measurement, and estimator uniformly optimal for any unknown phase. In this way, for qubit phase estimation, without and then with quantum noise, we characterize the phase-independent optimal solutions when they generally exist, and also identify the complementary conditions where the optimal solutions are phase dependent and only adaptively implementable.

  13. Supervisory sampling and control: Sources of suboptimality in a prediction task

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.; Rouse, W. B.

    1972-01-01

    A process supervisor is defined as a person who decides when to sample the process input and what values of a control variable to specify in order to maximize (minimize) a given value function of input sampling period, control setting, and process state. Presented experimental data in such a process where the value function is a time-averaged sampling cost plus mean squared difference between input and control variable. The task was unpaced prediction of the output of a second order filter driven by white noise. Experimental results, when compared to the optical strategy, reveal several consistently suboptimal behaviors. One is a tendency not to choose a long prediction interval even though the optimal strategy dictates that one should. Some results are also interpreted in terms of those input parameters according to which each subjects' behavior would have been nearest optimal. Differences of those parameters from actual input parameters served to quantify how subjects' prediction behavior differed from optimal.

  14. Depth-discrete sampling port

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph; Riha, Brian D.; Nichols, Ralph L.

    1999-01-01

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  15. Depth-discrete sampling port

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph; Riha, Brian D.; Nichols, Ralph L.

    1998-07-07

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  16. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    PubMed

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. PMID:26149246

  17. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    PubMed

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body.

  18. General shape optimization capability

    NASA Technical Reports Server (NTRS)

    Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson

    1991-01-01

    A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.

  19. Powder sampling.

    PubMed

    Venables, Helena J; Wells, J I

    2002-01-01

    The factors involved when sampling powder mixes have been reviewed. The various methods are evaluated (manual, automatic, and sub-sampling) and the errors incurred are discussed. Certain rules have been applied to various samplers and their suitability for powder mixtures are described. The spinning riffler is apparently the most suitable, while the use of sample thieves should be avoided due to error and bias.

  20. Sampling Development

    PubMed Central

    Adolph, Karen E.; Robinson, Scott R.

    2011-01-01

    Research in developmental psychology requires sampling at different time points. Accurate depictions of developmental change provide a foundation for further empirical studies and theories about developmental mechanisms. However, overreliance on widely spaced sampling intervals in cross-sectional and longitudinal designs threatens the validity of the enterprise. This article discusses how to sample development in order to accurately discern the shape of developmental change. The ideal solution is daunting: to summarize behavior over 24-hour intervals and collect daily samples over the critical periods of change. We discuss the magnitude of errors due to undersampling, and the risks associated with oversampling. When daily sampling is not feasible, we offer suggestions for sampling methods that can provide preliminary reference points and provisional sketches of the general shape of a developmental trajectory. Denser sampling then can be applied strategically during periods of enhanced variability, inflections in the rate of developmental change, or in relation to key events or processes that may affect the course of change. Despite the challenges of dense repeated sampling, researchers must take seriously the problem of sampling on a developmental time scale if we are to know the true shape of developmental change. PMID:22140355

  1. Sampling Development

    ERIC Educational Resources Information Center

    Adolph, Karen E.; Robinson, Scott R.

    2011-01-01

    Research in developmental psychology requires sampling at different time points. Accurate depictions of developmental change provide a foundation for further empirical studies and theories about developmental mechanisms. However, overreliance on widely spaced sampling intervals in cross-sectional and longitudinal designs threatens the validity of…

  2. Variability of "optimal" cut points for mild, moderate, and severe pain: neglected problems when comparing groups.

    PubMed

    Hirschfeld, Gerrit; Zernikow, Boris

    2013-01-01

    Defining cut points for mild, moderate, and severe pain intensity on the basis of differences in functional interference has an intuitive appeal. The statistical procedure to derive them proposed in 1995 by Serlin et al. has been widely used. Contrasting cut points between populations have been interpreted as meaningful differences between different chronic pain populations. We explore the variability associated with optimally defined cut points in a large sample of chronic pain patients and in homogeneous subsamples. Ratings of maximal pain intensity (0-10 numeric rating scale, NRS) and pain-related disability were collected in a sample of 2249 children with chronic pain managed in a tertiary pain clinic. First, the "optimal" cut points for the whole sample were determined. Second, the variability of these cut points was quantified by the bootstrap technique. Third, this variability was also assessed in homogeneous subsamples of 650 children with constant pain, 430 children with chronic daily headache, and 295 children with musculoskeletal pain. Our study revealed 3 main findings: (1) The optimal cut points for mild, moderate, and severe pain in the whole sample were 4 and 8 (0-10 NRS). (2) The variability of these cut points within the whole sample was very high, identifying the optimal cut points in only 40% of the time. (3) Similarly large variability was also found in subsamples of patients with a homogeneous pain etiology. Optimal cut points are strongly influenced by random fluctuations within a sample. Differences in optimal cut points between study groups may be explained by chance variation; no other substantial explanation is required. Future studies that aim to interpret differences between groups need to include measures of variability for optimal cut points.

  3. Dynamic Optimization

    NASA Technical Reports Server (NTRS)

    Laird, Philip

    1992-01-01

    We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.

  4. Sample holder with optical features

    DOEpatents

    Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

    2013-07-30

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  5. New multirate sampled-data control law structure and synthesis algorithm

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.; Yang, Gen-Sheng

    1992-01-01

    A new multirate sampled-data control law structure is defined and a new parameter-optimization-based synthesis algorithm for that structure is introduced. The synthesis algorithm can be applied to multirate, multiple-input/multiple-output, sampled-data control laws having a prescribed dynamic order and structure, and a priori specified sampling/update rates for all sensors, processor states, and control inputs. The synthesis algorithm is applied to design two-input, two-output tip position controllers of various dynamic orders for a sixth-order, two-link robot arm model.

  6. 16 CFR 502.2 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Terms defined. 502.2 Section 502.2... FAIR PACKAGING AND LABELING ACT Definitions § 502.2 Terms defined. As used in this part, unless the context otherwise specifically requires: (a) The terms Act, regulation or regulations, consumer...

  7. 16 CFR 304.1 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Terms defined. 304.1 Section 304.1... REGULATIONS UNDER THE HOBBY PROTECTION ACT § 304.1 Terms defined. (a) Act means the Hobby Protection Act... same meanings as such term has under the Federal Trade Commission Act. (c) Commission means the...

  8. 7 CFR 1230.100 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Terms defined. 1230.100 Section 1230.100 Agriculture... CONSUMER INFORMATION Rules and Regulations Definitions § 1230.100 Terms defined. As used throughout this subpart, unless the context otherwise requires, terms shall have the same meaning as the definition...

  9. 7 CFR 29.9201 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Terms defined. 29.9201 Section 29.9201 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Tobacco Produced and Marketed in a Quota Area Definitions § 29.9201 Terms defined. As used in this...

  10. 7 CFR 1280.401 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Terms defined. 1280.401 Section 1280.401 Agriculture... INFORMATION ORDER Rules and Regulations § 1280.401 Terms defined. As used throughout this subpart, unless the context otherwise requires, terms shall have the same meaning as the definition of such terms in subpart...

  11. 16 CFR 1608.1 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Terms defined. 1608.1 Section 1608.1... REGULATIONS UNDER THE FLAMMABLE FABRICS ACT § 1608.1 Terms defined. As used in the rules and regulations in this subchapter D, unless the context otherwise specifically requires: (a) The term act means...

  12. 7 CFR 1280.601 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Terms defined. 1280.601 Section 1280.601 Agriculture... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.601 Terms defined. As used throughout this subpart, unless the context otherwise requires, terms shall have the same meaning as...

  13. 7 CFR 29.12 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Terms defined. 29.12 Section 29.12 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Definitions § 29.12 Terms defined. As used in this subpart and in all...

  14. 16 CFR 300.1 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Terms defined