Sample records for defined growth medium

  1. Chemically Defined Medium and Caenorhabditis elegans: A Powerful Approach

    NASA Technical Reports Server (NTRS)

    Szewczyk, N. J.; Kozak, E.; Conley, C. A.

    2003-01-01

    C. elegans has been established as a powerful genetic system. Growth in a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of me in large-scale growth and screening of animals. Here we present our initial results from developing culture systems with CeMM. We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats of using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change defined medium composition. As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  2. Chemically defined medium and Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Kozak, Elena; Conley, Catharine A.

    2003-01-01

    BACKGROUND: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. RESULTS: We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats to using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change the composition of the defined medium. CONCLUSIONS: As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  3. A defined medium for Leishmania culture allows definition of essential amino acids.

    PubMed

    Nayak, Archana; Akpunarlieva, Snezhana; Barrett, Michael; Burchmore, Richard

    2018-02-01

    Axenic culture of Leishmania is generally performed in rich, serum-supplemented media which sustain robust growth over multiple passages. The use of such undefined media, however, obscures proteomic analyses and confounds the study of metabolism. We have established a simple, defined culture medium that supports the sustained growth of promastigotes over multiple passages and which yields parasites that have similar infectivity to macrophages to parasites grown in a conventional semi-defined medium. We have exploited this medium to investigate the amino acid requirements of promastigotes in culture and have found that phenylalanine, tryptophan, arginine, leucine, lysine and valine are essential for viability in culture. Most of the 20 proteogenic amino acids promote growth of Leishmania promastigotes, with the exception of alanine, asparagine, and glycine. This defined medium will be useful for further studies of promastigote substrate requirements, and will facilitate future proteomic and metabolomic analyses. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Chemically defined medium for cultivation of several epiphytic and phytopathogenic spiroplasmas.

    PubMed

    Lee, I M; Davis, R E

    1983-12-01

    A chemically defined medium, LD82, was formulated for in vitro cultivation of spiroplasmas. Medium LD82 supported good growth for four epiphytic and insect-pathogenic spiroplasmas, Spiroplasma floricola 23-6, Spiroplasma sp. strain SR3, Spiroplasma sp. strain brevi, and Spiroplasma sp. strain AS576, and of the phytopathogenic spiroplasmas Spiroplasma citri Maroc R8A2 and PC1. Titers of all six strains grown in defined medium LD82 reached 2.0 x 10 to 6.0 x 10 CFU/ml of culture. All spiroplasma strains tested formed colonies readily on agar medium LD82. None of the spiroplasmas formed typical fried-egg colonies. All formed diffuse colonies, but the forms of colonies differed somewhat among the spiroplasma strains. In preliminary studies of nutritional requirements, phospholipids slightly enhanced the growth of the epiphytic and insect-pathogenic strains in medium LD82 and were found essential for good growth of S. citri.

  5. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.

    PubMed

    Chen, Yu; Dong, Fengqing; Wang, Yonghong

    2016-09-01

    With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved.

  6. A defined, glucose-limited mineral medium for the cultivation of Listeria spp.

    PubMed

    Schneebeli, Rudolf; Egli, Thomas

    2013-04-01

    Members of the genus Listeria are fastidious bacteria with respect to their nutritional requirements, and several minimal media described in the literature fail to support growth of all Listeria spp. Furthermore, strict limitation by a single nutrient, e.g., the carbon source, has not been demonstrated for any of the published minimal media. This is an important prerequisite for defined studies of growth and physiology, including "omics." Based on a theoretical analysis of previously published mineral media for Listeria, an improved, well-balanced growth medium was designed. It supports the growth, not only of all tested Listeria monocytogenes strains, but of all other Listeria species, with the exception of L. ivanovii. The growth performance of L. monocytogenes strain Scott A was tested in the newly designed medium; glucose served as the only carbon and energy source for growth, whereas neither the supplied amino acids nor the buffering and complexing components (MOPS [morpholinepropanesulfonic acid] and EDTA) supported growth. Omission of amino acids, trace elements, or vitamins, alone or in combination, resulted in considerably reduced biomass yields. Furthermore, we monitored the specific growth rates of various Listeria strains cultivated in the designed mineral medium and compared them to growth in complex medium (brain heart infusion broth [BHI]). The novel mineral medium was optimized for the commonly used strain L. monocytogenes Scott A to achieve optimum cell yields and maximum specific growth rates. This mineral medium is the first published synthetic medium for Listeria that has been shown to be strictly carbon (glucose) limited.

  7. A critical synopsis: Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium

    NASA Technical Reports Server (NTRS)

    Chuman, L. M.; FINE; COHEN; Saier, M. H.

    1985-01-01

    The kidney forms urine and reabsorbs electrolytes and water. Kidney cell lines and hormone supplemented serum free medium were used for growth. The hormones were insulin, transferrin, vasopressin, cholesterol, prostaglandins, hydrocortisone, and triidothyronine. Epithelial cell lines are polar and form hemicysts. The Madin-Darby canine kidney(MDCK) cell line used is distal tubulelike. LLC-PK sub 1 cells are derived from pig kidneys and have the properties of different kidney segments. The LLC-PK sub 1 cells with proximal tubule properties were maintained in hormone-supplemented serum free medium. Seven factors (the aforementioned homrones and selenium) were needed for growth. Hormone-defined medium supported LLC-PK sub 1 cell growth, allowed transport (as seen by hemicyst formation), and influenced cell morphology. Vasopressin (used for growth and morphology) could be partially replaced by isobutylmethylxanthine or dibutyryl cAMP. The defined medium was used to isolate rabbit proximal tubule kidney epithelial cells free of fibroblasts.

  8. A Defined, Glucose-Limited Mineral Medium for the Cultivation of Listeria spp.

    PubMed Central

    Schneebeli, Rudolf

    2013-01-01

    Members of the genus Listeria are fastidious bacteria with respect to their nutritional requirements, and several minimal media described in the literature fail to support growth of all Listeria spp. Furthermore, strict limitation by a single nutrient, e.g., the carbon source, has not been demonstrated for any of the published minimal media. This is an important prerequisite for defined studies of growth and physiology, including “omics.” Based on a theoretical analysis of previously published mineral media for Listeria, an improved, well-balanced growth medium was designed. It supports the growth, not only of all tested Listeria monocytogenes strains, but of all other Listeria species, with the exception of L. ivanovii. The growth performance of L. monocytogenes strain Scott A was tested in the newly designed medium; glucose served as the only carbon and energy source for growth, whereas neither the supplied amino acids nor the buffering and complexing components (MOPS [morpholinepropanesulfonic acid] and EDTA) supported growth. Omission of amino acids, trace elements, or vitamins, alone or in combination, resulted in considerably reduced biomass yields. Furthermore, we monitored the specific growth rates of various Listeria strains cultivated in the designed mineral medium and compared them to growth in complex medium (brain heart infusion broth [BHI]). The novel mineral medium was optimized for the commonly used strain L. monocytogenes Scott A to achieve optimum cell yields and maximum specific growth rates. This mineral medium is the first published synthetic medium for Listeria that has been shown to be strictly carbon (glucose) limited. PMID:23377938

  9. Analysis of Fatty Acid and Growth Profiles in Ten Shewanella spp. to Associate Phylogenetic Relationships

    DTIC Science & Technology

    2015-10-25

    in a defined medium composed of half-strength Marine Broth adjusted to pH 6, 7, or 8 in a 50 mM phosphate buffer, both growth characteristics and...work had broad phylogenetic diversity (Fig. 1) and were isolated from mostly marine environments. S. putrefaciens was the only strain that was not...the defined medium that supported growth of most of the strains tested was marine broth diluted to half strength with 50 mM phosphate buffer (½-MB

  10. Elimination of formate production in Clostridium thermocellum.

    PubMed

    Rydzak, Thomas; Lynd, Lee R; Guss, Adam M

    2015-09-01

    The ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield is far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, genes encoding pyruvate:formate lyase (pflB) and PFL-activating enzyme (pflA) were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50 % on both complex and defined medium. The growth rate of the Δpfl strain decreased by 2.9-fold on defined medium and biphasic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80 % of the parent strain. The role of pfl in metabolic engineering strategies and C1 metabolism is discussed.

  11. The growth of Paracoccus halodenitrificans in a defined medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1984-01-01

    A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus a nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin dependent pathway for methionine biosynthesis, as well as the inability to synthesize betanine when growing anaerobically.

  12. The growth of paracoccus halodenitrificans in a defined medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1983-01-01

    A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus a nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin dependent pathway for methionine biosynthesis, as well as the inability to synthesize betaine when growing anaerobically.

  13. Chemical Growth Regulators for Guayule Plants

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R.

    1982-01-01

    Test Tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxy)-triethylamine (triethylamine (TEA) derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

  14. Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water

    USGS Publications Warehouse

    Hodgskiss, Logan H.; Nagy, Justin; Barnhart, Elliott P.; Cunningham, Alfred B.; Fields, Matthew W.

    2016-01-01

    Coal bed methane (CBM) production has resulted in thousands of ponds in the Powder River Basin of low-quality water in a water-challenged region. A green alga isolate, PW95, was isolated from a CBM production pond, and analysis of a partial ribosomal gene sequence indicated the isolate belongs to the Chlorococcaceae family. Different combinations of macro- and micronutrients were evaluated for PW95 growth in CBM water compared to a defined medium. A small level of growth was observed in unamended CBM water (0.15 g/l), and biomass increased (2-fold) in amended CBM water or defined growth medium. The highest growth rate was observed in CBM water amended with both N and P, and the unamended CBM water displayed the lowest growth rate. The highest lipid content (27%) was observed in CBM water with nitrate, and a significant level of lipid accumulation was not observed in the defined growth medium. Growth analysis indicated that nitrate deprivation coincided with lipid accumulation in CBM production water, and lipid accumulation did not increase with additional phosphorus limitation. The presented results show that CBM production wastewater can be minimally amended and used for the cultivation of a native, lipid-accumulating alga.

  15. The Effect of Radiation on the Normal and Oestrone-treated Mouse Vagina Grown in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasnitzki, Ilse

    1961-06-01

    The effect of radiation on the differentiation of normal and oestrone- treated organ cultures of the mouse vagina was studied during growth in natural and in chemically defined medium. After explanation into either type of medium without addition of the hormone the vaginal epithelium spontaneously forms new squamous keratinising epithelium which displaces the original secretory epithelium. Addition of oestrone to the medium stimulates the growth of the new cells and hastens and increases keratin synthesis. Exposure to 200 r of x rays given one day after explanation inhibits the squamous development, suppresses keratin formation and preserves the original epithelium inmore » both normal and oestrone-treated explants grown in natural medium. Radiation of cultures kept in defined medium fails to influence the normal squamous differentiation and keratinisation. The mechanism of radiation action is discussed in the light of the differnet results obtained under the two conditions. (auth)« less

  16. Elimination of formate production in Clostridium thermocellum

    DOE PAGES

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H 2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growthmore » rate of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C 1 metabolism.« less

  17. An improved medium for the anaerobic growth of Paracoccus denitrificans Pd1222

    PubMed Central

    Hahnke, Stefanie M.; Moosmann, Philipp; Erb, Tobias J.; Strous, Marc

    2014-01-01

    Paracoccus denitrificans is a well studied model organism with respect to its aerobic and anaerobic respiratory enzymes. However, until now, the growth medium for this organism has not been optimized for anaerobic growth. In particular, the requirements of P. denitrificans for trace elements (TEs) are not well known. In the present study we aimed to improve growth rates of P. denitrificans Pd1222 on a defined medium under anoxic conditions. We designed media containing different combinations of TEs at various concentrations, and tested their performance against previously reported media. Our results suggest that growth rate and yield depend on the availability and concentration of TEs in the medium. A chelated TE solution was more suitable than an acidified TE solution. Highest growth rates were achieved with medium comprising the TEs iron, manganese, molybdenum, copper and zinc ranging from 0.1 to 9 μM. On this medium, P. denitrificans Pd1222 grew with a generation time of 4.4 h under anoxic conditions and 2.8 h under oxic conditions. Diauxic growth was clearly shown with respect to nitrate and nitrite reduction under anoxic conditions. PMID:24550891

  18. An improved medium for the anaerobic growth of Paracoccus denitrificans Pd1222.

    PubMed

    Hahnke, Stefanie M; Moosmann, Philipp; Erb, Tobias J; Strous, Marc

    2014-01-01

    Paracoccus denitrificans is a well studied model organism with respect to its aerobic and anaerobic respiratory enzymes. However, until now, the growth medium for this organism has not been optimized for anaerobic growth. In particular, the requirements of P. denitrificans for trace elements (TEs) are not well known. In the present study we aimed to improve growth rates of P. denitrificans Pd1222 on a defined medium under anoxic conditions. We designed media containing different combinations of TEs at various concentrations, and tested their performance against previously reported media. Our results suggest that growth rate and yield depend on the availability and concentration of TEs in the medium. A chelated TE solution was more suitable than an acidified TE solution. Highest growth rates were achieved with medium comprising the TEs iron, manganese, molybdenum, copper and zinc ranging from 0.1 to 9 μM. On this medium, P. denitrificans Pd1222 grew with a generation time of 4.4 h under anoxic conditions and 2.8 h under oxic conditions. Diauxic growth was clearly shown with respect to nitrate and nitrite reduction under anoxic conditions.

  19. Impact of Medium and Substrate on Growth of Pseudomonas Fluorescens Biofilms on Polyurethane Paint

    DTIC Science & Technology

    2011-02-01

    biofilm formation on polyurethane (PU) coatings, and to define how those parameters contribute to polyurethane biodegradation. We used a batch flow system...determine which factors best support the growth and persistence of Pseudomonas fluorescens biofilms . Factors that enhance biofilm formation and...AFRL-RX-WP-TP-2011-4131 IMPACT OF MEDIUM AND SUBSTRATE ON GROWTH OF PSEUDOMONAS FLUORESCENS BIOFILMS ON POLYURETHANE PAINT Wendy L. Goodson

  20. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies.

    PubMed

    Ng, Elizabeth S; Davis, Richard; Stanley, Edouard G; Elefanty, Andrew G

    2008-01-01

    In order to promote the uniform and reproducible differentiation of human embryonic stem cells (HESCs) in response to exogenously added growth factors, we have developed a method (spin embryoid bodies (EBs)) that uses a recombinant protein-based, animal product-free medium in which HESCs are aggregated by centrifugation to form EBs. In this protocol we describe the formulation of this medium, denoted APEL (Albumin Polyvinylalcohol Essential Lipids), and its use in spin EB differentiation of HESCs. We also describe a more economical variant, BPEL (Bovine Serum Albumin (BSA) Polyvinylalchohol Essential Lipids), in which BSA replaces the recombinant human albumin. The integration of a medium that includes only defined and recombinant components with a defined number of cells to initiate EB formation results in a generally applicable, robust platform for growth factor-directed HESC differentiation.

  1. The observed life cycle of a baroclinic instability

    NASA Technical Reports Server (NTRS)

    Randel, W. J.; Stanford, J. L.

    1985-01-01

    Medium-scale waves (zonal wavenumbers 4-7) frequently dominate Southern Hemisphere summer circulation patterns. Randel and Stanford have studied the dynamics of these features, demonstrating that the medium-scale waves result from baroclinic excitation and exhibit well-defined life cycles. This study details the evolution of the medium-scale waves during a particular life cycle. The specific case chosen exhibits a high degree of zonal symmetry, prompting study based upon zonally averaged diagnostics. An analysis of the medium-scale wave energetics reveals a well-defined life cycle of baroclinic growth, maturity, and barotropic decay. Eliassen-Palm flux diagrams detail the daily wave structure and its interaction with the zonally-averaged flow.

  2. The regulation of progesterone receptor by 17 beta estradiol and tamoxifen in the Zr-75-1 human breast cancer cell line in defined medium.

    PubMed

    Allegra, J C; Korat, O; Do, H M; Lippman, M

    1981-01-01

    The regulation of progesterone receptor by 17 beta estradiol and tamoxifen in the ZR-75-1 human breast cancer cell line in defined medium is described. ZR-75-1 cells maintained in serum free hormone supplemented medium minus estradiol lack progesterone receptor activity. Readdition of estradiol to these cells leads to a marked stimulation of progesterone receptor activity (0 to greater than 100 fmols of specifically bound progesterone per million cells). Tamoxifen (10(-6)M-10(-8)M) does not stimulate progesterone receptor activity in this cell line. The presence of progesterone receptor activity is not directly related to growth. Withdrawal of insulin in the continued presence of estradiol has no effect on progesterone receptor concentration although net cell growth ceases. Conversely, withdrawal of estradiol in the continued presence of insulin induces a cessation of net cell growth accompanied by a loss of all progesterone receptor activity within 3-5 days.

  3. Possibilities of vaccine manufacture in human diploid cell strains with a serum replacement factor.

    PubMed

    Candal, F J; George, V G; Ades, E W

    1991-07-01

    Cell lines MDCK (canine kidney), BGM (Buffalo green monkey kidney) and human embryonic lung fibroblast will support viral growth efficiently in medium without serum. Both MRC-5 and WI-38 cell strains have been approved by the Food and Drug Administration for manufacturing viral vaccines against cytomegalovirus and varicella-zoster virus. In this study we examine these two cell lines and viruses for their ability to grow in medium containing a serum replacement. The serum substitute used is LPSR-1 (low protein serum replacement). Using LPSR-1 in defined medium, we demonstrate multipassage cell growth and viral cultivation and replication equivalent to those obtained in medium containing fetal bovine serum (FBS). Viral growth after complete elimination of FBS varies and depends on cell line and virus. Serum substitutes can eliminate FBS in the viral growth phase of vaccine production and reduce costs.

  4. Statistical optimization of growth medium for the production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin from Fusarium oxysporum KFCC 11363P.

    PubMed

    Lee, Hee-Seok; Song, Hyuk-Hwan; An, Joong-Hoon; Shin, Cha-Gyun; Lee, Gung Pyo; Lee, Chan

    2008-01-01

    The production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin (BEA) was studied in submerged cultures of Fusarium oxysporum KFCC 11363P isolated in Korea. The influences of various factors on mycelia growth and BEA production were examined in both complete and chemically defined culture media. The mycelia growth and BEA production were highest in Fusarium defined medium. The optimal carbon and nitrogen sources for maximizing BEA production were glucose and NaNO3, respectively. The carbon/ nitrogen ratio for maximal production of BEA was investigated using response surface methodology (RSM). Equations derived by differentiation of the RSM model revealed that the production of BEA was maximal when using 108 mM glucose and 25 mM NaNO3.

  5. Salinity effect on the maximal growth temperature of some bacteria isolated from marine enviroments.

    PubMed

    Stanley, S O; Morita, R Y

    1968-01-01

    Salinity of the growth medium was found to have a marked effect on the maximal growth temperature of four bacteria isolated from marine sources. Vibrio marinus MP-1 had a maximal growth temperature of 21.2 C at a salinity of 35% and a maximal growth temperature of 10.5 C at a salinity of 7%, the lowest salinity at which it would grow. This effect was shown to be due to the presence of various cations in the medium. The order of effectiveness of cations in restoring the normal maximal growth temperature, when added to dilute seawater, was Na(+) > Li(+) > Mg(++) > K(+) > Rb(+) > NH(4) (+). The anions tested, with the exception of SO(4)=, had no marked effect on the maximal growth temperature response. In a completely defined medium, the highest maximal growth temperature was 20.0 C at 0.40 m NaCl. A decrease in the maximal growth temperature was observed at both low and high concentrations of NaCl.

  6. Growth and survival of cowpea rhizobia in acid, aluminum-rich soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartel, P.G.; Alexander, M.

    1983-01-01

    A study was undertaken to determine whether Al-sensitive cowpea Rhizobium survives in acid, Al-rich soils. The lower pH limit for growth of 20 strains in a defined liquid medium varied from pH 4.2 to less than pH 3.6. The mean lower limit for growth was pH 3.9. Several of the strains clumped in this medium at pH 4.5. Of 11 strains that were tested for tolerance to high levels of Al in a defined liquid medium at pH 4.5, nine tolerated 75 ..mu..M Al, and the other two were sensitive to levels above 15 ..mu..M. Three strains, one Al-tolerant, onemore » Al-sensitive, and one Al-tolerant or Al-sensitive depending on the presence of vitamins in the medium, were selected for studies in Al-rich sterile and nonsterile soils. These rhizobia did not survive in soils of less than pH 4.7 sterilized by /sup 60/Co irradiation. When inoculated into sterile soil at pH 4.7, the consistently sensitive strain initially failed to proliferate and then grew slowly, but populations of the other two rhizobia increased rapidly. No consistent relationship was found between the Al tolerance of these three rhizobia and their growth and survival in four acid, Al-rich soils. The data suggest that Al is of minor importance to growth and survival of cowpea Rhizobium strains in acid soils. 16 references, 4 figures, 1 table.« less

  7. Iron in Neisseria meningitidis: minimum requirements, effects of limitation, and characteristics of uptake.

    PubMed Central

    Archibald, F S; DeVoe, I W

    1978-01-01

    A simple defined medium (neisseria defined medium) was devised that does not require iron extraction to produce iron-limited growth of Neisseria meningitidis (SDIC). Comparison of this medium to Mueller-Hinton broth and agar showed nearly identical growth rates and yields. The defined medium was used in batch cultures to determine the disappearance of iron from the medium and its uptake by cells. To avoid a number of problems inherent in batch culture, continuous culture, in which iron and dissolved oxygen were varied independently, was used. Most of the cellular iron was found to be nonheme and associated with the particulate fraction in sonically disrupted cells. Nonheme and catalase-heme iron were reduced by iron starvation far more than cytochromes b and c and N,N,N',N'-tetramethylphenylenediamine-oxidase. The respiration rate and efficiency also decreased under iron limitation, whereas generation times increased. The iron-starved meningococcus took up iron by an energy-independent system operating in the first minute after an iron pulse and a slower energy-dependent system inhibited by respiratory poisons and an uncoupler. The energy-dependent system showed saturation kinetics and was stimulated nearly fourfold by iron privation. In addition, to determine the availability to the meningococcus of the iron in selected compounds, a sensitive assay was devised in which an iron-limited continuous culture was pulsed with the iron-containing compound. PMID:101516

  8. Growth and differentiation of a murine interleukin-3-producing myelomonocytic leukemia cell line in a protein-free chemically defined medium.

    PubMed

    Kajigaya, Y; Ikuta, K; Sasaki, H; Matsuyama, S

    1990-10-01

    We established the continuous growth of WEHI-3B D+ cells in protein-free chemically defined F-12 medium by stepwise decreases in the concentration of fetal calf serum. This cell line, designated as WEHI-3B-Y1, has now been propagated in protein-free F-12 medium for 3 years. The population-doubling time of the cells in culture is about 24 hr. WEHI-3B-Y1 cells are immature undifferentiated cells which show positive staining for naphthol ASD chloroacetate esterase and alpha-naphthyl butyrate esterase and spontaneously exhibit a low level of differentiation to mature granulocytes and macrophages. Medium conditioned by WEHI-3B-Y1 cells stimulated the proliferation of an interleukin-3 (IL-3)-dependent FDCP-2 cell line. This conditioned medium was shown to have erythroid burst-promoting activity when assayed using normal murine bone marrow. The colony formation of WEHI-3B-Y1 cells in semi-solid agar culture was not stimulated by purified recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, in the presence of human transferrin, rhG-CSF enhanced the number of colonies of WEHI-3B-Y1 cells but did not induce their differentiation. These results suggest that WEHI-3B-Y1 cells cultured in protein-free medium produced murine IL-3. In addition, human G-CSF enhanced the clonal growth but did not induce the differentiation of WEHI-3B-Y1 cells cultured in serum-free medium.

  9. High Aflatoxin Production on a Chemically Defined Medium 1

    PubMed Central

    Reddy, T. V.; Viswanathan, L.; Venkitasubramanian, T. A.

    1971-01-01

    Aspergillus parasiticus ATCC 15517 produced 28 to 30 mg of aflatoxin per 100 ml of a medium containing sucrose, asparagine, and salts in stationary and shaken cultures. In the absence of asparagine in the medium, the toxin yields fell drastically, and the thin-layer chromatograms of the chloroform extracts of the cultures indicated the total absence of aflatoxin G1 and the presence of new intense blue and green fluorescent bands having RF values lower than aflatoxins. Initial pH was critical and had to be around 4.5 for good growth and high toxin production on this medium. Optimum concentrations of KH2PO4 and MgSO4·7H2O in the medium were much lower than those normally used in fungal growth media. PMID:5119206

  10. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  11. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  12. Potassium Salts Inhibit Growth of the Cyanobacteria Microcystis spp. in Pond Water and Defined Media: Implications for Control of Microcystin-Producing Aquatic Blooms.

    PubMed

    Parker, D L; Kumar, H D; Rai, L C; Singh, J B

    1997-06-01

    Ten metals were assayed in 21 Indian ponds which comprised three groups: (i) eutrophic alkaline ponds containing <2.5 mM potassium and thick growths of Microcystis aeruginosa or Microcystis flos-aquae during most of the year, (ii) equally eutrophic alkaline ponds containing >2.8 mM potassium and no detectable Microcystis growth, and (iii) oligo- or mesotrophic ponds with various potassium and hydrogen ion concentrations and no persistent Microcystis blooms. The effects of potassium on Microcystis growth were examined in filter-sterilized pond water and in defined culture media. A 50% reduction in the 10-day yield of cultured M. aeruginosa was observed in DP medium and pond water supplemented with 1 and 3 mM KCl, respectively. In contrast, the addition of 2 to 30 mM NaCl did not suppress the growth of M. aeruginosa in either DP medium or pond water. Both 5 mM KCl and 20 mM KHCO(inf3) in J medium strongly inhibited the growth of M. flos-aquae C3-9, whereas 5 to 30 mM NaCl had no effect and 20 mM NaHCO(inf3) was stimulatory. For pond water cultured with a mixture of M. aeruginosa and the duckweed Wolffia arrhiza, M. aeruginosa dominated in unsupplemented water and W. arrhiza dominated in water supplemented with 4.8 mM KCl. Implications for the ecology and control of Microcystis blooms are discussed.

  13. Potassium Salts Inhibit Growth of the Cyanobacteria Microcystis spp. in Pond Water and Defined Media: Implications for Control of Microcystin-Producing Aquatic Blooms

    PubMed Central

    Parker, D. L.; Kumar, H. D.; Rai, L. C.; Singh, J. B.

    1997-01-01

    Ten metals were assayed in 21 Indian ponds which comprised three groups: (i) eutrophic alkaline ponds containing <2.5 mM potassium and thick growths of Microcystis aeruginosa or Microcystis flos-aquae during most of the year, (ii) equally eutrophic alkaline ponds containing >2.8 mM potassium and no detectable Microcystis growth, and (iii) oligo- or mesotrophic ponds with various potassium and hydrogen ion concentrations and no persistent Microcystis blooms. The effects of potassium on Microcystis growth were examined in filter-sterilized pond water and in defined culture media. A 50% reduction in the 10-day yield of cultured M. aeruginosa was observed in DP medium and pond water supplemented with 1 and 3 mM KCl, respectively. In contrast, the addition of 2 to 30 mM NaCl did not suppress the growth of M. aeruginosa in either DP medium or pond water. Both 5 mM KCl and 20 mM KHCO(inf3) in J medium strongly inhibited the growth of M. flos-aquae C3-9, whereas 5 to 30 mM NaCl had no effect and 20 mM NaHCO(inf3) was stimulatory. For pond water cultured with a mixture of M. aeruginosa and the duckweed Wolffia arrhiza, M. aeruginosa dominated in unsupplemented water and W. arrhiza dominated in water supplemented with 4.8 mM KCl. Implications for the ecology and control of Microcystis blooms are discussed. PMID:16535629

  14. Growth of Bacillus methanolicus in seawater-based media.

    PubMed

    Komives, Claire F; Cheung, Louis Yip-Yan; Pluschkell, Stefanie B; Flickinger, Michael C

    2005-02-01

    Bacillus methanolicus has been proposed as a biocatalyst for the low cost production of commodity chemicals. The organism can use methanol as sole carbon and energy source, and it grows aerobically at elevated temperatures. Methanol can be made available from off-shore conversion of natural gas to methanol, through gas-to-liquid technology. Growth of the organism in seawater-based medium would further reduce the costs of chemical production performed near an off-shore natural gas source. The growth of strain PB1 (ATCC 51375) in shake flask experiments with trypticase soy broth medium showed minimal salt-inhibition at the concentration of NaCl in seawater. The ability of B. methanolicus PB1 to grow in Pacific Ocean water using methanol as a carbon and energy source was also tested. Following a simple adaptation procedure, PB1 was able to grow on methanol in semi-defined medium with 100% seawater with good growth yields and similar growth rates compared with those achieved on media prepared in deionized water.

  15. Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei.

    PubMed

    Gao, Jie; Atiyeh, Hasan K; Phillips, John R; Wilkins, Mark R; Huhnke, Raymond L

    2013-11-01

    The development of a low cost medium for ethanol production is critical for process feasibility. Ten media were formulated for Clostridium ragsdalei by reduction, elimination and replacement of expensive nutrients. Cost analysis and effects of medium components on growth and product formation were investigated. Fermentations were performed in 250 mL bottles using syngas (20% CO, 15% CO2, 5% H2 and 60% N2). The standard medium M1 cost is $9.83/L, of which 93% is attributed to morpholinoethane sulfonic acid (MES) buffer. Statistical analysis of the results showed that MES removal did not affect cell growth and ethanol production (P>0.05). Based on cells' elemental composition, a minimal mineral concentration medium M7 was formulated, which provided 29% higher ethanol yield from CO at 3% of the cost compared to medium M1. Ethanol yield from CO in the completely defined medium M9 was 36% higher than while at 5% the cost of medium M1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Optimization of a chondrogenic medium through the use of factorial design of experiments.

    PubMed

    Enochson, Lars; Brittberg, Mats; Lindahl, Anders

    2012-12-01

    The standard culture system for in vitro cartilage research is based on cells in a three-dimensional micromass culture and a defined medium containing the chondrogenic key growth factor, transforming growth factor (TGF)-β1. The aim of this study was to optimize the medium for chondrocyte micromass culture. Human chondrocytes were cultured in different media formulations, designed with a factorial design of experiments (DoE) approach and based on the standard medium for redifferentiation. The significant factors for the redifferentiation of the chondrocytes were determined and optimized in a two-step process through the use of response surface methodology. TGF-β1, dexamethasone, and glucose were significant factors for differentiating the chondrocytes. Compared to the standard medium, TGF-β1 was increased 30%, dexamethasone reduced 50%, and glucose increased 22%. The potency of the optimized medium was validated in a comparative study against the standard medium. The optimized medium resulted in micromass cultures with increased expression of genes important for the articular chondrocyte phenotype and in cultures with increased glycosaminoglycan/DNA content. Optimizing the standard medium with the efficient DoE method, a new medium that gave better redifferentiation for articular chondrocytes was determined.

  17. A Novel Double Subculture Method and Its Theory for the Enumeration of Injured Cells in Stressed Microbial Population.

    PubMed

    Tsuchido, Tetsuaki

    2017-01-01

     A novel double subculture method, termed DiVSaL (Differential Viabilities between Solid and Liquid media) method, for the enumeration of injured cell population of a microorganism, which occurs after some sublethal to lethal treatment, was proposed. In this method injured cells were enumerated as the differential value between viabilities determined with two different techniques, the conventional plate counting using a solid agar medium and the growth delay analysis using a liquid medium. In the former technique, the viable cell number is obtained as colony forming unit (CFU) formed on an agar medium where sublethally injured cells are as much rescued as possible. In the latter technique, on the other hand," the integrated viability" defined by Takano and Tsuchido (1982) is introduced and is calculated from the growth delay of a stressed population, referred to unstressed one. For the growth delay analysis, in this paper, not only the original theoretical model, where the specific growth rate (and therefore the defined G 10 value) does not change after the exposure to a stress treatment, but also a novel modified theory, where the parameter changes, is proposed. On the theoretical background, this DiVSaL method as a double subculture method can be used to enumerate the injured cells without selection by addition of some inhibitor or by nutritional shortage.

  18. Growth yields and fermentation balance of Bacteroides fragilis cultured in glucose-enriched medium.

    PubMed

    Frantz, J C; McCallum, R E

    1979-03-01

    Bacteroides fragilis is an obligate anaerobic bacterium classified with the gram-negative, non-sporeforming bacilli and is the Bacteroides species most frequently isolated from human infections. In the present study, experiments were designed to investigate growth characteristics of B. fragilis in a complex medium. In a minimal defined medium, which was employed for comparison purposes, B. fragilis grew with a generation time of 2 h. Growth of the organism in glucose-enriched medium used in the present study was superior. Maximum generation time was 60 min. Total and viable cells (colony-forming units) were 8.9 x 10(9) and 2.1 x 10(9), respectively, at maximum measurable growth. The molar growth yield (Ym) was 51.5. Growth yields were found to reach a maximum 2 to 3 h before maximum growth and to vary with respect to the phase of growth. Estimates of the fermentation products indicated that glucose was the sole energy substrate. Major products included acetic acid, propionic acid, lactic acid, and succinic acid. Other products included ethyl alcohol, pyruvic acid, and fumaric acid. No attempt was made to recover CO2 or formic acid. The OR balances from two experiments were 0.013 and -0.093 and the respective carbon recoveries were 6.268 and 6.241. The results of the present study show that B. fragilis is capable of rapid rates of growth in vitro by using glucose as the sole energy source.

  19. Characterization of Canine Adipose-Derived Mesenchymal Stromal/Stem Cells in Serum-Free Medium.

    PubMed

    Liu, Zhuoming; Screven, Rudell; Boxer, Lynne; Myers, Michael J; Devireddy, Lax R

    2018-06-20

    In this article, we report on the development of a defined serum-free medium capable of supporting the culture expansion of mesenchymal stromal/stem cells (MSCs) from canine adipose tissue (canine Ad-MSCs). The potential benefits of serum-free media can only be utilized if cells cultured in serum-free media maintain the same functional characteristics as cells cultured in serum-containing media. Therefore, we analyze the characteristics of canine Ad-MSCs cultured in this serum-free medium or in serum-containing medium through evaluation of growth kinetics, clonogenic capacity, senescence, and differentiation capacity. Both, serum-containing medium and our serum-free medium, supported efficient growth and colony formation of canine Ad-MSCs. In addition, canine Ad-MSCs cultured in both media demonstrated similar viability after freeze/thaw, similar cell surface marker expression, and were capable of trilineage differentiation. While canine Ad-MSCs cultured in both media were generally similar, under the conditions of our study, canine Ad-MSCs cultured in serum-free medium demonstrated a shorter lag phase and higher colony-forming capacity, accelerated population doubling, maintained multipotentiality at higher passage numbers, and underwent senescence at higher passage numbers compared to canine Ad-MSCs cultured in conventional serum-containing medium. These results suggest that canine Ad-MSCs cultured in serum-free medium retain the basic characteristics associated with canine Ad-MSCs cultured in serum-containing medium, although some differences in growth kinetics were observed.

  20. Normal calves produced after transfer of embryos cultured in a chemically defined medium supplemented with epidermal growth factor and insulin-like growth factor I following ovum pick up and in vitro fertilization in Japanese black cows.

    PubMed

    Sakagami, Nobutada; Umeki, Hidenobu; Nishino, Osamu; Uchiyama, Hiroko; Ichikawa, Kyoko; Takeshita, Kazuhisa; Kaneko, Etsushi; Akiyama, Kiyoshi; Kobayashi, Shuji; Tamada, Hiromichi

    2012-01-01

    The objective of this study was to examine whether high concentrations of epidermal growth factor (EGF) and/or insulin-like growth factor I (IGF-I) would have a beneficial effect on bovine embryo development in vitro and to obtain normal calves by using an ovum pick up method and embryo culture in a chemically defined medium. When compared with controls, EGF (100 or 200 ng/ml) or IGF-I (50 or 100 ng/ml) significantly increased the rate of embryos that developed into blastocysts during an 8-day culture after the in vitro fertilization of oocytes obtained from ovaries from a slaughterhouse. IGF-I induced a dose-dependent increase in cell number in both the inner cell mass and the trophectoderm, whereas EGF stimulated proliferation only in the inner cell mass. A combination of EGF (100 ng/ml) and IGF-I (50 ng/ml) produced an additive effect, and embryos developed into blastocysts at a comparatively high rate (27.9%) compared with controls (12.0%). A similar rate of development was achieved using a combination of EGF and IGF-I in the culture of embryos following ovum pick up by ultrasound-guided transvaginal follicular aspiration and in vitro fertilization, and 5 blastocysts that developed after the culture were transferred into uteri; two embryos implanted, and normal calves were born. These results suggest that the combined use of EGF and IGF-I makes bovine embryo culture in a chemically defined medium a practical and useful procedure for producing blastocysts, and its application to embryo culture following ovum pick up and in vitro fertilization could be useful for producing normal calves.

  1. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture

    PubMed Central

    Pijuan-Galitó, Sara; Tamm, Christoffer; Schuster, Jens; Sobol, Maria; Forsberg, Lars; Merry, Catherine L. R.; Annerén, Cecilia

    2016-01-01

    Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. PMID:27405751

  2. Glycerophosphate as a phosphorus source in a defined medium for Pichia pastoris fermentation.

    PubMed

    Zhang, Wenhui; Sinha, Jayanta; Meagher, Michael M

    2006-08-01

    Pichia pastoris has emerged as a commercially important yeast for the production of a vast majority of recombinant therapeutic proteins and vaccines. The organism can be grown to very high cell densities using a defined basal salts media (BSM). However, BSM contains bi-cation or tri-cation phosphate, which precipitates out of the medium at pH above 5.5, although the optimal fermentation pH of most recombinant protein fermentation varies between 5.5 and 7.0. In this article, the application of glycerophosphates was investigated as a substitute phosphate source in an effort to eliminate precipitation. The solubility of BSM containing sodium or potassium glycerophosphates was examined before and after autoclaving at various pHs. Sodium glycerophosphate was found stable at autoclave temperature but formed complexes with coexisting magnesium and calcium ions that were insoluble above pH 7.0. Medium where sodium glycerophosphate was autoclaved separately and then added to the growth medium did not produce any precipitate up to pH 10.5. The performance of P. pastoris fermentations expressing alpha-galactosidase and ovine interferon-tau using a glycerolphosphate-based medium was found to be comparable to a conventional BSM. The results from this work demonstrate that sodium glycerophosphate can be assimilated by the P. pastoris strains and can be employed as a reliable phosphorus source for both cell growth and recombinant protein production.

  3. An improved agar medium for growth of Geobacillus thermoglucosidarius strains.

    PubMed

    Javed, M; Baghaei-Yazdi, N; Qin, W; Amartey, S

    2017-01-01

    Geobacillus species have potential applications in many biotechnological processes. They are fastidious in their vitamin and amino acid requirements. A new semi-defined agar medium (SDM) was developed which gave consistently high viable cell counts of various G. thermoglucosidasius strains (5×10 8 -6×10 8 cfu/ml) under aerobic conditions at 70°C. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    PubMed Central

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  5. Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium.

    PubMed

    Tran, Duc; Doan, Nguyen; Louime, Clifford; Giordano, Mario; Portilla, Sixto

    2014-01-01

    Dunaliella is currently drawing worldwide attention as an alternative source of nutraceuticals. Commercially, β-carotene making up over 10% of Dunaliella biomass is generating the most interest. These compounds, because of their non-toxic properties, have found applications in the food, drug and cosmetic industry. The β-carotene content of Dunaliella cells, however, depends heavily on the growth conditions and especially on the availability of nutrients, salinity, irradiance and temperature in the growth medium. A chemically well defined medium is usually required, which significantly contributes to the cost of pigment production; hence a desire for low cost marine media. The present study aimed at evaluating the suitability of six different media, especially exploiting local potential resources, for the mass production of Dunaliella salina DCCBC15 as functional food and medicine. The efficacy of a new selected low-cost enriched natural seawater medium (MD4), supplemented with industrial N-P-K fertilizer, was investigated with respect to biomass production, chlorophyll, antioxidant capacity, and total carotene by Dunaliella though culture conditions were not optimized yet. This new medium (MD4) appears extremely promising, since it affords a higher production of Dunaliella biomass and pigments compared with the control, a common artificial medium (MD1), while allowing a substantial reduction in the production costs. The medium is also recommended for culturing other marine algae.

  6. Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains.

    PubMed

    Sannino, Filomena; Parrilli, Ermenegilda; Apuzzo, Gennaro Antonio; de Pascale, Donatella; Tedesco, Pietro; Maida, Isabel; Perrin, Elena; Fondi, Marco; Fani, Renato; Marino, Gennaro; Tutino, Maria Luisa

    2017-03-25

    The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 has been reported to produce several Volatile Organic Compounds (VOCs), which are able to inhibit the growth of Burkholderia cepacia complex (Bcc) strains, opportunistic pathogens responsible for the infection of immune-compromised patients. However, no specific antibacterial VOCs have been identified to date. The purpose of the present study was to identify specific VOCs that contribute to Bcc inhibition by the Antarctic strain. When grown on defined medium containing D-gluconate and L-glutamate as carbon, nitrogen and energy sources, P. haloplanktis TAC125 is unable to inhibit the growth of Bcc strains. However, single addition of several amino acids to the defined medium restores the P. haloplanktis TAC125 inhibition ability. With the aim of identifying specific volatile compound/s responsible for Bcc inhibition, we set up an apparatus for VOC capture, accumulation, and storage. P. haloplanktis TAC125 was grown in an automatic fermenter which was connected to a cooling system to condense VOCs present in the exhaust air outlet. Upon addition of methionine to the growth medium, the VOC methylamine was produced by P. haloplanktis TAC125. Methylamine was found to inhibit the growth of several Bcc strains in a dose-dependent way. Although it was reported that P. haloplanktis TAC125 produces VOCs endowed with antimicrobial activity, this is the first demonstration that methylamine probably contributes to the anti-Bcc activity of P. haloplanktis TAC125 VOCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marusich, W.C.; Jensen, R.A.; Zamir, L.O.

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than in complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-phenylalanine will also induce lyase synthesis during exponential growth in minimal medium inmore » which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared fom cultures induced with doubly labeled (U-/sup 14/C; ring-4-/sup 3/H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate.« less

  8. Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture.

    PubMed

    Petkov, Stoyan G; Anderson, Gary B

    2008-06-01

    Fetal bovine serum (FBS) is a commonly used medium supplement with variable and undefined composition, which presents problems in culture of pluripotent stem cells. The purpose of this study was to determine if FBS can be replaced with Knockout Serum Replacement (KSR), a defined medium supplement, and to examine the effects of FBS and growth factors on short- and long-term culture of pig embryonic germ cells (EGC). No significant differences were observed in total and mean colony areas in primary cultures between FBS- and KSR-supplemented medium (421 x 10(3) mum(2) vs. 395 x 10(3) microm(2), p = 0.68, n = 11, and 6375 microm(2) vs. 6407 microm(2), p = 0.885, respectively). Total and mean colony areas were significantly larger in KSR-supplemented medium compared with medium supplemented with KSR and growth factors (505 x 10(3) microm(2) vs. 396 x 10(3) microm(2), p = 0.016, n = 12, and 8769 microm(2) vs. 6513 microm(2), p = 0.003, respectively). The cultures proliferated for significantly higher numbers of passages in FBS-supplemented medium and in medium supplemented with KSR and growth factors compared with medium containing KSR alone (31.1 vs. 21.9, p = 0.004, n = 10, and 35.5 vs. 21.6, p = 002, n = 10, respectively). Porcine EGC maintained in serum-free conditions were positive for pluripotent stem cell markers, maintained stable karyotypes for up to 54 passages, and were capable of differentiating in vitro into cells from the three primary germ layers. These results will help improve and standardize culture of pluripotent stem cells in the pig.

  9. Anaerobic utilization of phosphite/phosphine as a sole source of phosphorus: implication to growth in the Jovian environment.

    PubMed

    Foster, T L; Winans, L

    1977-01-01

    The objective of the investigation was to isolate anaerobic micro-organisms which had the ability to utilize inorganic phosphorus in forms other than phosphate. The first part of this investigation was to isolate from Cape Canaveral soil micro-organisms capable of utilizing phosphite as their phosphorus source under anaerobic conditions. In an attempt to demonstrate this ability, a medium was prepared which contained hypophosphite as the phosphorus source. This was inoculated with soil samples, and growth was subcultured at least four times. To verify that these isolates could use hypophosphite, they were inoculated into defined hypophosphite medium, and samples were removed periodically and killed with formalin. Growth was determined by turbidity measurements and the sample was then filtered. The filtrate was separated by chromatography and the total amounts of hypophosphite, phosphate and phosphate in the filtrate were measured. By this procedure it appeared that the hypophosphite level began decreasing after 14 hr of incubation suggesting utilization of the hypophosphite under anaerobic conditions. The third part of this investigation used labeled (32P) hypophosphite in a defined medium; the cells were then lysed and the metabolic compounds separated by the use of paper chromatography and autoradiograms, demonstrating the presence of 32P in intermediate metabolic compounds. Similar investigations are now being performed with phosphine as the phosphorus source.

  10. Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm.

    PubMed

    Biswas, Swarajit K; Chaffin, W LaJean

    2005-08-01

    C. albicans is an opportunistic fungus causing life-threatening systemic infections particularly in immunocompromised individuals. The organism is a commensal in humans and grows either aerobically, e.g., the oral cavity, or anaerobically, e.g., the gut. We studied anaerobic growth of C. albicans in a defined yeast nitrogen base dextrose medium after adaptation and subculturing in an anaerobic chamber. At 37 degrees C in suspension culture, much slower growth was observed anaerobically with a generation time of 248 min compared to 98 min for aerobic growth. Although the organism grew well on solid medium, shaking increased the growth rate in suspension culture at 37 degrees C. Growth was enhanced at acidic pH compared to neutral or alkaline pH. Cells grown anaerobically produced hyphae, but did not produce biofilm on plastic surface or denture acrylic under either static conditions or with mild shaking, conditions that support aerobic biofilm formation.

  11. Insulin and insulin-like growth factor-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Karlisch, Patricia; Shansky, Janet

    1990-01-01

    Skeletal myofibers differentiated from primary avian myoblasts in tissue culture can be maintained in positive nitrogen balance in a serum-free medium for at least 6 to 7 days when embedded in a three dimensional collagen gel matrix. The myofibers are metabolically sensitive to physiological concentrations of insulin but these concentrations do not stimulate cell growth. Higher insulin concentrations stimulate both cell hyperplasia and myofiber hypertrophy. Cell growth results from a long term 42 percent increase in total protein synthesis and a 38 percent increase in protein degradation. Myofiber diameters increase by 71 to 98 percent after 6 to 7 days in insulin-containing medium. Insulin-like growth factor-1 but not insulin-like growth factor-2, at 250 ng/ml, is as effective as insulin in stimulating cell hyperplasia and myofiber hypertrophy. This model system provides a new method for studying the long-term anabolic effects of insulin and insulin-like growth factors on myofiber hypertrophy under defined tissue culture conditions.

  12. Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate

    PubMed Central

    Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.

    1971-01-01

    The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579

  13. Continuous Culture of Ruminal Microorganisms in Chemically Defined Medium1

    PubMed Central

    Quinn, Loyd Y.; Burroughs, Wise; Christiansen, William C.

    1962-01-01

    Ruminal ciliates have been grown in continuous culture in chemically defined media and in the absence of viable bacteria. Oligotrichic ruminal ciliates seem to require insoluble carbohydrates for growth; the holotrichic ciliates require soluble carbohydrates, but at low concentrations. Both groups of ciliates utilize amino acids as their principal nitrogen source when these are supplied in micromolar concentrations; at millimolar concentrations, amino acids are toxic, possibly from excessive ammonia formation arising from ciliate deaminase activity. Holotrichic ruminal ciliates are destroyed by overdeposition of amylopectin when glucose is present above 0.1% concentration in the medium. Ecological requirements of ruminal ciliates are also described. Images FIG. 1 FIG. 2 PMID:13972780

  14. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions.

    PubMed

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2015-08-20

    Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM) DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h(-1) at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h(-1) and D. geothermalis DSM-11302 biomass reached 1.4 g·L(-1) in 20 h. Then, 1.4 gDryCellWeight of biomass (X) was obtained from 5.6 g glucose (Glc) consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc(-1); cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX(-1)·h(-1), respectively, and the respiratory quotient (QR) value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture.

  15. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions

    PubMed Central

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2015-01-01

    Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM) DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h−1 at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h−1 and D. geothermalis DSM-11302 biomass reached 1.4 g·L−1 in 20 h. Then, 1.4 gDryCellWeight of biomass (X) was obtained from 5.6 g glucose (Glc) consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc−1; cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX−1·h−1, respectively, and the respiratory quotient (QR) value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture. PMID:27682099

  16. A Simple Defined Medium for the Production of True Diketopiperazines in Xylella fastidiosa and Their Identification by Ultra-Fast Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry.

    PubMed

    Silva, Michelli Massaroli da; Andrade, Moacir Dos Santos; Bauermeister, Anelize; Merfa, Marcus Vinícius; Forim, Moacir Rossi; Fernandes, João Batista; Vieira, Paulo Cezar; Silva, Maria Fátima das Graças Fernandes da; Lopes, Norberto Peporine; Machado, Marcos Antônio; Souza, Alessandra Alves de

    2017-06-13

    Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium ( X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa , which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa , which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.

  17. Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum

    DOE PAGES

    Tank, Marcus; Bryant, Donald A.

    2015-03-27

    A novel thermophilic, microaerophilic, anoxygenic, and chlorophototrophic member of the phylum Acidobacteria, Chloracidobacterium thermophilum strain B T, was isolated from a cyanobacterial enrichment culture derived from microbial mats associated with Octopus Spring, Yellowstone National Park, Wyoming. C. thermophilum is strictly dependent on light and oxygen and grows optimally as a photoheterotroph at irradiance values between 20 and 50 µmol photons m⁻² s⁻¹. C. thermophilum is unable to synthesize branched-chain amino acids (AAs), L-lysine, and vitamin B₁₂, which are required for growth. Although the organism lacks genes for autotrophic carbon fixation, bicarbonate is also required. Mixtures of other AAs and 2-oxoglutaratemore » stimulate growth. As suggested from genomic sequence data, C. thermophilum requires a reduced sulfur source such as thioglycolate, cysteine, methionine, or thiosulfate. The organism can be grown in a defined medium at 51° C (T opt; range 44–58°C) in the pH range 5.5–9.5 (pH opt = ~7.0). Using the defined growth medium and optimal conditions, it was possible to isolate new C. thermophilum strains directly from samples of hot springs mats in Yellowstone National Park, Wyoming. The new isolates differ from the type strain with respect to pigment composition, morphology in liquid culture, and temperature adaptation.« less

  18. Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tank, Marcus; Bryant, Donald A.

    A novel thermophilic, microaerophilic, anoxygenic, and chlorophototrophic member of the phylum Acidobacteria, Chloracidobacterium thermophilum strain B T, was isolated from a cyanobacterial enrichment culture derived from microbial mats associated with Octopus Spring, Yellowstone National Park, Wyoming. C. thermophilum is strictly dependent on light and oxygen and grows optimally as a photoheterotroph at irradiance values between 20 and 50 µmol photons m⁻² s⁻¹. C. thermophilum is unable to synthesize branched-chain amino acids (AAs), L-lysine, and vitamin B₁₂, which are required for growth. Although the organism lacks genes for autotrophic carbon fixation, bicarbonate is also required. Mixtures of other AAs and 2-oxoglutaratemore » stimulate growth. As suggested from genomic sequence data, C. thermophilum requires a reduced sulfur source such as thioglycolate, cysteine, methionine, or thiosulfate. The organism can be grown in a defined medium at 51° C (T opt; range 44–58°C) in the pH range 5.5–9.5 (pH opt = ~7.0). Using the defined growth medium and optimal conditions, it was possible to isolate new C. thermophilum strains directly from samples of hot springs mats in Yellowstone National Park, Wyoming. The new isolates differ from the type strain with respect to pigment composition, morphology in liquid culture, and temperature adaptation.« less

  19. Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kridelbaugh, Donna M; Nelson, Josh C; Engle, Nancy L

    2013-01-01

    Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed formore » the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.« less

  20. Tween 80 effect on glucosyltransferase synthesis by Streptococcus salivarius.

    PubMed Central

    Wittenberger, C L; Beaman, A J; Lee, L N

    1978-01-01

    Streptococcus salivarius (ATCC 25975) produced very low or nondetectable amounts of the extracellular enzyme glucosyltransferase (GTase) when grown in a chemically defined medium. The addition of Tween 80 to this medium resulted in the production of markedly enhanced levels of the enzyme. Oleic acid, the methyl ester of oleic acid, and sucrose each could not substitute for Tween 80 in this regard. The surfactant had no direct activating effect on performed enzyme activity. Tween 80 also stimulated the production of GTase by concentrated cells suspended in defined medium during a time when no measurable growth occurred. Under these conditions, the stimulatory effect of Tween 80 was blocked by chloramphenicol. It was further found that the surfactant dramatically stimulated the differential rate of GTase synthesis. These and other data strongly suggest that Tween 80 stimulates the production of extracellular GTase by acting either directly or indirectly at the level of enzyme synthesis. PMID:618839

  1. Isolation and culture of adult mouse vestibular nucleus neurons

    PubMed

    Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin

    2017-12-19

    Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.

  2. Glycine Betaine, Carnitine, and Choline Enhance Salinity Tolerance and Prevent the Accumulation of Sodium to a Level Inhibiting Growth of Tetragenococcus halophila

    PubMed Central

    Robert, Hervé; Le Marrec, Claire; Blanco, Carlos; Jebbar, Mohamed

    2000-01-01

    Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila. PMID:10653711

  3. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis.

    PubMed Central

    Marusich, W C; Jensen, R A; Zamir, L O

    1981-01-01

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than a complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-Phenylalanine will also induce lyase synthesis during exponential growth in minimal in which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared from cultures induced with doubly labeled (U-14C; ring-4-3H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate. PMID:7195398

  4. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we have performed experiments to determine whether mechanical stimulation of cultured avian muscle cells alters their response to anabolic steroids or glucocorticoids. In static cultures, testosterone had no effect on muscle cell growth, but 5alpha-dihydrotestosterone and the synthetic steroid stanozolol increased cell growth by up to 18% and 30%, respectively, after a three day exposure. We completed development of a new IBM-based mechanical cell stimulator system to provide greater flexibility in operating and monitoring our experiments. Our previous long term studies on myofiber growth were designed around a perfusion system of our own design. We have recently changed to performing these studies using a modified CELLCO cartridge bioreactor system Z since it has been certified as the ground-based model for the Shuttle's Space Tissue Loss (STL) F= Cell Culture Module. The current goals of this aspect of the project are three fold: 1) to design a Z cell culture system for studying avian skeletal myofiber atrophy on the Shuttle and Space Station; 0 2) to expand the use of bioreactors to cells which do not grow in either suspension or attached to the hollow fibers; and 3) to combine the bioreactor system with our computerized mechanical cell stimulator to have a better in vitro model to study tension/gravity/stretch regulation of skeletal muscle size. Preliminary studies also reported on involved : (1) how release of tension can induce rapid atrophy of tissues cultured avian skeletal muscle cells, and (2) a mechanism to transfer and maintain avian skeletal muscle organoids in modified cartridges in the Space Tissue Loss Module.

  5. Growth and exopolysaccharide yield of Lactobacillus delbrueckii ssp. bulgaricus DSM 20081 in batch and continuous bioreactor experiments at constant pH.

    PubMed

    Mende, Susann; Krzyzanowski, Leona; Weber, Jost; Jaros, Doris; Rohm, Harald

    2012-02-01

    Some Lactobacillus delbrueckii ssp. bulgaricus strains are able to synthesize exopolysaccharides (EPS) and are therefore highly important for the dairy industry as starter cultures. The aim of this study was to investigate the nutritional requirements for growth and EPS production of Lactobacillus delbrueckii ssp. bulgaricus DSM 20081. A medium was developed from a semi-defined medium (SDM) in which glucose was replaced by lactose and different combinations of supplements (nucleobases, vitamins, salts, sodium formate and orotic acid) were added. Constant pH batch fermentation with the modified medium resulted in an EPS yield of approximately 210 mg glucose equivalents per liter medium. This was a 10-fold increase over flask cultivation of this strain in SDM. Although not affecting cell growth, the mixture of salts enhanced the EPS synthesis. Whereas EPS production was approximately 12 mg/g dry biomass without salt supplementation, a significantly higher yield (approximately 20 mg/g dry biomass) was observed after adding the salt mixture. In continuous fermentation, a maximal EPS concentration was obtained at a dilution rate of 0.31/h (80 mg EPS/L), which corresponded to a specific EPS production of 49 mg/g dry biomass. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Improved chemically defined basal medium (CMRL-1969) for primary monkey kidney and human diploid cells.

    PubMed

    Healy, G M; Teleki, S; von Seefried, A; Walton, M J; Macmorine, H G

    1971-01-01

    An improved tissue culture basal medium, CMRL-1969, supplemented with serum, has been evaluated by measuring the growth responses of primary cultures of trypsin-dispersed monkey kidney cells (PMKC) and of an established culture of a human diploid cell strain (HDCS). Medium H597, an early modification of medium 199 which has been used successfully in the preparation of poliomyelitis vaccine for 15 years, was used for comparison. In addition, parallel testing was done with Basal Medium Eagle (BME) widely used for the growth of HDCS. The improvements in basal medium CMRL-1969 are attributed to changes in amino acid concentrations, in vitamin composition, and, in particular, to enhanced buffering capacity. The latter has been achieved by the use of free-base amino acids and by increasing the dibasic sodium phosphate. The new medium has already been used to advantage for the production of polioviruses in PMKC where equivalent titers were obtained from cultures initiated with 70% of the number of cells required with earlier media. The population-doubling time was reduced in this system. Also, with small inocula of HDCS, the time required to obtain maximum cell yield was shorter with CMRL-1969 than with BME. Both media were supplemented with 10% calf serum. Maximum cell yields after repeated subcultivation in the new basal medium were greatly increased and the stability of the strain, as shown by chromosomal analysis, was not affected. Basal medium CMRL-1969 can be prepared easily in liquid or powdered form.

  7. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    PubMed

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  8. Emmental Cheese Environment Enhances Propionibacterium freudenreichii Stress Tolerance

    PubMed Central

    Gagnaire, Valérie; Jardin, Julien; Rabah, Houem; Briard-Bion, Valérie; Jan, Gwénaël

    2015-01-01

    Dairy propionibacteria are actinomycetales found in various fermented food products. The main species, Propionibacterium freudenreichii, is generally recognized as safe and used both as probiotic and as cheese starter. Its probiotic efficacy tightly depends on its tolerance towards digestive stresses, which can be largely modulated by the ingested delivery vehicle. Indeed, tolerance of this bacterium is enhanced when it is consumed within a fermented dairy product, compared to a dried probiotic preparation. We investigated both stress tolerance and protein neosynthesis upon growth in i) chemically defined or ii) aqueous phase of Emmental cheeses. Although the same final population level was reached in both media, a slower growth and an enhanced survival of CIRM BIA 1 strain of P. freudenreichii subsp. shermanii was observed in Emmental juice, compared to chemically defined medium. This was accompanied by differences in substrates used and products released as well as overexpression of various early stress adaptation proteins in Emmental juice, compared to chemically defined medium, implied in protein folding, in aspartate catabolism, in biosynthesis of valine, leucine and isoleucine, in pyruvate metabolism in citrate cycle, in the propionate metabolism, as well as in oxidoreductases. All these changes led to a higher digestive stress tolerance after growth in Emmental juice. Mechanisms of stress adaptation were induced in this environment, in accordance with enhanced survival. This opens perspectives for the use of hard and semi-hard cheeses as delivery vehicle for probiotics with enhanced efficacy. PMID:26275229

  9. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula.

    PubMed

    Tan, Tzer Han; Silverberg, Jesse L; Floss, Daniela S; Harrison, Maria J; Henley, Christopher L; Cohen, Itai

    2015-10-20

    Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.

  10. Cultivation of Plasmodium falciparum parasites in a serum-free medium.

    PubMed

    Ofulla, A V; Okoye, V C; Khan, B; Githure, J I; Roberts, C R; Johnson, A J; Martin, S K

    1993-09-01

    The elimination of serum from Plasmodium falciparum culture media could decrease costs, enhance procurement, and improve the feasibility of large-scale production of parasite material. We provide a semi-defined, serum-free formulation, of commercially available constituents that supports P. falciparum parasite growth at rates comparable with those obtained with serum-supplemented media. The medium is composed of RPMI 1640 to which HEPES, extra glucose, bicarbonate, and hypoxanthine have been added. Bovine albumin and serum-derived, lipids-cholesterol-rich mixture are then used in place of serum.

  11. Stability of pathogenic colony types of Neisseria gonorrhoeae in liquid culture by using the parameters of colonial morphology and deoxyribonucleic acid transformation.

    PubMed Central

    La Scolea, L J; Dul, M J; Young, F E

    1975-01-01

    This investigation describes the surveillance of the colonial stability of the pathogenic type 1 from the gonococcal strain F62 to the nonvirulent types 3 and 4 in different liquid media. The maintenance of the colony types was monitored by the parameters of colonial morphology and deoxyribonucleic acid-mediated transformation. During growth in a complex medium, Mueller-Hinton broth, only 46.7% of the gonococcal population remained as type 1 after 12 h. The greatest change in the type 1 colony-forming units correlated with the decline in viable count. The conversion process could not be prevented by the continual maintenance of the gonococcus in logarithmic growth. The frequency of transformation from PRO(minus) (proline) to PRO(plus) was proportional to this decrease in type 1 colony-forming units. In contrast to Mueller-Hinton medium, the chemically defined minimal medium Gonococcal Genetic Medium (GGM) was capable of maintaining approximately 90% of the gonococcal population in the type 1 colonial form after 16 h of growth, despite a decrease in the viable count. Although the percentage of type 1 appeared to remain constant in GGM, the apparent transformation frequency increased approximately 24-fold from 0 to 12 h of growth. GGM appears to stimulate or maintain competence, as evidenced by an eightfold increase in transformation when cells are exposed to deoxyribonucleic acid in GGM as compared to Mueller-Hinton. PMID:809469

  12. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  13. Growth of Azotobacter chroococcum in chemically defined media containing p-hydroxybenzoic acid and protocatechuic acid.

    PubMed

    Juarez, B; Martinez-Toledo, M V; Gonzalez-Lopez, J

    2005-06-01

    Growth and utilization of different phenolic acids present in olive mill wastewater (OMW) by Azotobacter chroococcum were studied in chemically defined media. Growth and utilization of phenolic acids were only detected when the microorganism was cultured on p-hydroxybenzoic acid at concentration from 0.01% to 0.5% (w/v) and protocatechuic acid at concentration from 0.01% to 0.3% (w/v) as sole carbon sources suggesting that only these phenolic compounds could be utilized as a carbon source by A. chroococcum. Moreover when culture media were added with a mixture of 0.3% of protocatechuic acid and 0.3% p-hydroxybenzoic acid, the microorganism degradated in first place protocatechuic acid and once the culture medium was depleted of this compound, the degradation of p-hydroxybenzoic acid commenced very fast.

  14. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Improving Fab' fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA.

    PubMed

    Schofield, Desmond M; Sirka, Ernestas; Keshavarz-Moore, Eli; Ward, John M; Nesbeth, Darren N

    2017-12-01

    To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.

  16. Regulation of cell proliferation and estrogen synthesis by ovine LH, IGF-I, and EGF in theca interstitial cells of the domestic hen cultured in defined media.

    PubMed

    Onagbesan, O M; Peddie, M J; Williams, J

    1994-05-01

    There is relatively little information on the factors which regulate the proliferation and alterations in the steroidogenic capacity of avian theca cells during follicular maturation. The development of culture conditions for these cells to determine the effects of gonadotrophin (LH) and the growth factors epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) on DNA synthesis and estrogen production is reported. Cultures were established in serum-supplemented (with fetal calf serum or chicken serum) or ITS+ (insulin, transferrin, and selenium plus additives) supplemented serum-free media. Cell replication occurred throughout the 72-hr culture period as indicated by a linear increase in the DNA content of the culture dishes. Aromatase activity of the cells as defined by conversion of androstenedione to estrogen was best maintained in serum-free medium while sera inhibited this activity. Ovine LH enhanced the aromatase activity of cultured cells from medium and small-sized follicles, while IGF-I and EGF inhibited both basal and LH-stimulated aromatase activity. LH, IGF-I, and EGF all stimulated cell proliferation as reflected by increased DNA. The responses of cells to these peptides varied with the size of the follicle, with the greatest effects on cells from F4/5.

  17. Functional Analysis of luxS in Staphylococcus aureus Reveals a Role in Metabolism but Not Quorum Sensing

    PubMed Central

    Doherty, Neil; Holden, Matthew T. G.; Qazi, Saara N.; Williams, Paul; Winzer, Klaus

    2006-01-01

    The function of AI-2 in many bacteria and the physiological role of LuxS, the enzyme responsible for its production, remain matters of debate. Here, we show that in Staphylococcus aureus the luxS gene forms a monocistronic transcriptional unit under the control of a σ70-dependent promoter. The gene was transcribed throughout growth under a variety of conditions, including intracellular growth in MAC-T cells. AI-2 was produced in rich media under aerobic and anaerobic conditions, peaking during the transition to stationary phase, but was hardly detectable in a sulfur-limited defined medium. In the presence of glucose or under anaerobic conditions, cultures retained considerable AI-2 activity after entry into stationary phase. Inactivation of luxS in various S. aureus strains did not affect virulence-associated traits, such as production of hemolysins and extracellular proteases, biofilm formation, and the agr signaling system. Conversely, AI-2 production remained unchanged in an agr mutant. However, luxS mutants grown in a sulfur-limited defined medium exhibited a growth defect. When grown together with the wild type in mixed culture, luxS mutants of various S. aureus strains showed reduced ability to compete for growth under these conditions. In contrast, a complemented luxS mutant grew as well as the parent strain, suggesting that the observed growth defect was of an intracellular nature and had not been caused by either second-site mutations or the lack of a diffusible factor. However, the LuxS/AI-2 system does not appear to contribute to the overall fitness of S. aureus RN6390B during intracellular growth in epithelial cells: the wild type and a luxS mutant showed very similar growth patterns after their internalization by MAC-T cells. PMID:16585750

  18. Mesenchymally-derived insulin-like growth factor 1 provides a paracrine stimulus for trophoblast migration.

    PubMed

    Lacey, Helen; Haigh, Teresa; Westwood, Melissa; Aplin, John D

    2002-04-24

    Trophoblast migration into maternal decidua is essential for normal pregnancy. It occurs in a defined time window, is spatially highly restricted, and is aberrant in some pathological pregnancies, but the control mechanisms are as yet ill-defined. At the periphery of the placenta, chorionic villi make contact with decidua to form specialised anchoring sites that feed interstitially migrating cytotrophoblast into the placental bed. Explants of first trimester mesenchymal villi on collagen type I developed cytotrophoblast outgrowths from the villous tips. However, in medium changed daily, cells did not progress to a migratory phenotype, remaining instead as a contiguous multi-layered sheet. This suggested the need for another migration stimulus. To test the possibility that this might arise from mesenchymal cells, serum-free conditioned medium from first trimester placental fibroblasts was added to explant cultures. Cytotrophoblasts were stimulated to migrate in streams across the gel. Affinity depletion of Insulin-like growth factor from fibroblast medium reduced streaming activity, while the addition of exogenous IGF-I (10 ng/ml) to serum-free medium produced a streaming phenotype. IGF receptor type 1 (IGFR1) was present on cells in the columns, and streaming could be inhibited by antibody to this receptor. IGF-II and activin, known stimulators of cytotrophoblast migration, were also active in this model. These data suggest a paracrine interaction between villous mesenchyme and the cytotrophoblast in anchoring sites that stimulates trophoblast infiltration of decidua. Such a signal would be self-limiting since it diminishes with distance from the placenta. This is a novel mechanism in placental development.

  19. Improved Chemically Defined Basal Medium (CMRL-1969) for Primary Monkey Kidney and Human Diploid Cells 1

    PubMed Central

    Healy, G. M.; Teleki, S.; Seefried, A. V.; Walton, M. J.; Macmorine, H. G.

    1971-01-01

    An improved tissue culture basal medium, CMRL-1969, supplemented with serum, has been evaluated by measuring the growth responses of primary cultures of trypsin-dispersed monkey kidney cells (PMKC) and of an established culture of a human diploid cell strain (HDCS). Medium H597, an early modification of medium 199 which has been used successfully in the preparation of poliomyelitis vaccine for 15 years, was used for comparison. In addition, parallel testing was done with Basal Medium Eagle (BME) widely used for the growth of HDCS. The improvements in basal medium CMRL-1969 are attributed to changes in amino acid concentrations, in vitamin composition, and, in particular, to enhanced buffering capacity. The latter has been achieved by the use of free-base amino acids and by increasing the dibasic sodium phosphate. The new medium has already been used to advantage for the production of polioviruses in PMKC where equivalent titers were obtained from cultures initiated with 70% of the number of cells required with earlier media. The population-doubling time was reduced in this system. Also, with small inocula of HDCS, the time required to obtain maximum cell yield was shorter with CMRL-1969 than with BME. Both media were supplemented with 10% calf serum. Maximum cell yields after repeated subcultivation in the new basal medium were greatly increased and the stability of the strain, as shown by chromosomal analysis, was not affected. Basal medium CMRL-1969 can be prepared easily in liquid or powdered form. PMID:4322279

  20. Angiostrongylus cantonensis (Nematode: Metastrongiloidea): in vitro cultivation of infective third-stage larvae to fourth-stage larvae.

    PubMed

    Lin, Rong-Jyh; He, Jie-Wen; Chung, Li-Yu; Lee, June-Der; Wang, Jiun-Jye; Yen, Chuan-Min

    2013-01-01

    The present study to attempt to cultivate Angiostrongylus cantonensis from third-stage larvae (AcL3) to fourth-stage larvae (AcL4) in vitro in defined complete culture medium that contained with Minimum Essential Medium Eagle (MEM), supplemented amino acid (AA), amine (AM), fatty acid (FA), carbohydrate (CA) and 20% fetal calf serum (FCS) was successful. When AcL3 were cultured in the defined complete culture medium at 37°C in a 5% CO2 atmosphere, the larvae began to develop to AcL4 after 30 days of cultivation, and were enclosed within the sheaths of the third molts of the life cycle. Under these conditions, the larvae developed uniformly and reached to the fourth-stage 36 days. The morphology of AcL3 develop to AcL4 were recording and analyzing. Then comparison of A. cantonensis larval morphology and development between in vitro cultivation in defined complete culture medium and in vivo cultivation in infective BALB/c mice. The larvae that had been cultivated in vitro were smaller than AcL4 of infective BALB/c mice. However the AcL3 that were cultured using defined incomplete culture medium (MEM plus 20% FCS with AA+AM, FA, CA, AA+AM+FA, FA+CA, CA+AA+AM or not) did not adequately survive and develop. Accordingly, the inference is made that only the defined complete medium enable AcL3 develop to AcL4 in vitro. Some nematodes have been successfully cultured into mature worms but only a few researches have been made to cultivate A. cantonensis in vitro. The present study is the first to have succeeded in developing AcL3 to AcL4 by in vitro cultivation. Finally, the results of in vitro cultivation studies herein contribute to improving media for the effective development and growth of A. cantonensis. The gap in the A. cantonensis life cycle when the larvae are cultivated in vitro from third-stage larvae to fourth-stage larvae can thus be solved.

  1. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions.

    PubMed

    Zeden, Merve S; Schuster, Christopher F; Bowman, Lisa; Zhong, Qiyun; Williams, Huw D; Gründling, Angelika

    2018-03-02

    Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA , the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium.

    PubMed

    Yang, Liju; Li, Yanbin; Griffis, Carl L; Johnson, Michael G

    2004-05-15

    Interdigitated microelectrodes (IMEs) were used as impedance sensors for rapid detection of viable Salmonella typhimurium in a selective medium and milk samples. The impedance growth curves, impedance against bacterial growth time, were recorded at four frequencies (10Hz, 100Hz, 1kHz, and 10kHz) during the growth of S. typhimurium. The impedance did not change until the cell number reached 10(5)-10(6) CFUml(-1). The greatest change in impedance was observed at 10Hz. To better understand the mechanism of the IME impedance sensor, an equivalent electrical circuit, consisting of double layer capacitors, a dielectric capacitor, and a medium resistor, was introduced and used for interpreting the change in impedance during bacterial growth. Bacterial attachment to the electrode surface was observed with scanning electron microscopy, and it had effect on the impedance measurement. The detection time, t(D), defined as the time for the impedance to start change, was obtained from the impedance growth curve at 10Hz and had a linear relationship with the logarithmic value of the initial cell number of S. typhimurium in the medium and milk samples. The regression equations for the cell numbers between 4.8 and 5.4 x 10(5) CFUml(-1) were t(D) = -1.38 log N + 10.18 with R(2) = 0.99 in the pure medium and t(D) = -1.54 log N + 11.33 with R(2) = 0.98 in milk samples, respectively. The detection times for 4.8 and 5.4 x 10(5) CFUml(-1) initial cell numbers were 9.3 and 2.2 h, respectively, and the detection limit could be as low as 1 cell in a sample.

  3. Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium.

    PubMed

    Lidgerwood, Grace E; Lim, Shiang Y; Crombie, Duncan E; Ali, Ray; Gill, Katherine P; Hernández, Damián; Kie, Josh; Conquest, Alison; Waugh, Hayley S; Wong, Raymond C B; Liang, Helena H; Hewitt, Alex W; Davidson, Kathryn C; Pébay, Alice

    2016-04-01

    We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.

  4. Transcriptome analysis of the phytobacterium Xylella fastidiosa growing under xylem-based chemical conditions.

    PubMed

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  5. Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions

    PubMed Central

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R.

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates. PMID:20625415

  6. Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.

    PubMed

    Unthan, Simon; Baumgart, Meike; Radek, Andreas; Herbst, Marius; Siebert, Daniel; Brühl, Natalie; Bartsch, Anna; Bott, Michael; Wiechert, Wolfgang; Marin, Kay; Hans, Stephan; Krämer, Reinhard; Seibold, Gerd; Frunzke, Julia; Kalinowski, Jörn; Rückert, Christian; Wendisch, Volker F; Noack, Stephan

    2015-02-01

    For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.

  7. Continuous Cultivation for Apparent Optimization of Defined Media for Cellulomonas sp. and Bacillus cereus

    PubMed Central

    Summers, R. J.; Boudreaux, D. P.; Srinivasan, V. R.

    1979-01-01

    Steady-state continuous culture was used to optimize lean chemically defined media for a Cellulomonas sp. and Bacillus cereus strain T. Both organisms were extremely sensitive to variations in trace-metal concentrations. However, medium optimization by this technique proved rapid, and multifactor screening was easily conducted by using a minimum of instrumentation. The optimized media supported critical dilution rates of 0.571 and 0.467 h−1 for Cellulomonas and Bacillus, respectively. These values approximated maximum growth rate values observed in batch culture. PMID:16345417

  8. Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells.

    PubMed

    Yang, Sufang; Pilgaard, Linda; Chase, Lucas G; Boucher, Shayne; Vemuri, Mohan C; Fink, Trine; Zachar, Vladimir

    2012-08-01

    Development and implementation of therapeutic protocols based on stem cells or tissue-engineered products relies on methods that enable the production of substantial numbers of cells while complying with stringent quality and safety demands. In the current study, we aimed to assess the benefits of maintaining cultures of adipose-derived stem cells (ASCs) in a defined culture system devoid of xenogeneic components (xeno-free) and hypoxia over a 49-day growth period. Our data provide evidence that conditions involving StemPro mesenchymal stem cells serum-free medium (SFM) Xeno-Free and hypoxia (5% oxygen concentration) in the culture atmosphere provide a superior proliferation rate compared to a standard growth environment comprised of alpha-modified Eagle medium (A-MEM) supplemented with fetal calf serum (FCS) and ambient air (20% oxygen concentration) or that of A-MEM supplemented with FCS and hypoxia. Furthermore, a flow cytometric analysis and in vitro differentiation assays confirmed the immunophenotype stability and maintained multipotency of ASCs when expanded under xeno-free conditions and hypoxia. In conclusion, our data demonstrate that growth conditions utilizing a xeno-free and hypoxic environment not only provide an improved environment for the expansion of ASCs, but also set the stage as a culture system with the potential broad spectrum utility for regenerative medicine and tissue engineering applications.

  9. Uganda: The Challenge of Growth and Poverty Reduction. A World Bank Country Study.

    ERIC Educational Resources Information Center

    World Bank, Washington, DC.

    This report examines the outcomes of economic reform in Uganda and defines issues that Uganda must address in medium- and long-term strategies for poverty reduction. With a per capita income of approximately $220, Uganda is one of the poorest countries in the world. Its economy and social indicators bear the marks of nearly 15 years of political…

  10. Statistical optimization of culture conditions for the production of enniatins H, I, and MK1688 by Fusarium oxysporum KFCC 11363P.

    PubMed

    Lee, Hee-Seok; Kang, Jea-Wook; Kim, Byung Hee; Park, Sang-Gyu; Lee, Chan

    2011-03-01

    The aim of this study was to optimize the culture conditions for the production of biological cyclic hexadepsipeptides (enniatins H, I and MK1688) from Fusarium oxysporum KFCC 11363P. Tests of 10 complete or chemically defined liquid culture media revealed that Fusarium defined medium was the best for the production of enniatins (produced amounts: enniatin H, 185.4 mg/L; enniatin I, 349.1mg/L; enniatin MK1688, 541.1mg/L; and total enniatins, 1075.6 mg/L). On the eighth day after inoculation, the maximal production of enniatins was observed at 25°C in Fusarium defined medium. The optimal carbon and nitrogen sources for producing biological cyclic hexadepsipeptides (enniatins H, I, and MK1688) were sucrose and NaNO(3), respectively, and their optimal concentrations were determined by the principle of response surface methodology. It was confirmed that using the optimized growth medium compositions increased the amounts of enniatins H, I, and MK1688, and total enniatins produced to 695.2, 882.4, 824.8, and 2398.5mg/L, respectively. These findings will assist in formulating microbiological media useful for enniatin research. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Clean fuels from bioconversion of solar energy. Annual report, 21 January 1980-20 January 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feighner, S.D.; Sikka, H.C.

    1981-03-01

    The study seeks to enhance glycolic acid excretion by unicellular algae. The strains of algae selected to evaluate glycolic acid accumulation in culture medium were: Chlorella pyrenoidosa (UTEX 395), Chlamydomonas reinhardtii (UTEX 89), Scenedesmus obliquus (UTEX 393), and Ankistrodesmus braunii (UTEX 245). C. pyrenoidosa and C. reinhardtii, based on the amount of glycolic acid produced, were selected for further study. Initial experiments were conducted to measure the effect of different environmental growth conditions on the rate of glycolic accumulation in defined culture medium. The most pronounced effect on glycolic acid excretion was obtained by varying the concentration of carbon dioxidemore » in air. At 1% CO2 in air, C. pyrenoidosa accumulated 5.2 ppm glycolic acid in culture medium. Neither the pH of the culture medium nor the incubation temperature affected glycolic acid accumulation by growing C. pyrenoidosa cultures.« less

  12. Cold Osmotic Shock in Saccharomyces cerevisiae

    PubMed Central

    Patching, J. W.; Rose, A. H.

    1971-01-01

    Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201

  13. Development of Competence of Haemophilus influenzae

    PubMed Central

    Spencer, Hugh T.; Herriott, Roger M.

    1965-01-01

    Spencer, Hugh T. (The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Md.), and Roger M. Herriott. Development of competence of Haemophilus influenzae. J. Bacteriol. 90:911–920. 1965.—A chemically defined nongrowth medium was developed for the induction of competence of Haemophilus influenzae by a stepdown procedure. Cells grown logarithmically in Heart Infusion Broth became competent after being transferred to a medium which consisted of amino acids, sodium fumarate, and inorganic salts. Chloramphenicol (2 μg/ml) or l-valine (1 μg/ml) in the nongrowth medium inhibited development of competence. The inhibitory action of l-valine was reversed by comparable concentrations of l-isoleucine. Kinetic studies of the development of competence showed a variable capacity of competent cells to take up deoxyribonucleic acid and reaffirmed earlier findings that competence was not transmissible in H. influenzae. Addition of nicotinamide adenine dinucleotide, thiamine, calcium pantothenate, uracil, and hypoxanthine to the medium for competence resulted in a minimal growth medium in which reduced levels of competence were developed. PMID:5294817

  14. Dual role of starvation signaling in promoting growth and recovery

    PubMed Central

    Leshkowitz, Dena; Barkai, Naama

    2017-01-01

    Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished. PMID:29236696

  15. Chlamydospore production and germ-tube formation by auxotrophs of Candida albicans.

    PubMed

    Balish, E

    1973-04-01

    A prototrophic strain and 21 auxotrophic strains of Candida albicans were assessed for their capacity to produce chlamydospores and germ tubes. All of the mutants were able to produce germ-tubes in human serum but only two mutants produced them in defined medium with L-alpha-amino-n-butyric acid as the sole source of nitrogen. Most auxotrophs were not able to produce chlamydospores on corn meal agar with 1% Tween 80, but they could be induced to do so if the medium was supplemented with their growth requirement(s). Although L-cysteine was able to support the growth of two methionine mutants, it did not support chlamydospore formation when added to corn meal agar with 1% Tween 80. Mutants of C. albicans that do not form chlamydospores could be incorrectly identified in laboratories that rely on chlamydospore formation for identification.

  16. Dekkera and Brettanomyces growth and utilisation of hydroxycinnamic acids in synthetic media.

    PubMed

    Harris, Victoria; Ford, Christopher M; Jiranek, Vladimir; Grbin, Paul R

    2008-04-01

    Dekkera and Brettanomyces yeast are important spoilage organisms in a number of food and beverage products. Isolates of both genera were cultured in a defined medium and supplemented with hydroxycinnamic acids and vinylphenols to investigate their influence on growth and the formation of ethyl phenol derivatives. The growth rate of Brettanomyces species in the presence of acids was reduced, and no significant conversion to vinyl or ethyl derivatives was observed. The growth rate and substrate utilisation rates of Dekkera anomala and Dekkera bruxellensis yeast differed depending on strain and the acid precursor present. Growth of D. bruxellensis was slowed by the presence of ferulic acid with the addition of 1 mM ferulic acid completely inhibiting growth. This study provides an insight into the spoilage potential of these organisms and possible control strategies involving hydroxycinnamic acids.

  17. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium

    PubMed Central

    1996-01-01

    Mature adult parenchymal hepatocytes, typically of restricted capacity to proliferate in culture, can now enter into clonal growth under the influence of hepatocyte growth factor (scatter factor) (HGF/SF), epidermal growth factor (EGF), and transforming growth factor alpha (TGFalpha) in the presence of a new chemically defined medium (HGM). The expanding populations of hepatocytes lose expression of hepatocyte specific genes (albumin, cytochrome P450 IIB1), acquire expression of markers expressed by bile duct epithelium (cytokeratin 19), produce TGFalpha and acidic FGF and assume a very simplified morphologic phenotype by electron microscopy. A major change associated with this transition is the decrease in ratio between transcription factors C/EBPalpha and C/EBPbeta, as well as the emergence in the proliferating hepatocytes of transcription factors AP1, NFkappaB. The liver associated transcription factors HNFI, HNF3, and HNF4 are preserved throughout this process. After population expansion and clonal growth, the proliferating hepatocytes can return to mature hepatocyte phenotype in the presence of EHS gel (Matrigel). This includes complete restoration of electron microscopic structure and albumin expression. The hepatocyte cultures however can instead be induced to form acinar/ductular structures akin to bile ductules (in the presence of HGF/SF and type I collagen). These transformations affect the entire population of the hepatocytes and occur even when DNA synthesis is inhibited. Similar acinar/ductular structures are seen in embryonic liver when HGF/SF and its receptor are expressed at high levels. These findings strongly support the hypothesis that mature hepatocytes can function as or be a source of bipotential facultative hepatic stem cells (hepatoblasts). These studies also provide evidence for the growth factor and matrix signals that govern these complex phenotypic transitions of facultative stem cells which are crucial for recovery from acute and chronic liver injury. PMID:8601590

  18. Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast.

    PubMed

    Stöckmann, Christoph; Palmen, Thomas G; Schroer, Kirsten; Kunze, Gotthard; Gellissen, Gerd; Büchs, Jochen

    2014-06-01

    The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l(-1) was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l(-1). Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h(-1) and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.

  19. [THE NATIONAL NUTRIENT MEDIUM FOR DIAGNOSTIC OF PURULENT BACTERIAL MENINGITIS].

    PubMed

    Podkopaev, Ya V; Domotenko, L V; Morozova, T P; Khramov, M K; Shepelin, A P

    2015-05-01

    The national growth mediums were developed for isolating and cultivating of main agents of purulent bacterial meningitis--haemophilus agar, chocolate agar, PBM-agar. The growing and selective characteristics of developed growth mediums are examined. The haemophilus agar ensures growth of Haemophilus influenzae. The chocolate agar, PBM-agar ensure growth of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. By growing characteristics, the national growth mediums match foreign analogues. Under application of growth mediums with selective additions it is possible to achieve selective isolation of main agents of purulent bacterial meningitis with inhibition of growth of microbes-associates.

  20. Use of a dynamic in vitro attachment and invasion system (DIVAS) to determine influence of growth rate on invasion of respiratory epithelial cells by group B Streptococcus.

    PubMed

    Malin, G; Paoletti, L C

    2001-11-06

    Expression of capsular polysaccharide (CPS) and some surface proteins by group B Streptococcus (GBS) is regulated by growth rate. We hypothesized that precise control of GBS growth, and thus surface-expressed components, could modulate the ability of GBS to invade eukaryotic cells. To test this hypothesis, a dynamic in vitro attachment and invasion system (DIVAS) was developed that combines the advantages of bacterial growth in continuous culture with tissue culture. Tissue culture flasks were modified with inlet and outlet ports to permit perfusion of GBS. Encapsulated type III GBS strains M781 and COH1 and strains COH1-11 and COH1-13 (transposon mutants of COH1 that express an asialo CPS or are acapsular, respectively) were grown in continuous culture in a chemically defined medium at fast mass doubling time (t(d) = 1.8 h) and slow (t(d) = 11 h) growth rates, conditions previously shown to induce and repress, respectively, type III CPS expression. Encapsulated GBS strains invaded A549 respiratory epithelial cells 20- to 700-fold better at the fast than at the slow growth rate, suggesting a role for CPS. However, unencapsulated GBS were also invasive but only when cultured at the fast growth rate, which indicates that GBS invasion is independent of CPS expression and can be regulated by growth rate. Growth rate-dependent invasion occurred when GBS was grown in continuous culture under glucose-defined, thiamine-defined, and undefined nutrient limitations. These results suggest a growth rate-dependent regulation of GBS pathogenesis and demonstrate the usefulness of DIVAS as a tool in studies of host-microbe interactions.

  1. Human Induced Hepatic Lineage-Oriented Stem Cells: Autonomous Specification of Human iPS Cells toward Hepatocyte-Like Cells without Any Exogenous Differentiation Factors

    PubMed Central

    Yanagi, Satoshi; Kato, Chika; Takashima, Ryokichi; Kobayashi, Eiji; Hagiwara, Keitaro; Ochiya, Takahiro

    2015-01-01

    Preparing targeted cells for medical applications from human induced pluripotent stem cells (hiPSCs) using growth factors, compounds, or gene transfer has been challenging. Here, we report that human induced hepatic lineage-oriented stem cells (hiHSCs) were generated and expanded as a new type of hiPSC under non-typical coculture with feeder cells in a chemically defined hiPSC medium at a very high density. Self-renewing hiHSCs expressed markers of both human embryonic stem cells (hESCs) and hepatocytes. Those cells were highly expandable, markedly enhancing gene expression of serum hepatic proteins and cytochrome P450 enzymes with the omission of FGF-2 from an undefined hiPSC medium. The hepatic specification of hiHSCs was not attributable to the genetic and epigenetic backgrounds of the starting cells, as they were established from distinct donors and different types of cells. Approximately 90% of hiHSCs autonomously differentiated to hepatocyte-like cells, even in a defined minimum medium without any of the exogenous growth factors necessary for hepatic specification. After 12 days of this culture, the differentiated cells significantly enhanced gene expression of serum hepatic proteins (ALB, SERPINA1, TTR, TF, FABP1, FGG, AGT, RBP4, and AHSG), conjugating enzymes (UGT2B4, UGT2B7, UGT2B10, GSTA2, and GSTA5), transporters (SULT2A1, SLC13A5, and SLCO2B1), and urea cycle-related enzymes (ARG1 and CPS1). In addition, the hepatocyte-like cells performed key functions of urea synthesis, albumin secretion, glycogen storage, indocyanine green uptake, and low-density lipoprotein uptake. The autonomous hepatic specification of hiHSCs was due to their culture conditions (coculture with feeder cells in a defined hiPSC medium at a very high density) in self-renewal rather than in differentiation. These results suggest the feasibility of preparing large quantities of hepatocytes as a convenient and inexpensive hiPSC differentiation. Our study also suggests the necessity of optimizing culture conditions to generate other specific lineage-oriented hiPSCs, allowing for a very simple differentiation. PMID:25875613

  2. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups.

    PubMed

    Ricciardi, A; Ianniello, R G; Parente, E; Zotta, T

    2015-09-01

    Members of the Lactobacillus casei and Lactobacillus plantarum groups are capable of aerobic and respiratory growth. However, they grow poorly in aerobiosis in the currently available chemically defined media, suggesting that aerobic and respiratory growth require further supplementation. The effect of Tween 80, L-alanine, L-asparagine, L-aspartate, L-proline and L-serine on anaerobic and respiratory growth of Lact. casei N87 was investigated using a 2(5) factorial design. The effectiveness of modified CDM (mCDM) was validated on 21 strains of Lact. casei and Lact. plantarum groups. Tween 80 supplementation did not affect anaerobic growth, but improved respiratory growth. L-asparagine, L-proline and L-serine were stimulatory for respiring cells, while the presence of L-aspartate, generally, impaired biomass production. mCDM promoted the growth of Lact. casei and Lact. plantarum, with best results for strains showing a respiratory phenotype. The nutritional requirements of anaerobic and respiratory cultures of members of the Lact. casei and Lact. plantarum groups differ. Tween 80 and selected amino acids derived from pathways related to TCA cycle, pyruvate conversion and NADH recycling are required for respiration. The availability of mCDM will facilitate the study of aerobic metabolism of lactobacilli under controlled conditions. © 2015 The Society for Applied Microbiology.

  3. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate.

    PubMed Central

    Uffen, R L

    1976-01-01

    A species of Rhodopseudomonas that grows under strict anaerobic conditions in the dark and requires CO was isolated from lake and pond sediments. Although anaerobic growth in the dark occurs in a chemically defined mineral medium with CO as the only carbon and energy source, growth is stimulated by adding trypticase. Under these conditions, cells exhibit a generation time of 6.7 hr and reach a final concentration of 1 to 3 X 10(9) cells per ml of liquid medium. Resting suspensions of CO-grown cells metabolize about 6.7 mumol of CO per mg of protein in 1 hr and produce equimolar amounts of CO2 and H2 according to the equation CO + H2O leads to CO2 + H2. As predicted by this equation, when cells were suspended in tritium-labeled water containing potassium phosphate buffer at pH 7.0 and incubated with pure CO, 3H2 gas was produced at linear rate with a constant specific activity. PMID:1067620

  4. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell.

    PubMed

    Helder, M; Strik, D P B T B; Hamelers, H V M; Kuijken, R C P; Buisman, C J N

    2012-01-01

    In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential losses over the membrane because of differences in pH between anode and cathode. We developed a new, improved plant-growth medium that improves current production, while the plant keeps growing. This medium is a nitrate-less, ammonium-rich medium that contains all macro- and micro-nutrients necessary for plant growth, with a balanced amount of bicarbonate buffer. Sulphate presence in the plant-growth medium helps to keep a low anode-potential. With the new plant-growth medium the maximum current production of the Plant-Microbial Fuel Cell increased from 186 mA/m(2) to 469 mA/m(2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Improvement in ethanol productivity of engineered E. coli strain SSY13 in defined medium via adaptive evolution.

    PubMed

    Jilani, Syed Bilal; Venigalla, Siva Sai Krishna; Mattam, Anu Jose; Dev, Chandra; Yazdani, Syed Shams

    2017-09-01

    E. coli has the ability to ferment both C5 and C6 sugars and produce mixture of acids along with small amount of ethanol. In our previous study, we reported the construction of an ethanologenic E. coli strain by modulating flux through the endogenous pathways. In the current study, we made further changes in the strain to make the overall process industry friendly; the changes being (1) removal of plasmid, (2) use of low-cost defined medium, and (3) improvement in consumption rate of both C5 and C6 sugars. We first constructed a plasmid-free strain SSY13 and passaged it on AM1-xylose minimal medium plate for 150 days. Further passaging was done for 56 days in liquid AM1 medium containing either glucose or xylose on alternate days. We observed an increase in specific growth rate and carbon utilization rate with increase in passage numbers until 42 days for both glucose and xylose. The 42nd day passaged strain SSK42 fermented 113 g/L xylose in AM1 minimal medium and produced 51.1 g/L ethanol in 72 h at 89% of maximum theoretical yield with ethanol productivity of 1.4 g/L/h during 24-48 h of fermentation. The ethanol titer, yield and productivity were 49, 40 and 36% higher, respectively, for SSK42 as compared to unevolved SSY13 strain.

  6. Characterization of Ferroplasma acidiphilum growing in pure and mixed culture with Leptospirillum ferriphilum.

    PubMed

    Merino, M P; Andrews, B A; Parada, P; Asenjo, J A

    2016-11-01

    Biomining is defined as biotechnology for metal recovery from minerals, and is promoted by the concerted effort of a consortium of acidophile prokaryotes, comprised of members of the Bacteria and Archaea domains. Ferroplasma acidiphilum and Leptospirillum ferriphilum are the dominant species in extremely acid environments and have great use in bioleaching applications; however, the role of each species in this consortia is still a subject of research. The hypothesis of this work is that F. acidiphilum uses the organic matter secreted by L. ferriphilum for growth, maintaining low levels of organic compounds in the culture medium, preventing their toxic effects on L. ferriphilum. To test this hypothesis, a characterization of Ferroplasma acidiphilum strain BRL-115 was made with the objective of determining its optimal growth conditions. Subsequently, under the optimal conditions, L. ferriphilum and F. acidiphilum were tested growing in each other's supernatant, in order to define if there was exchange of metabolites between the species. With these results, a mixed culture in batch cyclic operation was performed to obtain main specific growth rates, which were used to evaluate a mixed metabolic model previously developed by our group. It was observed that F. acidiphilum, strain BRL-115 is a chemomixotrophic organism, and its growth is maximized with yeast extract at a concentration of 0.04% wt/vol. From the experiments of L. ferriphilum growing on F. acidiphilum supernatant and vice versa, it was observed that in both cases cell growth is favorably affected by the presence of the filtered medium of the other microorganism, proving a synergistic interaction between these species. Specific growth rates were obtained in cyclic batch operation of the mixed culture and were used as input data for a Flux Balance Analysis of the mixed metabolic model, obtaining a reasonable behavior of the metabolic fluxes and the system as a whole, therefore consolidating the model previously developed. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1390-1396, 2016. © 2016 American Institute of Chemical Engineers.

  7. Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis.

    PubMed Central

    Chen, K C; Forsyth, P S; Buchanan, T M; Holmes, K K

    1979-01-01

    We examined the vaginal washings from patients with nonspecific vaginitis (NSV) to seek biochemical markers and possible explanations for the signs and symptoms of this syndrome. Seven amines were identified including methylamine, isobutylamine, putrescine, cadaverine, histamine, tyramine, and phenethylamine. These amines may contribute to the symptoms of NSV and may contribute to the elevated pH of the vaginal discharge. They may also be partly responsible for the "fishy" odor that is characteristic of vaginal discharges from these patients. Among the seven amines, putrescine and cadaverine were the most abundant and were present in all vaginal discharges from each of ten patients before treatment. These amines are produced in vitro during growth of mixed vaginal bacteria in chemically defined medium, presumably by decarboxylation of the corresponding amino acids. We hypothesize the anaerobic vaginal organisms, previously shown to be quantitatively increased in NSV, are responsible for the amine production, because metronidazole inhibited the production of amines by vaginal bacteria in vitro, and Haemophilus vaginalis did not produce amines. H. vaginalis did release high concentrations of pyruvic acid and of amino acids during growth in peptone-starch-dextrose medium, whereas, other vaginal flora consumed both pyruvic acid and amino acids in the same medium during growth. These findings suggest that a symbiotic relationship may exist between H. vaginalis and other vaginal flora in patients with NSV. Images PMID:447831

  8. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant.

    PubMed

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Ledesma-Amaro, Rodrigo

    2016-09-01

    We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact mechanisms leading to the effects of Ole1p were not clearly defined, changes of palmitoleic and oleic acid contents appeared to be critical. This observation was supported by experiments using exogenous palmitoleic and oleic acids or overexpression of elongases. Our findings provide new insights on lipid accumulation mechanisms and metabolic engineering approaches for lipid production.

  9. Production of Biogenic Mn Oxides by Leptothrix discophora SS-1 in a Chemically Defined Growth Medium and Evaluation of Their Pb Adsorption Characteristics

    PubMed Central

    Nelson, Yarrow M.; Lion, Leonard W.; Ghiorse, William C.; Shuler, Michael L.

    1999-01-01

    Biogenic Mn oxides were produced by the bacterium Leptothrix discophora SS-1 (= ATCC 3182) in a chemically defined mineral salts medium, and the Pb binding and specific surface area of these oxides were characterized. Growth of SS-1 in the defined medium with pyruvate as a carbon and energy source required the addition of vitamin B12. Complete oxidation of Mn(II) within 60 h required the addition of ≥0.1 μM FeSO4. Pb adsorption isotherms were determined for the biogenic Mn oxides (and associated cells with their extracellular polymer) and compared to the Pb adsorption isotherms of cells and exopolymer alone, as well as to abiotic Mn oxides. The Pb adsorption to cells and exopolymer with biogenic Mn oxides (0.8 mmol of Mn per g) at pH 6.0 and 25°C was 2 orders of magnitude greater than the Pb adsorption to cells and exopolymer alone (on a dry weight basis). The Pb adsorption to the biogenic Mn oxide was two to five times greater than the Pb adsorption to a chemically precipitated abiotic Mn oxide and several orders of magnitude greater than the Pb adsorption to two commercially available crystalline MnO2 minerals. The N2 Brunauer-Emmet-Teller specific surface areas of the biogenic Mn oxide and fresh Mn oxide precipitate (224 and 58 m2/g, respectively) were significantly greater than those of the commercial Mn oxide minerals (0.048 and 4.7 m2/g). The Pb adsorption capacity of the biogenic Mn oxide also exceeded that of a chemically precipitated colloidal hydrous Fe oxide under similar solution conditions. These results show that amorphous biogenic Mn oxides similar to those produced by SS-1 may play a significant role in the control of trace metal phase distribution in aquatic systems. PMID:9872777

  10. Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose.

    PubMed

    Han, Jin; Hang, Feng; Guo, Benheng; Liu, Zhenmin; You, Chunpin; Wu, Zhengjun

    2014-11-04

    The characteristics of the growth of Leuconostoc mesenteroides BD1710 and the synthesis of dextran in tomato juice supplemented with 15% sucrose were assayed. L. mesenteroides BD1710 could synthesize approximately 32 g L(-1) dextran in the tomato-juice-sucrose medium when cultured at 28 °C for 48 h, which was on the same level as the dextran yield in a chemically defined medium. The viscosity of the cultured tomato-juice-sucrose medium with various dextran contents was also measured. The results of the monosaccharide composition, molecular-weight distribution, Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance spectra (NMR) showed that the polysaccharide synthesized by L. mesenteroides BD1710 in the tomato-juice-sucrose medium was dextran with a peak molecular weight of 6.35 × 10(5)Da, a linear backbone composed of consecutive α-(1 → 6)-linked d-glucopyranosyl units and approximately 6% α-(1 → 3) branches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of stress induced by suboptimal growth factors on survival of Escherichia coli O157:H7.

    PubMed

    Uyttendaele, M; Taverniers, I; Debevere, J

    2001-05-21

    This study investigated the growth and survival of E. coli O157:H7 exposed to a combination of suboptimal factors (22 degrees C, 7 degrees C, -18 degrees C/0.5% NaCl, 5.0% NaCl/pH 7.0, pH 5.4, pH 4.5/addition of lactic acid) in a simulation medium for red meat (beef gravy). Prolonged survival was noted as the imposed stress was more severe, and as multiple growth factors became suboptimal. At a defined temperature (7 degrees C or -18 degrees C), survival was prolonged at the more acid, more suboptimal pH (pH 4.5 > pH 5.4 > pH 7.0) while at a defined pH (pH 4.5), better survival was observed at 7 degrees C than at 22 degrees C. This suggests that application of the hurdle concept for preservation of food may inhibit outgrowth but induce prolonged survival of E. coli O157:H7 in minimal processed foods. At both 22 degrees C and 7 degrees C, the addition of lactic acid instead of HCl to reduce pH (to pH 4.5) resulted in a more rapid decrease of E. coli O157:H7. High survival was observed in beef gravy, pH 5.4 at -18 degrees C (simulation of frozen meat)-reduction of log 3.0 to log 1.9 after 43 days--and in beef gravy, pH 4.5 and 5% NaCl at 7 degrees C (simulation of a fermented dried meat product kept in refrigeration)--less than 1 log reduction in 43 days. In these circumstances, however, a high degree of sublethal damage of the bacterial cells was noted. The degree of sublethal damage can be estimated from the difference in recovery of the pathogen on the non-selective TSA medium and the selective SMAC medium.

  12. Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration

    DTIC Science & Technology

    2016-12-01

    the biological functions of the 3D printed retina tissue. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...cells (hfRPC) as the cell resource for retinal tissue differentiation. We have demonstrated that these 3D - printed hydrogel materials are biocompatible...for retinal cell growth. The hfRPC can be directed toward a specific cell fate within 3D - printed hydrogel and chemically defined induction medium

  13. Plasticity of Arabidopsis root gravitropism throughout a multidimensional condition space quantified by automated image analysis.

    PubMed

    Brooks, Tessa L Durham; Miller, Nathan D; Spalding, Edgar P

    2010-01-01

    Plant development is genetically determined but it is also plastic, a fundamental duality that can be investigated provided large number of measurements can be made in various conditions. Plasticity of gravitropism in wild-type Arabidopsis (Arabidopsis thaliana) seedling roots was investigated using automated image acquisition and analysis. A bank of computer-controlled charge-coupled device cameras acquired images with high spatiotemporal resolution. Custom image analysis algorithms extracted time course measurements of tip angle and growth rate. Twenty-two discrete conditions defined by seedling age (2, 3, or 4 d), seed size (extra small, small, medium, or large), and growth medium composition (simple or rich) formed the condition space sampled with 1,216 trials. Computational analyses including dimension reduction by principal components analysis, classification by k-means clustering, and differentiation by wavelet convolution showed distinct response patterns within the condition space, i.e. response plasticity. For example, 2-d-old roots (regardless of seed size) displayed a response time course similar to those of roots from large seeds (regardless of age). Enriching the growth medium with nutrients suppressed response plasticity along the seed size and age axes, possibly by ameliorating a mineral deficiency, although analysis of seeds did not identify any elements with low levels on a per weight basis. Characterizing relationships between growth rate and tip swing rate as a function of condition cast gravitropism in a multidimensional response space that provides new mechanistic insights as well as conceptually setting the stage for mutational analysis of plasticity in general and root gravitropism in particular.

  14. Plasticity of Arabidopsis Root Gravitropism throughout a Multidimensional Condition Space Quantified by Automated Image Analysis1[W][OA

    PubMed Central

    Durham Brooks, Tessa L.; Miller, Nathan D.; Spalding, Edgar P.

    2010-01-01

    Plant development is genetically determined but it is also plastic, a fundamental duality that can be investigated provided large number of measurements can be made in various conditions. Plasticity of gravitropism in wild-type Arabidopsis (Arabidopsis thaliana) seedling roots was investigated using automated image acquisition and analysis. A bank of computer-controlled charge-coupled device cameras acquired images with high spatiotemporal resolution. Custom image analysis algorithms extracted time course measurements of tip angle and growth rate. Twenty-two discrete conditions defined by seedling age (2, 3, or 4 d), seed size (extra small, small, medium, or large), and growth medium composition (simple or rich) formed the condition space sampled with 1,216 trials. Computational analyses including dimension reduction by principal components analysis, classification by k-means clustering, and differentiation by wavelet convolution showed distinct response patterns within the condition space, i.e. response plasticity. For example, 2-d-old roots (regardless of seed size) displayed a response time course similar to those of roots from large seeds (regardless of age). Enriching the growth medium with nutrients suppressed response plasticity along the seed size and age axes, possibly by ameliorating a mineral deficiency, although analysis of seeds did not identify any elements with low levels on a per weight basis. Characterizing relationships between growth rate and tip swing rate as a function of condition cast gravitropism in a multidimensional response space that provides new mechanistic insights as well as conceptually setting the stage for mutational analysis of plasticity in general and root gravitropism in particular. PMID:19923240

  15. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  16. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    NASA Astrophysics Data System (ADS)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations indicate relatively fast plagioclase growth rates, of order 10 cm/yr, or growth from an aqueous medium where diffusive fractionation would be smaller. The growth rates suggested by our models imply that the mineralogical layering is likely to represent changes in external conditions of the host magma.

  17. Design of an efficient medium for heterologous protein production in Yarrowia lipolytica: case of human interferon alpha 2b.

    PubMed

    Gasmi, Najla; Ayed, Atef; Nicaud, Jean-Marc; Kallel, Héla

    2011-05-20

    The non conventional yeast Yarrowia lipolytica has aroused a strong industrial interest for heterologous protein production. However most of the studies describing recombinant protein production by this yeast rely on the use of complex media, such media are not convenient for large scale production particularly for products intended for pharmaceutical applications. In addition medium composition can also affect the production yield. Hence it is necessary to design an efficient medium for therapeutic protein expression by this host. Five different media, including four minimal media and a complex medium, were assessed in shake flasks for the production of human interferon alpha 2b (hIFN α2b) by Y. lipolytica under the control of POX2 promoter inducible with oleic acid. The chemically defined medium SM4 formulated by Invitrogen for Pichia pastoris growth was the most suitable. Using statistical experimental design this medium was further optimized. The selected minimal medium consisting in SM4 supplemented with 10 mg/l FeCl₃, 1 g/l glutamate, 5 ml/l PTM1 (Pichia Trace Metals) solution and a vitamin solution composed of myo-inositol, thiamin and biotin was called GNY medium. Compared to shake flask, bioreactor culture in GNY medium resulted in 416-fold increase of hIFN α2b production and 2-fold increase of the biological activity. Furthermore, SM4 enrichment with 5 ml/l PTM1 solution contributed to protect hIFN α2b against the degradation by the 28 kDa protease identified by zymography gel in culture supernatant. The screening of the inhibitory effect of the trace elements present in PTM1 solution on the activity of this protease was achieved using a Box-Behnken design. Statistical data analysis showed that FeCl₃ and MnSO₄ had the most inhibitory effect. We have designed an efficient medium for large scale production of heterologous proteins by Y. lipolytica. The optimized medium GNY is suitable for the production of hIFN α2b with the advantage that no complex nitrogen sources with non-defined composition were required.

  18. Microarray platform affords improved product analysis in mammalian cell growth studies

    PubMed Central

    Li, Lingyun; Migliore, Nicole; Schaefer, Eugene; Sharfstein, Susan T.; Dordick, Jonathan S.; Linhardt, Robert J.

    2014-01-01

    High throughput (HT) platforms serve as cost-efficient and rapid screening method for evaluating the effect of cell culture conditions and screening of chemicals. The aim of the current study was to develop a high-throughput cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/MSX CHO cell line, which produces a therapeutic monoclonal antibody, was examined using microarray system in conjunction with conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60 nl spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base media results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the high-throughput microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as, cell growth, metabolism and productivity. PMID:24227746

  19. Laminin enhances the growth of human neural stem cells in defined culture media

    PubMed Central

    Hall, Peter E; Lathia, Justin D; Caldwell, Maeve A; ffrench-Constant, Charles

    2008-01-01

    Background Human neural stem cells (hNSC) have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth. Results To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner. Conclusion The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production. PMID:18651950

  20. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.

    PubMed

    Khosla, S; Dean, W; Brown, D; Reik, W; Feil, R

    2001-03-01

    Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.

  1. Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa) fed Chlorella vulgaris and Scenedesmus acutus cultured on different media.

    PubMed

    Morales-Ventura, Jesús; Nandini, S; Sarma, S S S; Castellanos-Páez, Maria Elena

    2012-09-01

    Generally zooplankton growth is often limited by the quality of their algal diet. A cheaper common practice in aquaculture, is to culture algae with fertilizers; however, the demography of zooplankton when fed these algae has not yet been evaluated. We studied the population growth and life table demography of the rotifers Anuraeopsis fissa and Brachionus rubens, and the cladoceran Moina macrocopa. For this, the algae Scenedesmus acutus or Chlorella vulgaris were cultured on defined (Bold's basal) medium or the commercial liquid fertilizer (Bayfolan). Experiments were conducted at one algal concentration 1.0 x 10(6) cells/mL of C. vulgaris or its equivalent dry weight of 0.5 x 10(6) cells/mL of S. acutus. The population dynamics were tested at 23 +/- 1 degrees C in 100 mL transparent jars, each with 50mL of the test medium, with an initial density of 0.5indiv/mL, for a total of 48 test jars (3 zooplankton 2 algal species x 2 culture media x 4 replicates). For the life table experiments with M. macrocopa, we introduced 10 neonates (<24h old) into each test jar containing the specific algal type and concentration. For the rotifer experiments, we set 5mL tubes with one neonate each and 10 replicates for each algal species and culture medium. We found that the average rotifer life span was not influenced by the diet, but for M. macrocopa fed S. acutus cultured in Bold's medium, the average lifespan was significantly lower than with the other diets. The gross and net reproductive rates of A. fissa (ranging from 18-36 offspring per female) were significantly higher for C vulgaris cultured in Bold medium. Regardless of the culture medium, Chlorella resulted in significantly higher gross and net reproductive rates for B. rubens than S. acutus diets. The reproductive rates of M. macrocopa were significantly higher in all the tested diets except when fed with S. acutus in Bold medium. The population increase rate, derived from growth experiments of A. fissa and B. rubens, ranged from 0.1-0.25/d and were significantly higher on C vulgaris cultured in liquid fertilizer as compared to the other diets. The growth rates of M. macrocopa ranged from 0.1 to 0.38/d, and were highest with diets of C. vulgaris cultured in Bold medium and S. acutus cultured in fertilizer. Thus, regardless of the culture medium used, the growth rates of the evaluated zooplankton species were higher with Chlorella than with Scenedesmus. The peak population density was highest (2 800ind/mL) for A. fissa fed Chlorella that was cultured on liquid fertilizers, while B. rubens and M. macrocopa had peak abundances of 480 and 12ind/mL, respectively under similar conditions.

  2. Controlled and reversible induction of differentiation and activation of adult human hepatocytes by a biphasic culture technique

    PubMed Central

    Auth, Marcus K.H.; Boost, Kim A.; Leckel, Kerstin; Beecken, Wolf-Dietrich; Engl, Tobias; Jonas, Dietger; Oppermann, Elsie; Hilgard, Philip; Markus, Bernd H.; Bechstein, Wolf-Otto; Blaheta, Roman A.

    2005-01-01

    AIM: Clinical application of human hepatocytes (HC) is hampered by the progressive loss of growth and differentiation in vitro. The object of the study was to evaluate the effect of a biphasic culture technique on expression and activation of growth factor receptors and differentiation of human adult HC. METHODS: Isolated HC were sequentially cultured in a hormone enriched differentiation medium (DM) containing nicotinamide, insulin, transferrin, selenium, and dexame-thasone or activation medium (AM) containing hepatocyte growth factor (HGF), epidermal growth factor (EGF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression, distribution and activation of the HC receptors (MET and EGFR) and the pattern of characteristic cytokeratin (CK) filaments were measured by fluorometry, confocal microscopy and Western blotting. RESULTS: In the biphasic culture system, HC underwent repeated cycles of activation (characterized by expression and activation of growth factor receptors) and re-differentiation (illustrated by distribution of typical filaments CK-18 but low or absent expression of CK-19). In AM increased expression of MET and EGFR was associated with receptor translocation into the cytoplasm and induction of atypical CK-19. In DM low expression of MET and EGFR was localized on the cell membrane and CK-19 was reduced. Receptor phosphorylation required embedding of HC in collagen type I gel. CONCLUSION: Control and reversible modulation of growth factor receptor activation of mature human HC can be accomplished in vitro, when defined signals from the extracellular matrix and sequential growth stimuli are provided. The biphasic technique helps overcome de-differentiation, which occurs during continuous stimulation by means of growth factors. PMID:15810072

  3. Controlled and reversible induction of differentiation and activation of adult human hepatocytes by a biphasic culture technique.

    PubMed

    Auth, Marcus-K H; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Engl, Tobias; Jonas, Dietger; Oppermann, Elsie; Hilgard, Philip; Markus, Bernd H; Bechstein, Wolf-Otto; Blaheta, Roman A

    2005-04-14

    Clinical application of human hepatocytes (HC) is hampered by the progressive loss of growth and differentiation in vitro. The object of the study was to evaluate the effect of a biphasic culture technique on expression and activation of growth factor receptors and differentiation of human adult HC. Isolated HC were sequentially cultured in a hormone enriched differentiation medium (DM) containing nicotinamide, insulin, transferrin, selenium, and dexame-thasone or activation medium (AM) containing hepatocyte growth factor (HGF), epidermal growth factor (EGF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression, distribution and activation of the HC receptors (MET and EGFR) and the pattern of characteristic cytokeratin (CK) filaments were measured by fluorometry, confocal microscopy and Western blotting. In the biphasic culture system, HC underwent repeated cycles of activation (characterized by expression and activation of growth factor receptors) and re-differentiation (illustrated by distribution of typical filaments CK-18 but low or absent expression of CK-19). In AM increased expression of MET and EGFR was associated with receptor translocation into the cytoplasm and induction of atypical CK-19. In DM low expression of MET and EGFR was localized on the cell membrane and CK-19 was reduced. Receptor phosphorylation required embedding of HC in collagen type I gel. Control and reversible modulation of growth factor receptor activation of mature human HC can be accomplished in vitro, when defined signals from the extracellular matrix and sequential growth stimuli are provided. The biphasic technique helps overcome de-differentiation, which occurs during continuous stimulation by means of growth factors.

  4. Production of pectate lyases and cellulases by Chryseomonas luteola strain MFCL0 depends on the growth temperature and the nature of the culture medium: evidence for two critical temperatures.

    PubMed

    Laurent, P; Buchon, L; Guespin-Michel, J F; Orange, N

    2000-04-01

    Several extracellular enzymes that are responsible for plant tissue maceration were detected in culture supernatant of the psychrotrophic bacterium Chryseomonas luteola MFCL0. Isoelectrofocusing experiments showed that pectate lyase (PL) activity resulted from the cumulative action of three major isoenzymes, designated PLI, PLII, and PLIII. Cellulolytic activity was also detected in culture supernatants. These enzymes exhibited different behaviors with respect to growth temperature. PLII was not regulated by temperature, whereas PLI and PLIII were regulated similarly by growth temperature. Maximal levels of PLI and PLIII were produced at 14 degrees C when cells were grown in polygalacturonate-containing synthetic medium and at around 20 to 24 degrees C in nutrient broth. In contrast, thermoregulation of cellulolytic activity production differed from thermoregulation of PL. The level of cellulolytic activity was low in all media at temperatures up to 20 degrees C, and then it increased dramatically until the temperature was 28 degrees C, which is the optimal temperature for growth of C. luteola. Previously, we defined the critical temperature by using the modified Arrhenius equation to characterize bacterial behavior. This approach consists of monitoring changes in the maximal specific growth rate as a function of temperature. Our most striking result was the finding that the temperature at which maximum levels of PLI and PLIII were produced in two different media was the same as the critical temperature for growth observed in these two media.

  5. Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains.

    PubMed

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1995-10-01

    Preliminary screening was carried out on spores of 29 strains of Bacillus stearothermophilus to determine their potential as biological indicator organisms for low temperature steam and formaldehyde sterilization. Each strain was sporulated on four chemically defined media. Fourteen strains produced satisfactory sporulation on one or more of the media but there was considerable variation in the extent of sporulation. The growth index of the spores, which was dependent on both the strain of organism and the sporulation medium, ranged from 1% to 90%. The spores were appraised on the basis of their resistance to inactivation by 0.5% w/v formaldehyde in aqueous solution at 70 degrees C. The survivor curves obtained could be characterized into five types on the basis of the shape of the curve. Only five strains of Bacillus stearothermophilus produced spores with the characteristics of high resistance, linear semi-logarithmic survivor curve and high growth index that would be required of a potential biological indicator organism.

  6. Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production

    PubMed Central

    Narendranath, Neelakantam V.; Power, Ronan

    2005-01-01

    The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306

  7. Expression of the Sinorhizobium meliloti small RNA gene mmgR is controlled by the nitrogen source.

    PubMed

    Ceizel Borella, Germán; Lagares, Antonio; Valverde, Claudio

    2016-05-01

    Small non-coding regulatory RNAs (sRNAs) are key players in post-transcriptional regulation of gene expression. Hundreds of sRNAs have been identified in Sinorhizobium meliloti, but their biological function remains unknown for most of them. In this study, we characterized the expression pattern of the gene encoding the 77-nt sRNA MmgR in S. meliloti strain 2011. A chromosomal transcriptional reporter fusion (PmmgR-gfp) showed that the mmgR promoter is active along different stages of the interaction with alfalfa roots. In pure cultures, PmmgR-gfp activity paralleled the sRNA abundance indicating that mmgR expression is primarily controlled at the level of transcriptional initiation. PmmgR-gfp activity was higher during growth in rhizobial defined medium (RDM) than in TY medium. Furthermore, PmmgR-gfp was induced at 60 min after shifting growing cells from TY to RDM medium, i.e. shorter than the cell doubling time. In defined RDM medium containing NO3 (-), both PmmgR-gfp and MmgR level were repressed by the addition of tryptone or single amino acids, suggesting that mmgR expression depends on the cellular nitrogen (N) status. In silico analysis failed to detect conserved motifs upstream the promoter RNA polymerase binding site, but revealed a strongly conserved motif centered at -28 that may be linked to the observed regulatory pattern by the N source. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. [TMOSKOVHE COMPARATIVE CHARACTERISTIC OF GROWTH MEDIUMS FOR SEPARATION OF CORYNEBACTERIA].

    PubMed

    Shepelin, A P; Polosenko, O V; Borisova, O Yu; Pimenova, A S; Gadua, N T

    2016-01-01

    The comparative tests of growth mediums for isolation and accumulation of diphtheria bacteria were implemented. The testing consisted of six series of growth medium "Corynebacagar" produced by the state research center of applied microbiology and biotechnology and three series of blood tellurite agar. The concluding results of identification of biological indicators of all series of growth nutrient mediums are presented The "Corynebacagar" is recommended for application in health care practice for primary inoculation of pathological material during implementation of cultural analysis on diphtheria.

  9. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    PubMed

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the basis of some of the most common infections of humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures

    PubMed Central

    Chen, Chien-Chih; Bates, Rick; Carlson, John

    2015-01-01

    The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabilizer, 2-(N-morpholino)ethanesulfonic acid (MES) that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth. PMID:26535110

  11. Growth and metabolism of murine and bovine embryos in bovine uterine flushing-supplemented culture media.

    PubMed Central

    Rondeau, M; Guay, P; Goff, A K; Cooke, G M

    1996-01-01

    The aim of this study was to compare the development and metabolic activity of cultured murine and bovine embryos in 2 standard media (HAM F-10 and RPMI) in the presence or absence of bovine uterine flushings. Murine morulae (n = 653) and day 7 bovine embryos (n = 273) were cultured for 18 h or 36 h in either HAM F-10 or RPMI in the presence or absence of bovine uterine flushings. After culture, the development, quality, and metabolic activity (glucose utilization or methionine uptake and incorporation) of embryos was assessed. It was found that HAM F-10 (without uterine flushings) was a more suitable medium than RPMI for optimal development and metabolism of murine and bovine embryos. Poor quality and development, as well as decreased metabolism, were evident after culture of murine embryos in RPMI; in contrast, this medium had no adverse effects on bovine embryos in culture. Supplementation of HAM F-10 with bovine uterine flushings improved the growth of murine embryos and the protein synthesis (as measured by an increased methionine incorporation) for both murine and bovine embryos. However, supplementation with bovine uterine flushings could not overcome deficiencies of an inappropriate medium (RPMI) for murine embryos. Supplementation of a well-defined culture medium with uterine flushings increased metabolism of embryos in culture, and thus might help to increase pregnancy rates after transfer of such embryos to recipient cows. PMID:8825988

  12. Density-dependent regulation of growth of BSC-1 cells in cell culture: growth inhibitors formed by the cells.

    PubMed Central

    Holley, R W; Armour, R; Baldwin, J H

    1978-01-01

    Inhibitors formed by a monkey epithelial cell line, BSC-1, play an important role in limiting growth at high cell densities. At least three inhibitors are formed: lactic acid, ammonia, and an unidentified inhibitor that may be an unstable protein. The unidentified inhibitor is destroyed by shaking the conditioned medium, by bubbling gas through the medium, or by heating or storing the medium in the absence of cells. The concentrations of lactic acid and ammonia that accumulate in conditioned medium inhibit growth when added to fresh medium. These results, together with earlier studies, indicate that density-dependent regulation of growth of BSC-1 cells results from the combined effects of (a) inhibitors formed by the cells, (b) decreased availability of receptor sites for serum growth factors as the cells become crowded, and (c) limiting concentrations of low molecular weight nutrients in the medium. In contrast, density-dependent regulation of growth in 3T3 mouse embryo fibroblasts results almost entirely from inactivation of serum factors. PMID:273914

  13. Application of Low cost Spirulina growth medium using Deep sea water

    NASA Astrophysics Data System (ADS)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  14. Lemna paucicostata Hegelm. 6746

    PubMed Central

    Datko, Anne H.; Mudd, S. Harvey; Giovanelli, John

    1980-01-01

    Photoautotrophic and mixotrophic growth of Lemna paucicostata Hegelm. 6746 (formerly Lemna perpusilla Torr. 6746) was investigated to establish standardized conditions for biochemical studies. Optimal temperature for growth was 29 to 30 C. The medium used previously (Datko AH, Mudd SH, Giovanelli J 1977 J Biol Chem 252: 3436-3445) was modified by inclusion of NH4Cl, decreasing macronutrient and ethylenediamine tetraacetate concentration, increasing micronutrient concentration, and inclusion of bicarbonate (for photoautotrophic growth) or 2-(N-morpholino)ethanesulfonic acid (for mixotrophic growth) buffers. Varying the sulfate concentration between 14 and 1 millimolar had no effect on growth. For photoautotrophic growth in the new medium (medium 4), the effects of CO2 concentration, light intensity, and pH were measured. Under the optimal conditions, a multiplication rate (MR) of 300 to 315, equivalent to a doubling time of 23 to 24 hours was obtained. Addition of glutamine or asparagine did not increase this MR. For mixotrophic growth in low light, the effects of sucrose concentration and pH were determined. Under optimal conditions, MR was 210. A concentration of sucrose less than maximal for growth was chosen for the medium for experiments which will include 14C-labeling of intermediates. MR under these conditions was 184. Growth was equally good in medium 4 and in half-strength Hutner's medium when sulfate was high (0.4 to 1 millimolar), but better in medium 4 when sulfate was low (20 micromolar). Growth rates could be restored to normal in half-strength Hutner's with low sulfate by decreasing the molybdate concentration. By modifying medium 4 to contain very low amounts of sulfate, and by preconditioning medium and plants, it was shown that there was an increment in plant protein of approximately 2.5 micrograms per nanomole of added MgSO4. Colonies undergoing sulfur limitation exhibited a slow growth rate and a high frond to colony ratio. Molybdate and selenate produced growth inhibition reversible by sulfate. Conditions were developed in which the plants could be maintained indefinitely in the presence of either molybdate or selenate in altered metabolic steady-states with lowered growth rates and protein per frond. Images PMID:16661306

  15. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion.

    PubMed

    Hendriks, A T W M; van Lier, J B; de Kreuk, M K

    Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also because of the many different growth media that are used. Composition of growth media can influence biogas production (rates) and lead to process instability during anaerobic digestion. To be able to compare results of the different studies reported, and to ensure nutrient limitation is not influencing observations ascribed to process dynamics and/or reaction kinetics, a standard protocol for creating a defined growth medium for anaerobic digestion and mixed culture fermentation is proposed. This paper explains the role(s) of the different macro- and micronutrients, as well as the choices for a growth medium formulation strategy. In addition, the differences in nutrient requirements between mesophilic and thermophilic systems are discussed as well as the importance of specific trace metals regarding specific conversion routes and the possible supplementary requirement of vitamins. The paper will also give some insight into the bio-availability and toxicity of trace metals. A remarkable finding is that mesophilic and thermophilic enzymes are quite comparable at their optimum temperatures. This has consequences for the trace metal requirements of thermophiles under certain conditions. Under non-limiting conditions, the trace metal requirement of thermophilic systems is about 3 times higher than for mesophilic systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Optimization of a serum-free culture medium for mouse embryonic stem cells using design of experiments (DoE) methodology.

    PubMed

    Knöspel, Fanny; Schindler, Rudolf K; Lübberstedt, Marc; Petzolt, Stephanie; Gerlach, Jörg C; Zeilinger, Katrin

    2010-12-01

    The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett-Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and L: -cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).

  17. Optimization of Pre-transplantation Conditions to Enhance the Efficacy of Mesenchymal Stem Cells

    PubMed Central

    Haque, Nazmul; Kasim, Noor Hayaty Abu; Rahman, Mohammad Tariqur

    2015-01-01

    Mesenchymal stem cells (MSCs) are considered a potential tool for cell based regenerative therapy due to their immunomodulatory property, differentiation potentials, trophic activity as well as large donor pool. Poor engraftment and short term survival of transplanted MSCs are recognized as major limitations which were linked to early cellular ageing, loss of chemokine markers during ex vivo expansion, and hyper-immunogenicity to xeno-contaminated MSCs. These problems can be minimized by ex vivo expansion of MSCs in hypoxic culture condition using well defined or xeno-free media i.e., media supplemented with growth factors, human serum or platelet lysate. In addition to ex vivo expansion in hypoxic culture condition using well defined media, this review article describes the potentials of transient adaptation of expanded MSCs in autologous serum supplemented medium prior to transplantation for long term regenerative benefits. Such transient adaptation in autologous serum supplemented medium may help to increase chemokine receptor expression and tissue specific differentiation of ex vivo expanded MSCs, thus would provide long term regenerative benefits. PMID:25678851

  18. Saccharomyces Cerevisiae Cho2 Mutants Are Deficient in Phospholipid Methylation and Cross-Pathway Regulation of Inositol Synthesis

    PubMed Central

    Summers, E. F.; Letts, V. A.; McGraw, P.; Henry, S. A.

    1988-01-01

    Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME. PMID:3066687

  19. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life.

    PubMed

    Velazquez, Miguel A; Sheth, Bhavwanti; Smith, Stephanie J; Eckert, Judith J; Osmond, Clive; Fleming, Tom P

    2018-02-01

    Mouse maternal low protein diet exclusively during preimplantation development (Emb-LPD) is sufficient to programme altered growth and cardiovascular dysfunction in offspring. Here, we use an in vitro model comprising preimplantation culture in medium depleted in insulin and branched-chain amino acids (BCAA), two proposed embryo programming inductive factors from Emb-LPD studies, to examine the consequences for blastocyst organisation and, after embryo transfer (ET), postnatal disease origin. Two-cell embryos were cultured to blastocyst stage in defined KSOM medium supplemented with four combinations of insulin and BCAA concentrations. Control medium contained serum insulin and uterine luminal fluid amino acid concentrations (including BCAA) found in control mothers from the maternal diet model (N-insulin+N-bcaa). Experimental medium (three groups) contained 50% reduction in insulin and/or BCAA (L-insulin+N-bcaa, N-insulin+L-bcaa, and L-insulin+N-bcaa). Lineage-specific cell numbers of resultant blastocysts were not affected by treatment. Following ET, a combined depletion of insulin and BCAA during embryo culture induced a non sex-specific increase in birth weight and weight gain during early postnatal life. Furthermore, male offspring displayed relative hypertension and female offspring reduced heart/body weight, both characteristics of Emb-LPD offspring. Combined depletion of metabolites also resulted in a strong positive correlation between body weight and glucose metabolism that was absent in the control group. Our results support the notion that composition of preimplantation culture medium can programme development and associate with disease origin affecting postnatal growth and cardiovascular phenotypes and implicate two important nutritional mediators in the inductive mechanism. Our data also have implications for human assisted reproductive treatment (ART) practice. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    PubMed

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Malt-yeast extract-sucrose agar, a suitable medium for enumeration and isolation of fungi from silage.

    PubMed Central

    Skaar, I; Stenwig, H

    1996-01-01

    A general medium named malt-yeast extract-sucrose agar (MYSA) containing oxgall was designed. The medium was intended for the enumeration and isolation of molds and yeasts in routine examinations of animal feed stuffs. In this study MYSA was tested as a general medium for mycological examination of silage. The medium was compared with dichloran-rose bengal medium (DRBC) in an examination of more than 500 specimens of big bale grass silage. Selected characteristics of known fungal species commonly isolated from feeds were examined after growth on MYSA and DRBC and on malt extract agar, used as a noninhibitory control medium. MYSA suppressed bacterial growth, without affecting the growth of fungi common in feeds. The fungi growing on MYSA were easily recognized, and the medium seemed to slow radial growth of fungal colonies, which permitted, easy counting. The number of species found was higher on MYSA than on DRBC. When we compared MYSA with DRBC for mycological examination of grass silage samples, MYSA was found to be the medium of choice. PMID:8837416

  2. Induction and cryopreservation of embryogenic cultures from nucelli and immature cotyledon cuts of mango (Mangifera indica L. var Zihua).

    PubMed

    Wu, Yong-Jie; Huang, Xue-Lin; Chen, Qi-Zhu; Li, Xiao-Ju; Engelmann, Florent

    2007-02-01

    In this paper, we described the direct somatic embryogenesis from both immature cotyledon cuts and nucelli in the same mango cultivar (Mangifera indica L. var Zihua), studied the effect of growth conditions of embryogenic cultures (EMs) on cryopreservation and compared the cryopreservation response of EMs induced from these two different explants. Histological studies demonstrated that EMs derived from nucelli could be induced directly from epidermal cells of both sides of nucelli, whereas EMs derived from cotyledon cuts were induced only from epidermal cells of the adaxial side of the cotyledons. EMs from either nucelli or cotyledon cuts could be maintained in liquid medium or on solid medium and cryopreserved using a vitrification procedure. Success of cryopreservation of EMs depended on the dehydration treatment and the defined growth conditions during culture but not on their origins. When EMs were sampled during their exponential growth phase in liquid medium and dehydrated with PVS(3) solution for 5 min, survival of the EMs induced from cotyledon cuts and nucelli reached 77.7 and 80%, respectively, after cryopreservation in liquid nitrogen for 24 h. Furthermore, when dehydrated with PVS(3) solution for 30 min, all EMs induced from cotyledon cuts and 96.7% of EMs induced from nucelli could survive after cryopreservation. Cryopreservation did not affect the plant regeneration potential of EMs through somatic embryogenesis. The protocols of somatic embryogenesis and cryopreservation of mango EMs established in this study may offer potential ways to improve mango germplasm conservation and genetic improvement.

  3. Iron acquisition by Haemophilus influenzae.

    PubMed Central

    Pidcock, K A; Wooten, J A; Daley, B A; Stull, T L

    1988-01-01

    The mechanisms for acquisition of iron by Haemophilus influenzae and their role in pathogenesis are not known. Heme and nonheme sources of iron were evaluated for their effect on growth of type b and nontypable strains of H. influenzae in an iron-restricted, defined medium. All 13 strains acquired iron from heme, hemoglobin, hemoglobin-haptoglobin, and heme-hemopexin. Among nonheme sources of protein-bound iron, growth of H. influenzae was enhanced by partially saturated human transferrin but not by lactoferrin or ferritin. Purified ferrienterochelin and ferridesferrioxamine failed to provide iron to H. influenzae, and the supernatants of H. influenzae E1a grown in iron-restricted medium failed to enhance iron-restricted growth of siderophore-dependent strains of Escherichia coli, Salmonella typhimurium, and Arthrobacter terregens. Marked alterations in the profile of outer membrane proteins of H. influenzae were observed when the level of free iron was varied between 1 microM and 1 mM. Catechols were not detected in the supernatants of strain E1a; however, iron-related hydroxamate production was detected by two biochemical assays. We conclude that the sources of iron for H. influenzae are diverse. The significance of hydroxamate production and iron-related outer membrane proteins to H. influenzae iron acquisition is not yet clear. Images PMID:2964410

  4. Modified PEHPS medium as an alternative for the in vitro culture of Giardia lamblia.

    PubMed

    Vargas-Villarreal, Javier; Mata-Cárdenas, Benito D; Hernández-García, Magda E; Garza-González, Jesús N; De La Garza-Salinas, Laura H; González-Salazar, Francisco

    2014-01-01

    Commercial culture media present interlot variations in biological activity. We have previously designed a homemade and economic culture medium, PEHPS medium, for the axenic cultivation of Entamoeba histolytica and Trichomonas vaginalis. Trophozoites of amoebae and trichomonads grow well in this medium. Furthermore, the medium is stable for several months when stored frozen or refrigerated. The objective of this work was to modify PEHPS medium to support the in vitro growth of Giardia lamblia. Inocula of 5 × 10(3) trophozoites/mL of G. lamblia were incubated at 36.5°C in modified PEHPS or TYI-S-33 medium. Then, the growths of the three Giardia strains in both media were compared. The logarithmic growth phase lasted 72 h; the mean yield of the strains ranged from 10.06 to 11.43 × 10(5) Giardia trophozoites/mL, and the range of duplication time in the three strains was from 5.67 to 6.06 in modified PEHPS medium. These growth characteristics were not significantly different from those obtained with TYI-S-33 medium. We conclude that modified PEHPS medium might be used for the axenic cultivation of G. lamblia.

  5. Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction

    DOE PAGES

    Edmundson, S.; Huesemann, M.; Kruk, R.; ...

    2017-07-25

    Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less

  6. Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmundson, S.; Huesemann, M.; Kruk, R.

    Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less

  7. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    PubMed

    Henríquez, Mirtha; González, Ernesto; Marshall, Sergio H; Henríquez, Vitalia; Gómez, Fernando A; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1) were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  8. [Induction of hairy roots of Panax ginseng and studies on suitable culture condition of ginseng hairy roots].

    PubMed

    Zhao, Shou-Jing; Li, Chang-Yu; Qian, Yan-Chun; Luo, Xiao-Pei; Zhang, Xin; Wang, Xue-Song; Kang, Bo-Yu

    2004-03-01

    Ginseng is a valuable medicinal plant with ginsenosides as its mian effective components. Because ginseng is a perennial plant and has a very strict demand for soil conditions, the way of cultivating ginseng by cutting woods is still used in China at present and thus forest resources has been extremely destroyed. Increasing attention has been paid to the hairy roots induced by the infection of Agrobacterium rhizogenes in the production of plant secondary metabolic products for the hairy roots are characterized by rapid growth and stable hereditary and biochemical traits. That has opened a new way for the industrial production of ginseosides. However, there is little report for such studies from China. In this paper, hairy roots of ginseng were induced from the root explants of two-year-old ginseng by Agrobacterium rhizogenes A4 with directly inoculating. The transformed hairy roots could grow rapidly on MS medium and 1/2 MS medium without hormones. The cultured clones of the hairy roots were established on a solid 1/2 MS medium. After 4 - 5 subcultures the hairy roots still maintained a vigorous growth. A pair of primers were designed and synthesized according to the analytical results of RiA4TL-DNA sequence by Slightom et al . 0.8kb rolC was obtained by PCR using the genome DNA of hairy root of ginseng. Transformation was confirmed by PCR amplification of rolC genes from the hairy roots of P. ginseng. Growth rate of hairy roots on liquid medium increased by 2 times then that of the solid medium. The growth of the hairy roots can be divided into three stages: high speed in the first two weeks, middle speed in the 3 - 4 weeks and low speed hereafter. Changing the culture solution at 2 weeks regular intervals is conductive to maintaining the rapid growth of the hairy roots. By means of determination for specific growth rate and ginsenosides content, the high-yield hairy root clone R9923 was selected. The content of monomer gisenoside of Rg1, Re, Rf, Rbl, Rc, Rb2 and Rd in hairy root clone R9923 was determined by the HPLC. The total ginsenosides content in the hairy toot clone R9923 came up to 15.2 mg/g. The suitable culture conditions for ginseng hairy roots growing were 1/2 MS liquid medium (30 g/L glucose), in a shaker at 110 r/min, changing the culture solution at 2 weeks and subculture time 4 weeks. In the liquid fermented culture of 2L medium, the yield of the hairy roots could amount to 270.10 g in 4 weeks. The industrial production of ginsenosides has been preliminarily realized. Effect factors on biomass and ginsenosides content such as culture volume, inoculation, in steps cultural technology at the scale-up process of hairy roots culture were also explorated. Our results have laid a foundation for defining optimum culture manner for large-scale cultivation and large-scale production of ginsenosides.

  9. Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media.

    PubMed

    Miki, Hideo; Takagi, Mutsumi

    2015-08-01

    The design of serum-free media for suspension culture of genetically engineered Chinese hamster ovary (CHO) cells using general commercial media as a basis was investigated. Subcultivation using a commercial serum-free medium containing insulin-like growth factor (IGF)-1 with or without FCS necessitated additives other than IGF-1 to compensate for the lack of FCS and improve cell growth. Suspension culture with media containing several combinations of growth factors suggested the effectiveness of addition of both IGF-1 and the lipid signaling molecule lysophosphatidic acid (LPA) for promoting cell growth. Subcultivation of CHO cells in suspension culture using the commercial serum-free medium EX-CELL™302, which contained an IGF-1 analog, supplemented with LPA resulted in gradually increasing specific growth rate comparable to the serum-containing medium and in almost the same high antibody production regardless of the number of generations. The culture with EX-CELL™302 supplemented with LPA in a jar fermentor with pH control at 6.9 showed an apparently higher cell growth rate than the cultures without pH control and with pH control at 6.8. The cell growth in the medium supplemented with aurintricarboxylic acid (ATA), which was much cheaper than IGF-1, in combination with LPA was synergistically promoted similarly to that in the medium supplemented with IGF-1 and LPA. In conclusion, the serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture. Moreover, the possibility of cost reduction by the substitution of IGF-1 with ATA was also shown.

  10. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells.

    PubMed

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Juritz, Stephanie; Birk, Richard; Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Schultz, Johannes; Hörmann, Karl; Kinscherf, Ralf; Faber, Anne

    2014-01-01

    The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM-MSCs. The strongest DES expression was observed using the 30% conditioned cell culture medium. The detection of myogenic markers using different cell culture media as stimuli was only achieved in the AT-MSCs, but not in the BM-MSCs. The strongest myogenic differentiation, in terms of the markers examined, was induced by the 30% conditioned cell culture medium.

  11. Lime-amended growing medium causes seedling growth distortions

    Treesearch

    R. Kasten Dumroese; Gale Thompson; David L. Wenny

    1990-01-01

    Although a commercial growing medium with incorporated agricultural lime had been successfully used for years, it caused growth distortion of coniferous and deciduous seedlings during 1988. Seedlings grown in the amended medium were stunted and chlorotic, often with disfigured needles and multiple tops. Seedlings grown in the same medium without incorporated lime grew...

  12. Human Platelet Lysate as a Replacement for Fetal Bovine Serum in Limbal Stem Cell Therapy.

    PubMed

    Suri, Kunal; Gong, Hwee K; Yuan, Ching; Kaufman, Stephen C

    2016-10-01

    To evaluate the use of human platelet lysate (HPL) as an alternative supplement for limbal explant culture. Culture media were prepared using either 10% pooled HPL (PHPL), single donor HPL, or fetal bovine serum (FBS). Limbal tissues, obtained from the Minnesota Lions Eye Bank, were cultured in each medium on plastic plates or on denuded amniotic membrane (AM). Immunofluorescence staining was performed for ABCG2, tumor protein p63α, and cytokeratin 3 (K3). Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to evaluate the expression of ABCG2 and p63. Limbal explants grown in each medium were labeled with bromodeoxyuridine (BrdU) to assess the proliferative capacity in each medium. Concentration of growth factors including epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and platelet derived growth factor (PDGF) in HPL and PHPL was compared to that in human serum (HS). Immunofluorescence staining on AM showed prominent expression of ABCG2, p63α but sparse expression of K3 in HPL and PHPL supplemented medium. Real time-PCR showed 1.7 fold higher expression of ABCG2 in PHPL supplemented medium (p = 0.03), and similar expression of p63 in HPL and PHPL supplemented medium compared to FBS medium. The proliferation assay showed that LSCs retained their proliferative potential in HPL supplemented medium. Higher concentration of growth factors were found in HPL, compared to HS. Human platelet lysate has higher concentration of grown factors and is effective in maintaining growth and stem cell phenotype of corneal limbal explant cultures.

  13. Role of fimV in type II secretion system-dependent protein secretion of Pseudomonas aeruginosa on solid medium.

    PubMed

    Michel, Gérard P F; Aguzzi, Anthony; Ball, Geneviève; Soscia, Chantal; Bleves, Sophie; Voulhoux, Romé

    2011-07-01

    Although classical type II secretion systems (T2SSs) are widely present in Gram-negative bacteria, atypical T2SSs can be found in some species. In Pseudomonas aeruginosa, in addition to the classical T2SS Xcp, it was reported that two genes, xphA and xqhA, located outside the xcp locus were organized in an operon (PaQa) which encodes the orphan PaQa subunit. This subunit is able to associate with other components of the classical Xcp machinery to form a functional hybrid T2SS. In the present study, using a transcriptional lacZ fusion, we found that the PaQa operon was more efficiently expressed (i) on solid LB agar than in liquid LB medium, (ii) at 25 °C than at 37 °C and (iii) at an early stage of growth. These results suggested an adaptation of the hybrid system to particular environmental conditions. Transposon mutagenesis led to the finding that vfr and fimV genes are required for optimal expression of the orphan PaQa operon in the defined growth conditions used. Using an original culturing device designed to monitor secretion on solid medium, the ring-plate system, we found that T2SS-dependent secretion of exoproteins, namely the elastase LasB, was affected in a fimV deletion mutant. Our findings led to the discovery of an interplay between FimV and the global regulator Vfr triggering the modulation of the level of Vfr and consequently the modulation of T2SS-dependent secretion on solid medium.

  14. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  15. [The Influence of New Medium with RGD on Cell Growth,Cell Fusion and Expression of Exogenous Gene].

    PubMed

    Wang, Pei-Pei; Wei, Da-Peng; Zhu, Tong-Bo

    2018-03-01

    To investigate the influence of a new culture medium added with RGD on cell growth,cell fusion and expression of exogenous gene. A new medium was prepared by adding different concentrations of RGD to ordinary culture medium. The optimum concentration of RGD was determined by observation of the growth of human pancreatic epithelial cell line HPDE6-C7. After determining the optimum concentration of RGD,different concentrations of cells HPDE6-C7 (5×10 4 ,10 5 ,5×10 5 mL -1 ) were inoculated in the two mediums. The morphology,adherence,growth and density of the cells were observed by inverted microscope; The ratio of clone formation and the positive rate of cloning were compared between the two cultures after fusion; The fluorescence intensity after the transfection of plasmid with green fluorescent protein ( GFP ) and the protein expression after transfection of plasmid with KRAS were observed to campare the expression of exogenous genes between the new medium with ordinary medium. Firstly,the optimal concentration of RGD was 10 ng/mL. Compared with the normal medium,the cultured cells with RGD had better morphology,adhesion and faster proliferation. In addition,both of the number and positive rate of clones formed in the new medium were significantly higher than that in the ordinary medium ( P <0.05);The fluorescence intensity after transfection of exogenous gene GFP in the new medium was significantly higher than that in normal medium ( P <0.05); Expression level of exogenous gene KRAS of the new medium was also significantly higher than that in normal medium. The new culture medium has highlighted advantages in cell growth,cell fusion and expression of exogenous genes. RGD peptide has widely prospect and potential value in the cell culture. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  16. Nutritional Requirements for Synthesis of Heat-Labile Enterotoxin by Enterotoxigenic Strains of Escherichia coli

    PubMed Central

    Gilligan, Peter H.; Robertson, Donald C.

    1979-01-01

    Optimal growth conditions have been established for production of heat-labile enterotoxin (LT) by both porcine and human strains of enterotoxigenic (ENT+) Escherichia coli. There were no unusual growth factor requirements, and some strains produced fairly high levels of LT in a basal salts medium containing 0.5% glucose if the pH was carefully controlled. Several amino acids markedly stimulated LT synthesis when added to the basal salts-glucose medium. Methionine and lysine were the most stimulatory for both human and porcine strains. Either aspartic acid or glutamic acid further enhanced LT synthesis in the presence of methionine and lysine, with aspartic acid being more stimulatory for porcine strains and glutamic acid more stimulatory for human strains. There were no apparent vitamin requirements and no unusual cations needed for toxin synthesis except that Fe3+ was slightly stimulatory for porcine strains. The stimulation by Fe3+ was observed only in the presence of the three amino acids, suggesting that the effect was indirect rather than on toxin synthesis. The carbon source also influenced the yield of LT. Glucose supported maximal synthesis, but other carbon sources which exhibit a high degree of catabolite repression also supported high levels of synthesis. Little or no LT was released below pH 7.0; therefore, because the pH drops during growth from 7.5 to 6.8, even in highly buffered media, it was necessary to adjust the pH to 8.0 to effect complete release of cell-associated toxin. The defined medium containing three amino acids reduced the amount of UV-absorbing material in culture supernatants about fivefold and increased LT activity for various strains from two- to fivefold over a complex Casamino Acids-yeast extract medium. Conditions found to be optimal for synthesis of LT were inhibitory for the heat-stable enterotoxin. PMID:33900

  17. Nutrient agar with sodium chloride supplementation for presumptive detection of Moraxella catarrhalis in clinical specimens.

    PubMed

    Nishiyama, Hiroyuki; Saito, Ryoichi; Chida, Toshio; Sano, Kazumitsu; Tsuchiya, Tatsuyuki; Okamura, Noboru

    2012-04-01

    We previously reported that Nissui nutrient agar (N medium) promoted the growth of Moraxella catarrhalis but not commensal Neisseria spp. In the present study, we examined which constituent of N medium was responsible for the selective growth of M. catarrhalis using 209 M. catarrhalis and 100 commensal Neisseria spp. clinical strains. We found that peptone, but not meat extract or agar of N medium, had growth-promoting or growth-inhibiting ability with respect to M. catarrhalis and commensal Neisseria spp. Thus, we investigated the amino acid content of N peptone and found it had higher concentrations of amino acids than other commercial peptone products. On varying the sodium chloride concentration of reconstituted N medium, we noted that the concentration was an important factor in bacterial growth differences. Varying the sodium chloride concentration of other commercial nutrient agars achieved similar results to those for N medium. This is, to our knowledge, the first study observing that sodium chloride concentration is responsible for difference in growth between the two organisms. We also successfully isolated colonies of M. catarrhalis from respiratory specimens on N medium, whereas the growth of commensal Neisseria spp. was inhibited, and by adding bovine hematin and β-NAD we were able to isolate Haemophilus influenzae colonies as efficiently as with a chocolate agar. In conclusion, nutrient agar can be used as a medium for the preferential isolation of M. catarrhalis from upper respiratory tract specimens.

  18. A high-throughput media design approach for high performance mammalian fed-batch cultures

    PubMed Central

    Rouiller, Yolande; Périlleux, Arnaud; Collet, Natacha; Jordan, Martin; Stettler, Matthieu; Broly, Hervé

    2013-01-01

    An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame. PMID:23563583

  19. Genetic Characterization and Physiological Role of Endopeptidase O from Lactobacillus helveticus CNRZ32

    PubMed Central

    Chen, Yo-Shen; Steele, James L.

    1998-01-01

    A previously identified insert expressing an endopeptidase from a Lactobacillus helveticus CNRZ32 genomic library was characterized. Nucleotide sequence analysis revealed an open reading frame of 1,941 bp encoding a putative protein of 71.2 kDa which contained a zinc-protease motif. Protein homology searches revealed that this enzyme has 40% similarity with endopeptidase O (PepO) from Lactococcus lactis P8-2-47. Northern hybridization revealed that pepO is monocistronic and is expressed throughout the growth phase. CNRZ32 derivatives lacking PepO activity were constructed via gene replacement. Enzyme assays revealed that the PepO mutant had significantly reduced endopeptidase activity when compared to CNRZ32 with two of the three substrates examined. Growth studies indicated that PepO has no detectable effect on growth rate or acid production by Lactobacillus helveticus CNRZ32 in amino acid defined or skim milk medium. PMID:9726890

  20. Physiologic Determinants of Radiation Resistance in Deinococcus radiodurans

    PubMed Central

    Venkateswaran, Amudhan; McFarlan, Sara C.; Ghosal, Debabrota; Minton, Kenneth W.; Vasilenko, Alexander; Makarova, Kira; Wackett, Lawrence P.; Daly, Michael J.

    2000-01-01

    Immense volumes of radioactive wastes, which were generated during nuclear weapons production, were disposed of directly in the ground during the Cold War, a period when national security priorities often surmounted concerns over the environment. The bacterium Deinococcus radiodurans is the most radiation-resistant organism known and is currently being engineered for remediation of the toxic metal and organic components of these environmental wastes. Understanding the biotic potential of D. radiodurans and its global physiological integrity in nutritionally restricted radioactive environments is important in development of this organism for in situ bioremediation. We have previously shown that D. radiodurans can grow on rich medium in the presence of continuous radiation (6,000 rads/h) without lethality. In this study we developed a chemically defined minimal medium that can be used to analyze growth of this organism in the presence and in the absence of continuous radiation; whereas cell growth was not affected in the absence of radiation, cells did not grow and were killed in the presence of continuous radiation. Under nutrient-limiting conditions, DNA repair was found to be limited by the metabolic capabilities of D. radiodurans and not by any nutritionally induced defect in genetic repair. The results of our growth studies and analysis of the complete D. radiodurans genomic sequence support the hypothesis that there are several defects in D. radiodurans global metabolic regulation that limit carbon, nitrogen, and DNA metabolism. We identified key nutritional constituents that restore growth of D. radiodurans in nutritionally limiting radioactive environments. PMID:10831446

  1. The Physiological and Molecular Characterization of a Small Colony Variant of Escherichia coli and Its Phenotypic Rescue

    PubMed Central

    Hirshfield, Irvin

    2016-01-01

    Small colony variants (SCVs) can be defined as a naturally occurring sub-population of bacteria characterized by their reduced colony size and distinct biochemical properties. SCVs of Staphylococcus aureus have been studied extensively over the past two decades due to their role in recurrent human infections. However, little work has been done on SCVs of Escherichia coli, and this work has focused on the physiology and morphology that define these colonies of E. coli, such as small size and slow growth. E. coli strain JW0623, has a null lipA mutation in the lipoic acid synthase gene (lipA), and is a lipoic acid auxotroph. When the mutant was grown in LB medium to log phase, it showed remarkable resistance to acid (pH 3), hydrogen peroxide, heat and osmotic stress compared to its parent BW25113. Using RT-PCR and real time RT-PCR, the expression of certain genes was compared in the two strains in an attempt to create a molecular profile of Escherichia coli SCVs. These include genes involved in glycolysis, TCA cycle, electron transport, iron acquisition, biofilm formation and cyclopropane fatty acid synthesis. It was also demonstrated that the addition of 5 μg/ml of lipoic acid to LB medium allows for the phenotypic rescue of the mutant; reversing its slow growth, its resistance characteristics, and elevated gene expression. These results indicate that the mutation in lipA leads to an E. coli SCV that resembles an electron transport defective SCV of S. aureus These strains are typically auxotrophs, and are phenotypically rescued by adding the missing metabolite to rich medium. There are global shifts in gene expression which are reversible and depend on whether the auxotrophic molecule is absent or present. Looking at the E. coli SCV from an evolutionary point of view, it becomes evident that its path to survival is to express genes that confer stress resistance. PMID:27310825

  2. Insulin and heparin-binding epidermal growth factor-like growth factor synergistically promote astrocyte survival and proliferation in serum-free medium.

    PubMed

    Jia, Mei; Shi, Zhongfang; Yan, Xu; Xu, Lixin; Dong, Liping; Li, Jiaxin; Wang, Yujiao; Yang, Shaohua; Yuan, Fang

    2018-06-08

    In vitro systems allowing maintenance and experimentation on primary astrocyte cultures have been used for decades. Astrocyte cultures are most maintained in serum-containing medium which has been found to alter the morphology and gene profiles of astrocytes. Here, we reported a new serum-free medium for astrocyte culture, which consisted of DMEM and NB media supplemented with insulin and heparin-binding epidermal growth factor-like growth factor (HB-EGF) (SF-I-H medium). Meanwhile FBS-containing (FBS) medium composed of DMEM medium containing 10% FBS were used for comparison study. Cerebral cortex was harvested from postnatal day 1 Wistar rats and brain cells were isolated and seeded to poly-L-lysine coated culture dishes after 15 min differential velocity adherence. Compared with FBS medium, astrocytes in SF-I-H medium are smaller and exhibited process bearing morphologies. MTT assays showed that cell density and proliferation rate were higher in SF-I-H medium than in FBS medium all the time, and flow cytometry analysis revealed that SF-I-H medium promoted cell mitosis in a manner comparable to FBS medium. Consistently, western blot analysis further revealed that insulin and HB-EGF synergistically activated the PI3K-AKT and MAPK-ERK1/2 signaling cascades as FBS. Astrocytes cultured in SF-I-H medium grow faster than FBS medium. Taken together, our results indicated that SF-I-H medium, in which cell morphology was similar with astrocytes in brain, was more effective for astrocyte survival and proliferation than FBS medium, providing a new cell model to study astrocyte functions without the interference of serum. Copyright © 2018. Published by Elsevier B.V.

  3. Fully Dedifferentiated Chondrocytes Expanded in Specific Mesenchymal Stem Cell Growth Medium with FGF2 Obtains Mesenchymal Stem Cell Phenotype In Vitro but Retains Chondrocyte Phenotype In Vivo

    PubMed Central

    Lee, Jungsun; Lee, Jin-Yeon; Chae, Byung-Chul; Jang, Jeongho

    2017-01-01

    Given recent progress in regenerative medicine, we need a means to expand chondrocytes in quantity without losing their regenerative capability. Although many reports have shown that growth factor supplementation can have beneficial effects, the use of growth factor–supplemented basal media has widespread effect on the characteristics of chondrocytes. Chondrocytes were in vitro cultured in the 2 most widely used chondrocyte growth media, conventional chondrocyte culture medium and mesenchymal stem cell (MSC) culture medium, both with and without fibroblast growth factor-2 (FGF2) supplementation. Their expansion rates, expressions of extracellular matrix–related factors, senescence, and differentiation potentials were examined in vitro and in vivo. Our results revealed that chondrocytes quickly dedifferentiated during expansion in all tested media, as assessed by the loss of type II collagen expression. The 2 basal media (chondrocyte culture medium vs. MSC culture medium) were associated with distinct differences in cell senescence. Consistent with the literature, FGF2 was associated with accelerated dedifferentiation during expansion culture and superior redifferentiation upon induction. However, chondrocytes expanded in FGF2-containing conventional chondrocyte culture medium showed MSC-like features, as indicated by their ability to direct ectopic bone formation and cartilage formation. In contrast, chondrocytes cultured in FGF2-supplemented MSC culture medium showed potent chondrogenesis and almost no bone formation. The present findings show that the chosen basal medium can exert profound effects on the characteristics and activity of in vitro–expanded chondrocytes and indicate that right growth factor/medium combination can help chondrocytes retain a high-level chondrogenic potential without undergoing hypertrophic transition. PMID:29251111

  4. Fatty acid and sterol composition of three phytomonas species.

    PubMed

    Nakamura, C V; Waldow, L; Pelegrinello, S R; Ueda-Nakamura, T; Filho, B A; Filho, B P

    1999-01-01

    Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.

  5. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  6. Efficiency and kinetics of the in vitro fertilization process in bovine oocytes with different meiotic competence.

    PubMed

    Horakova, J; Hanzalova, K; Reckova, Z; Hulinska, P; Machatkova, M

    2007-08-01

    The aim of the study was to investigate the efficiency and kinetics of fertilization in oocytes with different meiotic competence, as defined by the phase of the follicular wave and follicle size. Oocytes were recovered from cows with synchronized estrus cycles, slaughtered in either the growth (day 3) or the dominant (day 7) phase, separately from large, medium and small follicles. The oocytes were matured and fertilized by a standard protocol. Twenty-four hours after fertilization, the oocytes were denuded from cumulus cells, fixed and stained with bisbensimid Hoechst-PBS. Fertilization was more efficient and the first cleavage was accelerated in growth phase-derived oocytes, as shown by significantly higher (p < or = 0.01) proportions of both normally fertilized and cleaved oocytes (68.8 and 25.1%), in comparison with dominant phase-derived oocytes (44.2 and 10.3%). In the growth-phase derived oocytes, proportions of normally fertilized and cleaved oocytes were significantly higher (p < or = 0.01) in oocytes from large (100.0 and 36.4%) and medium (83.3 and 36.5%) follicles than in those from small (54.8 and 14.6%) follicles. The dominant phase-derived oocytes showed higher proportions of normally fertilized and cleaved oocytes in the populations recovered from small (51.5 and 10.0%) and medium (43.1 and 12.0%) follicles than in those from large (25.0 and 0%) follicles; however, the differences were not significant. It can be concluded that: (i) efficiency and kinetics of fertilization differ in relation to oocyte's meiotic competence; (ii) improved development of embryos from oocytes with greater meiotic competence is associated with a more effective fertilization process.

  7. Density-dependent regulation of growth of BSC-1 cells in cell culture: Control of growth by low molecular weight nutrients

    PubMed Central

    Holley, Robert W.; Armour, Rosemary; Baldwin, Julia H.

    1978-01-01

    BSC-1 cells, epithelial cells of African green monkey kidney origin, show pronounced density-dependent regulation of growth in cell culture. Growth of the cells is rapid to a density of approximately 1.5 × 105 cells/per cm2 in Dulbecco-modified Eagle's medium supplemented with 10% calf serum. Above this “saturation density,” growth is much slower. It has been found that the glucose concentration in the culture medium is important in determining the “saturation density.” If the glucose concentration is increased 4-fold, the “saturation density” increases approximately 50%. Reduction of the “saturation density” of BSC-1 cells is also possible by decreasing the concentrations of low molecular weight nutrients in the culture medium. In medium supplemented with 0.1% calf serum, decreasing the concentrations of all of the organic constituents of the medium, from the high levels present in Dulbecco-modified Eagle's medium to concentrations near physiological levels, decreases the “saturation density” by approximately half. The decreased “saturation density” is not the result of lowering the concentration of any single nutrient but rather results from reduction of the concentrations of several nutrients. When the growth of BSC-1 cells is limited by low concentrations of all of the nutrients, some stimulation of growth results from increasing, separately, the concentrations of individual groups of nutrients, but the best growth stimulation is obtained by increasing the concentrations of all of the nutrients. The “wound healing” phenomenon, one manifestation of density-dependent regulation of growth in cell culture, is abolished by lowering the concentration of glutamine in the medium. Density-dependent regulation of growth of BSC-1 cells in cell culture thus appears to be a complex phenomenon that involves an interaction of nutrient concentrations with other regulatory factors. PMID:272650

  8. Screening of Different Media and Substrates for Cultural Variability and Mass Culture of Arthrobotrys dactyloides Drechsler

    PubMed Central

    Kumar, D.; Jaiswal, R. K.

    2005-01-01

    Variability in growth and sporulation of five isolates of Arthrobotrys dactyloides was studied on five agar, 6 bran and 5 grain media. Potato dextrose agar (PDA) supported maximum growth of isolate A, C and E, while growth of isolate B and D was significantly lower on this medium. On Czapek's agar and yeast glucose agar media the differentiation in the isolates in relation to growth was poor than PDA. The other two media showed much poorer differentiation. On Czapek's agar medium, sporulation was recorded in isolate B only, whereas other isolates showed rare sporulation. Among the bran media, pea bran agar medium supported maximum growth of all the isolates except isolate B. Gram and rice bran agar media were next best. However, the growth of isolate B on the gram bran agar medium was more or less equal as other isolates. On pigeon pea bran agar medium, isolate E failed to grow while other isolates recorded poor growth. On lentil bran agar medium, only isolate B and D recorded little growth, whereas other isolates failed to grow. All the isolates recorded good sporulation on bran agar media except pigeon pea and lentil bran agar media. The grain agar media supported moderate to very good growth of all the isolates. In general isolate B remained slow growing on these media except gram grain and sorghum grain agar media on which growth of this isolate was comparable to other isolates. Sporulation in general, was good on all the grain agar media. Among different substrates screened, barley grain and pea bran were found superior to others for mass culture of isolate A of A. dactyloides. PMID:24049504

  9. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells.

    PubMed

    O'Hara, M B; Hageman, J H

    1990-08-01

    Bacterial cells degrade intracellular proteins at elevated rates during starvation and can selectively degrade proteins by energy-dependent processes. Sporulating bacteria can degrade protein with apparent first-order rate constants of over 0.20 h-1. We have shown, with an optimized [14C]leucine-labeling and chasing procedure, in a chemically defined sporulation medium, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (less than or equal to 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, we found that chloramphenicol (100 micrograms/ml) strongly inhibited proteolysis (68%) even when added 6 h into the sporulation process. Restricting the calcium ion concentration (less than 2 microM) in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation (98%), and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca2+ by cells, which suggested that the Ca2+ and metabolic energy requirements of proteolysis were independent. Restricting the Ca2+ concentration in the medium reduced by threefold the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. Finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca2(+)-dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for periods of 8 h.

  10. Combinatorial stresses kill pathogenic Candida species

    PubMed Central

    Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A. R.; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; De Moura, Alessandro P. S.; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J. P.

    2012-01-01

    Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts. PMID:22463109

  11. Systematic optimization of human pluripotent stem cells media using Design of Experiments

    NASA Astrophysics Data System (ADS)

    Marinho, Paulo A.; Chailangkarn, Thanathom; Muotri, Alysson R.

    2015-05-01

    Human pluripotent stem cells (hPSC) are used to study the early stages of human development in vitro and, increasingly due to somatic cell reprogramming, cellular and molecular mechanisms of disease. Cell culture medium is a critical factor for hPSC to maintain pluripotency and self-renewal. Numerous defined culture media have been empirically developed but never systematically optimized for culturing hPSC. We applied design of experiments (DOE), a powerful statistical tool, to improve the medium formulation for hPSC. Using pluripotency and cell growth as read-outs, we determined the optimal concentration of both basic fibroblast growth factor (bFGF) and neuregulin-1 beta 1 (NRG1β1). The resulting formulation, named iDEAL, improved the maintenance and passage of hPSC in both normal and stressful conditions, and affected trimethylated histone 3 lysine 27 (H3K27me3) epigenetic status after genetic reprogramming. It also enhances efficient hPSC plating as single cells. Altogether, iDEAL potentially allows scalable and controllable hPSC culture routine in translational research. Our DOE strategy could also be applied to hPSC differentiation protocols, which often require numerous and complex cell culture media.

  12. Laser activation of a nutrient medium and antibiotic solutions and its estimation by of bacteria growth dynamics

    NASA Astrophysics Data System (ADS)

    Malov, Alexander N.; Neupokoeva, Anna V.; Kokorina, Lubov A.; Simonova, Elena V.

    2016-11-01

    A laser photomodifacation of nutrient mediums and antibiotics results at the microbiological supervision of bacteria colonies growth are discussed. It is experimentally shown, that on the irradiated media there is a delay of bacterial colonies growth number. Influence of laser radiation on activity of an antibiotic also is experimentally studied. It is revealed, that laser photomodifacation increases antimicrobic activity of a preparation. The mechanism of biological solutions activation is connected with the phenomenon laser nanoclusterization. Parameters of bacteria growth bacteria growth dynamics allow to numerically estimate degree of laser activation of nutrient mediums and pharmaceutical preparations.

  13. Halotolerance and effect of salt on hydrophobicity in hydrocarbon-degrading bacteria.

    PubMed

    Longang, Adégilns; Buck, Chris; Kirkwood, Kathlyn M

    2016-01-01

    Hydrocarbon-contaminated environments often also experience co-contamination with elevated levels of salt. This paper investigates the occurrence of halotolerance among several hydrocarbon-degrading bacteria, as an initial assessment of the importance of salt contamination to bioremediation strategies. Halotolerance was common, but not ubiquitous, among the 12 hydrocarbon-degrading bacteria tested, with many strains growing at up to 75 or 100 g NaCl L(-1) in rich medium. Greater sensitivity to elevated salt concentrations was observed among aromatics degraders compared to saturates degraders, and in defined medium compared to rich medium. Observed effects of high salt concentrations included increased lag times and decreased maximum growth. Many strains exhibited flocculation at elevated salt concentrations, but this did not correlate to any patterns in cell surface hydrophobicity, measured using the Bacterial Adhesion to Hydrocarbon assay. The occurrence of halotolerance in hydrocarbon-degrading bacteria suggests the potential for native microorganisms to contribute to the bioremediation of oil and salt co-contaminated sites, and indicates the need for a better understanding of the relationship between halotolerance and hydrocarbon biodegradation capabilities.

  14. Effect of starch and amylase on the expression of amylase-binding protein A in Streptococcus gordonii

    PubMed Central

    Nikitkova, A.E.; Haase, E.M.; Scannapieco, F.A.

    2012-01-01

    SUMMARY Streptococcus gordonii is a common oral commensal bacterial species in tooth biofilm (dental plaque) and specifically binds to salivary amylase through the surface exposed amylase-binding protein A (AbpA). When S. gordonii cells are pretreated with amylase, amylase bound to AbpA facilitates growth with starch as a primary nutrition source. The goal of this study was to explore possible regulatory effects of starch, starch metabolites and amylase on the expression of S. gordonii AbpA. An amylase ligand-binding assay was used to assess the expression of AbpA in culture supernatants and on bacterial cells from S. gordonii grown in defined medium supplemented with 1% starch, 0.5 mg ml−1 amylase, with starch and amylase together, or with various linear malto-oligosaccharides. Transcription of abpA was determined by reverse transcription quantitative polymerase chain reaction. AbpA was not detectable in culture supernatants containing either starch alone or amylase alone. In contrast, the amount of AbpA was notably increased when starch and amylase were both present in the medium. The expression of abpA was significantly increased (P < 0.05) following 40 min of incubation in defined medium supplemented with starch and amylase. Similar results were obtained in the presence of maltose and other short-chain malto-oligosacchrides. These results suggest that the products of starch hydrolysis produced from the action of salivary α-amylase, particularly maltose and maltotriose, regulate AbpA expression in S. gordonii. PMID:22759313

  15. GROα regulates human embryonic stem cell self-renewal or adoption of a neuronal fate

    PubMed Central

    Krtolica, Ana; Larocque, Nick; Genbacev, Olga; Ilic, Dusko; Coppe, Jean-Philippe; Patil, Christopher K.; Zdravkovic, Tamara; McMaster, Michael; Campisi, Judith; Fisher, Susan J.

    2012-01-01

    Previously we reported that feeders formed from human placental fibroblasts (hPFs) support derivation and long-term self-renewal of human embryonic stem cells (hESCs) under serum-free conditions. Here, we show, using antibody array and ELISA platforms, that hPFs secrete ~6-fold higher amounts of the CXC-type chemokine, GROα, than IMR 90, a human lung fibroblast line, which does not support hESC growth. Furthermore, immunocytochemistry and immunoblot approaches revealed that hESCs express CXCR, a GROα receptor. We used this information to develop defined culture medium for feeder-free propagation of hESCs in an undifferentiated state. Cells passaged as small aggregates and maintained in the GROα-containing medium had a normal karyotype, expressed pluripotency markers, and exhibited apical–basal polarity, i.e., had the defining features of pluripotent hESCs. They also differentiated into the three primary (embryonic) germ layers and formed teratomas in immunocompromised mice. hESCs cultured as single cells in the GROα-containing medium also had a normal karyotype, but they downregulated markers of pluripotency, lost apical–basal polarity, and expressed markers that are indicative of the early stages of neuronal differentiation—βIII tubulin, vimentin, radial glial protein, and nestin. These data support our hypothesis that establishing and maintaining cell polarity is essential for the long-term propagation of hESCs in an undifferentiated state and that disruption of cell–cell contacts can trigger adoption of a neuronal fate. PMID:21396766

  16. An optimal serum-free defined condition for in vitro culture of kidney organoids.

    PubMed

    Nishikawa, Masaki; Kimura, Hiroshi; Yanagawa, Naomi; Hamon, Morgan; Hauser, Peter; Zhao, Lifu; Jo, Oak D; Yanagawa, Norimoto

    2018-07-02

    Kidney organoid is an emerging topic of importance for research in kidney development and regeneration. Conventional culture systems for kidney organoids reported thus far use culture media containing serum, which may compromise our understanding and the potential clinical applicability of the organoid system. In our present study, we tested two serum-free culture conditions and compared their suitability for the maintenance and growth of kidney organoids in culture. One of the serum-free culture conditions was the combination of keratinocytes serum free medium (KSFM) with knockout serum replacement (KSR) (KSFM + KSR), and the other was the combination of knockout DMEM/F12 (KD/F12) and KSR (KD/F12 + KSR). With cell aggregates derived from E12.5 mouse embryonic kidneys, we found that KD/F12 + KSR was superior to KSFM + KSR in promoting the growth of the aggregate with expansion of Six2 + nephron progenitor cells (NPC) and elaborated ureteric branching morphogenesis. With KD/F12 + KSR, we found that lower concentrations of KSR at 5-10% were superior to a higher concentration (20%) in promoting the growth of aggregates without affecting the expression levels of NPC marker genes. We also found that NPC in aggregates retained their differentiation potential to develop nephron tubules through mesenchyme-to-epithelial transition (MET), after being maintained in culture under these conditions for up to 7 days. In conclusion, we have identified a defined serum-free culture condition suitable for the maintenance and growth of kidney organoids that retain the differentiation potential to develop nephron structures. This defined serum-free culture condition may serve as a useful platform for further investigation of kidney organoids in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Cationic Surface Charge Combined with Either Vitronectin or Laminin Dictates the Evolution of Human Embryonic Stem Cells/Microcarrier Aggregates and Cell Growth in Agitated Cultures

    PubMed Central

    Lam, Alan Tin-Lun; Li, Jian; Chen, Allen Kuan-Liang; Reuveny, Shaul

    2014-01-01

    The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 μm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 μm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment. PMID:24641164

  18. Family Caregivers of Liver Transplant Recipients: Coping Strategies Associated With Different Levels of Post-traumatic Growth.

    PubMed

    Pérez-San-Gregorio, M Á; Martín-Rodríguez, A; Borda-Mas, M; Avargues-Navarro, M L; Pérez-Bernal, J; Gómez-Bravo, M Á

    2018-03-01

    Analyze the influence of 2 variables (post-traumatic growth and time since liver transplantation) on coping strategies used by the transplant recipient's family members. In all, 218 family members who were their main caregivers of liver transplant recipients were selected. They were evaluated using the Posttraumatic Growth Inventory and the Brief COPE. A 3 × 3 factorial analysis of variance was used to analyze the influence that post-traumatic growth level (low, medium, and high) and time since transplantation (≤3.5 years, >3.5 to ≤9 years, and >9 years) exerted on caregiver coping strategies. No interactive effects between the two factors in the study were found. The only significant main effect was the influence of the post-traumatic growth factor on the following variables: instrumental support (P = .007), emotional support (P = .005), self-distraction (P = .006), positive reframing (P = .000), acceptance (P = .013), and religion (P = <.001). According to the most relevant effect sizes, low post-traumatic growth compared with medium growth was associated with less use of self-distraction (P = .006, d = -0.52, medium effect size), positive reframing (P = .001, d = -0.62, medium effect size), and religion (P = .000, d = -0.66, medium effect size), and in comparison with high growth, it was associated with less use of positive reframing (P = .002, d = -0.56, medium effect size) and religion (P = .000, d = 0.87, large effect size). Regardless of the time elapsed since the stressful life event (liver transplantation), family members with low post-traumatic growth usually use fewer coping strategies involving a positive, transcendent vision to deal with transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The effect of growth medium on B. anthracis Sterne spore carbohydrate content.

    PubMed

    Colburn, Heather A; Wunschel, David S; Antolick, Kathryn C; Melville, Angela M; Valentine, Nancy B

    2011-06-01

    The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides. We have investigated the carbohydrate composition of B. anthracis Sterne spores produced using four different medium types formulated with different sources of medium components. The amount of rhamnose, 3-O-methyl rhamnose and galactosamine was found to vary significantly between spores cultured using different medium formulations. The relative abundance of these monosaccharides compared to other monosaccharides such as mannosamine was also found to vary with medium type. Specific medium components were also found to impact the carbohydrate profile. Xylose has not been previously described in B. anthracis spores but was detected at low levels in two media. This may represent residual material from the brewery yeast extract used to formulate these two media. These results illustrate the utility of this method to capture the impact of growth medium on carbohydrate variation in spores. Detecting carbohydrate profiles in B. anthracis evidentiary material may provide useful forensic information on the growth medium used for sporulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Bockron as a Medium of Learning in The Process of Inquiry based Learning to Improve Science Process Skills of Junior High School Students in Growth and Development Concept

    NASA Astrophysics Data System (ADS)

    Mayasari, D.

    2017-02-01

    Investigative research on Influence of bockron as a medium of learning in process of inquiry-based learning to the development of science process skills on the concept of growth and development. This research was done in an effort to follow up underdeveloped skills of observing, communicating andconclude on students. This research was conducted using classroom action research (PTK), which consisted of 3 cycles. Cycle 1 students observe differences in growth and development, cycle 2 students measure the growth rate, cycle 3 students observe factors that influence growth and development, In these three cycles is used as a planting medium bocron (bottles and dacron). It involves 8th grade junior high-school students of 14-15 years old as research subjects in six meetings. Indicators of process skill include observation, communication, interpretation and inference. Data is collected through students’ work sheets, written tests and observation. Processing of the data to see N-Gain used Microsoft Excel 2007, and the results showed that an increase in science process skills with a value of medium N-Gain (0,63). Bokron learning medium easily and cheaply obtainable around the students, particularly those in urban areas is quite difficult to get land to be used as aplanting medium. In addition to observation of growth and development, bokron media can also be used to observe the motion in plants. The use bokron as a learning medium can train and develop science process skills, attitude and scientific method also gives students concrete experience of the process of growth and development in plants.

  1. Evaluation of the Growth Environment of a Hydrostatic Force Bioreactor for Preconditioning of Tissue-Engineered Constructs

    PubMed Central

    Reinwald, Yvonne; Leonard, Katherine H.L.; Henstock, James R.; Whiteley, Jonathan P.; Osborne, James M.; Waters, Sarah L.; Levesque, Philippe

    2015-01-01

    Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stimulation and the determination of physical forces (pressure and stress) in the bioreactor through mathematical modeling and numerical simulation. To determine the effect of hydrostatic pressure on bone formation, chick femur skeletal cell-seeded hydrogels were subjected to cyclic hydrostatic pressure at 0–270 kPa and 1 Hz for 1 h daily (5 days per week) over a period of 14 days. At the start of mechanical stimulation, dissolved O2 and CO2 in the medium increased and the pH of the medium decreased, but remained within human physiological ranges. Changes in physiological parameters (O2, CO2, and pH) were reversible when medium samples were placed in a standard cell culture incubator. In addition, computational modeling showed that the distribution and magnitude of physical forces depends on the shape and position of the cell-hydrogel constructs in the tissue culture format. Finally, hydrostatic pressure was seen to enhance mineralization of chick femur skeletal cell-seeded hydrogels. PMID:24967717

  2. Evaluation of the growth environment of a hydrostatic force bioreactor for preconditioning of tissue-engineered constructs.

    PubMed

    Reinwald, Yvonne; Leonard, Katherine H L; Henstock, James R; Whiteley, Jonathan P; Osborne, James M; Waters, Sarah L; Levesque, Philippe; El Haj, Alicia J

    2015-01-01

    Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stimulation and the determination of physical forces (pressure and stress) in the bioreactor through mathematical modeling and numerical simulation. To determine the effect of hydrostatic pressure on bone formation, chick femur skeletal cell-seeded hydrogels were subjected to cyclic hydrostatic pressure at 0-270 kPa and 1 Hz for 1 h daily (5 days per week) over a period of 14 days. At the start of mechanical stimulation, dissolved O2 and CO2 in the medium increased and the pH of the medium decreased, but remained within human physiological ranges. Changes in physiological parameters (O2, CO2, and pH) were reversible when medium samples were placed in a standard cell culture incubator. In addition, computational modeling showed that the distribution and magnitude of physical forces depends on the shape and position of the cell-hydrogel constructs in the tissue culture format. Finally, hydrostatic pressure was seen to enhance mineralization of chick femur skeletal cell-seeded hydrogels.

  3. Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture.

    PubMed

    Hadj-Romdhane, F; Jaouen, P; Pruvost, J; Grizeau, D; Van Vooren, G; Bourseau, P

    2012-11-01

    When microalgae culture medium is recycled, ions (e.g. Na(+), K(+), Ca(2+)) that were not assimilated by the microalgae accumulate in the medium. Therefore, a growth medium (HAMGM) was developed that included ions that were more easily assimilated by Chlorella vulgaris, such as ammonium one (NH(4)(+)). Recycling performance was studied by carrying out 8-week continuous cultivation of C. vulgaris with recycled HAMGM medium. No loss of biomass productivity was observed compared to culture in a conventional medium, and accumulation of ions over time was negligible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effects of Titanium Surface Microtopography and Simvastatin on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells in Estrogen-Deprived Cell Culture.

    PubMed

    Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin

    This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin synergistically promoted osteoblastic differentiation of hBMSCs in ED condition and might be useful to promote osteointegration in osteoporotic bone.

  5. Control of intracellular pH and growth by fibronectin in capillary endothelial cells

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Frangioni, J. V.; Cragoe, E. J. Jr; Lechene, C.; Schwartz, M. A.

    1990-01-01

    The aim of this work was to analyze the mechanism by which fibronectin (FN) regulates capillary endothelial cell proliferation. Endothelial cell growth can be controlled in chemically-defined medium by varying the density of FN coated on the substratum (Ingber, D. E., and J. Folkman. J. Cell Biol. 1989. 109:317-330). In this system, DNA synthetic rates are stimulated by FN in direct proportion to its effect on cell extension (projected cell areas) both in the presence and absence of saturating amounts of basic FGF. To investigate direct growth signaling by FN, we carried out microfluorometric measurements of intracellular pH (pHi), a cytoplasmic signal that is commonly influenced by soluble mitogens. pHi increased 0.18 pH units as FN coating densities were raised and cells progressed from round to spread. Intracellular alkalinization induced by attachment to FN was rapid and followed the time course of cell spreading. When measured in the presence and absence of FGF, the effects of FN and FGF on pHi were found to be independent and additive. Furthermore, DNA synthesis correlated with pHi for all combinations of FGF and FN. Ethylisopropylamiloride, a specific inhibitor of the plasma membrane Na+/H+ antiporter, completely suppressed the effects of FN on both pHi and DNA synthesis. However, cytoplasmic pH per se did not appear to be a critical determinant of growth since DNA synthesis was not significantly inhibited when pHi was lowered over the physiological range by varying the pH of the medium. We conclude that FN and FGF exert their growth-modulating effects in part through activation of the Na+/H+ exchanger, although they appear to trigger this system via separate pathways.

  6. Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation▿†

    PubMed Central

    Gilmour, Cynthia C.; Elias, Dwayne A.; Kucken, Amy M.; Brown, Steven D.; Palumbo, Anthony V.; Schadt, Christopher W.; Wall, Judy D.

    2011-01-01

    We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus. PMID:21515733

  7. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Controlled Growth and the Maintenance of Human Pluripotent Stem Cells by Cultivation with Defined Medium on Extracellular Matrix-Coated Micropatterned Dishes

    PubMed Central

    Takenaka, Chiemi; Miyajima, Hiroshi; Yoda, Yusuke; Imazato, Hideo; Yamamoto, Takako; Gomi, Shinichi; Ohshima, Yasuhiro; Kagawa, Kenichi; Sasaki, Tetsuji; Kawamata, Shin

    2015-01-01

    Here, we introduce a new serum-free defined medium (SPM) that supports the cultivation of human pluripotent stem cells (hPSCs) on recombinant human vitronectin-N (rhVNT-N)-coated dishes after seeding with either cell clumps or single cells. With this system, there was no need for an intervening sequential adaptation process after moving hPSCs from feeder layer-dependent conditions. We also introduce a micropatterned dish that was coated with extracellular matrix by photolithographic technology. This procedure allowed the cultivation of hPSCs on 199 individual rhVNT-N-coated small round spots (1 mm in diameter) on each 35-mm polystyrene dish (termed “patterned culture”), permitting the simultaneous formation of 199 uniform high-density small-sized colonies. This culture system supported controlled cell growth and maintenance of undifferentiated hPSCs better than dishes in which the entire surface was coated with rhVNT-N (termed “non-patterned cultures”). Non-patterned cultures produced variable, unrestricted cell proliferation with non-uniform cell growth and uneven densities in which we observed downregulated expression of some self-renewal-related markers. Comparative flow cytometric studies of the expression of pluripotency-related molecules SSEA-3 and TRA-1-60 in hPSCs from non-patterned cultures and patterned cultures supported this concept. Patterned cultures of hPSCs allowed sequential visual inspection of every hPSC colony, giving an address and number in patterned culture dishes. Several spots could be sampled for quality control tests of production batches, thereby permitting the monitoring of hPSCs in a single culture dish. Our new patterned culture system utilizing photolithography provides a robust, reproducible and controllable cell culture system and demonstrates technological advantages for the mass production of hPSCs with process quality control. PMID:26115194

  9. [THE ACTUAL APPROACHES TO PROBLEM OF IMPORT SUBSTITUTION IN TH FIELD OF PRODUCTION GROWTH MEDIUM].

    PubMed

    Shepelin, A P; Domotenko, L V; Diatlov, I A; Mironov, A Yu; Aleshkin, V A

    2015-06-01

    The import substitution becomes one of strategic tasks of Russian economy as a result of imposition of economic sanctions on part of the USA, EU countries, Japan and number of other states. The development of structure and technology of production of national import substituted growth mediums permits satisfying needs of laboratory service of Russia inactive storage and to secure appropriate response to occurring challenges and new biological menaces and support bio-security of state at proper level. The presented data concerning substantiation of nomenclature of growth mediums and transport system permit satisfying in fullness the needs of clinical and sanitary microbiology in growth mediums of national production and to give up of import deliveries without decreasing of quality of microbiological studies.

  10. Substrate and metabolite diffusion within model medium for soft cheese in relation to growth of Penicillium camembertii.

    PubMed

    Aldarf, Mazen; Fourcade, Florence; Amrane, Abdeltif; Prigent, Yves

    2006-08-01

    Penicillium camembertii was cultivated on a jellified peptone-lactate based medium to simulate the composition of Camembert cheese. Diffusional limitations due to substrate consumption were not involved in the linear growth recorded during culture, while nitrogen (peptone) limitation accounted for growth cessation. Examination of gradients confirmed that medium neutralization was the consequence of lactate consumption and ammonium production. The diffusion of the lactate assimilated from the core to the rind and that of the ammonium produced from the rind to the core was described by means of a diffusion/reaction model involving a partial linking of consumption or production to growth. The model matched experimental data throughout growth.

  11. Growth kinetics of Bacillus stearothermophilus BR219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worden, R.M.; Subramanian, R.; Bly, M.J.

    1991-12-31

    Bacillus stearothermophilus BR219, a phenol-resistant thermophile, can convert phenol to the specialty chemical catechol. The growth kinetics of this organism were studied in batch, continuous, and immobilized-cell culture. Batch growth was insensitive to pH between 6.0 and 8.0, but little growth occurred at 5.5. In continuous culture on a dilute medium supplemented with 10 mM phenol, several steady states were achieved between dilution rates of 0.25 and 1.3 h{sup -1}. Phenol degradation was found to be uncoupled from growth. Immobilized cells grew rapidly in a rich medium, but cell viability plummeted following a switch to a dilute medium supplemented withmore » 5 mM phenol.« less

  12. Formation of metallic and metal hydrous oxide dispersions

    NASA Technical Reports Server (NTRS)

    Matijevic, E.; Sapieszko, R. S.

    1979-01-01

    The formation, via hydrothermally induced precipitation from homogeneous solution, of a variety of well-defined dispersions of metallic and hydrous metal in the conditions under which the particles are produced (e.g., pH and composition of the growth medium, aging temperature, rate of heating, or degree of agitation) can be readily discerned by following changes in the mass, composition, and morphology of the final solid phase. The generation of colloidal dispersions in the absence of gravity convection or sedimentation effects may result in the appearance of morphological modifications not previously observed in terrestrially formed hydrosols.

  13. An allometric scaling relation based on logistic growth of cities

    NASA Astrophysics Data System (ADS)

    Chen, Yanguang

    2014-08-01

    The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed "exponential allometry", which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the abovementioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed "logistic allometry". The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective.

  14. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma.

    PubMed

    Curtin, Chris D; Langhans, Geoffrey; Henschke, Paul A; Grbin, Paul R

    2013-12-01

    Spoilage of red wine by the yeast species Dekkera bruxellensis is a common problem for the global wine industry. When conditions are conducive for growth of these yeasts in wine, they efficiently convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, thereby reducing the quality of the wine. It has been demonstrated previously that dissolved oxygen is a key factor which stimulates D. bruxellensis growth in wine. We demonstrate that whereas the presence of oxygen accelerates the growth of this species, oxygen-limited conditions favour 4-ethylphenol production. Consequently, we evaluated wine spoilage potential of three D. bruxellensis strains (AWRI1499, AWRI1608 and AWRI1613) under oxygen-limited conditions. Each strain was cultured in a chemically-defined wine medium and the fermentation products were analysed using HPLC and HS-SPME-GC/MS. The strains displayed different growth characteristics but were equally capable of producing ethylphenols. On the other hand, significant differences were observed for 18 of the remaining 33 metabolites analysed and duo-trio sensory analysis indicated significant aroma differences between wines inoculated with AWRI1499 and AWRI1613. When these wines were spiked with low concentrations of 4-ethylphenol and 4-ethylguaiacol, no sensorial differences could be perceived. Together these data suggest that the three predominant D. bruxellensis strains previously isolated during a large survey of Australian wineries do not differ substantively in their capacity to grow in, and spoil, a model wine medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of Media Modified To Mimic Cystic Fibrosis Sputum on the Susceptibility of Aspergillus fumigatus, and the Frequency of Resistance at One Center.

    PubMed

    Stevens, David A; Moss, Richard B; Hernandez, Cathy; Clemons, Karl V; Martinez, Marife

    2016-04-01

    Studies of cystic fibrosis (CF) patient exacerbations attributed toPseudomonas aeruginosainfection have indicated a lack of correlation of outcome within vitrosusceptibility results. One explanation is that the media used for testing do not mimic the airway milieu, resulting in incorrect conclusions. Therefore, media have been devised to mimic CF sputum.Aspergillus fumigatusis the leading fungal pathogen in CF, and susceptibility testing is also used to decide therapeutic choices. We assessed whether media designed to mimic CF sputa would give different fungal susceptibility results than those of classical methods, assaying voriconazole, the most utilized anti-Aspergillusdrug in this setting, and 30 CFAspergillusisolates. The frequency of marked resistance (defined as an MIC of >4 μg/ml) in our CF unit by classical methods is 7%. Studies performed with classical methods and with digested sputum medium, synthetic sputum medium, and artificial sputum medium revealed prominent differences inAspergillussusceptibility results, as well as growth rate, with each medium. Clinical correlative studies are required to determine which results are most useful in predicting outcome. Comparison of MICs with non-CF isolates also indicated the CF isolates were generally more resistant. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Effect of Media Modified To Mimic Cystic Fibrosis Sputum on the Susceptibility of Aspergillus fumigatus, and the Frequency of Resistance at One Center

    PubMed Central

    Moss, Richard B.; Hernandez, Cathy; Clemons, Karl V.; Martinez, Marife

    2016-01-01

    Studies of cystic fibrosis (CF) patient exacerbations attributed to Pseudomonas aeruginosa infection have indicated a lack of correlation of outcome with in vitro susceptibility results. One explanation is that the media used for testing do not mimic the airway milieu, resulting in incorrect conclusions. Therefore, media have been devised to mimic CF sputum. Aspergillus fumigatus is the leading fungal pathogen in CF, and susceptibility testing is also used to decide therapeutic choices. We assessed whether media designed to mimic CF sputa would give different fungal susceptibility results than those of classical methods, assaying voriconazole, the most utilized anti-Aspergillus drug in this setting, and 30 CF Aspergillus isolates. The frequency of marked resistance (defined as an MIC of >4 μg/ml) in our CF unit by classical methods is 7%. Studies performed with classical methods and with digested sputum medium, synthetic sputum medium, and artificial sputum medium revealed prominent differences in Aspergillus susceptibility results, as well as growth rate, with each medium. Clinical correlative studies are required to determine which results are most useful in predicting outcome. Comparison of MICs with non-CF isolates also indicated the CF isolates were generally more resistant. PMID:26810647

  17. Isolation from Estuarine Sediments of a Desulfovibrio Strain Which Can Grow on Lactate Coupled to the Reductive Dehalogenation of 2,4,6-Tribromophenol

    PubMed Central

    Boyle, Alfred W.; Phelps, Craig D.; Young, L. Y.

    1999-01-01

    Strain TBP-1, an anaerobic bacterium capable of reductively dehalogenating 2,4,6-tribromophenol to phenol, was isolated from estuarine sediments of the Arthur Kill in the New York/New Jersey harbor. It is a gram-negative, motile, vibrio-shaped, obligate anaerobe which grows on lactate, pyruvate, hydrogen, and fumarate when provided sulfate as an electron acceptor. The organism accumulates acetate when grown on lactate and sulfate, contains desulfoviridin, and will not grow in the absence of NaCl. It will not utilize acetate, succinate, propionate, or butyrate for growth via sulfate reduction. When supplied with lactate as an electron donor, strain TBP-1 will utilize sulfate, sulfite, sulfur, and thiosulfate for growth but not nitrate, fumarate, or acrylate. This organism debrominates 2-, 4-, 2,4-, 2,6-, and 2,4,6-bromophenol but not 3- or 2,3-bromophenol or monobrominated benzoates. It will not dehalogenate monochlorinated, fluorinated, or iodinated phenols or chlorinated benzoates. Together with its physiological characteristics, its 16S rRNA gene sequence places it in the genus Desulfovibrio. The average growth yield of strain TBP-1 grown on a defined medium supplemented with lactate and 2,4,6-bromophenol is 3.71 mg of protein/mmol of phenol produced, and the yield was 1.42 mg of protein/mmol of phenol produced when 4-bromophenol was the electron acceptor. Average growth yields (milligrams of protein per millimole of electrons utilized) for Desulfovibrio sp. strain TBP-1 grown with 2,4,6-bromophenol, 4-bromophenol, or sulfate are 0.62, 0.71, and 1.07, respectively. Growth did not occur when either lactate or 2,4,6-bromophenol was omitted from the growth medium. These results indicate that Desulfovibrio sp. strain TBP-1 is capable of growth via halorespiration. PMID:10049873

  18. Escherichia coli growth changes by the mediated effects after low-intensity electromagnetic irradiation of extremely high frequencies.

    PubMed

    Torgomyan, Heghine; Hovnanyan, Karlen; Trchounian, Armen

    2013-04-01

    Water is the major constituent of environmental medium and biological systems. The effects occurring in water as a result of low-intensity electromagnetic irradiation (EMI) in extremely high frequencies are supposed to be the primary mechanism to create conditions for biological responses. The EMI effects on Escherichia coli, after irradiation of their suspension, are most probably water-mediated. Indirect effects of EMI at 51.8, 53, 70.6, and 73 GHz frequencies on bacteria, through water, assay buffer (Tris-phosphate buffer with inorganic salts at low or moderate concentrations), or peptone growth medium were studied. The mediated effects of 70.6 and 73 GHz irradiated water, assay buffer, and growth medium on E. coli growth characteristics were insignificant. But the results were different for 51.8 and 53 GHz. EMI mediated effects on bacterial growth were clearly demonstrated. The effects were more strongly expressed with 53 GHz. Moreover, it was shown that 70.6 and 73 GHz similarly suppressed the cell growth after direct irradiation of E. coli in water or on solid medium. Interestingly, for 51.8 and 53 GHz the bacterial growth decreases after suspension irradiation was less, compared to the direct irradiation of bacteria on solid medium. Especially, it was also more expressed in case of 53 GHz. Also with electron microscopy, EMI-induced bacterial cell sizes and structure different changes were detected. In addition, the distinguished changes in surface tension, oxidation-reduction potential and pH of water, assay buffer, growth medium, and bacterial suspension were determined. They depended on EMI frequency used. The differences could be associated with the partial absorbance of EMI energy by the surrounding medium, which depends on a specific frequency. The results are crucial to understand biophysical mechanisms of EMI effects on bacteria.

  19. 40 CFR Appendix B to Subpart Q of... - Standard Health Effects Language for Public Notification

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include... interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence... provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms...

  20. 40 CFR Appendix B to Subpart Q of... - Standard Health Effects Language for Public Notification

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence... microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include..., turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate...

  1. Production of Human Pluripotent Stem Cell Therapeutics Under Defined Xeno-free Conditions: Progress and Challenges

    PubMed Central

    Fan, Yongjia; Wu, Jincheng; Ashok, Preeti; Hsiung, Michael; Tzanakakis, Emmanuel S.

    2014-01-01

    Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds. PMID:25077810

  2. Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges.

    PubMed

    Fan, Yongjia; Wu, Jincheng; Ashok, Preeti; Hsiung, Michael; Tzanakakis, Emmanuel S

    2015-02-01

    Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.

  3. Tracking and data relay satellite system configuration and tradeoff study, part 1. Volume 1: Summary volume

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Study efforts directed at defining all TDRS system elements are summarized. Emphasis was placed on synthesis of a space segment design optimized to support low and medium data rate user spacecraft and launched with Delta 2914. A preliminary design of the satellite was developed and conceptual designs of the user spacecraft terminal and TDRS ground station were defined. As a result of the analyses and design effort it was determined that (1) a 3-axis-stabilized tracking and data relay satellite launched on a Delta 2914 provides telecommunications services considerably in excess of that required by the study statement; and (2) the design concept supports the needs of the space shuttle and has sufficient growth potential and flexibility to provide telecommunications services to high data rate users. Recommendations for further study are included.

  4. Growth of Desulfovibrio on the surface of agar media.

    PubMed

    Iverson, W P

    1966-07-01

    Growth of Desulfovibrio desulfuricans (API strain) was found to take place in an atmosphere of hydrogen on the agar surface of complex media, including yeast extract (Difco), and Trypticase Soy Agar (BBL) without any added reducing agents. For growth on a 2% yeast extract-agar surface in the absence of hydrogen (nitrogen atmosphere), sodium lactate was required in the medium. Growth on the surface of Trypticase Soy Agar (TSA) under nitrogen took place readily in the absence of an added hydrogen donor. A medium (TSA plus salts) is described based upon the addition of sodium lactate (4 ml per liter), magnesium sulfate (2 g per liter), and ferrous ammonium sulfate (0.05%) to TSA, which appears suitable for the isolation and growth of Desulfovibrio on the surface of agar plates in an atmosphere of hydrogen. Sodium lactate does not appear to be essential in this medium for good growth and sulfate reduction in a hydrogen atmosphere, but is essential in a nitrogen atmosphere. Growth of Desulfovibrio (hydrogen atmosphere) on the agar surface of media commonly used for its cultivation as well as on an inorganic medium containing bicarbonate as a source of carbon is poor and erratic unless inoculated (Desulfovibrio) plates of TSA plus salts are incubated in the same container with plates of these media. This stimulatory effect of incubation with inoculated plates of TSA plus salts medium appears to be due to as yet unidentified volatile material produced by D. desulfuricans when growing on this medium. Another volatile material, or possibly the identical material, appears to act similarly to a hydrogen donor.

  5. Effect of bicarbonate concentration on aerobic growth of campylobacter in a fumarate-pyruvate medium

    USDA-ARS?s Scientific Manuscript database

    The purpose of the present study was to examine the effect of sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium. Fumarate-pyruvate broth medium was supplemented with 0.00 to 0.10% NaHCO3 and inoculated with Campylobacter coli 33559, Campyloba...

  6. Improving Cotton Embryo Culture by Simulating In Ovulo Nutrient and Hormone Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodney Fuller; Vincent Liddiard; J. Hess

    Plant ovules provide zygotes with a physicochemical environment that supports embryo differentiation, growth, and maturation. The exact nature of this embryogenesis-enabling environment is not well characterized, as evidenced by failed attempts to induce normal embryony from zygotes or proembryos (precotyledonary) on defined media. To identify factors required for cotton (Gossypium hirsutum L.) zygotic embryony in vitro, we previously performed chemical and dissolved oxygen tension analyses of cotton ovule fluids and tissues at multiple stages of embryony in situ. Based on these analyses, we report herein the development of procedures that normalize embryo differentiation, growth, maturation, and germination in vitro, startingmore » with proembryos. Our medium differed from Murashige and Skoog (MS) medium as follows (percentage of MS): N (30%, mostly from ten amino acids), P (815%), K (237%), Mg (85%), Ca (267%), S (506%), Fe (88%), and myoinositol (883%). Levels of other MS nutrients and vitamins, except sucrose, were kept at MS levels. Additionally, we included 100 mg L-1 casein hydrolysate plus the following (mmol L-1): d-glucose (1.8), fructose (4.7), sucrose (62.0), arabinose (7.1), melibiose (3.5), malic acid (11.6), and citric acid (3.8). Mannitol was added to achieve a medium osmotic potential of -1.10 MPa, and an atmospheric O2 tension of 3.3 mol m-3 at the surface of embryos was maintained during culture. When cultured on medium containing 8.0 µmol L-1 indole-3-acetic acid, 80-90% of proembryos (as small as 100 cells) of cultivars HS-26 and B-27 increased four- to eightfold in surface area during the first 18 d in culture and germinated thereafter to produce viable plants. Increases in surface area of proembryos cultured on a modified MS medium previously used for somatic embryogenesis were from 0.2- to 0.6-fold. The described embryo culture medium should be useful for studying nutritional and molecular aspects of early embryony and possibly for plant zygote transformation protocols.« less

  7. Streptomyces exploration is triggered by fungal interactions and volatile signals.

    PubMed

    Jones, Stephanie E; Ho, Louis; Rees, Christiaan A; Hill, Jane E; Nodwell, Justin R; Elliot, Marie A

    2017-01-03

    It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells 'explorers', for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches.

  8. Cow dung extract: a medium for the growth of pseudomonads enhancing their efficiency as biofertilizer and biocontrol agent in rice.

    PubMed

    Srivastava, Rashmi; Aragno, Michel; Sharma, A K

    2010-09-01

    Some pseudomands are being utilized as biofertilizers and biopesticides because of their role in plant growth promotion and plant protection against root parasites, respectively. Two strains of Pseudomonas, P. jessenii LHRE62 and P. synxantha HHRE81, recovered from wheat rhizosphere, have shown their potential in field bioinoculation tests under rice-wheat and pulse-wheat rotation systems. Normally, pseudomonads are cultivated on synthetic media-like King's B and used for inoculation on seeds/soil drench with talcum or charcoal as carrier material. Cow dung is being used for different purposes from the ancient time and has a significant role in crop growth because of the content in humic compounds and fertilizing bioelements available in it. Here, cow dung extract was tested as a growth medium for strains LHRE62 and HHRE81, in comparison with growth in King's B medium. The log phase was delayed by 2 h as compared to growth in King's B medium. The bacterial growth yield, lower in plain cow dung extract as compared to King's B medium, was improved upon addition of different carbon substrates. Growth of rice var. Pant Dhan 4 in pot cultures was increased using liquid formulation of cow dung extract and bacteria as foliar spray, compared to their respective controls. Biocontrol efficacy of the bioagents was assessed by challenging rice crop with Rhizoctonia solani, a sheath blight pathogen. The growth promotion and biocontrol efficiencies were more pronounced in the case of mixed inocula of strains LHRE62 and HHRE81.

  9. Analysis of Macro-micro Simulation Models for Service-Oriented Public Platform: Coordination of Networked Services and Measurement of Public Values

    NASA Astrophysics Data System (ADS)

    Kinoshita, Yumiko

    When service sectors are a major driver for the growth of the world economy, we are challenged to implement service-oriented infrastructure as e-Gov platform to achieve further growth and innovation for both developed and developing countries. According to recent trends in service industry, it is clarified that main factors for the growth of service sectors are investment into knowledge, trade, and the enhanced capacity of micro, small, and medium-sized enterprises (MSMEs). In addition, the design and deployment of public service platform require appropriate evaluation methodology. Reflecting these observations, this paper proposes macro-micro simulation approach to assess public values (PV) focusing on MSMEs. Linkage aggregate variables (LAVs) are defined to show connection between macro and micro impacts of public services. As a result, the relationship of demography, business environment, macro economy, and socio-economic impact are clarified and their values are quantified from the behavioral perspectives of citizens and firms.

  10. Quantitative assessment of neural outgrowth using spatial light interference microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Young Jae; Cintora, Pati; Arikkath, Jyothi; Akinsola, Olaoluwa; Kandel, Mikhail; Popescu, Gabriel; Best-Popescu, Catherine

    2017-06-01

    Optimal growth as well as branching of axons and dendrites is critical for the nervous system function. Neuritic length, arborization, and growth rate determine the innervation properties of neurons and define each cell's computational capability. Thus, to investigate the nervous system function, we need to develop methods and instrumentation techniques capable of quantifying various aspects of neural network formation: neuron process extension, retraction, stability, and branching. During the last three decades, fluorescence microscopy has yielded enormous advances in our understanding of neurobiology. While fluorescent markers provide valuable specificity to imaging, photobleaching, and photoxicity often limit the duration of the investigation. Here, we used spatial light interference microscopy (SLIM) to measure quantitatively neurite outgrowth as a function of cell confluence. Because it is label-free and nondestructive, SLIM allows for long-term investigation over many hours. We found that neurons exhibit a higher growth rate of neurite length in low-confluence versus medium- and high-confluence conditions. We believe this methodology will aid investigators in performing unbiased, nondestructive analysis of morphometric neuronal parameters.

  11. L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides.

    PubMed

    Benaroya, Rony Oren; Zamski, Eli; Tel-Or, Elisha

    2004-02-01

    L-Myo-inositol 1-phosphate synthase (INPS EC 5.5.1.4) catalyzes the conversion of D-glucose 6-phosphate to L-myo-inositol 1-phosphate. INPS is a key enzyme involved in the biosynthesis of phytate which is a common form of stored phosphates in higher plants. The present study monitored the increase of INPS expression in Azolla filiculoides resulting from exposure to inorganic phosphates, metals and salt stress. The expression of INPS was significantly higher in Azolla plants that were grown in rich mineral growth medium than those maintained on nutritional growth medium. The expression of INPS protein and corresponding mRNA increased in plants cultured in minimal nutritional growth medium when phosphate or Zn2+, Cd2+ and NaCl were added to the growth medium. When employing rich mineral growth medium, INPS protein content increased with the addition of Zn2+, but decreased in the presence of Cd2+ and NaCl. These results indicated that accumulation of phytate in Azolla is a result of the intensified expression of INPS protein and mRNA, and its regulation may be primarily derived by the uptake of inorganic phosphate, and Zn2+, Cd2+ or NaCl.

  12. Benchmarking of commercially available CHO cell culture media for antibody production.

    PubMed

    Reinhart, David; Damjanovic, Lukas; Kaisermayer, Christian; Kunert, Renate

    2015-06-01

    In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.

  13. Effects of temperature and medium composition on inhibitory activities of gossypol-related compounds against aflatoxigenic fungi.

    PubMed

    Mellon, J E; Dowd, M K; Beltz, S B

    2013-07-01

    To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus. The compounds were tested at a concentration of 100 μg ml(-1) in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein-supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti-aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein-amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti-aflatoxigenic activity in the YES medium. Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol-related compounds against aflatoxigenic fungi. Studies utilizing gossypol-related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins. Published [2013]. This article is a U.S. Government work and is in the public domain in the USA.

  14. Fructose-1,6-bisphosphate aldolase (class II) is the primary site of nickel toxicity in Escherichia coli.

    PubMed

    Macomber, Lee; Elsey, Scott P; Hausinger, Robert P

    2011-12-01

    Nickel is toxic to all forms of life, but the mechanisms of cell damage are unknown. Indeed, environmentally relevant nickel levels (8 µM) inhibit wild-type Escherichia coli growth on glucose minimal medium. The same concentration of nickel also inhibits growth on fructose, but not succinate, lactate or glycerol; these results suggest that fructose-1,6-bisphosphate aldolase (FbaA) is a target of nickel toxicity. Cells stressed by 8 µM Ni(II) for 20 min lost 75% of their FbaA activity, demonstrating that FbaA is inactivated during nickel stress. Furthermore, overexpression of fbaA restored growth of an rcnA mutant in glucose minimal medium supplemented with 4 µM Ni(II), thus confirming that FbaA is a primary target of nickel toxicity. This class II aldolase has an active site zinc and a non-catalytic zinc nearby. Purified FbaA lost 80 % of its activity within 2 min when challenged with 8 µM Ni(II). Nickel-challenged FbaA lost 0.8 zinc and gained 0.8 nickel per inactivated monomer. FbaA mutants (D144A and E174A) affecting the non-catalytic zinc were resistant to nickel inhibition. These results define the primary site of nickel toxicity in E. coli as the class II aldolase FbaA through binding to the non-catalytic zinc site. © 2011 Blackwell Publishing Ltd.

  15. Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen.

    PubMed

    Wei, Yangdou; Shen, Wenyun; Dauk, Melanie; Wang, Feng; Selvaraj, Gopalan; Zou, Jitao

    2004-01-02

    Unidirectional transfer of nutrients from plant host to pathogen represents a most revealing aspect of the parasitic lifestyle of plant pathogens. Whereas much effort has been focused on sugars and amino acids, the identification of other significant metabolites is equally important for comprehensive characterization of metabolic interactions between plants and biotrophic fungal pathogens. Employing a strategy of targeted gene disruption, we generated a mutant strain (gpdhDelta) defective in glycerol-3-phosphate dehydrogenase in a hemibiotrophic plant pathogen, Colletotrichum gloeosporioides f.sp. malvae. The gpdhDelta strain had severe defects in carbon utilization as it could use neither glucose nor amino acids for sustained growth. Although the mutant mycelia were able to grow on potato dextrose agar medium, they displayed arrhythmicity in growth and failure to conidiate. The metabolic defect of gpdhDelta could be entirely ameliorated by glycerol in chemically defined minimal medium. Furthermore, glycerol was the one and only metabolite that could restore rhythmic growth and conidiation of gpdhDelta. Despite the profound defects in carbon source utilization, in planta the gpdhDelta strain exhibited normal pathogenicity, proceeded normally in its life cycle, and produced abundant conidia. Analysis of plant tissues at the peripheral zone of fungal infection sites revealed a time-dependent reduction in glycerol content. This study provides strong evidence for a role of glycerol as a significant transferred metabolite from plant to fungal pathogen.

  16. Significance of the concentration of chelating ligands on Fe3+-solubility, bioavailability, and uptake in rice plant.

    PubMed

    Hasegawa, Hiroshi; Rahman, M Mamunur; Kadohashi, Kouta; Takasugi, Yui; Tate, Yousuke; Maki, Teruya; Rahman, M Azizur

    2012-09-01

    Present study investigated the significance of the concentration of chelating ligand on Fe(3+)-solubility in growth medium and its influence on Fe bioavailability and uptake in rice plant. Rice seedlings were grown in modified Murashige and Skoog (MS) hydroponic growth medium with moderate (250 μM) and high (500 μM) concentrations of ethylenediaminetetraacetate (EDTA) and hydroxyiminodisuccinate (HIDS) under sterile and non-sterile conditions. Concentrations of soluble Fe in the growth medium increased with increasing ligand concentrations, and the growth of rice seedlings was higher at moderate ligand concentration than at control (without chelant) and high ligand concentration. This explains the relationship between Fe solubility and bioavailability in the growth medium, and its effect on Fe uptake in rice plant. Fe exists in the growth medium predominantly as particulate (insoluble) forms at low ligand concentration, and as soluble [Fe(OH)(2+), Fe(OH)(2)(+), Fe-L complex] and apparently soluble (colloidal) forms at moderate ligand concentration. At high ligand concentration, most of the Fe(3+) in the growth medium forms soluble Fe-L complex, however, the bioavailability of Fe from Fe-L complex decreased due to lopsided complex formation equilibrium reaction (CFER) between Fe and the ligands. Also, Fe is solubilized forming stable and soluble Fe-L complex, which is then detached as less stable, but soluble and bioavailable substance(s) after (time-dependent) biodegradation. Therefore- i) ligand concentration and stability constant of Fe-L complex (K(Fe-L)) influence Fe bioavailability and uptake in rice plant, and ii) the biodegradable ligands (e.g., HIDS) would be more effective Fe fertilizer than the environmentally persistent and less biodegradable ligands (e.g., EDTA). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Growth of Desulfovibrio on the Surface of Agar Media

    PubMed Central

    Iverson, Warren P.

    1966-01-01

    Growth of Desulfovibrio desulfuricans (API strain) was found to take place in an atmosphere of hydrogen on the agar surface of complex media, including yeast extract (Difco), and Trypticase Soy Agar (BBL) without any added reducing agents. For growth on a 2% yeast extract-agar surface in the absence of hydrogen (nitrogen atmosphere), sodium lactate was required in the medium. Growth on the surface of Trypticase Soy Agar (TSA) under nitrogen took place readily in the absence of an added hydrogen donor. A medium (TSA plus salts) is described based upon the addition of sodium lactate (4 ml per liter), magnesium sulfate (2 g per liter), and ferrous ammonium sulfate (0.05%) to TSA, which appears suitable for the isolation and growth of Desulfovibrio on the surface of agar plates in an atmosphere of hydrogen. Sodium lactate does not appear to be essential in this medium for good growth and sulfate reduction in a hydrogen atmosphere, but is essential in a nitrogen atmosphere. Growth of Desulfovibrio (hydrogen atmosphere) on the agar surface of media commonly used for its cultivation as well as on an inorganic medium containing bicarbonate as a source of carbon is poor and erratic unless inoculated (Desulfovibrio) plates of TSA plus salts are incubated in the same container with plates of these media. This stimulatory effect of incubation with inoculated plates of TSA plus salts medium appears to be due to as yet unidentified volatile material produced by D. desulfuricans when growing on this medium. Another volatile material, or possibly the identical material, appears to act similarly to a hydrogen donor. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:5955798

  18. Further optimization of culture method for rat keratinocytes: titration of glucose and sodium chloride.

    PubMed

    Oku, H; Yamashita, M; Iwasaki, H; Chinen, I

    1999-02-01

    The present study further improved the serum-free method of culturing rat keratinocytes. To obtain the best growth of rat keratinocytes, we modified our previous serum-free medium (MCDB153 based medium), particularly the amounts of glucose and sodium chloride (NaCl). Titration experiments showed the optimal concentration to be 0.8 mM for glucose and 100 mM for NaCl. This modification eliminated the requirement for albumin, which had been essential for colony formation when our previous medium was used. Titration of glucose and NaCl, followed by adjustment of essential amino acids and growth factors, produced a new formulation. More satisfactory and better growth was achieved with the new medium than with the previous medium. Accumulation of monoalkyldiacylglycerol (MADAG) was consistently noted in this study, representing the unusual lipid profile. A tendency toward normalization was, however, noted with the neutral lipid profile of keratinocytes cultivated in the new medium: lower production of MADAG was obtained with the new formulation, rather than the previous one.

  19. The growth of Treponema hyodysenteriae and other porcine intestinal spirochaetes in a liquid medium.

    PubMed

    Lemcke, R M; Bew, J; Burrows, M R; Lysons, R J

    1979-05-01

    A new simple method for the preparation of a liquid medium containing rabbit serum for the propagation of Treponema hyodysenteriae and other porcine intestinal spirochaetes is described. The medium, when dispensed in shallow layers and sealed under 10 per cent CO2 in nitrogen, had a redox potential not greater than -125mV and an initial pH of about 6.9 when buffered with bicarbonate. Growth of T hyodysenteriae developed more rapidly and viable counts reached higher levels at 42 degrees C than at 37 degrees C. Viable counts increased at least 10,000-fold after two to five days' incubation, depending on the temperature. Growth could be initiated from small inocula that failed to produce colonies on blood agar. Using a 1 per cent inoculum, the medium supported the growth of two strains of T hyodysenteriae through 10 serial passages.

  20. Role of keto acids and reduced-oxygen-scavenging enzymes in the growth of Legionella species.

    PubMed Central

    Pine, L; Hoffman, P S; Malcolm, G B; Benson, R F; Franzus, M J

    1986-01-01

    Keto acids and reduced-oxygen-scavenging enzymes were examined for their roles in supporting the growth of Legionella species and for their potential reactions between the chemical components of the media. When grown in an experimental ACES (2-[(2-amino-2-oxoethyl)-amino] ethanesulfonic acid)-buffered chemically defined (ABCD) broth, the presence of keto acids shortened the lag periods, increased the rates of growth, and gave maximum cell yields. In addition, keto acids affected the specific activities of reduced-oxygen-scavenging enzymes determined during growth. The specific activities of superoxide dismutase of Legionella pneumophila (Knoxville) and L. dumoffii (TEX-KL) were increased three- to eightfold, while that of L. bozemanii (WIGA) was not affected. All strains appeared to be equally sensitive to the effects of superoxide anion (O2-) generated by light-activated riboflavin, and all were equally protected by the presence of keto acids in the ABCD broth. Production of trace amounts of acetate and succinate in pyruvate- and alpha-ketoglutarate-containing media exposed to light suggested that hydrogen peroxide was formed. Pyruvate and alpha-ketoglutarate were products of growth on amino acids, and there was no quantitative evidence that these keto acids were metabolized when they were added to the medium. The rate of cysteine oxidation in ABCD broth was increased by the presence of ferric ion or by exposure to light or by both, and keto acids reduced the rate of this oxidation. ACES buffer was a substrate for the production of O2- in the presence of light, and the combined addition of Fe2+ ions, cysteine, and either keto acid to the medium strongly inhibited the production of O2-. Thus, keto acids inhibited the rate of cysteine oxidation, they stimulated rapid growth by an unknown process, and, in combination with added Fe2+ ions and cysteine, they reversed the toxic effects of light by inhibiting O2- production. PMID:3009529

  1. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2010-07-20

    A bacterial growth medium for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a lac repressor. Also disclosed is a bacterial growth medium for improving the production of a selenomethionine-containing protein or polypeptide in a bacterial cell, the protein or polypeptide being produced by recombinant DNA techniques from a lac or T7lac promoter, the bacterial cell encoding a vitamin B12-dependent homocysteine methylase. Finally, disclosed is a bacterial growth medium for suppressing auto-induction of expression in cultures of bacterial cells grown batchwise, said transcription being under the control of lac repressor.

  2. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis.

    PubMed

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Kassner, Stefan S; Zügel, Stefanie; Hörmann, Karl; Kinscherf, Ralf; Goessler, Ulrich Reinhart

    2011-08-01

    Tissue engineering of skeletal muscle is an encouraging possibility for the treatment of muscle loss through the creation of functional muscle tissue in vitro from human stem cells. Currently, the preferred stem cells are primary, non-immunogenic satellite cells ( = myoblasts). The objective of this study was to determine the expression patterns of myogenic markers within the human satellite cell population during their differentiation into multinucleated myotubes for an accurate characterization of stem cell behaviour. Satellite cells were incubated (for 1, 4, 8, 12 or 16 days) with a culture medium containing either a low [ = differentiation medium (DM)] or high [ = growth medium (GM)] concentration of growth factors. Furthermore, we performed a quantitative gene expression analysis of well-defined differentiation makers: myogenic factor 5 (MYF5), myogenin (MYOG), skeletal muscle αactin1 (ACTA1), embryonic (MYH3), perinatal (MYH8) and adult skeletal muscle myosin heavy chain (MYH1). Additionally, the fusion indices of forming myotubes of MYH1, MYH8 and ACTA1 were calculated. We show that satellite cells incubated with DM expressed multiple characteriztic features of mature skeletal muscles, verified by time-dependent upregulation of MYOG, MYH1, MYH3, MYH8 and ACTA1. However, satellite cells incubated with GM did not reveal all morphological aspects of muscle differentiation. Immunocytochemical investigations with antibodies directed against the differentiation markers showed correlations between the gene expression and differentiation. Our data provide information about time-dependent gene expression of differentiation markers in human satellite cells, which can be used for maturation analyses in skeletal muscle tissue-engineering applications. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Cell death in Tetrahymena thermophila: new observations on culture conditions.

    PubMed

    Christensen, S T; Sørensen, H; Beyer, N H; Kristiansen, K; Rasmussen, L; Rasmussen, M I

    2001-01-01

    We previously suggested that the cell fate of the protozoan ciliate, Tetrahymena thermophila, effectively relates to a quorum-sensing mechanism where cell-released factors support cell survival and proliferation. The cells have to be present above a critical initial density in a chemically defined nutrient medium in order to release a sufficient level of these factors to allow a new colony to flourish. At a relatively high rate of metabolism and/or macromolecular synthesis and below this critical density, cells began to die abruptly within 30 min of inoculation, and this death took the form of an explosive disintegration lasting less than 50 milliseconds. The cells died at any location in the culture, and the frequency of cell death was always lower in well-filled vials than those with medium/air interface. Cell death was inhibited by the addition of Actinomycin D or through modifications of the culture conditions either by reducing the oxygen tension or by decreasing the temperature of the growth medium. In addition, plastic caps in well-filled vials release substances, which promote cell survival. The fate of low-density cultures is related to certain 'physical' conditions, in addition to the availability of oxygen within closed culture systems. Copyright 2001 Academic Press.

  4. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Antunes, Luísa C S; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo

    2012-11-01

    Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO(3))(3), the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO(3))(3) delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO(3))(3) activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO(3))(3) also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO(3))(3) inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO(3))(3) also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii.

  5. In Vitro and In Vivo Antimicrobial Activities of Gallium Nitrate against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Antunes, Luísa C. S.; Imperi, Francesco; Minandri, Fabrizia

    2012-01-01

    Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)3, the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO3)3 delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)3 activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)3 also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO3)3 inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO3)3 also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii. PMID:22964249

  6. Identification of Two Loci in Tomato Reveals Distinct Mechanisms for Salt Tolerance

    PubMed Central

    Borsani, Omar; Cuartero, Jesus; Fernández, José A.; Valpuesta, Victoriano; Botella, Miguel A.

    2001-01-01

    Salt stress is one of the most serious environmental factors limiting the productivity of crop plants. To understand the molecular basis for salt responses, we used mutagenesis to identify plant genes required for salt tolerance in tomato. As a result, three tomato salt-hypersensitive (tss) mutants were isolated. These mutants defined two loci and were caused by single recessive nuclear mutations. The tss1 mutant is specifically hypersensitive to growth inhibition by Na+ or Li+ and is not hypersensitive to general osmotic stress. The tss2 mutant is hypersensitive to growth inhibition by Na+ or Li+ but, in contrast to tss1, is also hypersensitive to general osmotic stress. The TSS1 locus is necessary for K+ nutrition because tss1 mutants are unable to grow on a culture medium containing low concentrations of K+. Increased Ca2+ in the culture medium suppresses the growth defect of tss1 on low K+. Measurements of membrane potential in apical root cells were made with an intracellular microelectrode to assess the permeability of the membrane to K+ and Na+. K+-dependent membrane potential measurements indicate impaired K+ uptake in tss1 but not tss2, whereas no differences in Na+ uptake were found. The TSS2 locus may be a negative regulator of abscisic acid signaling, because tss2 is hypersensitive to growth inhibition by abscisic acid. Our results demonstrate that the TSS1 locus is essential for K+ nutrition and NaCl tolerance in tomato. Significantly, the isolation of the tss2 mutant demonstrates that abscisic acid signaling is also important for salt and osmotic tolerance in glycophytic plants. PMID:11283342

  7. Localization of Burkholderia cepacia Complex Bacteria in Cystic Fibrosis Lungs and Interactions with Pseudomonas aeruginosa in Hypoxic Mucus

    PubMed Central

    Abdullah, Lubna H.; Perlmutt, Olivia S.; Albert, Daniel; Davis, C. William; Arnold, Roland R.; Yankaskas, James R.; Gilligan, Peter; Neubauer, Heiner; Randell, Scott H.; Boucher, Richard C.

    2014-01-01

    The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages. PMID:25156735

  8. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    PubMed

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO 4 (0, 0.75, 1.5, 3.0 mM), ZnSO 4 (0, 15, 30, 60 μM), CuSO 4 (0, 0.05, 0.1, 0.2 μM), NO 3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO 3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  9. Matter-wave dark solitons: stochastic versus analytical results.

    PubMed

    Cockburn, S P; Nistazakis, H E; Horikis, T P; Kevrekidis, P G; Proukakis, N P; Frantzeskakis, D J

    2010-04-30

    The dynamics of dark matter-wave solitons in elongated atomic condensates are discussed at finite temperatures. Simulations with the stochastic Gross-Pitaevskii equation reveal a noticeable, experimentally observable spread in individual soliton trajectories, attributed to inherent fluctuations in both phase and density of the underlying medium. Averaging over a number of such trajectories (as done in experiments) washes out such background fluctuations, revealing a well-defined temperature-dependent temporal growth in the oscillation amplitude. The average soliton dynamics is well captured by the simpler dissipative Gross-Pitaevskii equation, both numerically and via an analytically derived equation for the soliton center based on perturbation theory for dark solitons.

  10. Study of factors affecting growth and cold acclimation of Vitis callus cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, L.

    1987-01-01

    In vitro grape tissue culture initiation, growth, and cold acclimation were studied. Factors involved were genotypes, media, plant growth regulators, age, light, temperature, antioxidant, clearing and adsorbing agents, sucrose level, osmotic potential, ABA, chilling and freezing treatments. Murashige and Skoog (MS) medium containing 1 ..mu..M 2,4-d + 0.1 uM Ba, MS containing 1 uM 2,4-D, and woody plant medium containing 1 uM 2,4-D + 0.1 uM BA produced abundant callus tissue for most grape genotypes; either WPM or MS containing 1 uM BA stimulated shoot growth in all the 12 genotypes tested. Adding 1 uM abscisic acid (ABA) to themore » B5 medium with 1 uM 2,4-D and 0.5 uM BA enhanced growth and quality of Chancellor callus. /sup 3/H-ABA was taken up actively by callus tissue at 12 days after subculture, but by 20 d this effect disappeared. When /sup 14/C-sucrose was added to the medium. /sup 14/C level of cells reached a plateau after 48 h; this plateau was higher if ABA was also present in the medium. Cells on media containing ABA were larger in size, lighter in color, and more loosely connected.« less

  11. Growth, Proximate Composition and Pigment Production of Tetraselmis chuii Cultured with Aquaculture Wastewater

    NASA Astrophysics Data System (ADS)

    Khatoon, Helena; Haris, Haris; Rahman, Norazira Abdu; Zakaria, Mimi Nadzirah; Begum, Hasina; Mian, Sohel

    2018-06-01

    Microalgae are cultured commercially as healthy food, cosmetic products, food preservatives, and a source of valuable compounds. However, the high cost of commercial culture medium is one of the challenges to microalgal production. Therefore, it is essential to find an alternative cost-effective culture medium. Aquaculture wastewater is considered as a highly potential candidate due to its high nutrient content and large quantity generated from the rapid growth of aquaculture sector. In this study, Tetraselmis chuii cultured in different media with or without wastewater was evaluated for its growth, proximate composition and carotenoid production. The results showed that significantly ( P < 0.05) higher growth (4.3 × 105 cells mL-1) and protein (56.4% dry weight), lipid (44% dry weight) and carbohydrate (20% of dry weight) contents were found in T. chuii when they were cultured in the combination of both wastewater and Conway (wastewater + Conway) medium. However, carotenoid production of T. chuii was significantly increased ( P < 0.05) when it was cultured in wastewater only, followed by Conway + wastewater and Conway medium only. Therefore, the incorporation of wastewater with commercial medium Convey is recommended for a cost-effective microalgae culture, as well as for the enhancement of growth and nutritional content of microalgae.

  12. [Subtractive gene cloning and gene-disruption for elucidation of pseudohyphal formation in Candida tropicalis].

    PubMed

    Suzuki, Takahito

    2003-01-01

    The dimorphic transition from yeast to pseudohyphae in the petroleum-assimilating yeast Candida tropicalis occurs following the addition of ethanol to glucose semi-defined medium. Subtractive gene cloning was performed on the cDNA from the yeast-growing control culture and on that from the ethanol-supplemented one (the ethanol culture). A homologue of Schizosaccharomyces pombe nmt1+ or Saccharomyces cerevisiae THI5 was isolated from the cDNA fraction as a preferentially expressed gene for the ethanol culture. This homologue was tentatively called Ctnmt1+, since exogenous thiamine repressed its expression in C. tropicalis growth media. The ethanol culture showed a biphasic pattern of growth phases and the expression of Ctnmt1+ occurred at the first growth phase. The supplementation of thiamine to the ethanol culture at the first phase was followed by repression of Ctnmt1+ expression and also delay of pseudohyphal growth: filamentous growth was inhibited and chains of yeast cells were formed. A Ctnmt1+ disruptant of this organism did not show thiamine auxotrophy and produced pseudohyphal filaments even in the control culture. The supplementation of oxythiamine, an analog of thiamine, to the control culture was followed by the appearance of pseudohyphal filaments, indicating the participation of thiamine during the process of pseudohyphal growth in this organism.

  13. Mycelium growth stimulation of the desert truffle Terfezia claveryi chatin by β-cyclodextrin.

    PubMed

    López-Nicolás, José Manuel; Pérez-Gilabert, Manuela; García-Carmona, Francisco; Lozano-Carrillo, María Cecilia; Morte, Asunción

    2013-01-01

    The commercial value of Terfezia claveryi, an edible desert truffle with important gastronomic, nutritional, and antioxidant properties, has led to growing interest in its cultivation. The erratic and slow growth of T. claveryi mycelium in vitro represents an impairment to obtain mycorrhizal plants, and it makes necessary to find a new culture medium able to overcome these drawbacks. In this work, we analyze the effect of cyclodextrins (CDs) on the growth of T. claveryi mycelium. Different parameters, including colony diameter, growth rate, and colony fresh weight, were evaluated, both in the presence and absence of these encapsulant agents. The results obtained confirm the ability of CDs to stimulate the growth of T. claveryi mycelium when present in the culture medium. A similar effect was observed when CDs were added to the culture medium of Tuber melanosporum. Three natural (α-, β-, and γ) and two modified (hydroxypropil-β and methyl-β) CDs were assayed. The best results were obtained with β-cyclodextrin, but no improvement was observed with its chemically modified derivatives. CDs complex the different compounds present in the culture medium which impair mycelial growth. © 2013 American Institute of Chemical Engineers.

  14. A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards.

    PubMed

    Yuan, Zhihui; Ruan, Jujun; Li, Yaying; Qiu, Rongliang

    2018-04-10

    Bioleaching is a green recycling technology for recovering precious metals from waste printed circuit boards (WPCBs). However, this technology requires increasing cyanide production to obtain desirable recovery efficiency. Luria-Bertani medium (LB medium, containing tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) was commonly used in bioleaching of precious metal. In this study, results showed that LB medium did not produce highest yield of cyanide. Under optimal culture conditions (25 °C, pH 7.5), the maximum cyanide yield of the optimized medium (containing tryptone 6 g/L and yeast extract 5 g/L) was 1.5 times as high as that of LB medium. In addition, kinetics and relationship of cell growth and cyanide production was studied. Data of cell growth fitted logistics model well. Allometric model was demonstrated effective in describing relationship between cell growth and cyanide production. By inserting logistics equation into allometric equation, we got a novel hybrid equation containing five parameters. Kinetic data for cyanide production were well fitted to the new model. Model parameters reflected both cell growth and cyanide production process. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Development of a high- versus low-pathogenicity model of the free-living amoeba Naegleria fowleri.

    PubMed

    Burri, Denise C; Gottstein, Bruno; Zumkehr, Béatrice; Hemphill, Andrew; Schürch, Nadia; Wittwer, Matthias; Müller, Norbert

    2012-10-01

    Species in the genus Naegleria are free-living amoebae of the soil and warm fresh water. Although around 30 species have been recognized, Naegleria fowleri is the only one that causes primary amoebic meningoencephalitis (PAM) in humans. PAM is an acute and fast progressing disease affecting the central nervous system. Most of the patients die within 1-2 weeks of exposure to the infectious water source. The fact that N. fowleri causes such fast progressing and highly lethal infections has opened many questions regarding the relevant pathogenicity factors of the amoeba. In order to investigate the pathogenesis of N. fowleri under defined experimental conditions, we developed a novel high- versus low-pathogenicity model for this pathogen. We showed that the composition of the axenic growth media influenced growth behaviour and morphology, as well as in vitro cytotoxicity and in vivo pathogenicity of N. fowleri. Trophozoites maintained in Nelson's medium were highly pathogenic for mice, demonstrated rapid in vitro proliferation, characteristic expression of surface membrane vesicles and a small cell diameter, and killed target mouse fibroblasts by both contact-dependent and -independent destruction. In contrast, N. fowleri cultured in PYNFH medium exhibited a low pathogenicity, slower growth, increased cell size and contact-dependent target cell destruction. However, cultivation of the amoeba in PYNFH medium supplemented with liver hydrolysate (LH) resulted in trophozoites that were highly pathogenic in mice, and demonstrated an intermediate proliferation rate in vitro, diminished cell diameter and contact-dependent target cell destruction. Thus, in this model, the presence of LH resulted in increased proliferation of trophozoites in vitro and enhanced pathogenicity of N. fowleri in mice. However, neither in vitro cytotoxicity mechanisms nor the presence of membrane vesicles on the surface correlated with the pathologic potential of the amoeba. This indicated that the pathogenicity of N. fowleri remains a complex interaction between as-yet-unidentified cellular mechanisms.

  16. Reinvestigation of Brevibacterium sp. Strain KY-4313 as a Source of Canthaxanthin

    PubMed Central

    Nelis, H. J.; De Leenheer, A. P.

    1989-01-01

    The hydrocarbon-utilizing Brevibacterium sp. strain KY-4313 was reevaluated for its potential to produce canthaxanthin, a carotenoid pigment of strong commercial interest. Three approaches were used to optimize the canthaxanthin yield from this organism, i.e., the preparation of mutants, the addition of supposedly carotenogenic chemicals to the growth medium, and growth promotion. Following treatment of the parent strain with N-nitrosomethylurea, a presumed mutant was isolated which showed a 32% increase in cellular canthaxanthin content. No effective carotenogenic chemicals were found in connection with hydrocarbon fermentations, in which mainly growth promotion through periodic medium renewal proved conducive to enhanced pigment production. Carotenogenesis could be stimulated in brain heart infusion broth by adding alcohols or retinol. Improved growth in this medium was generally not associated with higher canthaxanthin yields. Both superior growth and pigment levels were obtained in a newly designed medium based on fumaric acid-molasses. The maximum yields of canthaxanthin in shake flasks were (in milligrams per liter) 4.2 (brain heart infusion broth plus propanol-zinc sulfate), 3.6 (hydrocarbon medium), and 9.3 (fumaric acid-molasses), which represent a significant improvement over the originally reported optimal result (1 mg/liter). The corresponding yields of echinenone, the direct precursor of canthaxanthin, were 1.2, 1.6, and 2.3 mg/liter, respectively. Two-liter hydrocarbon batch fermentations involving medium renewal maximally produced 7.2 mg of canthaxanthin and 3.7 mg of echinenone per liter. PMID:16348027

  17. In Vitro Seeds Germination and Seedling Growth of Bambara Groundnut (Vigna subterranea (L.) Verdc. (Fabaceae)).

    PubMed

    Koné, Mongomaké; Koné, Tchoa; Silué, Nakpalo; Soumahoro, André Brahima; Kouakou, Tanoh Hilaire

    2015-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous grain legume. It occupies a prominent place in the strategies to ensure food security in sub-Saharan Africa. Development of an efficient in vitro regeneration system, a prerequisite for genetic transformation application, requires the establishment of optimal conditions for seeds germination and plantlets development. Three types of seeds were inoculated on different basal media devoid of growth regulators. Various strengths of the medium of choice and the type and concentration of carbon source were also investigated. Responses to germination varied with the type of seed. Embryonic axis (EA) followed by seeds without coat (SWtC) germinated rapidly and expressed a high rate of germination. The growth performances of plantlets varied with the basal medium composition and the seeds type. The optimal growth performances of plants were displayed on half strength MS basal medium with SWtC and EA as source of seeds. Addition of 3% sucrose in the culture medium was more suitable for a maximum growth of plantlets derived from EA.

  18. Streptomyces exploration is triggered by fungal interactions and volatile signals

    PubMed Central

    Jones, Stephanie E; Ho, Louis; Rees, Christiaan A; Hill, Jane E; Nodwell, Justin R; Elliot, Marie A

    2017-01-01

    It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells ‘explorers’, for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches. DOI: http://dx.doi.org/10.7554/eLife.21738.001 PMID:28044982

  19. Selection and optimization of Bacillus atrophaeus inoculum medium and its effect on spore yield and thermal resistance.

    PubMed

    Sella, Sandra Regina B R; Dlugokenski, Regina Elizabete F; Guizelini, Belquis P; Vandenberghe, Luciana P S; Medeiros, Adriane B P; Pandey, Ashok; Soccol, Carlos Ricardo

    2008-12-01

    Bacillus atrophaeus's spores are used as biological indicators to monitor sterilization processes and as a Bacillus anthracis surrogate in the development and validation of biosafety methods. The regular use of biological indicators to evaluate the efficiency of sterilization processes is a legal requirement for health services. However, its high cost hinders its widespread use. Aiming at developing a cost-effective inoculum medium, soybean molasses and nutrient-supplemented vinasse were evaluated for their effectiveness in solid-state fermentation (SSF). In biomass production, the results demonstrated that all tested compositions favor growth by providing the nutritional demands of the microorganism. Optimum casein peptone and soybean molasses concentration (1.0%, 2.5%, or 4.0%) was determined by a 2((2-0)) factorial experimental design. The results have showed a positive influence of peptone on biomass production. In order to define peptone final concentration (4.0% or 6.0%), a 2(2) factorial experimental design was used. An optimized medium containing 4.0% soybean molasses and 4.0% casein peptone was similar in performance to a synthetic control medium (tryptone soy broth) in dry-heat thermal-resistant spore production by SSF. An experiment performed under optimum SSF conditions resulted in 1.9 x 10(10) CFU g(-1) dry matter with D (160 degrees C) = 5.2 +/- 0.2 min.

  20. [Selection of acetate-tolerant mutants from Escherichia coli DH5alpha and the metabolic properties of mutant DA19].

    PubMed

    Zhu, Caiqing; Ye, Qin

    2003-08-01

    Esherichia coli DH5alpha is one of the widely used host strains in genetic engineering. However, foreign gene expression level in this strain is seriously inhibited due to its great sensitivity to the accumulated metabolite, acetate. This study aimed at improving the tolerance of this strain against acetate. Cells of E. coli DH5alpha were irradiated with 60Co, and subsequently continuous culture of the irradiated cells was conducted with gradual increase in the dilution rate and the selective pressure, acetate concentration in the medium. The mutants were picked up on MA plates which contained 5g/L sodium acetate. 5 strains with great improvement in acetate tolerance were obtained, among which DA19 was the best. In cultivation of DA19 in complex media YPS and YPS2G, the cell density, maximum specific growth rate and acetate produced were respectively 1.17 and 1.05, 1.08 and 1.27, and 0.06 and 0.59 times of those of DH5alpha. In a chemically defined medium, the cell density of DA19 was 3.4-fold of that of DH5alpha. The cell density of DA19 in a medium containing 10g/L sodium acetate was comparable to that of DH5alpha in the same medium without the addition of acetate.

  1. Novel chemometric strategy based on the application of artificial neural networks to crossed mixture design for the improvement of recombinant protein production in continuous culture.

    PubMed

    Didier, Caroline; Forno, Guillermina; Etcheverrigaray, Marina; Kratje, Ricardo; Goicoechea, Héctor

    2009-09-21

    The optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined by means of artificial neural networks (ANN) coupled with crossed mixture experimental design. This combination constitutes a novel approach to develop a medium for cultivating genetically engineered mammalian cells. The compounds were collected in two mixtures of three elements each, and the experimental space was determined by a crossed mixture design. Empirical data from 51 experimental units were used in a multiresponse analysis to train artificial neural networks which satisfy different requirements, in order to define two new culture media (Medium 1 and Medium 2) to be used in a continuous biopharmaceutical production process. These media were tested in a bioreactor to produce a recombinant protein in CHO cells. Remarkably, for both predicted media all responses satisfied the predefined goals pursued during the analysis, except in the case of the specific growth rate (mu) observed for Medium 1. ANN analysis proved to be a suitable methodology to be used when dealing with complex experimental designs, as frequently occurs in the optimization of production processes in the biotechnology area. The present work is a new example of the use of ANN for the resolution of a complex, real life system, successfully employed in the context of a biopharmaceutical production process.

  2. Studies on the growth and flowering of a short-day plant, Wolffia microscopica : II. Role of metal ions and chelates.

    PubMed

    Seth, P N; Venkataraman, R; Maheshwari, S C

    1970-12-01

    As found earlier, supply of EDTA was obligatory for both flowering and satisfactory vegetative growth in Wolffia microscopica. It is now shown that the metal affecting growth and flowering is most probably iron. Omission of Fe but not of Cu, Zn, Mn and B from the medium markedly affects vegetative growth. There exists also a strong interaction between EDTA and Fe, one being largely inactive in the absence of the other. When Fe-EDDHA is substituted for Fe-citrate and EDTA in the medium, no great effect is seen in vegetative growth, but flowering takes place even under continuous light. Studies with (59)Fe show that, in the medium containing Fe-EDDHA, Fe uptake is stimulated several-fold; this is apparently associated with the flowering condition.

  3. Nitrate uptake and utilization is modulated by exogenous gamma-aminobutyric acid in Arabidopsis thaliana seedlings.

    PubMed

    Barbosa, Jose M; Singh, Narendra K; Cherry, Joe H; Locy, Robert D

    2010-06-01

    Exogenously applied GABA modulates root growth by inhibition of root elongation when seedlings were grown in vitro on full-strength Murashige and Skoog (MS) salts, but root elongation was stimulated when seedlings were grown on 1/8 strength MS salts. When the concentration of single ions in MS salts was individually varied, the control of growth between inhibition and stimulation was found to be related to the level of nitrate (NO(3)(-)) in the growth medium. At NO(3)(-) concentrations below 40 mM (full-strength MS salts level), root growth was stimulated by the addition of GABA to the growth medium; whereas at concentrations above 40 mM NO(3)(-), the addition of GABA to the growth medium inhibited root elongation. GABA promoted NO(3)(-) uptake at low NO(3)(-), while GABA inhibited NO(3)(-) uptake at high NO(3)(-). Activities of several enzymes involved in nitrogen and carbon metabolism including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and phosphoenol pyruvate carboxylase (PEPCase) were regulated by GABA in the growth medium. Supplementing 1/8 strength MS medium with 50 mM GABA enhanced the activities of all of the above enzymes except ICDH activities in root tissues. However, at full-strength MS, GABA showed no inhibitory effect on the activities of these enzymes, except on GS in both root and shoot tissues, and PEPCase activity in shoot tissues. Exogenous GABA increased the amount of NR protein rather than its activation status in the tissues. This study shows that GABA affects the growth of Arabidopsis, possibly by acting as a signaling molecule, modulating the activity of enzymes involved in primary nitrogen metabolism and nitrate uptake.

  4. Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter.

    PubMed

    Aucina, Algis; Rudawska, Maria; Leski, Tomasz; Skridaila, Audrius; Riepsas, Edvardas; Iwanski, Michal

    2007-08-01

    We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities.

  5. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Characterization of release of basic fibroblast growth factor from bovine retinal endothelial cells in monolayer cultures.

    PubMed Central

    Brooks, R A; Burrin, J M; Kohner, E M

    1991-01-01

    Release of basic fibroblast growth factor (bFGF) was investigated in bovine retinal endothelial cells (BREC) maintained in monolayer culture. Confluent cells released bFGF into serum-free culture medium or medium containing 5% serum at rates of up to 105.2 and 61.3 pM/day respectively. bFGF release coincided with a decrease in monolayer cell number and increases in lactate dehydrogenase (LDH) concentration and cells and cell-debris particles in the medium, which suggested that cell damage and lysis were responsible for growth-factor release. Maximum bFGF release at 24 h (230 +/- 10 pM) occurred when the cells were treated with lipopolysaccharide (10 micrograms/ml), which also produced the greatest changes in parameters of cell damage. Sub-confluent cells showed little overt damage at 24 h, but released bFGF (78 +/- 20 pM) along with LDH, indicating that some cell lysis had occurred. Insulin-like growth factor 1 (IGF-1) was also released into serum-free culture medium at a rate of 0.34 nM/day, but not into medium containing serum or when the cells were treated with lipopolysaccharide. This implies that the mechanism of IGF-1 release is different from that of bFGF and is not related to cell damage. Culture medium conditioned by BREC stimulated the proliferation of these cells, as measured by an increase in their incorporation of [methyl-3H]thymidine from 7550 +/- 479 to 10467 +/- 924 d.p.m. These results demonstrate that bFGF is released from damaged BREC and that medium conditioned by these cells can stimulate retinal-endothelial-cell proliferation. This strengthens the case for an involvement of this growth factor in retinal neovascularization. Images Fig. 1. PMID:2039465

  7. Development and optimization of a new culture media using extruded bean as nitrogen source.

    PubMed

    Batista, Karla A; Fernandes, Kátia F

    2015-01-01

    The composition of a culture medium is one of the most important parameters to be analyzed in biotechnological processes with industrial purposes, because around 30-40% of the production costs were estimated to be accounted for the cost of the growth medium [1]. Since medium optimization using a one-factor-at-a-time approach is time-consuming, expensive, and often leads to misinterpretation of results, statistical experimental design has been applied to medium optimization for growth and metabolite production [2-5]. In this scenario, the use of mixture design to develop a culture medium containing a cheaper nitrogen source seems to be more appropriate and simple. In this sense, the focus of this work is to present a detailed description of the steps involved in the development of a optimized culture medium containing extruded bean as nitrogen source. •In a previous work we tested a development of new culture media based on the composition of YPD medium, aiming to reduce bioprocess costs as well as to improve the biomass production and heterologous expression.•The developed medium was tested for growth of Saccharomyces cerevisiae and Pichia pastoris (GS 115).•The use of culture media containing extruded bean as sole nitrogen source showed better biomass production and protein expression than those observed in the standard YPD medium.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibitedmore » the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.« less

  9. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices

    PubMed Central

    2018-01-01

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture. PMID:29552635

  10. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices.

    PubMed

    Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M

    2018-03-12

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.

  11. Influence of nutrient medium composition on uranium toxicity and choice of the most sensitive growth related endpoint in Lemna minor.

    PubMed

    Horemans, Nele; Van Hees, May; Saenen, Eline; Van Hoeck, Arne; Smolders, Valérie; Blust, Ronny; Vandenhove, Hildegarde

    2016-01-01

    Uranium (U) toxicity is known to be highly dependent on U speciation and bioavailability. To assess the impact of uranium on plants, a growth inhibition test was set up in the freshwater macrophyte Lemna minor. First growth media with different compositions were tested in order to find a medium fit for testing U toxicity in L. minor. Following arguments were used for medium selection: the ability to sustain L. minor growth, a high solubility of U in the medium and a high percentage of the more toxic U-species namely UO2(2+). Based on these selection criteria a with a low phosphate concentration of 0.5 mg L(-1) and supplemented with 5 mM MES (2-(N-morpholino)ethanesulfonic acid) to ensure pH stability was chosen. This medium also showed highest U toxicity compared to the other tested media. Subsequently a full dose response curve for U was established by exposing L. minor plants to U concentrations ranging from 0.05 μM up to 150 μM for 7 days. Uranium was shown to adversely affect growth of L. minor in a dose dependent manner with EC10, EC30 and EC50 values ranging between 1.6 and 4.8 μM, 7.7-16.4 μM and 19.4-37.2 μM U, respectively, depending on the growth endpoint. Four different growth related endpoints were tested: frond area, frond number, fresh weight and dry weight. Although differences in relative growth rates and associated ECx-values calculated on different endpoints are small (maximal twofold difference), frond area is recommended to be used to measure U-induced growth effects as it is a sensitive growth endpoint and easy to measure in vivo allowing for measurements over time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Determination of specific growth stages of plant cell suspension cultures by monitoring conductivity changes in the medium.

    PubMed

    Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M

    1974-03-01

    Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.

  13. Growth medium sterilization using decomposition of peracetic acid for more cost-efficient production of omega-3 fatty acids by Aurantiochytrium.

    PubMed

    Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee

    2018-06-01

    Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.

  14. Human dental pulp stem cells cultured in serum-free supplemented medium

    PubMed Central

    Bonnamain, Virginie; Thinard, Reynald; Sergent-Tanguy, Solène; Huet, Pascal; Bienvenu, Géraldine; Naveilhan, Philippe; Farges, Jean-Christophe; Alliot-Licht, Brigitte

    2013-01-01

    Growing evidence show that human dental pulp stem cells (DPSCs) could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells. Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 h. Adherent (ADH) and non-adherent (non-ADH) cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Both ADH and non-ADH populations were analyzed by FACS and/or PCR. Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133, and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs that migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expanded and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte progenitors at different stages of commitment and, interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the ADH-DPSCs. PMID:24376422

  15. "Ant" and "grasshopper" life-history strategies in Saccharomyces cerevisiae.

    PubMed

    Spor, Aymé; Wang, Shaoxiao; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine

    2008-02-13

    From the evolutionary and ecological points of view, it is essential to distinguish between the genetic and environmental components of the variability of life-history traits and of their trade-offs. Among the factors affecting this variability, the resource uptake rate deserves particular attention, because it depends on both the environment and the genetic background of the individuals. In order to unravel the bases of the life-history strategies in yeast, we grew a collection of twelve strains of Saccharomyces cerevisiae from different industrial and geographical origins in three culture media differing for their glucose content. Using a population dynamics model to fit the change of population size over time, we estimated the intrinsic growth rate (r), the carrying capacity (K), the mean cell size and the glucose consumption rate per cell. The life-history traits, as well as the glucose consumption rate, displayed large genetic and plastic variability and genetic-by-environment interactions. Within each medium, growth rate and carrying capacity were not correlated, but a marked trade-off between these traits was observed over the media, with high K and low r in the glucose rich medium and low K and high r in the other media. The cell size was tightly negatively correlated to carrying capacity in all conditions. The resource consumption rate appeared to be a clear-cut determinant of both the carrying capacity and the cell size in all media, since it accounted for 37% to 84% of the variation of those traits. In a given medium, the strains that consume glucose at high rate have large cell size and low carrying capacity, while the strains that consume glucose at low rate have small cell size but high carrying capacity. These two contrasted behaviors may be metaphorically defined as "ant" and "grasshopper" strategies of resource utilization. Interestingly, a strain may be "ant" in one medium and "grasshopper" in another. These life-history strategies are discussed with regards to yeast physiology, and in an evolutionary perspective.

  16. Systematic Analysis on the Environment of Innovative Small and Medium Enterprises

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Shi, Zhuqing

    Environment has great influence on the growth of Innovative SMEs(small and medium enterprises), and Such enterprises has special requirements to growth environment. The ecological factors of Innovative SMEs growth environment include policy and law, social culture, finance, science and technology, market, service, and nature which get together with interactive and interrelated. Innovative SMEs depend on the environment; at the same time react to the environment, so as to achieve sustained innovation and healthy growth in the process of interaction with ecological environment.

  17. Wool-waste as organic nutrient source for container-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) inmore » pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.« less

  18. An investigation into the stability of commercial versus MG63-derived hepatocyte growth factor under flow cultivation conditions.

    PubMed

    Meneghello, Giulia; Storm, Michael P; Chaudhuri, Julian B; De Bank, Paul A; Ellis, Marianne J

    2015-03-01

    The scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%. The concentration of secreted HGF was 10 times greater than the working concentration of commercially-available HGF. Thus HGF within this medium has increased stability; MG63-derived HGF should therefore be investigated as a cost-effective alternative to current lyophilised powders for use in in vitro models. Furthermore, we recommend that those intending to use HGF (or other growth factors) should consider similar stability testing before embarking on experiments with media flow.

  19. Sulfonamide Resistance of Propionibacteria: Nutrition and Transporta

    PubMed Central

    Reddy, M. S.; Williams, F. D.; Reinbold, G. W.

    1973-01-01

    Three variations of a synthetic growth medium were used to study the folic acid and p-aminobenzoic acid (PABA) requirements of Propionibacterium. P. shermanii, P. freudenreichii, P. thoenii, and P. arabinosum synthesize folic acid and do not require PABA or folic acid. P. pentosaceum, P. jensenii, and P. rubrum are stimulated by folic acid or PABA, but do not show an absolute requirement. P. peterssonii shows a requirement for either PABA or folic acid. The addition of 300 μg of sulfadiazine per ml did not inhibit growth of propionibacteria in the synthetic medium, synthetic medium plus PABA, or synthetic medium plus folic acid. P. freudenreichii was not inhibited even when 500 μg of sulfadiazine per ml was added to the synthetic medium, nor did it degrade sulfadiazine significantly. Trimethoprim totally inhibited the growth of Propionibacterium. Radioactive sulfadiazine was transported by sulfadiazine-sensitive Escherichia coli but not by P. freudenreichii, indicating that the sulfadiazine resistance of propionibacteria could be mainly due to their inability to transport sulfonamides. PMID:4586139

  20. Dynamic speckle study of microbial growth

    NASA Astrophysics Data System (ADS)

    Vincitorio, F. M.; Mulone, C.; Marcuzzi, P. A.; Budini, N.; Freyre, C.; Lopez, A. J.; Ramil, A.

    2015-08-01

    In this work we present a characterization of yeast dynamic speckle activity during growth in an isolated agar culture medium. We found that it is possible to detect the growth of the microorganisms even before they turn out to be visible. By observing the time evolution of the speckle activity at different regions of the culture medium we could extract a map of the growth process, which served to analyze how the yeast develops and spreads over the agar's medium. An interesting point of this study concerns with the influence of the laser light on the yeast growth rate. We have found that yeast finds hard to develop at regions with higher laser light illumination, although we used a synchronous system to capture the speckle pattern. The results obtained in this work would serve us as a starting point to fabricate a detector of growing microorganism colonies, with obvious interesting applications in diverse areas.

  1. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    NASA Astrophysics Data System (ADS)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  2. Procedures involving lipid media for detection of bacterial contamination in breweries.

    PubMed

    Van Vuuren, H J; Louw, H A; Loos, M A; Meisel, R

    1977-02-01

    The liquid equivalent of universal beer agar, designated universal beer liquid medium, and its beer-free equivalent, universal liquid medium (UL), were equally effective in demonstrating bacterial contamination in 120 of 200 samples from different stages of commercial brewing process. Growth of the contaminants after 3 days was consistently more luxuriant in the UL medium. A yeast-water substrate medium failed to reveal many contaminants detected with UL in 392 samples from three breweries and revealed only a few not detected with UL. The use of UL and a lactose-peptone medium, with microscope examination of the media for bacterial growth, permitted detection of 93% of the known contaminants compared to 87%, detected with UL alone; this combination or universal beer liquid medium plus lactose-peptone medium can therefore be recommended for the detection of bacterial contaminants in brewery samples. Bacterial contamination of pitching yeasts appeared to be a particular problem in the breweries investigated.

  3. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.

    PubMed

    Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A

    2017-07-01

    Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical nutrients on growth, lysis, spore formation, BoNT and TC production, and stability of BoNTs of C. botulinum We show that for C. botulinum ATCC 3502 cultured in a complex medium, a high level of arginine repressed BoNT expression by ca. 1,000-fold and also strongly reduced sporulation. Arginine stimulated growth and compensated for a lack of glucose. BoNT and toxin complex proteins were partially inactivated in a complex medium lacking glucose. This work should aid in optimizing BoNT production for pharmaceutical uses, and furthermore, an understanding of the nutritional regulation of growth and BoNT formation may provide insights into growth and BoNT formation in foods and clinical samples and into the enigmatic function of BoNTs in nature. Copyright © 2017 American Society for Microbiology.

  4. Growth enhancement of effective microorganisms for bioremediation of crude oil contaminated waters.

    PubMed

    Mukred, Abdualdaim Mohammed; Abd-Hamid, Aidil; Hamzah, Ainon; Yusoff, Wan Mohtar Wan

    2008-07-01

    The bioremediation of polluted groundwater, wastewater aeration pond and biopond sites was investigated using bacteria isolated from these sites located at the oil refinery Terengganu Malaysia. Out of 62 isolates, only 16 isolates from groundwater (8) and wastewater aeration pond (3) and biopond (5) were chosen based on growth medium containing 1% (v/v) Tapis crude oil. Only four isolates; Acinetobacter faecalis, Staphylococcus sp., Pseudomonas putida and Neisseria elongata showed percentage biodegradation of crude oil more than 50% after 5 days using Mineral Salts Medium (MSM). The effect of physical parameters (temperature, pH and agitation) on growth by all four strains showed a maximum growth in MSM medium with 1% Tapis crude oil at 37 degrees C with pH 7 and agitation of 130 rpm.

  5. Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer.

    PubMed

    Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V

    2013-06-01

    Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.

  6. Effect of cytokinins and auxins on the growth of free-living conchocelis of Porphyra yezoensis

    NASA Astrophysics Data System (ADS)

    de-Lin, Duan; Xiu-Geng, Fei; Hong-Xu, Ren; Xiong, Chen; Ying, Zhu

    1995-09-01

    IAA 3-Indolylacetic acid, NAA a-Naphthylacetic acid and cytokinins in PESI culture medium were used in a study on the effects of plant hormones on the growth of free-living conchocelis of Porphyra yezoensis which showed that its growth in medium with cytokinins, IAA and NAA was more rapid than that in medium with non—phytohormones; that the optimal concentrations for promoting growth were 10 μg/L for IAA and ZA (Zeatin), and 0.1 μg/L for BA 6-Benzyl amino purine and KIN 6-Furfurylamino- purine. Mix use of NAA, IAA and cytokinins, NAA/ZA 1-1000/1 μg/L, NAA/BA 10/1-1000 μg/L, NAA/KIN 1/1-1000 μg/L promoted growth. IAA/ZA 0.1-1/0.1-1 μg/L; IAA/BA 0.1-1/0.1-10 μg/L IAA/KIN 1/0.1-1000 μg/L also promoted growth.

  7. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  8. Material and method for promoting the growth of anaerobic bacteria

    DOEpatents

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  9. Effects of glucose, lactate and basic FGF as limiting factors on the expansion of human induced pluripotent stem cells.

    PubMed

    Horiguchi, Ikki; Urabe, Yusuke; Kimura, Keiichi; Sakai, Yasuyuki

    2018-01-01

    Pluripotent stem cells (PSCs) are one of the promising cell sources for tissue engineering and drug screening. However, mass production of induced pluripotent stem cells (iPSCs) is still developing. Especially, a huge amount of culture medium usage causes expensive cost in the mass production process. In this report, we reduced culture medium usage by extending interval of changing culture medium. In parallel, we also increased glucose concentration and supplied heparan sulfate to avoid depletion of glucose and bFGF, respectively. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses showed that reducing medium change frequency increased differentiation marker expressions but high glucose concentration downregulated these expressions. In contrast, heparan sulfate did not prevent differentiation marker expressions. According to analyses of growth rate, cell growth with extended medium change interval was decreased in later stage of log growth phase despite the existence of high glucose concentration and heparan sulfate. This result and culturing iPSCs with lactate showed that the accumulation of excreted lactate decreased the growth rate regardless of pH control. Conclusively, these experiments show that adding glucose and removing lactate are important to expand iPSCs with reduced culture medium usage. This knowledge should be useful to design economical iPSC mass production and differentiation system. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakala, Rajbabu; Watanabe, Takuya; Benedict, Claude R

    2002-06-01

    Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [{sup 3}H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels inmore » the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors.« less

  11. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans

    USGS Publications Warehouse

    Roden, E.E.; Lovley, D.R.

    1993-01-01

    The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)- citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe3O4) and siderite (FeCO3) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO3) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S0 reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.

  13. Determining of migraine prognosis using latent growth mixture models.

    PubMed

    Tasdelen, Bahar; Ozge, Aynur; Kaleagasi, Hakan; Erdogan, Semra; Mengi, Tufan

    2011-04-01

    This paper presents a retrospective study to classify patients into subtypes of the treatment according to baseline and longitudinally observed values considering heterogenity in migraine prognosis. In the classical prospective clinical studies, participants are classified with respect to baseline status and followed within a certain time period. However, latent growth mixture model is the most suitable method, which considers the population heterogenity and is not affected drop-outs if they are missing at random. Hence, we planned this comprehensive study to identify prognostic factors in migraine. The study data have been based on a 10-year computer-based follow-up data of Mersin University Headache Outpatient Department. The developmental trajectories within subgroups were described for the severity, frequency, and duration of headache separately and the probabilities of each subgroup were estimated by using latent growth mixture models. SAS PROC TRAJ procedures, semiparametric and group-based mixture modeling approach, were applied to define the developmental trajectories. While the three-group model for the severity (mild, moderate, severe) and frequency (low, medium, high) of headache appeared to be appropriate, the four-group model for the duration (low, medium, high, extremely high) was more suitable. The severity of headache increased in the patients with nausea, vomiting, photophobia and phonophobia. The frequency of headache was especially related with increasing age and unilateral pain. Nausea and photophobia were also related with headache duration. Nausea, vomiting and photophobia were the most significant factors to identify developmental trajectories. The remission time was not the same for the severity, frequency, and duration of headache.

  14. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species.

    PubMed Central

    Genthner, B R; Davis, C L; Bryant, M P

    1981-01-01

    Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains. PMID:6791591

  15. Extracellular Enzymes Produced by the Cultivated Mushroom Lentinus edodes during Degradation of a Lignocellulosic Medium

    PubMed Central

    Leatham, Gary F.

    1985-01-01

    Although the commercially important mushroom Lentinus (= Lentinula) edodes (Berk.) Sing. can be rapidly cultivated on supplemented wood particles, fruiting is not reliable. This study addressed the problem by developing more information about growth and development on a practical oakwood-oatmeal medium. The study determined (i) the components degraded during a 150-day incubation at 22°C, (ii) the apparent vegetative growth pattern, (iii) the likely growth-limiting nutrient, and (iv) assays that can be used to study key extracellular enzymes. All major components of the medium were degraded, lignin selectively so. The vegetative growth rate was most rapid during the initial 90 days, during which weight loss correlated with glucosamine accumulation (assayed after acid hydrolysis). The rate then slowed; in apparent preparation for fruiting, the cultures rapidly accumulated glucosamine (or its oligomer or polymer). Nitrogen was growth limiting. Certain enzyme activities were associated with the pattern of medium degradation, with growth, or with development. They included cellulolytic system enzymes, hemicellulases, the ligninolytic system, (gluco-)amylase, pectinase, acid protease, cell wall lytic enzymes (laminarinase, 1,4-β-d-glucosidase, β-N-acetyl-d-glucosaminidase, α-d-galactosidase, β-d-mannosidase), acid phosphatase, and laccase. Enzyme activities over the 150-day incubation period with and without a fruiting stimulus are reported. These results provide a basis for future investigations into the physiology and biochemistry of growth and fruiting. PMID:16346918

  16. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  17. Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica.

    PubMed

    Wakayama, Keishi; Yamaguchi, Sakiko; Takeuchi, Akihito; Mizumura, Tasuku; Ozawa, Shotaro; Tomizuka, Noboru; Hayakawa, Takashi; Nakagawa, Tomoyuki

    2016-11-01

    In this study we found that the methylotrophic yeast Pichia methanolica showed impaired growth on high methanol medium (>5%, or 1.56 M, methanol). In contrast, P. methanolica grew well on glucose medium containing 5% methanol, but the growth defects reappeared on glucose medium supplemented with 5 mM formaldehyde. During methanol growth of P. methanolica, formaldehyde accumulated in the medium up to 0.3 mM before it was consumed rapidly based on cell growth. These findings indicate that the growth defect of P. methanolica on high methanol media is not caused directly by methanol toxicity, but rather by formaldehyde, which is a key toxic intermediate of methanol metabolism. Moreover, during methanol growth of P. methanolica, expression of enzymes in the methanol-oxidation pathway were induced before the alcohol oxidase isozymes Mod1p and Mod2p, and Mod1p expression was induced before Mod2p. These results suggest that to avoid excess accumulation of formaldehyde-the toxic intermediate of methanol metabolism-P. methanolica grown on methanol strictly regulates the order in which methanol-metabolizing enzymes are expressed. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Collaborative investigation of broth microdilution and semisolid agar dilution for in vitro susceptibility testing of Candida albicans.

    PubMed Central

    Shawar, R; Paetznick, V; Witte, Z; Ensign, L G; Anaissie, E; LaRocco, M

    1992-01-01

    A study was performed in two laboratories to evaluate the effect of growth medium and test methodology on inter- and intralaboratory variations in the MICs of amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITRA), and the triazole Sch 39304 (SCH) against 14 isolates of Candida albicans. Testing was performed by broth microdilution and semisolid agar dilution with the following media, buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS): buffered yeast nitrogen base (BYNB), Eagle's minimal essential medium (EMEM), RPMI 1640 medium (RPMI), and synthetic amino acid medium for fungi (SAAMF). Inocula were standardized spectrophotometrically, and endpoints were defined by the complete absence of growth for AMB and by no more than 25% of the growth in the drug-free control for all other agents. Comparative analyses of median MICs, as determined by each test method, were made for all drug-medium combinations. Both methods yielded similar (+/- 1 twofold dilution) median MICs for AMB in EMEM and RPMI, 5FC in all media, and FLU in EMEM, RPMI, and SAAMF. In contrast, substantial between-method variations in median MICs were seen for AMB in BYNB and SAAMF, FLU In BYNB, and ITRA and SCH in all media. Interlaboratory concordance of median MICs was good for AMB, 5FC, and FLU but poor for ITRA and SCH in all media. Endpoint determinations were analyzed by use of kappa statistical analyses for evaluating the strength of observer agreement. Moderate to almost perfect interlaboratory agreement occurred with AMB and 5FC in all media and with FLU in EMEM, RPMI, and SAAMF, irrespective of the test method. Slight to almost perfect interlaboratory agreement occurred with ITRA and SCH in EMEM, RPMI, and SAAMF when tested by semisolid agar dilution but not broth microdilution. Kappa values assessing intralaboratory agreement between methods were high for 5FC in all media, for AMB in BYNB, ENEM, and RPMI, and for FLU in EMEM, RPMI, and SAAMF. One laboratory, but not the other, reported substantial to almost perfect agreement between methods for ITRA, and SCH in EMEM, RPMI, and SAAMF. Both laboratories reported poor agreement between methods for the azoles in BYNB. Discrepancies noted in azole-BYNB combinations were largely due to the greater inhibitory effect of these agents in BYNB than in other media. These results indicate that the semisolid agar dilution and broth microdilution methods with EMEM or RPMI yield equivalent and reproducible MICs for AMB, 5FC, and FLU but not ITRA and SCH. PMID:1500502

  19. Collaborative investigation of broth microdilution and semisolid agar dilution for in vitro susceptibility testing of Candida albicans.

    PubMed

    Shawar, R; Paetznick, V; Witte, Z; Ensign, L G; Anaissie, E; LaRocco, M

    1992-08-01

    A study was performed in two laboratories to evaluate the effect of growth medium and test methodology on inter- and intralaboratory variations in the MICs of amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITRA), and the triazole Sch 39304 (SCH) against 14 isolates of Candida albicans. Testing was performed by broth microdilution and semisolid agar dilution with the following media, buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS): buffered yeast nitrogen base (BYNB), Eagle's minimal essential medium (EMEM), RPMI 1640 medium (RPMI), and synthetic amino acid medium for fungi (SAAMF). Inocula were standardized spectrophotometrically, and endpoints were defined by the complete absence of growth for AMB and by no more than 25% of the growth in the drug-free control for all other agents. Comparative analyses of median MICs, as determined by each test method, were made for all drug-medium combinations. Both methods yielded similar (+/- 1 twofold dilution) median MICs for AMB in EMEM and RPMI, 5FC in all media, and FLU in EMEM, RPMI, and SAAMF. In contrast, substantial between-method variations in median MICs were seen for AMB in BYNB and SAAMF, FLU In BYNB, and ITRA and SCH in all media. Interlaboratory concordance of median MICs was good for AMB, 5FC, and FLU but poor for ITRA and SCH in all media. Endpoint determinations were analyzed by use of kappa statistical analyses for evaluating the strength of observer agreement. Moderate to almost perfect interlaboratory agreement occurred with AMB and 5FC in all media and with FLU in EMEM, RPMI, and SAAMF, irrespective of the test method. Slight to almost perfect interlaboratory agreement occurred with ITRA and SCH in EMEM, RPMI, and SAAMF when tested by semisolid agar dilution but not broth microdilution. Kappa values assessing intralaboratory agreement between methods were high for 5FC in all media, for AMB in BYNB, ENEM, and RPMI, and for FLU in EMEM, RPMI, and SAAMF. One laboratory, but not the other, reported substantial to almost perfect agreement between methods for ITRA, and SCH in EMEM, RPMI, and SAAMF. Both laboratories reported poor agreement between methods for the azoles in BYNB. Discrepancies noted in azole-BYNB combinations were largely due to the greater inhibitory effect of these agents in BYNB than in other media. These results indicate that the semisolid agar dilution and broth microdilution methods with EMEM or RPMI yield equivalent and reproducible MICs for AMB, 5FC, and FLU but not ITRA and SCH.

  20. Taurine Biosynthesis in a Fish Liver Cell Line (ZFL) Adapted to a Serum-Free Medium

    PubMed Central

    Liu, Chieh-Lun; Watson, Aaron M.; Place, Allen R.; Jagus, Rosemary

    2017-01-01

    Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable taurine levels. To provide a useful cell line for the investigation of taurine homeostasis, an adult zebrafish liver cell line (ZFL) has been adapted to a taurine-free medium by gradual accommodation to a commercially available synthetic medium, UltraMEM™-ITES. Here we show that ZFL cells are able to synthesize taurine and be maintained in medium without taurine. This has allowed for the investigation of the effects of taurine supplementation on cell growth, cellular amino acid pools, as well as the expression of the taurine biosynthetic pathway and taurine transporter genes in a defined fish cell type. After taurine supplementation, cellular taurine levels increase but hypotaurine levels stay constant, suggesting little suppression of taurine biosynthesis. Cellular methionine levels do not change after taurine addition, consistent with maintenance of taurine biosynthesis. The addition of taurine to cells grown in taurine-free medium has little effect on transcript levels of the biosynthetic pathway genes for cysteine dioxygenase (CDO), cysteine sulfinate decarboxylase (CSAD), or cysteamine dioxygenase (ADO). In contrast, supplementation with taurine causes a 30% reduction in transcript levels of the taurine transporter, TauT. This experimental approach can be tailored for the development of cell lines from aquaculture species for the elucidation of their taurine biosynthetic capacity. PMID:28587087

  1. Development of a semidefined growth medium for Pedobacter cryoconitis BG5 using statistical experimental design.

    PubMed

    Ong, Magdalena; Ongkudon, Clarence M; Wong, Clemente Michael Vui Ling

    2016-10-02

    Pedobacter cryoconitis BG5 are psychrophiles isolated from the cold environment and capable of proliferating and growing well at low temperature regime. Their cellular products have found a broad spectrum of applications, including in food, medicine, and bioremediation. Therefore, it is imperative to develop a high-cell density cultivation strategy coupled with optimized growth medium for P. cryoconitis BG5. To date, there has been no published report on the design and optimization of growth medium for P. cryoconitis, hence the objective of this research project. A preliminary screening of four commercially available media, namely tryptic soy broth, R2A, Luria Bertani broth, and nutrient broth, was conducted to formulate the basal medium. Based on the preliminary screening, tryptone, glucose, NaCl, and K2HPO4 along with three additional nutrients (yeast extract, MgSO4, and NH4Cl) were identified to form the basal medium which was further analyzed by Plackett-Burman experimental design. Central composite experimental design using response surface methodology was adopted to optimize tryptone, yeast extract, and NH4Cl concentrations in the formulated growth medium. Statistical data analysis showed a high regression factor of 0.84 with a predicted optimum optical (600 nm) cell density of 7.5 using 23.7 g/L of tryptone, 8.8 g/L of yeast extract, and 0.7 g/L of NH4Cl. The optimized medium for P. cryoconitis BG5 was tested, and the observed optical density was 7.8. The cost-effectiveness of the optimized medium was determined as 6.25 unit prices per gram of cell produced in a 250-ml Erlenmeyer flask.

  2. Studies of the Acetate Kinase-Phosphotransacetylase and the Butanediol-Forming Systems in Aerobacter aerogenes

    PubMed Central

    Brown, T. D. K.; Pereira, C. R. S.; Størmer, F. C.

    1972-01-01

    Mutants of Aerobacter aerogenes devoid of acetate kinase and phosphotransacetylase activities were isolated by selection for resistance to fluoroacetate on lactate medium. The mutants were used to study the role of the acetate kinase-phosphotransacetylase system in growth on acetate and glucose. Acetate kinase-negative and phosphotransacetylase-negative mutants were unable to grow on acetate minimal medium. Their growth rates on glucose minimal medium were identical with that of the parent strain under aerobic conditions, but lower growth rates were observed in the mutant strains during anaerobic growth on glucose medium. The mutants were unable to incorporate [2-14C]-acetate rapidly while growing on glycerol. Variations in acetate kinase and phosphotransacetylase levels during growth on glucose were studied. The specific activities of the enzymes increased approximately fivefold during aerobic growth on glucose in batch culture. The enzyme levels were also studied during anaerobic growth on glucose at constant pH (pH 5.8 and 7.0). Smaller increases in specific activities were found under these conditions. The role of acetate in the induction of the diacetyl (acetoin) reductase was investigated using a mutant deficient in both acetate kinase and phosphotransacetylase. The effect of pH on the induction of this enzyme during growth on glucose under anaerobic conditions was tested. The data support the idea that free acetic acid is the inducer for the enzymes of the butanediol-forming pathway in A. aerogenes. PMID:4640502

  3. Investigation of mitomycin-C-treated fibroblasts in 3-D collagen gel and conditioned medium for keratinocyte proliferation.

    PubMed

    Huang, Yi-Chau; Wang, Tzu-Wei; Sun, Jui-Sheng; Lin, Feng-Huei

    2006-03-01

    Fibroblasts produce a spectrum of necessary growth factors essential for growth and proliferation of a variety of cell types. In this study, the paracrine effect of mitomycin-C-treated fibroblasts with various densities in collagen gel for keratinocyte proliferation was investigated from which an optimum cell density and optimum conditioned medium would be determined to expand keratinocyte without further differentiation for skin equivalent tissue engineering. The optimum cell density in collagen feeder gel for optimum collected medium preparation will be determined by checking the level of keratinocyte growth factor and granulocyte macrophage colony-stimulating factor in conventional medium. The results showed that the cell density of 1 x 10(5) cells/gel in the feeder gel is better to produce optimum collected medium. The conditioned medium is prepared by mixing together the optimum collected medium and molecular cellular and developmental biology (MCDB) 153 medium in different ratios for keratinocyte growth. The keratinocyte viability will be measured by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine the optimum conditioned medium. From the study, 67% conditioned medium was supposed as the better medium for keratinocyte proliferation. In this experiment, the optimum cell density in feeder gel to coculture with keratinocytes is also determined as 1 x 10(5) cells/gel. Keratin 10 (K10) and Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling stain will be used to check the cell differentiation and apoptosis, respectively. The results suggest that keratinocytes should not be cultured in postconfluent conditions due to undesired apoptosis and differentiation. The result of cell viability from passages to passages shows that the optimum feeder gel plays a more important role to the keratinocyte proliferation than that of optimum conditioned medium. Keratinocytes cultured with optimum feeder gel in 67% conditioned medium could effectively promote proliferation, inhibit apoptosis, and prevent differentiation. The combination of conditioned media and feeder gel to culture keratinocytes without external supplements can provide an inexpensive way for keratinocyte proliferation and construct an environment for real-time communication between the two cells. The results conclude that keratinocyte cultivation in feeder gel with modified medium should be feasible in the production of high quality keratinocytes for skin equivalents preparation.

  4. Media for the aerobic growth of campylobacter

    USDA-ARS?s Scientific Manuscript database

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  5. Kitchen Microbiology: It's Easier Than You Think!

    ERIC Educational Resources Information Center

    Wilcoxson, Catherine; Shand, Stacey M.; Shand, Richard F.

    1999-01-01

    Offers a simple experiment that tests the effectiveness of cleaners that inhibit bacterial growth. Outlines a step-by-step method for preparing culture media that can be used for isolation and propagation of microorganisms. Concludes that kitchen medium is as efficient as the professionally-made medium in supporting colony growth. (CCM)

  6. Cultivation of Candidatus Liberibacter asiaticus and Ca. L. americanus associated with Huanglongbing

    USDA-ARS?s Scientific Manuscript database

    A new medium designated Liber A has been designed and used to successfully cultivate all three Candidatus Liberibacter species, the suspect causative agents of Huanglongbing (HLB) in citrus. The medium containing citrus vein extract and a growth factor sustained growth of Ca. Liberibacter species fo...

  7. Influence of Sodium Chloride on Growth of Neisseria meningitidis

    PubMed Central

    Mitzel, John R.; Hunter, Jack A.; Beam, Walter E.

    1972-01-01

    Nasopharyngeal isolates of Neisseria meningitidis were tested for growth on nutrient agar with and without the addition of 0.8% sodium chloride. Of the 822 strains tested, 1.3% grew on the salt-free medium, and 74.1% grew on the medium supplemented with sodium chloride. PMID:4626905

  8. Algal growth response to particle-bound orthophosphate and zinc.

    USGS Publications Warehouse

    Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.

    1986-01-01

    Effects of Zn (0-1 mu M total Zn(II)) and orthophosphate (8-12 mu M total P) additions on growth indices for the chlorophyte Selenastrum capricornutum were examined in a medium containing 50 mg liter-1 colloidal titania. Over the Zn(II) concentration range used, detrimental growth and yield effects were observed. Addition of P to a synthetic growth medium increased stationary phase cell density, but had minimal effect on growth rate and duration of lag phase. Presence of TiO2 particles in culture media significantly reduced Zn and P dissolved fractions.-from Authors

  9. An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H.

    PubMed

    Collins, R Eric; Deming, Jody W

    2013-07-01

    Colwellia is a genus of mostly psychrophilic halophilic Gammaproteobacteria frequently isolated from polar marine sediments and sea ice. In exploring the capacity of Colwellia psychrerythraea 34H to survive and grow in the liquid brines of sea ice, we detected a duplicated 37 kbp genomic island in its genome based on the abnormally high G + C content. This island contains an operon encoding for heterotetrameric sarcosine oxidase and is located adjacent to several genes used in the serial demethylation of glycine betaine, a compatible solute commonly used for osmoregulation, to dimethylglycine, sarcosine, and glycine. Molecular clock inferences of important events in the adaptation of C. psychrerythraea 34H to compatible solute utilization reflect the geological evolution of the polar regions. Validating genomic predictions, C. psychrerythraea 34H was shown to grow on defined media containing either choline or glycine betaine, and on a medium with sarcosine as the sole organic source of carbon and nitrogen. Growth by 8 of 9 tested Colwellia species on a newly developed sarcosine-based defined medium suggested that the ability to catabolize glycine betaine (the catabolic precursor of sarcosine) is likely widespread in the genus Colwellia. This capacity likely provides a selective advantage to Colwellia species in cold, salty environments like sea ice, and may have contributed to the ability of Colwellia to invade these extreme niches.

  10. Regulation of Fumonisin B1 Biosynthesis and Conidiation in Fusarium verticillioides by a Cyclin-Like (C-Type) Gene, FCC1†

    PubMed Central

    Shim, Won-Bo; Woloshuk, Charles P.

    2001-01-01

    Fumonisins are a group of mycotoxins produced in corn kernels by the plant-pathogenic fungus Fusarium verticillioides. A mutant of the fungus, FT536, carrying a disrupted gene named FCC1 (for Fusarium cyclin C1) resulting in altered fumonisin B1 biosynthesis was generated. FCC1 contains an open reading frame of 1,018 bp, with one intron, and encodes a putative 319-amino-acid polypeptide. This protein is similar to UME3 (also called SRB11 or SSN8), a cyclin C of Saccharomyces cerevisiae, and contains three conserved motifs: a cyclin box, a PEST-rich region, and a destruction box. Also similar to the case for C-type cyclins, FCC1 was constitutively expressed during growth. When strain FT536 was grown on corn kernels or on defined minimal medium at pH 6, conidiation was reduced and FUM5, the polyketide synthase gene involved in fumonisin B1 biosynthesis, was not expressed. However, when the mutant was grown on a defined minimal medium at pH 3, conidiation was restored, and the blocks in expression of FUM5 and fumonisin B1 production were suppressed. Our data suggest that FCC1 plays an important role in signal transduction regulating secondary metabolism (fumonisin biosynthesis) and fungal development (conidiation) in F. verticillioides. PMID:11282612

  11. Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering.

    PubMed

    Mellati, Amir; Kiamahalleh, Meisam Valizadeh; Madani, S Hadi; Dai, Sheng; Bi, Jingxiu; Jin, Bo; Zhang, Hu

    2016-11-01

    Providing a controllable and definable three-dimensional (3D) microenvironment for chondrogenic differentiation of mesenchymal stem cells (MSCs) remains a great challenge for cartilage tissue engineering. In this work, poly(N-isopropylacrylamide) (PNIPAAm) polymers with the degrees of polymerization of 100 and 400 (NI100 and NI400) were prepared and the polymer solutions were introduced into the preprepared chitosan porous scaffolds (CS) to form hybrids (CSNI100 and CSNI400, respectively). SEM images indicated that the PNIPAAm gel partially occupied chitosan pores while the interconnected porous structure of chitosan was preserved. MSCs were incorporated within the hybrid and cell proliferation and chondrogenic differentiation were monitored. After 7-day incubation of the cell-laden constructs in a growth medium, the cell viability in CSNI100 and CSNI400 were 54 and 108% higher than that in CS alone, respectively. Glycosaminoglycan and total collagen contents increased 2.6- and 2.5-fold after 28-day culture of cell-laden CSNI400 in the chondrogenic medium. These results suggest that the hybrid structure composed of the chitosan porous scaffold and the well-defined PNIPAAm hydrogel, in particular CSNI400, is suitable for 3D stem cell culture and cartilage tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2764-2774, 2016. © 2016 Wiley Periodicals, Inc.

  12. Effect of volatile metabolites of dill, radish and garlic on growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.; Borodina, E. V.; Ushakova, S. A.; Rygalov, V. Ye; Gitelson, J. I.

    2001-07-01

    In a model experiment plants were grown in sealed chambers on expanded clay aggregate under the luminance of 150 W/m 2 PAR and the temperature of 24°C. Seven bacterial strains under investigation, replicated on nutrient medium surface in Petri dishes, were grown in the atmosphere of cultivated plants. Microbial response was evaluated by the difference between colony size in experiment and in control. In control, bacteria grew in the atmosphere of clean air. To study the effect of volatile metabolites of various plant on microbial growth, the experimental data were compared with the background values defined for each individual experiment. Expanded clay aggregate, luminance, temperature and sealed chamber (without plants) for the background were the same. Volatile metabolites from 28-days old radish plants have been reliably established to have no effect on the growth of microbes under investigation. Metabolites of 30-days old dill and 50-days old garlic have been established to have reliable bacteriostatic effect on the growth of three bacterial strains. Dill and garlic have been found to have different range of effects of volatile substances on bacterial growth. Volatile metabolites of dill and garlic differed in their effect on the sensitivity spectrum of bacteria. An attempt has been made to describe the obtained data mathematically.

  13. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry.

    PubMed

    Mendes-Ferreira, A; Mendes-Faia, A; Leão, C

    2004-01-01

    To study the effects of assimilable nitrogen concentration on growth profile and on fermentation kinetics of Saccharomyces cerevisiae. Saccharomyces cerevisiae was grown in batch in a defined medium with glucose (200 g l(-1)) as the only carbon and energy source, and nitrogen supplied as ammonium sulphate or phosphate forms under different concentrations. The initial nitrogen concentration in the media had no effect on specific growth rates of the yeast strain PYCC 4072. However, fermentation rate and the time required for completion of the alcoholic fermentation were strongly dependent on nitrogen availability. At the stationary phase, the addition of ammonium was effective in increasing cell population, fermentation rate and ethanol. The yeast strain required a minimum of 267 mg N l(-1) to attain complete dryness of media, within the time considered for the experiments. Lower levels were enough to support growth, although leading to sluggish or stuck fermentation. The findings reported here contribute to elucidate the role of nitrogen on growth and fermentation performance of wine yeast. This information might be useful to the wine industry where excessive addition of nitrogen to prevent sluggish or stuck fermentation might have a negative impact on wine stability and quality. Copyright 2004 The Society for Applied Microbiology

  14. A Hidden Pitfall in the Preparation of Agar Media Undermines Microorganism Cultivability

    PubMed Central

    Tanaka, Tomohiro; Kawasaki, Kosei; Daimon, Serina; Kitagawa, Wataru; Yamamoto, Kyosuke; Tamaki, Hideyuki; Tanaka, Michiko; Nakatsu, Cindy H.

    2014-01-01

    Microbiologists have been using agar growth medium for over 120 years. It revolutionized microbiology in the 1890s when microbiologists were seeking effective methods to isolate microorganisms, which led to the successful cultivation of microorganisms as single clones. But there has been a disparity between total cell counts and cultivable cell counts on plates, often referred to as the “great plate count anomaly,” that has long been a phenomenon that still remains unsolved. Here, we report that a common practice microbiologists have employed to prepare agar medium has a hidden pitfall: when phosphate was autoclaved together with agar to prepare solid growth media (PT medium), total colony counts were remarkably lower than those grown on agar plates in which phosphate and agar were separately autoclaved and mixed right before solidification (PS medium). We used a pure culture of Gemmatimonas aurantiaca T-27T and three representative sources of environmental samples, soil, sediment, and water, as inocula and compared colony counts between PT and PS agar plates. There were higher numbers of CFU on PS medium than on PT medium using G. aurantiaca or any of the environmental samples. Chemical analysis of PT agar plates suggested that hydrogen peroxide was contributing to growth inhibition. Comparison of 454 pyrosequences of the environmental samples to the isolates revealed that taxa grown on PS medium were more reflective of the original community structure than those grown on PT medium. Moreover, more hitherto-uncultivated microbes grew on PS than on PT medium. PMID:25281372

  15. Attachment and growth of human keratinocytes in a serum-free environment.

    PubMed

    Gilchrest, B A; Calhoun, J K; Maciag, T

    1982-08-01

    Using a serum-free system, we have investigated the influence of human fibronectin (HFN) and selected growth factors (GF) on the attachment and growth of normal human keratinocytes in vitro. Single-cell suspensions of keratinocytes from near-confluent primary plates, plated on 5-10 microgram/cm2 HFN, showed approximately 30-40% attachment after 2-24 hours of incubation at 37 degrees C, compared with 4-6% attachment on uncoated platic plates. Percentage of attached cells was independent of seed density, tissue donor age, in vitro culture age, or medium composition, while subsequent cellular proliferation was strongly dependent on these factors. Keratinocytes grown on an adequate HFN matrix in a previously described hormone-supplemented medium (Maciag et al., 1981a) achieved four to eight population doubling over 7-12 days at densities greater than or equal to 104 cell/cm2. Removal of most GF individually from the medium had little or no effect on growth, while removal of epidermal growth factor (EGF) alone reduced growth by 30-35% and removal of bovine brain extract (BE) alone reduced growth by approximately 90%. Conversely, EGF alone in basal medium supported approximately 10% control growth, BE alone supported 30-40% control growth, and the combination of EGF and BE approximately 70%. In addition to its major effect on proliferation in this system, BE was necessary to preserve normal keratinocyte morphology and protein production. These findings expand earlier observations that HFN facilitates keratinocyte attachment in vitro and that a brain-derived extract can exert a major positive influence on cultured keratinocytes.

  16. Development of a Selective Culture Medium for Primary Isolation of the Main Brucella Species▿

    PubMed Central

    De Miguel, M. J.; Marín, C. M.; Muñoz, P. M.; Dieste, L.; Grilló, M. J.; Blasco, J. M.

    2011-01-01

    Bacteriological diagnosis of brucellosis is performed by culturing animal samples directly on both Farrell medium (FM) and modified Thayer-Martin medium (mTM). However, despite inhibiting most contaminating microorganisms, FM also inhibits the growth of Brucella ovis and some B. melitensis and B. abortus strains. In contrast, mTM is adequate for growth of all Brucella species but only partially inhibitory for contaminants. Moreover, the performance of both culture media for isolating B. suis has never been established properly. We first determined the performance of both media for B. suis isolation, proving that FM significantly inhibits B. suis growth. We also determined the susceptibility of B. suis to the antibiotics contained in both selective media, proving that nalidixic acid and bacitracin are highly inhibitory, thus explaining the reduced performance of FM for B. suis isolation. Based on these results, a new selective medium (CITA) containing vancomycin, colistin, nystatin, nitrofurantoin, and amphotericin B was tested for isolation of the main Brucella species, including B. suis. CITA's performance was evaluated using reference contaminant strains but also field samples taken from brucella-infected animals or animals suspected of infection. CITA inhibited most contaminant microorganisms but allowed the growth of all Brucella species, to levels similar to those for both the control medium without antibiotics and mTM. Moreover, CITA medium was more sensitive than both mTM and FM for isolating all Brucella species from field samples. Altogether, these results demonstrate the adequate performance of CITA medium for the primary isolation of the main Brucella species, including B. suis. PMID:21270216

  17. Direct Exposure of Monolayers of Mammalian Cells to Airborne Pollutants in a Unique Culture System.

    DTIC Science & Technology

    1981-02-01

    of growth medium through the filter from the side opposite the cells so that they are nourished and kept moist. Growth medium perfusing through the...planting dispersed cells (Line V79, Chinese hamster lung fibroblasts) on the membrane filters and exposing to the test gas. The toxic effect was... Medium which perfuses through the filters is drawn off through the tubes at the rear wall of the chamber. The test gas enters at the left end of the

  18. Human serum provided additional values in growth factors supplemented medium for human chondrocytes monolayer expansion and engineered cartilage construction.

    PubMed

    Chua, K H; Aminuddin, B S; Fuzina, N H; Ruszymah, B H I

    2004-05-01

    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.

  19. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1

    USGS Publications Warehouse

    Oremland, R.S.; Hoeft, S.E.; Santini, J.M.; Bano, N.; Hollibaugh, R.A.; Hollibaugh, J.T.

    2002-01-01

    Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the ??-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.

  20. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production.

    PubMed

    Fon Sing, S; Isdepsky, A; Borowitzka, M A; Lewis, D M

    2014-06-01

    The opportunity to recycle microalgal culture medium for further cultivation is often hampered by salinity increases from evaporation and fouling by dissolved and particulate matter. In this study, the impact of culture re-use after electro-flocculation of seawater-based medium on growth and biomass productivity of the halotolerant green algal strain Tetraselmis sp., MUR 233, was investigated in pilot-scale open raceway ponds over 5months. Despite a salinity increase from 5.5% to 12% (w/v) NaCl, Tetraselmis MUR 233 grown on naturally DOC-enriched recycled medium produced 48-160% more ash free dry weight (AFDW) biomass daily per unit pond area than when grown on non-recycled medium. A peak productivity of 37.5±3.1gAFDWm(-2)d(-1) was reached in the recycled medium upon transition from ∼14% to ∼7% NaCl. The combination of high biomass-yielding mixotrophic growth under high salinity has been proven to be a successful sustainable cultivation strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cloning of a cancer cell-producing hepatocyte growth factor, vascular endothelial growth factor, and interleukin-8 from gastric cancer cells.

    PubMed

    Iwai, Mineko; Matsuda, Masahiko; Iwai, Yoshiaki

    2003-01-01

    A cell colony (IM95m) that produces hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) was cloned from gastric cancer cells (IM95 cell line). In culture medium, the highest levels of HGF, VEGF, and IL-8 were about 1.1, 0.9, and 0.17 ng/ml culture medium at 3 d from 10(5) cells. IM95m may be useful in elucidating the role of tumor cells in angiogenesis.

  2. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    PubMed Central

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  3. Organoid culture systems for prostate epithelial tissue and prostate cancer tissue

    PubMed Central

    Drost, Jarno; Karthaus, Wouter R.; Gao, Dong; Driehuis, Else; Sawyers, Charles L.; Chen, Yu; Clevers, Hans

    2016-01-01

    Summary This protocol describes a recently developed strategy to generate 3D prostate organoid cultures from healthy mouse and human prostate (either bulk or FAC-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumour cells. Organoids derived from healthy material contain the differentiated luminal and basal cell types, whereas organoids derived from prostate cancer tissue mimic the histology of the tumour. The stepwise establishment of these cultures and the fully defined serum-free conditioned medium that is required to sustain organoid growth are outlined. Organoids established using this protocol can be used to study many different aspects of prostate biology, including homeostasis, tumorigenesis and drug discovery. PMID:26797458

  4. A brief dataset on the model-based evaluation of the growth performance of Bacillus coagulans and l-lactic acid production in a lignin-supplemented medium.

    PubMed

    Glaser, Robert; Venus, Joachim

    2017-04-01

    The data presented in this article are related to the research article entitled "Model-based characterization of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium (R. Glaser and J. Venus, 2016) [1]". This data survey provides the information on characterization of three Bacillus coagulans strains. Information on cofermentation of lignocellulose-related sugars in lignin-containing media is given. Basic characterization data are supported by optical-density high-throughput screening and parameter adjustment to logistic growth models. Lab scale fermentation procedures are examined by model adjustment of a Monod kinetics-based growth model. Lignin consumption is analyzed using the data on decolorization of a lignin-supplemented minimal medium.

  5. The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans.

    PubMed

    Hube, B; Hess, D; Baker, C A; Schaller, M; Schäfer, W; Dolan, J W

    2001-04-01

    The phosphatidylcholine-specific phospholipase D1 (PLD1) in Saccharomyces cerevisiae is involved in vesicle transport and is essential for sporulation. The gene encoding the homologous phospholipase D1 from Candida albicans (PLD1) was used to study the role of PLD1 in this pathogenic fungus. In vitro and in vivo expression studies using Northern blots and reverse transcriptase-PCR showed low PLD1 mRNA levels in defined media supporting yeast growth and during experimental infection, while enhanced levels of PLD1 transcripts were detected during the yeast to hyphal transition. To study the relevance of PLD1 during yeast and hyphal growth, an essential part of the gene was deleted in both alleles of two isogenic strains. In vitro PLD1 activity assays showed that pld1 mutants produced no detectable levels of phosphatidic acid, the hydrolytic product of PLD1 activity, and strongly reduced levels of diacylglycerol, the product of lipid phosphate phosphohydrolase, suggesting no or a negligible background PLD1 activity in the pld1 mutants. The pld1 mutants showed no growth differences compared to the parental wild-type in liquid complex and minimal media, independent of the growth temperature. In addition, growth rates of pld1 mutants in media with protein as the sole source of nitrogen were similar to growth rates of the wild-type, indicating that secretion of proteinases was not reduced. Chlamydospore formation was normal in pld1 mutants. When germ tube formation was induced in liquid media, pld1 mutants showed similar rates of yeast to hyphal transition compared to the wild-type. However, no hyphae formation was observed on solid Spider medium, and cell growth on cornmeal/Tween 80 medium indicated aberrant morphogenesis. In addition, pld1 mutants growing on solid media had an attenuated ability to invade the agar. In a model of oral candidosis, pld1 mutants showed no attenuation of virulence. In contrast, the mutant was less virulent in two different mouse models. These data suggest that PLD1 is not essential for growth and oral infections. However, they also suggest that a prominent part of the phosphatidic acid and diacylglycerol pools is produced by PLD1 and that the level of these components is important for morphological transitions under certain conditions in C. albicans.

  6. Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Huyan, Fei; Yan, Jia-Yi; Höglund, Lars; Ågren, John; Borgenstam, Annika

    2018-04-01

    As part of an ongoing development of third-generation advanced high-strength steels with acceptable cost, austenite reversion treatment of medium Mn steels becomes attractive because it can give rise to a microstructure of fine mixture of ferrite and austenite, leading to both high strength and large elongation. The growth of austenite during intercritical annealing is crucial for the final properties, primarily because it determines the fraction, composition, and phase stability of austenite. In the present work, the growth of austenite from as-quenched lath martensite in medium Mn steels has been simulated using the DICTRA software package. Cementite is added into the simulations based on experimental observations. Two types of systems (cells) are used, representing, respectively, (1) austenite and cementite forming apart from each other, and (2) austenite forming on the cementite/martensite interface. An interfacial dissipation energy has also been added to take into account a finite interface mobility. The simulations using the first type of setup with an addition of interfacial dissipation energy are able to reproduce the observed austenite growth in medium Mn steels reasonably well.

  7. Effects of Growth Medium on Matrix-Assisted Laser Desorption–Ionization Time of Flight Mass Spectra: a Case Study of Acetic Acid Bacteria

    PubMed Central

    Wieme, Anneleen D.; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita

    2014-01-01

    The effect of the growth medium used on the matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains were grown on five different culture media that yielded a total of more than 600 mass spectra, including technical and biological replicates. The results demonstrate that the culture medium can have a profound effect on the mass spectra of AAB as observed in the presence and varying signal intensities of peak classes, in particular when culture media do not sustain optimal growth. The observed growth medium effects do not disturb species level differentiation but strongly affect the potential for strain level differentiation. The data prove that a well-constructed and robust MALDI-TOF mass spectrometry identification database should comprise mass spectra of multiple reference strains per species grown on different culture media to facilitate species and strain level differentiation. PMID:24362425

  8. Requirement of a Relatively High Threshold Level of Mg2+ for Cell Growth of a Rhizoplane Bacterium, Sphingomonas yanoikuyae EC-S001

    PubMed Central

    Hoo, Henny; Hashidoko, Yasuyuki; Islam, Md. Tofazzal; Tahara, Satoshi

    2004-01-01

    Mg2+ is one of the essential elements for bacterial cell growth. The presence of the magnesium cation (Mg2+) in various concentrations often affects cell growth restoration in plant-associating bacteria. This study attempted to determine whether Mg2+ levels in Sphingomonas yanoikuyae EC-S001 affected cell growth restoration in the host plant and what the threshold level is. S. yanoikuyae EC-S001, isolated from the rhizoplane of spinach seedlings grown from surface-sterilized seeds under aseptic conditions, displayed uniform dispersion and attachment throughout the rhizoplane and phylloplane of the host seedlings. S. yanoikuyae EC-S001 did not grow in potato-dextrose broth medium but grew well in an aqueous extract of spinach leaves. Chemical investigation of the growth factor in the spinach leaf extract led to identification of the active principle as the magnesium cation. A concentration of ca. 0.10 mM Mg2+ or more allowed S. yanoikuyae EC-S001 to grow in potato-dextrose broth medium. Some saprophytic and/or diazotrophic bacteria used in our experiment were found to have diverse threshold levels for their Mg2+ requirements. For example, Burkholderia cepacia EC-K014, originally isolated from the rhizoplane of a Melastoma sp., could grow even in Mg2+-free Hoagland's no. 2 medium with saccharose and glutamine (HSG medium) and requires a trace level of Mg2+ for its growth. In contrast, S. yanoikuyae EC-S001, together with Bacillus subtilis IFO12113, showed the most drastic restoring responses to subsequent addition of 0.98 mM Mg2+ to Mg2+-free HSG medium. Our studies concluded that Mg2+ is more than just the essential trace element needed for cell growth restoration in S. yanoikuyae EC-S001 and that certain nonculturable bacteria may require a higher concentration of Mg2+ or another specific essential element for their growth. PMID:15345402

  9. Physiology of Growth and Sporulation in Bacillus cereus I. Effect of Glutamic and Other Amino Acids

    PubMed Central

    Buono, F.; Testa, R.; Lundgren, D. G.

    1966-01-01

    Buono, F. (Syracuse University, Syracuse, N.Y.), R. Testa, and D. G. Lundgren. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J. Bacteriol. 91:2291–2299. 1966.—Growth and sporulation were studied in Bacillus cereus by use of an active culture technique and a synthetic medium. A high level of glutamic acid (70 mm) was required for optimal growth and glucose oxidation followed by sporulation even though relatively little glutamic acid was consumed (14 mm). Optimal growth occurred with a combination of 14 mm glutamic acid and 56 mm (NH4)2SO4, aspartic acid, or alanine. Ornithine or arginine at 70 mm could replace glutamic acid in the synthetic medium without affecting the normal growth cycle. Glutamic acid was not replaced by any other amino acid, by (NH4)2SO4, or by a combination of either α-ketoglutarate or pyruvate plus (NH4)2SO4. Enzyme assays of cell-free extracts prepared from cells harvested at different times were used to study the metabolism of glutamic acid. Glutamic-oxaloacetic and glutamic-pyruvate transaminases were completely activated (or derepressed) during early stages of sporulation (period of 6 to 8 hr). Alanine dehydrogenase responded in a similar manner, but the levels of this enzyme were much higher throughout the culture cycle. Neither glutamic dehydrogenase nor α-ketoglutarate dehydrogenase was detected. Sporulation in a replacement salts medium was studied with cells harvested at different times from the synthetic medium. Cultures 2 to 6 hr old were unable to sporulate in the replacement salts medium unless glutamic acid (7.0 mm) was present. By the 6th hr, cells were in the early stages of sporulation, showing spore septa development. Cultures 8 hr old sporulated in the replacement salts medium. Other metabolic intermediates able to replace glutamic acid in the replacement salts medium were alanine, aspartic acid, and glutamine at equimolar concentrations. Also, ammonium ions in combination with pyruvic, oxaloacetic, α-ketoglutaric, or fumaric acid replaced glutamic acid. The likely role of these metabolites is discussed. PMID:4957615

  10. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  11. Expression of virulence factors by Staphylococcus aureus grown in serum.

    PubMed

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-11-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl₃ into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.

  12. Tank cultivation of the red algae Palmaria mollis: Effects of nutrients on growth rate, biochemical quality, and epiphytic growth

    NASA Astrophysics Data System (ADS)

    Ben, D.; Langdon, C. J.

    2016-02-01

    Pacific dulse (Palmaria mollis) is a candidate for aquaculture production in Oregon due to its high protein content, fast growth rate, and ability to fare in cold water conditions. Current cultivation methods use the F/2 medium to supply nutrients to macroalgae cultures. The F/2 medium is a costly mixture of nitrate, phosphate, trace metals and vitamins. The F/2 medium has been the standard for microalgae cultivation, but research has lacked on the necessity of all or part of this mixture for macroalgae cultivation. This study is designed to contribute to the development of Pacific dulse cultivation by measuring how different fertilizer regimens affect the growth, biochemical composition, and quality of Palmaria mollis (C-3 variety) in hopes to reduce the production cost. I hypothesis that dulse will not require additional nutrients during summer cultivation, due to summer upwelling conditions. Experiments were conducted in a flow-through water system, controlling for flow rate, stocking density, and nutrient supplementation. To test this, two replicates of four nutrient regimes were organized: no supplemental nutrients, all nutrients (standard F/2 medium), nitrate/phosphate only, and nitrate/phosphate with trace metals. Each tank was monitored weekly for color quality, epiphytic growth, specific growth rate, production and a final biochemical analysis. This study has preliminarily concluded that supplemental nutrients have no significant effect on production or biochemical quality, but does have an effect quality of epiphytic growth.

  13. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed Central

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-01-01

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress. PMID:9461558

  14. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-02-15

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress.

  15. Optimization of marine waste based-growth media for microbial lipase production using mixture design methodology.

    PubMed

    Sellami, Mohamed; Kedachi, Samiha; Frikha, Fakher; Miled, Nabil; Ben Rebah, Faouzi

    2013-01-01

    Lipase production by Staphylococcus xylosus and Rhizopus oryzae was investigated using a culture medium based on a mixture of synthetic medium and supernatants generated from tuna by-products and Ulva rigida biomass. The proportion of the three medium components was optimized using the simplex-centroid mixture design method (SCMD). Results indicated that the experimental data were in good agreement with predicted values, indicating that SCMD was a reliable method for determining the optimum mixture proportion of the growth medium. Maximal lipase activities of 12.5 and 23.5 IU/mL were obtained with a 50:50 (v:v) mixture of synthetic medium and tuna by-product supernatant for Staphylococcus xylosus and Rhizopus oryzae, respectively. The predicted responses from these mixture proportions were also validated experimentally.

  16. Isolation and Identification of Aspergillus fumigatus Mycotoxins on Growth Medium and Some Building Materials

    PubMed Central

    Nieminen, Susanna M.; Kärki, Riikka; Auriola, Seppo; Toivola, Mika; Laatsch, Hartmut; Laatikainen, Reino; Hyvärinen, Anne; von Wright, Atte

    2002-01-01

    Genotoxic and cytotoxic compounds were isolated and purified from the culture medium of an indoor air mold, Aspergillus fumigatus. One of these compounds was identified as gliotoxin, a known fungal secondary metabolite. Growth of A. fumigatus and gliotoxin production on some building materials were also studied. Strong growth of the mold and the presence of gliotoxin were detected on spruce wood, gypsum board, and chipboard under saturation conditions. PMID:12324333

  17. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  18. Growth medium for the rapid isolation and identification of anthrax

    NASA Astrophysics Data System (ADS)

    Kiel, Johnathan L.; Parker, Jill E.; Grubbs, Teri R.; Alls, John L.

    2000-07-01

    Anthrax has been recognized as a highly likely biological warfare or terrorist agent. The purpose of this work was to design a culture technique to rapidly isolate and identify `live' anthrax. In liquid or solid media form, 3AT medium (3-amino-L-tyrosine, the main ingredient) accelerated germination and growth of anthrax spores in 5 to 6 hours to a point expected at 18 to 24 hours with ordinary medium. During accelerated growth, standard definitive diagnostic tests such as sensitivity to lysis by penicillin or bacteriophage can be run. During this time, the bacteria synthesized a fluorescent and thermochemiluminescent polymer. Bacteria captured by specific antibody are, therefore, already labeled. Because living bacteria are required to generate the polymer, the test converts immunoassays for anthrax into viability assays. Furthermore, the polymer formation leads to the death of the vegetative form and non-viability of the spores produced in the medium. By altering the formulation of the medium, other microbes and even animal and human cells can be grown in it and labeled (including viruses grown in the animal or human cells).

  19. Cryopreservation of Human Pluripotent Stem Cells in Defined Medium

    PubMed Central

    Liu, Weiwei; Chen, Guokai

    2014-01-01

    This protocol describes a cryopreservation procedure using an enzyme-free dissociation method to harvest cells and preserve cells in albumin-free chemically defined E8 medium for human pluripotent stem cells (hPSCs). The dissociation by EDTA/PBS produces small cell aggregates that allow high survival efficiency in passaging and cryopreservation. The preservation in E8 medium eliminates serum or other animal products, and is suitable for the increasing demand for high quality hPSCs in translational research. In combination with the special feature of EDTA/PBS dissociation, this protocol allows efficient cryopreservation in more time-saving manner. PMID:25366897

  20. Extracellular accumulation of recombinant protein by Escherichia coli in a defined medium.

    PubMed

    Fu, Xiang-Yang

    2010-09-01

    Extracellular accumulation of recombinant proteins in the culture medium of Escherichia coli is desirable but difficult to obtain. The inner or cytoplasmic membrane and the outer membrane of E. coli are two barriers for releasing recombinant proteins expressed in the cytoplasm into the culture medium. Even if recombinant proteins have been exported into the periplasm, a space between the outer membrane and the inner membrane, the outer membrane remains the last barrier for their extracellular release. However, when E. coli was cultured in a particular defined medium, recombinant proteins exported into the periplasm could diffuse into the culture medium automatically. If a nonionic detergent, Triton X-100, was added in the medium, recombinant proteins expressed in the cytoplasm could also be released into the culture medium. It was then that extracellular accumulation of recombinant proteins could be obtained by exporting them into the periplasm or releasing them from the cytoplasm with Triton X-100 addition. The tactics described herein provided simple and valuable methods for achieving extracellular production of recombinant proteins in E. coli.

  1. Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability

    PubMed Central

    Sarkar, Kausik; Katiyar, Amit; Jain, Pankaj

    2009-01-01

    Gas diffusion from an encapsulated microbubble is modeled using an explicit linear relation for gas permeation through the encapsulation. Both the cases of single gas (air) and multiple gases (perfluorocarbon inside the bubble and air dissolved in surrounding liquid) are considered. An analytical expression for the dissolution time for an encapsulated air bubble is obtained; it showed that for small permeability the dissolution time increases linearly with decreasing permeability. A perfluorocarbon-filled contrast microbubble such as Definity was predicted to experience a transient growth due to air infusion before it dissolves in conformity with previous experimental findings. The growth phase occurs only for bubbles with a critical value of initial partial mole fraction of perfluorocarbon relative to air. With empirically obtained property values, the dissolution time of a 2.5 micron diameter (same as that of Definity) lipid coated octafluoropropane bubble with surface tension 25 mN/m predicts a lifetime of 42 minutes in an air saturated medium. The properties such as shell permeability, surface tension, relative mole fraction of octafluoropropane are varied to investigate their effects on the time scales of bubble growth and dissolution including their asymptotic scalings where appropriate. The dissolution dynamics scales with permeability, in that when the time is nondimensioanlized with permeability, curves for different permeabilities collapse on a single curve. Investigation of bubbles filled with other gases (non-octafluoropropane perfluorocarbon and sulfur hexafluoride) indicates longer dissolution time due to lower solubility and lower diffusivity for larger gas molecules. For such micron size encapsulated bubbles, lifetime of hours is possible only at extremely low surface tension (<1mN/m) or at extreme oversaturation. PMID:19616160

  2. Modification of the Technical Properties of Lactobacillus johnsonii NCC 533 by Supplementing the Growth Medium with Unsaturated Fatty Acids ▿

    PubMed Central

    Muller, J. A.; Ross, R. P.; Sybesma, W. F. H.; Fitzgerald, G. F.; Stanton, C.

    2011-01-01

    The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium. PMID:21821758

  3. Modification of the technical properties of Lactobacillus johnsonii NCC 533 by supplementing the growth medium with unsaturated fatty acids.

    PubMed

    Muller, J A; Ross, R P; Sybesma, W F H; Fitzgerald, G F; Stanton, C

    2011-10-01

    The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.

  4. A comparative study of 28 culture media for Trichomonas gallinae

    USGS Publications Warehouse

    Diamond, L.S.

    1954-01-01

    1. 1. A study was made of the ability of 28 different culture media to support growth of 5 strains of Trichomonas gallinae with their normally associated bacteria. A standard inoculum of 50 protozoa was used, and the cultures were incubated at 35 ?C. Based upon the number of positive cultures obtained, abundance of growth, and number of strains which grew in a given medium, the most satisfactory were Ringer-Loeffler serum, saline-Loeffler serum, and saline-serum. 2. 2. Pigeon serum used alone in a simple saline solution produced abundant growth and when added to other nutrients greatly enhanced the medium. Autoclaving of the serum appeared to have no effect on its growth promoting qualities. 3. 3. Neither egg yolk nor egg albumin alone appeared capable of supporting appreciable growth of T. gallinae. 4. 4. In general, the heavier the bacterial population supported by a medium the poorer the growth of T. gallinae. 5. 5. Strains of T. gallinae differ in their culturability. One strain grew in 82% of the media tested, another only in 43%.

  5. Development of selective and differential medium for Shigella sonnei using three carbohydrates (lactose, sorbitol, and xylose) and X-Gal.

    PubMed

    Na, G N; Kim, S A; Kwon, O C; Rhee, M S

    2015-08-01

    The aim of this study was to develop a new selective and differential medium for isolating Shigella sonnei (designated 3SD medium). The new medium was based on three carbohydrates (lactose, sorbitol, and xylose) and a chromogenic substrate (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, X-Gal). S. sonnei cannot ferment lactose, sorbitol, or xylose, but can ferment X-Gal, which generates turquoise-blue colonies with rough edges. Other bacteria (54 strains of foodborne pathogens and spoilage bacteria) produced visually distinct colonies on 3SD medium (colorless or pink-violet colonies), or their growth was inhibited on 3SD medium. The optimum concentration of 50 mg/L X-Gal was selected because it yielded the highest level of morphological discrimination between S. sonnei and other bacteria, and this concentration was cost-effective. Bile salt concentration optimization was performed using healthy, heat-injured, and acid-injured S. sonnei. The recovery rate differed significantly depending on the bile salt concentration; media containing >1.0 g/L bile salt showed significantly lower recovery of stress-injured cells than medium containing 0.5 g/L bile salt (P<0.05). Growth of all Gram-positive bacteria was inhibited on medium containing 0.5 g/L bile salt; therefore, this concentration was used as the optimal concentration. Previous media used to isolate Shigella spp. (MacConkey, xylose lysine desoxycholate, and Salmonella-Shigella agar) showed poor performance when used to support the growth of injured S. sonnei cells, whereas 3SD medium supported a high growth rate of injured and healthy cells (equivalent to that obtained with nutrient-rich tryptic soy agar). To validate the performance of 3SD medium with real specimens, S. sonnei and other bacteria were spiked into samples such as untreated water, carrot, salad, and oyster. 3SD medium showed superior specificity (100%) and sensitivity (100%) for S. sonnei, and yielded no false-positive or false-negative results. Thus, the novel 3SD medium described herein is a powerful tool for the rapid and efficient selective isolation of S. sonnei in research and clinical laboratories, and the food industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Alnus acuminata in dual symbiosis with Frankia and two different ectomycorrhizal fungi (Alpova austroalnicola and Alpova diplophloeus) growing in soilless growth medium

    Treesearch

    Alejandra G. Becerra; Euginia Menoyo; Irene Lett; Ching Y. Li

    2009-01-01

    In this study we investigated the capacity of Andean alder (Alnus acuminata Kunth), inoculated with Frankia and two ectomycorrhizal fungi (Alpova austroalnicola Dominguez and Alpova diplophloeus [Zeller and Dodge] Trappe and Smith), for nodulation and growth in pots of a soilless medium...

  7. Nitrogen Metabolism in Plant Cell Suspension Cultures

    PubMed Central

    Behrend, Josef; Mateles, Richard I.

    1976-01-01

    Tobacco cells (Nicotiana tabacum) are capable of growth on ammonia as a sole nitrogen source only when succinate, malate, fumarate, citrate, α-ketoglutarate, glutamate, or pyruvate is added to the growth medium. A ratio between the molar concentrations of ammonia to succinate (as a complementary organic acid) in the growth medium of 1.5 was optimal. Succinate had no effect on the rate of uptake of ammonia from the medium into the cells although it did affect the intracellular concentration of ammonia. However, the changes were not sufficient to explain inhibition of growth as being due to ammonia toxicity. The radioactivity from 14C-succinate was incorporated into malate, glutamate, and aspartate within 2 minutes. It appears that the role of organic acids is neither connected to ammonium transport nor to relief of ammonia toxicity, but may be related to the need for additional carbon skeletons for synthesis of amino acids. PMID:16659706

  8. Influence of Salt Stress on Growth and Frost Resistance of Three Winter Cereals

    NASA Astrophysics Data System (ADS)

    Matuszak-Slamani, Renata; Brzóstowicz, Aleksander

    2015-04-01

    This paper presents results of a study on the influence of 0-150 mmol NaCl dm-3 Hoagland solution on growth, chlorophyll content, photosynthesis and frost resistance of seedlings of three winter cereals: wheat - cv. Almari, rye - cv. Amilo, and triticale - cv. Tornado. Sodium chloride at 25 mmol dm-3 caused better growth of wheat shoots and roots, both of fresh and dry matter. Higher concentrations of NaCl in the medium decreased the biomass of the tested seedlings. The influence of NaCl on the chlorophyll content in the seedlings varied. The conductometry method showed that the resistance of the cell walls of wheat and rye to low temperature decreased in the presence of NaCl in the growth medium. Luminescence has shown that seedlings that grew in NaCl-containing medium indicated an impediment of electron flow at a lower temperature than the control plants.

  9. Multiplication in liquid medium of Treponema sp. isolated from intestinal contents of swine.

    PubMed

    Binek, M; Szynkiewicz, Z

    1985-01-01

    Treponema hyodysenteriae and Treponema innocens were multiplied by a simple culture method in liquid medium. TSB medium was prepared by the PRAS method in plasma bottles containing glass beads. Spirochaetes were injected through the rubber stopper and the bottles were incubated while revolving round their axes. The most abundant growth of spirochaetes in rotary culture was observed after 72 h incubation at 40 degrees C. whereas the highest number of viable cells in stationary culture was observed after 120 h. However, in the latter case the number of cells was lower than introduced at inoculation. Growth of the bacteria was stimulated by equine serum and 5% addition of rumen fluid. Optimal growth temperature was 40 degrees C.

  10. Method for detecting coliform organisms

    NASA Technical Reports Server (NTRS)

    Nishioka, K.; Nibley, D. A.; Jeffers, E. L.; Brooks, R. L. (Inventor)

    1983-01-01

    A method and apparatus are disclosed for determining the concentration of coliform bacteria in a sample. The sample containing the coliform bacteria is cultured in a liquid growth medium. The cultured bacteria produce hydrogen and the hydrogen is vented to a second cell containing a buffer solution in which the hydrogen dissolves. By measuring the potential change in the buffer solution caused by the hydrogen, as a function of time, the initial concentration of bacteria in the sample is determined. Alternatively, the potential change in the buffer solution can be compared with the potential change in the liquid growth medium to verify that the potential change in the liquid growth medium is produced primarily by the hydrogen gas produced by the coliform bacteria.

  11. Evaluation of Physarum polycephalum plasmodial growth and lipid production using rice bran as a carbon source.

    PubMed

    Tran, Hanh; Stephenson, Steven; Pollock, Erik

    2015-08-01

    The myxomycete Physarum polycephalum appears to have remarkable potential as a lipid source for biodiesel production. The present study evaluated the use of rice bran as a carbon source and determined the medium components for optimum growth and lipid production for this organism. Optimization of medium components by response surface methodology showed that rice bran and yeast extract had significant influences on lipid and biomass production. The optimum medium consisted of 37.5 g/L rice bran, 0.79 g/L yeast extract and 12.5 g/L agar, and this yielded 7.5 g/L dry biomass and 0.9 g/L lipid after 5 days. The biomass and lipid production profiles revealed that these parameters increased over time and reached their maximum values (10.5 and 1.26 g/L, respectively) after 7 days. Physarum polycephalum growth decreased on the spent medium but using the latter increased total biomass and lipid concentrations to 14.3 and 1.72 g/L, respectively. An effective method for inoculum preparation was developed for biomass and lipid production by P. polycephalum on a low-cost medium using rice bran as the main carbon source. These results also demonstrated the feasibility of scaling up and reusing the medium for additional biomass and lipid production.

  12. Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs).

    PubMed

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-04-01

    Stem cells (SCs) are a promising approach to regenerative medicine, with the potential to treat numerous orthopedic disorders, including osteo-degenerative diseases. The development of human-induced pluripotent stem cells (hiPSCs) has increased the potential of SCs for new treatments. However, current methods of differentiating hiPSCs into chondrocyte-like cells are suboptimal and better methods are needed. The aim of the present study was to assess four different chondrogenic differentiation protocols to identify the most efficient method of generating hiPSC-derived chondrocytes. For this study, hiPSCs were obtained from primary human dermal fibroblasts (PHDFs) and differentiated into chondrocyte-like cells using four different protocols: 1) monolayer culture with defined growth factors (GF); 2) embryoid bodies (EBs) in a chondrogenic medium with TGF-β3 cells; 3) EBs in chondrogenic medium conditioned with human chondrocytes (HC-402-05a cell line) and 4) EBs in chondrogenic medium conditioned with human chondrocytes and supplemented with TGF-β3. The cells obtained through these four protocols were evaluated and compared at the mRNA and protein levels. Although chondrogenic differentiation of hiPSCs was successfully achieved with all of these protocols, the two fastest and most cost-effective methods were the monolayer culture with GFs and the medium conditioned with human chondrocytes. Both of these methods are superior to other available techniques. The main advantage of the conditioned medium is that the technique is relatively simple and inexpensive while the directed method (i.e., monolayer culture with GFs) is faster than any protocol described to date because it is does not require additional steps such as EB formation.

  13. CBI: Systems or Medium?

    ERIC Educational Resources Information Center

    Higginbotham-Wheat, Nancy L.

    This paper addresses one area of conflict in decisionmaking in computer-based instruction (CBI) research: the relationship between the researcher's definition of CBI either as a medium or as an integrated system and the design of meaningful research questions. (A medium is defined here as a device for the delivery of instruction, while an…

  14. Wood ash residue causes a mixture of growth promotion and toxicity in Lemna minor.

    PubMed

    Jagodzinski, Lucas S; O'Donoghue, Marian T; Heffernan, Liam B; van Pelt, Frank N A M; O'Halloran, John; Jansen, Marcel A K

    2018-06-01

    The use of wood as a sustainable biofuel results in the generation of residual wood ash. The ash contains high amounts of plant macronutrients such as phosphorus, potassium, calcium as well as several micronutrients. To explore the potential use of wood ash as a fertiliser, the growth enhancing properties of Sitka spruce (Picea sitchensis Bong.) wood ash were contrasted with the potential toxic action, using common duckweed (Lemna minor L.) as a model test species. The growth of L. minor exposed to wood bottom and fly ash solids and corresponding leachates was assessed in ultra-oligotrophic and eutrophic media. Ash solids and leachates were also tested as neutralized preparations. Suspended ash solids promoted L. minor growth up to concentrations of 2.5-5g/L. Leachates promoted growth up to 10g ash equivalents per litre, but for bottom ash only. Beneficial effects of wood ash were most pronounced on ultra-oligotrophic medium. However, on such nutrient-deficient medium severe inhibition of L. minor biomass and frond growth was observed at relatively low concentrations of fly ash (EC 50 =14g/L). On standard, eutrophic medium, higher concentrations of fly ash (EC 50 =21g/L), or neutralized fly ash (EC 50 =37g/L) were required to impede growth. Bottom ash, or neutralized bottom ash retarded growth at concentrations of 51g/L and 74g/L (EC 50 ), respectively, in eutrophic medium. It appears that phytotoxicity is due to the elemental composition of the ash, its alkaline character, and possible interactions between these two properties. Growth promotion was due to the substantial content of plant nutrients. This study underlines the importance of the receiving environment (nutrient status and pH) in determining the balance between toxicity and growth promotion, and shows that the margin between growth promoting and toxicity inducing concentrations can be enlarged through ash neutralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inhibitory effect of jasmonic acid and ethylene on epicotyl growth and bud induction in the maritime pine, Pinus pinaster Soland. in ait.

    PubMed

    Martin, Maria Teresa; Pedranzani, Hilda; García-Molinero, Patricia; Pando, Valentin; Sierra-de-Grado, Rosario

    2009-12-01

    Two independent parameters, epicotyl height (cm) and number of induced buds were studied on Pinus pinaster explants to analyse the effects of three phytohormones (6-benzylaminopurine, jasmonic acid, ethylene) which were combined or not in 11 different treatments. Epicotyle length diminished significantly in relation to the control medium (medium without exogen phytohormones) in presence of jasmonic acid, 6-benzylaminopurine or Ethephon (which is converted to ethylene in plants) in any of treatments. Concentrations of 100 microM of jasmonic acid and Ethephon had a greater inhibitory effect than the treatments with 10 microM. In addition to that, jasmonic acid was a stronger inhibitor than Ethephon in any of the tried combinations. There were no significant differences between the control treatment and the treatments with only 10 microM of jasmonic acid or Ethephon. However, 10 microM 6-benzylaminopurine induced bud formation. The different combinations of 6-benzylaminopurine with jasmonic acid and Ethephon showed that concentrations of 10 to 100 microM did not affect the number of induced buds. Jasmonic acid had an inhibitory effect which Ethephon only showed when combined with 100 microM of jasmonic acid and 10 microM of 6-benzylaminopurine. Three response groups were defined by cluster analysis: group 1 produced the greatest mean number of buds (4 to 5) and a mean epicotyl growth of 1 to 1.5 cm; group 2 produced 2 to 4 buds and a mean growth of 0.5 to 1.2 cm; group 3 produced only one bud and a mean epicotyl length of 1.2 to 2 cm.

  16. Genome-Wide Mutant Fitness Profiling Identifies Nutritional Requirements for Optimal Growth of Yersinia pestis in Deep Tissue

    PubMed Central

    Palace, Samantha G.; Proulx, Megan K.; Lu, Shan; Baker, Richard E.

    2014-01-01

    ABSTRACT Rapid growth in deep tissue is essential to the high virulence of Yersinia pestis, causative agent of plague. To better understand the mechanisms underlying this unusual ability, we used transposon mutagenesis and high-throughput sequencing (Tn-seq) to systematically probe the Y. pestis genome for elements contributing to fitness during infection. More than a million independent insertion mutants representing nearly 200,000 unique genotypes were generated in fully virulent Y. pestis. Each mutant in the library was assayed for its ability to proliferate in vitro on rich medium and in mice following intravenous injection. Virtually all genes previously established to contribute to virulence following intravenous infection showed significant fitness defects, with the exception of genes for yersiniabactin biosynthesis, which were masked by strong intercellular complementation effects. We also identified more than 30 genes with roles in nutrient acquisition and metabolism as experiencing strong selection during infection. Many of these genes had not previously been implicated in Y. pestis virulence. We further examined the fitness defects of strains carrying mutations in two such genes—encoding a branched-chain amino acid importer (brnQ) and a glucose importer (ptsG)—both in vivo and in a novel defined synthetic growth medium with nutrient concentrations matching those in serum. Our findings suggest that diverse nutrient limitations in deep tissue play a more important role in controlling bacterial infection than has heretofore been appreciated. Because much is known about Y. pestis pathogenesis, this study also serves as a test case that assesses the ability of Tn-seq to detect virulence genes. PMID:25139902

  17. Interference of a synthetic C18 juvenile hormone with mammalian cells in vitro, I. Effects on growth and morphology.

    PubMed

    Zielińska, Z M; Laskowska-Bozek, H; Jastreboff, P

    1978-01-01

    Some of structural and functional analogs of juvenile hormones are now under field examinations as growth inhibitors of some pest-insect populations. So far however very little is known about the possible interference of these compounds with mammalian cells or organisms. In this research the interference of a synthetic preparation of the insect C18 juvenile hormone with mouse embryo fibroblasts (ME-cells) and mouse cells of an established line (L-cells) was studied. Aliquots of juvenile hormone solution or those of the solvent (DMSO plus ethanol, 9:1) were included into the culture medium and after defined times of contact the cells were tested for their morphology, pattern of growth, proliferation rate and viability. The data for the parameters under examination were evaluated by means of the analysis of variance and checked by the Tuckey test. The sensitivity of ME-cells and L-cells to the agent tested was compared by means of the analysis of variance of the data for mitotic indices of these cells and by evaluation of the number of dead cells in cultures under the particular conditions of the experiments. The main findings can be summarized as follows: 1. Cells of both types are evidently more sensitive to juvenile hormone than to the solvent. 2. ME-cells are more sensitive to both agents than are L-cells. 3. The concentrations of the hormone in the medium required to evoked the cytocidal effect on the mouse cells similarly as those affecting some insect non-target cells were far above concentrations found in insect blood, but they were of the same order of magnitude as those used in physiological experiments with insect organs in vitro.

  18. Suppression of Electron Thermal Conduction in the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Roberg-Clark, Gareth; Drake, James; Swisdak, M.; Reynolds, Christopher S.

    2017-08-01

    The Intracluster Medium (ICM) contains high-temperature dilute plasma in which the quantity beta, defined as the ratio of the thermal pressure of the gas to the local magnetic field pressure, is much larger than unity. In addition, the collisional mean free path of particles in the ICM is typically large compared to the magnetic gyro-radius of individual particles. These conditions allow for the growth of robust microinstabilities that can significantly alter the transport of particles and heat along the local magnetic field line. Here we explore such an instability using driven two-dimensional Particle-In-Cell simulations of a magnetized plasma with a temperature gradient imposed at the boundaries. The system is highly unstable and develops large-amplitude magnetic fluctuations that effectively scatter the orbits of electrons crossing the simulation domain, resulting in a collisionless suppression of thermal conduction across the temperature gradient and magnetic field. The results suggest that the spontaneous development of small-scale plasma turbulence in the ICM may play a pivotal role in determining the thermal conductivity of ICM-like plasmas.

  19. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, T; Fredrickson, Jim K.; Balkwill, David L.

    Several strains of Sphingomonas isolated from deep Atlantic coastal plain aquifers at the US Department of Energy Savannah River Site (SRS) near Aiken, SC were shown to degrade a variety of aromatic hydrocarbons in a liquid culture medium. Sphingomonas aromaticivorans strain B0695 was the most versatile of the five strains examined. This strain was able to degrade acenaphthene, anthracene, phenanthrene, 2,3-benzofluorene, 2-methyl naphthalene, 2,3-dimethylnaphthalene, and fluoranthene in the presence of 400 mg l(-1) Tween 80. Studies involving microcosms composed of aquifer sediments showed that S. aromaticivorans B0695 could degrade phenanthrene effectively in sterile sediment and could enhance the rate atmore » which this compound was degraded in nonsterile sediment. These findings indicate that it may be feasible to carry out (or, at least, to enhance) in situ bioremediation of phenanthrene-contaminated soils and subsurface environments with S. aromaticivorans B0695. In contrast, stra in B0695 was unable to degrade fluoranthene in microcosms containing aquifer sediments, even though it readily degraded this polynuclear aromatic hydrocarbon (PAH) in a defined liquid growth medium.« less

  20. Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa.

    PubMed

    Coltri, Patricia P; Rosato, Yoko B

    2005-04-01

    Xylella fastidiosa is a xylem-limited phytopathogen responsible for diseases in several plants such as citrus and coffee. Analysis of the bacterial genome revealed some putative pathogenicity-related genes that could help to elucidate the molecular mechanisms of plant-pathogen interactions. In the present work, the transcription of three genes of the bacterium, grown in defined and rich media and also in media containing host plant extracts (sweet orange, 'ponkan' and coffee) was analyzed by RT-PCR. The pilS gene, which encodes a sensor histidine kinase responsible for the biosynthesis of fimbriae, was transcribed when the bacterium was grown in more complex media such as PW and in medium containing plant extracts. The xps genes (xpsL and xpsE) which are related to the type II secretion system were also detected when the bacterium was grown in rich media and media with 'ponkan' and coffee extracts. It was thus observed that pilS and xpsEL genes of X. fastidiosa can be modulated by environmental factors and their expression is dependent on the nutritional status of the growth medium.

  1. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, suchmore » as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.« less

  2. Novel approach for the use of dairy industry wastes for bacterial growth media production.

    PubMed

    Kasmi, Mariam; Elleuch, Lobna; Dahmeni, Ameni; Hamdi, Moktar; Trabelsi, Ismail; Snoussi, Mejdi

    2018-04-15

    This work proposes a novel approach for the reuse and the recovery of dairy wastes valuable components. Thermal coagulation was performed for dairy effluents and the main responsible fraction for the organic matter content (protein and fat) was separated. Dairy curds were prepared for the formulation of bacterial growth media. Protein, sugar, fat and fatty acids contents have been assessed. Samples treated at 100 °C exhibited marked improvement in terms of protein (25-50%) recovery compared to those treated at 80 °C. Fatty acid analysis revealed the presence of unsaturated fatty acids (mainly oleic acid) that are essential to promote Lactobacillus growth. Previously isolated and identified bacterial strains from dairy wastes (Lactobacillus paracasei, Lactobacillus plantarum, Lactococcus lactis and Lactobacillus brevis) were investigated for their ability to grow on the formulated media. All the tested lactic acid bacteria exhibited greater bacterial growth on the formulated media supplemented with glucose only or with both glucose and yeast extract compared to the control media. By reference to the commercial growth medium, the productivity ratio of the supplemented bactofugate (B) and decreaming (D) formulated media exceeded 0.6 for L. paracasei culture. Whereas, the productivity ratio of the supplemented B medium was greater than 1 compared to the control medium for all the tested strains. As for the supplemented D medium, its productivity ratio was greater than 1 compared to the control medium for both L. paracasei and L. plantarum strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The Effect of Fermentation Time with Probiotic Bacteria on Organic Fertilizer as Daphnia magna Cultured Medium towards Nutrient Quality, Biomass Production and Growth Performance Enhancement

    NASA Astrophysics Data System (ADS)

    Endar Herawati, Vivi; Agung Nugroho, Ristiawan; Pinandoyo; Darmanto, YS; Hutabarat, Johannes

    2018-02-01

    The nutrient quality and growth performance of D. magna are highly depend on the organic fertilizer which is used in its culture medium. The objective of this study was to identify the best fermentation time by using probiotic bacteria on organic fertilizer as mass culture medium to improve its nutrient quality, biomass production, and growth performance. This study was conducted using completely randomized experimental design with five treatments and three repetitions. Organic fertilizers used cultured medium with chicken manure, rejected bread and tofu waste fermented by probiotic bacteria then cultured for 0, 7, 14, 21 and 28 days. The results showed that medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population density and nutrient content of D. magna those are 233,980 ind/L for population density; 134.60 grams for biomass production, 0.574% specific growth rate; 68.06% protein content and 6.91% fat. The highest fatty acid profile is 4.83% linoleic and 3.54% linolenic acid. The highest essential amino acid is 53.94 ppm lysine. In general, the content of ammonia, DO, temperature, and pH during the study were in the good range of D. magna life. The conclusion of this research is medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population and nutrient content of D. magna.

  4. Comparing growth of ponderosa pine in two growing media

    Treesearch

    R. Kasten Dumroese

    2009-01-01

    I compared growth of container ponderosa pine (Pinus ponderosa) seedlings grown in a 1:1 (v:v) Sphagnum peat moss:coarse vermiculite medium (P:V) and a 7:3 (v:v) Sphagnum peat moss:Douglas-fir sawdust medium (P:S) at three different irrigation regimes. By using exponential fertilization techniques, I was able to supply seedlings with similar amounts...

  5. Factors Influencing Information Communication Technology (ICT) Acceptance and Use in Small and Medium Enterprises (SMEs) in Kenya

    ERIC Educational Resources Information Center

    Nyandoro, Cephus K.

    2016-01-01

    Research demonstrates that there is a gap in focusing understanding factors of information communication technology (ICT) acceptance and use in small and medium enterprises (SMEs). ICT is gaining popularity because it is a force in the economic growth equation. SMEs adopt ICT to promote their business strategy, performance, and growth. This study…

  6. Entrepreneurial Training for the Growth of Small and Medium-Sized Enterprises: Lessons from Central and Eastern Europe. Report.

    ERIC Educational Resources Information Center

    European Training Foundation, Turin (Italy).

    This report brings together a number of principles as to best practice in supporting, through training, growth of small and medium-sized enterprises (SMEs) in Central and Eastern Europe. Chapter 2 identifies key principles to be drawn from the West through a literature review. Chapter 3 reviews the "practice" of entrepreneurial training…

  7. Wall Teichoic Acids Are Involved in the Medium-Induced Loss of Function of the Autolysin CD11 against Clostridium difficile

    PubMed Central

    Wu, Xia; Paskaleva, Elena E.; Mehta, Krunal K.; Dordick, Jonathan S.; Kane, Ravi S.

    2016-01-01

    Bacterial lysins are potent antibacterial enzymes with potential applications in the treatment of bacterial infections. Some lysins lose activity in the growth media of target bacteria, and the underlying mechanism remains unclear. Here we use CD11, an autolysin of Clostridium difficile, as a model lysin to demonstrate that the inability of this enzyme to kill C. difficile in growth medium is not associated with inhibition of the enzyme activity by medium, or the modification of the cell wall peptidoglycan. Rather, wall teichoic acids (WTAs) appear to prevent the enzyme from binding to the cells and cleaving the cell wall peptidoglycan. By partially blocking the biosynthetic pathway of WTAs with tunicamycin, cell binding improved and the lytic efficacy of CD11 was significantly enhanced. This is the first report of the mechanism of lysin inactivation in growth medium, and provides insights into understanding the behavior of lysins in complex environments, including the gastrointestinal tract. PMID:27759081

  8. Synthesis and excretion of glycerol teichoic acid during growth of two streptococcal species.

    PubMed Central

    Joseph, R; Shockman, G D

    1975-01-01

    Examination of both supernatant culture medium and cell pellets after exponential- and stationary-phase growth of Streptococcus mutans strain FA-1 and Streptococcus faecalis ATCC 9790 (S. faecium) showed the presence of [-3H]glycerol-labeled material that possessed several of the properties of glycerol teichoic acid. In the supernatant medium of S. mutans FA-1, an apparently large-molecular-size material, which eluted from agarose columns with the Kd value expected of a lipoteichoic acid, was observed. Large amounts of this material were present in supernatants during the stationary phase. In contrast, with S. faecalis only an apparently lower-molecular-weight form, with a Kd consistent with deacylated glycerol teichoic acid, was found in the growth medium. Both organisms had high-molecular-weight lipoteichoic acid in the cells along with the deacylated glycerol teichoic acid. The presence of relatively large amounts of glycerol teichoic acids in the medium was considered to be a result of excretion of these compounds rather than a result of cellular lysis. PMID:807523

  9. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.

    PubMed

    Yatmaz, Ercan; Karahalil, Ercan; Germec, Mustafa; Ilgin, Merve; Turhan, İrfan

    2016-09-01

    β-mannanase was produced mainly by Aspergillus species and can degrade the β-1,4-mannose linkages of galactomannans. This study was undertaken to enhance mannanase production using talcum and aluminum oxide as the microparticles, which control cell morphology of recombinant Aspergillus sojae in glucose and carob extract medium. Both microparticles improved fungal growth in glucose and carob pod extract medium. Aluminum oxide (1 g/L) was the best agent for glucose medium which resulted in 514.0 U/ml. However, the highest mannanase activity was found as 568.7 U/ml with 5 g/L of talcum in carob extract medium. Increase in microparticle concentration resulted in decreasing the pellet size diameter. Furthermore, more than 10 g/L of talcum addition changed the filamentous fungi growth type from pellet to pellet/mycelium mixture. Results showed that right type and concentration of microparticle in fermentation media improved the mannanase activity and production rate by controlling the growth morphology.

  10. Effects of culture conditions on growth and docosahexaenoic acid production from Schizochytrium limacinum

    NASA Astrophysics Data System (ADS)

    Zhu, Luying; Zhang, Xuecheng; Ren, Xueying; Zhu, Qinghua

    2008-02-01

    The effects of temperature, initial pH, salinity of culture medium, and carbon and nitrogen sources on growth and docosahexaenoic acid (C22: 6 n-3, DHA) production from Schizochytrium limacinum OUC88 were investigated in the present study. The results revealed that the optimal temperature, initial pH and salinity level of the medium for DHA production were 23°C, 7.0 and 18, respectively. Glucose was proved the best carbon source for the growth and DHA production from S. limacinum. Among the nitrogen sources tested, soybean cake hydrolysate, a cheap by-product, was found to be effective for the accumulation of DHA in S. limacinum cells. In addition, increasing the concentration of carbon sources in the medium caused a significant increase in cell biomass; however, accumulation of DHA in cells was mainly stimulated by the ratio of C/N in the medium. Under the optimal culture conditions, the maximum DHA yield achieved in flasks was 4.08 g L-1 after 5 d of cultivation.

  11. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as Starter Culture in Fermentation of Cocoa Beans (Theobroma cacao) Using Response Surface Methodology (RSM).

    PubMed

    Mahazar, N H; Zakuan, Z; Norhayati, H; MeorHussin, A S; Rukayadi, Y

    2017-01-01

    Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

  12. How Thinking About the Donor Influences Post-traumatic Growth in Liver Transplant Recipients.

    PubMed

    Martín-Rodríguez, A; Pérez-San-Gregorio, M Á; Avargues-Navarro, M L; Borda-Mas, M; Pérez-Bernal, J; Gómez-Bravo, M Á

    2018-03-01

    The aim of this work was to find out whether thinking frequently about the donor influences post-traumatic growth of liver transplant recipients. The sample of 240 patients selected was made up of 185 men and 55 women with an overall mean age of 60.21 (SD 9.3) years. All of them had received liver transplants from cadaver donors. Transplant recipients were asked whether they thought frequently about the donor (yes or no) and filled out the Post-traumatic Growth Inventory. The t test for unpaired samples was applied to analyze how thinking frequently about the donor or not influenced post-traumatic growth. We also calculated the effect sizes by means of Cohen d or Cohen w depending on the nature of the variables analyzed (quantitative or qualitative). The liver transplant recipients who thought frequently about the donor, compared with those who did not, had higher total scores on post-traumatic growth (P = .000; d = 0.57; medium effect size). Furthermore, considering the effect sizes, the differences between the subgroups were more relevant on the following subscales: new possibilities (P = .000; d = 0.53; medium effect size), appreciation of life (P = .000; d = 0.60; medium effect size), and spiritual change (P = .000; d = 0.54; medium effect size). Patients who think frequently about the donor have more post-traumatic growth than those who do not. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Aspartate Biosynthesis Is Essential for the Growth of Streptococcus thermophilus in Milk, and Aspartate Availability Modulates the Level of Urease Activity▿

    PubMed Central

    Arioli, Stefania; Monnet, Christophe; Guglielmetti, Simone; Parini, Carlo; De Noni, Ivano; Hogenboom, Johannes; Halami, Prakash M.; Mora, Diego

    2007-01-01

    We investigated the carbon dioxide metabolism of Streptococcus thermophilus, evaluating the phenotype of a phosphoenolpyruvate carboxylase-negative mutant obtained by replacement of a functional ppc gene with a deleted and inactive version, Δppc. The growth of the mutant was compared to that of the parent strain in a chemically defined medium and in milk, supplemented or not with l-aspartic acid, the final product of the metabolic pathway governed by phosphoenolpyruvate carboxylase. It was concluded that aspartate present in milk is not sufficient for the growth of S. thermophilus. As a consequence, phosphoenolpyruvate carboxylase activity was considered fundamental for the biosynthesis of l-aspartic acid in S. thermophilus metabolism. This enzymatic activity is therefore essential for growth of S. thermophilus in milk even if S. thermophilus was cultured in association with proteinase-positive Lactobacillus delbrueckii subsp. bulgaricus. It was furthermore observed that the supplementation of milk with aspartate significantly affected the level of urease activity. Further experiments, carried out with a pureI-gusA recombinant strain, revealed that expression of the urease operon was sensitive to the aspartate concentration in milk and to the cell availability of glutamate, glutamine, and ammonium ions. PMID:17660309

  14. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Reynolds, J. L.; Cubano, L. A.; Hatton, J. P.; Lawless, B. D.; Piepmeier, E. H.

    1998-01-01

    Alteration in cytoskeletal organization appears to underlie mechanisms of gravity sensitivity in space-flown cells. Human T lymphoblastoid cells (Jurkat) were flown on the Space Shuttle to test the hypothesis that growth responsiveness is associated with microtubule anomalies and mediated by apoptosis. Cell growth was stimulated in microgravity by increasing serum concentration. After 4 and 48 h, cells filtered from medium were fixed with formalin. Post-flight, confocal microscopy revealed diffuse, shortened microtubules extending from poorly defined microtubule organizing centers (MTOCs). In comparable ground controls, discrete microtubule filaments radiated from organized MTOCs and branched toward the cell membrane. At 4 h, 30% of flown, compared to 17% of ground, cells showed DNA condensation characteristic of apoptosis. Time-dependent increase of the apoptosis-associated Fas/ APO-1 protein in static flown, but not the in-flight 1 g centrifuged or ground controls, confirmed microgravity-associated apoptosis. By 48 h, ground cultures had increased by 40%. Flown populations did not increase, though some cells were cycling and actively metabolizing glucose. We conclude that cytoskeletal alteration, growth retardation, and metabolic changes in space-flown lymphocytes are concomitant with increased apoptosis and time-dependent elevation of Fas/APO-1 protein. We suggest that reduced growth response in lymphocytes during spaceflight is linked to apoptosis.

  15. Growth Media Affect Assessment of Antimicrobial Activity of Plant-Derived Polyphenols.

    PubMed

    Xu, Xin; Ou, Zhen M; Wu, Christine D

    2018-01-01

    This study aimed to investigate the effects of different microbial growth media on the laboratory assessment of antimicrobial activity of natural polyphenolic compounds. The inhibition of the tea polyphenol EGCG on growth of selected oral microorganisms was evaluated in complex media and a protein-free chemically defined medium (CDM). Other antimicrobial agents (polyphenolic grape seed extract, plant alkaloid berberine, methyl salicylate, and chlorhexidine gluconate) were also tested in the study. The presence of proteins and their effects on the antimicrobial activity of EGCG were investigated by the addition of BSA to the CDM. The MICs of EGCG against test oral microorganisms were 4 to 64 times higher in complex media than in CDM. The polyphenolic grape seed extract exhibited similar discrepancies. However, the MICs of the nonpolyphenolic compounds (berberine, methyl salicylate, and chlorhexidine) were not significantly different between the two growth media. The MIC of EGCG against S. mutans UA159 in CDM with added BSA was 16 times higher than that in CDM alone. Therefore, nonproteinaceous CDM should be used to avoid interference of proteins with the active ingredients when testing the antimicrobial activity of plant-derived polyphenolic compounds against microorganisms. This will also minimize the discrepancies noted in results obtained by different investigators.

  16. Triiodothyronine stimulates cartilage growth and maturation by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, W.M.; Van Wyk, J.J.

    1987-02-01

    The mechanisms by which triiodothyronine (T3) stimulates growth and maturation of growth-plate cartilage in vitro were studied by incubating embryonic chick pelvic cartilages in serum-free medium in the presence and absence of T3 for 3 days. To determine whether T3 might stimulate production of somatomedins by the cartilage, medium from cartilage incubated with and without T3 was assayed for somatomedin C( Sm-C) by radioimmunoassay. No difference in Sm-C content was found. However, cartilage incubated with T3 and increasing amounts of human Sm-C (0.5-20 ng/ml) weighed more and had greater amounts of glycosaminoglycan that cartilage incubated in the same concentrations ofmore » Sm-C without T3, suggesting that T3 enhances the growth effect of somatomedin. The authors added a monoclonal antibody to Sm-C (anti-Sm-C) to the organ culture to determine whether T3's stimulatory effect on cartilage growth could be blocked. The anti-Sm-C inhibited growth of cartilage incubated in medium alone and blocked the growth response to T3. They propose two different mechanisms by which T3 affects growth-plate cartilage: (1) T3 promotes cartilage growth primarily through enhancing the effect of somatomedin, and (2) T3 stimulates cartilage maturation possibly by accelerating the normal process of cartilage differentiation from proliferative to hypertrophic chondrocytes.« less

  17. [Isolation of a strain of M. tuberculosis which is considered to be rifampicin-dependent, from a patient with long-lasted smear positive and culture difficult (SPCD) mycobacteria].

    PubMed

    Nakamura, M; Harano, Y; Koga, T

    1990-09-01

    During the course of clinical examination of drug sensitivity tests for M. tuberculosis, a strain of M. tuberculosis which is considered to be rifampicin-dependent was isolated from a patient with persisting smear positive, culture negative (SPCN) or culture difficult (SPCD) mycobacteria status. The strain isolated produced a few tiny colonies on the control Ogawa-egg yolk medium, whereas it showed abundant growth like a bacteria plaque on the medium containing rifampicin 50 micrograms/ml. Furthermore, the growth of the strain on Ogawa medium containing rifampicin 50 micrograms/ml is much better than that on the medium containing rifampicin 10 micrograms/ml.

  18. Some Factors Influencing Acid Production by an Oxytetracycline-Resistant Strain of Streptococcus lactis1

    PubMed Central

    Mikolajcik, E. M.; Harper, W. J.; Gould, I. A.

    1963-01-01

    Induction of oxytetracycline resistance in a strain of Streptococcus lactis caused this organism to display reduced acid production, salt tolerance, pyruvate synthesis, growth at alkaline pH, and a loss in ability to produce ammonia from arginine. α-Ketoglutaric and oxaloacetic acids were found to accumulate in the growth medium of resistant cells, in contrast to none in the medium of susceptible cells. No free arginine could be detected in the intracellular fraction of resistant cells, but arginine was present in the intracellular fraction of susceptible cells and decreased in concentration upon the addition of oxytetracycline to the growth medium. Depressed acid production in milk by the oxytetracycline resistant strain is evidently a consequence of the inability of this organism to metabolize arginine effectively. PMID:14063784

  19. Cultivation of animal cells in a reticulated vitreous carbon foam.

    PubMed

    Kent, B L; Mutharasan, R

    1992-02-01

    A reticulated vitreous carbon foam (RVCF) was used as a surface to cultivate a model anchorage-dependent animal cell line, 3T6 (mouse embryo fibroblast). This fixed-surface bioreactor provided a low-shear, chemically-inert, and reusable environment for cell growth. An external medium recirculation loop allowed aeration, nutrient monitoring, and medium replacement without disturbing the cells. Optimal flow rates for the attachment and growth phases were determined. Growth rates comparable to static (T-flask and petri dish) cultures and agitated microcarrier cultures were achieved with appropriately high medium recirculation rates. Metabolic parameters were shown to be useful indicators of cell mass, although specific glucose consumption rates were considerably higher for cultures in the RVCF reactor. Oxygen supply was shown to be the most likely limiting factor for scaleup.

  20. Saliva and dental plaque.

    PubMed

    Rudney, J D

    2000-12-01

    Dental plaque is being redefined as oral biofilm. Diverse overlapping microbial consortia are present on all oral tissues. Biofilms are structured, displaying features like channels and projections. Constituent species switch back and forth between sessile and planktonic phases. Saliva is the medium for planktonic suspension. Several major functions can be defined for saliva in relation to oral biofilm. It serves as a medium for transporting planktonic bacteria within and between mouths. Bacteria in transit may be vulnerable to negative selection. Salivary agglutinins may prevent reattachment to surfaces. Killing by antimicrobial proteins may lead to attachment of dead cells. Salivary proteins form conditioning films on all oral surfaces. This contributes to positive selection for microbial adherence. Saliva carries chemical messengers which allow live adherent cells to sense a critical density of conspecifics. Growth begins, and thick biofilms may become resistant to antimicrobial substances. Salivary macromolecules may be catabolized, but salivary flow also may clear dietary substrates. Salivary proteins act in ways that benefit both host and microbe. All have multiple functions, and many do the same job. They form heterotypic complexes, which may exist in large micelle-like structures. These issues make it useful to compare subjects whose saliva functions differently. We have developed a simultaneous assay for aggregation, killing, live adherence, and dead adherence of oral species. Screening of 149 subjects has defined high killing/low adherence, low killing/high adherence, high killing/high adherence, and low killing/low adherence groups. These will be evaluated for differences in their flora.

  1. [Effects of sludge compost used as lawn medium on lawn growth and soil and water environment].

    PubMed

    Jin, Shu-Quan; Zhou, Jin-Bo; Chen, Ruo-Xia; Lin, Bin; Wang, De-Yao

    2013-10-01

    To address effect of the sludge compost-containing medium on the growth of Manila lawn and environment quality, a pot experiment was conducted using six treatments based on contrasting sludge compost addition volume ratios in the soil system (i. e., 0% , 10% , 25% , 50% , 75% and 100%). The results indicated that the growth potential of Manila lawn was increased with increasing sludge compost addition volume ratio. The content of Hg in Manila plant was significantly positively correlated with that in the lawn medium. Although the contents of Cr, Cd and Hg in the lawn medium were synchronously increased with increasing sludge compost addition volume ratio in the soil system, their contents were all lower than the critical levels of third-class standard in the National Soil Environmental Quality Standard. The heavy metal and nitrate concentrations detected in percolating water were significantly positively correlated with those in the lawn medium, respectively. When the sludge compost addition volume ratio was more than 50% in this study, both heavy metal and nitrate concentrations in percolating water would exceed the maximum allowable levels of the National Groundwater Environment Quality Standard.

  2. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.

    PubMed

    Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise

    2009-05-31

    Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that altering their fatty acid composition (i.e. increased hexadecanoic acid and octadecenoic acid and decreased hexadecenoic acid and C-19 cyclopropane fatty acid) by changing growth conditions may be a useful way to enhance their bile resistance in lactococci.

  3. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    NASA Astrophysics Data System (ADS)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  4. Growing media [Chapter 5

    Treesearch

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    Selecting the proper growing medium is one of the most important considerations in nursery plant production. A growing medium can be defined as a substance through which roots grow and extract water and nutrients. In native plant nurseries, a growing medium can consist of native soil but is more commonly an "artificial soil" composed of materials such as peat...

  5. Optimal Conditions for the Mycelial Growth of Coprinus comatus Strains

    PubMed Central

    Lee, Yun-Hae; Liu, Jun-Jie; Ju, Young-Cheol

    2009-01-01

    The principal objective of this study was to acquire basic data regarding the mycelial growth characteristics for the artificial cultivation of Coprinus comatus. 12 URP primers were employed to evaluate the genetic relationships of C. comatus, and the results were divided into three groups. Among six kinds of mushroom media, MYP medium was selected as the most favorable culture medium for C. comatus. The optimal temperature and pH ranges for the mycelial growth of C. comatus were 23~26℃ and pH 6~8, respectively. The carbon and nitrogen sources for optimal mycelial growth were sucrose and tryptone, respectively. PMID:23983517

  6. Insulin-like growth factor-I and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage.

    PubMed

    Alexander, Thomas H; Sage, August B; Chen, Albert C; Schumacher, Barbara L; Shelton, Elliot; Masuda, Koichi; Sah, Robert L; Watson, Deborah

    2010-10-01

    Tissue engineering of human nasal septal chondrocytes offers the potential to create large quantities of autologous material for use in reconstructive surgery of the head and neck. Culture with recombinant human growth factors may improve the biochemical and biomechanical properties of engineered tissue. The objectives of this study were to (1) perform a high-throughput screen to assess multiple combinations of growth factors and (2) perform more detailed testing of candidates identified in part I. In part I, human nasal septal chondrocytes from three donors were expanded in monolayer with pooled human serum (HS). Cells were then embedded in alginate beads for 2 weeks of culture in medium supplemented with 2% or 10% HS and 1 of 90 different growth factor combinations. Combinations of insulin-like growth factor-I (IGF-1), bone morphogenetic protein (BMP)-2, BMP-7, BMP-13, growth differentiation factor-5 (GDF-5), transforming growth factor β (TGFβ)-2, insulin, and dexamethasone were evaluated. Glycosaminoglycan (GAG) accumulation was measured. A combination of IGF-1 and GDF-5 was selected for further testing based on the results of part I. Chondrocytes from four donors underwent expansion followed by three-dimensional alginate culture for 2 weeks in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5. Chondrocytes and their associated matrix were then recovered and cultured for 4 weeks in 12 mm transwells in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5 (the same medium used for alginate culture). Biochemical and biomechanical properties of the neocartilage were measured. In part I, GAG accumulation was highest for growth factor combinations including both IGF-1 and GDF-5. In part II, the addition of IGF-1 and GDF-5 to 2% HS resulted in a 12-fold increase in construct thickness compared with 2% HS alone (p < 0.0001). GAG and type II collagen accumulation was significantly higher with IGF-1 and GDF-5. Confined compression modulus was greatest with 2% HS, IGF-1, and GDF-5. Supplementation of medium with IGF-1 and GDF-5 during creation of neocartilage constructs results in increased accumulation of GAG and type II collagen and improved biomechanical properties compared with constructs created without the growth factors.

  7. Synergistic growth studies of Entamoeba gingivalis using an Ecologen.

    PubMed

    Gannon, J T; Linke, H A

    1992-11-01

    A unique multiple diffusion growth chamber, an Ecologen, designed for the study of interactions among microorganisms, was introduced as a means of growing xenic cultures of Entamoeba gingivalis with Crithidia sp. or Yersinia enterocolitica. Entamoeba gingivalis was grown in the central diffusion reservoir of the Ecologen connected to separate growth chambers inoculated with the microorganisms to be evaluated. Growth of the accompanying bacteria in the E. gingivalis compartment was almost completely eliminated, except for sparse Pseudomonas sp. growth. The most vital E. gingivalis cultures were observed when either Crithidia sp. or Y. enterocolitica were added to the Ecologen 48 h prior to the E. gingivalis inoculum. The medium which provided the best growth of the oral protozoan in this system was the new improved E. gingivalis medium containing antibiotics.

  8. Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing.

    PubMed

    Kwon, Sun Hyun; Bhang, Suk Ho; Jang, Hyeon-Ki; Rhim, Taiyoun; Kim, Byung-Soo

    2015-03-01

    It was previously shown that human adipose-derived stromal cell (hADSC)-conditioned medium (CM) promotes wound healing. An essential part of the wound healing process is neovascularization in the wound bed. We hypothesized that CM prepared from hADSCs cultured as spheroids in three-dimensional suspension bioreactors (spheroid CM) would contain much higher concentrations of angiogenic growth factors secreted by hADSCs, induce a higher extent of neovascularization in the wound bed, and improve wound healing as compared with CM prepared by conventional monolayer culture (monolayer CM). The concentrations of angiogenic growth factors (i.e., vascular endothelial growth factor, basic fibroblast growth factor, and hepatocyte growth factor) in spheroid CM were 20- to 145-fold higher than those in monolayer CM. Either fresh medium, monolayer CM, or spheroid CM was administered to full-thickness wounds created on the dorsal aspects of athymic mice. The monolayer CM promoted wound healing as compared with fresh medium or no treatment. Importantly, wound closure was faster, and dermal and epidermal regeneration was improved in the spheroid CM-treated mice compared with that in the monolayer CM-treated mice. The improved wound healing by spheroid CM may be attributed, at least in part, to enhanced neovascularization in the wound beds. The spheroid-based CM approach showed potential as a therapy for skin wound repair. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Liposome encapsulated soy lecithin and cholesterol can efficiently replace chicken egg yolk in human semen cryopreservation medium.

    PubMed

    Mutalik, Srinivas; Salian, Sujith Raj; Avadhani, Kiran; Menon, Jyothsna; Joshi, Haritima; Hegde, Aswathi Raju; Kumar, Pratap; Kalthur, Guruprasad; Adiga, Satish Kumar

    2014-06-01

    Cryopreservation of spermatozoa plays a significant role in reproductive medicine and fertility preservation. Chicken egg yolk is used as an extender in cryopreservation of human spermatozoa using glycerol egg yolk citrate (GEYC) buffered medium. Even though 50% survival of spermatozoa is generally achieved with this method, the risk of high levels of endotoxins and transmission pathogens from chicken egg yolk is a matter of concern. In the present study we attempted to establish a chemically defined cryopreservation medium which can replace the chicken egg yolk without affecting sperm survival. Ejaculates from 28 men were cryopreserved with GEYC based freezing medium or liposome encapsulated soy lecithin-cholesterol based freezing medium (LFM). The semen samples were subjected to rapid thawing after 14 days of storage in liquid nitrogen. Post-thaw analysis indicated significantly higher post-thaw motility and sperm survival in spermatozoa cryopreserved with LFM compared to conventional GEYC freezing medium. The soy lecithin and cholesterol at the ratio of 80:20 with sucrose showed the highest percentage of post-thaw motility and survival compared to the other compositions. In conclusion, chemically defined cryopreservation medium with liposome encapsulated soy lecithin and cholesterol can effectively replace the chicken egg yolk from human semen cryopreservation medium without compromising post-thaw outcome.

  10. Establishing axenic cultures from mature pecan embryo explants on media with low water availability.

    PubMed

    Obeidy, A A; Smith, M A

    1990-12-01

    Endophytic fungi associated with mature pecan (Carya illinoensis (Wangenh.) C. Koch) nuts prevented successful, contaminant-free in vitro culture of embryo expiants, even after rigorous surface disinfestation of the nuts and careful aseptic shelling. Disinfestation with sodium hypochlorite after shell removal was also unsuccessful, because even dilute concentrations which were ineffective against the fungal contaminants prevented subsequent growth from the embryo. Explanting media with low water availability which would not sustain growth of fungal contaminants, but supported growth from mature pecan embryos, were developed as an alternative disinfestation method. The explanting media were supplemented with 0.9-1.5% agar, and other media components were selectively omitted to test their influence on water availability and fungal growth. Disinfestation of up to 65% of the cultures was accomplished, depending on the medium formulation, compared to 100% loss to contamination on control medium (0.5% agar). A complete medium (containing sucrose, salts, vitamins, 18 μM BAP, and 5 μM IBA) with 1.5% agar provided control of contamination, and encouraged subsequent regeneration from the embryo expiants, which remained free of contaminant growth through subsequent subcultures.

  11. Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp

    NASA Astrophysics Data System (ADS)

    Hadiyanto, Hadiyanto

    2018-02-01

    Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.

  12. A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks.

    PubMed

    Mehta, Mohina; Ram, Raja; Bhattacharya, Amita

    2014-07-01

    The two commercially important apple rootstocks i.e., MM106 and B9 were micropropagated using a liquid culture system. Three different strengths of 0.8% agar solidified PGR free basal MS medium were first tested to optimize the culture media for both the rootstocks. Full strength medium (MS0) supported maximum in vitro growth, multiplication, rooting and survival under field conditions as opposed to quarter and half strength media. When three different volumes of liquid MS0 were tested, highest in vitro growth, multiplication, rooting and also survival under field conditions were achieved in 20 mL liquid MS0. The cost of one litre of liquid medium was also reduced by 8 times to Rs. 6.29 as compared to solid medium. The cost of 20 mL medium was further reduced to Rs. 0.125.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  14. Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution.

    PubMed

    Kishimoto, Toshihiko; Iijima, Leo; Tatsumi, Makoto; Ono, Naoaki; Oyake, Ayana; Hashimoto, Tomomi; Matsuo, Moe; Okubo, Masato; Suzuki, Shingo; Mori, Kotaro; Kashiwagi, Akiko; Furusawa, Chikara; Ying, Bei-Wen; Yomo, Tetsuya

    2010-10-21

    It remains to be determined experimentally whether increasing fitness is related to positive selection, while stationary fitness is related to neutral evolution. Long-term laboratory evolution in Escherichia coli was performed under conditions of thermal stress under defined laboratory conditions. The complete cell growth data showed common continuous fitness recovery to every 2°C or 4°C stepwise temperature upshift, finally resulting in an evolved E. coli strain with an improved upper temperature limit as high as 45.9°C after 523 days of serial transfer, equivalent to 7,560 generations, in minimal medium. Two-phase fitness dynamics, a rapid growth recovery phase followed by a gradual increasing growth phase, was clearly observed at diverse temperatures throughout the entire evolutionary process. Whole-genome sequence analysis revealed the transition from positive to neutral in mutation fixation, accompanied with a considerable escalation of spontaneous substitution rate in the late fitness recovery phase. It suggested that continually increasing fitness not always resulted in the reduction of genetic diversity due to the sequential takeovers by fit mutants, but caused the accumulation of a considerable number of mutations that facilitated the neutral evolution.

  15. The Influence of Container Type and Potting Medium on Growth of Black Walnut Seedlings

    Treesearch

    David T. Funk; Paul L Roth; C. K. Celmer

    1980-01-01

    Container size and shape, potting medium, and genotype interacted to influence the growth of black walnut (Juglans nigra L.) seedlings. Larger containers tended to produce larger trees. In tall, narrow, vent-pipe containers, different, proportions of peat and sand in potting media had no effect on total weight; a higher proportion of peat than of very fine sand in...

  16. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions.

    PubMed

    Combrouse, T; Sadovskaya, I; Faille, C; Kol, O; Guérardel, Y; Midelet-Bourdin, G

    2013-04-01

    The purpose of this study was to quantify the extracellular matrix of Listeria monocytogenes biofilm. A preliminary study was carried out to establish a relationship between phylogenetic lineage of 27 strains and their ability to form biofilm in various conditions. Biofilm formation on microtitre plates of 27 strains of L. monocytogenes belonging to lineages I or II was evaluated in different conditions [two temperatures (37 and 22°C) and two media (tryptone soy broth yeast extract medium (TSBYE) and MCDB 202 defined medium)] using crystal violet assay. Lineage II strains produced significantly more biofilm than lineage I strains. In microtitre plates assay, biofilm quantities were greater in MCDB 202 vs TSBYE medium [confirmed by scanning electron microscopy (SEM) analysis] and at 37 vs 22°C. Cultivable bacteria from biofilm population on Petri dishes were enumerated in greater quantities in TSBYE than in MCDB 202 medium. The SEM investigation established that L. monocytogenes biofilms produce extracellular matrix in both media at 37°C. The amount of exopolymers in the extracellular matrix and the pH values were significantly higher in TSBYE than in MCDB 202 medium. The exception was the ScottA strain that presented similar pH values and exopolymer contents in both media. Proteins were the most abundant exopolymer components, followed by DNA and polysaccharides. The interpretation of results of biofilm quantification was depending on the growth conditions, the viability of the bacteria and the analysis method. The quantities of proteins, DNA and polysaccharides were different according to the strains and the medium. This study screened the potential of a wide panel of L. monocytogenes strains to synthesize exopolymers in biofilm growing condition. The characterization of L. monocytogenes biofilm composition may help to develop new strategies to prevent the formation of biofilms and to remove the biofilms. © 2013 The Society for Applied Microbiology.

  17. Human neuroblastoma growth inhibitory factor (h-NGIF), derived from human astrocytoma conditioned medium, has neurotrophic properties.

    PubMed

    Eksioglu, Y Z; Iida, J; Asai, K; Ueki, T; Nakanishi, K; Isobe, I; Yamagata, K; Kato, T

    1994-05-02

    Investigations on the general characteristics of human astrocytoma cell line NAC-1 revealed neuroblastoma growth inhibitory activity in conditioned medium. Neuroblastoma growth inhibitory factor (NGIF) was partially purified by Econo Q, Econo CM, and Superose 12 column chromatography. The protein is weakly basic with an estimated M(r) of 120,000, possibly having an M(r) 60,000 dimeric structure. NGIF inhibits the growth of human neuroblastoma cell lines but has no effect on morphology nor does it produce any change in the growth of human glioblastoma cell lines. Interestingly, NGIF appears to promote survival and neurite outgrowth of embryonal rat cortical neurons. These neurotrophic properties suggest a role for NGIF in the development of the nervous system.

  18. Glucose and D-Allulose contained medium to support the growth of lactic acid bacteria

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Pramono, Y. B.; Sari, D. I.; Pangestika, W.

    2018-01-01

    Monosaccharide has been known as support agent for the growth of lactic acid bacteria. However the combination among monosaccharides for supporting the living of bacteria has not been understood well. This research was done for analyzing the combination glucose and D-allulose for the growth of Lactobacillus acidophilus and Streptococcus thermophillus. The NaCl medium containing glucose and D-allulose was used to analyse the growth of bacteria. The study showed that glucose and D-allulose have been detected as supportive agent to L. acidophilus and S. thermophillus specifically. As conclusion, glucose and D-allulose supported the growth of lactic acid bacteria equally. This finding might provide the beneficial information for industry to utilize D-allulose as well as glucose.

  19. Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica).

    PubMed

    Kim, Sun-Ju; Park, Woo Tae; Uddin, Md Romij; Kim, Yeon Bok; Nam, Sang-Yong; Jho, Kwang Hyun; Park, Sang Un

    2013-02-01

    Here we present previously unreported glucosinolate production by hairy root cultures of broccoli (B. oleracea var. italica). Growth media greatly influenced the growth and glucosinolate content of hairy root cultures of broccoli. Seven glucosinolates, glucoraphanin, gluconapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin, were identified by analysis of the broccoli hairy root cultures. Both half and full strength B5 and SH media enabled the highest accumulation of glucosinolates. In most cases, the levels of glucosinolates were higher in SH and BS media. Among the 7 glucosinolates, the accumulation of neoglucobrassicin was very high, irrespective of growth medium. The neoglucobrassicin content was 7.4-fold higher in SH medium than 1/2 MS, in which its level was the lowest. The 1/2 B5 medium supported the production of the highest amounts of glucobrassicin and 4-methoxyglucobrassicin, the levels for which were 36.2- and 7.9- fold higher, respectively, than their lowest content in 1/2 MS medium. The 1/2 SH medium enabled the highest accumulation of glucoraphanin and gluconapin in the broccoli hairy root cultures, whose levels were 1.8- and 4.6-fold higher, respectively, than their lowest content in 1/2 MS medium. Our results suggest that hairy root cultures of broccoli could be a valuable alternative approach for the production of glucosinolate compounds.

  20. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    PubMed

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  1. Toxicological Profiling of Highly Purified Single-Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and Escherichia Coli.

    PubMed

    Wang, Xiang; Lee, Jae-Hyeok; Li, Ruibin; Liao, Yu-Pei; Kang, Joohoon; Chang, Chong Hyun; Guiney, Linda M; Mirshafiee, Vahid; Li, Linjiang; Lu, Jianqin; Xia, Tian; Hersam, Mark C; Nel, André E

    2018-06-01

    Carbon nanotubes (CNTs) exhibit a number of physicochemical properties that contribute to adverse biological outcomes. However, it is difficult to define the independent contribution of individual properties without purified materials. A library of highly purified single-walled carbon nanotubes (SWCNTs) of different lengths is prepared from the same base material by density gradient ultracentrifugation, designated as short (318 nm), medium (789 nm), and long (1215 nm) SWCNTs. In vitro screening shows length-dependent interleukin-1β (IL-1β) production, in order of long > medium > short. However, there are no differences in transforming growth factor-β1 production in BEAS-2B cells. Oropharyngeal aspiration shows that all the SWCNTs induce profibrogenic effects in mouse lung at 21 d postexposure, but there are no differences between tube lengths. In contrast, these SWCNTs demonstrate length-dependent antibacterial effects on Escherichia coli, with the long SWCNT exerting stronger effects than the medium or short tubes. These effects are reduced by Pluronic F108 coating or supplementing with glucose. The data show length-dependent effects on proinflammatory response in macrophage cell line and antibacterial effects, but not on collagen deposition in the lung. These data demonstrate that over the length scale tested, the biological response to highly purified SWCNTs is dependent on the complexity of the nano/bio interface. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced production of ATP-binding cassette protein exporter-dependent lipase by modifying the growth medium components of Pseudomonas fluorescens.

    PubMed

    Eom, Gyeong Tae; Song, Jae Kwang

    2014-08-01

    The industrially-important thermostable lipase, TliA, was extracellularly produced in the recombinant Pseudomonas fluorescens by the homologous expression of TliA and its cognate ABC protein exporter, TliDEF. To increase the secretory production of TliA, we optimized the growth temperature and the culture medium of P. fluorescens. The total amount and the specific productivity of lipase was highest at 25 °C of cell growth temperature, although maximal cell growth was observed at 30 °C. Using the culture medium composed of 20 g dextrin l(-1), 40 g Tween 80 l(-1) and 30 g peptone l(-1), TliA was produced at a level of 2,200 U ml(-1) in a flask culture. The TliA production increased about 3.8-fold (8,450 U ml(-1)) in batch fermentation using a 2.5 l fermentor, which was about 7.7-fold higher than that of previously reported TliA production.

  3. Development of a selective myclobutanil agar (MBA) medium for the isolation of Fusarium species from asparagus fields.

    PubMed

    Vujanovic, Vladimir; Hamel, Chantal; Jabaji-Hare, Suha; St-Arnaud, Marc

    2002-09-01

    A new selective myclobutanil agar medium for the detection of Fusarium, species is proposed. Ten media formulations based on various selective agents (pentachloronitrobenzene (PCNB), Rose Bengal, malachite green, sodium hypochlorite, captan, benomyl, chlorotalonil, myclobutanil, thiram, and cupric sulfate) were compared. First, mycelium growth and colony appearance of Alternaria alternata, Aspergillus flavus, Cladosporium cladosporioides, Epicoccum nigrum, Fusarium sp., Fuisarium solani, Fusarium moniliforme, Fusarium oxysporum f.sp. dianthi, Penicillium sp., and Trichoderma viride isolates were compared. Second, the ability of the different media to isolate and enumerate fusaria from asparagus fields was evaluated. The myclobutanil-based medium showed the highest selectivity to Fusarium spp. growth but required a slightly longer incubation time (>5 d) than peptone-pentachloronitrobenzene-based agar (PPA) (< 5 d). PPA allowed a faster fusaria growth but also permited the growth of other moulds. The other media were less selective and did not allow to isolate fusaria or to differenciate them from other growing fungi.

  4. The role of silicon in plant tissue culture

    PubMed Central

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production. PMID:25374578

  5. Allelobiosis in the interference of allelopathic wheat with weeds.

    PubMed

    Li, Yong-Hua; Xia, Zhi-Chao; Kong, Chui-Hua

    2016-11-01

    Plants may chemically affect the performance of neighbouring plants through allelopathy, allelobiosis or both. In spite of increasing knowledge about allelobiosis, defined as the signalling interactions mediated by non-toxic chemicals involved in plant-plant interactions, the phenomenon has received relatively little attention in the scientific literature. This study examined the role of allelobiosis in the interference of allelopathic wheat with weeds. Allelopathic wheat inhibited the growth of five weed species tested, and the allelochemical (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) production of wheat was elicited in the presence of these weeds, even with root segregation. The inhibition and allelochemical levels varied greatly with the mixed species density. Increased inhibition and allelochemical levels occurred at low and medium densities but declined at high densities. All the root exudates and their components of jasmonic acid and salicylic acid from five weeds stimulated allelochemical production. Furthermore, jasmonic acid and salicylic acid were found in plants, root exudates and rhizosphere soils, regardless of weed species, indicating their participation in the signalling interactions defined as allelobiosis. Through root-secreted chemical signals, allelopathic wheat can detect competing weeds and respond by increased allelochemical levels to inhibit them, providing an advantage for its own growth. Allelopathy and allelobiosis are two probably inseparable processes that occur together in wheat-weed chemical interactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Gastropod growth and survival as bioindicators of stress associated with high nutrients in the intertidal of a shallow temperate estuary

    NASA Astrophysics Data System (ADS)

    Marsden, Islay D.; Baharuddin, Nursalwa

    2015-04-01

    The effects of multiple stressors on estuarine organisms are not well understood. Using cage experiments we measured the survival and growth of the pulmonate gastropod Amphibola crenata at five locations which differed contaminant levels. Water nutrients came from a nearby sewage treatment works and the sediment contained low levels of trace metals. Over 6 weeks of exposure, sediment surface chlorophyll levels varied amongst locations. The Chl a values were positively correlated with sediment N and P and trace metals As, Cd, Cu, Pb and Zn. Pulmonate survival depended on location, highest mortality was from a site close to the treatment plant and mortality rate of large individuals decreased significantly with distance away from it. For four locations, medium A. crenata had higher survival than small (juveniles) or adults. Growth rates of small individuals exceeded those for medium and large A. crenata. The mean length increment/week for medium gastropods ranged between 0.49 and 1.11 mm and was negatively correlated with the amount of Chl a in the surface sediment, suggesting the negative effects of eutrophication on gastropod growth. Growth rate of the pulmonate was not correlated with nutrient concentration or trace metal concentrations in the sediment. The dry weight condition index (CI) did not correlate with the growth rate, and for medium individuals, was unaffected by any of the environmental variables. The CI of small individuals was negatively affected by increasing water nutrient levels and the CI of large individuals negatively affected by increasing sediment nutrients and trace metal concentrations. The results from this study suggest that gastropod growth and survival could be used as tools to monitor the effects of changing nutrient levels and recovery from eutrophication within temperate estuaries.

  7. An Alkalophilic Bacillus sp. Produces 2-Phenylethylamine

    PubMed Central

    Hamasaki, Nobuko; Shirai, Shinji; Niitsu, Masaru; Kakinuma, Katsumi; Oshima, Tairo

    1993-01-01

    A large amount of 2-phenylethylamine was produced in cells of alkalophilic Bacillus sp. strain YN-2000. This amine is secreted in the medium during the cell growth. The amounts of 2-phenylethylamine in both cells and medium change upon changing the pH of the medium. PMID:16349025

  8. The New Field Quantities and the Poynting Theorem in Material Medium with Magnetic Monopoles

    NASA Astrophysics Data System (ADS)

    Zor, Ömer

    2016-12-01

    The duality transformation was used to define the polarization mechanisms that arise from magnetic monopoles. Then, a dimensional analysis was conducted to describe the displacement and magnetic intensity vectors (constitutive equations) in SI units. Finally, symmetric Maxwell equations in a material medium with new field quantities were introduced. Hence, the Lorentz force and the Poynting theorem were defined with these new field quantities, and many possible definitions of them were constructed.

  9. Experimental observations of root growth in a controlled photoelastic granular material

    NASA Astrophysics Data System (ADS)

    Barés, Jonathan; Mora, Serge; Delenne, Jean-Yves; Fourcaud, Thierry

    2017-06-01

    We present a novel root observation apparatus capable of measuring the mechanical evolution of both the root network and the surrounding granular medium. The apparatus consists of 11 parallel growth frames, two of them being shearable, where the roots grow inside a photo-elastic or glass granular medium sandwiched between two pieces of glass. An automated system waters the plant and image each frame periodically in white light and between crossed polarisers. This makes it possible to follow (i) the root tips and (ii) the grain displacements as well as (iii) their inner pressure. We show how a root networks evolve in a granular medium and how it can mechanically stabilize it. This constitutes a model experiment to move forward in the understanding of the complex interaction between root growth and surrounding soil mechanical evolution.

  10. Ecological relationships between xerophilic fungi and house-dust mites (Acarida: Pyroglyphidae).

    PubMed

    Lustgraaf, B V D

    1978-01-01

    At. 75 and 80% relative humidity (RH), on a wheat germ flake medium, Aspergillus penicilloides grew abundantly and suppressed the population growth of Dermatophagoides pteronyssiunus. At 71% RH, A. penicilloides grew moderately and was only antagonistic to D. pteronyssinus when the fungus was previously incubated on the medium.On a human dander medium and on mattress dust, A. penicilloides grew moderately at 71% and 75% RH and stimulated the development of D. pteronyssinus populations. Also a moderate growth of Eurotium repens on human dander positively influenced D. pteronyssinus. Wallemia sebi and Penicillium brevicompactum grew slightly or did not grow at all at 75% RH. No effect was observed on D. pteronyssinus.It appears that xerophilic fungi may stimulate, and occasionally may reduce, the growth of house-dust mite populations in the natural environment.

  11. Effect of storage conditions in the response of Listeria monocytogenes in a fresh purple vegetable smoothie compared with an acidified TSB medium.

    PubMed

    González-Tejedor, Gerardo A; Garre, Alberto; Esnoz, A; Artés-Hernández, F; Fernández, P S

    2018-06-01

    In this study, growth and/or inactivation of Listeria monocytogenes 4032 at different inoculum levels in a vegetable smoothie with purple colour, (previously heat stabilised at 95 °C for 3 min) was evaluated. Growth/inactivation was compared with acidified TSB medium at the same pH level with HCl. Samples were stored at different temperatures (5, 10, 15 and 25 °C). All the smoothies stored at 15 and 25 °C showed growth up to 7.5-8.0 log CFU/mL and at 10 °C growth was only observed at the highest inoculum level. Growth was only observed at 25 °C in acidified TSB. In the case of the smoothies inoculated and stored at 5 °C, L. monocytogenes was not able to grow but survived for a long period of time, whereas at the lower inocula at 10 °C they presented a slow inactivation for an extended time. Acidified TSB inoculated and stored showed inactivation at 5, 10 and 15 °C. Best inactivation modelling alternatives are proposed. The differences between the smoothie and TSB medium about growth or survival in this study, even at relatively low pH values, were due to the favorable nutritional composition of the smoothie compared to a laboratory medium. Results in this study can allow to design safe conditions for smoothie production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Involvement of Intermediate Sulfur Species in Biological Reduction of Elemental Sulfur under Acidic, Hydrothermal Conditions

    PubMed Central

    Druschel, Gregory K.

    2013-01-01

    The thermoacidophile and obligate elemental sulfur (S80)-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S80-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H2S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S80 and the biologically produced H2S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S80 was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S80 can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S80 provided as a solid phase in the medium or with S80 sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S80 sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S80 provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S80 particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S80 particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens. PMID:23335768

  13. Comparison of radial growth rate of the mutualistic fungus of Atta sexdens rubropilosa forel in two culture media

    PubMed Central

    Miyashira, C.H.; Tanigushi, D.G.; Gugliotta, A.M.; Santos, D.Y.A.C.

    2010-01-01

    In vitro culture of the mutualistic fungus of leaf-cutting ants is troublesome due to its low growth rate, which leads to storage problems and contaminants accumulation. This paper aims at comparing the radial growth rate of the mutualistic fungus of Atta sexdens rubropilosa Forel in two different culture media (Pagnocca B and MEA LP). Although total MEA LP radial growth was greater all along the bioassay, no significant difference was detected between growth efficiencies of the two media. Previous evidences of low growth rate for this fungus were confirmed. Since these data cannot point greater efficiency of one culture medium over the other, MEA LP medium is indicated for in vitro studies with this mutualistic fungus due its simpler composition and translucent color, making the analysis easier. PMID:24031524

  14. Directed Biosynthesis of Oriented Crystalline Cellulose for Advanced Composite Fibers

    DTIC Science & Technology

    2012-05-03

    8 growth rate Table 2. An optimized minimal salts high conductivity growth medium (named 9 Son-Matsuoka- Fructose , SMF) based on the optimized...basis for a high -conductivity medium for Acetobacter that also contained corn steep liquor. List of Figures Figure 1. Scanning electron micrographs of...bacterial cellulose production include corn steep liquor (Matsuoka et al., 1996) apples, beer wort (Brown, 1886; Herrmann, 1928), corn syrup , kale (black

  15. Impact of growth conditions on resistance of Klebsiella pneumoniae to chloramines.

    PubMed Central

    Stewart, M H; Olson, B H

    1992-01-01

    The resistance of Klebsiella pneumoniae to inorganic monochloramine (1.5 mg/liter; 3:1 Cl2:N ratio, pH 8.0) was examined in relation to growth phase, temperature of growth, and growth under decreased nutrient conditions. Growth phase did not impact resistance to chloramines. Mid-exponential and stationary-phase cells, grown in a yeast extract-based medium, had CT99 values and standard deviations of 4.8 +/- 0.1 and 4.6 +/- 0.2 mg.min/liter, respectively. Growth temperature did not alter chloramine resistance at short contact times. CT99 values of cells grown at 15 and 23 degrees C were 4.5 +/- 0.2 and 4.6 +/- 0.2 mg.min/liter, respectively. However, at longer contact times, CT99.99 values of cells grown at 15 and 23 degrees C were 14 and 8 mg.min/liter, respectively, suggesting a small resistant subpopulation for cells grown at the lower temperature. Growth under decreased nutrient conditions resulted in a concomitant increase in resistance to chloramines. When K. pneumoniae was grown in undiluted Ristroph medium and Ristroph medium diluted by 1:100 and 1:1,000, the CT99 values were 4.6 +/- 0.2, 9.6 +/- 0.4, and 24 +/- 7.0 mg.min/liter, respectively. These results indicate that nutrient availability has a greater impact than growth phase or growth temperature in promoting the resistance of K. pneumoniae to inorganic monochloramine. PMID:1514811

  16. A method to estimate the biomass of Spirulina platensis cultivated on a solid medium.

    PubMed

    Pelizer, Lúcia Helena; Moraes, Iracema de Oliveira

    2014-01-01

    This paper presents a method to estimate the biomass of Spirulina cultivated on solid medium with sugarcane bagasse as a support, in view of the difficulty in determining biomass concentrations in bioprocesses, particularly those conducted in semi-solid or solid media. The genus Spirulina of the family Oscillatoriaceae comprises the group of multicellular filamentous cyanobacteria (blue-green microalgae). Spirulina is used as fish feed in aquaculture, as a food supplement, a source of vitamins, pigments, antioxidants and fatty acids. Therefore, its growth parameters are extremely important in studies of the development and optimization of bioprocesses. For studies of biomass growth, Spirulina platensis was cultured on solid medium using sugarcane bagasse as a support. The biomass thus produced was estimated by determining the protein content of the material grown during the process, based on the ratio of dry weight to protein content obtained in the surface growth experiments. The protein content of the biomass grown in Erlenmeyer flasks on surface medium was examined daily to check the influence of culture time on the protein content of the biomass. The biomass showed an average protein content of 42.2%. This methodology enabled the concentration of biomass adhering to the sugarcane bagasse to be estimated from the indirect measurement of the protein content associated with cell growth.

  17. Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells

    PubMed Central

    López, Melany; Bollag, Roni J.; Yu, Jack C.; Isales, Carlos M.; Eroglu, Ali

    2016-01-01

    The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs). These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS)-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate), two polymers (PVA and ficoll), two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide), a disaccharide (trehalose), and a calcium chelator (EGTA) to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum) were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the plating efficiency to the level of unfrozen controls. Moreover, ASCs cryopreserved in this defined medium retained their multipotency and chromosomal normality. These results are of significance for tissue engineering and clinical applications of stem cells. PMID:27010403

  18. l-Pyroglutamate Spontaneously Formed from l-Glutamate Inhibits Growth of the Hyperthermophilic Archaeon Sulfolobus solfataricus

    PubMed Central

    Park, Chan B.; Lee, Sun Bok; Ryu, Dewey D. Y.

    2001-01-01

    Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing l-glutamate, we observed formation of l-pyroglutamic acid (PGA). PGA formed spontaneously from l-glutamate under culture conditions (78°C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of l-glutamate or l-aspartate to the medium. PGA was also produced from the l-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78°C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues of l-glutamate, such as l-methionine sulfoxide, glutaric acid, succinic acid, and l-glutamic acid γ-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues, N-acetyl-l-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of l-glutamate with N-acetyl-l-glutamate in the medium resulted in increased cell density. PMID:11472943

  19. Freeze fracturing of elastic porous media: a mathematical model

    PubMed Central

    Vlahou, I.; Worster, M. G.

    2015-01-01

    We present a mathematical model of the fracturing of water-saturated rocks and other porous materials in cold climates. Ice growing inside porous rocks causes large pressures to develop that can significantly damage the rock. We study the growth of ice inside a penny-shaped cavity in a water-saturated porous rock and the consequent fracturing of the medium. Premelting of the ice against the rock, which results in thin films of unfrozen water forming between the ice and the rock, is one of the dominant processes of rock fracturing. We find that the fracture toughness of the rock, the size of pre-existing faults and the undercooling of the environment are the main parameters determining the susceptibility of a medium to fracturing. We also explore the dependence of the growth rates on the permeability and elasticity of the medium. Thin and fast-fracturing cracks are found for many types of rocks. We consider how the growth rate can be limited by the existence of pore ice, which decreases the permeability of a medium, and propose an expression for the effective ‘frozen’ permeability. PMID:25792954

  20. Freeze fracturing of elastic porous media: a mathematical model.

    PubMed

    Vlahou, I; Worster, M G

    2015-03-08

    We present a mathematical model of the fracturing of water-saturated rocks and other porous materials in cold climates. Ice growing inside porous rocks causes large pressures to develop that can significantly damage the rock. We study the growth of ice inside a penny-shaped cavity in a water-saturated porous rock and the consequent fracturing of the medium. Premelting of the ice against the rock, which results in thin films of unfrozen water forming between the ice and the rock, is one of the dominant processes of rock fracturing. We find that the fracture toughness of the rock, the size of pre-existing faults and the undercooling of the environment are the main parameters determining the susceptibility of a medium to fracturing. We also explore the dependence of the growth rates on the permeability and elasticity of the medium. Thin and fast-fracturing cracks are found for many types of rocks. We consider how the growth rate can be limited by the existence of pore ice, which decreases the permeability of a medium, and propose an expression for the effective 'frozen' permeability.

  1. [The relationship of the saturation density of multilayer cell cultures to their mass exchange with the medium].

    PubMed

    Akatov, V S; Lavrovskaia, V P

    1991-01-01

    Chinese hamster fibroblasts (CHF) and NIH 3T3 cells were cultured on a glass substrate at different distances from the porous membrane separating the cells from the perfusing medium. It is shown that with perfusion of medium above the membrane there is no movement of the medium near the cells. In both the types of culture, the cells grow in multilayers, however the multilayer character of growth in CHF is more pronounced than in NIH 3T3 cells. The saturation density of the cultures depends on the cell-membrane separation, and at separations of no more than 0.2 mm exceeds the saturation density in the monolayer by 8-10 fold. The dependences of the saturation density on separation are different for CHE and NIH 3T3 cells, indicating qualitative differences in the inhibition of cell growth in monolayers between these cultures. The results obtained indicate that the inhibition of cell growth in monolayer is due to mass exchange limitations, rather than to intercellular contact interactions.

  2. Hydrocarbon extraction agents and microbiological processes for their production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zajic, J.E.; Gerson, D.F.

    1987-02-03

    A process is described for producing extraction agents useful in the separation of hydrocarbon values from mineral deposits. It comprises cultivating by an aerobic fermentation, in a growth promoting medium and under growth promoting conditions, and on a liquid hydrocarbon substrate, a selected microbial strain of a species of microorganism selected from the group consisting of Arthrobacter terregens, Arthrobacter xerosis, Bacillus megaterium, Corynebacterium lepus, Corynebacterium xerosis, Nocardia petroleophila, and Vibrio ficheri. This is done to produce an extraction agent of microbiological origin in the fermentation medium, subsequently recovering the extraction agent from the fermentation medium and drying the agent tomore » powdered form.« less

  3. Evaluation of Escherichia coli O157:H7 growth media for use in test-and-hold procedures for ground beef processing.

    PubMed

    Guerini, Michael N; Arthur, Terrance M; Shackelford, Steven D; Koohmaraie, Mohammad

    2006-05-01

    Since the mid-1990s, the beef industry has used a process called test and hold, wherein beef trim and ground beef are tested to keep products contaminated with Escherichia coli O157:H7 out of commerce. Current O157:H7 detection methods rely on a threshold level of bacterial growth for detection, which is dependent on the growth medium used. Twelve media were examined for growth and doubling time: buffered peptone water (BPW), SOC (which contains tryptone, yeast extract, KCl, MgCl2, and glucose), buffered peptone water plus SOC (BPW-SOC), Bacto-NZYM, RapidChek E. coli O157:H7 medium, BioControl EHEC8 culture medium, Neogen Reveal for E. coli O157:H7--Eight Hour medium (Neogen Reveal 8), BAX System medium for E. coli O157:H7 (BAX) BAX System medium for E. coli O157:H7 MP (BAX-MP), modified E. coli broth, nutrient medium, and tryptic soy broth (TSB). All media were tested at 37 or 42 degrees C under static or shaking conditions. The eight media with the highest total CFU per milliliter and most rapid doubling times were BPW-SOC, NZYM, RapidChek, EHEC8, Neogen Reveal 8, BAX, BAX-MP, and TSB. The ability of these eight media to enrich E. coli O157:H7 in ground beef was further evaluated through time-course experiments using immunomagnetic separation. Of these media, TSB was the easiest to prepare, had a wide application base, and was the least expensive. In the test-and-hold process, the normal ratio of medium to product is 1:10. In this study, a 1:3 ratio worked as well as a 1:10 ratio. Processors using test-and-hold procedures could use 1 liter of TSB to enrich for E. coli O157:H7 in a 375-g sample instead of the usual 3.375 liters, thus saving reagents, time, and labor while maintaining accuracy.

  4. Growth of nutrient-replete Microcystis PCC 7806 cultures is inhibited by an extracellular signal produced by chlorotic cultures.

    PubMed

    Dagnino, Denise; de Abreu Meireles, Diogo; de Aquino Almeida, João Carlos

    2006-01-01

    The frequency of cyanobacterial blooms has been increasing all over the world. These blooms are often toxic and have become a serious health problem. The aim of this work was to search for population density control mechanisms that could inhibit the proliferation of the toxic bloom-forming genus Microcystis. Microcystis PCC 7806 cultured for long periods in liquid ASM-1 medium loses its characteristic green colour. When a medium of chlorotic cultures is added to a nutrient-replete culture, cell density increase is drastically reduced when compared with controls. Inhibition of cell proliferation occurs in Microcystis cultures from any growth stage and was not strain-specific, but other genera tested showed no response. Investigations on the mechanism of growth inhibition showed that cultures treated with the conditioned medium acquired a pale colour, with pigment concentration similar to that found in chlorotic cultures. Ultrastructural examination showed that the conditioned medium induced thylakoid membrane disorganization, typical of chlorotic cells, in nutrient-replete cultures. An active extract was obtained and investigations showed that activity was retained after heating and after addition of an apolar solvent. This indicates that activity of the conditioned medium from chlorotic cells results from non-protein, apolar compound(s).

  5. Hormonal regulation of growth and life span of bullfrog tadpole tail epidermal cells cultured in vitro.

    PubMed

    Nishikawa, A; Yoshizato, K

    1986-02-01

    Epidermal cells were dissociated from tails of the bullfrog tadpole, Rana catesbeiana, and cultured to investigate their response to steroid and thyroid hormones. Charcoal-treated serum (CTS) was used in the growth medium when cells were to be grown in the absence of steroid and thyroid hormones. The cells could be maintained for 2 weeks with a small increase in cell number in medium that contained CTS (CTS medium). Addition of cortisol to CTS medium increased both cellular attachment to the culture dishes and the proliferation of the attached cells with an optimum concentration of 5 X 10(-7) M. The cells remained viable and attached for at least a week. Cortisol stimulated the rate of protein synthesis 1.8-fold but did not alter the rate of DNA synthesis. The cells did not proliferate in the medium containing triiodothyronine (T3) and detached themselves from the dish within 5 days, which occurred in a dose-dependent manner with a maximum effect at 10(-8) M. It drastically decreased the rate of DNA synthesis but did not influence the rate of protein synthesis. These responses of cells to cortisol and T3 may reflect growth and death of tail epidermal cells in vivo at metamorphosis.

  6. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.

    PubMed

    Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D

    2016-07-01

    Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.

  7. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    PubMed

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  8. Shikonin Production by Callus Culture of Onosma bulbotrichom as Active Pharmaceutical Ingredient

    PubMed Central

    Bagheri, Fereshteh; Tahvilian, Reza; Karimi, Naser; Chalabi, Maryam; Azami, Mahsa

    2018-01-01

    The objective of this research was in-vitro germination and callus induction of Onosma bulbotrichum (O. bulbotrichum) as a medicinal herb which belongs to Boraginaceae family. For germination, the seeds were cultured on growth regulator-free MS medium and for callus induction, seeds were sown on modified MS medium containing different concentrations of kinetin (kn)- Indole-3-acetic acid (IAA) and kn- 2,4-D (2,4-dichlorophenoxyacetic acid), respectively. The plates were maintained in the dark at growth chamber. After 7 days seed germination on hormone-free medium and after 10 days callus initiation on modified medium in the presence of hormones was occurred. The maximum pigmented callus (100%) was observed on modified MS medium with a combination of 0.2 mg.L-1 IAA + 2.10 mg.L-1 kn. Shikonin determination was performed by HPLC method. In addition, total hydroxynaphtoquinons as polyphenols in sum of callus and culture medium were measured by spectrophotometric method and revealed that total naphtoquinones content at IAA was more than 2, 4-D. PMID:29881407

  9. Helicopter Northeast Corridor Operational Test Support.

    DTIC Science & Technology

    1980-06-01

    helicopters in the U. S. and Canada show a predom- inent application of small helicopters COMMERCIAL USES OF SMALL AND MEDIUM for corporate, charter, aerial...appli- HEICOPTERS cations and public safety. Medium/ U.S. and Canada. Exolessedin oercent. Small Medium heavy helicopters are used predomi- Use...safety (police. lire 17.5 4.0 fighting. etc. LTraining 6.0 - Figure 5 GROWTH FORECAST FOR SMALL AND MEDIUM HELICOPTERS For U.S. and Canada. Helicopter

  10. Study of cultivation and growth rate kinetic for mixed cultures of local microalgae as third generation (G-3) bioethanol feedstock in thin layer photobioreactor

    NASA Astrophysics Data System (ADS)

    Prihastuti Yuarrina, Wahyu; Surya Pradana, Yano; Budiman, Arief; Majid, Akmal Irfan; Indarto; Agus Suyono, Eko

    2018-05-01

    The increasing use of fossil fuels causes the depletion in supply and contributes to climate change by GHG emissions into the atmosphere. Microalgae indicate as renewable and sustainable energy sources as they have a high potential for producing large amounts of biomass for third-generation biofuels (bioethanol and biodiesel) feedstock. However, there are several parameters which should be considered for microalgae cultivation, such as environmental conditions, medium composition and microalgae species. The aim of this research was to study cultivation of mixed microalgae cultures (Glagah consortium and Arthrospira maxima) in a thin layer photobioreactor. Farmpion medium, Bold’s Basal Medium (BBM) and Thoriq Eko Arief (TEA) medium were investigated as cultivation medium for bioethanol feedstock for 7 days. The results showed that the highest dry weight concentration of microalgae was in Farmpion medium (0.35 mg/ml) and the highest carbohydrate concentration of microalgae was in BBM (0.14 mg/ml). Thus, the optimum medium of microalgae cultivation for bioethanol feedstock was BBM because of the highest carbohydrate-dry weight ratio (0.88). In addition, mathematical approach by using Contois model was used to find out the growth rate of microalgae cultivation in each medium.

  11. Diagnostic medium containing inositol, urea, and caffeic acid for selective growth of Cryptococcus neoformans.

    PubMed Central

    Healy, M E; Dillavou, C L; Taylor, G E

    1977-01-01

    An agar medium containing inositol and urea as sole carbon and nitrogen sources, caffeic acid and ferric citrate as agents for the selective pigmentation of Cryptococcus neoformans, gentamicin as a broad-spectrum bacterial antibiotic, and yeast nitrogen base without amino acids and ammonium sulfate (Difco) was tested against 137 clinical isolates, 4 survey specimens, and 11 ATCC yeast and yeast-like strains. All 28 strains of C. neoformans showed heavy growth and dark brown pigmentation after 36 h. All other tested species of Cryptococcus showed heavy growth after 36 h but only light brown pigmentation after 48 h. No growth was observed in any tested strains of Geotrichum, Pityrosporum, Rhodotorula, Saccharomyces, and Torulopsis. Only the Cryptococcus-like Candida humicola grew of the 8 species and 62 strains of Candida tested. Six of 15 strains of Trichosporon cutaneum and 1 of 2 strains of Trichosporon pullulans showed moderate growth after 48 h. Very different colonial and microscopic morphology and/or the absence of brown pigmentation easily differentiated these strains of T. cutaneum, T. pullulans, and C. humicola from C. neoformans. The growth- and pigmentation-providing characteristics of the medium were unaffected by 2 h of exposure to 254 nm of ultraviolet light. PMID:334795

  12. Impatiens pollen germination and tube growth as a bioassay for toxic substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliderback, D.E.

    Pollen of Impatiens sultanii Hook F. germinates and forms tubes rapidly at 25/sup 0/C in a simple medium containing 111.0 ppm CaCl/sub 2/, 13.6 ppm KH/sub 2/PO/sub 4/, and 1000 ppm boric acid. Calcium, potassium, and boron are essential for germination and tube growth, but sucrose is not required. Pollen tubes grow with equal rapidity in liquid medium or on a medium solidified with 1% agar. Tube growth rates are linear for 1 hr. When different pollen sources or clonal sources are utilized, no variation in pollen tube growth is observed, and pollen from individual flowers remain viable for 26more » hr. Formaldehyde inhibits pollen germination, tube production, and tube lengths at 7.5-10 ppm. With 2,4-dichlorophenol, pollen germination and tube production is inhibited at 0.5-20 ppm, while tube growth is inhibited significantly at 25 ppm. A biphasic inhibition of germination and tube formation occurs with p-cresol with a low level of inhibition occurring at 40-60 ppm and a higher one at 100-125 ppm. Tube lengths were inhibited at 150 ppm p-cresol. Acrylamide and dioctyl phthalate have no measurable effect upon pollen germination and tube growth.« less

  13. Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum

    PubMed Central

    Sellami, Mohamed; Oszako, Tomasz; Miled, Nabil; Ben Rebah, Faouzi

    2015-01-01

    The objective of this study was to evaluate the exopolysaccharide (EPS) production by Rhizobium leguminosarum cultivated in wastewater generated by oil companies (WWOC1 and WWOC2) and fish processing industry (WWFP). The results obtained in Erlenmeyer flasks indicated that the rhizobial strain grew well in industrial wastewater. Generally, wastewater composition affected the growth and the EPS production. WWFP allowed good bacterial growth similar to that obtained with the standard medium (YMB). During growth, various quantities of EPS were produced and yields varied depending on the media. Growing in YMB, EPS production did not exceed 9.7 g/L obtained after 72 h of growth. In wastewater, the maximum EPS value reached 11.1 g/L obtained with the fish processing wastewater, after 72 h of growth. The use of a mixture of the oil company wastewater (WWOC2) and the fish processing wastewater (WWFP) as culture medium affected not only the rhizobial strain growth, but also EPS production. The highest EPS (42.4 g/L, after 96 h of culture) was obtained using a ratio of WWFP and WWOC2 of 50:50 (v:v). Therefore, this work shows the ability of Rhizobium leguminosarum, growing in industrial wastewater as new economic medium, to produce EPS. This biopolymer could be applied in enormous biotechnological areas. PMID:26273255

  14. A high-frequency in vitro multiplication, micromorphological studies and ex vitro rooting of Cadaba fruticosa (L.) Druce (Bahuguni): a multipurpose endangered medicinal shrub.

    PubMed

    Lodha, Deepika; Patel, Ashok Kumar; Shekhawat, N S

    2015-07-01

    An efficient and reproducible in vitro propagation protocol has been established for Cadaba fruticosa (L.) Druce. Surface-sterilized nodal stem segments of mature plant were used as explants for culture establishment. Multiple shoots were optimally differentiated from the nodal stem explants through bud breaking on Murashige and Skoog (1962) medium containing 3.0 mg l(-1) benzyladenine (BA). The effect of different plant growth regulators and minerals were studied on different stages of micropropagation procedure (i.e., explant establishment, shoot multiplication/growth and ex vitro rooting). Additionally, for enhancing shoot multiplication during subculture, MS medium was modified (MMS) with higher levels of magnesium, potassium and sulphate ions. Out of these, MMS3 medium containing 0.25 mg l(-1) each of BA and Kin (N6-furfuryladenine), with 0.1 mg l(-1) NAA (α-naphthalene acetic acid) was found the best for shoot multiplication (42.45 ± 3.82 per culture vessel). The in vitro regenerated shoots were rooted under ex vitro conditions on treating the shoot base with 500 mg l(-1) of IBA (indole-3 butyric acid) for 3 min on sterile Soilrite®. The ex vitro rooted plants were hardened in the greenhouse and transferred to the field with ≈85 % survival rate. There were not any visual differences between wild and micropropagated plants in the field, although the later underwent significant changes during acclimatization. Micromorphological changes on leaf surface characters from in vitro to acclimatized plantlets were studied in terms of development of glandular trichomes, changes in vein spacing and vein structure in order to understand the nature of plant responses towards environmental conditions. The method developed and defined can be applied for commercial cultivation, which may be important for extraction of bioactive compounds and may facilitate conservation of this multipurpose endangered medicinal shrub.

  15. Embryogenesis-promoting factors in rat serum.

    PubMed

    Katoh, M; Kimura, R; Shoji, R

    1998-06-15

    Regarding whole rat embryo cultures in vitro, rat serum as a culture medium is known to support the normal growth of rat embryos in the organogenesis phase. The purpose of the present study was to isolate the embryogenesis-promoting factors from rat serum as a first step in the development of a defined serum-free medium for a whole embryo culture system. Pooled rat serum after heat inactivation was fractionated into three major peaks (frA, containing a region of void volume, frB, and frC) by gel filtration. The 9.5-day rat embryos that were cultivated for 48 hr in essential salt medium containing frB (with a molecular size range of 100-500 kDa) revealed normal growth. Three proteins (27 kDa, 76 kDa, and 190 kDa) that had the embryogenesis-promoting effects were isolated from 3-hr delayed centrifuged rat serum by the ion exchange chromatography. The 76-kDa protein was found to be rat transferrin by immunoblotting. The 27-kDa protein was identified as apo-AI (the major apoprotein of high-density lipoprotein) by immunoblotting. High-density lipoprotein obtained from pooled rat serum by a NaBr density gradient ultracentrifugation was found to have a positive effect on embryogenesis. The 10-kDa protein was also identified as alpha 1-inhibitor 3 by immunoblotting. In addition, the embryogenesis-promoting effect of the fraction containing 27-kDa and 190-kDa proteins declined within a short period of storage at -20 degrees C. This decrease was countered by supplementing its fraction (D-2) with albumin isolated from rat serum. These results in the present study suggest that transferrin, high-density lipoprotein, and alpha 1-inhibitor 3 in rat serum may be embryogenesis-promoting factors, and that albumin appeared to play a role in the embryogenesis of rat embryos in whole embryo cultures.

  16. An Analytic Approach to Projectile Motion in a Linear Resisting Medium

    ERIC Educational Resources Information Center

    Stewart, Sean M.

    2006-01-01

    The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…

  17. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    PubMed

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  18. Some further characteristics of the growth of Naegleria fowleri and N. gruberi in axenic culture.

    PubMed

    Cerva, L

    1978-01-01

    The effects of pH, various viscosity of the medium, changed ratio between the concentrations of dissolved and corpuscular components in the medium, and dissolved inorganic salts on the growth of axenic cultures of Naegleria fowleri and N. gruberi have been studied. The cultures were grown in liquid CALYG and BCS media. The pH optimum was 6.5 for N. fowleri and 6.0--6.5 for N. gruberi. No negative influence on the growth of N. fowleri was observed even at 0.5% concentration of highly viscous methylcellulose, whereas the growth of N. gruberi was distinctly inhibited by more than 0.2% of methycellulose. N. fowleri preferred the osmotorphic and N. gruberi phagotrophic nutrition in the given system of cultivation. The growth of both Naegleria species was inhibited by 0.1 N concentration of sodium chloride and potassium chloride without any significant difference in the tolerance. The inhibitory effect of these salts correlated primarily with the concentration of chloride anion. The ability to grow in a medium with increased viscosity and the preference for osmotrophic nutrtion are, besides the higher temperature optimum determined earlier, further characteristics of the pathogenic species N. fowleri.

  19. Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate.

    PubMed

    Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro

    2017-10-01

    Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Effect of culture medium on toxic effect of ZnO nanoparticles to freshwater microalgae

    NASA Astrophysics Data System (ADS)

    Aravantinou, Andriana F.; Tsarpali, Vasiliki; Dailianis, Stefanos; Manariotis, Ioannis D.

    2014-05-01

    The widely use of nanoparticles (NPs) in many products, is increasing over time. The release of NPs into the environment may affect ecosystems, and therefore it is essential to study their impact on aquatic organisms. The aim of this work was to investigate the effect of zinc oxide (ZnO) NPs on microalgae, cultured in different mediums. Chlorococcum sp. and Scenedesmus rubescens were used as freshwater microalgae model species in order to investigate the toxic effects of ZnO NPs. Microalgae species exposed to ZnO NPs concentrations varying from 0.081 to 810 mg/L for different periods of time (24 to 96 h) and two different culture mediums. The aggregation level and particle size distribution of NPs were also determined during the experiments. The experimental results revealed significant differences on algae growth rates depending on the selected culture medium. Specifically, the toxic effect of ZnO NPs in Chlorococcum sp. was higher in cultures with 1/3N BG-11 medium than in BBM medium, despite the fact that the dissolved zinc concentration was higher in BBM medium. On the other hand, Scenedesmus rubescens exhibited the exact opposite behavior, with the highest toxic effect in cultures with BBM medium. Both species growth was significantly affected by the exposure time, the NPs concentrations, and mainly the culture medium.

  1. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    NASA Astrophysics Data System (ADS)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  2. Stable expression of recombinant human coagulation factor XIII in protein-free suspension culture of Chinese hamster ovary cells.

    PubMed

    Chun, B H; Bang, W G; Park, Y K; Woo, S K

    2001-11-01

    The recombinant a and bsubunits for human coagulation factor XIII were transfected into Chinese hamster ovary (CHO) cells. CHO cells were amplified and selected with methotrexate in adherent cultures containing serum, and CHO 1-62 cells were later selected in protein-free medium. To develop a recombinant factor XIII production process in a suspension culture, we have investigated the growth characteristics of CHO cells and the maintenance of factor XIII expression in the culture medium. Suspension adaptation of CHO cells was performed in protein-free medium, GC-CHO-PI, by two methods, such as serum weaning and direct switching from serum containing media to protein-free media. Although the growth of CHO cells in suspension culture was affected initially by serum depletion, cell specific productivity of factor XIII showed only minor changes by the direct switching to protein-free medium during a suspension culture. As for the long-term stability of factor XIII, CHO 1-62 cells showed a stable expression of factor XIII in protein-free condition for 1000 h. These results indicate that the CHO 1-62cells can be adapted to express recombinant human factor XIII in a stable maimer in suspension culture using a protein-free medium. Our results demonstrate that enhanced cell growth in a continuous manner is achievable for factor XIII production in a protein-free medium when a perfusion bioreactor culture system with a spin filter is employed.

  3. Effect of limonene on the heterotrophic growth and polyhydroxybutyrate production by Cupriavidus necator H16.

    PubMed

    Guzman Lagunes, F; Winterburn, J B

    2016-12-01

    The inhibitory effect of limonene on polyhydroxybutyrate (PHB) production in Cupriavidus necator H16 was studied. Firstly, results demonstrate the feasibility of using orange juicing waste (OJW) as a substrate for PHB production. An intracellular PHB content of 81.4% (w/w) was attained for a total dry matter concentration of 9.58gL -1 , when the OJW medium was used. Later, a mineral medium designed to mimic the nutrient levels found in the complex medium derived from OJW was used to study the effect of limonene on the production of PHB. Results showed a drop in specific growth rate (μ) of more than 50% when the initial limonene concentration was 2% (v/v) compared to the limonene free medium. This work highlights the importance of a limonene recovery stage prior to fermentation, to maintain levels below 1% (v/v) in the medium, adding value to the OJW and enhancing the fermentation process productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biogas production coupled to repeat microalgae cultivation using a closed nutrient loop.

    PubMed

    González-González, Lina María; Zhou, Lihong; Astals, Sergi; Thomas-Hall, Skye R; Eltanahy, Eladl; Pratt, Steven; Jensen, Paul D; Schenk, Peer M

    2018-05-22

    Anaerobic digestion is an established technology to produce renewable energy as methane-rich biogas for which microalgae are a suitable substrate. Besides biogas production, anaerobic digestion of microalgae generates an effluent rich in nutrients, so-called digestate, that can be used as a growth medium for microalgal cultures, with the potential for a closed nutrient loop and sustainable bioenergy facility. In this study, the methane potential and nutrient mobilization of the microalga Scenedemus dimorphus was evaluated under continuous conditions. The suitability of using the digestate as culture medium was also evaluated. The results show that S. dimorphus is a suitable substrate for anaerobic digestion with an average methane yield of 199 mL g -1 VS. The low level of phosphorus in digestate did not limit algae growth when used as culture medium. The potential of liquid digestate as a superior culture medium rather than inorganic medium was demonstrated. Copyright © 2018. Published by Elsevier Ltd.

  5. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments.

    PubMed

    Lindsey, Alexander J; Kilgore, Jason S

    2013-08-01

    Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.

  6. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    PubMed Central

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  7. In Vitro Effect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells.

    PubMed

    Mehmood, Khalid; Zhang, Hui; Iqbal, Muhammad Kashif; Rehman, Mujeeb Ur; Shahzad, Muhammad; Li, Kun; Huang, Shucheng; Nabi, Fazul; Zhang, Lihong; Li, Jiakui

    2017-09-01

    Tibial dyschondroplasia (TD) is one of the common skeletal abnormalities in fast-growing birds, and it is characterized by nonvascularized, unmineralized, and nonviable cartilage in the tibial growth plate that fails to form bone. The aim of this study was to check the in vitro effect of apigenin and danshen on heat-shock protein 90 (Hsp90) and vascular endothelial growth factor (VEGF) expressions in avian growth plate cells treated with sublethal concentration of thiram. Initially, chondrocytes from chicken growth plates were isolated on culturx ed medium with and without various concentration of thiram to determine the sublethal dose. Then, to check the effect of apigenin and danshen, the chondrocytes were treated first with a sublethal (2.5 μM) concentration of thiram and then with different doses (10, 20, 40, and 80 μM) of apigenin and danshen. The mRNA expression levels of Hsp90 and VEGF genes were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The results showed that the expression levels of Hsp90 and VEGF mRNA transcripts were increased significantly (P < 0.05) in thiram-treated chondrocytes culture medium up to 1.5-fold, whereas apigenin and danshen therapy to chondrocytes in culture medium significantly (P < 0.05) reduced the Hsp90 and VEGF expression levels. In conclusion, up-regulation of both (Hsp90 and VEGF) genes and damage to chondrocytes in culture medium caused by thiram can be restored by using apigenin and danshen. Therefore, apigenin and danshen therapies are suggested and encouraged as a promising approach to control TD in broiler chickens.

  8. [Microbial synthesis of deuterium labelled L-phenylalanine with different levels of isotopic enrichment by facultative methylotrophic bacterium Brevibacterium methylicum with RMP assimilation of carbon].

    PubMed

    Mosin, O V; Shvets, V I; Skladnev, D A; Ignatov, I

    2014-01-01

    The preparative microbial synthesis of amino acids labelled with stable isotopes, including deuterium ( 2 H), suitable for biomedical applications by methylotrophic bacteria was studied using L-phenylalanine as example. This amino acid is secreted by Gram-negative aerobic facultative methylotrophic bacteria Brevibacterium methylicum, assimilating methanol via ribulose-5-monophosphate (RMP) cycle of assimilation of carbon, The data on adaptation of L-phenylalanine secreted by methylotrophic bacterium В. methylicum to the maximal concentration of deuterium in the growth medium with 98% 2 Н 2 O and 2% [ 2 Н]methanol, and biosynthesis of deuterium labelled L-phenylalanine With different levels of enrichment are presented. The strain was adapted by means of plating initial cells on firm (2% agarose) minimal growth media with an increasing gradient of 2 Н 2 O concentration from 0; 24.5; 49.0; 73.5 up to 98% 2 Н 2 O followed by subsequent selection of separate colonies stable to the action of 2 Н 2 O. These colonies were capable to produce L-phenylalanine. L-phenylalanine was extracted from growth medium by extraction with isopropanol with the subsequent crystallization in ethanol (output 0.65 g/l). The developed method of microbial synthesis allows to obtain deuterium labelled L-phenylalanine with different levels of isotopic enrichment, depending on concentration of 2 Н 2 O in growth media, from 17% (on growth medium with 24,5% 2 Н 2 O) up to 75% (on growth medium with 98% 2 Н 2 O) of deuterium in the molecule that is confirmed with the data of the electron impact (EI) mass- spectrometry analysis of methyl ethers of N-dimethylamino(naphthalene)-5-sulfochloride (dansyl) phenylalanine in these experimental conditions.

  9. Composition, diffusion, and antifungal activity of black mustard (Brassica nigra) essential oil when applied by direct addition or vapor phase contact.

    PubMed

    Mejía-Garibay, Beatriz; Palou, Enrique; López-Malo, Aurelio

    2015-04-01

    In this study, we characterized the essential oil (EO) of black mustard (Brassica nigra) and quantified its antimicrobial activity, when applied by direct contact into the liquid medium or by exposure in the vapor phase (in laboratory media or in a bread-type product), against the growth of Aspergillus niger, Aspergillus ochraceus, or Penicillium citrinum. Allyl-isothiocyanate (AITC) was identified as the major component of B. nigra EO with a concentration of 378.35 mg/ml. When B. nigra EO was applied by direct contact into the liquid medium, it inhibited the growth of A. ochraceus and P. citrinum when the concentration was 2 μl/ml of liquid medium (MIC), while for A. niger, a MIC of B. nigra EO was 4 μl/ml of liquid medium. Exposure of molds to B. nigra EO in vapor phase showed that 41.1 μl of B. nigra EO per liter of air delayed the growth of P. citrinum and A. niger by 10 days, while A. ochraceus growth was delayed for 20 days. Exposure to concentrations ≥ 47 μl of B. nigra EO per liter of air (MIC) inhibited the growth of tested molds by 30 days, and they were not able to recover after further incubation into an environment free of EO (fungicidal effect). Adsorbed AITC was quantified by exposing potato dextrose agar to B. nigra EO in a vapor phase, exhibiting that AITC was retained at least 5 days when testing EO at its MIC or with higher concentrations. Mustard EO MIC was also effective against the evaluated molds inhibiting their growth for 30 days in a bread-type product when exposed to EO by vapor contact, demonstrating its antifungal activity.

  10. The Contribution of Caseins to the Amino Acid Supply for Lactococcus lactis Depends on the Type of Cell Envelope Proteinase

    PubMed Central

    Flambard, Benedicte; Helinck, Sandra; Richard, Jean; Juillard, Vincent

    1998-01-01

    The ability of caseins to fulfill the amino acid requirements of Lactococcus lactis for growth was studied as a function of the type of cell envelope proteinase (PI versus PIII type). Two genetically engineered strains of L. lactis that differed only in the type of proteinase were grown in chemically defined media containing αs1-, β-, and κ-caseins (alone or in combination) as the sources of amino acids. Casein utilization resulted in limitation of the growth rate, and the extent of this limitation depended on the type of casein and proteinase. Adding different mixtures of essential amino acids to the growth medium made it possible to identify the nature of the limitation. This procedure also made it possible to identify the amino acid deficiency which was growth rate limiting for L. lactis in milk (S. Helinck, J. Richard, and V. Juillard, Appl. Environ. Microbiol. 63:2124–2130, 1997) as a function of the type of proteinase. Our results were compared with results from previous in vitro experiments in which casein degradation by purified proteinases was examined. The results were in agreement only in the case of the PI-type proteinase. Therefore, our results bring into question the validity of the in vitro approach to identification of casein-derived peptides released by a PIII-type proteinase. PMID:9603805

  11. Effect of Mild Acid on Gene Expression in Staphylococcus aureus

    PubMed Central

    Weinrick, Brian; Dunman, Paul M.; McAleese, Fionnuala; Murphy, Ellen; Projan, Steven J.; Fang, Yuan; Novick, Richard P.

    2004-01-01

    During staphylococcal growth in glucose-supplemented medium, the pH of a culture starting near neutrality typically decreases by about 2 units due to the fermentation of glucose. Many species can comfortably tolerate the resulting mildly acidic conditions (pH, ∼5.5) by mounting a cellular response, which serves to defend the intracellular pH and, in principle, to modify gene expression for optimal performance in a mildly acidic infection site. In this report, we show that changes in staphylococcal gene expression formerly thought to represent a glucose effect are largely the result of declining pH. We examine the cellular response to mild acid by microarray analysis and define the affected gene set as the mild acid stimulon. Many of the genes encoding extracellular virulence factors are affected, as are genes involved in regulation of virulence factor gene expression, transport of sugars and peptides, intermediary metabolism, and pH homeostasis. Key results are verified by gene fusion and Northern blot hybridization analyses. The results point to, but do not define, possible regulatory pathways by which the organism senses and responds to a pH stimulus. PMID:15576791

  12. Sequential growth factor application in bone marrow stromal cell ligament engineering.

    PubMed

    Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H

    2005-01-01

    In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.

  13. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    NASA Technical Reports Server (NTRS)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  14. In Vitro Development from Leaf Explants of Sugar Beet (Beta vulgaris L). Rhizogenesis and the Effect of Sequential Exposure to Auxin and Cytokinin

    PubMed Central

    Gürel, Ekrem; Wren, M. Jill

    1995-01-01

    Adventitious root development in lamina and midrib-petiole junction expiants of sugar beet cv. Primo was investigated using scanning electron microscopy and light microscopy. Primordia developed close to the vascular strands and areas of newly dividing cells (meristematic centres) were seen adjacent to the intrafascicular cambium after 2 d incubation on medium containing 30 mg 1−11-naphthalene acetic acid. Clearly defined primordia were visible at 4 d and the first roots had emerged by 6 d. A minimum of 24 h exposure to NAA was necessary for root induction. Four days on NAA caused twice as many roots to be initiated but more prolonged exposure (5 and 10 d) inhibited root development. Root initiation continued after transfer to medium containing no plant growth regulators, new primordia appearing as the older ones extended as roots. Attempts were made to modify the development of primordia by sequential culture on cytokinin after induction by auxin. Incubation on N6-benzylaminopurine within 48 h of exposure to NAA disrupted the development of primordia and roots but did not induce shoot formation. PMID:21247910

  15. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung.

    PubMed

    Kirchner, Sebastian; Fothergill, Joanne L; Wright, Elli A; James, Chloe E; Mowat, Eilidh; Winstanley, Craig

    2012-06-05

    There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a > 128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods. Several in vitro models have been used previously to study P. aeruginosa biofilms. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung. In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa and affect antibiotic susceptibility. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.

  16. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslanova, Afag; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666; Takagi, Ryo

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferationmore » of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen transmission that might arise from animal-derived materials. - Highlights: • Y-27632 promotes the proliferation of human keratinocytes. • Human keratinocytes with Y-27632 can stratify similarly to traditional method. • Y-27632 is useful for culture medium of human keratinocyte in clinical setting.« less

  17. [Correlation between feeding index and growth development of 6-36 month-old infants in two counties of western China by applying multiple correspondence analysis].

    PubMed

    Chen, Hong-da; Hao, Bo; Kang, Xiao-ping; Zhao, Geng-li; Zhou, Min

    2012-06-18

    To explore the correlation between feeding index and growth development status of infants from two counties of western China by applying the method of multiple correspondence analysis. Two sample counties were randomly selected from the ones that satisfied the research conditions in Shaanxi province and Chongqing in western China. In the study, 472 premature/low birth weight infants (PLBW) and 461 normal term infants (NT) of 6-36 months from the two counties were investigated from September 2010 to November 2010. The SPSS 19.0 software was applied to analyze the data using general statistical analysis and multiple correspondence analysis. In the two counties of western China, the proportion of infants with feeding index at the medium level was the highest, which was between 50% and 60%. In the PLBW group and the NT group, the proportion of low level of feeding index among 6-9 month-old infants was the highest, and the proportion was 33.3% for the PLBW group and 29.4% for the NT group. For both the PLBW group and the NT group, the distribution of feeding index among the different age groups showed significant difference (P<0.05).Among the infants with low level of feeding index, the growth development of the PLBW lay behind that of the NT. We could see a catching-up trend of the PLBW with medium or good level of feeding index, but their growth development index was still at a lower level than that of the NT with the same level of feeding condition. Through multiple correspondence analyses, the outcomes of PLBW corresponded and strongly correlated with low level of feeding index, low level of growth development index, mother's low education degree and low annual family income. And the outcomes of NT corresponded and strongly correlated with medium/good level of feeding index, medium level of growth development status, mother's medium/high education degree and medium/high level of annual family income. There are good correspondence correlations at different hierarchical levels of the infants' group, feeding index, growth development index and family factors in the two counties of western China. Multiple correspondence analysis could directly reveal the correlation among several variables, which is a suitable method for categorical data. The result can be illustrated directly through a two-dimensional graph and could provide the suggestion of feeding practice for different infants in western rural China.

  18. Indirect microbial detection

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R. (Inventor)

    1981-01-01

    The growth of microorganisms in a sample is detected and monitored by culturing microorganisms in a growth medium and detecting a change in potential between two electrodes, separated from the microbial growth by a barrier which is permeable to charged paticles but microorganism impermeable.

  19. Does Embryo Culture Medium Influence the Health and Development of Children Born after In Vitro Fertilization?

    PubMed

    Bouillon, Céline; Léandri, Roger; Desch, Laurent; Ernst, Alexandra; Bruno, Céline; Cerf, Charline; Chiron, Alexandra; Souchay, Céline; Burguet, Antoine; Jimenez, Clément; Sagot, Paul; Fauque, Patricia

    2016-01-01

    In animal studies, extensive data revealed the influence of culture medium on embryonic development, foetal growth and the behaviour of offspring. However, this impact has never been investigated in humans. For the first time, we investigated in depth the effects of embryo culture media on health, growth and development of infants conceived by In Vitro Fertilization until the age of 5 years old. This single-centre cohort study was based on an earlier randomized study. During six months, in vitro fertilization attempts (No. 371) were randomized according to two media (Single Step Medium--SSM group) or Global medium (Global group). This randomized study was stopped prematurely as significantly lower pregnancy and implantation rates were observed in the SSM group. Singletons (No. 73) conceived in the randomized study were included (42 for Global and 31 for SSM). The medical data for gestational, neonatal and early childhood periods were extracted from medical records and parental interviews (256 variables recorded). The developmental profiles of the children in eight domains (social, self-help, gross motor, fine motor, expressive language, language comprehension, letter knowledge and number knowledge--270 items) were compared in relation to the culture medium. The delivery rate was significantly lower in the SSM group than in the Global group (p<0.05). The culture medium had no significant effect on birthweight, risk of malformation (minor and major), growth and the frequency of medical concerns. However, the children of the Global group were less likely than those of the SSM group to show developmental problems (p = 0.002), irrespective of the different domains. In conclusion, our findings showed that the embryo culture medium may have an impact on further development.

  20. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake.

    PubMed

    Zhang, Kun; Chen, You-Peng; Zhang, Ting-Ting; Zhao, Yun; Shen, Yu; Huang, Lei; Gao, Xu; Guo, Jin-Song

    2014-01-01

    Mathematical models have been developed to describe nitrogen uptake and duckweed growth experimentally to study the kinetics of ammonium uptake under various concentrations. The kinetics of duckweed ammonium uptake was investigated using the modified depletion method after plants were grown for two weeks at different ammonium concentrations (0.5-14 mg/L) in the culture medium. The maximum uptake rate and Michaelis-Menten constant for ammonium were estimated as 0.082 mg/(g fresh weight x h) and 1.877 mg/L, respectively. Duckweed growth was assessed when supplied at different total nitrogen (TN) concentrations (1-5 mg/L) in the culture medium. The results showed that the intrinsic growth rate was from 0.22 to 0.26 d(-1), and TN concentrations had no significant influence on the duckweed growth rate.

  1. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  2. A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189

    PubMed Central

    Suthers, Patrick F.; Dasika, Madhukar S.; Kumar, Vinay Satish; Denisov, Gennady; Glass, John I.; Maranas, Costas D.

    2009-01-01

    With a genome size of ∼580 kb and approximately 480 protein coding regions, Mycoplasma genitalium is one of the smallest known self-replicating organisms and, additionally, has extremely fastidious nutrient requirements. The reduced genomic content of M. genitalium has led researchers to suggest that the molecular assembly contained in this organism may be a close approximation to the minimal set of genes required for bacterial growth. Here, we introduce a systematic approach for the construction and curation of a genome-scale in silico metabolic model for M. genitalium. Key challenges included estimation of biomass composition, handling of enzymes with broad specificities, and the lack of a defined medium. Computational tools were subsequently employed to identify and resolve connectivity gaps in the model as well as growth prediction inconsistencies with gene essentiality experimental data. The curated model, M. genitalium iPS189 (262 reactions, 274 metabolites), is 87% accurate in recapitulating in vivo gene essentiality results for M. genitalium. Approaches and tools described herein provide a roadmap for the automated construction of in silico metabolic models of other organisms. PMID:19214212

  3. Dynamics of the Streptococcus gordonii Transcriptome in Response to Medium, Salivary α-Amylase, and Starch

    PubMed Central

    Haase, Elaine M.; Feng, Xianghui; Pan, Jiachuan; Miecznikowski, Jeffrey C.

    2015-01-01

    Streptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA− mutant KS1ΩabpA under various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2 in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochrome c-type protein were downregulated in KS1ΩabpA under all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance. PMID:26025889

  4. Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells.

    PubMed

    Zeisberger, Steffen M; Schulz, Julia C; Mairhofer, Mario; Ponsaerts, Peter; Wouters, Guy; Doerr, Daniel; Katsen-Globa, Alisa; Ehrbar, Martin; Hescheler, Jurgen; Hoerstrup, Simon P; Zisch, Andreas H; Kolbus, Andrea; Zimmermann, Heiko

    2011-01-01

    While therapeutic cell transplantations using progenitor cells are increasingly evolving towards phase I and II clinical trials and chemically defined cell culture is established, standardization in biobanking is still in the stage of infancy. In this study, the EU FP6-funded CRYSTAL (CRYo-banking of Stem cells for human Therapeutic AppLication) consortium aimed to validate novel Standard Operating Procedures (SOPs) to perform and validate xeno-free and chemically defined cryopreservation of human progenitor cells and to reduce the amount of the potentially toxic cryoprotectant additive (CPA) dimethyl sulfoxide (DMSO). To achieve this goal, three human adult progenitor and stem cell populations-umbilical cord blood (UCB)-derived erythroid cells (UCB-ECs), UCB-derived endothelial colony forming cells (UCB-ECFCs), and adipose tissue (AT)-derived mesenchymal stromal cells (AT-MSCs)-were cryopreserved in chemically defined medium supplemented with 10% or 5% DMSO. Cell recovery, cell repopulation, and functionality were evaluated postthaw in comparison to cryopreservation in standard fetal bovine serum (FBS)-containing freezing medium. Even with a reduction of the DMSO CPA to 5%, postthaw cell count and viability assays indicated no overall significant difference versus standard cryomedium. Additionally, to compare cellular morphology/membrane integrity and ice crystal formation during cryopreservation, multiphoton laser-scanning cryomicroscopy (cryo-MPLSM) and scanning electron microscopy (SEM) were used. Neither cryo-MPLSM nor SEM indicated differences in membrane integrity for the tested cell populations under various conditions. Moreover, no influence was observed on functional properties of the cells following cryopreservation in chemically defined freezing medium, except for UCB-ECs, which showed a significantly reduced differentiation capacity after cryopreservation in chemically defined medium supplemented with 5% DMSO. In summary, these results demonstrate the feasibility and robustness of standardized xeno-free cryopreservation of different human progenitor cells and encourage their use even more in the field of tissue-engineering and regenerative medicine.

  5. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture.

    PubMed

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-05-10

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.

  6. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    PubMed Central

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation. PMID:23712218

  7. Global Analysis of Mannitol 2-Dehydrogenase in Lactobacillus reuteri CRL 1101 during Mannitol Production through Enzymatic, Genetic and Proteomic Approaches.

    PubMed

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Fadda, Silvina; Picariello, Gianluca; Hebert, Elvira M; Raya, Raúl R; Mozzi, Fernanda

    2017-01-01

    Several plants, fungi, algae, and certain bacteria produce mannitol, a polyol derived from fructose. Mannitol has multiple industrial applications in the food, pharmaceutical, and medical industries, being mainly used as a non-metabolizable sweetener in foods. Many heterofermentative lactic acid bacteria synthesize mannitol when an alternative electron acceptor such as fructose is present in the medium. In previous work, we reported the ability of Lactobacillus reuteri CRL 1101 to efficiently produce mannitol from sugarcane molasses as carbon source at constant pH of 5.0; the activity of the enzyme mannitol 2-dehydrogenase (MDH) responsible for the fructose conversion into mannitol being highest during the log cell growth phase. Here, a detailed assessment of the MDH activity and relative expression of the mdh gene during the growth of L. reuteri CRL 1101 in the presence of fructose is presented. It was observed that MDH was markedly induced by the presence of fructose. A direct correlation between the maximum MDH enzyme activity and a high level of mdh transcript expression during the log-phase of cells grown in a fructose-containing chemically defined medium was detected. Furthermore, two proteomic approaches (2DE and shotgun proteomics) applied in this study confirmed the inducible expression of MDH in L. reuteri. A global study of the effect of fructose on activity, mdh gene, and protein expressions of MDH in L. reuteri is thus for the first time presented. This work represents a deep insight into the polyol formation by a Lactobacillus strain with biotechnological potential in the nutraceutics and pharmaceutical areas.

  8. Global Analysis of Mannitol 2-Dehydrogenase in Lactobacillus reuteri CRL 1101 during Mannitol Production through Enzymatic, Genetic and Proteomic Approaches

    PubMed Central

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Fadda, Silvina; Picariello, Gianluca; Hebert, Elvira M.; Raya, Raúl R.

    2017-01-01

    Several plants, fungi, algae, and certain bacteria produce mannitol, a polyol derived from fructose. Mannitol has multiple industrial applications in the food, pharmaceutical, and medical industries, being mainly used as a non-metabolizable sweetener in foods. Many heterofermentative lactic acid bacteria synthesize mannitol when an alternative electron acceptor such as fructose is present in the medium. In previous work, we reported the ability of Lactobacillus reuteri CRL 1101 to efficiently produce mannitol from sugarcane molasses as carbon source at constant pH of 5.0; the activity of the enzyme mannitol 2-dehydrogenase (MDH) responsible for the fructose conversion into mannitol being highest during the log cell growth phase. Here, a detailed assessment of the MDH activity and relative expression of the mdh gene during the growth of L. reuteri CRL 1101 in the presence of fructose is presented. It was observed that MDH was markedly induced by the presence of fructose. A direct correlation between the maximum MDH enzyme activity and a high level of mdh transcript expression during the log-phase of cells grown in a fructose-containing chemically defined medium was detected. Furthermore, two proteomic approaches (2DE and shotgun proteomics) applied in this study confirmed the inducible expression of MDH in L. reuteri. A global study of the effect of fructose on activity, mdh gene, and protein expressions of MDH in L. reuteri is thus for the first time presented. This work represents a deep insight into the polyol formation by a Lactobacillus strain with biotechnological potential in the nutraceutics and pharmaceutical areas. PMID:28060932

  9. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD(+) salvage from nicotinamide.

    PubMed

    Dong, Wei-Ren; Sun, Cen-Cen; Zhu, Guan; Hu, Shi-Hua; Xiang, Li-Xin; Shao, Jian-Zhong

    2014-02-08

    In an effort to reconstitute the NAD(+) synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD(+)de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD(+) de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD(+) metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD(+) biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD(+) salvage pathway from nicotinamide. Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD(+) salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD(+) salvage pathway might be significant in some bacteria lacking NAD(+) de novo and NAD(+) salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD(+). However, this speculation needs to be experimentally tested.

  10. Defined Serum-Free Medium for Bioreactor Culture of an Immortalized Human Erythroblast Cell Line.

    PubMed

    Lee, Esmond; Lim, Zhong Ri; Chen, Hong-Yu; Yang, Bin Xia; Lam, Alan Tin-Lun; Chen, Allen Kuan-Liang; Sivalingam, Jaichandran; Reuveny, Shaul; Loh, Yuin-Han; Oh, Steve Kah-Weng

    2018-04-01

    Anticipated shortages in donated blood supply have prompted investigation of alternative approaches for in vitro production of red blood cells (RBCs), such as expansion of conditional immortalization erythroid progenitors. However, there is a bioprocessing challenge wherein factors promoting maximal cell expansion and growth-limiting inhibitory factors are yet to be investigated. The authors use an erythroblast cell line (ImEry) derived from immortalizing CD71+CD235a+ erythroblast from adult peripheral blood for optimization of expansion culture conditions. Design of experiments (DOE) is used in media formulation to explore relationships and interactive effects between factors which affect cell expansion. Our in-house optimized medium formulation produced significantly higher cell densities (3.62 ± 0.055) × 10 6  cells mL -1 , n = 3) compared to commercial formulations (2.07 ± 0.055) × 10 6  cells mL -1 , n = 3; at 209 h culture). Culture media costs per unit of blood is shown to have a 2.96-3.09 times cost reduction. As a proof of principle for scale up, ImEry are expanded in a half-liter stirred-bioreactor under controlled settings. Growth characteristics, metabolic, and molecular profile of the cells are evaluated. ImEry has identical O 2 binding capacity to adult erythroblasts. Amino acid supplementation results in further yield improvements. The study serves as a first step for scaling up erythroblast expansion in controlled bioreactors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrical response of culture media during bacterial growth on a paper-based device

    NASA Astrophysics Data System (ADS)

    Srimongkon, Tithimanan; Buerkle, Marius; Nakamura, Akira; Enomae, Toshiharu; Ushijima, Hirobumi; Fukuda, Nobuko

    2017-05-01

    In this work, we evaluated the feasibility of a paper-based bacterial detection system. The paper served as a substrate for the measurement electrodes and the culture medium. Using a printing technique, we patterned gold electrodes onto the paper substrate and applied Luria broth (LB) agar gel as a culture medium on top of the electrodes. As the first step towards the development of a bacterial detection system, we determined changes in the surface potential during bacterial growth and monitored these changes over 24 h. This allowed us to correlate changes in the surface potential with the different growth phases of the bacteria.

  12. Expression of PEP carboxylase from Escherichia coli complements the phenotypic effects of pyruvate carboxylase mutations in Saccharomyces cerevisiae.

    PubMed

    Flores, C L; Gancedo, C

    1997-08-04

    We investigated the effects of the expression of the Escherichia coli ppc gene encoding PEP carboxylase in Saccharomyces cerevisiae mutants devoid of pyruvate carboxylase. Functional expression of the ppc gene restored the ability of the yeast mutants to grow in glucose-ammonium medium. Growth yield in this medium was the same in the transformed yeast than in the wild type although the growth rate of the transformed yeast was slower. Growth in pyruvate was slowed down in the transformed strain, likely due to a futile cycle produced by the simultaneous action of PEP carboxykinase and PEP carboxylase.

  13. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production.

    PubMed

    Willrodt, Christian; Hoschek, Anna; Bühler, Bruno; Schmid, Andreas; Julsing, Mattijs K

    2016-06-01

    The microbial production of isoprenoids has recently developed into a prime example for successful bottom-up synthetic biology or top-down systems biology strategies. Respective fermentation processes typically rely on growing recombinant microorganisms. However, the fermentative production of isoprenoids has to compete with cellular maintenance and growth for carbon and energy. Non-growing but metabolically active E. coli cells were evaluated in this study as alternative biocatalyst configurations to reduce energy and carbon loss towards biomass formation. The use of non-growing cells in an optimized fermentation medium resulted in more than fivefold increased specific limonene yields on cell dry weight and glucose, as compared to the traditional growing-cell-approach. Initially, the stability of the resting-cell activity was limited. This instability was overcome via the optimization of the minimal fermentation medium enabling high and stable limonene production rates for up to 8 h and a high specific yield of ≥50 mg limonene per gram cell dry weight. Omitting MgSO4 from the fermentation medium was very promising to prohibit growth and allow high productivities. Applying a MgSO4 -limitation also improved limonene formation by growing cells during non-exponential growth involving a reduced biomass yield on glucose and a fourfold increase in specific limonene yields on biomass as compared to non-limited cultures. The control of microbial growth via the medium composition was identified as a key but yet underrated strategy for efficient isoprenoid production. Biotechnol. Bioeng. 2016;113: 1305-1314. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Effects of ß-TCP scaffolds on neurogenic and osteogenic differentiation of human embryonic stem cells.

    PubMed

    Arpornmaeklong, Premjit; Pressler, Michael J

    2018-01-01

    Extracellular matrix (ECM) and adhesion molecules play crucial roles in regulating growth and differentiation of stem cells. The current study aimed to investigate the effects of beta-tricalcium phosphate (ß-TCP) scaffolds on differentiation and expression of ECM and adhesion molecules of human embryonic stem cells (hESCs). Undifferentiated hESCs were seeded on ß-TCP scaffolds and cell culture plates and cultured in growth and osteogenic medium for 21 days. Scanning electron microscopy (SEM) displayed adhesion and growth of hESCs on the porous ß-TCP scaffolds. Histological analysis, immunohistochemical staining and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) demonstrated that the scaffolds supported growth and differentiation of hESCs. Expression levels of neural crest related genes (AP2a, FoxD3, HNK1, P75, Sox1, Sox10) and osteoblast-related genes (Runx2, SPP1 and BGLA) on the scaffolds in osteogenic medium were significantly higher than on the scaffolds in growth and cell culture plates in osteogenic medium, respectively (p<0.05). Polymerase chain reaction array experiments demonstrated increased expression of ECM and adhesion molecule-related genes on the scaffolds. In conclusion, osteoconductive scaffolds such as ß-TCP scaffolds promoted differentiation of hESCs, particularly expression of genes related to neural crest stem cell and osteoblastic differentiations. Beta-TCP scaffolds could be an alternative cell culture substrate for neural crest and osteogenic differentiation of hESCs. Optimization of culture medium may be necessary to enhance lineage restriction of hESCs on the ß-TCP scaffolds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Optimization growth of Spirulina platensis in bean sprouts extract medium with urea fertilizer for phycocyanin production as antioxidant

    NASA Astrophysics Data System (ADS)

    Dianursanti, Taurina, Zarahmaida; Indraputri, Claudia Maya

    2018-02-01

    Spirulina platensis has the potential to be developed because of essential chemical compounds in the form of phycocyanin that can be used as an antioxidant. The growth of microalgae and phycocyanin depends on the availability of nutrition contained in culture medium. The cultivation will be carried out at 1 L reactor with continuous aeration, light intensity is 3000-4000 lux, and temperature is 27-30°C. Phycocyanin is obtained by liquid-liquid extraction method using phosphate buffer pH 7. Phycocyanin test performed by using UV-Vis spectrophotometry. The result show that the highest dry biomass is obtained on bean sprouts extract medium 8% (v/v) with the addition of urea fertilizer 120 ppm. The highest content of phycocyanin is obtained on bean sprouts extract medium 8% (v/v) with the addition of urea fertilizer 100 ppm with phycocyanin concentration of 257.12 mg/L.

  16. Simple low cost differentiation of Candida auris from Candida haemulonii complex using CHROMagar Candida medium supplemented with Pal's medium.

    PubMed

    Kumar, Anil; Sachu, Arun; Mohan, Karthika; Vinod, Vivek; Dinesh, Kavitha; Karim, Shamsul

    Candida auris is unique due to its multidrug resistance and misidentification as Candida haemulonii by commercial systems. Its correct identification is important to avoid inappropriate treatments. To develop a cheap method for differentiating C. auris from isolates identified as C. haemulonii by VITEK2. Fifteen C. auris isolates, six isolates each of C. haemulonii and Candida duobushaemulonii, and one isolate of Candida haemulonii var. vulnera were tested using CHROMagar Candida medium supplemented with Pal's agar for better differentiation. On CHROMagar Candida medium supplemented with Pal's agar all C. auris strains showed confluent growth of white to cream colored smooth colonies at 37°C and 42°C after 24 and 48h incubation and did not produce pseudohyphae. The isolates of the C. haemulonii complex, on the contrary, showed poor growth of smooth, light-pink colonies at 24h while at 48h the growth was semiconfluent with the production of pseudohyphae. C. haemulonii complex failed to grow at 42°C. We report a rapid and cheap method using CHROMagar Candida medium supplemented with Pal's agar for differentiating C. auris from isolates identified as C. haemulonii by VITEK2. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    PubMed

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Rapid screening of serum-free media for the growth of adherent Vero cells by using a small-scale and non-invasive tool.

    PubMed

    Petiot, Emma; Fournier, Frantz; Gény, Cécile; Pinton, Hervé; Marc, Annie

    2010-03-01

    The paper proposes a rapid screening method for a first step improvement of an animal component-free medium dedicated to the growth of the anchorage-dependent Vero cell line. A new, rapid, and non-invasive technique is presented to specifically monitor cultures of adherent cells in 96-well plates. The operating conditions of an image analyzer are adapted to take into account the decrease of cell size when the attached cell density increases. An experimental design is carried out to assess the influence of ten component groups in the original medium. Two groups including protein extracts, growth factor, insulin, glucose, and pyruvate show significant positive effects. The groups with vitamins and molecules related to nitrogenous bases display a less pronounced influence. The mixture of amino acids, B(1) vitamin, magnesium sulfate, and sodium phosphate as well as the couple sodium citrate and ferric chloride lead to a downward trend. The screening results are proved to be scalable in stirred cultures with cells on microcarriers. An improved serum-free medium, with some component groups being removed or added, can be rapidly formulated to reach respectively similar or 1.6 times higher cell density than in the original medium. The results from this global approach could be helpful to further focus experiments on identified medium components.

  19. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    NASA Astrophysics Data System (ADS)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  20. Growth Modeling of Aspergillus niger Strains Isolated from Citrus Fruit as a Function of Temperature on a Synthetic Medium from Lime (Citrus latifolia T.) Pericarp.

    PubMed

    Sandoval-Contreras, T; Marín, S; Villarruel-López, A; Gschaedler, A; Garrido-Sánchez, L; Ascencio, F

    2017-07-01

    Molds are responsible for postharvest spoilage of citrus fruits. The objective of this study was to evaluate the effect of temperature on growth rate and the time to visible growth of Aspergillus niger strains isolated from citrus fruits. The growth of these strains was studied on agar lime medium (AL) at different temperatures, and growth rate was estimated using the Baranyi and Roberts model (Int. J. Food Microbiol. 23:277-294, 1994). The Rosso et al. cardinal model with inflexion (L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, J. Theor. Biol. 162:447-463, 1993) was used as a secondary model to describe the effect of temperature on growth rate and the lag phase. We hypothesized that the same model could be used to calculate the time for the mycelium to become visible (t v ) by substituting the lag phase (1/λ and 1/λ opt ) with the time to visible colony (1/t v -opt and 1/t v ), respectively, in the Rosso et al. High variability was observed at suboptimal conditions. Extremes of temperature of growth for A. niger seem to have a normal variability. For the growth rate and time t v , the model was satisfactorily compared with results of previous studies. An external validation was performed in lime fruits; the bias and accuracy factors were 1.3 and 1.5, respectively, for growth rate and 0.24 and 3.72, respectively, for the appearance time. The discrepancy may be due to the influence of external factors. A. niger grows significantly more slowly on lime fruit than in culture medium, probably because the nutrients are more easily available in medium than in fruits, where the peel consistency may be a physical barrier. These findings will help researchers understand the postharvest behavior of mold on lime fruits, host-pathogen interactions, and environmental conditions infecting fruit and also help them develop guidelines for future work in the field of predictive mycology to improve models for control of postharvest fungi.

  1. Influence of organic buffers on bacteriocin production by Streptococcus thermophilus ST110.

    PubMed

    Somkuti, George A; Gilbreth, Stefanie E

    2007-08-01

    The effect of the organic buffer salts MES, MOPS, and PIPES on the growth of S. thermophilus ST110, medium pH, and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In nonbuffered medium, thermophilin 110 production at 37 degrees C paralleled the growth of S. thermophilus ST110 and reached a maximum after 8-10 h. Addition of organic buffer salts decreased the drop in medium pH and resulted in increased biomass (dry cells; microg/mL) and higher yields of thermophilin 110 (units/microg cells). The best results were obtained by the addition of 1% (w/v) MES to the medium, which reduced the pH drop to 1.8 units after 10 h of growth (compared to 2.3 pH units in the control) and resulted in a 1.5-fold increase in cell mass (495 microg/mL) and a 7-fold increase in thermophilin 110 yield (77 units/microg dry cells) over the control. The results showed that whey permeate-based media may be suitable for producing large amounts of thermophilin 110 needed for controlling spoilage pediococci in industrial wine and beer fermentations.

  2. Influence of Explant Position on Growth of Talinum paniculatum Gaertn. Adventitious Root in Solid Medium and Enhance Production Biomass in Balloon Type Bubble Bioreactor

    NASA Astrophysics Data System (ADS)

    Solim, M. H.; Kristanti, A. N.; Manuhara, Y. S. W.

    2017-03-01

    Talinum paniculatum Gaertn. is one of traditional medicinal plant in Indonesia as an aphrodisiac. This plant has various compounds which is accumulated in roots. In vitro culture of this plant can enhance production of adventitious roots. The aim of this research was to know the influence of explants position on growth of T. paniculatum Gaertn. adventitious root in MS solid medium and enhance the production of biomass in balloon type bubble bioreactor. Explants from leaf were cultured at abaxial and adaxial positions in solid MS medium supplemented with IBA 2 mgL-1. Adventitious roots were cultured in bioreactor with various treatments (without IBA, supplemented with IBA 2 mgL-1 and supplemented with IBA 2 mgL-1 + buffer NaHCO3). Result showed that the main growth of abaxial root was higher than adaxial, however, the total of adaxial root branch was higher than abaxial. The highest biomass production of adventitious root cultured was achieved by MS medium supplemented with IBA 2 mgL-1 + buffer NaHCO3. This treatment has produced fresh biomass two fold of initial inoculum.

  3. The effect of tomato juices and bean sprout extracts on vitro shoot regeneration of Physalis angulata L.

    NASA Astrophysics Data System (ADS)

    Mastuti, Retno; Munawarti, Aminatun; Rosyidah, Mufidatur

    2017-11-01

    Physalis angulata L. (Ciplukan) which belongs to Solanaceae is an important medicinal plant. In vitro culture medium contains carbon source, inorganic substance, vitamins, and plant growth regulators. However, organic growth supplements have frequently been added to improve regeneration capability of explants. This study was conducted to observe the effect of tomato juices and extract bean sprout on shoot regeneration and multiplication of in vitro nodal explants. The explants were cultured on MS basal medium + 6-benzyl amino purine (BAP) 2 mg/L + indole-3-acetic acid (IAA) 0.05 mg/L with and without organic supplements. Tomato juices (T) 5, 7.5 and 10% or bean sprout extract (B) 1.25, 2.5, and 3.75% were added as natural organic supplements. Almost all explants have produced shoots one week after culture. After six weeks of culture maximum shoot number (12.5±3.9) was produced in medium MS + T5 while maximum shoot length (10.7 ± 0.7 cm) was obtained in medium MS + T 7.5. Medium T tends to produce more shoots than the medium B and medium control. This result indicates the potential of natural organic supplements for supporting Ciplukan propagation through in vitro culture.

  4. Antimycobacterial activity assessment of three ethnobotanical plants against Mycobacterium Tuberculosis: An In Vitro study.

    PubMed

    Arjomandzadegan, Mohammad; Emami, Navid; Habibi, Ghasem; Farazi, Ali Asghar; Kahbazi, Manijeh; Sarmadian, Hossein; Jabbari, Mansooreh; Hosseini, Hossein; Ramezani, Mona

    2016-12-01

    Resistances to herbal medicines are still not defined and finding natural remedies against drug resistant Mycobacterium tuberculosis (MTB) has research priority. The antimycobacterial susceptibility method for herbal extracts is unclearly defined and there is no standard method for assessment of the materials against bacteria. In the present study, time kill of three medicinal plants was determined against MTB. The clinical isolate of MTB from a patient who harbored confirmed tuberculosis was used in the study. Aqueous extracts of Aloe vera leaves, mint, and Hypericum perforatum were prepared using reflux distillation. Disk diffusion methods were conducted in Petri dishes and McCartney bottles containing Löwenstein-Jensen medium to measure the sensitivity of plant extracts in serial concentrations of 0.25-8mg/mL. A pour plate method was performed by mixing 0.7mL of each concentration of extract in 5mL Löwenstein-Jensen medium followed by surface culturing of MTB fresh cells. The time kill method was conducted by bacterial suspension in equal amounts of the extract and viable evaluation in fresh culture at the beginning, and at 24-h, 48-h, 72-h, and 1-week intervals. All cultures were incubated at 37°C for 4weeks. Inoculum concentrations were considered as a variable. The zones of inhibition of A. vera, H. perforatum, and mint extracts in the disk diffusion method in McCartney bottles were 60mm, 41mm, and zero, respectively, but Petri dishes did not have repeatable results. In the pour plate method, an extract concentration up to 1mg/mL could inhibit cell growth. In mint extract, colony forming was four times more than the others at 0.5mg/mL. Time kill of 95% of cells occurred when exposed to extracts of A. vera and H. perforatum separately, but was 50% in 24 h and 20% in 10 min. The time kill for mint was 95% in 1week. The results give some scientific basis to the use of plant extracts for growth control of MTB cells. Clinical trials are recommended for assessment of the extract as complementary medicine, as well as for antisepsis. Copyright © 2016.

  5. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid.

    PubMed

    Li, X L; Cui, X H; Han, J R

    2006-09-01

    To determine the effect of oxidative stress and exogenous ascorbic acid on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. In this experiment, high oxidative stress was applied by the inclusion of FeSO(4) in the growth medium and exposure to light. Low oxidative stress was applied by omitting iron from the growth medium and by incubation in the dark. Supplementation of exogenous ascorbic acid (as antioxidant) to the basal medium caused a concentration-dependent delay of sclerotial differentiation (up to 48 h), decrease of sclerotial biomass (up to 40%) and reduction of carotenoid yield (up to 91%). On the contrary, the exogenous ascorbic acid also caused a concentration-dependent decrease of lipid peroxidation in colonies of this fungus. Under high oxidative stress growth condition, the sclerotial biomass and carotenoid yield of PT95 strain in each plate culture reached 305 mg and 32.94 microg, which were 1.23 and 3.71 times higher, respectively, than those at low oxidative stress growth condition. These data prompted us to consider that in order to attain higher sclerotial biomass and pigment yield, the strain PT95 should be grown under high oxidative stress and in the absence of antioxidants. These results suggest that strain PT95 may be used for solid-state fermentation of carotenoid production under high oxidative stress growth conditions.

  6. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity of nanoparticles and their active interactions with components of a nutrient medium demands development of certain technological solutions for conservation of activity potential of nanoparticles in nutrient mediums. Thus, we have elaborated and created the artificial nutrient medium having balanced structure of components and assuring successful plants cultivation in conditions of spaceflight.

  7. Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol

    PubMed Central

    Tapiainen, Terhi; Kontiokari, Tero; Sammalkivi, Laura; Ikäheimo, Irma; Koskela, Markku; Uhari, Matti

    2001-01-01

    Xylitol is effective in preventing acute otitis media by inhibiting the growth of Streptococcus pneumoniae. To clarify this inhibition we used fructose, which is known to block similar growth inhibition observed in Streptococcus mutans. In addition, we evaluated the efficacy of sorbitol in inhibiting the growth of pneumococci, as sorbitol is widely used for indications similar to those for which xylitol is used. The addition of 5% xylitol to the growth medium resulted in marked growth inhibition, an effect which was totally eliminated in the presence of 1, 2.5, or 5% fructose but not in the presence of 1 or 5% glucose, 1% galactose, or 1% sucrose. This finding implies that xylitol-induced inhibition of pneumococcal growth is mediated via the fructose phosphotransferase system in a way similar to that in which mutans group streptococcal growth is inhibited. The addition of sorbitol at concentrations of 1, 2.5, or 5% to the growth medium did not affect the growth of pneumococci and neither inhibited nor enhanced the xylitol-induced growth impairment. Thus, it seems that xylitol is the only commercially used sugar substitute proven to have an antimicrobial effect on pneumococci. PMID:11120960

  8. Phosphate limitation induces sporulation in the chytridiomycete Blastocladiella emersonii.

    PubMed

    Bongiorno, Vagner Alexandre; Ferreira da Cruz, Angela; Nunis da Silva, Antonio; Corrêa, Luiz Carlos

    2012-09-01

    The cell cycle is controlled by numerous mechanisms that ensure correct cell division. If growth is not possible, cells may eventually promote autophagy, differentiation, or apoptosis. Microorganisms interrupt their growth and differentiate under general nutrient limitation. We analyzed the effects of phosphate limitation on growth and sporulation in the chytridiomycete Blastocladiella emersonii using kinetic data, phase-contrast, and laser confocal microscopy. Under phosphate limitation, zoospores germinated and subsequently formed 2-4 spores, regardless of the nutritional content of the medium. The removal of phosphate at any time during growth induced sporulation of vegetative cells. If phosphate was later added to the same cultures, growth was restored if the cells were not yet committed to sporulation. The cycles of addition and withdrawal of phosphate from growth medium resulted in cycles of germination-growth, germination-sporulation, or germination-growth-sporulation. These results show that phosphate limitation is sufficient to interrupt cell growth and to induce complete sporulation in B. emersonii. We concluded that the determination of growth or sporulation in this microorganism is linked to phosphate availability when other nutrients are not limiting. This result provides a new tool for the dissection of nutrient-energy and signal pathways in cell growth and differentiation.

  9. Soluble Epidermal Growth Factor Receptors (sEGFRs) in Cancer: Biological Aspects and Clinical Relevance.

    PubMed

    Maramotti, Sally; Paci, Massimiliano; Manzotti, Gloria; Rapicetta, Cristian; Gugnoni, Mila; Galeone, Carla; Cesario, Alfredo; Lococo, Filippo

    2016-04-19

    The identification of molecules that can reliably detect the presence of a tumor or predict its behavior is one of the biggest challenges of research in cancer biology. Biological fluids are intriguing mediums, containing many molecules that express the individual health status and, accordingly, may be useful in establishing the potential risk of cancer, defining differential diagnosis and prognosis, predicting the response to treatment, and monitoring the disease progression. The existence of circulating soluble growth factor receptors (sGFRs) deriving from their membrane counterparts has stimulated the interest of researchers to investigate the use of such molecules as potential cancer biomarkers. But what are the origins of circulating sGFRs? Are they naturally occurring molecules or tumor-derived products? Among these, the epidermal growth factor receptor (EGFR) is a cell-surface molecule significantly involved in cancer development and progression; it can be processed into biological active soluble isoforms (sEGFR). We have carried out an extensive review of the currently available literature on the sEGFRs and their mechanisms of regulation and biological function, with the intent to clarify the role of these molecules in cancer (and other pathological conditions) and, on the basis of the retrieved evidences, speculate about their potential use in the clinical setting.

  10. Seasonality influence on biochemical and hematological indicators of stress and growth of pirarucu (Arapaima gigas), an Amazonian air-breathing fish.

    PubMed

    Bezerra, Rosiely Felix; Soares, Maria do Carmo Figueiredo; Santos, Athiê Jorge Guerra; Carvalho, Elba Verônica Matoso Maciel; Coelho, Luana Cassandra Breitenbach Barroso

    2014-01-01

    Environmental factors such as seasonal cycles are the main chronic stress cause in fish increasing incidence of disease and mortality and affecting productive performance. Arapaima gigas (pirarucu) is an Amazonian air-breathing and largest freshwater fish with scales in the world. The captivity development of pirarucu is expanding since it can fatten up over 1 kg per month reaching 10 kg body mass in the first year of fattening. This work was conducted in three periods (April to July 2010, August to November 2010, and December 2010 to March 2011) defined according to rainfall and medium temperatures. Seasonality effect analysis was performed on biochemical (lectin activity, lactate dehydrogenase, and alkaline phosphatase activities) and hematological (total count of red blood cells, hematocrit, hemoglobin, and hematimetric Wintrobe indexes) stress indicators, as well as on growth and wellbeing degree expressed by pirarucu condition factor developed in captivity. All biochemical and hematological stress indicators showed seasonal variations. However, the fish growth was allometrically positive; condition factor high values indicated good state of healthiness in cultivation. These results reinforce the robust feature of pirarucu and represent a starting point for understanding stress physiology and environmental changes during cultivation enabling identification and prevention of fish adverse health conditions.

  11. Insertional Mutations in the Hydrogenase vhc and frc Operons Encoding Selenium-Free Hydrogenases in Methanococcus voltae

    PubMed Central

    Berghofer, Y.; Klein, A.

    1995-01-01

    Methanococcus voltae, which contains four different gene groups that encode [NiFe]-hydrogenases, was transformed with integration vectors to achieve polar inactivation of two of the four hydrogenase operons that encode the selenium-free enzymes Vhc and Frc. Transformants which were selected by their acquired puromycin resistance showed site-specific insertions in either the vhc or frc operon by single crossover events. Southern hybridization revealed tandem integrations of whole vectors in the vhc operon, whereas only one vector copy was found in the frc operon. Northern (RNA) hybridizations showed a pac transcript of defined size, indicating strong termination in front of the hydrogenase genes downstream. In spite of the apparent abolition of expression of selenium-free hydrogenases through these polar insertions, they were not lethal to cells upon growth in selenium-deprived minimal medium, which we had previously shown to strongly induce transcription of the respective operons in M. voltae. Instead, like wild-type control cultures, transformants responded to selenium deprivation only with a reduction in growth rate. We conclude that loss of the potential to express a selenium-free hydrogenase can nevertheless be balanced by very small amounts of selenium hydrogenases under laboratory conditions in which the hydrogen supply is not likely to be a limiting growth factor. PMID:16535019

  12. Prospect of stem cell conditioned medium in regenerative medicine.

    PubMed

    Pawitan, Jeanne Adiwinata

    2014-01-01

    Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.

  13. Cryopreservation of embryogenic tissues from mature holm oak trees.

    PubMed

    Barra-Jiménez, Azahara; Aronen, Tuija S; Alegre, Jesús; Toribio, Mariano

    2015-06-01

    The development of a vitrification method for cryopreservation of embryogenic lines from mature holm oak (Quercus ilex L.) trees is reported. Globular embryogenic clusters of three embryogenic lines grown on gelled medium, and embryogenic clumps of one line collected from liquid cultures, were used as samples. The effect of both high-sucrose preculture and dehydration by incubation in the PVS2 solution for 30-90 min, on both survival and maintenance of the differentiation ability was evaluated in somatic embryo explants with and without immersion into liquid nitrogen. Growth recovery of the treated samples and ability to differentiate cotyledonary embryos largely depended on genotype. Overall, high growth recovery frequencies on gelled medium and increase of fresh weight in liquid medium were obtained in all the tested lines, also after freezing. However, the differentiation ability of the embryogenic lines was severely hampered following immersion into LN. Two of the embryogenic lines from gelled medium were able to recover the differentiation ability, one not. In the lines with reduced or no differentiation ability, variation in the microsatellite markers was observed when comparing samples taken prior to and after cryopreservation. The best results were achieved in the genotype Q8 in which 80% of explants grown on gelled medium differentiated into cotyledonary embryos following cryopreservation when they were precultured on medium with 0.3M sucrose and then incubated for 30 min in the PVS2 solution. Explants of the same genotype from liquid medium were unable to recover the differentiation ability. A 4-weeks storage period both in liquid nitrogen and in an ultra-low temperature freezer at -80°C was also evaluated with four embryogenic lines from gelled medium using the best vitrification treatment. Growth recovery frequencies of all lines from the two storage systems were very high, but their differentiation ability was completely lost. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Image analysis technique as a tool to identify morphological changes in Trametes versicolor pellets according to exopolysaccharide or laccase production.

    PubMed

    Tavares, Ana P M; Silva, Rui P; Amaral, António L; Ferreira, Eugénio C; Xavier, Ana M R B

    2014-02-01

    Image analysis technique was applied to identify morphological changes of pellets from white-rot fungus Trametes versicolor on agitated submerged cultures during the production of exopolysaccharide (EPS) or ligninolytic enzymes. Batch tests with four different experimental conditions were carried out. Two different culture media were used, namely yeast medium or Trametes defined medium and the addition of lignolytic inducers as xylidine or pulp and paper industrial effluent were evaluated. Laccase activity, EPS production, and final biomass contents were determined for batch assays and the pellets morphology was assessed by image analysis techniques. The obtained data allowed establishing the choice of the metabolic pathways according to the experimental conditions, either for laccase enzymatic production in the Trametes defined medium, or for EPS production in the rich Yeast Medium experiments. Furthermore, the image processing and analysis methodology allowed for a better comprehension of the physiological phenomena with respect to the corresponding pellets morphological stages.

  15. Astrocytes produce an insulin-like neurotrophic factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadle, R.; Suksang, C.; Fellows, R.E.

    1986-05-01

    They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fractionmore » of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of /sup 125/I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation.« less

  16. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells.

    PubMed

    Ahmadian Baghbaderani, Behnam; Tian, Xinghui; Scotty Cadet, Jean; Shah, Kevan; Walde, Amy; Tran, Huan; Kovarcik, Don Paul; Clarke, Diana; Fellner, Thomas

    2016-01-01

    Human pluripotent stem cells (hPSCs) present an unprecedented opportunity to advance human health by offering an alternative and renewable cell resource for cellular therapeutics and regenerative medicine. The present demand for high quality hPSCs for use in both research and clinical studies underscores the need to develop technologies that will simplify the cultivation process and control variability. Here we describe the development of a robust, defined and xeno-free hPSC medium that supports reliable propagation of hPSCs and generation of human induced pluripotent stem cells (hiPSCs) from multiple somatic cell types; long-term serial subculturing of hPSCs with every-other-day (EOD) medium replacement; and banking fully characterized hPSCs. The hPSCs cultured in this medium for over 40 passages are genetically stable, retain high expression levels of the pluripotency markers TRA-1-60, TRA-1-81, Oct-3/4 and SSEA-4, and readily differentiate into ectoderm, mesoderm and endoderm. Importantly, the medium plays an integral role in establishing a cGMP-compliant process for the manufacturing of hiPSCs that can be used for generation of clinically relevant cell types for cell replacement therapy applications.

  17. Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose.

    PubMed

    Hatanaka, Haruyo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro

    2018-01-01

    Saccharomyces cerevisiae expresses α-glucoside transporters, such as MalX1p (X=1(Agt1p), 2, 3, 4, and 6), which are proton symporters. These transporters are regulated at transcriptional and posttranslational levels in the presence of glucose. Malt wort contains glucose, maltose, and maltotriose, and the assimilation of maltose is delayed as a function of glucose concentration. With the objective of increasing beer fermentation rates, we characterized α-glucoside transporters and bred laboratory yeasts that expressed various α-glucoside transporters for the simultaneous uptake of different sugars. Mal21p was found to be the most resistant transporter to glucose-induced degradation, and strain (HD17) expressing MAL21 grew on a medium containing glucose or maltose, but not on a medium containing both sugars (YPDM). This unexpected growth defect was observed on a medium containing glucose and >0.1% maltose but was not exhibited by a strain that constitutively expressed maltase. The defect depended on intracellular maltose concentration. Although maltose accumulation caused a surge in turgor pressure, addition of sorbitol to YPDM did not increase growth. When strain HD17 was cultivated in a medium containing only maltose, protein synthesis was inhibited at early times but subsequently resumed with reduction in accumulated maltose, but not if the medium was exchanged for YPDM. We conclude that protein synthesis was terminated under the accumulation of maltose, regardless of extracellular osmolarity, and HD17 could not resume growth, because the intracellular concentration of maltose did not decrease due to insufficient synthesis of maltase. Yeast should incorporate maltose after expressing adequate maltase in beer brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Callus Induction from Various Organs of Dragon Fruit, Apple and Tomato on some Mediums.

    PubMed

    Rumiyati; Sismindari; Semiarti, Endang; Milasari, Asri Fajar; Sari, Dheatika Karina; Fitriana, Nia; Galuh, Sekar

    2017-01-01

    Dragon fruit (Hylocereus spp.), apple (Malus sylvestris Mill.) and tomato (Solanum lycopersicum L.) are high potential sources of antioxidant compounds such as phenolics. The compounds have the capability of protecting cells and tissues against free radicals. Secondary metabolite produced by callus cell culture from plant organs also acts as a source of antioxidants. This study aimed to determine the optimal ratio of sucrose and 2,4-D in Murashige and Skoog (MS) medium for callus induction from different plant organ explants. With all of characteristic, callus can be used further for the development of natural cell regeneration agent. This study was conducted using analytical technique. Suitable explants were obtained. They were developed in various concentrations of combination between MS medium and 2,4-D. Callus growth, including their weight and surface was then measured and analyzed by using one-way analysis of variance (ANOVA). Callus was able to grow from its explants in 5-7 days after induction process. They were clear in color and had friable texture. The highest value of fresh weight of dragon fruit callus was obtained through MS supplemented with 1 μL L-1 2,4-D and 30 g sucrose. However, apple and tomato callus induction and growth maintenance reached optimal medium on MS supplemented with 30 g sucrose and 2 μL L-1 2,4-D. Callus of apple, dragon fruit and tomato was maintained upon MS supplemented with 30-40 g sucrose and 1-2 μL L-1 2,4-D for optimum induction and growth. The optimization of growth medium will give advantages for further development of natural cell regeneration agent.

  19. Development of selective media for the isolation and enumeration of Alternaria species from soil and plant debris.

    PubMed

    Hong, Soon Gyu; Pryor, Barry M

    2004-07-01

    A new semi-selective medium, acidified weak potato-dextrose agar (AWPDA) with Mertect (active ingredient: thiabendazole), was developed for the isolation and enumeration of Alternaria species from samples of soil and plant debris. The medium was selected based on growth inhibition tests against Alternaria and several other commonly encountered saprobic fungi utilizing three antifungal agents, Botran (active ingredient: dichloran), Bayleton (active ingredient: triadimefon), and Mertect, and two basal media, acidified potato-dextrose agar (APDA) and AWPDA. Botran inhibited growth of Rhizopus stolonifer moderately, but had little effect on Cladosporium cladosporoides, Fusarium oxysporum, Penicillium chrysogenum, or Trichoderma harzianum. Bayleton inhibited growth of R. stolonifer and C. cladosporoides severely, and inhibited growth of F. oxysporum, P. chrysogenum, and T. harzianum moderately. Mertect inhibited growth of C. cladosporoides, F. oxysporum, P. chrysogenum, and T. harzianum completely, but had little or moderate effect on R. stolonifer. All three antifungal agents inhibited growth of Alternaria species slightly or moderately. The combination of Bayleton and Mertect inhibited growth of all fungi severely. A comparison of recovery rates of Alternaria from soil and plant debris samples on AWPDA with Mertect and weak potato-dextrose agar (WPDA) revealed that Alternaria spp. accounted for 63.6%-81.0% of recovered fungal isolates on AWPDA with Mertect as compared to 0.6%-2.7% of recovered isolates on WPDA. The AWPDA medium with Mertect exhibited superior selective growth of Alternaria species from samples of soil and plant debris, and will be useful in studies where the recovery and enumeration of Alternaria species is necessary.

  20. Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency.

    PubMed

    Alamein, Mohammad A; Wolvetang, Ernst J; Ovchinnikov, Dmitry A; Stephens, Sebastien; Sanders, Katherine; Warnke, Patrick H

    2015-09-01

    Expansion of pluripotent stem cells in defined media devoid of animal-derived feeder cells to generate multilayered three-dimensional (3D) bulk preparations or spheroids, rather than two-dimensional (2D) monolayers, is advantageous for many regenerative, biological or disease-modelling studies. Here we show that electrospun polymer matrices comprised of nanofibres that mimic the architecture of the natural fibrous extracellular matrix allow for feeder-free expansion of pluripotent human induced pluripotent stem cells (IPSCs) and human embryonic stem cells (HESCs) into multilayered 3D 'patty-like' spheroid structures in defined xeno-free culture medium. The observation that IPSCs and HESCs readily revert to 2D growth in the absence of the synthetic nanofibre membranes suggests that this 3D expansion behaviour is mediated by the physical microenvironment and artificial niche provided by the nanofibres only. Importantly, we could show that such 3D growth as patties maintained the pluripotency of cells as long as they were kept on nanofibres. The generation of complex multilayered 3D structures consisting of only pluripotent cells on biodegradable nanofibre matrices of the desired shape and size will enable both industrial-scale expansion and intricate organ-tissue engineering applications with human pluripotent stem cells, where simultaneous coupling of differentiation pathways of all germ layers from one stem cell source may be required for organ formation. Copyright © 2014 John Wiley & Sons, Ltd.

  1. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants.

    PubMed

    Barry, T N; McNabb, W C

    1999-04-01

    New methodology for measuring forage condensed tannin (CT) content is described and the effects of CT upon forage feeding and nutritive value for ruminant animals are reviewed. CT react with forage proteins in a pH-reversible manner, with reactivity determined by the concentration, structure and molecular mass of the CT. Increasing concentrations of CT in Lotus corniculatus and Lotus pedunculatus reduce the rates of solubilization and degradation of fraction 1 leaf protein in the rumen and increase duodenal non-NH3 N flow. Action of medium concentrations of total CT in Lotus corniculatus (30-40 g/kg DM) increased the absorption of essential amino acids from the small intestine and increased wool growth, milk secretion and reproductive rate in grazing sheep without affecting voluntary feed intake, thus improving the efficiency of food conversion. High concentrations of CT in Lotus pedunculatus (75-100 g/kg DM) depressed voluntary feed intake and rumen carbohydrate digestion and depressed rates of body and wool growth in grazing sheep. The minimum concentration of CT to prevent rumen frothy bloat in cattle is defined as 5 g/kg DM and sheep grazing CT-containing legumes were shown to better tolerate internal parasite infections than sheep grazing non CT-containing forages. It was concluded that defined concentrations of forage CT can be used to increase the efficiencies of protein digestion and animal productivity in forage-fed ruminants and to develop more ecologically sustainable systems of controlling some diseases under grazing.

  2. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase

    PubMed Central

    Kumar, Sunil; Saragadam, Tejaswani

    2015-01-01

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  3. Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis

    NASA Technical Reports Server (NTRS)

    Smith, D. L.; Krikorian, A. D.

    1990-01-01

    Cultures of preglobular stage proembryos (PGSPs) were initiated from mechanically wounded mature zygotic embryos of carrot, Daucus carota, on a hormone-free, semisolid medium. These PGSPs have been maintained and multiplied for extended periods without their progression into later embryo stages on the same hormone-free medium containing 1 mM NH4+ as the sole nitrogen source. Sustained maintenance of cultures comprised exclusively of PGSPs was dependent on medium pH throughout the culture period. Best growth and multiplication of PGSP cultures occurred when the pH of unbuffered, hormone-free medium fell from 4.5 to 4 over a 2-week period or when buffered medium was titrated to pH 4. If the hormone-free medium was buffered to sustain a pH at or above 4.5, PGSPs developed into later embryo stages. Maintenance with continuous multiplication of PGSPs occurred equally well on medium containing NH4+ or NH4+ and NO3-, but growth was poor with NO3- alone. Additional observations on the effects of medium components such as various nitrogen sources and levels, sucrose concentration, semisolid supports, type of buffer, borate concentration, activated charcoal, and initial pH that permit optimum maintenance of the PGSPs or foster their continued developmental progression into mature embryos and plantlets are reported. The influence of the pH of the hormone-free medium as a determinant in maintaining cultures as PGSPs or allowing their continued embryonic development are unequivocally demonstrated by gross morphology, scanning electron microscopy, and histological preparations.

  4. Plasmodium falciparum: differing effects of non-esterified fatty acids and phospholipids on intraerythrocytic growth in serum-free medium.

    PubMed

    Asahi, Hiroko; Izumiyama, Shinji; Tolba, Mohammed Essa Marghany; Kwansa-Bentum, Bethel

    2011-03-01

    Different combinations of non-esterified fatty acids (NEFA) had variable effects on intraerythrocytic growth of Plasmodium falciparum. All stages of the parasite cultured in medium supplemented with cis-9-octadecenoic acid (C18:1-cis-9), hexadecanoic acid (C16:0), phospholipids (Pld) and bovine albumin free of NEFA were similar to those grown in complete growth medium. Three typical growth patterns indicating suppressed schizogony (SS), suppressed formation of merozoites (SMF), and inhibited invasion of merozoites (IMI) resulted from culture in other combinations of lipids. Unsaturated or saturated NEFA with longer or shorter carbon chains than C18:1-cis-9 or C16:0, higher degree of unsaturation, and trans-forms mainly resulted in SS and SMF effects. However, IMI or partial IMI was observed with tetradecanoic acid or octadecanoic acid enriched with C18:1-cis-9, and cis-9-hexadecenoic acid plus C16:0. Isoforms of C18:1-cis-9 also mainly resulted in partial IMI. SMF also occurred with C18:1-cis-9 plus C16:0 in the absence of Pld. Thus different NEFA exerted distinct roles in erythrocytic growth of the parasite by sustaining development at different stages. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. The Influence of Microgravity on Invasive Growth in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Van Mulders, Sebastiaan E.; Stassen, Catherine; Daenen, Luk; Devreese, Bart; Siewers, Verena; van Eijsden, Rudy G. E.; Nielsen, Jens; Delvaux, Freddy R.; Willaert, Ronnie

    2011-01-01

    This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.

  6. Enhancement of biodegradation of crude petroleum-oil in contaminated water by the addition of nitrogen sources.

    PubMed

    Mukred, A M; Hamid, A A; Hamzah, A; Yusoff, W M Wan

    2008-09-01

    Addition of nitrogen sources as supplementary nutrient into MSM medium to enhance biodegradation by stimulating the growth four isolates, Acinetobacter faecalis, Staphylococcus sp., Pseudomonas putida and Neisseria elongata isolated from petroleum contaminated groundwater, wastewater aeration pond and biopond at the oil refinery Terengganu Malaysia was investigated. The organic nitrogen sources tested not only supported growth but also enhances biodegradation of 1% Tapis crude oil. All four isolates showed good growth especially when peptone was employed as the organic nitrogen compared to growth in the basal medium. Gas chromatography showed that more then 91, 93, 94 and 95% degradation of total hydrocarbon was observed after 5 days of incubation by isolates Pseudomonas putida, Neisseria elongate, Acinetobacter faecalis and Staphylococcus sp., respectively.

  7. Evaluation of h secretion relative to zeatin-induced growth of detached cucumber cotyledons.

    PubMed

    Ross, C W; Rayle, D L

    1982-11-01

    Cytokinins promote expansion of cotyledons detached from seedlings of more than a dozen species. The zeatin-enhanced expansion of cucumber (Cucumis sativus L. cv Marketer) cotyledons was investigated. In addition, whether acid secretion is involved in wall loosening accompanying such accelerated growth was evaluated. For cotyledons abraded with carborundum or cut into either eight or 18 pieces, we detected no zeatin-enhanced acidification of the growth medium during growth periods of 3 days. Measurements of pH values on each surface of zeatin-treated, abraded cotyledons after 3 days of growth also showed no detectable acidification caused by the hormone. Furthermore, with several buffers at pH values ranging from 5 to 8, growth of nonabraded, abraded, or cut cotyledons with or without zeatin was independent of external pH. However, experiments restricted to about 12 hours indicated that certain acidic buffers enhanced growth of cotyledons cut into 18 pieces. Lastly, concentrations of fusicoccin that caused growth promotion equal to that of zeatin initiated substantial acidification of the medium. Collectively, these data suggest that zeatin-induced expansion of detached cucumber cotyledons is independent of H(+) secretion.

  8. [Defining of wheat growth management zones based on remote sensing and geostatistics].

    PubMed

    Huang, Yan; Zhu, Yan; Ma, Meng-Li; Wang, Hang; Cao, Wei-Xing; Tian, Yong-Chao

    2011-02-01

    Taking the winter wheat planting areas in Rugao City and Haian County of Jiangsu Province as test objects, the clustering defining of wheat growth management zones was made, based on the spatial variability analysis and principal component extraction of the normalized difference vegetation index (NDVI) data calculated from the HJ-1A/B CCD images (30 m resolution) at different growth stages of winter wheat, and of the soil nutrient indices (total nitrogen, organic matter, available phosphorus, and available potassium). The results showed that the integration of the NDVI at heading stage with above-mentioned soil nutrient indices produced the best results of wheat growth management zone defining, with the variation coefficients of NDVI and soil nutrient indices in each defined zone ranged in 4.5% -6.1% and 3.3% -87.9%, respectively. However, the variation coefficients were much larger when the wheat growth management zones were defined individually by NDVI or by soil nutrient indices, suggesting that the newly developed defining method could reduce the variability within the defined management zones and improve the crop management precision, and thereby, contribute to the winter wheat growth management and process simulation at regional scale.

  9. Diffusion of lactate and ammonium in relation to growth of Geotrichum candidum at the surface of solid media.

    PubMed

    Aldarf, M; Fourcade, F; Amrane, A; Prigent, Y

    2004-07-05

    Geotrichum candidum was cultivated at the surface of solid model media containing peptone to simulate the composition of Camembert cheese. The surface growth of G. candidum induced the diffusion of substrates from the core to the rind and the diffusion of produced metabolites from the rind to the core. In the range of pH measured during G. candidum growth, constant diffusion coefficients were found for lactate and ammonium, 0.4 and 0.8 cm(2) day(-1), respectively, determined in sterile culture medium. Growth kinetics are described using the Verlhust model and both lactate consumption and ammonium production are considered as partially linked to growth. The experimental diffusion gradients of lactate and ammonium recorded during G. candidum growth have been fitted. The diffusion/reaction model was found to match with experimental data until the end of growth, except with regard to ammonium concentration gradients in the presence of lactate in the medium. Indeed, G. candidum preferentially assimilated peptone over lactate as a carbon source, resulting in an almost cessation of ammonium release before the end of growth. On peptone, it was found that the proton transfer did not account for the ammonium concentration gradients. Indeed, amino acids, being positively charged, are involved in the proton transfer at the beginning of growth. This effect can be neglected in the presence of lactate within the medium, and the sum of both lactate consumption and ammonium release gradients corresponded well to the proton transfer gradients, confirming that both components are responsible for the pH increase observed during the ripening of soft Camembert cheese. Copyright 2004 Wiley Periodicals, Inc.

  10. Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress.

    PubMed

    Sallah-Ud-Din, Rasham; Farid, Mujahid; Saeed, Rashid; Ali, Shafaqat; Rizwan, Muhammad; Tauqeer, Hafiz Muhammad; Bukhari, Syed Asad Hussain

    2017-07-01

    Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 μM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.

  11. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1982-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  12. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1981-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  13. [Factors inducing transition from growth to dormancy in rhizobacteria Azospirillum brasilense].

    PubMed

    Kushneruk, M A; Tugarova, A V; Il'chukova, A V; Slavkina, E A; Starichkova, N I; Bogatyrev, V A; Antoniuk, L P

    2013-01-01

    The factors suppressing division of the cells of the rhizobacterium Azospirillum brasilense and inducing their transition to a dormant state were analyzed. These included the presence of hexylresorcinol or heavy metals (Cu and Co) in the medium, oxygen stress, and transfer of the cells into the physiological saline or phosphate buffer solution. The results were used to develop a protocol for obtaining of uncultured cells of A. brasilense Sp245, a natural symbiont of wheat. The cells lost their ability to grow on synthetic agar medium, but could revert to growth when incubated in freshly prepared liquid medium. Needle-shaped crystals differing from struvite, which has been previously reported for this strain, were found in the dormant culture of A. brasilense Sp245.

  14. A new selective medium for Streptococcus mutans and the distribution of S. mutans and S. sobrinus and their serotypes in dental plaque.

    PubMed

    Hirasawa, M; Takada, K

    2003-01-01

    A new selective medium (MS-MUT) was developed for the isolation of Streptococcus mutans from clinical specimens. The average growth recovery of S. mutans on MS-MUT medium was 72.4% of that on MS medium. Growth of Streptococcus sobrinus was significantly inhibited on the medium with an average recovery of 0.034%. In 103 subjects, S. MUTANS was detected at 58.3, 75.0 and 95.7% in the dental plaque of caries-free (CF), caries-inactive (CI) and caries-active (CA) subjects, respectively. S. sobrinus was detected in 8.3, 13.6 and 38.3% of CF, CI and CA subjects, respectively. S. sobrinus alone was detected in only 4.3% of CA subjects. The subjects in whom neither S. mutans nor S. sobrinus were detected were 41.6% in CF and 25.0% in CI. The most predominant serotype was C with a 67% detection rate. S. sobrinus, serotypes D or G were usually found together with S. mutans. Copyright 2003 S. Karger AG, Basel

  15. The web-based information system for small and medium enterprises of Tomsk region

    NASA Astrophysics Data System (ADS)

    Senchenko, P. V.; Zhukovskiy, O. I.; Gritsenko, Yu B.; Senchenko, A. P.; Gritsenko, L. M.; Kovaleva, E. V.

    2017-01-01

    This paper presents the web enabled automated information data support system of small and medium-sized enterprises of Tomsk region. We define the purpose and application field of the system. In addition, we build a generic architecture and find system functions.

  16. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  17. Induction of a global stress response during the first step of Escherichia coli plate growth.

    PubMed

    Cuny, Caroline; Lesbats, Maïalène; Dukan, Sam

    2007-02-01

    We have investigated the first events that occur when exponentially grown cells are transferred from a liquid medium (Luria-Bertani [LB]) to a solid medium (LB agar [LBA]). We observed an initial lag phase of 180 min for the wild type MG1655 without any apparent growth. This lack of growth was independent of the bacterial physiological state (either the stationary or the exponential phase), the solid medium composition, or the number of cells on the plate, but it was dependent on the bacterial genotype. Using lacZ-reporter fusions and two-dimensional electrophoresis analysis, we observed that when cells from exponential-phase cultures were plated on LBA, several global regulons, like heat shock regulons (RpoH, RpoE, CpxAR) and oxidative-stress regulons (SoxRS, OxyR, Fur), were immediately induced. Our results indicate that in order to grow on plates, bacteria must not only adapt to new conditions but also perceive a real stress.

  18. Influence of calcium on fungal growth, hyphal morphology and citric acid production in Aspergillus niger.

    PubMed

    Pera, L M; Callieri, D A

    1997-01-01

    Addition of 0.5 g/L CaCl2 to the fermentation medium lowered the final biomass dry mass by 35% and increased the uptake of phosphate and sucrose, and the production of citric acid by 15, 35 and 50%, respectively. In a medium deprived of Ca2+ the microorganism displayed both a pelleted and a filamentous form of growth, the hyphae being scarcely branched, without bulbous cells. An addition of Ca2+ induced a pelleted form of growth, highly branched hyphae and numerous bulbous cells. Bulbous cells growing in the presence of Ca2+ exhibited cell walls composed of laminated layers, and featured vesicles associated with the wall and/or the cell membrane, containing numerous inclusions. The cytotoxic effect of high concentrations of citric acid in the medium as well as an increase of the activity of N-acetyl-beta-D-glucosaminidase, a lytic enzyme, might be involved in these morphological changes.

  19. Isolating "Unknown" Bacteria in the Introductory Microbiology Laboratory: A New Selective Medium for Gram-Positives.

    ERIC Educational Resources Information Center

    McKillip, John L.; Drake, MaryAnne

    1999-01-01

    Describes the development, preparation, and use of a medium that can select against a wide variety of Gram-negative bacteria while still allowing growth and differentiation of a wide range of Gram-positives. (WRM)

  20. Investigation of the Klinkenberg effect in a micro/nanoporous medium by direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Weigand, Bernhard

    2018-04-01

    The pressure-driven gas transport characteristics through a porous medium consisting of arrays of discrete elements is investigated by using the direct simulation Monte Carlo (DSMC) method. Different porous structures are considered, accounting for both two- and three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is studied in detail for slip and transition flow regimes. A new effective pore size of the porous medium is defined, which is a function of the porosity, the tortuosity, the contraction factor, and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect in different porous structures can be fully described by the Knudsen number characterized by the effective pore size. The accuracies of some widely used Klinkenberg correlations are evaluated by the present DSMC results. It is also found that the available correlations for apparent permeability, most of which are derived from simple pipe or channel flows, can still be applicative for more complex porous media flows, by using the effective pore size defined in this study.

Top