A framework for joint image-and-shape analysis
NASA Astrophysics Data System (ADS)
Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain
2014-03-01
Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.
Recursive search method for the image elements of functionally defined surfaces
NASA Astrophysics Data System (ADS)
Vyatkin, S. I.
2017-05-01
This paper touches upon the synthesis of high-quality images in real time and the technique for specifying three-dimensional objects on the basis of perturbation functions. The recursive search method for the image elements of functionally defined objects with the use of graphics processing units is proposed. The advantages of such an approach over the frame-buffer visualization method are shown.
Binary Color Vision for Industrial Automation.
1983-02-28
A . and Kak, A .: Digital Picture Processing. Academic Press, New York, 1976. (17) Connah, D. M . and Fishbourne, C . A .: "The...TEST CHART NATIONAL RUR AU OF STANDAR[l, A - -IA • . . ........ ......... ’ ... ’" ( ( READ INSTR C IN R REPORT DOCUMENTATION PAGE H"’FORE COMPLETN...image is defined by a function of 2-D posi , say I( m ,n), defined at chosen grid points of the image. For a achromatic grey-scale image, the function
A new diagnostic approach to popliteal artery entrapment syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Charles; Kennedy, Dominic; Bastian-Jordan, Matthew
A new method of diagnosing and defining functional popliteal artery entrapment syndrome is described. By combining ultrasonography and magnetic resonance imaging techniques with dynamic plantarflexion of the ankle against resistance, functional entrapment can be demonstrated and the location of the arterial occlusion identified. This combination of imaging modalities will also define muscular anatomy for guiding intervention such as surgery or Botox injection.
A database system to support image algorithm evaluation
NASA Technical Reports Server (NTRS)
Lien, Y. E.
1977-01-01
The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.
Mihaylova, Milena; Manahilov, Velitchko
2010-11-24
Research has shown that the processing time for discriminating illusory contours is longer than for real contours. We know, however, little whether the visual processes, associated with detecting regions of illusory surfaces, are also slower as those responsible for detecting luminance-defined images. Using a speed-accuracy trade-off (SAT) procedure, we measured accuracy as a function of processing time for detecting illusory Kanizsa-type and luminance-defined squares embedded in 2D static luminance noise. The data revealed that the illusory images were detected at slower processing speed than the real images, while the points in time, when accuracy departed from chance, were not significantly different for both stimuli. The classification images for detecting illusory and real squares showed that observers employed similar detection strategies using surface regions of the real and illusory squares. The lack of significant differences between the x-intercepts of the SAT functions for illusory and luminance-modulated stimuli suggests that the detection of surface regions of both images could be based on activation of a single mechanism (the dorsal magnocellular visual pathway). The slower speed for detecting illusory images as compared to luminance-defined images could be attributed to slower processes of filling-in of regions of illusory images within the dorsal pathway.
New DICOM extensions for softcopy and hardcopy display consistency.
Eichelberg, M; Riesmeier, J; Kleber, K; Grönemeyer, D H; Oosterwijk, H; Jensch, P
2000-01-01
The DICOM standard defines in detail how medical images can be communicated. However, the rules on how to interpret the parameters contained in a DICOM image which deal with the image presentation were either lacking or not well defined. As a result, the same image frequently looks different when displayed on different workstations or printed on a film from various printers. Three new DICOM extensions attempt to close this gap by defining a comprehensive model for the display of images on softcopy and hardcopy devices: Grayscale Standard Display Function, Grayscale Softcopy Presentation State and Presentation Look Up Table.
Task-specific image partitioning.
Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D
2013-02-01
Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.
Image characterization metrics for muon tomography
NASA Astrophysics Data System (ADS)
Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt
2014-05-01
Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.
Del Grande, Filippo; Subhawong, Ty; Weber, Kristy; Aro, Michael; Mugera, Charles; Fayad, Laura M
2014-05-01
To determine the added value of functional magnetic resonance (MR) sequences (dynamic contrast material-enhanced [DCE] and quantitative diffusion-weighted [DW] imaging with apparent diffusion coefficient [ADC] mapping) for the detection of recurrent soft-tissue sarcomas following surgical resection. This retrospective study was approved by the institutional review board. The requirement to obtain informed consent was waived. Thirty-seven patients referred for postoperative surveillance after resection of soft-tissue sarcoma (35 with high-grade sarcoma) were studied. Imaging at 3.0 T included conventional (T1-weighted, fluid-sensitive, and contrast-enhanced T1-weighted imaging) and functional (DCE MR imaging, DW imaging with ADC mapping) sequences. Recurrences were confirmed with biopsy or resection. A disease-free state was determined with at least 6 months of follow-up. Two readers independently recorded the signal and morphologic characteristics with conventional sequences, the presence or absence of arterial enhancement at DCE MR imaging, and ADCs of the surgical bed. The accuracy of conventional MR imaging in the detection of recurrence was compared with that with the addition of functional sequences. The Fisher exact and Wilcoxon rank sum tests were used to define the accuracy of imaging features, the Cohen κ and Lin interclass correlation were used to define interobserver variability, and receiver operating characteristic analysis was used to define a threshold to detect recurrence and assess reader confidence after the addition of functional imaging to conventional sequences. There were six histologically proved recurrences in 37 patients. Sensitivity and specificity of MR imaging in the detection of tumor recurrence were 100% (six of six patients) and 52% (16 of 31 patients), respectively, with conventional sequences, 100% (six of six patients) and 97% (30 of 31 patients) with the addition of DCE MR imaging, and 60% (three of five patients) and 97% (30 of 31 patients) with the addition of DW imaging and ADC mapping. The average ADC of recurrence (1.08 mm(2)/sec ± 0.19) was significantly different from those of postoperative scarring (0.9 mm(2)/sec ± 0.00) and hematomas (2.34 mm(2)/sec ± 0.72) (P = .03 for both). The addition of functional MR sequences to a routine MR protocol, in particular DCE MR imaging, offers a specificity of more than 95% for distinguishing recurrent sarcoma from postsurgical scarring.
White matter lesions relate to tract-specific reductions in functional connectivity.
Langen, Carolyn D; Zonneveld, Hazel I; White, Tonya; Huizinga, Wyke; Cremers, Lotte G M; de Groot, Marius; Ikram, Mohammad Arfan; Niessen, Wiro J; Vernooij, Meike W
2017-03-01
White matter lesions play a role in cognitive decline and dementia. One presumed pathway is through disconnection of functional networks. Little is known about location-specific effects of lesions on functional connectivity. This study examined location-specific effects within anatomically-defined white matter tracts in 1584 participants of the Rotterdam Study, aged 50-95. Tracts were delineated from diffusion magnetic resonance images using probabilistic tractography. Lesions were segmented on fluid-attenuated inversion recovery images. Functional connectivity was defined across each tract on resting-state functional magnetic resonance images by using gray matter parcellations corresponding to the tract ends and calculating the correlation of the mean functional activity between the gray matter regions. A significant relationship between both local and brain-wide lesion load and tract-specific functional connectivity was found in several tracts using linear regressions, also after Bonferroni correction. Indirect connectivity analyses revealed that tract-specific functional connectivity is affected by lesions in several tracts simultaneously. These results suggest that local white matter lesions can decrease tract-specific functional connectivity, both in direct and indirect connections. Copyright © 2016 Elsevier Inc. All rights reserved.
Functional Anorectal Disorders.
Rao, Satish Sc; Bharucha, Adil E; Chiarioni, Giuseppe; Felt-Bersma, Richelle; Knowles, Charles; Malcolm, Allison; Wald, Arnold
2016-03-25
This report defines criteria and reviews the epidemiology, pathophysiology, and management of common anorectal disorders: fecal incontinence (FI), functional anorectal pain and functional defecation disorders. FI is defined as the recurrent uncontrolled passage of fecal material for at least 3 months. The clinical features of FI are useful for guiding diagnostic testing and therapy. Anorectal manometry and imaging are useful for evaluating anal and pelvic floor structure and function. Education, antidiarrheals and biofeedback therapy are the mainstay of management; surgery may be useful in refractory cases. Functional anorectal pain syndromes are defined by clinical features and categorized into three subtypes. In proctalgia fugax, the pain is typically fleeting and lasts for seconds to minutes. In levator ani syndrome (LAS) and unspecified anorectal pain the pain lasts more than 30 minutes, but in LAS there is puborectalis tenderness. Functional defecation disorders are defined by >2 symptoms of chronic constipation or irritable bowel syndrome with constipation, and with >2 features of impaired evacuation i.e., abnormal evacuation pattern on manometry, abnormal balloon expulsion test or impaired rectal evacuation by imaging. It includes two subtypes; dyssynergic defecation and inadequate defecatory propulsion. Pelvic floor biofeedback therapy is effective for treating LAS and defecatory disorders. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
An improved level set method for brain MR images segmentation and bias correction.
Chen, Yunjie; Zhang, Jianwei; Macione, Jim
2009-10-01
Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.
ERIC Educational Resources Information Center
Davis, Nicole; Cannistraci, Christopher J.; Rogers, Baxter P.; Gatenby, J. Christopher; Fuchs, Lynn S.; Anderson, Adam W.; Gore, John C.
2009-01-01
We used functional magnetic resonance imaging (fMRI) to explore the patterns of brain activation associated with different levels of performance in exact and approximate calculation tasks in well-defined cohorts of children with mathematical calculation difficulties (MD) and typically developing controls. Both groups of children activated the same…
Mass-storage management for distributed image/video archives
NASA Astrophysics Data System (ADS)
Franchi, Santina; Guarda, Roberto; Prampolini, Franco
1993-04-01
The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.
49 CFR 571.111 - Standard No. 111; Rear visibility.
Code of Federal Regulations, 2014 CFR
2014-10-01
... mirror that reflect images, excluding the mirror rim or mounting brackets. Environmental test fixture... defined in S15. Rearview image means a visual image, detected by means of a single source, of the area... function of producing the rearview image as required under this standard. Small manufacturer means an...
Managing multiple image stacks from confocal laser scanning microscopy
NASA Astrophysics Data System (ADS)
Zerbe, Joerg; Goetze, Christian H.; Zuschratter, Werner
1999-05-01
A major goal in neuroanatomy is to obtain precise information about the functional organization of neuronal assemblies and their interconnections. Therefore, the analysis of histological sections frequently requires high resolution images in combination with an overview about the structure. To overcome this conflict we have previously introduced a software for the automatic acquisition of multiple image stacks (3D-MISA) in confocal laser scanning microscopy. Here, we describe a Windows NT based software for fast and easy navigation through the multiple images stacks (MIS-browser), the visualization of individual channels and layers and the selection of user defined subregions. In addition, the MIS browser provides useful tools for the visualization and evaluation of the datavolume, as for instance brightness and contrast corrections of individual layers and channels. Moreover, it includes a maximum intensity projection, panning and zoom in/out functions within selected channels or focal planes (x/y) and tracking along the z-axis. The import module accepts any tiff-format and reconstructs the original image arrangement after the user has defined the sequence of images in x/y and z and the number of channels. The implemented export module allows storage of user defined subregions (new single image stacks) for further 3D-reconstruction and evaluation.
Rao, Satish S. C.; Bharucha, Adil E.; Chiarioni, Giuseppe; Felt-Bersma, Richelle; Knowles, Charles; Malcolm, Allison; Wald, Arnold
2016-01-01
This report defines criteria and reviews the epidemiology, pathophysiology, and management of the following common anorectal disorders: fecal incontinence (FI), functional anorectal pain, and functional defecation disorders. FI is defined as the recurrent uncontrolled passage of fecal material for at least 3 months. The clinical features of FI are useful for guiding diagnostic testing and therapy. Anorectal manometry and imaging are useful for evaluating anal and pelvic floor structure and function. Education, antidiarrheals, and biofeedback therapy are the mainstay of management; surgery may be useful in refractory cases. Functional anorectal pain syndromes are defined by clinical features and categorized into 3 subtypes. In proctalgia fugax, the pain is typically fleeting and lasts for seconds to minutes. In levator ani syndrome and unspecified anorectal pain, the pain lasts more than 30 minutes, but in levator ani syndrome there is puborectalis tenderness. Functional defecation disorders are defined by ≥2 symptoms of chronic constipation or irritable bowel syndrome with constipation, and with ≥2 features of impaired evacuation, that is, abnormal evacuation pattern on manometry, abnormal balloon expulsion test, or impaired rectal evacuation by imaging. It includes 2 subtypes: dyssynergic defecation and inadequate defecatory propulsion. Pelvic floor biofeedback therapy is effective for treating levator ani syndrome and defecatory disorders. PMID:27144630
NASA Technical Reports Server (NTRS)
Anuta, P. E.
1975-01-01
Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.
A level set method for cupping artifact correction in cone-beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Shipeng; Li, Haibo; Ge, Qi
2015-08-15
Purpose: To reduce cupping artifacts and improve the contrast-to-noise ratio in cone-beam computed tomography (CBCT). Methods: A level set method is proposed to reduce cupping artifacts in the reconstructed image of CBCT. The authors derive a local intensity clustering property of the CBCT image and define a local clustering criterion function of the image intensities in a neighborhood of each point. This criterion function defines an energy in terms of the level set functions, which represent a segmentation result and the cupping artifacts. The cupping artifacts are estimated as a result of minimizing this energy. Results: The cupping artifacts inmore » CBCT are reduced by an average of 90%. The results indicate that the level set-based algorithm is practical and effective for reducing the cupping artifacts and preserving the quality of the reconstructed image. Conclusions: The proposed method focuses on the reconstructed image without requiring any additional physical equipment, is easily implemented, and provides cupping correction through a single-scan acquisition. The experimental results demonstrate that the proposed method successfully reduces the cupping artifacts.« less
Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.
Gao, Xiaoqing; Gentile, Francesco; Rossion, Bruno
2018-06-01
Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80-90%) of test-retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.
Body image disturbance in adults treated for cancer - a concept analysis.
Rhoten, Bethany A
2016-05-01
To report an analysis of the concept of body image disturbance in adults who have been treated for cancer as a phenomenon of interest to nurses. Although the concept of body image disturbance has been clearly defined in adolescents and adults with eating disorders, adults who have been treated for cancer may also experience body image disturbance. In this context, the concept of body image disturbance has not been clearly defined. Concept analysis. PubMed, Psychological Information Database and Cumulative Index of Nursing and Allied Health Literature were searched for publications from 1937 - 2015. Search terms included body image, cancer, body image disturbance, adult and concept analysis. Walker and Avant's 8-step method of concept analysis was used. The defining attributes of body image disturbance in adults who have been treated for cancer are: (1) self-perception of a change in appearance and displeasure with the change or perceived change in appearance; (2) decline in an area of function; and (3) psychological distress regarding changes in appearance and/or function. This concept analysis provides a foundation for the development of multidimensional assessment tools and interventions to alleviate body image disturbance in this population. A better understanding of body image disturbance in adults treated for cancer will assist nurses and other clinicians in identifying this phenomenon and nurse scientists in developing instruments that accurately measure this condition, along with interventions that will promote a better quality of life for survivors. © 2016 John Wiley & Sons Ltd.
Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.
2016-01-01
Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture. PMID:27371764
Standardized volume-rendering of contrast-enhanced renal magnetic resonance angiography.
Smedby, O; Oberg, R; Asberg, B; Stenström, H; Eriksson, P
2005-08-01
To propose a technique for standardizing volume-rendering technique (VRT) protocols and to compare this with maximum intensity projection (MIP) in regard to image quality and diagnostic confidence in stenosis diagnosis with magnetic resonance angiography (MRA). Twenty patients were examined with MRA under suspicion of renal artery stenosis. Using the histogram function in the volume-rendering software, the 95th and 99th percentiles of the 3D data set were identified and used to define the VRT transfer function. Two radiologists assessed the stenosis pathology and image quality from rotational sequences of MIP and VRT images. Good overall agreement (mean kappa=0.72) was found between MIP and VRT diagnoses. The agreement between MIP and VRT was considerably better than that between observers (mean kappa=0.43). One of the observers judged VRT images as having higher image quality than MIP images. Presenting renal MRA images with VRT gave results in good agreement with MIP. With VRT protocols defined from the histogram of the image, the lack of an absolute gray scale in MRI need not be a major problem.
Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.
Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian
2015-03-01
We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.
Figley, Teresa D.; Bhullar, Navdeep; Courtney, Susan M.; Figley, Chase R.
2015-01-01
Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to estimate both the microstructural integrity and the trajectories of white matter pathways throughout the central nervous system. This fiber tracking (aka, “tractography”) approach is often carried out using anatomically-defined seed points to identify white matter tracts that pass through one or more structures, but can also be performed using functionally-defined regions of interest (ROIs) that have been determined using functional MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography between all of the previously defined nodes within each of six common resting-state brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN). By normalizing the data from 32 healthy control subjects to a standard template—using high-dimensional, non-linear warping methods—we were able to create probabilistic white matter atlases for each tract in stereotaxic coordinates. By investigating all 198 ROI-to-ROI combinations within the aforementioned resting-state networks (for a total of 6336 independent DTI tractography analyses), the resulting probabilistic atlases represent a comprehensive cohort of functionally-defined white matter regions that can be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes to particular functional brain networks, and (2) compliment resting state fMRI or other functional connectivity analyses. PMID:26578930
Liu, Xiaolin; Lauer, Kathryn K; Ward, B Douglas; Roberts, Christopher J; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Xu, Zhan; Chen, Guangyu; Binder, Jeffrey R; Li, Shi-Jiang; Hudetz, Anthony G
2017-08-01
Conscious perception relies on interactions between spatially and functionally distinct modules of the brain at various spatiotemporal scales. These interactions are altered by anesthesia, an intervention that leads to fading consciousness. Relatively little is known about brain functional connectivity and its anesthetic modulation at a fine spatial scale. Here, we used functional imaging to examine propofol-induced changes in functional connectivity in brain networks defined at a fine-grained parcellation based on a combination of anatomical and functional features. Fifteen healthy volunteers underwent resting-state functional imaging in wakeful baseline, mild sedation, deep sedation, and recovery of consciousness. Compared with wakeful baseline, propofol produced widespread, dose-dependent functional connectivity changes that scaled with the extent to which consciousness was altered. The dominant changes in connectivity were associated with the frontal lobes. By examining node pairs that demonstrated a trend of functional connectivity change between wakefulness and deep sedation, quadratic discriminant analysis differentiated the states of consciousness in individual participants more accurately at a fine-grained parcellation (e.g., 2000 nodes) than at a coarse-grained parcellation (e.g., 116 anatomical nodes). Our study suggests that defining brain networks at a high granularity may provide a superior imaging-based distinction of the graded effect of anesthesia on consciousness.
Using normalization 3D model for automatic clinical brain quantative analysis and evaluation
NASA Astrophysics Data System (ADS)
Lin, Hong-Dun; Yao, Wei-Jen; Hwang, Wen-Ju; Chung, Being-Tau; Lin, Kang-Ping
2003-05-01
Functional medical imaging, such as PET or SPECT, is capable of revealing physiological functions of the brain, and has been broadly used in diagnosing brain disorders by clinically quantitative analysis for many years. In routine procedures, physicians manually select desired ROIs from structural MR images and then obtain physiological information from correspondent functional PET or SPECT images. The accuracy of quantitative analysis thus relies on that of the subjectively selected ROIs. Therefore, standardizing the analysis procedure is fundamental and important in improving the analysis outcome. In this paper, we propose and evaluate a normalization procedure with a standard 3D-brain model to achieve precise quantitative analysis. In the normalization process, the mutual information registration technique was applied for realigning functional medical images to standard structural medical images. Then, the standard 3D-brain model that shows well-defined brain regions was used, replacing the manual ROIs in the objective clinical analysis. To validate the performance, twenty cases of I-123 IBZM SPECT images were used in practical clinical evaluation. The results show that the quantitative analysis outcomes obtained from this automated method are in agreement with the clinical diagnosis evaluation score with less than 3% error in average. To sum up, the method takes advantage of obtaining precise VOIs, information automatically by well-defined standard 3-D brain model, sparing manually drawn ROIs slice by slice from structural medical images in traditional procedure. That is, the method not only can provide precise analysis results, but also improve the process rate for mass medical images in clinical.
Architecture for a PACS primary diagnosis workstation
NASA Astrophysics Data System (ADS)
Shastri, Kaushal; Moran, Byron
1990-08-01
A major factor in determining the overall utility of a medical Picture Archiving and Communications (PACS) system is the functionality of the diagnostic workstation. Meyer-Ebrecht and Wendler [1] have proposed a modular picture computer architecture with high throughput and Perry et.al [2] have defined performance requirements for radiology workstations. In order to be clinically useful, a primary diagnosis workstation must not only provide functions of current viewing systems (e.g. mechanical alternators [3,4]) such as acceptable image quality, simultaneous viewing of multiple images, and rapid switching of image banks; but must also provide a diagnostic advantage over the current systems. This includes window-level functions on any image, simultaneous display of multi-modality images, rapid image manipulation, image processing, dynamic image display (cine), electronic image archival, hardcopy generation, image acquisition, network support, and an easy user interface. Implementation of such a workstation requires an underlying hardware architecture which provides high speed image transfer channels, local storage facilities, and image processing functions. This paper describes the hardware architecture of the Siemens Diagnostic Reporting Console (DRC) which meets these requirements.
The angular difference function and its application to image registration.
Keller, Yosi; Shkolnisky, Yoel; Averbuch, Amir
2005-06-01
The estimation of large motions without prior knowledge is an important problem in image registration. In this paper, we present the angular difference function (ADF) and demonstrate its applicability to rotation estimation. The ADF of two functions is defined as the integral of their spectral difference along the radial direction. It is efficiently computed using the pseudopolar Fourier transform, which computes the discrete Fourier transform of an image on a near spherical grid. Unlike other Fourier-based registration schemes, the suggested approach does not require any interpolation. Thus, it is more accurate and significantly faster.
Image registration method for medical image sequences
Gee, Timothy F.; Goddard, James S.
2013-03-26
Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.
Scattered wave imaging of the oceanic plate in Cascadia
Rychert, Catherine A.; Harmon, Nicholas; Tharimena, Saikiran
2018-01-01
Fifty years after plate tectonic theory was developed, the defining mechanism of the plate is still widely debated. The relatively short, simple history of young ocean lithosphere makes it an ideal place to determine the property that defines a plate, yet the remoteness and harshness of the seafloor have made precise imaging challenging. We use S-to-P receiver functions to image discontinuities beneath newly formed lithosphere at the Juan de Fuca and Gorda Ridges. We image a strong negative discontinuity at the base of the plate increasing from 20 to 45 km depth beneath the 0- to 10-million-year-old seafloor and a positive discontinuity at the onset of melting at 90 to 130 km depth. Comparison with geodynamic models and experimental constraints indicates that the observed discontinuities cannot easily be reconciled with subsolidus mechanisms. Instead, partial melt may be required, which would decrease mantle viscosity and define the young oceanic plate. PMID:29457132
Simultaneous water activation and glucose metabolic rate imaging with PET
NASA Astrophysics Data System (ADS)
Verhaeghe, Jeroen; Reader, Andrew J.
2013-02-01
A novel imaging and signal separation strategy is proposed to be able to separate [18F]FDG and multiple [15O]H2O signals from a simultaneously acquired dynamic PET acquisition of the two tracers. The technique is based on the fact that the dynamics of the two tracers are very distinct. By adopting an appropriate bolus injection strategy and by defining tailored sets of basis functions that model either the FDG or water component, it is possible to separate the FDG and water signal. The basis functions are inspired from the spectral analysis description of dynamic PET studies and are defined as the convolution of estimated generating functions (GFs) with a set of decaying exponential functions. The GFs are estimated from the overall measured head curve, while the decaying exponential functions are pre-determined. In this work, the time activity curves (TACs) are modelled post-reconstruction but the model can be incorporated in a global 4D reconstruction strategy. Extensive PET simulation studies are performed considering single [18F]FDG and 6 [15O]H2O bolus injections for a total acquisition time of 75 min. The proposed method is evaluated at multiple noise levels and different parameters were estimated such as [18F]FDG uptake and blood flow estimated from the [15O]H2O component, requiring a full dynamic analysis of the two components, static images of [18F]FDG and the water components as well as [15O]H2O activation. It is shown that the resulting images and parametric values in ROIs are comparable to images obtained from separate imaging, illustrating the feasibility of simultaneous imaging of [18F]FDG and [15O]H2O components. For more information on this article, see medicalphysicsweb.org
Adipose Tissue Quantification by Imaging Methods: A Proposed Classification
Shen, Wei; Wang, ZiMian; Punyanita, Mark; Lei, Jianbo; Sinav, Ahmet; Kral, John G.; Imielinska, Celina; Ross, Robert; Heymsfield, Steven B.
2007-01-01
Recent advances in imaging techniques and understanding of differences in the molecular biology of adipose tissue has rendered classical anatomy obsolete, requiring a new classification of the topography of adipose tissue. Adipose tissue is one of the largest body compartments, yet a classification that defines specific adipose tissue depots based on their anatomic location and related functions is lacking. The absence of an accepted taxonomy poses problems for investigators studying adipose tissue topography and its functional correlates. The aim of this review was to critically examine the literature on imaging of whole body and regional adipose tissue and to create the first systematic classification of adipose tissue topography. Adipose tissue terminology was examined in over 100 original publications. Our analysis revealed inconsistencies in the use of specific definitions, especially for the compartment termed “visceral” adipose tissue. This analysis leads us to propose an updated classification of total body and regional adipose tissue, providing a well-defined basis for correlating imaging studies of specific adipose tissue depots with molecular processes. PMID:12529479
NASA Astrophysics Data System (ADS)
Ledwon, Aleksandra; Bieda, Robert; Kawczyk-Krupka, Aleksandra; Polanski, Andrzej; Wojciechowski, Konrad; Latos, Wojciech; Sieron-Stoltny, Karolina; Sieron, Aleksander
2008-02-01
Background: Fluorescence diagnostics uses the ability of tissues to fluoresce after exposition to a specific wavelength of light. The change in fluorescence between normal and progression to cancer allows to see early cancer and precancerous lesions often missed by white light. Aim: To improve by computer image processing the sensitivity of fluorescence images obtained during examination of skin, oral cavity, vulva and cervix lesions, during endoscopy, cystoscopy and bronchoscopy using Xillix ONCOLIFE. Methods: Function of image f(x,y):R2 --> R 3 was transformed from original color space RGB to space in which vector of 46 values refers to every point labeled by defined xy-coordinates- f(x,y):R2 --> R 46. By means of Fisher discriminator vector of attributes of concrete point analalyzed in the image was reduced according to two defined classes defined as pathologic areas (foreground) and healthy areas (background). As a result the highest four fisher's coefficients allowing the greatest separation between points of pathologic (foreground) and healthy (background) areas were chosen. In this way new function f(x,y):R2 --> R 4 was created in which point x,y corresponds with vector Y, H, a*, c II. In the second step using Gaussian Mixtures and Expectation-Maximisation appropriate classificator was constructed. This classificator enables determination of probability that the selected pixel of analyzed image is a pathologically changed point (foreground) or healthy one (background). Obtained map of probability distribution was presented by means of pseudocolors. Results: Image processing techniques improve the sensitivity, quality and sharpness of original fluorescence images. Conclusion: Computer image processing enables better visualization of suspected areas examined by means of fluorescence diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo
2015-11-15
Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less
Multispectral imaging with vertical silicon nanowires
Park, Hyunsung; Crozier, Kenneth B.
2013-01-01
Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156
Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan
2013-01-01
This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.
Fast global image smoothing based on weighted least squares.
Min, Dongbo; Choi, Sunghwan; Lu, Jiangbo; Ham, Bumsub; Sohn, Kwanghoon; Do, Minh N
2014-12-01
This paper presents an efficient technique for performing a spatially inhomogeneous edge-preserving image smoothing, called fast global smoother. Focusing on sparse Laplacian matrices consisting of a data term and a prior term (typically defined using four or eight neighbors for 2D image), our approach efficiently solves such global objective functions. In particular, we approximate the solution of the memory-and computation-intensive large linear system, defined over a d-dimensional spatial domain, by solving a sequence of 1D subsystems. Our separable implementation enables applying a linear-time tridiagonal matrix algorithm to solve d three-point Laplacian matrices iteratively. Our approach combines the best of two paradigms, i.e., efficient edge-preserving filters and optimization-based smoothing. Our method has a comparable runtime to the fast edge-preserving filters, but its global optimization formulation overcomes many limitations of the local filtering approaches. Our method also achieves high-quality results as the state-of-the-art optimization-based techniques, but runs ∼10-30 times faster. Besides, considering the flexibility in defining an objective function, we further propose generalized fast algorithms that perform Lγ norm smoothing (0 < γ < 2) and support an aggregated (robust) data term for handling imprecise data constraints. We demonstrate the effectiveness and efficiency of our techniques in a range of image processing and computer graphics applications.
NASA Technical Reports Server (NTRS)
Heine, John J. (Inventor); Clarke, Laurence P. (Inventor); Deans, Stanley R. (Inventor); Stauduhar, Richard Paul (Inventor); Cullers, David Kent (Inventor)
2001-01-01
A system and method for analyzing a medical image to determine whether an abnormality is present, for example, in digital mammograms, includes the application of a wavelet expansion to a raw image to obtain subspace images of varying resolution. At least one subspace image is selected that has a resolution commensurate with a desired predetermined detection resolution range. A functional form of a probability distribution function is determined for each selected subspace image, and an optimal statistical normal image region test is determined for each selected subspace image. A threshold level for the probability distribution function is established from the optimal statistical normal image region test for each selected subspace image. A region size comprising at least one sector is defined, and an output image is created that includes a combination of all regions for each selected subspace image. Each region has a first value when the region intensity level is above the threshold and a second value when the region intensity level is below the threshold. This permits the localization of a potential abnormality within the image.
Programmers and Dissolve Controls for Multi-Image Presentations.
ERIC Educational Resources Information Center
Benedict, Joel A.; Fuller, Barry J.
For audiovisual personnel planning multi-image presentations, a programer is suggested and its purpose and functions explained. Digital, frequency and punched-taped programers are defined and discussed, and approximate costs given. Methods of operating are described, and the possible tie-in of a dissolve unit is discussed. Equipment hookups are…
Network analysis of mesoscale optical recordings to assess regional, functional connectivity.
Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H
2015-10-01
With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.
Segmentation-based wavelet transform for still-image compression
NASA Astrophysics Data System (ADS)
Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.
1996-10-01
In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.
Edge analyzing properties of center/surround response functions in cybernetic vision
NASA Technical Reports Server (NTRS)
Jobson, D. J.
1984-01-01
The ability of center/surround response functions to make explicit high resolution spatial information in optical images was investigated by performing convolutions of two dimensional response functions and image intensity functions (mainly edges). The center/surround function was found to have the unique property of separating edge contrast from shape variations and of providing a direct basis for determining contrast and subsequently shape of edges in images. Computationally simple measures of contrast and shape were constructed for potential use in cybernetic vision systems. For one class of response functions these measures were found to be reasonably resilient for a range of scan direction and displacements of the response functions relative to shaped edges. A pathological range of scan directions was also defined and methods for detecting and handling these cases were developed. The relationship of these results to biological vision is discussed speculatively.
NASA Technical Reports Server (NTRS)
Berger, B. S.; Duangudom, S.
1973-01-01
A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.
The Images and Realities of Career Education.
ERIC Educational Resources Information Center
Parnell, Dale
It is important that career education goals and objectives be clarified and any present inaccurate images by changed. Career education can be defined as that delivery system which helps students develop the necessary competencies to function in the real-life role of producer or wage earner. Thinking in terms of competencies required to function…
Tang, Jian; Jiang, Xiaoliang
2017-01-01
Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF) energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of local image. The means of this objective function have a multiplicative factor that estimates the bias field in the transformed domain. Then, the bias field prior is fully used. Therefore, our model can estimate the bias field more accurately. Finally, minimization of this energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-of-the-art approaches.
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
2010-01-01
One of the most important applications of the definite integral in a modern calculus course is the mean value of a function. Thus, if a function "f" is defined on an interval ["a", "b"], then the mean, or average value, of "f" is given by [image omitted]. In this note, we will investigate the meaning of other statistics associated with a function…
Defining Functional Areas in Individual Human Brains using Resting Functional Connectivity MRI
Cohen, Alexander L.; Fair, Damien A.; Dosenbach, Nico U.F.; Miezin, Francis M.; Dierker, Donna; Van Essen, David C.; Schlaggar, Bradley L.; Petersen, Steven E.
2009-01-01
The cerebral cortex is anatomically organized at many physical scales starting at the level of single neurons and extending up to functional systems. Current functional magnetic resonance imaging (fMRI) studies often focus at the level of areas, networks, and systems. Except in restricted domains, (e.g. topographically-organized sensory regions), it is difficult to determine area boundaries in the human brain using fMRI. The ability to delineate functional areas non-invasively would enhance the quality of many experimental analyses allowing more accurate across-subject comparisons of independently identified functional areas. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity (rs-fcMRI), are especially promising as a way to accurately localize differences in patterns of correlated activity across large expanses of cortex. In the current report, we applied a novel set of image analysis tools to explore the utility of rs-fcMRI for defining wide-ranging functional area boundaries. We find that rs-fcMRI patterns show sharp transitions in correlation patterns and that these putative areal boundaries can be reliably detected in individual subjects as well as in group data. Additionally, combining surface-based analysis techniques with image processing algorithms allows automated mapping of putative areal boundaries across large expanses of cortex without the need for prior information about a region’s function or topography. Our approach reliably produces maps of bounded regions appropriate in size and number for putative functional areas. These findings will hopefully stimulate further methodological refinements and validations. PMID:18367410
Autonomous quantum to classical transitions and the generalized imaging theorem
NASA Astrophysics Data System (ADS)
Briggs, John S.; Feagin, James M.
2016-03-01
The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.
Autonomous quantum to classical transitions and the generalized imaging theorem
Briggs, John S.; Feagin, James M.
2016-03-16
The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less
Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2013-01-01
Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443
Image correlation microscopy for uniform illumination.
Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L
2010-01-01
Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.
[Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism].
Zhao, Hui-Jie; Zhou, Peng-Wei; Zhang, Ying; Li, Chong-Chong
2013-10-01
An user defined surface function method was proposed to model the acousto-optic interaction of AOTF based on wave-vector match principle. Assessment experiment result shows that this model can achieve accurate ray trace of AOTF diffracted beam. In addition, AOTF imaging spectrometer presents large residual lateral color when traditional chromatic aberrations correcting method is adopted. In order to reduce lateral chromatic aberrations, a method based on doublet prism is proposed. The optical material and angle of the prism are optimized automatically using global optimization with the help of user defined AOTF surface. Simulation result shows that the proposed method provides AOTF imaging spectrometer with great conveniences, which reduces the lateral chromatic aberration to less than 0.000 3 degrees and improves by one order of magnitude, with spectral image shift effectively corrected.
Physiological Imaging-Defined, Response-Driven Subvolumes of a Tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farjam, Reza; Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Tsien, Christina I.
2013-04-01
Purpose: To develop an image analysis framework to delineate the physiological imaging-defined subvolumes of a tumor in relating to treatment response and outcome. Methods and Materials: Our proposed approach delineates the subvolumes of a tumor based on its heterogeneous distributions of physiological imaging parameters. The method assigns each voxel a probabilistic membership function belonging to the physiological parameter classes defined in a sample of tumors, and then calculates the related subvolumes in each tumor. We applied our approach to regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant (K{sup trans}) images of patients who had brain metastases and were treatedmore » by whole-brain radiation therapy (WBRT). A total of 45 lesions were included in the analysis. Changes in the rCBV (or K{sup trans})–defined subvolumes of the tumors from pre-RT to 2 weeks after the start of WBRT (2W) were evaluated for differentiation of responsive, stable, and progressive tumors using the Mann-Whitney U test. Performance of the newly developed metrics for predicting tumor response to WBRT was evaluated by receiver operating characteristic (ROC) curve analysis. Results: The percentage decrease in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was significantly greater in the group of responsive tumors than in the group of stable and progressive tumors (P<.007). The change in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was a predictor for post-RT response significantly better than change in the gross tumor volume observed during the same time interval (P=.012), suggesting that the physiological change occurs before the volumetric change. Also, K{sup trans} did not add significant discriminatory information for assessing response with respect to rCBV. Conclusion: The physiological imaging-defined subvolumes of the tumors delineated by our method could be candidates for boost target, for which further development and evaluation is warranted.« less
The potential of multiparametric MRI of the breast
Pinker, Katja; Helbich, Thomas H
2017-01-01
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423
Hard copies for digital medical images: an overview
NASA Astrophysics Data System (ADS)
Blume, Hartwig R.; Muka, Edward
1995-04-01
This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.
Objective assessment of image quality. IV. Application to adaptive optics
Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher
2008-01-01
The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464
Chen, Zhi-Ye; Ma, Lin
2014-04-01
To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.
Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.
Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C
2016-01-01
We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range.
Selection of optimal spectral sensitivity functions for color filter arrays.
Parmar, Manu; Reeves, Stanley J
2010-12-01
A color image meant for human consumption can be appropriately displayed only if at least three distinct color channels are present. Typical digital cameras acquire three-color images with only one sensor. A color filter array (CFA) is placed on the sensor such that only one color is sampled at a particular spatial location. This sparsely sampled signal is then reconstructed to form a color image with information about all three colors at each location. In this paper, we show that the wavelength sensitivity functions of the CFA color filters affect both the color reproduction ability and the spatial reconstruction quality of recovered images. We present a method to select perceptually optimal color filter sensitivity functions based upon a unified spatial-chromatic sampling framework. A cost function independent of particular scenes is defined that expresses the error between a scene viewed by the human visual system and the reconstructed image that represents the scene. A constrained minimization of the cost function is used to obtain optimal values of color-filter sensitivity functions for several periodic CFAs. The sensitivity functions are shown to perform better than typical RGB and CMY color filters in terms of both the s-CIELAB ∆E error metric and a qualitative assessment.
An Image Processing Algorithm Based On FMAT
NASA Technical Reports Server (NTRS)
Wang, Lui; Pal, Sankar K.
1995-01-01
Information deleted in ways minimizing adverse effects on reconstructed images. New grey-scale generalization of medial axis transformation (MAT), called FMAT (short for Fuzzy MAT) proposed. Formulated by making natural extension to fuzzy-set theory of all definitions and conditions (e.g., characteristic function of disk, subset condition of disk, and redundancy checking) used in defining MAT of crisp set. Does not need image to have any kind of priori segmentation, and allows medial axis (and skeleton) to be fuzzy subset of input image. Resulting FMAT (consisting of maximal fuzzy disks) capable of reconstructing exactly original image.
Along-track calibration of SWIR push-broom hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2016-05-01
Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.
[Registration and 3D rendering of serial tissue section images].
Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang
2002-12-01
It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.
Barmpoutis, Angelos
2010-01-01
Registration of Diffusion-Weighted MR Images (DW-MRI) can be achieved by registering the corresponding 2nd-order Diffusion Tensor Images (DTI). However, it has been shown that higher-order diffusion tensors (e.g. order-4) outperform the traditional DTI in approximating complex fiber structures such as fiber crossings. In this paper we present a novel method for unbiased group-wise non-rigid registration and atlas construction of 4th-order diffusion tensor fields. To the best of our knowledge there is no other existing method to achieve this task. First we define a metric on the space of positive-valued functions based on the Riemannian metric of real positive numbers (denoted by ℝ+). Then, we use this metric in a novel functional minimization method for non-rigid 4th-order tensor field registration. We define a cost function that accounts for the 4th-order tensor re-orientation during the registration process and has analytic derivatives with respect to the transformation parameters. Finally, the tensor field atlas is computed as the minimizer of the variance defined using the Riemannian metric. We quantitatively compare the proposed method with other techniques that register scalar-valued or diffusion tensor (rank-2) representations of the DWMRI. PMID:20436782
Probing the brain with molecular fMRI.
Ghosh, Souparno; Harvey, Peter; Simon, Jacob C; Jasanoff, Alan
2018-06-01
One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people. Copyright © 2018 Elsevier Ltd. All rights reserved.
EOS image data processing system definition study
NASA Technical Reports Server (NTRS)
Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.
1973-01-01
The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.
MeV gamma-ray observation with a well-defined point spread function based on electron tracking
NASA Astrophysics Data System (ADS)
Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.
2016-07-01
The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.
Vandesquille, Matthias; Li, Tengfei; Po, Chrystelle; Ganneau, Christelle; Lenormand, Pascal; Dudeffant, Clémence; Czech, Christian; Grueninger, Fiona; Duyckaerts, Charles; Delatour, Benoît; Dhenain, Marc; Lafaye, Pierre; Bay, Sylvie
Today, molecular imaging of neurodegenerative diseases is mainly based on small molecule probes. Alternatively, antibodies are versatile tools that may be developed as new imaging agents. Indeed, they can be readily obtained to specifically target any antigen of interest and their scaffold can be functionalized. One of the critical issues involved in translating antibody-based probes to the clinic is the design and synthesis of perfectly-defined conjugates. Camelid single-domain antibody-fragments (VHHs) are very small and stable antibodies that are able to diffuse in tissues and potentially cross the blood brain barrier (BBB). Here, we selected a VHH (R3VQ) specifically targeting one of the main lesions of Alzheimer's disease (AD), namely the amyloid-beta (Aß) deposits. It was used as a scaffold for the design of imaging probes for magnetic resonance imaging (MRI) and labeled with the contrastophore gadolinium using either a random or site-specific approach. In contrast to the random strategy, the site-specific conjugation to a single reduced cysteine in the C-terminal part of the R3VQ generates a well-defined bioconjugate in a high yield process. This new imaging probe is able to cross the BBB and label Aß deposits after intravenous injection. Also, it displays improved r1 and r2 relaxivities, up to 30 times higher than a widely used clinical contrast agent, and it allows MRI detection of amyloid deposits in post mortem brain tissue of a mouse model of AD. The ability to produce chemically-defined VHH conjugates that cross the BBB opens the way for future development of tailored imaging probes targeting intracerebral antigens.
Can Functional Magnetic Resonance Imaging Improve Success Rates in CNS Drug Discovery?
Borsook, David; Hargreaves, Richard; Becerra, Lino
2011-01-01
Introduction The bar for developing new treatments for CNS disease is getting progressively higher and fewer novel mechanisms are being discovered, validated and developed. The high costs of drug discovery necessitate early decisions to ensure the best molecules and hypotheses are tested in expensive late stage clinical trials. The discovery of brain imaging biomarkers that can bridge preclinical to clinical CNS drug discovery and provide a ‘language of translation’ affords the opportunity to improve the objectivity of decision-making. Areas Covered This review discusses the benefits, challenges and potential issues of using a science based biomarker strategy to change the paradigm of CNS drug development and increase success rates in the discovery of new medicines. The authors have summarized PubMed and Google Scholar based publication searches to identify recent advances in functional, structural and chemical brain imaging and have discussed how these techniques may be useful in defining CNS disease state and drug effects during drug development. Expert opinion The use of novel brain imaging biomarkers holds the bold promise of making neuroscience drug discovery smarter by increasing the objectivity of decision making thereby improving the probability of success of identifying useful drugs to treat CNS diseases. Functional imaging holds the promise to: (1) define pharmacodynamic markers as an index of target engagement (2) improve translational medicine paradigms to predict efficacy; (3) evaluate CNS efficacy and safety based on brain activation; (4) determine brain activity drug dose-response relationships and (5) provide an objective evaluation of symptom response and disease modification. PMID:21765857
1981-01-01
This fact being established, leptokurtic and platykurtic density functions are defined in terms of deviations from the normal density function. Thus...the usual definitions (Ref. 6) are: Leptokurtic - A density function that is peaked, K > 0, [18] and Platykurtic - A density function that is flat, K...has long Deen accepted that a symmetrical platykurtic density function, with K<O, is characterized by a flatter top and more abrupt terminals than the
Xu, Renfeng; Bradley, Arthur; Thibos, Larry N.
2013-01-01
Purpose We tested the hypothesis that pupil apodization is the basis for central pupil bias of spherical refractions in eyes with spherical aberration. Methods We employed Fourier computational optics in which we vary spherical aberration levels, pupil size, and pupil apodization (Stiles Crawford Effect) within the pupil function, from which point spread functions and optical transfer functions were computed. Through-focus analysis determined the refractive correction that optimized retinal image quality. Results For a large pupil (7 mm), as spherical aberration levels increase, refractions that optimize the visual Strehl ratio mirror refractions that maximize high spatial frequency modulation in the image and both focus a near paraxial region of the pupil. These refractions are not affected by Stiles Crawford Effect apodization. Refractions that optimize low spatial frequency modulation come close to minimizing wavefront RMS, and vary with level of spherical aberration and Stiles Crawford Effect. In the presence of significant levels of spherical aberration (e.g. C40 = 0.4 µm, 7mm pupil), low spatial frequency refractions can induce −0.7D myopic shift compared to high SF refraction, and refractions that maximize image contrast of a 3 cycle per degree square-wave grating can cause −0.75D myopic drift relative to refractions that maximize image sharpness. Discussion Because of small depth of focus associated with high spatial frequency stimuli, the large change in dioptric power across the pupil caused by spherical aberration limits the effective aperture contributing to the image of high spatial frequencies. Thus, when imaging high spatial frequencies, spherical aberration effectively induces an annular aperture defining that portion of the pupil contributing to a well-focused image. As spherical focus is manipulated during the refraction procedure, the dimensions of the annular aperture change. Image quality is maximized when the inner radius of the induced annulus falls to zero, thus defining a circular near paraxial region of the pupil that determines refraction outcome. PMID:23683093
A knowledge-guided active model method of cortical structure segmentation on pediatric MR images.
Shan, Zuyao Y; Parra, Carlos; Ji, Qing; Jain, Jinesh; Reddick, Wilburn E
2006-10-01
To develop an automated method for quantification of cortical structures on pediatric MR images. A knowledge-guided active model (KAM) approach was proposed with a novel object function similar to the Gibbs free energy function. Triangular mesh models were transformed to images of a given subject by maximizing entropy, and then actively slithered to boundaries of structures by minimizing enthalpy. Volumetric results and image similarities of 10 different cortical structures segmented by KAM were compared with those traced manually. Furthermore, the segmentation performances of KAM and SPM2, (statistical parametric mapping, a MATLAB software package) were compared. The averaged volumetric agreements between KAM- and manually-defined structures (both 0.95 for structures in healthy children and children with medulloblastoma) were higher than the volumetric agreement for SPM2 (0.90 and 0.80, respectively). The similarity measurements (kappa) between KAM- and manually-defined structures (0.95 and 0.93, respectively) were higher than those for SPM2 (both 0.86). We have developed a novel automatic algorithm, KAM, for segmentation of cortical structures on MR images of pediatric patients. Our preliminary results indicated that when segmenting cortical structures, KAM was in better agreement with manually-delineated structures than SPM2. KAM can potentially be used to segment cortical structures for conformal radiation therapy planning and for quantitative evaluation of changes in disease or abnormality. Copyright (c) 2006 Wiley-Liss, Inc.
Label-free imaging of mammalian cell nucleoli by Raman microspectroscopy.
Schulze, H Georg; Konorov, Stanislav O; Piret, James M; Blades, Michael W; Turner, Robin F B
2013-06-21
The nucleolus is a prominent subnuclear structure whose major function is the transcription and assembly of ribosome subunits. The size of the nucleolus varies with the cell cycle, proliferation rate and stress. Changes in nucleolar size, number, chemical composition, and shape can be used to characterize malignant cells. We used spontaneous Raman microscopy as a label-free technique to examine nucleolar spatial and chemical features. Raman images of the 1003 cm(-1) phenylalanine band revealed large, well-defined subnuclear protein structures in MFC-7 breast cancer cells. The 783 cm(-1) images showed that nucleic acids were similarly distributed, but varied more in intensity, forming observable high-intensity regions. High subnuclear RNA concentrations were observed within some of these regions as shown by 809 cm(-1) Raman band images. Principal component analyses of sub-images and library spectra validated the subnuclear presence of RNA. They also revealed that an actin-like protein covaried with DNA within the nucleolus, a combination that accounted for 64% or more of the spectral variance. Embryonic stem cells are another rapidly proliferating cell type, but their nucleoli were not as large or well defined. Estimating the size of the larger MCF-7 nucleolus was used to show the utility of Raman microscopy for morphometric analyses. It was concluded that imaging based on Raman microscopy provides a promising new method for the study of nucleolar function and organization, in the evaluation of drug and experimental effects on the nucleolus, and in clinical diagnostics and prognostics.
Tian, Peifang; Devor, Anna; Sakadžić, Sava; Dale, Anders M.; Boas, David A.
2011-01-01
Absorption or fluorescence-based two-dimensional (2-D) optical imaging is widely employed in functional brain imaging. The image is a weighted sum of the real signal from the tissue at different depths. This weighting function is defined as “depth sensitivity.” Characterizing depth sensitivity and spatial resolution is important to better interpret the functional imaging data. However, due to light scattering and absorption in biological tissues, our knowledge of these is incomplete. We use Monte Carlo simulations to carry out a systematic study of spatial resolution and depth sensitivity for 2-D optical imaging methods with configurations typically encountered in functional brain imaging. We found the following: (i) the spatial resolution is <200 μm for NA ≤0.2 or focal plane depth ≤300 μm. (ii) More than 97% of the signal comes from the top 500 μm of the tissue. (iii) For activated columns with lateral size larger than spatial resolution, changing numerical aperature (NA) and focal plane depth does not affect depth sensitivity. (iv) For either smaller columns or large columns covered by surface vessels, increasing NA and∕or focal plane depth may improve depth sensitivity at deeper layers. Our results provide valuable guidance for the optimization of optical imaging systems and data interpretation. PMID:21280912
Faria-Ribeiro, Miguel; Amorim-de-Sousa, Ana; González-Méijome, José M
2018-05-01
To investigate the separated and combined influences of inner zone (IZ) diameter and effective add power of dual-focus contact lenses (CL) in the image quality at distance and near viewing, in a functional accommodating model eye. Computational wave-optics methods were used to define zonal bifocal pupil functions, representing the optic zones of nine dual-focus centre-distance CLs. The dual-focus pupil functions were defined having IZ diameters of 2.10 mm, 3.36 mm and 4.00 mm, with add powers of 1.5 D, 2.0 D and 2.5 D (dioptres), for each design, that resulted in a ratio of 64%/36% between the distance and treatment zone areas, bounded by a 6 mm entrance pupil. A through-focus routine was implemented in MATLAB to simulate the changes in image quality, calculated from the Visual Strehl ratio, as the eye with the dual-focus accommodates, from 0 to -3.00 D target vergences. Accommodative responses were defined as the changes in the defocus coefficient, combined with a change in fourth and sixth order spherical aberration, which produced a peak in image quality at each target vergence. Distance viewing image quality was marginally affected by IZ diameter but not by add power. Near image quality obtained when focussing the image formed by the near optics was only higher by a small amount compared to the other two IZ diameters. The mean ± standard deviation values obtained with the three adds were 0.28 ± 0.02, 0.23 ± 0.02 and 0.22 ± 0.02, for the small, medium and larger IZ diameters, respectively. On the other hand, near image quality predicted by focussing the image formed by the distance optics was considerably lower relatively to the other two IZ diameters. The mean ± standard deviation values obtained with the three adds were 0.15 ± 0.01, 0.38 ± 0.00 and 0.54 ± 0.01, for the small, medium and larger IZ diameters, respectively. During near viewing through dual-focus CLs, image quality depends on the diameter of the most inner zone of the CL, while add power only affects the range of clear focus when focussing the image formed by the CL near optics. When only image quality gain is taken into consideration, medium and large IZ diameters designs are most likely to promote normal accommodative responses driven by the CL distance optics, while a smaller IZ diameter design is most likely to promote a reduced accommodative response driven by the dual-focus CL near optics. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.
Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs
2014-01-01
interac- tive image segmentation using the solution to a combinatorial Dirichlet problem. Elmoataz et al . have developed general- izations of the graph...Laplacian [25] for image denoising and manifold smoothing. Couprie et al . in [18] define a conve- niently parameterized graph-based energy function that...over to the discrete graph representation. For general data segmentation, Bresson et al . in [8], present rigorous convergence results for two algorithms
Imaging Freeform Optical Systems Designed with NURBS Surfaces
2015-12-01
reflective, anastigmat 1 Introduction The imaging freeform optical systems described here are designed using non-uniform rational basis -spline (NURBS...from piecewise splines. Figure 1 shows a third degree NURBS surface which is formed from cubic basis splines. The surface is defined by the set of...with mathematical details covered by Piegl and Tiller7. Compare this with Gaussian basis functions8 where it is challenging to provide smooth
2015-01-01
Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087
ERIC Educational Resources Information Center
Vaidya, Chandan J.; Foss-Feig, Jennifer; Shook, Devon; Kaplan, Lauren; Kenworthy, Lauren; Gaillard, William D.
2011-01-01
Functional magnetic resonance imaging was used to examine functional anatomy of attention to social (eye gaze) and nonsocial (arrow) communicative stimuli in late childhood and in a disorder defined by atypical processing of social stimuli, Autism Spectrum Disorders (ASD). Children responded to a target word ("LEFT"/"RIGHT") in the context of a…
Lower bound for LCD image quality
NASA Astrophysics Data System (ADS)
Olson, William P.; Balram, Nikhil
1996-03-01
The paper presents an objective lower bound for the discrimination of patterns and fine detail in images on a monochrome LCD. In applications such as medical imaging and military avionics the information of interest is often at the highest frequencies in the image. Since LCDs are sampled data systems, their output modulation is dependent on the phase between the input signal and the sampling points. This phase dependence becomes particularly significant at high spatial frequencies. In order to use an LCD for applications such as those mentioned above it is essential to have a lower (worst case) bound on the performance of the display. We address this problem by providing a mathematical model for the worst case output modulation of an LCD in response to a sine wave input. This function can be interpreted as a worst case modulation transfer function (MTF). The intersection of the worst case MTF with the contrast threshold function (CTF) of the human visual system defines the highest spatial frequency that will always be detectable. In addition to providing the worst case limiting resolution, this MTF is combined with the CTF to produce objective worst case image quality values using the modulation transfer function area (MTFA) metric.
Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.
2016-01-01
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the −6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the −3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and −8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery. PMID:27353347
Old document image segmentation using the autocorrelation function and multiresolution analysis
NASA Astrophysics Data System (ADS)
Mehri, Maroua; Gomez-Krämer, Petra; Héroux, Pierre; Mullot, Rémy
2013-01-01
Recent progress in the digitization of heterogeneous collections of ancient documents has rekindled new challenges in information retrieval in digital libraries and document layout analysis. Therefore, in order to control the quality of historical document image digitization and to meet the need of a characterization of their content using intermediate level metadata (between image and document structure), we propose a fast automatic layout segmentation of old document images based on five descriptors. Those descriptors, based on the autocorrelation function, are obtained by multiresolution analysis and used afterwards in a specific clustering method. The method proposed in this article has the advantage that it is performed without any hypothesis on the document structure, either about the document model (physical structure), or the typographical parameters (logical structure). It is also parameter-free since it automatically adapts to the image content. In this paper, firstly, we detail our proposal to characterize the content of old documents by extracting the autocorrelation features in the different areas of a page and at several resolutions. Then, we show that is possible to automatically find the homogeneous regions defined by similar indices of autocorrelation without knowledge about the number of clusters using adapted hierarchical ascendant classification and consensus clustering approaches. To assess our method, we apply our algorithm on 316 old document images, which encompass six centuries (1200-1900) of French history, in order to demonstrate the performance of our proposal in terms of segmentation and characterization of heterogeneous corpus content. Moreover, we define a new evaluation metric, the homogeneity measure, which aims at evaluating the segmentation and characterization accuracy of our methodology. We find a 85% of mean homogeneity accuracy. Those results help to represent a document by a hierarchy of layout structure and content, and to define one or more signatures for each page, on the basis of a hierarchical representation of homogeneous blocks and their topology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q; Zhang, M; Chen, T
Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.
2006-08-02
The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical modelmore » was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function between thesubendocardial and transmural infarcts manifest themselves in myocardialSPECT images. The normal FE model produced strain distributions that wereconsistent with those reported in the literature and a motion consistentwith that defined in the normal 4D NCAT beating heart model based ontagged MRI data. The addition of a subendocardial ischemic region changedthe average transmural circumferential strain from a contractile value of0.19 to a tensile value of 0.03. The addition of a transmural ischemicregion changed average circumferential strain to a value of 0.16, whichis consistent with data reported in the literature. Model resultsdemonstrated differences in contractile function between subendocardialand transmural infarcts and how these differences in function aredocumented in simulated myocardial SPECT images produced using the 4DNCAT phantom. In comparison to the original NCAT beating heart model, theFE mechanical model produced a more accurate simulation for the cardiacmotion abnormalities. Such a model, when incorporated into the 4D NCATphantom, has great potential for use in cardiac imaging research. Withits enhanced physiologically-based cardiac model, the 4D NCAT phantom canbe used to simulate realistic, predictive imaging data of a patientpopulation with varying whole-body anatomy and with varying healthy anddiseased states of the heart that will provide a known truth from whichto evaluate and improve existing and emerging 4D imaging techniques usedin the diagnosis of cardiac disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, S; Miyaoka, R; Kinahan, P
2014-06-15
Purpose: Radiotherapy for hepatocellular carcinoma patients is conventionally planned without consideration of spatial heterogeneity in hepatic function, which may increase risk of radiation-induced liver disease. Pencil beam scanning (PBS) proton radiotherapy (pRT) plans were generated to differentially decrease dose to functional liver volumes (FLV) defined on [{sup 99m}Tc]sulfur colloid (SC) SPECT/CT images (functional avoidance plans) and compared against conventional pRT plans. Methods: Three HCC patients underwent SC SPECT/CT scans for pRT planning acquired 15 min post injection over 24 min. Images were reconstructed with OSEM following scatter, collimator, and exhale CT attenuation correction. Functional liver volumes (FLV) were defined bymore » liver:spleen uptake ratio thresholds (43% to 90% maximum). Planning objectives to FLV were based on mean SC SPECT uptake ratio relative to GTV-subtracted liver and inversely scaled to mean liver dose of 20 Gy. PTV target coverage (V{sub 95}) was matched between conventional and functional avoidance plans. PBS pRT plans were optimized in RayStation for single field uniform dose (SFUD) and systematically perturbed to verify robustness to uncertainty in range, setup, and motion. Relative differences in FLV DVH and target dose heterogeneity (D{sub 2}-D{sub 98})/D50 were assessed. Results: For similar liver dose between functional avoidance and conventional PBS pRT plans (D{sub mean}≤5% difference, V{sub 18Gy}≤1% difference), dose to functional liver volumes were lower in avoidance plans but varied in magnitude across patients (FLV{sub 70%max} D{sub mean}≤26% difference, V{sub 18Gy}≤8% difference). Higher PTV dose heterogeneity in avoidance plans was associated with lower functional liver dose, particularly for the largest lesion [(D{sub 2}-D{sub 98})/D{sub 50}=13%, FLV{sub 90%max}=50% difference]. Conclusion: Differential avoidance of functional liver regions defined on sulfur colloid SPECT/CT is feasible with proton therapy. The magnitude of benefit appears to be patient specific and dependent on tumor location, size, and proximity to functional volumes. Further investigation in a larger cohort of patients may validate the clinical utility of functional avoidance planning of HCC radiotherapy.« less
Structure-function analysis of genetically defined neuronal populations.
Groh, Alexander; Krieger, Patrik
2013-10-01
Morphological and functional classification of individual neurons is a crucial aspect of the characterization of neuronal networks. Systematic structural and functional analysis of individual neurons is now possible using transgenic mice with genetically defined neurons that can be visualized in vivo or in brain slice preparations. Genetically defined neurons are useful for studying a particular class of neurons and also for more comprehensive studies of the neuronal content of a network. Specific subsets of neurons can be identified by fluorescence imaging of enhanced green fluorescent protein (eGFP) or another fluorophore expressed under the control of a cell-type-specific promoter. The advantages of such genetically defined neurons are not only their homogeneity and suitability for systematic descriptions of networks, but also their tremendous potential for cell-type-specific manipulation of neuronal networks in vivo. This article describes a selection of procedures for visualizing and studying the anatomy and physiology of genetically defined neurons in transgenic mice. We provide information about basic equipment, reagents, procedures, and analytical approaches for obtaining three-dimensional (3D) cell morphologies and determining the axonal input and output of genetically defined neurons. We exemplify with genetically labeled cortical neurons, but the procedures are applicable to other brain regions with little or no alterations.
Hahn, Andreas; Nics, Lukas; Baldinger, Pia; Wadsak, Wolfgang; Savli, Markus; Kraus, Christoph; Birkfellner, Wolfgang; Ungersboeck, Johanna; Haeusler, Daniela; Mitterhauser, Markus; Karanikas, Georgios; Kasper, Siegfried; Frey, Richard; Lanzenberger, Rupert
2013-04-01
Image-derived input functions (IDIFs) represent a promising non-invasive alternative to arterial blood sampling for quantification in positron emission tomography (PET) studies. However, routine applications in patients and longitudinal designs are largely missing despite widespread attempts in healthy subjects. The aim of this study was to apply a previously validated approach to a clinical sample of patients with major depressive disorder (MDD) before and after electroconvulsive therapy (ECT). Eleven scans from 5 patients with venous blood sampling were obtained with the radioligand [carbonyl-(11)C]WAY-100635 at baseline, before and after 11.0±1.2 ECT sessions. IDIFs were defined by two different image reconstruction algorithms 1) OSEM with subsequent partial volume correction (OSEM+PVC) and 2) reconstruction based modelling of the point spread function (TrueX). Serotonin-1A receptor (5-HT1A) binding potentials (BPP, BPND) were quantified with a two-tissue compartment (2TCM) and reference region model (MRTM2). Compared to MRTM2, good agreement in 5-HT1A BPND was found when using input functions from OSEM+PVC (R(2)=0.82) but not TrueX (R(2)=0.57, p<0.001), which is further reflected by lower IDIF peaks for TrueX (p<0.001). Following ECT, decreased 5-HT1A BPND and BPP were found with the 2TCM using OSEM+PVC (23%-35%), except for one patient showing only subtle changes. In contrast, MRTM2 and IDIFs from TrueX gave unstable results for this patient, most probably due to a 2.4-fold underestimation of non-specific binding. Using image-derived and venous input functions defined by OSEM with subsequent PVC we confirm previously reported decreases in 5-HT1A binding in MDD patients after ECT. In contrast to reference region modeling, quantification with image-derived input functions showed consistent results in a clinical setting due to accurate modeling of non-specific binding with OSEM+PVC. Copyright © 2013 Elsevier Inc. All rights reserved.
Optimal image alignment with random projections of manifolds: algorithm and geometric analysis.
Kokiopoulou, Effrosyni; Kressner, Daniel; Frossard, Pascal
2011-06-01
This paper addresses the problem of image alignment based on random measurements. Image alignment consists of estimating the relative transformation between a query image and a reference image. We consider the specific problem where the query image is provided in compressed form in terms of linear measurements captured by a vision sensor. We cast the alignment problem as a manifold distance minimization problem in the linear subspace defined by the measurements. The transformation manifold that represents synthesis of shift, rotation, and isotropic scaling of the reference image can be given in closed form when the reference pattern is sparsely represented over a parametric dictionary. We show that the objective function can then be decomposed as the difference of two convex functions (DC) in the particular case where the dictionary is built on Gaussian functions. Thus, the optimization problem becomes a DC program, which in turn can be solved globally by a cutting plane method. The quality of the solution is typically affected by the number of random measurements and the condition number of the manifold that describes the transformations of the reference image. We show that the curvature, which is closely related to the condition number, remains bounded in our image alignment problem, which means that the relative transformation between two images can be determined optimally in a reduced subspace.
A Variational Approach to Simultaneous Image Segmentation and Bias Correction.
Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong
2015-08-01
This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.
Personalized models of bones based on radiographic photogrammetry.
Berthonnaud, E; Hilmi, R; Dimnet, J
2009-07-01
The radiographic photogrammetry is applied, for locating anatomical landmarks in space, from their two projected images. The goal of this paper is to define a personalized geometric model of bones, based uniquely on photogrammetric reconstructions. The personalized models of bones are obtained from two successive steps: their functional frameworks are first determined experimentally, then, the 3D bone representation results from modeling techniques. Each bone functional framework is issued from direct measurements upon two radiographic images. These images may be obtained using either perpendicular (spine and sacrum) or oblique incidences (pelvis and lower limb). Frameworks link together their functional axes and punctual landmarks. Each global bone volume is decomposed in several elementary components. Each volumic component is represented by simple geometric shapes. Volumic shapes are articulated to the patient's bone structure. The volumic personalization is obtained by best fitting the geometric model projections to their real images, using adjustable articulations. Examples are presented to illustrating the technique of personalization of bone volumes, directly issued from the treatment of only two radiographic images. The chosen techniques for treating data are then discussed. The 3D representation of bones completes, for clinical users, the information brought by radiographic images.
Fernández Pérez, G; Sánchez Escribano, R; García Vicente, A M; Luna Alcalá, A; Ceballos Viro, J; Delgado Bolton, R C; Vilanova Busquets, J C; Sánchez Rovira, P; Fierro Alanis, M P; García Figueiras, R; Alés Martínez, J E
2018-05-25
Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Addressing challenges of modulation transfer function measurement with fisheye lens cameras
NASA Astrophysics Data System (ADS)
Deegan, Brian M.; Denny, Patrick E.; Zlokolica, Vladimir; Dever, Barry; Russell, Laura
2015-03-01
Modulation transfer function (MTF) is a well defined and accepted method of measuring image sharpness. The slanted edge test, as defined in ISO12233 is a standard method of calculating MTF, and is widely used for lens alignment and auto-focus algorithm verification. However, there are a number of challenges which should be considered when measuring MTF in cameras with fisheye lenses. Due to trade-offs related Petzval curvature, planarity of the optical plane is difficult to achieve in fisheye lenses. It is therefore critical to have the ability to accurately measure sharpness throughout the entire image, particularly for lens alignment. One challenge for fisheye lenses is that, because of the radial distortion, the slanted edges will have different angles, depending on the location within the image and on the distortion profile of the lens. Previous work in the literature indicates that MTF measurements are robust for angles between 2 and 10 degrees. Outside of this range, MTF measurements become unreliable. Also, the slanted edge itself will be curved by the lens distortion, causing further measurement problems. This study summarises the difficulties in the use of MTF for sharpness measurement in fisheye lens cameras, and proposes mitigations and alternative methods.
A Log-Euclidean polyaffine registration for articulated structures in medical images.
Martín-Fernández, Miguel Angel; Martín-Fernández, Marcos; Alberola-López, Carlos
2009-01-01
In this paper we generalize the Log-Euclidean polyaffine registration framework of Arsigny et al. to deal with articulated structures. This framework has very useful properties as it guarantees the invertibility of smooth geometric transformations. In articulated registration a skeleton model is defined for rigid structures such as bones. The final transformation is affine for the bones and elastic for other tissues in the image. We extend the Arsigny el al.'s method to deal with locally-affine registration of pairs of wires. This enables the possibility of using this registration framework to deal with articulated structures. In this context, the design of the weighting functions, which merge the affine transformations defined for each pair of wires, has a great impact not only on the final result of the registration algorithm, but also on the invertibility of the global elastic transformation. Several experiments, using both synthetic images and hand radiographs, are also presented.
Digital image film generation: from the photoscientist's perspective
Boyd, John E.
1982-01-01
The technical sophistication of photoelectronic transducers, integrated circuits, and laser-beam film recorders has made digital imagery an alternative to traditional analog imagery for remote sensing. Because a digital image is stored in discrete digital values, image enhancement is possible before the data are converted to a photographic image. To create a special film-reproduction curve - which can simulate any desired gamma, relative film speed, and toe/shoulder response - the digital-to-analog transfer function of the film recorder is uniquely defined and implemented by a lookup table in the film recorder. Because the image data are acquired in spectral bands, false-color composites also can be given special characteristics by selecting a reproduction curve tailored for each band.
Sag, Alan Alper; Inal, Ibrahim; Okcuoglu, John; Rossignol, Patrick; Ortiz, Alberto; Afsar, Baris; Sos, Thomas A; Kanbay, Mehmet
2016-04-01
After three neutral trials in which renal artery stenting failed to improve renal function or reduce cardiovascular and renal events, the controversy surrounding diagnosis and treatment of atherosclerotic renal artery stenosis and renovascular hypertension has led to paradigm shifts in the diagnostic algorithm. Noninvasive determination of earlier events (cortex hypoxia and renal artery hemodynamic changes) will supersede late sequelae (calcific stenosis, renal cortical thinning). Therefore, this review proposes the concept of renal penumbra in defining at-risk ischemic renal parenchyma. The complex field of functional renal magnetic resonance imaging will be reviewed succinctly in a clinician-directed fashion. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Prakash, Neal; Uhleman, Falk; Sheth, Sameer A.; Bookheimer, Susan; Martin, Neil; Toga, Arthur W.
2009-01-01
Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques. PMID:18786643
DQE analysis for CCD imaging arrays
NASA Astrophysics Data System (ADS)
Shaw, Rodney
1997-05-01
By consideration of the statistical interaction between exposure quanta and the mechanisms of image detection, the signal-to-noise limitations of a variety of image acquisition technologies are now well understood. However in spite of the growing fields of application for CCD imaging- arrays and the obvious advantages of their multi-level mode of quantum detection, only limited and largely empirical approaches have been made to quantify these advantages on an absolute basis. Here an extension is made of a previous model for noise-free sequential photon-counting to the more general case involving both count-noise and arbitrary separation functions between count levels. This allows a basic model to be developed for the DQE associated with devices which approximate to the CCD mode of operation, and conclusions to be made concerning the roles of the separation-function and count-noise in defining the departure from the ideal photon counter.
[Concepts of development of the neurosurgical operative environment in the 21st century].
Apuzzo, M; Liu, C
2002-01-01
The operative environment has to a large extent defines the "state of the art and science" of neurosurgery, which is now undergoing rapid reinvention. In order to remain current, each neurosurgeon should periodically reconsider their personal operative environment and its functional design with reference to modernity of practice as currently defined. Historical trends and their analysis offer predictive guides for development of such settings with an eye toward the future. Examination of technical developments in decade timeframes defines the progress in capability and need. Progressive minimalism of manipulation and the presence of operative definition with increasing precision are evident, with concurrent miniaturization of attendant computerized support systems, sensors, robotic interfaces, and imaging devices. These trends and developments offer the opportunity for simplificity of setting design with higher functionality as the desired endpoint.
High-density diffuse optical tomography of term infant visual cortex in the nursery
NASA Astrophysics Data System (ADS)
Liao, Steve M.; Ferradal, Silvina L.; White, Brian R.; Gregg, Nicholas; Inder, Terrie E.; Culver, Joseph P.
2012-08-01
Advancements in antenatal and neonatal medicine over the last few decades have led to significant improvement in the survival rates of sick newborn infants. However, this improvement in survival has not been matched by a reduction in neurodevelopmental morbidities with increasing recognition of the diverse cognitive and behavioral challenges that preterm infants face in childhood. Conventional neuroimaging modalities, such as cranial ultrasound and magnetic resonance imaging, provide an important definition of neuroanatomy with recognition of brain injury. However, they fail to define the functional integrity of the immature brain, particularly during this critical developmental period. Diffuse optical tomography methods have established success in imaging adult brain function; however, few studies exist to demonstrate their feasibility in the neonatal population. We demonstrate the feasibility of using recently developed high-density diffuse optical tomography (HD-DOT) to map functional activation of the visual cortex in healthy term-born infants. The functional images show high contrast-to-noise ratio obtained in seven neonates. These results illustrate the potential for HD-DOT and provide a foundation for investigations of brain function in more vulnerable newborns, such as preterm infants.
Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation
Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina
2011-01-01
We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli. PMID:21841977
Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Larina, Irina V.
2018-02-01
Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.
NASA Astrophysics Data System (ADS)
Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.
2016-07-01
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the -3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and -8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.
Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W
2016-07-21
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the -3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and -8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, D; Anderson, C; Mayo, C
Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less
Kasprowicz, Richard; Rand, Emma; O'Toole, Peter J; Signoret, Nathalie
2018-05-22
Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4 + T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4 + T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.
Lung fissure detection in CT images using global minimal paths
NASA Astrophysics Data System (ADS)
Appia, Vikram; Patil, Uday; Das, Bipul
2010-03-01
Pulmonary fissures separate human lungs into five distinct regions called lobes. Detection of fissure is essential for localization of the lobar distribution of lung diseases, surgical planning and follow-up. Treatment planning also requires calculation of the lobe volume. This volume estimation mandates accurate segmentation of the fissures. Presence of other structures (like vessels) near the fissure, along with its high variational probability in terms of position, shape etc. makes the lobe segmentation a challenging task. Also, false incomplete fissures and occurrence of diseases add to the complications of fissure detection. In this paper, we propose a semi-automated fissure segmentation algorithm using a minimal path approach on CT images. An energy function is defined such that the path integral over the fissure is the global minimum. Based on a few user defined points on a single slice of the CT image, the proposed algorithm minimizes a 2D energy function on the sagital slice computed using (a) intensity (b) distance of the vasculature, (c) curvature in 2D, (d) continuity in 3D. The fissure is the infimum energy path between a representative point on the fissure and nearest lung boundary point in this energy domain. The algorithm has been tested on 10 CT volume datasets acquired from GE scanners at multiple clinical sites. The datasets span through different pathological conditions and varying imaging artifacts.
Theoretical foundations of spatially-variant mathematical morphology part ii: gray-level images.
Bouaynaya, Nidhal; Schonfeld, Dan
2008-05-01
In this paper, we develop a spatially-variant (SV) mathematical morphology theory for gray-level signals and images in the Euclidean space. The proposed theory preserves the geometrical concept of the structuring function, which provides the foundation of classical morphology and is essential in signal and image processing applications. We define the basic SV gray-level morphological operators (i.e., SV gray-level erosion, dilation, opening, and closing) and investigate their properties. We demonstrate the ubiquity of SV gray-level morphological systems by deriving a kernel representation for a large class of systems, called V-systems, in terms of the basic SV graylevel morphological operators. A V-system is defined to be a gray-level operator, which is invariant under gray-level (vertical) translations. Particular attention is focused on the class of SV flat gray-level operators. The kernel representation for increasing V-systems is a generalization of Maragos' kernel representation for increasing and translation-invariant function-processing systems. A representation of V-systems in terms of their kernel elements is established for increasing and upper-semi-continuous V-systems. This representation unifies a large class of spatially-variant linear and non-linear systems under the same mathematical framework. Finally, simulation results show the potential power of the general theory of gray-level spatially-variant mathematical morphology in several image analysis and computer vision applications.
Tani, Toshiki; Abe, Hiroshi; Hayami, Taku; Banno, Taku; Kitamura, Naohito; Mashiko, Hiromi
2018-01-01
Abstract Natural sound is composed of various frequencies. Although the core region of the primate auditory cortex has functionally defined sound frequency preference maps, how the map is organized in the auditory areas of the belt and parabelt regions is not well known. In this study, we investigated the functional organizations of the core, belt, and parabelt regions encompassed by the lateral sulcus and the superior temporal sulcus in the common marmoset (Callithrix jacchus). Using optical intrinsic signal imaging, we obtained evoked responses to band-pass noise stimuli in a range of sound frequencies (0.5–16 kHz) in anesthetized adult animals and visualized the preferred sound frequency map on the cortical surface. We characterized the functionally defined organization using histologically defined brain areas in the same animals. We found tonotopic representation of a set of sound frequencies (low to high) within the primary (A1), rostral (R), and rostrotemporal (RT) areas of the core region. In the belt region, the tonotopic representation existed only in the mediolateral (ML) area. This representation was symmetric with that found in A1 along the border between areas A1 and ML. The functional structure was not very clear in the anterolateral (AL) area. Low frequencies were mainly preferred in the rostrotemplatal (RTL) area, while high frequencies were preferred in the caudolateral (CL) area. There was a portion of the parabelt region that strongly responded to higher sound frequencies (>5.8 kHz) along the border between the rostral parabelt (RPB) and caudal parabelt (CPB) regions. PMID:29736410
Bok, Jan; Schauer, Petr
2014-01-01
In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.
Effect of the image resolution on the statistical descriptors of heterogeneous media.
Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime
2018-02-01
The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.
Effect of the image resolution on the statistical descriptors of heterogeneous media
NASA Astrophysics Data System (ADS)
Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime
2018-02-01
The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.
2005-05-01
constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered...of the corresponding organ, and -b(i) is the target, we define the effective dose at a voxel as the physical functional unit density. The value of n...cr, tended to include the nonuniform functional unit density dis- D,(i) the calculated dose in voxel i, DO(i) the prescription tribution using Eq. (8
Image Segmentation for Improvised Explosive Devices
2012-12-01
us to generate color models for IEDs without user input that labels parts of the IED. v THIS PAGE INTENTIONALLY LEFT BLANK vi Table of Contents 1...has to be generated. All graph cut algorithms we analyze define the undirected network G( V ,E) as a set of nodes V , edges E, and capacities C: E → R. 3...algorithms we study, this objective function is the sum of the two functions U and V , where the function U is a region property which evaluates the
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2012-03-01
We demonstrate that the profile of the space-resolved spectral function at finite temperature provides a signature of Wigner localization for electrons in quantum wires and semiconducting carbon nanotubes. Our numerical evidence is based on the exact diagonalization of the microscopic Hamiltonian of few particles interacting in gate-defined quantum dots. The minimal temperature required to suppress residual exchange effects in the spectral function image of (nanotubes) quantum wires lies in the (sub)kelvin range.
Approximation of Point-Set Images by Plane Curves.
1980-12-01
required. A function g satisfying these requirements will be called an influence function . [In practice we choose cg based on the 2g variance a2 of the...noise; for example P(IXl-< ) = .75 where X is a N(0, 2 ) r.v. The influence function could take 2 2 the form g(r) = s(cg - r ) for Oirscg, and some s>OI...value cg as defined in the influence function . We can then expect R( ) to be maximal (locally) at the E’s that fit the largest proportion of the data
On the balanced quantum hashing
NASA Astrophysics Data System (ADS)
Ablayev, F.; Ablayev, M.; Vasiliev, A.
2016-02-01
In the paper we define a notion of a resistant quantum hash function which combines a notion of pre-image (one-way) resistance and the notion of collision resistance. In the quantum setting one-way resistance property and collision resistance property are correlated: the “more” a quantum function is one-way resistant the “less” it is collision resistant and vice versa. We present an explicit quantum hash function which is “balanced” one-way resistant and collision resistant and demonstrate how to build a large family of balanced quantum hash functions.
Sinusoidal modulation analysis for optical system MTF measurements.
Boone, J M; Yu, T; Seibert, J A
1996-12-01
The modulation transfer function (MTF) is a commonly used metric for defining the spatial resolution characteristics of imaging systems. While the MTF is defined in terms of how an imaging system demodulates the amplitude of a sinusoidal input, this approach has not been in general use to measure MTFs in the medical imaging community because producing sinusoidal x-ray patterns is technically difficult. However, for optical systems such as charge coupled devices (CCD), which are rapidly becoming a part of many medical digital imaging systems, the direct measurement of modulation at discrete spatial frequencies using a sinusoidal test pattern is practical. A commercially available optical test pattern containing spatial frequencies ranging from 0.375 cycles/mm to 80 cycles/mm was sued to determine the MRF of a CCD-based optical system. These results were compared with the angulated slit method of Fujita [H. Fujita, D. Tsia, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, "A simple method for determining the modulation transfer function in digital radiography," IEEE Trans. Medical Imaging 11, 34-39 (1992)]. The use of a semiautomated profiled iterated reconstruction technique (PIRT) is introduced, where the shift factor between successive pixel rows (due to angulation) is optimized iteratively by least-squares error analysis rather than by hand measurement of the slit angle. PIRT was used to find the slit angle for the Fujita technique and to find the sine-pattern angle for the sine-pattern technique. Computer simulation of PIRT for the case of the slit image (a line spread function) demonstrated that it produced a more accurate angle determination than "hand" measurement, and there is a significant difference between the errors in the two techniques (Wilcoxon Signed Rank Test, p < 0.001). The sine-pattern method and the Fujita slit method produced comparable MTF curves for the CCD camera evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Pouliot, J
2015-06-15
Purpose: Compressed sensing (CS) has been used for CT (4DCT/CBCT) reconstruction with few projections to reduce dose of radiation. Total-variation (TV) in L1-minimization (min.) with local information is the prevalent technique in CS, while it can be prone to noise. To address the problem, this work proposes to apply a new image processing technique, called non-local TV (NLTV), to CS based CT reconstruction, and incorporate reweighted L1-norm into it for more precise reconstruction. Methods: TV minimizes intensity variations by considering two local neighboring voxels, which can be prone to noise, possibly damaging the reconstructed CT image. NLTV, contrarily, utilizes moremore » global information by computing a weight function of current voxel relative to surrounding search area. In fact, it might be challenging to obtain an optimal solution due to difficulty in defining the weight function with appropriate parameters. Introducing reweighted L1-min., designed for approximation to ideal L0-min., can reduce the dependence on defining the weight function, therefore improving accuracy of the solution. This work implemented the NLTV combined with reweighted L1-min. by Split Bregman Iterative method. For evaluation, a noisy digital phantom and a pelvic CT images are employed to compare the quality of images reconstructed by TV, NLTV and reweighted NLTV. Results: In both cases, conventional and reweighted NLTV outperform TV min. in signal-to-noise ratio (SNR) and root-mean squared errors of the reconstructed images. Relative to conventional NLTV, NLTV with reweighted L1-norm was able to slightly improve SNR, while greatly increasing the contrast between tissues due to additional iterative reweighting process. Conclusion: NLTV min. can provide more precise compressed sensing based CT image reconstruction by incorporating the reweighted L1-norm, while maintaining greater robustness to the noise effect than TV min.« less
Synthetic lipids and their role in defining macromolecular assemblies.
Parrill, Abby L
2015-10-01
Lipids have a variety of physiological roles, ranging from structural and biophysical contributions to membrane functions to signaling contributions in normal and abnormal physiology. This review highlights some of the contributions made by Robert Bittman to our understanding of lipid assemblies through the production of synthetic lipid analogs in the sterol, sphingolipid, and glycolipid classes. His contributions have included the development of a fluorescent cholesterol analog that shows strong functional analogies to cholesterol that has allowed live imaging of cholesterol distribution in living systems, to stereospecific synthetic approaches to both sphingolipid and glycolipid analogs crucial in defining the structure-activity relationships of lipid biological targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lateral ankle instability: MR imaging of associated injuries and surgical treatment procedures.
Alparslan, Leyla; Chiodo, Christopher P
2008-12-01
Chronic ankle instability has been defined as the development of recurrent ankle sprains and persistent symptoms after initial lateral ankle sprain. The diagnosis of ankle instability is usually established on the patient's history, physical examination, and radiographic assessment. Patients have signs of both functional and mechanical instability, and the repetitive, chronic nature of the injury may lead to intra-articular and periarticular pathologies. This article discusses the incidence, etiology, and magnetic resonance (MR) imaging of these pathologies, reviews the surgical treatment procedures for lateral ankle instability, and presents the postoperative MR imaging findings.
Spatially weighted mutual information image registration for image guided radiation therapy.
Park, Samuel B; Rhee, Frank C; Monroe, James I; Sohn, Jason W
2010-09-01
To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically "important" areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/ MVCT image sets. The SWMI registration with a Gaussian weight function (SWMI-GW) was tested between two different imaging modalities: CT and MRI image sets. SWMI-GW converges 10% faster than registration using mutual information with an ROI. SWMI-GW as well as SWMI with SOI-based weight function (SWMI-SOI) shows better compensation of the target organ's deformation and neighboring critical organs' deformation. SWMI-GW was also used to successfully fuse MRI and CT images. Rigid-body image registration using our SWMI-GW and SWMI-SOI as cost functions can achieve better registration results in (a) designated image region(s) as well as faster convergence. With the theoretical foundation established, we believe SWMI could be extended to larger clinical testing.
Indications and interpretation of esophageal function testing.
Gyawali, C Prakash; de Bortoli, Nicola; Clarke, John; Marinelli, Carla; Tolone, Salvatore; Roman, Sabine; Savarino, Edoardo
2018-05-12
Esophageal symptoms are common, and can arise from mucosal, motor, functional, and neoplastic processes, among others. Judicious use of diagnostic testing can help define the etiology of symptoms and can direct management. Endoscopy, esophageal high-resolution manometry (HRM), ambulatory pH or pH-impedance manometry, and barium radiography are commonly used for esophageal function testing; functional lumen imaging probe is an emerging option. Recent consensus guidelines have provided direction in using test findings toward defining mechanisms of esophageal symptoms. The Chicago Classification describes hierarchical steps in diagnosing esophageal motility disorders. The Lyon Consensus characterizes conclusive evidence on esophageal testing for a diagnosis of gastroesophageal reflux disease (GERD), and establishes a motor classification of GERD. Taking these recent advances into consideration, our discussion focuses primarily on the indications, technique, equipment, and interpretation of esophageal HRM and ambulatory reflux monitoring in the evaluation of esophageal symptoms, and describes indications for alternative esophageal tests. © 2018 New York Academy of Sciences.
A general framework for regularized, similarity-based image restoration.
Kheradmand, Amin; Milanfar, Peyman
2014-12-01
Any image can be represented as a function defined on a weighted graph, in which the underlying structure of the image is encoded in kernel similarity and associated Laplacian matrices. In this paper, we develop an iterative graph-based framework for image restoration based on a new definition of the normalized graph Laplacian. We propose a cost function, which consists of a new data fidelity term and regularization term derived from the specific definition of the normalized graph Laplacian. The normalizing coefficients used in the definition of the Laplacian and associated regularization term are obtained using fast symmetry preserving matrix balancing. This results in some desired spectral properties for the normalized Laplacian such as being symmetric, positive semidefinite, and returning zero vector when applied to a constant image. Our algorithm comprises of outer and inner iterations, where in each outer iteration, the similarity weights are recomputed using the previous estimate and the updated objective function is minimized using inner conjugate gradient iterations. This procedure improves the performance of the algorithm for image deblurring, where we do not have access to a good initial estimate of the underlying image. In addition, the specific form of the cost function allows us to render the spectral analysis for the solutions of the corresponding linear equations. In addition, the proposed approach is general in the sense that we have shown its effectiveness for different restoration problems, including deblurring, denoising, and sharpening. Experimental results verify the effectiveness of the proposed algorithm on both synthetic and real examples.
Hahn, Rebecca T
2016-12-01
Functional or secondary tricuspid regurgitation (TR) is the most common cause of severe TR in the Western world. The presence of functional TR, either isolated or in combination with left heart disease, is associated with unfavorable natural history. Surgical mortality for isolated tricuspid valve interventions remains higher than for any other single valve surgery, and surgical options for repair do not have consistent long-term durability. In addition, as more patients undergo transcatheter left valve interventions, developing transcatheter solutions for functional TR has gained greater momentum. Numerous transcatheter devices are currently in early clinical trials. All patients require an assessment of valve morphology and function, and transcatheter devices typically require intraprocedural guidance by echocardiography. The following review will describe tricuspid anatomy, define echocardiographic views for evaluating tricuspid valve morphology and function, and discuss imaging requirements for the current transcatheter devices under development for the treatment of functional TR. © 2016 American Heart Association, Inc.
Nyström, Andreas M; Wooley, Karen L
2011-10-18
Nanomedicine is a rapidly evolving field, for which polymer building blocks are proving useful for the construction of sophisticated devices that provide enhanced diagnostic imaging and treatment of disease, known as theranostics. These well-defined nanoscopic objects have high loading capacities, can protect embedded therapeutic cargo, and offer control over the conditions and rates of release. Theranostics also offer external surface area for the conjugation of ligands to impart stealth characteristics and/or direct their interactions with biological receptors and provide a framework for conjugation of imaging agents to track delivery to diseased site(s). The nanoscopic dimensions allow for extensive biological circulation. The incorporation of such multiple functions is complicated, requiring exquisite chemical control during production and rigorous characterization studies to confirm the compositions, structures, properties, and performance. We are particularly interested in the study of nanoscopic objects designed for treatment of lung infections and acute lung injury, urinary tract infections, and cancer. This Account highlights our work over several years to tune the assembly of unique nanostructures. We provide examples of how the composition, structure, dimensions, and morphology of theranostic devices can tune their performance as drug delivery agents for the treatment of infectious diseases and cancer. The evolution of nanostructured materials from relatively simple overall shapes and internal morphologies to those of increasing complexity is driving the development of synthetic methodologies for the preparation of increasingly complex nanomedicine devices. Our nanomedicine devices are derived from macromolecules that have well-defined compositions, structures, and topologies, which provide a framework for their programmed assembly into nanostructures with controlled sizes, shapes, and morphologies. The inclusion of functional units within selective compartments/domains allows us to create (multi)functional materials. We employ combinations of controlled radical and ring-opening polymerizations, chemical transformations, and supramolecular assembly to construct such materials as functional entities. The use of multifunctional monomers with selective polymerization chemistries affords regiochemically functionalized polymers. Further supramolecular assembly processes in water with further chemical transformations provide discrete nanoscopic objects within aqueous solutions. This approach echoes processes in nature, whereby small molecules (amino acids, nucleic acids, saccharides) are linked into polymers (proteins, DNA/RNA, polysaccharides, respectively) and then those polymers fold into three-dimensional conformations that can lead to nanoscopic functional entities.
MRI in multiple sclerosis: current status and future prospects
Bakshi, Rohit; Thompson, Alan J; Rocca, Maria A; Pelletier, Daniel; Dousset, Vincent; Barkhof, Frederik; Inglese, Matilde; Guttmann, Charles R G; Horsfield, Mark A; Filippi, Massimo
2008-01-01
Many promising MRI approaches for research or clinical management of multiple sclerosis (MS) have recently emerged, or are under development or refinement. Advanced MRI methods need to be assessed to determine whether they allow earlier diagnosis or better identification of phenotypes. Improved post-processing should allow more efficient and complete extraction of information from images. Magnetic resonance spectroscopy should improve in sensitivity and specificity with higher field strengths and should enable the detection of a wider array of metabolites. Diffusion imaging is moving closer to the goal of defining structural connectivity and, thereby, determining the functional significance of lesions at specific locations. Cell-specific imaging now seems feasible with new magnetic resonance contrast agents. The imaging of myelin water fraction brings the hope of providing a specific measure of myelin content. Ultra-high-field MRI increases sensitivity, but also presents new technical challenges. Here, we review these recent developments in MRI for MS, and also look forward to refinements in spinal-cord imaging, optic-nerve imaging, perfusion MRI, and functional MRI. Advances in MRI should improve our ability to diagnose, monitor, and understand the pathophysiology of MS. PMID:18565455
Images in quantum entanglement
NASA Astrophysics Data System (ADS)
Bowden, G. J.
2009-08-01
A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: \\Psi = 1/\\sqrt 2 (\\Psi _O \\pm \\Psi _I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and phi123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.
Processing Cones: A Computational Structure for Image Analysis.
1981-12-01
image analysis applications, referred to as a processing cone, is described and sample algorithms are presented. A fundamental characteristic of the structure is its hierarchical organization into two-dimensional arrays of decreasing resolution. In this architecture, a protypical function is defined on a local window of data and applied uniformly to all windows in a parallel manner. Three basic modes of processing are supported in the cone: reduction operations (upward processing), horizontal operations (processing at a single level) and projection operations (downward
Fractal Image Filters for Specialized Image Recognition Tasks
2010-02-11
butter sets of fractal geometers, such as Sierpinski triangles, twin- dragons , Koch curves, Cantor sets, fractal ferns, and so on. The geometries and...K is a centrally symmetric convex body in R m, then the function ‖x‖K defines a norm on R m. Moreover, the set K is the unit ball with respect to the...positive numbers r and R such that K contains a ball of radius r and is contained in a ball of radius R, the following proposition is clear
Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
De Boer, Johannes F.; Milner, Thomas E.; Nelson, J. Stuart
2001-01-01
Employing a low coherence Michelson interferometer, two dimensional images of optical birefringence in turbid samples as a function of depth are measured. Polarization sensitive detection of the signal formed by interference of backscattered light from the sample and a mirror or reference plane in the reference arm which defines a reference optical path length, give the optical phase delay between light propagating along the fast and slow axes of the birefringence sample. Images showing the change in birefringence in response to irradiation of the sample are produced as an example of the detection apparatus and methodology. The technique allow rapid, noncontact investigation of tissue or sample diagnostic imaging for various medical or materials procedures.
Mukherjee, Prabuddha; Misra, Santosh K; Gryka, Mark C; Chang, Huei-Huei; Tiwari, Saumya; Wilson, William L; Scott, John W; Bhargava, Rohit; Pan, Dipanjan
2015-09-01
In this work, we demonstrate the significance of defined surface chemistry in synthesizing luminescent carbon nanomaterials (LCN) with the capability to perform dual functions (i.e., diagnostic imaging and therapy). The surface chemistry of LCN has been tailored to achieve two different varieties: one that has a thermoresponsive polymer and aids in the controlled delivery of drugs, and the other that has fluorescence emission both in the visible and near-infrared (NIR) region and can be explored for advanced diagnostic modes. Although these particles are synthesized using simple, yet scalable hydrothermal methods, they exhibit remarkable stability, photoluminescence and biocompatibility. The photoluminescence properties of these materials are tunable through careful choice of surface-passivating agents and can be exploited for both visible and NIR imaging. Here the synthetic strategy demonstrates the possibility to incorporate a potent antimetastatic agent for inhibiting melanomas in vitro. Since both particles are Raman active, their dispersion on skin surface is reported with Raman imaging and utilizing photoluminescence, their depth penetration is analysed using fluorescence 3D imaging. Our results indicate a new generation of tunable carbon-based probes for diagnosis, therapy or both. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.
1981-01-01
The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.
Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui
2014-09-01
Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.
A Wave Theory for Non-Imaging Concentrators
1992-04-01
the radiance function over the z = 0 plane, as defined by Walther (W), 6 W. T. Welford and R. Winston , High Collection Nonimaging Optics , Academic...Laurel, Maryland 2072&-6099 REFERENCES IW. T. Welford and R. Winston , High Collection Nonimaging Optics , Academic Press, New York (1989). 2 W. Welford and...radiance function is invariant for a large class of optical systems. It is also shown that fundamental limitations for the concentration of light follow
Color Image Restoration Using Nonlocal Mumford-Shah Regularizers
NASA Astrophysics Data System (ADS)
Jung, Miyoun; Bresson, Xavier; Chan, Tony F.; Vese, Luminita A.
We introduce several color image restoration algorithms based on the Mumford-Shah model and nonlocal image information. The standard Ambrosio-Tortorelli and Shah models are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, textures are not local in nature and require semi-local/non-local information to be denoised efficiently. Inspired from recent work (NL-means of Buades, Coll, Morel and NL-TV of Gilboa, Osher), we extend the standard models of Ambrosio-Tortorelli and Shah approximations to Mumford-Shah functionals to work with nonlocal information, for better restoration of fine structures and textures. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, and color image super-resolution. In the formulation of nonlocal variational models for the image deblurring with impulse noise, we propose an efficient preprocessing step for the computation of the weight function w. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. Experimental results and comparisons between the proposed nonlocal methods and the local ones are shown.
Constantinou, Christos E.
2009-01-01
In this review the diagnostic potential of evaluating female pelvic floor muscle (PFM)) function using magnetic and ultrasound imaging in the context of urodynamic observations is considered in terms of determining the mechanisms of urinary continence. A new approach is used to consider the dynamics of PFM activity by introducing new parameters derived from imaging. Novel image processing techniques are applied to illustrate the static anatomy and dynamics PFM function of stress incontinent women pre and post operatively as compared to asymptomatic subjects. Function was evaluated from the dynamics of organ displacement produced during voluntary and reflex activation. Technical innovations include the use of ultrasound analysis of movement of structures during maneuvers that are associated with external stimuli. Enabling this approach is the development of criteria and fresh and unique parameters that define the kinematics of PFM function. Principal among these parameters, are displacement, velocity, acceleration and the trajectory of pelvic floor landmarks. To accomplish this objective, movement detection, including motion tracking algorithms and segmentation algorithms were developed to derive new parameters of trajectory, displacement, velocity and acceleration, and strain of pelvic structures during different maneuvers. Results highlight the importance of timing the movement and deformation to fast and stressful maneuvers, which are important for understanding the neuromuscular control and function of PFM. Furthermore, observations suggest that timing of responses is a significant factor separating the continent from the incontinent subjects. PMID:19303690
NASA Astrophysics Data System (ADS)
Asselin, Marie-Claude; Cunningham, Vincent J.; Amano, Shigeko; Gunn, Roger N.; Nahmias, Claude
2004-03-01
A non-invasive alternative to arterial blood sampling for the generation of a blood input function for brain positron emission tomography (PET) studies is presented. The method aims to extract the dimensions of the blood vessel directly from PET images and to simultaneously correct the radioactivity concentration for partial volume and spillover. This involves simulation of the tomographic imaging process to generate images of different blood vessel and background geometries and selecting the one that best fits, in a least-squares sense, the acquired PET image. A phantom experiment was conducted to validate the method which was then applied to eight subjects injected with 6-[18F]fluoro-L-DOPA and one subject injected with [11C]CO-labelled red blood cells. In the phantom study, the diameter of syringes filled with an 11C solution and inserted into a water-filled cylinder were estimated with an accuracy of half a pixel (1 mm). The radioactivity concentration was recovered to 100 ± 4% in the 8.7 mm diameter syringe, the one that most closely approximated the superior sagittal sinus. In the human studies, the method systematically overestimated the calibre of the superior sagittal sinus by 2-3 mm compared to measurements made in magnetic resonance venograms on the same subjects. Sources of discrepancies related to the anatomy of the blood vessel were found not to be fundamental limitations to the applicability of the method to human subjects. This method has the potential to provide accurate quantification of blood radioactivity concentration from PET images without the need for blood samples, corrections for delay and dispersion, co-registered anatomical images, or manually defined regions of interest.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis
2011-01-01
Background The definitive diagnosis of glaucoma is currently based on congruent damage to both optic nerve structure and function. Given widespread quantitative assessment of both structure (imaging) and function (automated perimetry) in glaucoma, it should be possible to combine these quantitative data to diagnose disease. We have therefore defined and tested a new approach to glaucoma diagnosis by combining imaging and visual field data, using the anatomical organization of retinal ganglion cells. Methods Data from 1499 eyes of glaucoma suspects and 895 eyes with glaucoma were identified at a single glaucoma center. Each underwent Heidelberg Retinal Tomograph (HRT) imaging and standard automated perimetry. A new measure combining these two tests, the structure function index (SFI), was defined in 3 steps: 1) calculate the probability that each visual field point is abnormal, 2) calculate the probability of abnormality for each of the six HRT optic disc sectors, and 3) combine those probabilities with the probability that a field point and disc sector are linked by ganglion cell anatomy. The SFI was compared to the HRT and visual field using receiver operating characteristic (ROC) analysis. Results The SFI produced an area under the ROC curve (0.78) that was similar to that for both visual field mean deviation (0.78) and pattern standard deviation (0.80) and larger than that for a normalized measure of HRT rim area (0.66). The cases classified as glaucoma by the various tests were significantly non-overlapping. Based on the distribution of test values in the population with mild disease, the SFI may be better able to stratify this group while still clearly identifying those with severe disease. Conclusions The SFI reflects the traditional clinical diagnosis of glaucoma by combining optic nerve structure and function. In doing so, it identifies a different subset of patients than either visual field testing or optic nerve head imaging alone. Analysis of prospective data will allow us to determine whether the combined index of structure and function can provide an improved standard for glaucoma diagnosis. PMID:21314957
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Allen, Mary T.
1992-06-01
Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.
Three images of interdisciplinary team meetings.
Crepeau, E B
1994-08-01
Teams are an essential aspect of health care today, especially in rehabilitation or chronic illness where the course of care is frequently long, complex, and unpredictable. The coordinative function of teams and their interdisciplinary aspects are thought to improve patient care because team members bring their unique professional skills together to address patient problems. This coordination is enacted through the team meeting, which typically results in an integrated care plan. This professional image of team meetings is explicit and addresses the description and provision of care as objective and rational activities. In contrast, the constructed and ritualistic images of health care team meetings are implicit and concern the less objective and rational aspects of planning care. The constructed image pertains to the definitional activity of team members as they try to understand patient troubles and achieve consensus. This process involves the individual clinical reasoning of team members and the collective reasoning of the group. The ritualistic image is that aspect of team meetings in which the team affirms and reaffirms its collective identity. Drawing from field research of geropsychiatric team meetings, this article defines and explicates these images, focusing on the constructed and ritualistic aspects of team meetings and the influence of these images on group function.
Guzman, Grover E C; Sato, Joao R; Vidal, Maciel C; Fujita, Andre
2018-01-01
Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals' functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.
Representations of Spectral Differences between Vowels in Tonotopic Regions of Auditory Cortex
ERIC Educational Resources Information Center
Fisher, Julia
2017-01-01
This work examines the link between low-level cortical acoustic processing and higher-level cortical phonemic processing. Specifically, using functional magnetic resonance imaging, it looks at 1) whether or not the vowels [alpha] and [i] are distinguishable in regions of interest defined by the first two resonant frequencies (formants) of those…
Active contours on statistical manifolds and texture segmentation
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2005-01-01
A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto a set of probability density functions. In this novel framework, color or texture features are measured at each image point and their statistical...
Active contours on statistical manifolds and texture segmentaiton
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2005-01-01
A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto-a set of probability density functions. In this novel framework, color or texture features are measured at each Image point and their statistical...
Early Functional Connectome Integrity and 1-Year Recovery in Comatose Survivors of Cardiac Arrest.
Sair, Haris I; Hannawi, Yousef; Li, Shanshan; Kornbluth, Joshua; Demertzi, Athena; Di Perri, Carol; Chabanne, Russell; Jean, Betty; Benali, Habib; Perlbarg, Vincent; Pekar, James; Luyt, Charles-Edouard; Galanaud, Damien; Velly, Lionel; Puybasset, Louis; Laureys, Steven; Caffo, Brian; Stevens, Robert D
2018-04-01
Purpose To assess whether early brain functional connectivity is associated with functional recovery 1 year after cardiac arrest (CA). Materials and Methods Enrolled in this prospective multicenter cohort were 46 patients who were comatose after CA. Principal outcome was cerebral performance category at 12 months, with favorable outcome (FO) defined as cerebral performance category 1 or 2. All participants underwent multiparametric structural and functional magnetic resonance (MR) imaging less than 4 weeks after CA. Within- and between-network connectivity was measured in dorsal attention network (DAN), default-mode network (DMN), salience network (SN), and executive control network (ECN) by using seed-based analysis of resting-state functional MR imaging data. Structural changes identified with fluid-attenuated inversion recovery and diffusion-weighted imaging sequences were analyzed by using validated morphologic scales. The association between connectivity measures, structural changes, and the principal outcome was explored with multivariable modeling. Results Patients underwent MR imaging a mean 12.6 days ± 5.6 (standard deviation) after CA. At 12 months, 11 patients had an FO. Patients with FO had higher within-DMN connectivity and greater anticorrelation between SN and DMN and between SN and ECN compared with patients with unfavorable outcome, an effect that was maintained after multivariable adjustment. Anticorrelation of SN-DMN predicted outcomes with higher accuracy than fluid-attenuated inversion recovery or diffusion-weighted imaging scores (area under the receiver operating characteristic curves, respectively, 0.88, 0.74, and 0.71). Conclusion MR imaging-based measures of cerebral functional network connectivity obtained in the acute phase of CA were independently associated with FO at 1 year, warranting validation as early markers of long-term recovery potential in patients with anoxic-ischemic encephalopathy. © RSNA, 2017.
Metabolic imaging biomarkers of postradiotherapy xerostomia.
Cannon, Blake; Schwartz, David L; Dong, Lei
2012-08-01
Xerostomia is a major complication of head and neck radiotherapy (RT). Available xerostomia measures remain flawed. [(18)F]fluorodeoxyglucose-labeled positron emission tomography-computed tomography (FDG-PET-CT) is routinely used for staging and response assessment of head and neck cancer. We investigated quantitative measurement of parotid gland FDG uptake as a potential biomarker for post-RT xerostomia. Ninety-eight locally advanced head and neck cancer patients receiving definitive RT underwent baseline and post-RT FDG-PET-CT on a prospective imaging trial. A separate validation cohort of 14 patients underwent identical imaging while prospectively enrolled in a second trial collecting sialometry and patient-reported outcomes. Radiation dose and pre- and post-RT standard uptake values (SUVs) for all voxels contained within parotid gland ROI were deformably registered. Average whole-gland or voxel-by-voxel models incorporating parotid D(Met) (defined as the pretreatment parotid SUV weighted by dose) accurately predicted posttreatment changes in parotid FDG uptake (e.g., fractional parotid SUV). Fractional loss of parotid FDG uptake closely paralleled early parotid toxicity defined by posttreatment salivary output (p < 0.01) and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer xerostomia scores (p < 0.01). In this pilot series, loss of parotid FDG uptake was strongly associated with acute clinical post-RT parotid toxicity. D(Met) may potentially be used to guide function-sparing treatment planning. Prospective validation of FDG-PET-CT as a convenient, quantifiable imaging biomarker of parotid function is warranted and ongoing. Copyright © 2012 Elsevier Inc. All rights reserved.
Networked vision system using a Prolog controller
NASA Astrophysics Data System (ADS)
Batchelor, B. G.; Caton, S. J.; Chatburn, L. T.; Crowther, R. A.; Miller, J. W. V.
2005-11-01
Prolog offers a very different style of programming compared to conventional languages; it can define object properties and abstract relationships in a way that Java, C, C++, etc. find awkward. In an accompanying paper, the authors describe how a distributed web-based vision systems can be built using elements that may even be located on different continents. One particular system of this general type is described here. The top-level controller is a Prolog program, which operates one, or more, image processing engines. This type of function is natural to Prolog, since it is able to reason logically using symbolic (non-numeric) data. Although Prolog is not suitable for programming image processing functions directly, it is ideal for analysing the results derived by an image processor. This article describes the implementation of two systems, in which a Prolog program controls several image processing engines, a simple robot, a pneumatic pick-and-place arm), LED illumination modules and a various mains-powered devices.
AMPS definition study on Optical Band Imager and Photometer System (OBIPS)
NASA Technical Reports Server (NTRS)
Davis, T. N.; Deehr, C. S.; Hallinan, T. J.; Wescott, E. M.
1975-01-01
A study was conducted to define the characteristics of a modular optical diagnostic system (OBIPS) for AMPS, to provide input to Phase B studies, and to give information useful for experiment planning and design of other instrumentation. The system described consists of visual and UV-band imagers and visual and UV-band photometers; of these the imagers are most important because of their ability to measure intensity as a function of two spatial dimensions and time with high resolution. The various subsystems of OBIPS are in themselves modular with modules having a high degree of interchangeability for versatility, economy, and redundancy.
On use of image quality metrics for perceptual blur modeling: image/video compression case
NASA Astrophysics Data System (ADS)
Cha, Jae H.; Olson, Jeffrey T.; Preece, Bradley L.; Espinola, Richard L.; Abbott, A. Lynn
2018-02-01
Linear system theory is employed to make target acquisition performance predictions for electro-optical/infrared imaging systems where the modulation transfer function (MTF) may be imposed from a nonlinear degradation process. Previous research relying on image quality metrics (IQM) methods, which heuristically estimate perceived MTF has supported that an average perceived MTF can be used to model some types of degradation such as image compression. Here, we discuss the validity of the IQM approach by mathematically analyzing the associated heuristics from the perspective of reliability, robustness, and tractability. Experiments with standard images compressed by x.264 encoding suggest that the compression degradation can be estimated by a perceived MTF within boundaries defined by well-behaved curves with marginal error. Our results confirm that the IQM linearizer methodology provides a credible tool for sensor performance modeling.
The Formal Specification of a Visual display Device: Design and Implementation.
1985-06-01
The use of these data structures with their defined operations, give the programmer a very powerful instructions set. Like the DPU code generator in...which any AM hosted machine could faithfully display. 27 In- general , most applications have no need to create images from a data structure representing...formation of standard functional interfaces to these resources. OS’s generally do not provide a functional interface to either the processor or the display2
Schubert, Walter
2013-01-01
Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described—a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs. © 2013 The Authors. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:24375580
Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory
NASA Astrophysics Data System (ADS)
Dichter, W.; Doris, K.; Conkling, C.
1982-06-01
A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.
NASA Technical Reports Server (NTRS)
Full, William E.; Eppler, Duane T.
1993-01-01
The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.
Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.
Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang
2017-09-01
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Wesley; Sattarivand, Mike
Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknessesmore » range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.« less
Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2.
Zarella, Mark D; Ts'o, Daniel Y
2017-01-01
Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.
Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2
Zarella, Mark D; Ts’o, Daniel Y
2017-01-01
Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure–ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure–ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure–ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization. PMID:28761385
Functional imaging of conditioned aversive emotional responses in antisocial personality disorder.
Schneider, F; Habel, U; Kessler, C; Posse, S; Grodd, W; Müller-Gärtner, H W
2000-01-01
Individuals with antisocial personality disorder (n = 12) and healthy controls (n = 12) were examined for cerebral regional activation involved in the processing of negative affect. A differential aversive classical conditioning paradigm was applied with odors as unconditioned stimuli and faces as conditioned stimuli. Functional magnetic resonance imaging (fMRI) based on echo-planar imaging was used while cerebral activity was studied during habituation, acquisition, and extinction. Individually defined cerebral regions were analyzed. Both groups indicated behavioral conditioning following subjective ratings of emotional valence to conditioned stimuli. Differential effects were found during acquisition in the amygdala and dorsolateral prefrontal cortex. Controls showed signal decreases, patients signal increases. These preliminary results revealed unexpected signal increases in cortical/subcortical areas of patients. The increases may result from an additional effort put in by these individuals to form negative emotional associations, a pattern of processing that may correspond to their characteristic deviant emotional behavior. Copyright 2000 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Murakoshi, Dai; Hirota, Kazuhiro; Ishii, Hiroyasu; Hashimoto, Atsushi; Ebata, Tetsurou; Irisawa, Kaku; Wada, Takatsugu; Hayakawa, Toshiro; Itoh, Kenji; Ishihara, Miya
2018-02-01
Photoacoustic (PA) imaging technology is expected to be applied to clinical assessment for peripheral vascularity. We started a clinical evaluation with the prototype PA imaging system we recently developed. Prototype PA imaging system was composed with in-house Q-switched Alexandrite laser system which emits short-pulsed laser with 750 nm wavelength, handheld ultrasound transducer where illumination optics were integrated and signal processing for PA image reconstruction implemented in the clinical ultrasound (US) system. For the purpose of quantitative assessment of PA images, an image analyzing function has been developed and applied to clinical PA images. In this analyzing function, vascularity derived from PA signal intensity ranged for prescribed threshold was defined as a numerical index of vessel fulfillment and calculated for the prescribed region of interest (ROI). Skin surface was automatically detected by utilizing B-mode image acquired simultaneously with PA image. Skinsurface position is utilized to place the ROI objectively while avoiding unwanted signals such as artifacts which were imposed due to melanin pigment in the epidermal layer which absorbs laser emission and generates strong PA signals. Multiple images were available to support the scanned image set for 3D viewing. PA images for several fingers of patients with systemic sclerosis (SSc) were quantitatively assessed. Since the artifact region is trimmed off in PA images, the visibility of vessels with rather low PA signal intensity on the 3D projection image was enhanced and the reliability of the quantitative analysis was improved.
Williams, Nolan R; Taylor, Joseph J; Lamb, Kayla; Hanlon, Colleen A; Short, E Baron; George, Mark S
2014-01-01
Deep brain stimulation (DBS) is emerging as a powerful tool for the alleviation of targeted symptoms in treatment-resistant neuropsychiatric disorders. Despite the expanding use of neuropsychiatric DBS, the mechanisms responsible for its effects are only starting to be elucidated. Several modalities such as quantitative electroencephalography as well a intraoperative recordings have been utilized to attempt to understand the underpinnings of this new treatment modality, but functional imaging appears to offer several unique advantages. Functional imaging techniques like positron emission tomography, single photon emission computed tomography and functional magnetic resonance imaging have been used to examine the effects of focal DBS on activity in a distributed neural network. These investigations are critical for advancing the field of invasive neuromodulation in a safe and effective manner, particularly in terms of defining the neuroanatomical targets and refining the stimulation protocols. The purpose of this review is to summarize the current functional neuroimaging findings from neuropsychiatric DBS implantation for three disorders: treatment-resistant depression, obsessive-compulsive disorder, and Tourette syndrome. All of the major targets will be discussed (Nucleus accumbens, anterior limb of internal capsule, subcallosal cingulate, Subthalamic nucleus, Centromedial nucleus of the thalamus-Parafasicular complex, frontal pole, and dorsolateral prefrontal cortex). We will also address some apparent inconsistencies within this literature, and suggest potential future directions for this promising area. PMID:25349661
Kao, Ya-Ting; Zhu, Xinxin; Xu, Fang; Min, Wei
2012-08-01
Probing biological structures and functions deep inside live organisms with light is highly desirable. Among the current optical imaging modalities, multiphoton fluorescence microscopy exhibits the best contrast for imaging scattering samples by employing a spatially confined nonlinear excitation. However, as the incident laser power drops exponentially with imaging depth into the sample due to the scattering loss, the out-of-focus background eventually overwhelms the in-focus signal, which defines a fundamental imaging-depth limit. Herein we significantly improve the image contrast for deep scattering samples by harnessing reversibly switchable fluorescent proteins (RSFPs) which can be cycled between bright and dark states upon light illumination. Two distinct techniques, multiphoton deactivation and imaging (MPDI) and multiphoton activation and imaging (MPAI), are demonstrated on tissue phantoms labeled with Dronpa protein. Such a focal switch approach can generate pseudo background-free images. Conceptually different from wave-based approaches that try to reduce light scattering in turbid samples, our work represents a molecule-based strategy that focused on imaging probes.
Kao, Ya-Ting; Zhu, Xinxin; Xu, Fang; Min, Wei
2012-01-01
Probing biological structures and functions deep inside live organisms with light is highly desirable. Among the current optical imaging modalities, multiphoton fluorescence microscopy exhibits the best contrast for imaging scattering samples by employing a spatially confined nonlinear excitation. However, as the incident laser power drops exponentially with imaging depth into the sample due to the scattering loss, the out-of-focus background eventually overwhelms the in-focus signal, which defines a fundamental imaging-depth limit. Herein we significantly improve the image contrast for deep scattering samples by harnessing reversibly switchable fluorescent proteins (RSFPs) which can be cycled between bright and dark states upon light illumination. Two distinct techniques, multiphoton deactivation and imaging (MPDI) and multiphoton activation and imaging (MPAI), are demonstrated on tissue phantoms labeled with Dronpa protein. Such a focal switch approach can generate pseudo background-free images. Conceptually different from wave-based approaches that try to reduce light scattering in turbid samples, our work represents a molecule-based strategy that focused on imaging probes. PMID:22876358
Innate spatial-temporal reasoning and the identification of genius.
Peterson, Matthew R; Balzarini, Doreen; Bodner, Mark; Jones, Edward G; Phillips, Tiffany; Richardson, Debra; Shaw, Gordon L
2004-01-01
The teaching of mathematics is invariably language-based, but spatial-temporal (ST) reasoning (making a mental image and thinking ahead in space and time) is crucial to the understanding of math. Here we report that Big Seed, a demanding ST video game, based upon the mathematics of knot theory and previously applied to understanding DNA structure and function, can be used to reveal innate ST reasoning. Big Seed studies with middle and elementary school children provide strong evidence that ST reasoning ability is not only innate but far exceeds optimistic expectations based on age, the percentage of children achieving exceptional ST performance in less than 7 h of training, and retention of ability. A third grader has been identified as a genius (functionally defined) in ST performance. Big Seed may be used for training and assessing 'creativity' (functionally defined) and ST reasoning as well as discovering genius.
Multi-acoustic lens design methodology for a low cost C-scan photoacoustic imaging camera
NASA Astrophysics Data System (ADS)
Chinni, Bhargava; Han, Zichao; Brown, Nicholas; Vallejo, Pedro; Jacobs, Tess; Knox, Wayne; Dogra, Vikram; Rao, Navalgund
2016-03-01
We have designed and implemented a novel acoustic lens based focusing technology into a prototype photoacoustic imaging camera. All photoacoustically generated waves from laser exposed absorbers within a small volume get focused simultaneously by the lens onto an image plane. We use a multi-element ultrasound transducer array to capture the focused photoacoustic signals. Acoustic lens eliminates the need for expensive data acquisition hardware systems, is faster compared to electronic focusing and enables real-time image reconstruction. Using this photoacoustic imaging camera, we have imaged more than 150 several centimeter size ex-vivo human prostate, kidney and thyroid specimens with a millimeter resolution for cancer detection. In this paper, we share our lens design strategy and how we evaluate the resulting quality metrics (on and off axis point spread function, depth of field and modulation transfer function) through simulation. An advanced toolbox in MATLAB was adapted and used for simulating a two-dimensional gridded model that incorporates realistic photoacoustic signal generation and acoustic wave propagation through the lens with medium properties defined on each grid point. Two dimensional point spread functions have been generated and compared with experiments to demonstrate the utility of our design strategy. Finally we present results from work in progress on the use of two lens system aimed at further improving some of the quality metrics of our system.
Development of a patient-specific model for calculation of pulmonary function
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Ding, Mingyue; Movsas, Benjamin; Chetty, Indrin J.
2011-06-01
The purpose of this paper is to develop a patient-specific finite element model (FEM) to calculate the pulmonary function of lung cancer patients for evaluation of radiation treatment. The lung model was created with an in-house developed FEM software with region-specific parameters derived from a four-dimensional CT (4DCT) image. The model was used first to calculate changes in air volume and elastic stress in the lung, and then to calculate regional compliance defined as the change in air volume corrected by its associated stress. The results have shown that the resultant compliance images can reveal the regional elastic property of lung tissue, and could be useful for radiation treatment planning and assessment.
Optimal plane search method in blood flow measurements by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz
2004-07-01
This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.
Simulation of transmission electron microscope images of biological specimens.
Rullgård, H; Ofverstedt, L-G; Masich, S; Daneholt, B; Oktem, O
2011-09-01
We present a new approach to simulate electron cryo-microscope images of biological specimens. The framework for simulation consists of two parts; the first is a phantom generator that generates a model of a specimen suitable for simulation, the second is a transmission electron microscope simulator. The phantom generator calculates the scattering potential of an atomic structure in aqueous buffer and allows the user to define the distribution of molecules in the simulated image. The simulator includes a well defined electron-specimen interaction model based on the scalar Schrödinger equation, the contrast transfer function for optics, and a noise model that includes shot noise as well as detector noise including detector blurring. To enable optimal performance, the simulation framework also includes a calibration protocol for setting simulation parameters. To test the accuracy of the new framework for simulation, we compare simulated images to experimental images recorded of the Tobacco Mosaic Virus (TMV) in vitreous ice. The simulated and experimental images show good agreement with respect to contrast variations depending on dose and defocus. Furthermore, random fluctuations present in experimental and simulated images exhibit similar statistical properties. The simulator has been designed to provide a platform for development of new instrumentation and image processing procedures in single particle electron microscopy, two-dimensional crystallography and electron tomography with well documented protocols and an open source code into which new improvements and extensions are easily incorporated. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Live imaging of rat embryos with Doppler swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.
2009-09-01
The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology.
Live imaging of rat embryos with Doppler swept-source optical coherence tomography
Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.
2009-01-01
The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology. PMID:19895102
The Pan-STARRS PS1 Image Processing Pipeline
NASA Astrophysics Data System (ADS)
Magnier, E.
The Pan-STARRS PS1 Image Processing Pipeline (IPP) performs the image processing and data analysis tasks needed to enable the scientific use of the images obtained by the Pan-STARRS PS1 prototype telescope. The primary goals of the IPP are to process the science images from the Pan-STARRS telescopes and make the results available to other systems within Pan-STARRS. It also is responsible for combining all of the science images in a given filter into a single representation of the non-variable component of the night sky defined as the "Static Sky". To achieve these goals, the IPP also performs other analysis functions to generate the calibrations needed in the science image processing, and to occasionally use the derived data to generate improved astrometric and photometric reference catalogs. It also provides the infrastructure needed to store the incoming data and the resulting data products. The IPP inherits lessons learned, and in some cases code and prototype code, from several other astronomy image analysis systems, including Imcat (Kaiser), the Sloan Digital Sky Survey (REF), the Elixir system (Magnier & Cuillandre), and Vista (Tonry). Imcat and Vista have a large number of robust image processing functions. SDSS has demonstrated a working analysis pipeline and large-scale databasesystem for a dedicated project. The Elixir system has demonstrated an automatic image processing system and an object database system for operational usage. This talk will present an overview of the IPP architecture, functional flow, code development structure, and selected analysis algorithms. Also discussed is the HW highly parallel HW configuration necessary to support PS1 operational requirements. Finally, results are presented of the processing of images collected during PS1 early commissioning tasks utilizing the Pan-STARRS Test Camera #3.
Graf von Stillfried, D; Czihal, T
2014-02-01
Geographic variation in health care is increasingly subject to analysis and health policy aiming at the suitable allocation of resources and the reduction of unwarranted variation for the patient populations concerned. As in the case of area-level indicators, in most cases populations are geographically defined. The concept of geographically defined populations, however, may be self-limiting with respect to identifying the potential for improvement. As an alternative, we explored how a functional definition of populations would support defining the scope for reducing unwarranted geographical variations. Given that patients in Germany have virtually no limits in accessing physicians of their choice, we adapted a method that has been developed in the United States to create virtual networks of physicians based on commonly treated patients. Using the physician claims data under statutory insurance, which covers 90% of the population, we defined 43,006 populations-and networks-in 2010. We found that there is considerable variation between the population in terms of their risk structure and the share of the primary care practice in the total services provided. Moreover, there are marked differences in the size and structure of networks between cities, densely populated regions, and rural regions. We analyzed the variation for two area-level indicators: the proportion of diabetics with at least one HbA1c test per year for diabetics, and the proportion of patients with low back pain undergoing computed tomography and/or magnetic resonance imaging. Variation at the level of functionally defined populations proved to be larger than for geographically defined populations. The pattern of distribution gives evidence on the degree to which consensus targets could be reached and which networks need to be addressed in order to reduce unwarranted regional variation. The concept of functionally defined populations needs to be further developed before implementation.
Measurements of Wave Power in Wave Energy Converter Effectiveness Evaluation
NASA Astrophysics Data System (ADS)
Berins, J.; Berins, J.; Kalnacs, A.
2017-08-01
The article is devoted to the technical solution of alternative budget measuring equipment of the water surface gravity wave oscillation and the theoretical justification of the calculated oscillation power. This solution combines technologies such as lasers, WEB-camera image digital processing, interpolation of defined function at irregular intervals, volatility of discrete Fourier transformation for calculating the spectrum.
Kather, Jakob Nikolas; Marx, Alexander; Reyes-Aldasoro, Constantino Carlos; Schad, Lothar R; Zöllner, Frank Gerrit; Weis, Cleo-Aron
2015-08-07
Blood vessels in solid tumors are not randomly distributed, but are clustered in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots correlates with patient survival and is widely used both in diagnostic routine and in clinical trials. Still, these hotspots are usually subjectively defined. There is no unbiased, continuous and explicit representation of tumor vessel distribution in histological whole slide images. This shortcoming distorts angiogenesis measurements and may account for ambiguous results in the literature. In the present study, we describe and evaluate a new method that eliminates this bias and makes angiogenesis quantification more objective and more efficient. Our approach involves automatic slide scanning, automatic image analysis and spatial statistical analysis. By comparing a continuous MVD function of the actual sample to random point patterns, we introduce an objective criterion for hotspot detection: An angiogenic hotspot is defined as a clustering of blood vessels that is very unlikely to occur randomly. We evaluate the proposed method in N=11 images of human colorectal carcinoma samples and compare the results to a blinded human observer. For the first time, we demonstrate the existence of statistically significant hotspots in tumor images and provide a tool to accurately detect these hotspots.
Saito, Akira; Numata, Yasushi; Hamada, Takuya; Horisawa, Tomoyoshi; Cosatto, Eric; Graf, Hans-Peter; Kuroda, Masahiko; Yamamoto, Yoichiro
2016-01-01
Recent developments in molecular pathology and genetic/epigenetic analysis of cancer tissue have resulted in a marked increase in objective and measurable data. In comparison, the traditional morphological analysis approach to pathology diagnosis, which can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though the advent and popularization of digital pathology has provided a boost to computer-aided diagnosis, some important pathological concepts still remain largely non-quantitative and their associated data measurements depend on the pathologist's sense and experience. Such features include pleomorphism and heterogeneity. In this paper, we propose a method for the objective measurement of pleomorphism and heterogeneity, using the cell-level co-occurrence matrix. Our method is based on the widely used Gray-level co-occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are captured into a co-occurrence matrix, followed by the application of analysis functions such as Haralick features. In the pathological tissue image, through image processing techniques, each nucleus can be measured and each nucleus has its own measureable features like nucleus size, roundness, contour length, intra-nucleus texture data (GLCM is one of the methods). In GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most important point is how to define the neighborhood of each nucleus. We define three types of neighborhoods of a nucleus, then create the co-occurrence matrix and apply Haralick feature functions. In each image pleomorphism and heterogeneity are then determined quantitatively. For our method, one pixel corresponds to one nucleus feature, and we therefore named our method Cell Feature Level Co-occurrence Matrix (CFLCM). We tested this method for several nucleus features. CFLCM is showed as a useful quantitative method for pleomorphism and heterogeneity on histopathological image analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia
2017-07-24
Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. We resolved the atomic structure of Ni-oxo species deposited in the MOF NU-1000 through atomic layer deposition using local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imaging and computational modeling.
Functional anatomy of the prostate: implications for treatment planning.
McLaughlin, Patrick W; Troyer, Sara; Berri, Sally; Narayana, Vrinda; Meirowitz, Amichay; Roberson, Peter L; Montie, James
2005-10-01
To summarize the functional anatomy relevant to prostate cancer treatment planning. Coronal, axial, and sagittal T2 magnetic resonance imaging (MRI) and MRI angiography were fused by mutual information and registered with computed tomography (CT) scan data sets to improve definition of zonal anatomy of the prostate and critical adjacent structures. The three major prostate zones (inner, outer, and anterior fibromuscular) are visible by T2 MRI imaging. The bladder, bladder neck, and internal (preprostatic) sphincter are a continuous muscular structure and clear definition of the preprostatic sphincter is difficult by MRI. Transition zone hypertrophy may efface the bladder neck and internal sphincter. The external "lower" sphincter is clearly visible by T2 MRI with wide variations in length. The critical erectile structures are the internal pudendal artery (defined by MRI angiogram or T2 MRI), corpus cavernosum, and neurovascular bundle. The neurovascular bundle is visible along the posterior lateral surface of the prostate on CT and MRI, but its terminal branches (cavernosal nerves) are not visible and must be defined by their relationship to the urethra within the genitourinary diaphragm. Visualization of the ejaculatory ducts within the prostate is possible on sagittal MRI. The anatomy of the prostate-rectum interface is clarified by MRI, as is the potentially important distinction of rectal muscle and rectal mucosa. Improved understanding of functional anatomy and imaging of the prostate and critical adjacent structures will improve prostate radiation therapy by improvement of dose and toxicity correlation, limitation of dose to critical structures, and potential improvement in post therapy quality of life.
Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B
2017-09-20
Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In brain slices from these animals, single-trial hybrid optical voltage sensor recordings revealed voltage changes with submillisecond resolution in multiple neurons simultaneously. This imaging tool will allow for the study of the emergent properties of neural circuits and permit experimental tests of the roles of specific types of neurons in complex circuit activity. Copyright © 2017 the authors 0270-6474/17/379305-15$15.00/0.
Kordaß, Bernd; Ruge, Sebastian
2015-01-01
Analysis of temporomandibular joint (TMJ) function using condylar path tracings is a challenge in functionally oriented dentistry. In most cases, reference points on the skin surface over the TMJ region are defined as "arbitrary", "individual" or "kinematic" condylar hinge axis points, which are displayed as "condylar paths" in motion. To what extent these reference points represent the actual condylar paths in each individual patient is ultimately unclear because the geometric relationship of the actual condyle to the selected reference point is usually unknown. Depending on the location of the point on the condyle and the centers of rotation of mandibular movement, these trajectories can vary greatly during combined rotational and sliding movements (eg, opening and closing movements of the mandible); this represents a grid of points located in the vicinity of the TMJ. To record the actual condylar path as the movement trajectory of a given point (eg, the condylar center), technological solutions are needed with which to link the tracing technology with the appropriate imaging technology capable of scanning the condyle, including the points of interest, and displaying them in real dynamic motion. Sicat Function (Sicat, D-Bonn) is such a solution. Sicat Function links cone beam computed tomography (CBCT) scans (made using the Galileos CBCT scanner; Sirona, Bensheim, Germany) with ultrasound-based, three-dimensional (3D) functional jaw movement recordings of the mandible (made using the JMT+ Jaw Motion Tracker; Sicat, Bonn, Germany). Digital images of the dental arches acquired with the intraoral scanner Cerec system (Sirona) can also be superimposed. This results in the generation of a 3D model of the bony mandible, including the TMJ, which reproduces the 3D real dynamic movement of the condyles simultaneously with that of the condylar paths at defined points (with the condylar centers being a particular point of interest). Sicat Function is an integrated, digital 3D solution for additional instrumental and imaging diagnosis of temporomandibular joint dysfunction (TMD). The primary indication for Sicat Function is persistent, arthrogenic TMD complaints that require additional studies for evaluation of bony structural components of the TMJ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsegmed, Uranchimeg; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nakashima, Takeo
The aim of the current planning study is to evaluate the ability of gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI)–guided stereotactic body radiation therapy (SBRT) planning by using intensity-modulated radiation therapy (IMRT) techniques in sparing the functional liver tissues during SBRT for hepatocellular carcinoma. In this study, 20 patients with hepatocellular carcinoma were enrolled. Functional liver tissues were defined according to quantitative liver-spleen contrast ratios ≥ 1.5 on a hepatobiliary phase scan. Functional images were fused with the planning computed tomography (CT) images; the following 2 SBRT plans were designed using a “step-and-shoot” static IMRT technique for each patient: (1) an anatomicalmore » SBRT plan optimization based on the total liver; and (2) a functional SBRT plan based on the functional liver. The total prescribed dose was 48 gray (Gy) in 4 fractions. Dosimetric parameters, including dose to 95% of the planning target volume (PTV D{sub 95%}), percentages of total and functional liver volumes, which received doses from 5 to 30 Gy (V5 to V30 and fV5 to fV30), and mean doses to total and functional liver (MLD and fMLD, respectively) of the 2 plans were compared. Compared with anatomical plans, functional image-guided SBRT plans reduced MLD (mean: plan A, 5.5 Gy; and plan F, 5.1 Gy; p < 0.0001) and fMLD (mean: plan A, 5.4 Gy; and plan F, 4.9 Gy; p < 0.0001), as well as V5 to V30 and fV5 to fV30. No differences were noted in PTV coverage and nonhepatic organs at risk (OARs) doses. In conclusion, EOB-MRI–guided SBRT planning using the IMRT technique may preserve functional liver tissues in patients with hepatocellular carcinoma (HCC).« less
Integration of stereotactic ultrasonic data into an interactive image-guided neurosurgical system
NASA Astrophysics Data System (ADS)
Shima, Daniel W.; Galloway, Robert L., Jr.
1998-06-01
Stereotactic ultrasound can be incorporated into an interactive, image-guide neurosurgical system by using an optical position sensor to define the location of an intraoperative scanner in physical space. A C-program has been developed that communicates with the OptotrakTM system developed by Northern Digital Inc. to optically track the three-dimensional position and orientation of a fan-shaped area defined with respect to a hand-held probe. (i.e., a virtual B-mode ultrasound fan beam) Volumes of CT and MR head scans from the same patient are registered to a location in physical space using a point-based technique. The coordinates of the virtual fan beam in physical space are continuously calculated and updated on-the-fly. During each program loop, the CT and MR data volumes are reformatted along the same plane and displayed as two fan-shaped images that correspond to the current physical-space location of the virtual fan beam. When the reformatted preoperative tomographic images are eventually paired with a real-time intraoperative ultrasound image, a neurosurgeon will be able to use the unique information of each imaging modality (e.g., the high resolution and tissue contrast of CT and MR and the real-time functionality of ultrasound) in a complementary manner to identify structures in the brain more easily and to guide surgical procedures more effectively.
Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph
2018-06-01
Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.
NASA Astrophysics Data System (ADS)
Mues, Sarah; Lilge, Inga; Schönherr, Holger; Kemper, Björn; Schnekenburger, Jürgen
2017-02-01
The major problem of Digital Holographic Microscopy (DHM) long term live cell imaging is that over time most of the tracked cells move out of the image area and other ones move in. Therefore, most of the cells are lost for the evaluation of individual cellular processes. Here, we present an effective solution for this crucial problem of long-term microscopic live cell analysis. We have generated functionalized slides containing areas of 250 μm per 200 μm. These micropatterned biointerfaces consist of passivating polyaclrylamide brushes (PAAm). Inner areas are backfilled with octadecanthiol (ODT), which allows cell attachment. The fouling properties of these surfaces are highly controllable and therefore the defined areas designed for the size our microscopic image areas were effective in keeping all cells inside the rectangles over the selected imaging period.
Streaming Multiframe Deconvolutions on GPUs
NASA Astrophysics Data System (ADS)
Lee, M. A.; Budavári, T.
2015-09-01
Atmospheric turbulence distorts all ground-based observations, which is especially detrimental to faint detections. The point spread function (PSF) defining this blur is unknown for each exposure and varies significantly over time, making image analysis difficult. Lucky imaging and traditional co-adding throws away lots of information. We developed blind deconvolution algorithms that can simultaneously obtain robust solutions for the background image and all the PSFs. It is done in a streaming setting, which makes it practical for large number of big images. We implemented a new tool that runs of GPUs and achieves exceptional running times that can scale to the new time-domain surveys. Our code can quickly and effectively recover high-resolution images exceeding the quality of traditional co-adds. We demonstrate the power of the method on the repeated exposures in the Sloan Digital Sky Survey's Stripe 82.
Prillwitz, Conrad; Rüber, Theodor; Reuter, Martin; Montag, Christian; Weber, Bernd; Elger, Christian E; Markett, Sebastian
2018-04-28
A prevailing topic in personality neuroscience is the question how personality traits are reflected in the brain. Functional and structural networks have been examined by functional and structural magnetic resonance imaging, however, the structural correlates of functionally defined networks have not been investigated in a personality context. By using the Temperament and Character Inventory (TCI) and Diffusion Tensor Imaging (DTI), the present study assesses in a sample of 116 healthy participants how personality traits proposed in the framework of the biopsychosocial theory on personality relate to white matter pathways delineated by functional network imaging. We show that the character trait self-directedness relates to the overall microstructural integrity of white matter tracts constituting the salience network as indicated by DTI-derived measures. Self-directedness has been proposed as the executive control component of personality and describes the tendency to stay focused on the attainment of long-term goals. The present finding corroborates the view of the salience network as an executive control network that serves maintenance of rules and task-sets to guide ongoing behavior. Copyright © 2018. Published by Elsevier B.V.
Parallel algorithm of real-time infrared image restoration based on total variation theory
NASA Astrophysics Data System (ADS)
Zhu, Ran; Li, Miao; Long, Yunli; Zeng, Yaoyuan; An, Wei
2015-10-01
Image restoration is a necessary preprocessing step for infrared remote sensing applications. Traditional methods allow us to remove the noise but penalize too much the gradients corresponding to edges. Image restoration techniques based on variational approaches can solve this over-smoothing problem for the merits of their well-defined mathematical modeling of the restore procedure. The total variation (TV) of infrared image is introduced as a L1 regularization term added to the objective energy functional. It converts the restoration process to an optimization problem of functional involving a fidelity term to the image data plus a regularization term. Infrared image restoration technology with TV-L1 model exploits the remote sensing data obtained sufficiently and preserves information at edges caused by clouds. Numerical implementation algorithm is presented in detail. Analysis indicates that the structure of this algorithm can be easily implemented in parallelization. Therefore a parallel implementation of the TV-L1 filter based on multicore architecture with shared memory is proposed for infrared real-time remote sensing systems. Massive computation of image data is performed in parallel by cooperating threads running simultaneously on multiple cores. Several groups of synthetic infrared image data are used to validate the feasibility and effectiveness of the proposed parallel algorithm. Quantitative analysis of measuring the restored image quality compared to input image is presented. Experiment results show that the TV-L1 filter can restore the varying background image reasonably, and that its performance can achieve the requirement of real-time image processing.
Langer, Dominik; van 't Hoff, Marcel; Keller, Andreas J; Nagaraja, Chetan; Pfäffli, Oliver A; Göldi, Maurice; Kasper, Hansjörg; Helmchen, Fritjof
2013-04-30
Intravital microscopy such as in vivo imaging of brain dynamics is often performed with custom-built microscope setups controlled by custom-written software to meet specific requirements. Continuous technological advancement in the field has created a need for new control software that is flexible enough to support the biological researcher with innovative imaging techniques and provide the developer with a solid platform for quickly and easily implementing new extensions. Here, we introduce HelioScan, a software package written in LabVIEW, as a platform serving this dual role. HelioScan is designed as a collection of components that can be flexibly assembled into microscope control software tailored to the particular hardware and functionality requirements. Moreover, HelioScan provides a software framework, within which new functionality can be implemented in a quick and structured manner. A specific HelioScan application assembles at run-time from individual software components, based on user-definable configuration files. Due to its component-based architecture, HelioScan can exploit synergies of multiple developers working in parallel on different components in a community effort. We exemplify the capabilities and versatility of HelioScan by demonstrating several in vivo brain imaging modes, including camera-based intrinsic optical signal imaging for functional mapping of cortical areas, standard two-photon laser-scanning microscopy using galvanometric mirrors, and high-speed in vivo two-photon calcium imaging using either acousto-optic deflectors or a resonant scanner. We recommend HelioScan as a convenient software framework for the in vivo imaging community. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosch, R.; Tanenbaum, D. M.; Jrgensen, M.
2012-04-01
The investigation of degradation of seven distinct sets (with a number of individual cells of n {>=} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Riso DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imagingmore » techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results -- hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germack D.; Rosch, R.; Tanenbaum, D.M.
2012-04-01
The investigation of degradation of seven distinct sets (with a number of individual cells of n {ge} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risoe DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imagingmore » techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results - hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.« less
Nano-Enabled Approaches to Chemical Imaging in Biosystems
Retterer, Scott T.; Morrell-Falvey, Jennifer L.; Doktycz, Mitchel John
2018-02-28
Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabledmore » by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. As a result, integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.« less
Nano-Enabled Approaches to Chemical Imaging in Biosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retterer, Scott T.; Morrell-Falvey, Jennifer L.; Doktycz, Mitchel John
Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabledmore » by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. As a result, integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.« less
Summary of the white paper of DICOM WG24 'DICOM in Surgery'
NASA Astrophysics Data System (ADS)
Lemke, Heinz U.
2007-03-01
Standards for creating and integrating information about patients, equipment, and procedures are vitally needed when planning for an efficient Operating Room (OR). The DICOM Working Group 24 (WG24) has been established to develop DICOM objects and services related to Image Guided Surgery (IGS). To determine these standards, it is important to define day-to-day, step-by-step surgical workflow practices and create surgery workflow models per procedures or per variable cases. A well-defined workflow and a high fidelity patient model will be the base of activities for both, radiation therapy and surgery. Considering the present and future requirements for surgical planning and intervention, such a patient model must be n-dimensional, were n may include the spatial and temporal dimensions as well as a number of functional variables. As the boundaries between radiation therapy, surgery and interventional radiology are becoming less well-defined, precise patient models will become the greatest common denominator for all therapeutic disciplines. In addition to imaging, the focus of WG24 should, therefore, also be to serve the therapeutic disciplines by enabling modelling technology to be based on standards.
[The role of ultrasonography in the investigation of male infertility].
Fejes, Zsuzsanna; Pásztor, Norbert; Karczagi, Lilla; Brzózka, Ádám; Király, István; Morvay, Zita; Palkó, András
2018-05-01
Unintended childlessness affects approximately 9-15% of couples in the reproductive age. It is known that a remarkable proportion of infertility is caused by the disorders of the male reproductive functions. Diagnostic imaging methods and especially ultrasonography play a crucial role in the infertility work-up, the ultrasound examination has become the method of choice for imaging in diseases affecting the testis. With the development of high resolution transducers and technology using colour Doppler, pulsed Doppler, share wave elastography and strain elastography, it is now possible to make accurate diagnoses. However, the place of the new imaging methods in the algorithm of infertility check-up should be clearly defined. Orv Hetil. 2018; 159(21): 815-822.
NASA Astrophysics Data System (ADS)
Dempsey, Laura A.; Cooper, Robert J.; Powell, Samuel; Edwards, Andrea; Lee, Chuen-Wai; Brigadoi, Sabrina; Everdell, Nick; Arridge, Simon; Gibson, Adam P.; Austin, Topun; Hebden, Jeremy C.
2015-07-01
We present a method for acquiring whole-head images of changes in blood volume and oxygenation from the infant brain at cot-side using time-resolved diffuse optical tomography (TR-DOT). At UCL, we have built a portable TR-DOT device, known as MONSTIR II, which is capable of obtaining a whole-head (1024 channels) image sequence in 75 seconds. Datatypes extracted from the temporal point spread functions acquired by the system allow us to determine changes in absorption and reduced scattering coefficients within the interrogated tissue. This information can then be used to define clinically relevant measures, such as oxygen saturation, as well as to reconstruct images of relative changes in tissue chromophore concentration, notably those of oxy- and deoxyhaemoglobin. Additionally, the effective temporal resolution of our system is improved with spatio-temporal regularisation implemented through a Kalman filtering approach, allowing us to image transient haemodynamic changes. By using this filtering technique with intensity and mean time-of-flight datatypes, we have reconstructed images of changes in absorption and reduced scattering coefficients in a dynamic 2D phantom. These results demonstrate that MONSTIR II is capable of resolving slow changes in tissue optical properties within volumes that are comparable to the preterm head. Following this verification study, we are progressing to imaging a 3D dynamic phantom as well as the neonatal brain at cot-side. Our current study involves scanning healthy babies to demonstrate the quality of recordings we are able to achieve in this challenging patient population, with the eventual goal of imaging functional activation and seizures.
Wood-Barcalow, Nichole L; Tylka, Tracy L; Augustus-Horvath, Casey L
2010-03-01
Extant body image research has provided a rich understanding of negative body image but a rather underdeveloped depiction of positive body image. Thus, this study used Grounded Theory to analyze interviews from 15 college women classified as having positive body image and five body image experts. Many characteristics of positive body image emerged, including appreciating the unique beauty and functionality of their body, filtering information (e.g., appearance commentary, media ideals) in a body-protective manner, defining beauty broadly, and highlighting their body's assets while minimizing perceived imperfections. A holistic model emerged: when women processed mostly positive and rejected negative source information, their body investment decreased and body evaluation became more positive, illustrating the fluidity of body image. Women reciprocally influenced these sources (e.g., mentoring others to love their bodies, surrounding themselves with others who promote body acceptance, taking care of their health), which, in turn, promoted increased positive source information. Copyright 2010. Published by Elsevier Ltd.
Experimental land observing data system feasibility study
NASA Technical Reports Server (NTRS)
Buckley, J. L.; Kraiman, H.
1982-01-01
An end-to-end data system to support a Shuttle-based Multispectral Linear Array (MLA) mission in the mid-1980's was defined. The experimental Land Observing System (ELOS) is discussed. A ground system that exploits extensive assets from the LANDSAT-D Program to effectively meet the objectives of the ELOS Mission was defined. The goal of 10 meter pixel precision, the variety of data acquisition capabilities, and the use of Shuttle are key to the mission requirements, Ground mission management functions are met through the use of GSFC's Multi-Satellite Operations Control Center (MSOCC). The MLA Image Generation Facility (MIGF) combines major hardware elements from the Applications Development Data System (ADDS) facility and LANDSAT Assessment System (LAS) with a special purpose MLA interface unit. LANDSAT-D image processing techniques, adapted to MLA characteristics, form the basis for the use of existing software and the definition of new software required.
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-01-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587
A simple tool for stereological assessment of digital images: the STEPanizer.
Tschanz, S A; Burri, P H; Weibel, E R
2011-07-01
STEPanizer is an easy-to-use computer-based software tool for the stereological assessment of digitally captured images from all kinds of microscopical (LM, TEM, LSM) and macroscopical (radiology, tomography) imaging modalities. The program design focuses on providing the user a defined workflow adapted to most basic stereological tasks. The software is compact, that is user friendly without being bulky. STEPanizer comprises the creation of test systems, the appropriate display of digital images with superimposed test systems, a scaling facility, a counting module and an export function for the transfer of results to spreadsheet programs. Here we describe the major workflow of the tool illustrating the application on two examples from transmission electron microscopy and light microscopy, respectively. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
A Fine-Scale Functional Logic to Convergence from Retina to Thalamus.
Liang, Liang; Fratzl, Alex; Goldey, Glenn; Ramesh, Rohan N; Sugden, Arthur U; Morgan, Josh L; Chen, Chinfei; Andermann, Mark L
2018-05-31
Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus. Copyright © 2018 Elsevier Inc. All rights reserved.
Bhatia, Dhiraj; Arumugam, Senthil; Nasilowski, Michel; Joshi, Himanshu; Wunder, Christian; Chambon, Valérie; Prakash, Ved; Grazon, Chloé; Nadal, Brice; Maiti, Prabal K; Johannes, Ludger; Dubertret, Benoit; Krishnan, Yamuna
2016-12-01
Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands-folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.
Homan, Philipp; Vermathen, Peter; Van Swam, Claudia; Federspiel, Andrea; Boesch, Chris; Strik, Werner; Dierks, Thomas; Hubl, Daniela; Kreis, Roland
2014-07-01
Cerebral dysfunction occurring in mental disorders can show metabolic disturbances which are limited to circumscribed brain areas. Auditory hallucinations have been shown to be related to defined cortical areas linked to specific language functions. Here, we investigated if the study of metabolic changes in auditory hallucinations requires a functional rather than an anatomical definition of their location and size to allow a reliable investigation by magnetic resonance spectroscopy (MRS). Schizophrenia patients with (AH; n=12) and without hallucinations (NH; n=8) and healthy controls (HC; n=11) underwent a verbal fluency task in functional MRI (fMRI) to functionally define Broca's and Wernicke's areas. Left and right Heschl's gyri were defined anatomically. The mean distances in native space between the fMRI-defined regions and a corresponding anatomically defined area were 12.4±6.1 mm (range: 2.7-36.1 mm) for Broca's area and 16.8±6.2 mm (range: 4.5-26.4 mm) for Wernicke's area, respectively. Hence, the spatial variance was of similar extent as the size of the investigated regions. Splitting the investigations into a single voxel examination in the frontal brain and a spectroscopic imaging part for the more homogeneous field areas led to good spectral quality for almost all spectra. In Broca's area, there was a significant group effect (p=0.03) with lower levels of N-acetyl-aspartate (NAA) in NH compared to HC (p=0.02). There were positive associations of NAA levels in the left Heschl's gyrus with total (p=0.03) and negative (p=0.006) PANSS scores. In Broca's area, there was a negative association of myo-inositol levels with total PANSS scores (p=0.008). This study supports the neurodegenerative hypothesis of schizophrenia only in a frontal region whereas the results obtained from temporal regions are in contrast to the majority of previous studies. Future research should test the hypothesis raised by this study that a functional definition of language regions is needed if neurochemical imbalances are expected to be restricted to functional foci. Copyright © 2014 Elsevier Inc. All rights reserved.
Seismic constraints on the lithosphere-asthenosphere boundary
NASA Astrophysics Data System (ADS)
Rychert, Catherine A.
2014-05-01
The basic tenet of plate tectonics is that a rigid plate, or lithosphere, moves over a weaker asthenospheric layer. However, the exact location and defining mechanism of the boundary at the base of the plate, the lithosphere-asthenosphere boundary (LAB) is debated. The oceans should represent a simple scenario since the lithosphere is predicted to thicken with seafloor age if it thermally defined, whereas a constant plate thickness might indicate a compositional definition. However, the oceans are remote and difficult to constrain, and studies with different sensitivities and resolutions have come to different conclusions. Hotspot regions lend additional insight, since they are relatively well instrumented with seismic stations, and also since the effect of a thermal plume on the LAB should depend on the defining mechanism of the plate. Here I present new results using S-to-P receiver functions to image upper mantle discontinuity structure beneath volcanically active regions including Hawaii, Iceland, Galapagos, and Afar. In particular I focus on the lithosphere-asthenosphere boundary and discontinuities related to the base of melting, which can be used to highlight plume locations. I image a lithosphere-asthenosphere boundary in the 50 - 95 km depth range beneath Hawaii, Galapagos, and Iceland. Although LAB depth variations exist within these regions, significant thinning is not observed in the locations of hypothesized plume impingement from receiver functions (see below). Since a purely thermally defined lithosphere is expected to thin significantly in the presence of a thermal plume anomaly, a compositional component in the definition of the LAB is implied. Beneath Afar, an LAB is imaged at 75 km depth on the flank of the rift, but no LAB is imaged beneath the rift itself. The transition from flank of rift is relatively abrupt, again suggesting something other than a purely thermally defined lithosphere. Melt may also exist in the asthenosphere in these regions of hotpot volcanism. Indeed, S-to-P also images strong velocity increases that are likely related to the base of a melt-rich layer beneath the oceanic LAB. This discontinuity may highlight plume locations since melt is predicted deeper at thermal anomalies. For instance, beneath Hawaii the base of melting increases from 110 km to 155 km depth 100 km west of Hawaii, i.e., the likely location of plume impingement on the lithosphere. Beneath Galapagos the discontinuity is deeper in 3 sectors, all off the island axis, suggesting multiple plume diversions and complex plume-ridge interactions. Beneath Iceland deepening is imaged to the northeast of the island. Beneath the Afar rift a shallow melt discontinuity is imaged at ~75 km, suggesting that the plume is located outside the study region. Overall, the deepest realizations of the discontinuities agree with the slowest velocities from surface waves, but are not located directly beneath surface volcanoes. This suggests that either plumes approach the surface at an angle or that restite roots beneath hotspots divert plumes at shallow depths. In either case, mantle melts are likely guided from the location of impingement on the lithosphere to current day surface volcanoes by pre-existing structures of the lithosphere.
Lemke, Heinz U; Berliner, Leonard
2011-05-01
Appropriate use of information and communication technology (ICT) and mechatronic (MT) systems is viewed by many experts as a means to improve workflow and quality of care in the operating room (OR). This will require a suitable information technology (IT) infrastructure, as well as communication and interface standards, such as specialized extensions of DICOM, to allow data interchange between surgical system components in the OR. A design of such an infrastructure, sometimes referred to as surgical PACS, but better defined as a Therapy Imaging and Model Management System (TIMMS), will be introduced in this article. A TIMMS should support the essential functions that enable and advance image guided therapy, and in the future, a more comprehensive form of patient-model guided therapy. Within this concept, the "image-centric world view" of the classical PACS technology is complemented by an IT "model-centric world view". Such a view is founded in the special patient modelling needs of an increasing number of modern surgical interventions as compared to the imaging intensive working mode of diagnostic radiology, for which PACS was originally conceptualised and developed. The modelling aspects refer to both patient information and workflow modelling. Standards for creating and integrating information about patients, equipment, and procedures are vitally needed when planning for an efficient OR. The DICOM Working Group 24 (WG-24) has been established to develop DICOM objects and services related to image and model guided surgery. To determine these standards, it is important to define step-by-step surgical workflow practices and create interventional workflow models per procedures or per variable cases. As the boundaries between radiation therapy, surgery and interventional radiology are becoming less well-defined, precise patient models will become the greatest common denominator for all therapeutic disciplines. In addition to imaging, the focus of WG-24 is to serve the therapeutic disciplines by enabling modelling technology to be based on standards. Copyright © 2011. Published by Elsevier Ireland Ltd.
Imaging strategies using focusing functions with applications to a North Sea field
NASA Astrophysics Data System (ADS)
da Costa Filho, C. A.; Meles, G. A.; Curtis, A.; Ravasi, M.; Kritski, A.
2018-04-01
Seismic methods are used in a wide variety of contexts to investigate subsurface Earth structures, and to explore and monitor resources and waste-storage reservoirs in the upper ˜100 km of the Earth's subsurface. Reverse-time migration (RTM) is one widely used seismic method which constructs high-frequency images of subsurface structures. Unfortunately, RTM has certain disadvantages shared with other conventional single-scattering-based methods, such as not being able to correctly migrate multiply scattered arrivals. In principle, the recently developed Marchenko methods can be used to migrate all orders of multiples correctly. In practice however, using Marchenko methods are costlier to compute than RTM—for a single imaging location, the cost of performing the Marchenko method is several times that of standard RTM, and performing RTM itself requires dedicated use of some of the largest computers in the world for individual data sets. A different imaging strategy is therefore required. We propose a new set of imaging methods which use so-called focusing functions to obtain images with few artifacts from multiply scattered waves, while greatly reducing the number of points across the image at which the Marchenko method need be applied. Focusing functions are outputs of the Marchenko scheme: they are solutions of wave equations that focus in time and space at particular surface or subsurface locations. However, they are mathematical rather than physical entities, being defined only in reference media that equal to the true Earth above their focusing depths but are homogeneous below. Here, we use these focusing functions as virtual source/receiver surface seismic surveys, the upgoing focusing function being the virtual received wavefield that is created when the downgoing focusing function acts as a spatially distributed source. These source/receiver wavefields are used in three imaging schemes: one allows specific individual reflectors to be selected and imaged. The other two schemes provide either targeted or complete images with distinct advantages over current RTM methods, such as fewer artifacts and artifacts that occur in different locations. The latter property allows the recently published `combined imaging' method to remove almost all artifacts. We show several examples to demonstrate the methods: acoustic 1-D and 2-D synthetic examples, and a 2-D line from an ocean bottom cable field data set. We discuss an extension to elastic media, which is illustrated by a 1.5-D elastic synthetic example.
99mTc-DMSA Uptake in a Sister Mary Joseph's Nodule From Ovarian Cancer.
Naddaf, Sleiman; Azzumeea, Fahad; Fahad Alzayed, Mohammed
2016-12-01
A 50-year-old woman with ovarian cancer underwent Tc-DMSA scan to evaluate the functional status of the right hydronephrotic kidney. The images incidentally revealed a well-defined focus of mild radiotracer uptake at the midanterior abdominal wall, which correlated with a metastatic Sister Mary Joseph's nodule seen on CT performed a week earlier.
ERIC Educational Resources Information Center
Pfeifer, Jennifer H.; Masten, Carrie L.; Borofsky, Larissa A.; Dapretto, Mirella; Fuligni, Andrew J.; Lieberman, Matthew D.
2009-01-01
Classic theories of self-development suggest people define themselves in part through internalized perceptions of other people's beliefs about them, known as reflected self-appraisals. This study uses functional magnetic resonance imaging to compare the neural correlates of direct and reflected self-appraisals in adolescence (N = 12, ages 11-14…
Model of a Christian Academic Teacher in the Education of Tomorrow
ERIC Educational Resources Information Center
Krul', Roman
2014-01-01
Vocational training, functioning of an academic teacher in the profession and personal development are the selected areas of the author's scientific research inquiries, based on the Christian concept of Man as the image of God and the perception of the value of a person in being a Human. Christian academic teacher has been defined as an advocate…
Localization of Broca's Area Using Functional MR Imaging: Quantitative Evaluation of Paradigms.
Kim, Chi Heon; Kim, Jae-Hun; Chung, Chun Kee; Kim, June Sic; Lee, Jong-Min; Lee, Sang Kun
2009-04-01
Functional magnetic resonance imaging (fMRI) is frequently used to localize language areas in a non-invasive manner. Various paradigms for presurgical localization of language areas have been developed, but a systematic quantitative evaluation of the efficiency of those paradigms has not been performed. In the present study, the authors analyzed different language paradigms to see which paradigm is most efficient in localizing frontal language areas. Five men and five women with no neurological deficits participated (mean age, 24 years) in this study. All volunteers were right-handed. Each subject performed 4 tasks, including fixation (Fix), sentence reading (SR), pseudoword reading (PR), and word generation (WG). Fixation and pseudoword reading were used as contrasts. The functional area was defined as the area(s) with a t-value of more than 3.92 in fMRI with different tasks. To apply an anatomical constraint, we used a brain atlas mapping system, which is available in AFNI, to define the anatomical frontal language area. The numbers of voxels in overlapped area between anatomical and functional area were individually counted in the frontal expressive language area. Of the various combinations, the word generation task was most effective in delineating the frontal expressive language area when fixation was used as a contrast (p<0.05). The sensitivity of this test for localizing Broca's area was 81% and specificity was 70%. Word generation versus fixation could effectively and reliably delineate the frontal language area. A customized effective paradigm should be analyzed in order to evaluate various language functions.
Wijngaarden, Peter Van; Keel, Stuart; Hodgson, Lauren A B; Kumar, Dinesh K; Aliahmad, Behzad; Paim, Cistiane C; Kiely, Kim M; Cherbuin, Nicolas; Anstey, Kaarin J; Dirani, Mohamed
2017-01-01
To describe the methodology and present the retinal grading findings of an older sample of australians with well-defined indices of neurocognitive function in the Personality and total Health (PATH) through life project. A cross-sectional study. Three hundred twenty-six individuals from the PatH through life project were invited to participate. Participants completed a general questionnaire and 2-field, 45-degree nonmydriatic color digital retinal photography. Photographs were graded for retinal pathology according to established protocols. Two hundred fifty-four (77.9%) subjects, aged 72 to 78 years, agreed to participate in the eye substudy. gradable images of at least 1 eye were acquired in 211 of 254 subjects (83.1%). retinal photographic screening identified 1 or more signs of pathology in 130 of the 174 subjects (74.7%) with gradable images of both eyes. a total of 45 participants (17.7%) had self-reported diabetes and diabetic retinopathy was observed in 22 (48.9%) of these participants. This well-defined sample of older australians provides a unique opportunity to interrogate associations between retinal findings, including retinal vascular geometric parameters, and indices of neurocognitive function. Copyright 2017 Asia-Pacific Academy of Ophthalmology.
Interplanetary Radiation and Internal Charging Environment Models for Solar Sails
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Altstatt, Richard L.; Neergaard, Linda F.
2004-01-01
A Solar Sail Radiation Environment (SSRE) model has been developed for characterizing the radiation dose and internal charging environments in the solar wind. The SSRE model defines the 0.01 keV to 1 MeV charged particle environment for use in testing the radiation dose vulnerability of candidate solar sail materials and for use in evaluating the internal charging effects in the interplanetary environment. Solar wind and energetic particle instruments aboard the Ulysses spacecraft provide the particle data used to derive the environments for the high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar sail missions. Ulysses is the only spacecraft to sample high latitude solar wind environments far from the ecliptic plane and is therefore uniquely capable of providing the information necessary for defining radiation environments for the Solar Polar Imager spacecraft. Cold plasma moments are used to derive differential flux spectra based on Kappa distribution functions. Energetic particle flux measurements are used to constrain the high energy, non-thermal tails of the distribution functions providing a comprehensive electron, proton, and helium spectra from less than 0.01 keV to a few MeV.
Imaging Lung Function in Mice Using SPECT/CT and Per-Voxel Analysis
Jobse, Brian N.; Rhem, Rod G.; McCurry, Cory A. J. R.; Wang, Iris Q.; Labiris, N. Renée
2012-01-01
Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q) single photon emission computed tomography (SPECT) with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with 99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03) in 12 week old animals and a mean log(V/Q) ratio of −0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies. PMID:22870297
MediaNet: a multimedia information network for knowledge representation
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.; Chang, Shih-Fu
2000-10-01
In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.
MIRIADS: miniature infrared imaging applications development system description and operation
NASA Astrophysics Data System (ADS)
Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.
2001-10-01
A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.
Superpixel Cut for Figure-Ground Image Segmentation
NASA Astrophysics Data System (ADS)
Yang, Michael Ying; Rosenhahn, Bodo
2016-06-01
Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.
Stem Cells as a Tool for Breast Imaging
Padín-Iruegas, Maria Elena; López López, Rafael
2012-01-01
Stem cells are a scientific field of interest due to their therapeutic potential. There are different groups, depending on the differentiation state. We can find lonely stem cells, but generally they distribute in niches. Stem cells don't survive forever. They are affected for senescence. Cancer stem cells are best defined functionally, as a subpopulation of tumor cells that can enrich for tumorigenic property and can regenerate heterogeneity of the original tumor. Circulating tumor cells are cells that have detached from a primary tumor and circulate in the bloodstream. They may constitute seeds for subsequent growth of additional tumors (metastasis) in different tissues. Advances in molecular imaging have allowed a deeper understanding of the in vivo behavior of stem cells and have proven to be indispensable in preclinical and clinical studies. One of the first imaging modalities for monitoring pluripotent stem cells in vivo, magnetic resonance imaging (MRI) offers high spatial and temporal resolution to obtain detailed morphological and functional information. Advantages of radioscintigraphic techniques include their picomolar sensitivity, good tissue penetration, and translation to clinical applications. Radionuclide imaging is the sole direct labeling technique used thus far in human studies, involving both autologous bone marrow derived and peripheral stem cells. PMID:22848220
Image fusion pitfalls for cranial radiosurgery.
Jonker, Benjamin P
2013-01-01
Stereotactic radiosurgery requires imaging to define both the stereotactic space in which the treatment is delivered and the target itself. Image fusion is the process of using rotation and translation to bring a second image set into alignment with the first image set. This allows the potential concurrent use of multiple image sets to define the target and stereotactic space. While a single magnetic resonance imaging (MRI) sequence alone can be used for delineation of the target and fiducials, there may be significant advantages to using additional imaging sets including other MRI sequences, computed tomography (CT) scans, and advanced imaging sets such as catheter-based angiography, diffusor tension imaging-based fiber tracking and positon emission tomography in order to more accurately define the target and surrounding critical structures. Stereotactic space is usually defined by detection of fiducials on the stereotactic head frame or mask system. Unfortunately MRI sequences are susceptible to geometric distortion, whereas CT scans do not face this problem (although they have poorer resolution of the target in most cases). Thus image fusion can allow the definition of stereotactic space to proceed from the geometrically accurate CT images at the same time as using MRI to define the target. The use of image fusion is associated with risk of error introduced by inaccuracies of the fusion process, as well as workflow changes that if not properly accounted for can mislead the treating clinician. The purpose of this review is to describe the uses of image fusion in stereotactic radiosurgery as well as its potential pitfalls.
A Stochastic Kinematic Model of Class Averaging in Single-Particle Electron Microscopy
Park, Wooram; Midgett, Charles R.; Madden, Dean R.; Chirikjian, Gregory S.
2011-01-01
Single-particle electron microscopy is an experimental technique that is used to determine the 3D structure of biological macromolecules and the complexes that they form. In general, image processing techniques and reconstruction algorithms are applied to micrographs, which are two-dimensional (2D) images taken by electron microscopes. Each of these planar images can be thought of as a projection of the macromolecular structure of interest from an a priori unknown direction. A class is defined as a collection of projection images with a high degree of similarity, presumably resulting from taking projections along similar directions. In practice, micrographs are very noisy and those in each class are aligned and averaged in order to reduce the background noise. Errors in the alignment process are inevitable due to noise in the electron micrographs. This error results in blurry averaged images. In this paper, we investigate how blurring parameters are related to the properties of the background noise in the case when the alignment is achieved by matching the mass centers and the principal axes of the experimental images. We observe that the background noise in micrographs can be treated as Gaussian. Using the mean and variance of the background Gaussian noise, we derive equations for the mean and variance of translational and rotational misalignments in the class averaging process. This defines a Gaussian probability density on the Euclidean motion group of the plane. Our formulation is validated by convolving the derived blurring function representing the stochasticity of the image alignments with the underlying noiseless projection and comparing with the original blurry image. PMID:21660125
Event-Driven Random-Access-Windowing CCD Imaging System
NASA Technical Reports Server (NTRS)
Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William
2004-01-01
A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable assembly. The FPGA controller card is connected to the host computer via a standard peripheral component interface (PCI).
Construction of multi-functional open modulized Matlab simulation toolbox for imaging ladar system
NASA Astrophysics Data System (ADS)
Wu, Long; Zhao, Yuan; Tang, Meng; He, Jiang; Zhang, Yong
2011-06-01
Ladar system simulation is to simulate the ladar models using computer simulation technology in order to predict the performance of the ladar system. This paper presents the developments of laser imaging radar simulation for domestic and overseas studies and the studies of computer simulation on ladar system with different application requests. The LadarSim and FOI-LadarSIM simulation facilities of Utah State University and Swedish Defence Research Agency are introduced in details. This paper presents the low level of simulation scale, un-unified design and applications of domestic researches in imaging ladar system simulation, which are mostly to achieve simple function simulation based on ranging equations for ladar systems. Design of laser imaging radar simulation with open and modularized structure is proposed to design unified modules for ladar system, laser emitter, atmosphere models, target models, signal receiver, parameters setting and system controller. Unified Matlab toolbox and standard control modules have been built with regulated input and output of the functions, and the communication protocols between hardware modules. A simulation based on ICCD gain-modulated imaging ladar system for a space shuttle is made based on the toolbox. The simulation result shows that the models and parameter settings of the Matlab toolbox are able to simulate the actual detection process precisely. The unified control module and pre-defined parameter settings simplify the simulation of imaging ladar detection. Its open structures enable the toolbox to be modified for specialized requests. The modulization gives simulations flexibility.
Williams, Leanne M; Goldstein-Piekarski, Andrea N; Chowdhry, Nowreen; Grisanzio, Katherine A; Haug, Nancy A; Samara, Zoe; Etkin, Amit; O'Hara, Ruth; Schatzberg, Alan F; Suppes, Trisha; Yesavage, Jerome
2016-03-15
Understanding how brain circuit dysfunctions relate to specific symptoms offers promise for developing a brain-based taxonomy for classifying psychopathology, identifying targets for mechanistic studies and ultimately for guiding treatment choice. The goal of the Research Domain Criteria (RDoC) initiative of the National Institute of Mental Health is to accelerate the development of such neurobiological models of mental disorder independent of traditional diagnostic criteria. In our RDoC Anxiety and Depression ("RAD") project we focus trans-diagnostically on the spectrum of depression and anxiety psychopathology. Our aims are a) to use brain imaging to define cohesive dimensions defined by dysfunction of circuits involved in reactivity to and regulation of negatively valenced emotional stimulation and in cognitive control, b) to assess the relationships between these dimension and specific symptoms, behavioral performance and the real world capacity to function socially and at work and c) to assess the stability of brain-symptom-behavior-function relationships over time. Here we present the protocol for the "RAD" project, one of the first RDoC studies to use brain circuit functioning to define new dimensions of psychopathology. The RAD project follows baseline-follow up design. In line with RDoC principles we use a strategy for recruiting all clients who "walk through the door" of a large community mental health clinic as well as the surrounding community. The clinic attends to a broad spectrum of anxiety and mood-related symptoms. Participants are unmedicated and studied at baseline using a standardized battery of functional brain imaging, structural brain imaging and behavioral probes that assay constructs of threat reactivity, threat regulation and cognitive control. The battery also includes self-report measures of anxiety and mood symptoms, and social and occupational functioning. After baseline assessments, therapists in the clinic apply treatment planning as usual. Follow-up assessments are undertaken at 3 months, to establish the reliability of brain-based subgroups over time and to assess whether these subgroups predict real-world functional capacity over time. First enrollment was August 2013, and is ongoing. This project is designed to advance knowledge toward a neural circuit taxonomy for mental disorder. Data will be shared via the RDoC database for dissemination to the scientific community. The clinical translational neuroscience goals of the project are to develop brain-behavior profile reports for each individual participant and to refine these reports with therapist feedback. Reporting of results is expected from December 2016 onward. ClinicalTrials.gov Identifier: NCT02220309 . Registered: August 13, 2014.
2016-01-01
When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313
Ugurbil, Kamil
2016-10-05
When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).
Suga, Kazuyoshi; Yasuhiko, Kawakami; Zaki, Mohammed; Yamashita, Tomio; Seto, Aska; Matsumoto, Tsuneo; Matsunaga, Naofumi
2004-02-01
In this study, respiratory-gated ventilation and perfusion single-photon emission tomography (SPET) were used to define regional functional impairment and to obtain reliable co-registration with computed tomography (CT) images in various lung diseases. Using a triple-headed SPET unit and a physiological synchroniser, gated perfusion SPET was performed in a total of 78 patients with different pulmonary diseases, including metastatic nodules (n = 15); in 34 of these patients, it was performed in combination with gated technetium-99m Technegas SPET. Projection data were acquired using 60 stops over 120 degrees for each detector. Gated end-inspiration and ungated images were reconstructed from 1/8 data centered at peak inspiration for each regular respiratory cycle and full respiratory cycle data, respectively. Gated images were registered with tidal inspiration CT images using automated three-dimensional (3D) registration software. Registration mismatch was assessed by measuring 3D distance of the centroid of the nine selected round perfusion-defective nodules. Gated SPET images were completed within 29 min, and increased the number of visible ventilation and perfusion defects by 9.7% and 17.2%, respectively, as compared with ungated images; furthermore, lesion-to-normal lung contrast was significantly higher on gated SPET images. In the nine round perfusion-defective nodules, gated images yielded a significantly better SPET-CT match compared with ungated images (4.9 +/- 3.1 mm vs 19.0 +/- 9.1 mm, P<0.001). The co-registered SPET-CT images allowed accurate perception of the location and extent of each ventilation/perfusion defect on the underlying CT anatomy, and characterised the pathophysiology of the various diseases. By reducing respiratory motion effects and enhancing perfusion/ventilation defect clarity, gated SPET can provide reliable co-registered images with CT images to accurately characterise regional functional impairment in various lung diseases.
Gorgolewski, Krzysztof J; Auer, Tibor; Calhoun, Vince D; Craddock, R Cameron; Das, Samir; Duff, Eugene P; Flandin, Guillaume; Ghosh, Satrajit S; Glatard, Tristan; Halchenko, Yaroslav O; Handwerker, Daniel A; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B Nolan; Nichols, Thomas E; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A; Varoquaux, Gaël; Poldrack, Russell A
2016-06-21
The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.
Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.
2016-01-01
The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542
WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research.
Nazir, Sajid; Newey, Scott; Irvine, R Justin; Verdicchio, Fabio; Davidson, Paul; Fairhurst, Gorry; Wal, René van der
2017-01-01
The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named 'WiseEye', designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management.
WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research
Nazir, Sajid; Newey, Scott; Irvine, R. Justin; Verdicchio, Fabio; Davidson, Paul; Fairhurst, Gorry; van der Wal, René
2017-01-01
The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named ‘WiseEye’, designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management. PMID:28076444
Unsupervised Detection of Planetary Craters by a Marked Point Process
NASA Technical Reports Server (NTRS)
Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.
2011-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.
NASA Astrophysics Data System (ADS)
Zoratti, Paul K.; Gilbert, R. Kent; Majewski, Ronald; Ference, Jack
1995-12-01
Development of automotive collision warning systems has progressed rapidly over the past several years. A key enabling technology for these systems is millimeter-wave radar. This paper addresses a very critical millimeter-wave radar sensing issue for automotive radar, namely the scattering characteristics of common roadway objects such as vehicles, roadsigns, and bridge overpass structures. The data presented in this paper were collected on ERIM's Fine Resolution Radar Imaging Rotary Platform Facility and processed with ERIM's image processing tools. The value of this approach is that it provides system developers with a 2D radar image from which information about individual point scatterers `within a single target' can be extracted. This information on scattering characteristics will be utilized to refine threat assessment processing algorithms and automotive radar hardware configurations. (1) By evaluating the scattering characteristics identified in the radar image, radar signatures as a function of aspect angle for common roadway objects can be established. These signatures will aid in the refinement of threat assessment processing algorithms. (2) Utilizing ERIM's image manipulation tools, total RCS and RCS as a function of range and azimuth can be extracted from the radar image data. This RCS information will be essential in defining the operational envelope (e.g. dynamic range) within which any radar sensor hardware must be designed.
Spatial MEG laterality maps for language: clinical applications in epilepsy.
D'Arcy, Ryan C N; Bardouille, Timothy; Newman, Aaron J; McWhinney, Sean R; Debay, Drew; Sadler, R Mark; Clarke, David B; Esser, Michael J
2013-08-01
Functional imaging is increasingly being used to provide a noninvasive alternative to intracarotid sodium amobarbitol testing (i.e., the Wada test). Although magnetoencephalography (MEG) has shown significant potential in this regard, the resultant output is often reduced to a simplified estimate of laterality. Such estimates belie the richness of functional imaging data and consequently limit the potential value. We present a novel approach that utilizes MEG data to compute "complex laterality vectors" and consequently "laterality maps" for a given function. Language function was examined in healthy controls and in people with epilepsy. When compared with traditional laterality index (LI) approaches, the resultant maps provided critical information about the magnitude and spatial characteristics of lateralized function. Specifically, it was possible to more clearly define low LI scores resulting from strong bilateral activation, high LI scores resulting from weak unilateral activation, and most importantly, the spatial distribution of lateralized activation. We argue that the laterality concept is better presented with the inherent spatial sensitivity of activation maps, rather than being collapsed into a one-dimensional index. Copyright © 2012 Wiley Periodicals, Inc.
Schulze-Lefert, P; Dangl, J L; Becker-André, M; Hahlbrock, K; Schulz, W
1989-01-01
We began characterization of the protein--DNA interactions necessary for UV light induced transcriptional activation of the gene encoding chalcone synthase (CHS), a key plant defense enzyme. Three light dependent in vivo footprints appear on a 90 bp stretch of the CHS promoter with a time course correlated with the onset of CHS transcription. We define a minimal light responsive promoter by functional analysis of truncated CHS promoter fusions with a reporter gene in transient expression experiments in parsley protoplasts. Two of the three footprinted sequence 'boxes' reside within the minimal promoter. Replacement of 10 bp within either of these 'boxes' leads to complete loss of light responsiveness. We conclude that these sequences define the necessary cis elements of the minimal CHS promoter's light responsive element. One of the functionally defined 'boxes' is homologous to an element implicated in regulation of genes involved in photosynthesis. These data represent the first example in a plant defense gene of an induced change in protein--DNA contacts necessary for transcriptional activation. Also, our data argue strongly that divergent light induced biosynthetic pathways share common regulatory units. Images PMID:2566481
Knuuti, Juhani; Ballo, Haitham; Juarez-Orozco, Luis Eduardo; Saraste, Antti; Kolh, Philippe; Rutjes, Anne Wilhelmina Saskia; Jüni, Peter; Windecker, Stephan; Bax, Jeroen J; Wijns, William
2018-05-29
To determine the ranges of pre-test probability (PTP) of coronary artery disease (CAD) in which stress electrocardiogram (ECG), stress echocardiography, coronary computed tomography angiography (CCTA), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and cardiac magnetic resonance (CMR) can reclassify patients into a post-test probability that defines (>85%) or excludes (<15%) anatomically (defined by visual evaluation of invasive coronary angiography [ICA]) and functionally (defined by a fractional flow reserve [FFR] ≤0.8) significant CAD. A broad search in electronic databases until August 2017 was performed. Studies on the aforementioned techniques in >100 patients with stable CAD that utilized either ICA or ICA with FFR measurement as reference, were included. Study-level data was pooled using a hierarchical bivariate random-effects model and likelihood ratios were obtained for each technique. The PTP ranges for each technique to rule-in or rule-out significant CAD were defined. A total of 28 664 patients from 132 studies that used ICA as reference and 4131 from 23 studies using FFR, were analysed. Stress ECG can rule-in and rule-out anatomically significant CAD only when PTP is ≥80% (76-83) and ≤19% (15-25), respectively. Coronary computed tomography angiography is able to rule-in anatomic CAD at a PTP ≥58% (45-70) and rule-out at a PTP ≤80% (65-94). The corresponding PTP values for functionally significant CAD were ≥75% (67-83) and ≤57% (40-72) for CCTA, and ≥71% (59-81) and ≤27 (24-31) for ICA, demonstrating poorer performance of anatomic imaging against FFR. In contrast, functional imaging techniques (PET, stress CMR, and SPECT) are able to rule-in functionally significant CAD when PTP is ≥46-59% and rule-out when PTP is ≤34-57%. The various diagnostic modalities have different optimal performance ranges for the detection of anatomically and functionally significant CAD. Stress ECG appears to have very limited diagnostic power. The selection of a diagnostic technique for any given patient to rule-in or rule-out CAD should be based on the optimal PTP range for each test and on the assumed reference standard.
A topo-graph model for indistinct target boundary definition from anatomical images.
Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael
2018-06-01
It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.
Results of stereotactic radiosurgery for patients with imaging defined cavernous sinus meningiomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, Bruce E.; Stafford, Scott L.
2005-08-01
Introduction: The purpose of this study was to evaluate the efficacy and safety of stereotactic radiosurgery as primary management for patients with imaging defined cavernous sinus meningiomas. Methods: Between 1992 and 2001, 49 patients had radiosurgery for dural-based masses of the cavernous sinus presumed to be meningiomas. The mean patient age was 55.5 years. The mean tumor volume was 10.2 mL; the mean tumor margin dose was 15.9 Gy. The mean follow-up was 58 months (range, 16-144 months). Results: No tumor enlarged after radiosurgery. Twelve of 38 patients (26%) with preexisting diplopia or facial numbness/pain had improvement in cranial nervemore » function. Five patients (10%) had new (n = 3) or worsened (n = 2) trigeminal dysfunction; 2 of these patients (4%) underwent surgery at 20 and 25 months after radiosurgery despite no evidence of tumor progression. Neither patient improved after partial tumor resection. One patient (2%) developed an oculomotor nerve injury. One patient (2%) had an ischemic stroke related to occlusion of the cavernous segment of the internal carotid artery. Event-free survival was 98%, 85%, and 80% at 1, 3, and 7 years after radiosurgery, respectively. Univariate analysis of patient and dosimetric factors found no analyzed factor correlated with postradiosurgical morbidity. Conclusions: Radiosurgery was an effective primary management strategy for patients with an imaging defined cavernous sinus meningioma. Except in situations of symptomatic mass effect, unusual clinical presentation, or atypical imaging features, surgery to confirm the histologic diagnosis is unlikely to provide clinical benefit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji
2012-03-15
Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less
Spot size measurement of a flash-radiography source using the pinhole imaging method
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Xie, Yu-Tong; Liu, Yun-Long; Long, Quan-Hong
2016-07-01
The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.
Image fusion pitfalls for cranial radiosurgery
Jonker, Benjamin P.
2013-01-01
Stereotactic radiosurgery requires imaging to define both the stereotactic space in which the treatment is delivered and the target itself. Image fusion is the process of using rotation and translation to bring a second image set into alignment with the first image set. This allows the potential concurrent use of multiple image sets to define the target and stereotactic space. While a single magnetic resonance imaging (MRI) sequence alone can be used for delineation of the target and fiducials, there may be significant advantages to using additional imaging sets including other MRI sequences, computed tomography (CT) scans, and advanced imaging sets such as catheter-based angiography, diffusor tension imaging-based fiber tracking and positon emission tomography in order to more accurately define the target and surrounding critical structures. Stereotactic space is usually defined by detection of fiducials on the stereotactic head frame or mask system. Unfortunately MRI sequences are susceptible to geometric distortion, whereas CT scans do not face this problem (although they have poorer resolution of the target in most cases). Thus image fusion can allow the definition of stereotactic space to proceed from the geometrically accurate CT images at the same time as using MRI to define the target. The use of image fusion is associated with risk of error introduced by inaccuracies of the fusion process, as well as workflow changes that if not properly accounted for can mislead the treating clinician. The purpose of this review is to describe the uses of image fusion in stereotactic radiosurgery as well as its potential pitfalls. PMID:23682338
Wong, K K; Chondrogiannis, S; Fuster, D; Ruiz, C; Marzola, M C; Giammarile, F; Colletti, P M; Rubello, D
The aim of this review was to evaluate the potential advantages of SPECT/CT hybrid imaging in the management of neuroendocrine tumors, adrenal tumors, pheochromocytomas and paragangliomas. From the collected data, the superiority of fused images was observed as providing both functional/molecular and morphological imaging compared to planar imaging. This provided an improvement in diagnostic imaging, with significant advantages as regards: (1) precise locating of the lesions; (2) an improvement in characterization of the findings, resulting higher specificity, improved sensitivity, and overall greater accuracy, (3) additional anatomical information derived from the CT component; (4) CT-based attenuation correction and potential for volumetric dosimetry calculations, and (5) improvement on the impact on patient management (e.g. in better defining treatment plans, in shortening surgical operating times). It can be concluded that SPECT/CT hybrid imaging provides the nuclear medicine physician with a powerful imaging modality in comparison to planar imaging, providing essential information about the location of lesions, and high quality homogeneous images. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
A Procedure for High Resolution Satellite Imagery Quality Assessment
Crespi, Mattia; De Vendictis, Laura
2009-01-01
Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312
NASA Astrophysics Data System (ADS)
Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.
2016-05-01
Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.
Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks
NASA Astrophysics Data System (ADS)
DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.
2017-03-01
By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.
High-performance image processing architecture
NASA Astrophysics Data System (ADS)
Coffield, Patrick C.
1992-04-01
The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.
Factors predicting language lateralization in patients with perisylvian vascular malformations
Lee, Darrin J.; Pouratian, Nader; Bookheimer, Susan Y.; Martin, Neil A.
2017-01-01
Object The authors conducted a study to determine the factors associated with right-sided language dominance in patients with cerebrovascular malformations. Methods Twenty-two patients with either arteriovenous malformations (AVMs [15 cases]) or cavernous malformations (7 cases) underwent functional MR (fMR) imaging studies of language function; a 3.0-T head-only unit was used. Lateralization indices were calculated separately for Broca and Wernicke areas. Lesion size, Spetzler-Martin grade, and the distance between the lesion and anatomically defined language cortex were calculated for each patient. Results Right-sided language dominance occurred in 5 patients, all of whom had AVMs within 10 mm of canonical language areas. Three patients had right-sided language dominance in the Wernicke area alone whereas 2 had right-sided language dominance in both Broca and Wernicke areas. Wada testing and intraoperative electrocortical stimulation were performed as clinically indicated to corroborate fMR imaging findings. Conclusions The primary factor associated with right-sided language dominance was the AVM being within 10 mm of anatomically defined language areas. The lesion size and the Spetzler-Martin grade were not significant factors. Anomalous fMR imaging laterality was typically confined to the language area proximate to the lesion, with the distal language area remaining in the left hemisphere dominant. This study emphasizes the need to map each case individually in patients with left perisylvian AVMs. Assumptions about eloquent cortex based on anatomical landmarks (a key component of Spetzler-Martin grading) may have to be reconsidered. PMID:20302390
NASA Astrophysics Data System (ADS)
Leow, Alex D.; Zhu, Siwei
2008-03-01
Diffusion weighted MR imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitizing gradients along a minimum of 6 directions, second-order tensors (represetnted by 3-by-3 positive definiite matrices) can be computed to model dominant diffusion processes. However, it has been shown that conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g. crossing fiber tracts. More recently, High Angular Resolution Diffusion Imaging (HARDI) seeks to address this issue by employing more than 6 gradient directions. To account for fiber crossing when analyzing HARDI data, several methodologies have been introduced. For example, q-ball imaging was proposed to approximate Orientation Diffusion Function (ODF). Similarly, the PAS method seeks to reslove the angular structure of displacement probability functions using the maximum entropy principle. Alternatively, deconvolution methods extract multiple fiber tracts by computing fiber orientations using a pre-specified single fiber response function. In this study, we introduce Tensor Distribution Function (TDF), a probability function defined on the space of symmetric and positive definite matrices. Using calculus of variations, we solve for the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, ODF can easily be computed by analytical integration of the resulting displacement probability function. Moreover, principle fiber directions can also be directly derived from the TDF.
Functional CAR models for large spatially correlated functional datasets.
Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S
2016-01-01
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
Theory of reflectivity blurring in seismic depth imaging
NASA Astrophysics Data System (ADS)
Thomson, C. J.; Kitchenside, P. W.; Fletcher, R. P.
2016-05-01
A subsurface extended image gather obtained during controlled-source depth imaging yields a blurred kernel of an interface reflection operator. This reflectivity kernel or reflection function is comprised of the interface plane-wave reflection coefficients and so, in principle, the gather contains amplitude versus offset or angle information. We present a modelling theory for extended image gathers that accounts for variable illumination and blurring, under the assumption of a good migration-velocity model. The method involves forward modelling as well as migration or back propagation so as to define a receiver-side blurring function, which contains the effects of the detector array for a given shot. Composition with the modelled incident wave and summation over shots then yields an overall blurring function that relates the reflectivity to the extended image gather obtained from field data. The spatial evolution or instability of blurring functions is a key concept and there is generally not just spatial blurring in the apparent reflectivity, but also slowness or angle blurring. Gridded blurring functions can be estimated with, for example, a reverse-time migration modelling engine. A calibration step is required to account for ad hoc band limitedness in the modelling and the method also exploits blurring-function reciprocity. To demonstrate the concepts, we show numerical examples of various quantities using the well-known SIGSBEE test model and a simple salt-body overburden model, both for 2-D. The moderately strong slowness/angle blurring in the latter model suggests that the effect on amplitude versus offset or angle analysis should be considered in more realistic structures. Although the description and examples are for 2-D, the extension to 3-D is conceptually straightforward. The computational cost of overall blurring functions implies their targeted use for the foreseeable future, for example, in reservoir characterization. The description is for scalar waves, but the extension to elasticity is foreseeable and we emphasize the separation of the overburden and survey-geometry blurring effects from the nature of the target scatterer.
NASA Astrophysics Data System (ADS)
Donlon, Kevan; Ninkov, Zoran; Baum, Stefi
2016-08-01
Interpixel capacitance (IPC) is a deterministic electronic coupling by which signal generated in one pixel is measured in neighboring pixels. Examination of dark frames from test NIRcam arrays corroborates earlier results and simulations illustrating a signal dependent coupling. When the signal on an individual pixel is larger, the fractional coupling to nearest neighbors is lesser than when the signal is lower. Frames from test arrays indicate a drop in average coupling from approximately 1.0% at low signals down to approximately 0.65% at high signals depending on the particular array in question. The photometric ramifications for this non-uniformity are not fully understood. This non-uniformity intro-duces a non-linearity in the current mathematical model for IPC coupling. IPC coupling has been mathematically formalized as convolution by a blur kernel. Signal dependence requires that the blur kernel be locally defined as a function of signal intensity. Through application of a signal dependent coupling kernel, the IPC coupling can be modeled computationally. This method allows for simultaneous knowledge of the intrinsic parameters of the image scene, the result of applying a constant IPC, and the result of a signal dependent IPC. In the age of sub-pixel precision in astronomy these effects must be properly understood and accounted for in order for the data to accurately represent the object of observation. Implementation of this method is done through python scripted processing of images. The introduction of IPC into simulated frames is accomplished through convolution of the image with a blur kernel whose parameters are themselves locally defined functions of the image. These techniques can be used to enhance the data processing pipeline for NIRcam.
Brooks, Samira A; Khandani, Amir H; Fielding, Julia R; Lin, Weili; Sills, Tiffany; Lee, Yueh; Arreola, Alexandra; Milowsky, Mathew I; Wallen, Eric M; Woods, Michael E; Smith, Angie B; Nielsen, Mathew E; Parker, Joel S; Lalush, David S; Rathmell, W Kimryn
2016-06-15
Clear cell renal cell carcinoma (ccRCC) has recently been redefined as a highly heterogeneous disease. In addition to genetic heterogeneity, the tumor displays risk variability for developing metastatic disease, therefore underscoring the urgent need for tissue-based prognostic strategies applicable to the clinical setting. We have recently employed the novel PET/magnetic resonance (MR) image modality to enrich our understanding of how tumor heterogeneity can relate to gene expression and tumor biology to assist in defining individualized treatment plans. ccRCC patients underwent PET/MR imaging, and these images subsequently used to identify areas of varied intensity for sampling. Samples from 8 patients were subjected to histologic, immunohistochemical, and microarray analysis. Tumor subsamples displayed a range of heterogeneity for common features of hypoxia-inducible factor expression and microvessel density, as well as for features closely linked to metabolic processes, such as GLUT1 and FBP1. In addition, gene signatures linked with disease risk (ccA and ccB) also demonstrated variable heterogeneity, with most tumors displaying a dominant panel of features across the sampled regions. Intriguingly, the ccA- and ccB-classified samples corresponded with metabolic features and functional imaging levels. These correlations further linked a variety of metabolic pathways (i.e., the pentose phosphate and mTOR pathways) with the more aggressive, and glucose avid ccB subtype. Higher tumor dependency on exogenous glucose accompanies the development of features associated with the poor risk ccB subgroup. Linking these panels of features may provide the opportunity to create functional maps to enable enhanced visualization of the heterogeneous biologic processes of an individual's disease. Clin Cancer Res; 22(12); 2950-9. ©2016 AACR. ©2016 American Association for Cancer Research.
NASA Technical Reports Server (NTRS)
Brown, Robert A.; Burrows, Christopher J.
1990-01-01
The best metrology data extant are presently used to estimate the center and wing point-spread function of the HST, in order to ascertain the implications of an observational criterion according to which a faint source's discovery can occur only when the signal recorded near its image's location is sufficiently larger than would be expected in its absence. After defining the maximum star-planet flux ratio, a figure of merit Q, defined as the contrast ratio between a 'best case' planet and the scattered starlight background, is introduced and shown in the HST's case to be unfavorable for extrasolar planet detection.
Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina
2012-01-01
Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with perviously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli. PMID:21884803
Ojemann, George A; Ojemann, Jeffrey; Ramsey, Nick F
2013-01-01
The relation between changes in the blood oxygen dependent metabolic changes imaged by functional magnetic resonance imaging (fMRI) and neural events directly recorded from human cortex from single neurons, local field potentials (LFPs) and electrocorticogram (ECoG) is critically reviewed, based on the published literature including findings from the authors' laboratories. All these data are from special populations, usually patients with medically refractory epilepsy, as this provides the major opportunity for direct cortical neuronal recording in humans. For LFP and ECoG changes are often sought in different frequency bands, for single neurons in frequency of action potentials. Most fMRI studies address issues of functional localization. The relation of those findings to localized changes in neuronal recordings in humans has been established in several ways. Only a few studies have directly compared changes in activity from the same sites in the same individual, using the same behavioral measure. More often the comparison has been between fMRI and electrophysiologic changes in populations recorded from the same functional anatomic system as defined by lesion effects; in a few studies those systems have been defined by fMRI changes such as the "default" network. The fMRI-electrophysiologic relationships have been evaluated empirically by colocalization of significant changes, and by quantitative analyses, often multiple linear regression. There is some evidence that the fMRI-electrophysiology relationships differ in different cortical areas, particularly primary motor and sensory cortices compared to association cortex, but also within areas of association cortex. Although crucial for interpretation of fMRI changes as reflecting neural activity in human cortex, controversy remains as to these relationships. Supported by: Dutch Technology Foundation and University of Utrecht Grant UGT7685, ERC-Advanced grant 320708 (NR) and NIH grant NS065186 (JO).
An iterative shrinkage approach to total-variation image restoration.
Michailovich, Oleg V
2011-05-01
The problem of restoration of digital images from their degraded measurements plays a central role in a multitude of practically important applications. A particularly challenging instance of this problem occurs in the case when the degradation phenomenon is modeled by an ill-conditioned operator. In such a situation, the presence of noise makes it impossible to recover a valuable approximation of the image of interest without using some a priori information about its properties. Such a priori information--commonly referred to as simply priors--is essential for image restoration, rendering it stable and robust to noise. Moreover, using the priors makes the recovered images exhibit some plausible features of their original counterpart. Particularly, if the original image is known to be a piecewise smooth function, one of the standard priors used in this case is defined by the Rudin-Osher-Fatemi model, which results in total variation (TV) based image restoration. The current arsenal of algorithms for TV-based image restoration is vast. In this present paper, a different approach to the solution of the problem is proposed based upon the method of iterative shrinkage (aka iterated thresholding). In the proposed method, the TV-based image restoration is performed through a recursive application of two simple procedures, viz. linear filtering and soft thresholding. Therefore, the method can be identified as belonging to the group of first-order algorithms which are efficient in dealing with images of relatively large sizes. Another valuable feature of the proposed method consists in its working directly with the TV functional, rather then with its smoothed versions. Moreover, the method provides a single solution for both isotropic and anisotropic definitions of the TV functional, thereby establishing a useful connection between the two formulae. Finally, a number of standard examples of image deblurring are demonstrated, in which the proposed method can provide restoration results of superior quality as compared to the case of sparse-wavelet deconvolution.
Foundations for Measuring Volume Rendering Quality
NASA Technical Reports Server (NTRS)
Williams, Peter L.; Uselton, Samuel P.; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
The goal of this paper is to provide a foundation for objectively comparing volume rendered images. The key elements of the foundation are: (1) a rigorous specification of all the parameters that need to be specified to define the conditions under which a volume rendered image is generated; (2) a methodology for difference classification, including a suite of functions or metrics to quantify and classify the difference between two volume rendered images that will support an analysis of the relative importance of particular differences. The results of this method can be used to study the changes caused by modifying particular parameter values, to compare and quantify changes between images of similar data sets rendered in the same way, and even to detect errors in the design, implementation or modification of a volume rendering system. If one has a benchmark image, for example one created by a high accuracy volume rendering system, the method can be used to evaluate the accuracy of a given image.
Ernst, Günther; Guntinas-Lichius, Orlando; Hauberg-Lotte, Lena; Trede, Dennis; Becker, Michael; Alexandrov, Theodore; von Eggeling, Ferdinand
2015-07-01
Despite efforts in localization of key proteins using immunohistochemistry, the complex proteomic composition of pleomorphic adenomas has not yet been characterized. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging) allows label-free and spatially resolved detection of hundreds of proteins directly from tissue sections and of histomorphological regions by finding colocalized molecular signals. Spatial segmentation of MALDI imaging data is an algorithmic method for finding regions of similar proteomic composition as functionally similar regions. We investigated 2 pleomorphic adenomas by applying spatial segmentation to the MALDI imaging data of tissue sections. The spatial segmentation subdivided the tissue in a good accordance with the tissue histology. Numerous molecular signals colocalized with histologically defined tissue regions were found. Our study highlights the cellular transdifferentiation within the pleomorphic adenoma. It could be shown that spatial segmentation of MALDI imaging data is a promising approach in the emerging field of digital histological analysis and characterization of tumors. © 2014 Wiley Periodicals, Inc.
Sahani, Dushyant; D'souza, Roy; Kadavigere, Rajagopal; Hertl, Martin; McGowan, Jennifer; Saini, Sanjay; Mueller, Peter R
2004-01-01
Liver transplantation from a living donor involves removal of part of the donor liver in a fashion that does not endanger its vascular supply or metabolic function. The radiologist plays an important role in evaluation of the living donor to define the conditions under which graft donation is contraindicated and to identify anatomic variations that may alter the surgical approach. In the past, diagnostic work-up of the donor involved costly and invasive tests. Currently, dynamic contrast material-enhanced computed tomography and magnetic resonance (MR) imaging are the imaging tests performed, each of which has advantages and limitations. MR imaging performed with liver-specific and extravascular contrast agents may be used as a single imaging test for comprehensive noninvasive evaluation of living liver transplant donors. MR imaging provides valuable information about variations in the vascular and biliary anatomy and allows evaluation of the hepatic parenchyma for diffuse or focal abnormalities. Copyright RSNA, 2004
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
Error minimizing algorithms for nearest eighbor classifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Reid B; Hush, Don; Zimmer, G. Beate
2011-01-03
Stack Filters define a large class of discrete nonlinear filter first introd uced in image and signal processing for noise removal. In recent years we have suggested their application to classification problems, and investigated their relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous domain version of Stack Filter Classifiers which we call Ordered Hypothesis Machines (OHM), and investigate their relationship to Nearest Neighbor classifiers. We show that OHM classifiers provide a novel framework in which to train Nearest Neighbor type classifiers by minimizing empirical error based loss functions. Wemore » use the framework to investigate a new cost sensitive loss function that allows us to train a Nearest Neighbor type classifier for low false alarm rate applications. We report results on both synthetic data and real-world image data.« less
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-09-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.
Vegas-Sanchez-Ferrero, G; Aja-Fernandez, S; Martin-Fernandez, M; Frangi, A F; Palencia, C
2010-01-01
A novel anisotropic diffusion filter is proposed in this work with application to cardiac ultrasonic images. It includes probabilistic models which describe the probability density function (PDF) of tissues and adapts the diffusion tensor to the image iteratively. For this purpose, a preliminary study is performed in order to select the probability models that best fit the stastitical behavior of each tissue class in cardiac ultrasonic images. Then, the parameters of the diffusion tensor are defined taking into account the statistical properties of the image at each voxel. When the structure tensor of the probability of belonging to each tissue is included in the diffusion tensor definition, a better boundaries estimates can be obtained instead of calculating directly the boundaries from the image. This is the main contribution of this work. Additionally, the proposed method follows the statistical properties of the image in each iteration. This is considered as a second contribution since state-of-the-art methods suppose that noise or statistical properties of the image do not change during the filter process.
Kruschwitz, Johann D; Meyer-Lindenberg, Andreas; Veer, Ilya M; Wackerhagen, Carolin; Erk, Susanne; Mohnke, Sebastian; Pöhland, Lydia; Haddad, Leila; Grimm, Oliver; Tost, Heike; Romanczuk-Seiferth, Nina; Heinz, Andreas; Walter, Martin; Walter, Henrik
2015-10-01
The application of global signal regression (GSR) to resting-state functional magnetic resonance imaging data and its usefulness is a widely discussed topic. In this article, we report an observation of segregated distribution of amygdala resting-state functional connectivity (rs-FC) within the fusiform gyrus (FFG) as an effect of GSR in a multi-center-sample of 276 healthy subjects. Specifically, we observed that amygdala rs-FC was distributed within the FFG as distinct anterior versus posterior clusters delineated by positive versus negative rs-FC polarity when GSR was performed. To characterize this effect in more detail, post hoc analyses revealed the following: first, direct overlays of task-functional magnetic resonance imaging derived face sensitive areas and clusters of positive versus negative amygdala rs-FC showed that the positive amygdala rs-FC cluster corresponded best with the fusiform face area, whereas the occipital face area corresponded to the negative amygdala rs-FC cluster. Second, as expected from a hierarchical face perception model, these amygdala rs-FC defined clusters showed differential rs-FC with other regions of the visual stream. Third, dynamic connectivity analyses revealed that these amygdala rs-FC defined clusters also differed in their rs-FC variance across time to the amygdala. Furthermore, subsample analyses of three independent research sites confirmed reliability of the effect of GSR, as revealed by similar patterns of distinct amygdala rs-FC polarity within the FFG. In this article, we discuss the potential of GSR to segregate face sensitive areas within the FFG and furthermore discuss how our results may relate to the functional organization of the face-perception circuit. © 2015 Wiley Periodicals, Inc.
gr-MRI: A software package for magnetic resonance imaging using software defined radios
NASA Astrophysics Data System (ADS)
Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
D'Andrea, Giancarlo; Trillo', Giuseppe; Picotti, Veronica; Raco, Antonino
2017-01-01
The goal of neurosurgery for cerebral intraparenchymal neoplasms of the eloquent areas is maximal resection with the preservation of normal functions, and minimizing operative risk and postoperative morbidity. Currently, modern technological advances in neuroradiological tools, neuronavigation, and intraoperative magnetic resonance imaging (MRI) have produced great improvements in postoperative morbidity after the surgery of cerebral eloquent areas. The integration of preoperative functional MRI (fMRI), intraoperative MRI (volumetric and diffusion tensor imaging [DTI]), and neuronavigation, defined as "functional neuronavigation" has improved the intraoperative detection of the eloquent areas. We reviewed 142 patients operated between 2004 and 2010 for intraparenchymal neoplasms involving or close to one or more major white matter tracts (corticospinal tract [CST], arcuate fasciculus [AF], optic radiation). All the patients underwent neurosurgery in a BrainSUITE equipped with a 1.5 T MR scanner and were preoperatively studied with fMRI and DTI for tractography for surgical planning. The patients underwent MRI and DTI during surgery after dural opening, after the gross total resection close to the white matter tracts, and at the end of the procedure. We evaluated the impact of fMRI on surgical planning and on the selection of the entry point on the cortical surface. We also evaluated the impact of preoperative and intraoperative DTI, in order to modify the surgical approach, to define the borders of resection, and to correlate this modality with subcortical neurophysiological monitoring. We evaluated the impact of the preoperative fMRI by intraoperative neurophysiological monitoring, performing "neuronavigational" brain mapping, following its data to localize the previously elicited areas after brain shift correction by intraoperative MRI. The mean age of the 142 patients (89 M/53 F) was 59.1 years and the lesion involved the CST in 66 patients (57 %), the language pathways in 24 (21 %), and the optic radiations in 25 (22 %). The integration of tractographic data into the volumetric dataset for neuronavigation was technically possible in all cases. In all patients intraoperative DTI demonstrated a shift of the bundle position caused by the surgical procedure; its dislocation was both outward and inward in the range of +6 mm and -2 mm. We found a high concordance between fMRI/DTI and intraoperative brain mapping; their combination improves the sensitivity of each technique, reducing pitfalls and so defining "functional neuronavigation", increasing the definition of eloquent areas and also reducing the time of surgery.
The effect of fMRI task combinations on determining the hemispheric dominance of language functions.
Niskanen, Eini; Könönen, Mervi; Villberg, Ville; Nissi, Mikko; Ranta-Aho, Perttu; Säisänen, Laura; Karjalainen, Pasi; Aikiä, Marja; Kälviäinen, Reetta; Mervaala, Esa; Vanninen, Ritva
2012-04-01
The purpose of this study is to establish the most suitable combination of functional magnetic resonance imaging (fMRI) language tasks for clinical use in determining language dominance and to define the variability in laterality index (LI) and activation power between different combinations of language tasks. Activation patterns of different fMRI analyses of five language tasks (word generation, responsive naming, letter task, sentence comprehension, and word pair) were defined for 20 healthy volunteers (16 right-handed). LIs and sums of T values were calculated for each task separately and for four combinations of tasks in predefined regions of interest. Variability in terms of activation power and lateralization was defined in each analysis. In addition, the visual assessment of lateralization of language functions based on the individual fMRI activation maps was conducted by an experienced neuroradiologist. A combination analysis of word generation, responsive naming, and sentence comprehension was the most suitable in terms of activation power, robustness to detect essential language areas, and scanning time. In general, combination analyses of the tasks provided higher overall activation levels than single tasks and reduced the number of outlier voxels disturbing the calculation of LI. A combination of auditory and visually presented tasks that activate different aspects of language functions with sufficient activation power may be a useful task battery for determining language dominance in patients.
Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed
2014-01-01
Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID:24779685
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.
1998-01-01
Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and information content contained within these data. A software package known as the Image Characterization and Modeling System (ICAMS) was used to explore how fractal dimension is related to surface texture and pattern. The ICAMS software was verified using simulated images of ideal fractal surfaces with specified dimensions. The fractal dimension for areas of homogeneous land cover in the vicinity of Huntsville, Alabama was measured to investigate the relationship between texture and resolution for different land covers.
Zhang, Jin-Tao; Ma, Shan-Shan; Yip, Sarah W; Wang, Ling-Jiao; Chen, Chao; Yan, Chao-Gan; Liu, Lu; Liu, Ben; Deng, Lin-Yuan; Liu, Qin-Xue; Fang, Xiao-Yi
2015-11-18
Internet gaming disorder (IGD) has become an increasing mental health problem worldwide. Decreased resting-state functional connectivity (rsFC) between the ventral tegmental area (VTA) and the nucleus accumbens (NAcc) has been found in substance use and is thought to play an important role in the development of substance addiction. However, rsFC between the VTA and NAcc in a non-substance addiction, such as IGD, has not been assessed previously. The current study aimed to investigate: (1) if individuals with IGD exhibit alterations in VTA-NAcc functional connectivity; and (2) whether VTA-NAcc functional connectivity is associated with subjective Internet craving. Thirty-five male participants with IGD and 24 healthy control (HC) individuals participated in resting-state functional magnetic resonance imaging. Regions of interest (left NAcc, right NAcc and VTA) were selected based on the literature and were defined by placing spheres centered on Talairach Daemon coordinates. In comparison with HCs, individuals with IGD had significantly decreased rsFC between the VTA and right NAcc. Resting-state functional connectivity strength between the VTA and right NAcc was negatively correlated with self-reported subjective craving for the Internet. These results suggest possible neural functional similarities between individuals with IGD and individuals with substance addictions.
Lee, Heung-Rae
1997-01-01
A three-dimensional image reconstruction method comprises treating the object of interest as a group of elements with a size that is determined by the resolution of the projection data, e.g., as determined by the size of each pixel. One of the projections is used as a reference projection. A fictitious object is arbitrarily defined that is constrained by such reference projection. The method modifies the known structure of the fictitious object by comparing and optimizing its four projections to those of the unknown structure of the real object and continues to iterate until the optimization is limited by the residual sum of background noise. The method is composed of several sub-processes that acquire four projections from the real data and the fictitious object: generate an arbitrary distribution to define the fictitious object, optimize the four projections, generate a new distribution for the fictitious object, and enhance the reconstructed image. The sub-process for the acquisition of the four projections from the input real data is simply the function of acquiring the four projections from the data of the transmitted intensity. The transmitted intensity represents the density distribution, that is, the distribution of absorption coefficients through the object.
Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions
Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken
2011-01-01
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293
Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.
Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken
2011-01-01
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.
Manganese-Enhanced MRI: Biological Applications in Neuroscience.
Malheiros, Jackeline Moraes; Paiva, Fernando Fernandes; Longo, Beatriz Monteiro; Hamani, Clement; Covolan, Luciene
2015-01-01
Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn(2+)) enhances MRI contrast in vivo. Due to similarities between Mn(2+) and calcium (Ca(2+)), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca(2+) channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models.
Yordanova, Yordanka N; Moritz-Gasser, Sylvie; Duffau, Hugues
2011-08-01
It has been demonstrated that an extensive resection (total or subtotal) may significantly increase the overall survival in patients with WHO Grade II gliomas (low-grade gliomas [LGGs]). Yet, recent data have shown that conventional MR imaging underestimates the spatial extent of LGG, since tumor cells were found up to 20 mm around MR imaging abnormalities. Thus, it was hypothesized that an extended resection with a margin beyond MR imaging-defined abnormalities-a "supratotal" resection-might improve the outcome of LGG. However, because of the frequent location of LGG within "eloquent" brain areas, it is often difficult to achieve such a supratotal resection. This could nevertheless be possible when LGGs involve "noneloquent" areas, even in the left dominant hemisphere. The authors report on their use of awake electrical mapping to tailor the resection according to functional boundaries, that is, to pursue the resection beyond MR imaging-defined abnormalities, until corticosubcortical eloquent structures are encountered. Their aim was to apply this reliable surgical technique to LGGs located not within eloquent areas but distant from eloquent areas, to take a margin around the LGG visible on MR imaging while preserving brain function. Fifteen right-handed patients with a total of 17 tumors underwent resection of WHO Grade II gliomas involving nonfunctional areas within the left dominant hemisphere. In all patients, seizures were the initial manifestation of the tumors. Awake surgery with intraoperative electrostimulation was performed in all cases. The resection was continued until the surgeon reached cortical and subcortical areas crucial for brain function, especially language, as defined by the intrasurgical electrical mapping. The extent of resection was evaluated on postoperative FLAIR-weighted MR images. Despite transient neurological worsening in 60% of cases, all patients recovered and returned to a normal life. Seizure control was obtained in all patients with a decrease of antiepileptic drug therapy. Postoperative MR imaging showed that total resection was achieved in all 17 tumors and supratotal resection in 15. The average volume of the postoperative cavity (36.8 cm(3)) was significantly larger than the mean preoperative tumor volume (26.6 cm(3)) (p = 0.009). Neuropathological examination confirmed the diagnosis of WHO Grade II glioma in all cases. The mean duration of postoperative follow-up was 35.7 months (range 6-135 months). Only 4 of 15 patients experienced recurrence (without anaplastic transformation); the average time to recurrence in these cases was 38 months; radiotherapy was performed 6 years after the relapse in 1 case; no other patients received any adjuvant treatment. This series was compared with a control group of 29 patients who had "only" complete resection: anaplastic transformation was observed in 7 cases in the control group but not in any case in the series of patients who underwent supracomplete resection (p = 0.037). Furthermore, adjuvant treatment was administered in 10 patients in the control group compared with 1 patient who underwent supracomplete resection (p = 0.043). These findings support the usefulness of awake surgery with intraoperative functional (language) mapping with the attempt to perform supratotal resection of LGGs involving noneloquent areas in the left hemisphere. Indeed, the extent of resection was significantly increased in all cases but 2, with no additional permanent deficit and with control of seizures in all patients. The goal of supracomplete resection is currently to delay the anaplastic transformation, even if it does not (yet) enable a cure.
Theoretical characterization of annular array as a volumetric optoacoustic ultrasound handheld probe
NASA Astrophysics Data System (ADS)
Kalkhoran, Mohammad Azizian; Vray, Didier
2018-02-01
Optoacoustic ultrasound (OPUS) is a promising hybridized technique for simultaneous acquisition of functional and morphological data. The optical specificity of optoacoustic leverages the diagnostic aptitude of ultrasonography beyond anatomy. However, this integration has been rarely practiced for volumetric imaging. The challenge lies in the effective imaging probes that preserve the functionality of both modalities. The potentials of a sparse annular array for volumetric OPUS imaging are theoretically investigated. In order to evaluate and optimize the performance characteristics of the probe, series of analysis in the framework of system model matrix was carried out. The two criteria of voxel crosstalk and eigenanalysis have been employed to unveil information about the spatial sensitivity, aliasing, and number of definable spatial frequency components. Based on these benchmarks, the optimal parameters for volumetric handheld probe are determined. In particular, the number, size, and the arrangement of the elements and overall aperture dimension were investigated. The result of the numerical simulation suggests that the segmented-annular array of 128 negatively focused elements with 1λ × 20λ size, operating at 5-MHz central frequency showcases a good agreement with the physical requirement of both imaging systems. We hypothesize that these features enable a high-throughput volumetric passive/active ultrasonic imaging system with great potential for clinical applications.
Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept.
Epelbaum, Stéphane; Pinel, Philippe; Gaillard, Raphael; Delmaire, Christine; Perrin, Muriel; Dupont, Sophie; Dehaene, Stanislas; Cohen, Laurent
2008-09-01
Functional neuroimaging and studies of brain-damaged patients made it possible to delineate the main components of the cerebral system for word reading. However, the anatomical connections subtending the flow of information within this network are still poorly defined. Here we study the connectivity of the Visual Word Form Area (VWFA), a pivotal component of the reading network achieving the invariant identification of letter strings, and reproducibly located in the left lateral occipitotemporal sulcus. Diffusion images and functional imaging data were gathered in a patient who developed pure alexia following a small surgical lesion in the vicinity of his VWFA. We had a unique opportunity to compare images obtained before, early after, and late after surgery. Analysis of diffusion images with white matter tractography and voxel-based morphometry showed that the VWFA was mainly linked to the occipital cortex through the inferior longitudinal fasciculus (ILF), and to perisylvian language areas (supramarginal gyrus) through the arcuate fasciculus. After surgery, we observed the progressive and selective degeneration of the ILF, while the VWFA was anatomically intact. This allowed us to establish the critical causal role of this fiber tract in normal reading, and to show that its disruption is one pathophysiological mechanism of pure alexia, thus clarifying a long-standing debate on the role of disconnection in neurocognitive disorders.
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
Magnetic resonance imaging in the assessment of anomalous pulmonary venous connections.
Bernal Garnes, N; Méndez Díaz, C; Soler Fernández, R; Rodríguez García, E
2016-01-01
To illustrate the morphological and functional magnetic resonance findings for total and partial anomalous pulmonary venous connections as well as of the most common complications after surgery. The magnetic resonance findings are fundamental in defining the type of anomalous connection, deciding on the treatment, planning the surgery, and detecting postsurgical complications. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Data management system DIU test system
NASA Technical Reports Server (NTRS)
1976-01-01
An operational and functional description is given of the data management system. Descriptions are included for the test control unit, analog stimulus panel, discrete stimulus panel, and the precision source. The mechanical configuration is defined and illustrated to provide card and component location for modification or repair. The unit level interfaces are mirror images of the DIU interfaces and are described in the Final Technical Report for NASA-MSFC contract NAS8-29155.
Shaw, Leslee J; Blankstein, Ron; Jacobs, Jill E; Leipsic, Jonathon A; Kwong, Raymond Y; Taqueti, Viviany R; Beanlands, Rob S B; Mieres, Jennifer H; Flamm, Scott D; Gerber, Thomas C; Spertus, John; Di Carli, Marcelo F
2017-12-01
The aims of the current statement are to refine the definition of quality in cardiovascular imaging and to propose novel methodological approaches to inform the demonstration of quality in imaging in future clinical trials and registries. We propose defining quality in cardiovascular imaging using an analytical framework put forth by the Institute of Medicine whereby quality was defined as testing being safe, effective, patient-centered, timely, equitable, and efficient. The implications of each of these components of quality health care are as essential for cardiovascular imaging as they are for other areas within health care. Our proposed statement may serve as the foundation for integrating these quality indicators into establishing designations of quality laboratory practices and developing standards for value-based payment reform for imaging services. We also include recommendations for future clinical research to fulfill quality aims within cardiovascular imaging, including clinical hypotheses of improving patient outcomes, the importance of health status as an end point, and deferred testing options. Future research should evolve to define novel methods optimized for the role of cardiovascular imaging for detecting disease and guiding treatment and to demonstrate the role of cardiovascular imaging in facilitating healthcare quality. © 2017 American Heart Association, Inc.
Color object detection using spatial-color joint probability functions.
Luo, Jiebo; Crandall, David
2006-06-01
Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.
Shepherd, T; Teras, M; Beichel, RR; Boellaard, R; Bruynooghe, M; Dicken, V; Gooding, MJ; Julyan, PJ; Lee, JA; Lefèvre, S; Mix, M; Naranjo, V; Wu, X; Zaidi, H; Zeng, Z; Minn, H
2017-01-01
The impact of positron emission tomography (PET) on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the ill-definition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasize spatial accuracy and present a new metric that addresses the lack of unique ground truth. Thirty methods are used at 13 different institutions to contour functional volumes of interest in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualization of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm. PMID:22692898
Inference of neuronal network spike dynamics and topology from calcium imaging data
Lütcke, Henry; Gerhard, Felipe; Zenke, Friedemann; Gerstner, Wulfram; Helmchen, Fritjof
2013-01-01
Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties. PMID:24399936
Graph-based surface reconstruction from stereo pairs using image segmentation
NASA Astrophysics Data System (ADS)
Bleyer, Michael; Gelautz, Margrit
2005-01-01
This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.
Schmid, Anita M.; Victor, Jonathan D.
2014-01-01
When analyzing a visual image, the brain has to achieve several goals quickly. One crucial goal is to rapidly detect parts of the visual scene that might be behaviorally relevant, while another one is to segment the image into objects, to enable an internal representation of the world. Both of these processes can be driven by local variations in any of several image attributes such as luminance, color, and texture. Here, focusing on texture defined by local orientation, we propose that the two processes are mediated by separate mechanisms that function in parallel. More specifically, differences in orientation can cause an object to “pop out” and attract visual attention, if its orientation differs from that of the surrounding objects. Differences in orientation can also signal a boundary between objects and therefore provide useful information for image segmentation. We propose that contextual response modulations in primary visual cortex (V1) are responsible for orientation pop-out, while a different kind of receptive field nonlinearity in secondary visual cortex (V2) is responsible for orientation-based texture segmentation. We review a recent experiment that led us to put forward this hypothesis along with other research literature relevant to this notion. PMID:25064441
Constraint processing in our extensible language for cooperative imaging system
NASA Astrophysics Data System (ADS)
Aoki, Minoru; Murao, Yo; Enomoto, Hajime
1996-02-01
The extensible WELL (Window-based elaboration language) has been developed using the concept of common platform, where both client and server can communicate with each other with support from a communication manager. This extensible language is based on an object oriented design by introducing constraint processing. Any kind of services including imaging in the extensible language is controlled by the constraints. Interactive functions between client and server are extended by introducing agent functions including a request-respond relation. Necessary service integrations are satisfied with some cooperative processes using constraints. Constraints are treated similarly to data, because the system should have flexibilities in the execution of many kinds of services. The similar control process is defined by using intentional logic. There are two kinds of constraints, temporal and modal constraints. Rendering the constraints, the predicate format as the relation between attribute values can be a warrant for entities' validity as data. As an imaging example, a processing procedure of interaction between multiple objects is shown as an image application for the extensible system. This paper describes how the procedure proceeds in the system, and that how the constraints work for generating moving pictures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slosman, D.; Susskind, H.; Bossuyt, A.
1986-03-01
Ventilation imaging can be improved by gating scintigraphic data with the respiratory cycle using temporal Fourier analysis (TFA) to quantify the temporal behavior of the ventilation. Sixteen consecutive images, representing equal-time increments of an average respiratory cycle, were produced by TFA in the posterior view on a pixel-by-pixel basis. An Efficiency Index (EFF), defined as the ratio of the summation of all the differences between maximum and minimum counts for each pixel to that for the entire lung during the respiratory cycle, was derived to describe the pattern of ventilation. The gated ventilation studies were carried out with Xe-127 inmore » 12 subjects: normal lung function (4), small airway disease (2), COPD (5), and restrictive disease (1). EFF for the first three harmonics correlated linearly with FEV1 (r = 0.701, p< 0.01). This approach is suggested as a very sensitive method to quantify the extent and regional distribution of airway obstruction.« less
[Consensus paper on the terminological differentiation of various aspect of body experience].
Röhricht, Frank; Seidler, Klaus-Peter; Joraschky, Peter; Borkenhagen, Ada; Lausberg, Hedda; Lemche, Erwin; Loew, Thomas; Porsch, Udo; Schreiber-Willnow, Karin; Tritt, Karin
2005-01-01
In the past, phenomenological research on subjective body experience was characterised by vaguely defined terminology and methodological shortcomings. The term "body image" has been applied heterogeneously in literature in order to describe a variety of bodily phenomena. In this paper, the German terminology applied to the phenomenology of body experiences is described systematically. In developing a systematic terminology the authors refer to scientific evidence as well as recent reviews, and closely adhere to definitions commonly used in English literature. Different perspectives are utilised, particularly anthropological concepts and theories from developmental and self-psychology. Distinct aspects of body experience are described within the context of a network of external determinants and along a continuum between somatic and mental anchor points. Applying the term "body experience" as umbrella term, different aspects are defined: perceptive (body schema/-perceive), affective (body-cathexis), cognitive-evaluative (body-image, body-ego) and body-consciousness. It is emphasized, that the distinct description of functional levels has to be taken as an approximation of the reality of integrated body experience.
Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics
Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei
2017-01-01
Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870
Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.
Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei
2017-02-03
Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.
Information theoretic analysis of linear shift-invariant edge-detection operators
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2012-06-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.
Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.
Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina
2008-12-01
The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.
NASA/IPAC Infrared Archive's General Image Cutouts Service
NASA Astrophysics Data System (ADS)
Alexov, A.; Good, J. C.
2006-07-01
The NASA/IPAC Infrared Archive (IRSA) ``Cutouts" Service (http://irsa.ipac.caltech.edu/applications/Cutouts) is a general tool for creating small ``cutout" FITS images and JPEGs from collections of data archived at IRSA. This service is a companion to IRSA's Atlas tool (http://irsa.ipac.caltech.edu/applications/Atlas/), which currently serves over 25 different data collections of various sizes and complexity and returns entire images for a user-defined region of the sky. The Cutouts Services sits on top of Atlas and extends the Atlas functionality by generating subimages at locations and sizes requested by the user from images already identified by Atlas. These results can be downloaded individually, in batch mode (using the program wget), or as a tar file. Cutouts re-uses IRSA's software architecture along with the publicly available Montage mosaicking tools. The advantages and disadvantages of this approach to generic cutout serving will be discussed.
[MRI and prostate cancer: a paradigm shift].
Lemaitre, L; Rouvière, O; Penna-Renard, R; Villers, A; Puech, P
2008-09-01
A shift in the use of prostate MR for diagnosis, staging, and pre-treatment planning over the last several years has modified the MR protocols. Classically used to detect extra-prostatic tumor, MR now plays a role for diagnosis (pre-biopsy evaluation in a patient with elevated PSA and suspected cancer in an unusual site), treatment planning (prostate mapping), and follow-up after treatment (evaluation for local recurrence or follow-up after HIFU, radiation therapy, or focal treatment...). Imaging protocols at 1.5T and 3.0T combine morphological T2W imaging with functional sequences (perfusion imaging, diffusion imaging, spectroscopy) using high-resolution phased array pelvic coils or "combined" coils (added endorectal coil). To promote acceptance by clinicians and increased access to patients, the indications for prostate MR must be better defined (and provide useful data to urologists), the cost must be reduced, and results must be more reproducible and standardized.
Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David
2015-01-01
Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.
Neurobiological Risk Factors for Suicide Insights from Brain Imaging
Cox Lippard, Elizabeth T.; Johnston, Jennifer A.Y.; Blumberg, Hilary P.
2014-01-01
Context This article reviews neuroimaging studies on neural circuitry associated with suicide-related thoughts and behaviors to identify areas of convergence in findings. Gaps in the literature for which additional research is needed are identified. Evidence acquisition A PubMed search was conducted and articles published prior to March 2014 were reviewed that compared individuals who made suicide attempts to those with similar diagnoses who had not made attempts or to healthy comparison subjects. Articles on adults with suicidal ideation and adolescents who had made attempts, or with suicidal ideation, were also included. Reviewed imaging modalities included structural magnetic resonance imaging, diffusion tensor imaging, single photon emission computerized tomography, positron emission tomography, and functional magnetic resonance imaging. Evidence synthesis Although many studies include small samples, and subject characteristics and imaging methods vary across studies, there were convergent findings involving the structure and function of frontal neural systems and the serotonergic system. Conclusions These initial neuroimaging studies of suicide behavior have provided promising results. Future neuroimaging efforts could be strengthened by more strategic use of common data elements, and a focus on suicide risk trajectories. At-risk subgroups defined by biopsychosocial risk factors and multidimensional assessment of suicidal thoughts and behaviors may provide a clearer picture of the neural circuitry associated with risk status—both current and lifetime. Also needed are studies investigating neural changes associated with interventions that are effective in risk reduction. PMID:25145733
Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-01-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835
Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-11-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.
Martinez, R; Cole, C; Rozenblit, J; Cook, J F; Chacko, A K
2000-05-01
The US Army Great Plains Regional Medical Command (GPRMC) has a requirement to conform to Department of Defense (DoD) and Army security policies for the Virtual Radiology Environment (VRE) Project. Within the DoD, security policy is defined as the set of laws, rules, and practices that regulate how an organization manages, protects, and distributes sensitive information. Security policy in the DoD is described by the Trusted Computer System Evaluation Criteria (TCSEC), Army Regulation (AR) 380-19, Defense Information Infrastructure Common Operating Environment (DII COE), Military Health Services System Automated Information Systems Security Policy Manual, and National Computer Security Center-TG-005, "Trusted Network Interpretation." These documents were used to develop a security policy that defines information protection requirements that are made with respect to those laws, rules, and practices that are required to protect the information stored and processed in the VRE Project. The goal of the security policy is to provide for a C2-level of information protection while also satisfying the functional needs of the GPRMC's user community. This report summarizes the security policy for the VRE and defines the CORBA security services that satisfy the policy. In the VRE, the information to be protected is embedded into three major information components: (1) Patient information consists of Digital Imaging and Communications in Medicine (DICOM)-formatted fields. The patient information resides in the digital imaging network picture archiving and communication system (DIN-PACS) networks in the database archive systems and includes (a) patient demographics; (b) patient images from x-ray, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US); and (c) prior patient images and related patient history. (2) Meta-Manager information to be protected consists of several data objects. This information is distributed to the Meta-Manager nodes and includes (a) radiologist schedules; (b) modality worklists; (c) routed case information; (d) DIN-PACS and Composite Health Care system (CHCS) messages, and Meta-Manager administrative and security information; and (e) patient case information. (3) Access control and communications security is required in the VRE to control who uses the VRE and Meta-Manager facilities and to secure the messages between VRE components. The CORBA Security Service Specification version 1.5 is designed to allow up to TCSEC's B2-level security for distributed objects. The CORBA Security Service Specification defines the functionality of several security features: identification and authentication, authorization and access control, security auditing, communication security, nonrepudiation, and security administration. This report describes the enhanced security features for the VRE and their implementation using commercial CORBA Security Service software products.
NASA Astrophysics Data System (ADS)
Paino, A.; Keller, J.; Popescu, M.; Stone, K.
2014-06-01
In this paper we present an approach that uses Genetic Programming (GP) to evolve novel feature extraction algorithms for greyscale images. Our motivation is to create an automated method of building new feature extraction algorithms for images that are competitive with commonly used human-engineered features, such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). The evolved feature extraction algorithms are functions defined over the image space, and each produces a real-valued feature vector of variable length. Each evolved feature extractor breaks up the given image into a set of cells centered on every pixel, performs evolved operations on each cell, and then combines the results of those operations for every cell using an evolved operator. Using this method, the algorithm is flexible enough to reproduce both LBP and HOG features. The dataset we use to train and test our approach consists of a large number of pre-segmented image "chips" taken from a Forward Looking Infrared Imagery (FLIR) camera mounted on the hood of a moving vehicle. The goal is to classify each image chip as either containing or not containing a buried object. To this end, we define the fitness of a candidate solution as the cross-fold validation accuracy of the features generated by said candidate solution when used in conjunction with a Support Vector Machine (SVM) classifier. In order to validate our approach, we compare the classification accuracy of an SVM trained using our evolved features with the accuracy of an SVM trained using mainstream feature extraction algorithms, including LBP and HOG.
Knösche, Thomas R; Tittgemeyer, Marc
2011-01-01
This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.
Neely, David; Zarubina, Anna V; Clark, Mark E; Huisingh, Carrie E; Jackson, Gregory R; Zhang, Yuhua; McGwin, Gerald; Curcio, Christine A; Owsley, Cynthia
2017-07-01
To examine the association between subretinal drusenoid deposits (SDDs) identified by multimodal retinal imaging and visual function in older eyes with normal macular health or in the earliest phases of age-related macular degeneration (AMD). Age-related macular degeneration status for each eye was defined according to the Age-Related Eye Disease Study (AREDS) 9-step classification system (normal = Step 1, early AMD = Steps 2-4) based on color fundus photographs. Visual functions measured were best-corrected photopic visual acuity, contrast and light sensitivity, mesopic visual acuity, low-luminance deficit, and rod-mediated dark adaptation. Subretinal drusenoid deposits were identified through multimodal imaging (color fundus photographs, infrared reflectance and fundus autofluorescence images, and spectral domain optical coherence tomography). The sample included 1,202 eyes (958 eyes with normal health and 244 eyes with early AMD). In normal eyes, SDDs were not associated with any visual function evaluated. In eyes with early AMD, dark adaptation was markedly delayed in eyes with SDDs versus no SDD (a 4-minute delay on average), P = 0.0213. However, this association diminished after age adjustment, P = 0.2645. Other visual functions in early AMD eyes were not associated with SDDs. In a study specifically focused on eyes in normal macular health and in the earliest phases of AMD, early AMD eyes with SDDs have slower dark adaptation, largely attributable to the older ages of eyes with SDD; they did not exhibit deficits in other visual functions. Subretinal drusenoid deposits in older eyes in normal macular health are not associated with any visual functions evaluated.
Sabbatini, Amber K; Merck, Lisa H; Froemming, Adam T; Vaughan, William; Brown, Michael D; Hess, Erik P; Applegate, Kimberly E; Comfere, Nneka I
2015-12-01
Patient-centered emergency diagnostic imaging relies on efficient communication and multispecialty care coordination to ensure optimal imaging utilization. The construct of the emergency diagnostic imaging care coordination cycle with three main phases (pretest, test, and posttest) provides a useful framework to evaluate care coordination in patient-centered emergency diagnostic imaging. This article summarizes findings reached during the patient-centered outcomes session of the 2015 Academic Emergency Medicine consensus conference "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The primary objective was to develop a research agenda focused on 1) defining component parts of the emergency diagnostic imaging care coordination process, 2) identifying gaps in communication that affect emergency diagnostic imaging, and 3) defining optimal methods of communication and multidisciplinary care coordination that ensure patient-centered emergency diagnostic imaging. Prioritized research questions provided the framework to define a research agenda for multidisciplinary care coordination in emergency diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
A Electro-Optical Image Algebra Processing System for Automatic Target Recognition
NASA Astrophysics Data System (ADS)
Coffield, Patrick Cyrus
The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.
Roff, E J; Hosking, S L; Barnes, D A
2001-05-01
The recommended contour line (CL) location with the Heidelberg Retina Tomograph (HRT) is on the inner edge of Elschnig's scleral ring. This study investigated HRT parameter reproducibility when: (i) the CL size is altered relative to Elschnig's ring; (ii) the CL is either redrawn or imported between images. Using the HRT, seven 10 degrees images were acquired for 10 normal volunteers and 10 primary open angle glaucoma (POAG) subjects. A CL was drawn on one image for each subject using Elschnig's scleral ring for reference and imported into subsequent images. The CL diameter was then (a) increased by 50 microns; (b) increased by 100 microns; and (c) decreased by 50 microns. To investigate the effect of the method of contour line transfer between images a CL was: (1) defined for one image and imported to 6 subsequent images; (2) drawn separately for each image. Parameter variability improved as the size of the CL increased for the normal group relative to Elschnig's ring but was unchanged in the POAG group. The export/import function (method 1) resulted in better parameter reproducibility than the redrawing method for both groups. The exporting and importing function resulted in better parameter variability for both subject groups and should be used for transferring CLs across images for the same subject. Increasing the overall CL size relative to Elschnig's scleral ring improved the reproducibility of the measured parameters in the normal group. No significant difference in parameter variability was observed for the POAG group. This suggests that the reproducibility of HRT images are affected more by the variation in topography between images than change in CL definition.
Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl
2016-09-01
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.
Bidirectional Elastic Image Registration Using B-Spline Affine Transformation
Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao
2014-01-01
A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210
Feasibility test of a solid state spin-scan photo-imaging system
NASA Technical Reports Server (NTRS)
Laverty, N. P.
1973-01-01
The feasibility of using a solid-state photo-imaging system to obtain resolution imagery from a Pioneer-type spinning spacecraft in future exploratory missions to the outer planets is discussed. Evaluation of the photo-imaging system performance, based on electrical video signal analysis recorded on magnetic tape, shows that the signal-to-noise (S/N) ratios obtained at low spatial frequencies exceed the anticipated performance and that measured modulation transfer functions exhibited some degradation in comparison with the estimated values, primarily owing to the difficulty in obtaining a precise focus of the optical system in the laboratory with the test patterns in close proximity to the objective lens. A preliminary flight model design of the photo-imaging system is developed based on the use of currently available phototransistor arrays. Image quality estimates that will be obtained are presented in terms of S/N ratios and spatial resolution for the various planets and satellites. Parametric design tradeoffs are also defined.
Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François
2017-07-27
Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila . These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision.
GREAT: a gradient-based color-sampling scheme for Retinex.
Lecca, Michela; Rizzi, Alessandro; Serapioni, Raul Paolo
2017-04-01
Modeling the local color spatial distribution is a crucial step for the algorithms of the Milano Retinex family. Here we present GREAT, a novel, noise-free Milano Retinex implementation based on an image-aware spatial color sampling. For each channel of a color input image, GREAT computes a 2D set of edges whose magnitude exceeds a pre-defined threshold. Then GREAT re-scales the channel intensity of each image pixel, called target, by the average of the intensities of the selected edges weighted by a function of their positions, gradient magnitudes, and intensities relative to the target. In this way, GREAT enhances the input image, adjusting its brightness, contrast and dynamic range. The use of the edges as pixels relevant to color filtering is justified by the importance that edges play in human color sensation. The name GREAT comes from the expression "Gradient RElevAnce for ReTinex," which refers to the threshold-based definition of a gradient relevance map for edge selection and thus for image color filtering.
Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli
2012-07-21
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.
Cheng, Christopher P; Parker, David; Taylor, Charles A
2002-09-01
Arterial wall shear stress is hypothesized to be an important factor in the localization of atherosclerosis. Current methods to compute wall shear stress from magnetic resonance imaging (MRI) data do not account for flow profiles characteristic of pulsatile flow in noncircular vessel lumens. We describe a method to quantify wall shear stress in large blood vessels by differentiating velocity interpolation functions defined using cine phase-contrast MRI data on a band of elements in the neighborhood of the vessel wall. Validation was performed with software phantoms and an in vitro flow phantom. At an image resolution corresponding to in vivo imaging data of the human abdominal aorta, time-averaged, spatially averaged wall shear stress for steady and pulsatile flow were determined to be within 16% and 23% of the analytic solution, respectively. These errors were reduced to 5% and 8% with doubling in image resolution. For the pulsatile software phantom, the oscillation in shear stress was predicted to within 5%. The mean absolute error of circumferentially resolved shear stress for the nonaxisymmetric phantom decreased from 28% to 15% with a doubling in image resolution. The irregularly shaped phantom and in vitro investigation demonstrated convergence of the calculated values with increased image resolution. We quantified the shear stress at the supraceliac and infrarenal regions of a human abdominal aorta to be 3.4 and 2.3 dyn/cm2, respectively.
Veatch, Sarah L.; Machta, Benjamin B.; Shelby, Sarah A.; Chiang, Ethan N.; Holowka, David A.; Baird, Barbara A.
2012-01-01
We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent self-clustering and to calculate the effective lateral resolution of an image. This treatment applies to distributions of proteins and lipids in cell membranes, where there is significant interest in using electron microscopy and super-resolution fluorescence localization techniques to probe membrane heterogeneity. When images are quantified using pair auto-correlation functions, the magnitude of apparent clustering arising from over-counting varies inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. In contrast, we demonstrate that over-counting does not give rise to apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (FcεRI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM/dSTORM) and scanning electron microscopy (SEM). We find that apparent clustering of FcεRI-bound IgE is dominated by over-counting labels on individual complexes when IgE is directly conjugated to organic fluorophores. We verify this observation by measuring pair cross-correlation functions between two distinguishably labeled pools of IgE-FcεRI on the cell surface using both imaging methods. After correcting for over-counting, we observe weak but significant self-clustering of IgE-FcεRI in fluorescence localization measurements, and no residual self-clustering as detected with SEM. We also apply this method to quantify IgE-FcεRI redistribution after deliberate clustering by crosslinking with two distinct trivalent ligands of defined architectures, and we evaluate contributions from both over-counting of labels and redistribution of proteins. PMID:22384026
Breast tissue stiffness estimation for surgical guidance using gravity-induced excitation
NASA Astrophysics Data System (ADS)
Griesenauer, Rebekah H.; Weis, Jared A.; Arlinghaus, Lori R.; Meszoely, Ingrid M.; Miga, Michael I.
2017-06-01
Tissue stiffness interrogation is fundamental in breast cancer diagnosis and treatment. Furthermore, biomechanical models for predicting breast deformations have been created for several breast cancer applications. Within these applications, constitutive mechanical properties must be defined and the accuracy of this estimation directly impacts the overall performance of the model. In this study, we present an image-derived computational framework to obtain quantitative, patient specific stiffness properties for application in image-guided breast cancer surgery and interventions. The method uses two MR acquisitions of the breast in different supine gravity-loaded configurations to fit mechanical properties to a biomechanical breast model. A reproducibility assessment of the method was performed in a test-retest study using healthy volunteers and was further characterized in simulation. In five human data sets, the within subject coefficient of variation ranged from 10.7% to 27% and the intraclass correlation coefficient ranged from 0.91-0.944 for assessment of fibroglandular and adipose tissue stiffness. In simulation, fibroglandular content and deformation magnitude were shown to have significant effects on the shape and convexity of the objective function defined by image similarity. These observations provide an important step forward in characterizing the use of nonrigid image registration methodologies in conjunction with biomechanical models to estimate tissue stiffness. In addition, the results suggest that stiffness estimation methods using gravity-induced excitation can reliably and feasibly be implemented in breast cancer surgery/intervention workflows.
Breast tissue stiffness estimation for surgical guidance using gravity-induced excitation.
Griesenauer, Rebekah H; Weis, Jared A; Arlinghaus, Lori R; Meszoely, Ingrid M; Miga, Michael I
2017-06-21
Tissue stiffness interrogation is fundamental in breast cancer diagnosis and treatment. Furthermore, biomechanical models for predicting breast deformations have been created for several breast cancer applications. Within these applications, constitutive mechanical properties must be defined and the accuracy of this estimation directly impacts the overall performance of the model. In this study, we present an image-derived computational framework to obtain quantitative, patient specific stiffness properties for application in image-guided breast cancer surgery and interventions. The method uses two MR acquisitions of the breast in different supine gravity-loaded configurations to fit mechanical properties to a biomechanical breast model. A reproducibility assessment of the method was performed in a test-retest study using healthy volunteers and was further characterized in simulation. In five human data sets, the within subject coefficient of variation ranged from 10.7% to 27% and the intraclass correlation coefficient ranged from 0.91-0.944 for assessment of fibroglandular and adipose tissue stiffness. In simulation, fibroglandular content and deformation magnitude were shown to have significant effects on the shape and convexity of the objective function defined by image similarity. These observations provide an important step forward in characterizing the use of nonrigid image registration methodologies in conjunction with biomechanical models to estimate tissue stiffness. In addition, the results suggest that stiffness estimation methods using gravity-induced excitation can reliably and feasibly be implemented in breast cancer surgery/intervention workflows.
Greenfield, Susan A.; Badin, Antoine-Scott; Ferrati, Giovanni; Devonshire, Ian M.
2017-01-01
Abstract. Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between “bottom-up” cellular mechanisms and “top-down” cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo, depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness. PMID:28573153
Greenfield, Susan A; Badin, Antoine-Scott; Ferrati, Giovanni; Devonshire, Ian M
2017-07-01
Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between "bottom-up" cellular mechanisms and "top-down" cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo , depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness.
Pixel electronic noise as a function of position in an active matrix flat panel imaging array
NASA Astrophysics Data System (ADS)
Yazdandoost, Mohammad Y.; Wu, Dali; Karim, Karim S.
2010-04-01
We present an analysis of output referred pixel electronic noise as a function of position in the active matrix array for both active and passive pixel architectures. Three different noise sources for Active Pixel Sensor (APS) arrays are considered: readout period noise, reset period noise and leakage current noise of the reset TFT during readout. For the state-of-the-art Passive Pixel Sensor (PPS) array, the readout noise of the TFT switch is considered. Measured noise results are obtained by modeling the array connections with RC ladders on a small in-house fabricated prototype. The results indicate that the pixels in the rows located in the middle part of the array have less random electronic noise at the output of the off-panel charge amplifier compared to the ones in rows at the two edges of the array. These results can help optimize for clearer images as well as help define the region-of-interest with the best signal-to-noise ratio in an active matrix digital flat panel imaging array.
Recovering the 3d Pose and Shape of Vehicles from Stereo Images
NASA Astrophysics Data System (ADS)
Coenen, M.; Rottensteiner, F.; Heipke, C.
2018-05-01
The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.
New technologies to investigate the brain-gut axis
Sharma, Abhishek; Lelic, Dina; Brock, Christina; Paine, Peter; Aziz, Qasim
2009-01-01
Functional gastrointestinal disorders are commonly encountered in clinical practice, and pain is their commonest presenting symptom. In addition, patients with these disorders often demonstrate a heightened sensitivity to experimental visceral stimulation, termed visceral pain hypersensitivity that is likely to be important in their pathophysiology. Knowledge of how the brain processes sensory information from visceral structures is still in its infancy. However, our understanding has been propelled by technological imaging advances such as functional Magnetic Resonance Imaging, Positron Emission Tomography, Magnetoencephalography, and Electroencephalography (EEG). Numerous human studies have non-invasively demonstrated the complexity involved in functional pain processing, and highlighted a number of subcortical and cortical regions involved. This review will focus on the neurophysiological pathways (primary afferents, spinal and supraspinal transmission), brain-imaging techniques and the influence of endogenous and psychological processes in healthy controls and patients suffering from functional gastrointestinal disorders. Special attention will be paid to the newer EEG source analysis techniques. Understanding the phenotypic differences that determine an individual’s response to injurious stimuli could be the key to understanding why some patients develop pain and hyperalgesia in response to inflammation/injury while others do not. For future studies, an integrated approach is required incorporating an individual’s psychological, autonomic, neuroendocrine, neurophysiological, and genetic profile to define phenotypic traits that may be at greater risk of developing sensitised states in response to gut inflammation or injury. PMID:19132768
Vazquez, Alberto L.; Fukuda, Mitsuhiro; Crowley, Justin C.; Kim, Seong-Gi
2014-01-01
Hemodynamic responses are commonly used to map brain activity; however, their spatial limits have remained unclear because of the lack of a well-defined and malleable spatial stimulus. To examine the properties of neural activity and hemodynamic responses, multiunit activity, local field potential, cerebral blood volume (CBV)-sensitive optical imaging, and laser Doppler flowmetry were measured from the somatosensory cortex of transgenic mice expressing Channelrhodopsin-2 in cortex Layer 5 pyramidal neurons. The magnitude and extent of neural and hemodynamic responses were modulated using different photo-stimulation parameters and compared with those induced by somatosensory stimulation. Photo-stimulation-evoked spiking activity across cortical layers was similar to forelimb stimulation, although their activity originated in different layers. Hemodynamic responses induced by forelimb- and photo-stimulation were similar in magnitude and shape, although the former were slightly larger in amplitude and wider in extent. Altogether, the neurovascular relationship differed between these 2 stimulation pathways, but photo-stimulation-evoked changes in neural and hemodynamic activities were linearly correlated. Hemodynamic point spread functions were estimated from the photo-stimulation data and its full-width at half-maximum ranged between 103 and 175 µm. Therefore, submillimeter functional structures separated by a few hundred micrometers may be resolved using hemodynamic methods, such as optical imaging and functional magnetic resonance imaging. PMID:23761666
Demonstration of automated proximity and docking technologies
NASA Astrophysics Data System (ADS)
Anderson, Robert L.; Tsugawa, Roy K.; Bryan, Thomas C.
An autodock was demonstrated using straightforward techniques and real sensor hardware. A simulation testbed was established and validated. The sensor design was refined with improved optical performance and image processing noise mitigation techniques, and the sensor is ready for production from off-the-shelf components. The autonomous spacecraft architecture is defined. The areas of sensors, docking hardware, propulsion, and avionics are included in the design. The Guidance Navigation and Control architecture and requirements are developed. Modular structures suitable for automated control are used. The spacecraft system manager functions including configuration, resource, and redundancy management are defined. The requirements for autonomous spacecraft executive are defined. High level decisionmaking, mission planning, and mission contingency recovery are a part of this. The next step is to do flight demonstrations. After the presentation the following question was asked. How do you define validation? There are two components to validation definition: software simulation with formal and vigorous validation, and hardware and facility performance validated with respect to software already validated against analytical profile.
1979-12-01
used to reduce costs ). The orbital data from the prototype ion composi- tion telescope will not only be of great scientific interest -pro- viding for...active device whose transfer function may be almost arbitrarily defined, and cost and production trends permit contemplation of networks containing...developing solid-state television camera systems based on CCD imagers. RICA hopes to produce a $500 color camera for consumer use. Fairchild and Texas
ERIC Educational Resources Information Center
Ship, Noam J.; Zamble, Deborah B.
2005-01-01
The self directed study of a 3D image of a biomolecule stresses the complex nature of the intra- and intermolecular interactions that come together to define its structure. This is made up of a series of in vitro experiments with a wild-type and mutants forms of human carbonic anhydrase II (hCAII) that examine the structure function relationship…
1992-12-01
36 V.33. Coe ncint of De minstioi ........................ 37 V3A. F-Raio .................................... 37 V3.5... de ations. Instructions ae defined as lines of code or card images. Thus, a line containin two or mome souce statements counts as one instruction; a...understand the productivity paradox, recall de concept of virtual machines. When a higher level machine groups ogether many instructm of a lower level
Exploring structure and function of sensory cortex with 7T MRI.
Schluppeck, Denis; Sanchez-Panchuelo, Rosa-Maria; Francis, Susan T
2018-01-01
In this paper, we present an overview of 7T magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) - defined here as 7T and above - has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area. Copyright © 2017 Elsevier Inc. All rights reserved.
Using human brain imaging studies as a guide towards animal models of schizophrenia
BOLKAN, Scott S.; DE CARVALHO, Fernanda D.; KELLENDONK, Christoph
2015-01-01
Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points towards the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801
BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.
Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D
2015-06-12
During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. Copyright © 2015, American Association for the Advancement of Science.
Lin, Zi-Jing; Li, Lin; Cazzell, Mary; Liu, Hanli
2014-08-01
Diffuse optical tomography (DOT) is a variant of functional near infrared spectroscopy and has the capability of mapping or reconstructing three dimensional (3D) hemodynamic changes due to brain activity. Common methods used in DOT image analysis to define brain activation have limitations because the selection of activation period is relatively subjective. General linear model (GLM)-based analysis can overcome this limitation. In this study, we combine the atlas-guided 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with risk decision-making processes. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The Balloon Analog Risk Task (BART) is a valid experimental model and has been commonly used to assess human risk-taking actions and tendencies while facing risks. We have used the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making from 37 human participants (22 males and 15 females). Voxel-wise GLM analysis was performed after a human brain atlas template and a depth compensation algorithm were combined to form atlas-guided DOT images. In this work, we wish to demonstrate the excellence of using voxel-wise GLM analysis with DOT to image and study cognitive functions in response to risk decision-making. Results have shown significant hemodynamic changes in the dorsal lateral prefrontal cortex (DLPFC) during the active-choice mode and a different activation pattern between genders; these findings correlate well with published literature in functional magnetic resonance imaging (fMRI) and fNIRS studies. Copyright © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
A fast and efficient segmentation scheme for cell microscopic image.
Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H
2007-04-27
Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.
Invariant polarimetric contrast parameters of light with Gaussian fluctuations in three dimensions.
Réfrégier, Philippe; Roche, Muriel; Goudail, François
2006-01-01
We propose a rigorous definition of the minimal set of parameters that characterize the difference between two partially polarized states of light whose electric fields vary in three dimensions with Gaussian fluctuations. Although two such states are a priori defined by eighteen parameters, we demonstrate that the performance of processing tasks such as detection, localization, or segmentation of spatial or temporal polarization variations is uniquely determined by three scalar functions of these parameters. These functions define a "polarimetric contrast" that simplifies the analysis and the specification of processing techniques on polarimetric signals and images. This result can also be used to analyze the definition of the degree of polarization of a three-dimensional state of light with Gaussian fluctuations in comparison, with respect to its polarimetric contrast parameters, with a totally depolarized light. We show that these contrast parameters are a simple function of the degrees of polarization previously proposed by Barakat [Opt. Acta 30, 1171 (1983)] and Setälä et al. [Phys. Rev. Lett. 88, 123902 (2002)]. Finally, we analyze the dimension of the set of contrast parameters in different particular situations.
Brown, David A; Di Cerbo, Vincenzo; Feldmann, Angelika; Ahn, Jaewoo; Ito, Shinsuke; Blackledge, Neil P; Nakayama, Manabu; McClellan, Michael; Dimitrova, Emilia; Turberfield, Anne H; Long, Hannah K; King, Hamish W; Kriaucionis, Skirmantas; Schermelleh, Lothar; Kutateladze, Tatiana G; Koseki, Haruhiko; Klose, Robert J
2017-09-05
Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Sowers, Maryfran; Karvonen-Gutierrez, Carrie A; Jacobson, Jon A; Jiang, Yebin; Yosef, Matheos
2011-02-02
The prevalence of knee osteoarthritis is traditionally based on radiographic findings, but magnetic resonance imaging is now being used to provide better visualization of bone, cartilage, and soft tissues as well as the patellar compartment. The goal of this study was to estimate the prevalences of knee features defined on magnetic resonance imaging in a population and to relate these abnormalities to knee osteoarthritis severity scores based on radiographic findings, physical functioning, and reported knee pain in middle-aged women. Magnetic resonance images of the knee were evaluated for the location and severity of cartilage defects, bone marrow lesions, osteophytes, subchondral cysts, meniscal and/or ligamentous tears, effusion, and synovitis among 363 middle-aged women (724 knees) from the Michigan Study of Women's Health Across the Nation. These findings were related to Kellgren-Lawrence osteoarthritis severity scores from radiographs, self-reported knee pain, self-reported knee injury, perception of physical functioning, and physical performance measures to assess mobility. Radiographs, physical performance assessment, and interviews were undertaken at the 1996 study baseline and again (with the addition of magnetic resonance imaging assessment) at the follow-up visit during 2007 to 2008. The prevalence of moderate-to-severe knee osteoarthritis changed from 3.7% at the baseline assessment to 26.7% at the follow-up visit eleven years later. Full-thickness cartilage defects of the medial, lateral, and patellofemoral compartments were present in 14.5% (105 knees), 4.6% (thirty-three knees), and 26.2% (190 knees), respectively. Synovitis was identified in 24.7% (179) of the knees, and joint effusions were observed in 70% (507 knees); 21.7% (157) of the knees had complex or macerated meniscal tears. Large osteophytes, marked synovitis, macerated meniscal tears, and full-thickness tibial cartilage defects were associated with increased odds of knee pain and with 30% to 40% slower walking and stair-climbing times. Middle-aged women have a high prevalence of moderate-to-severe knee osteoarthritis corroborated by strong associations with cartilage defects, complex and macerated meniscal tears, osteophytes and synovitis, knee pain, and lower mobility levels.
Weiner, Kevin S.; Grill-Spector, Kalanit
2011-01-01
The prevailing view of human lateral occipitotemporal cortex (LOTC) organization suggests a single area selective for images of the human body (extrastriate body area, EBA) that highly overlaps with the human motion-selective complex (hMT+). Using functional magnetic resonance imaging with higher resolution (1.5mm voxels) than past studies (3–4mm voxels), we examined the fine-scale spatial organization of these activations relative to each other, as well as to visual field maps in LOTC. Rather than one contiguous EBA highly overlapping hMT+, results indicate three limb-selective activations organized in a crescent surrounding hMT+: (1) an activation posterior to hMT+ on the lateral occipital sulcus/middle occipital gyrus (LOS/MOG) overlapping the lower vertical meridian shared between visual field maps LO-2 and TO-1, (2) an activation anterior to hMT+ on the middle temporal gyrus (MTG) consistently overlapping the lower vertical meridian of TO-2 and extending outside presently defined visual field maps, and (3) an activation inferior to hMT+ on the inferotemporal gyrus (ITG) overlapping the parafoveal representation of the TO cluster. This crescent organization of limb-selective activations surrounding hMT+ is reproducible over a span of three years and is consistent across different image types used for localization. Further, these regions exhibit differential position properties: preference for contralateral image presentation decreases and preference for foveal presentation increases from the limb-selective LOS to the MTG. Finally, the relationship between limb-selective activations and visual field maps extends to the dorsal stream where a posterior IPS activation overlaps V7. Overall, our measurements demonstrate a series of LOTC limb-selective activations that 1) have separate anatomical and functional boundaries, 2) overlap distinct visual field maps, and 3) illustrate differential position properties. These findings indicate that category selectivity alone is an insufficient organization principle for defining brain areas. Instead, multiple properties are necessary in order to parcellate and understand the functional organization of high-level visual cortex. PMID:21439386
Peri, Eitan; Chen, E. Elinor; Ben-Jacob, Eshel; Gomez, Christopher M.
2011-01-01
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of cerebellar degenerative disorders, characterized by progressive gait unsteadiness, hand incoordination, and dysarthria. The mutational mechanism in SCA1, a dominantly inherited form of SCA, consists of an expanded trinucleotide CAG repeat. In SCA1, there is loss of Purkinje cells, neuronal loss in dentate nucleus, olives, and pontine nuclei. In the present study, we sought to apply intrinsic functional connectivity analysis combined with diffusion tensor imaging to define the state of cerebellar connectivity in SCA1. Our results on the intrinsic functional connectivity in lateral cerebellum and thalamus showed progressive organizational changes in SCA1 noted as a progressive increase in the absolute value of the correlation coefficients. In the lateral cerebellum, the anatomical organization of functional clusters seen as parasagittal bands in controls is lost, changing to a patchy appearance in SCA1. Lastly, only fractional anisotropy in the superior peduncle and changes in functional organization in thalamus showed a linear dependence to duration and severity of disease. The present pilot work represents an initial effort describing connectivity biomarkers of disease progression in SCA1. The functional changes detected with intrinsic functional analysis and diffusion tensor imaging suggest that disease progression can be analyzed as a disconnection syndrome. PMID:20886327
Ruytenberg, Thomas; Verbist, Berit M.; Vonk-Van Oosten, Jordi; Astreinidou, Eleftheria; Sjögren, Elisabeth V.; Webb, Andrew G.
2018-01-01
As the benefits, limitations, and contraindications of transoral laser microsurgery (TLM) in glottic carcinoma treatments become better defined, pretreatment imaging has become more important to assess the case-specific suitability of TLM and to predict functional outcomes both for treatment consideration and patient counseling. Magnetic resonance imaging (MRI) is the preferred modality to image such laryngeal tumors, even though imaging the larynx using MRI can be difficult. The first challenge is that there are no commercial radiofrequency (RF) coils that are specifically designed for imaging the larynx, and performance in terms of coverage and signal-to-noise ratio is compromised using general-purpose RF coils. Second, motion in the neck region induced by breathing, swallowing, and vessel pulsation can induce severe image artifacts, sometimes rendering the images unusable. In this paper, we design a dedicated RF coil array, which allows high quality high-resolution imaging of the larynx. In addition, we show that introducing respiratory-triggered acquisition improves the diagnostic quality of the images by minimizing breathing and swallowing artifacts. Together, these developments enable robust, essentially artifact-free images of the full larynx with an isotropic resolution of 1 mm to be acquired within a few minutes. PMID:29928638
Twistor interpretation of slice regular functions
NASA Astrophysics Data System (ADS)
Altavilla, Amedeo
2018-01-01
Given a slice regular function f : Ω ⊂ H → H, with Ω ∩ R ≠ ∅, it is possible to lift it to surfaces in the twistor space CP3 of S4 ≃ H ∪ { ∞ } (see Gentili et al., 2014). In this paper we show that the same result is true if one removes the hypothesis Ω ∩ R ≠ ∅ on the domain of the function f. Moreover we find that if a surface S ⊂CP3 contains the image of the twistor lift of a slice regular function, then S has to be ruled by lines. Starting from these results we find all the projective classes of algebraic surfaces up to degree 3 in CP3 that contain the lift of a slice regular function. In addition we extend and further explore the so-called twistor transform, that is a curve in Gr2(C4) which, given a slice regular function, returns the arrangement of lines whose lift carries on. With the explicit expression of the twistor lift and of the twistor transform of a slice regular function we exhibit the set of slice regular functions whose twistor transform describes a rational line inside Gr2(C4) , showing the role of slice regular functions not defined on R. At the end we study the twistor lift of a particular slice regular function not defined over the reals. This example shows the effectiveness of our approach and opens some questions.
Text-image alignment for historical handwritten documents
NASA Astrophysics Data System (ADS)
Zinger, S.; Nerbonne, J.; Schomaker, L.
2009-01-01
We describe our work on text-image alignment in context of building a historical document retrieval system. We aim at aligning images of words in handwritten lines with their text transcriptions. The images of handwritten lines are automatically segmented from the scanned pages of historical documents and then manually transcribed. To train automatic routines to detect words in an image of handwritten text, we need a training set - images of words with their transcriptions. We present our results on aligning words from the images of handwritten lines and their corresponding text transcriptions. Alignment based on the longest spaces between portions of handwriting is a baseline. We then show that relative lengths, i.e. proportions of words in their lines, can be used to improve the alignment results considerably. To take into account the relative word length, we define the expressions for the cost function that has to be minimized for aligning text words with their images. We apply right to left alignment as well as alignment based on exhaustive search. The quality assessment of these alignments shows correct results for 69% of words from 100 lines, or 90% of partially correct and correct alignments combined.
Measuring Brain Connectivity: Diffusion Tensor Imaging Validates Resting State Temporal Correlations
Skudlarski, Pawel; Jagannathan, Kanchana; Calhoun, Vince D.; Hampson, Michelle; Skudlarska, Beata A.; Pearlson, Godfrey
2015-01-01
Diffusion tensor imaging (DTI) and resting state temporal correlations (RSTC) are two leading techniques for investigating the connectivity of the human brain. They have been widely used to investigate the strength of anatomical and functional connections between distant brain regions in healthy subjects, and in clinical populations. Though they are both based on magnetic resonance imaging (MRI) they have not yet been compared directly. In this work both techniques were employed to create global connectivity matrices covering the whole brain gray matter. This allowed for direct comparisons between functional connectivity measured by RSTC with anatomical connectivity quantified using DTI tractography. We found that connectivity matrices obtained using both techniques showed significant agreement. Connectivity maps created for a priori defined anatomical regions showed significant correlation, and furthermore agreement was especially high in regions showing strong overall connectivity, such as those belonging to the default mode network. Direct comparison between functional RSTC and anatomical DTI connectivity, presented here for the first time, links two powerful approaches for investigating brain connectivity and shows their strong agreement. It provides a crucial multi-modal validation for resting state correlations as representing neuronal connectivity. The combination of both techniques presented here allows for further combining them to provide richer representation of brain connectivity both in the healthy brain and in clinical conditions. PMID:18771736
Skudlarski, Pawel; Jagannathan, Kanchana; Calhoun, Vince D; Hampson, Michelle; Skudlarska, Beata A; Pearlson, Godfrey
2008-11-15
Diffusion tensor imaging (DTI) and resting state temporal correlations (RSTC) are two leading techniques for investigating the connectivity of the human brain. They have been widely used to investigate the strength of anatomical and functional connections between distant brain regions in healthy subjects, and in clinical populations. Though they are both based on magnetic resonance imaging (MRI) they have not yet been compared directly. In this work both techniques were employed to create global connectivity matrices covering the whole brain gray matter. This allowed for direct comparisons between functional connectivity measured by RSTC with anatomical connectivity quantified using DTI tractography. We found that connectivity matrices obtained using both techniques showed significant agreement. Connectivity maps created for a priori defined anatomical regions showed significant correlation, and furthermore agreement was especially high in regions showing strong overall connectivity, such as those belonging to the default mode network. Direct comparison between functional RSTC and anatomical DTI connectivity, presented here for the first time, links two powerful approaches for investigating brain connectivity and shows their strong agreement. It provides a crucial multi-modal validation for resting state correlations as representing neuronal connectivity. The combination of both techniques presented here allows for further combining them to provide richer representation of brain connectivity both in the healthy brain and in clinical conditions.
NASA Technical Reports Server (NTRS)
Choi, Taeyong; Xiong, Xiaoxiong; Wang, Zhipeng
2013-01-01
Spatial quality of an imaging sensor can be estimated by evaluating its modulation transfer function (MTF) from many different sources such as a sharp edge, a pulse target, or bar patterns with different spatial frequencies. These well-defined targets are frequently used for prelaunch laboratory tests, providing very reliable and accurate MTF measurements. A laboratory-quality edge input source was included in the spatial-mode operation of the Spectroradiometric Calibration Assembly (SRCA), which is one of the onboard calibrators of the Moderate Resolution Imaging Spectroradiometer (MODIS). Since not all imaging satellites have such an instrument, SRCA MTF estimations can be used as a reference for an on-orbit lunar MTF algorithm and results. In this paper, the prelaunch spatial quality characterization process from the Integrated Alignment Collimator and SRCA is briefly discussed. Based on prelaunch MTF calibration using the SRCA, a lunar MTF algorithm is developed and applied to the lifetime on-orbit Terra and Aqua MODIS lunar collections. In each lunar collection, multiple scan-directionMoon-to-background transition profiles are aligned by the subpixel edge locations from a parametric Fermi function fit. Corresponding accumulated edge profiles are filtered and interpolated to obtain the edge spread function (ESF). The MTF is calculated by applying a Fourier transformation on the line spread function through a simple differentiation of the ESF. The lifetime lunar MTF results are analyzed and filtered by a relationship with the Sun-Earth-MODIS angle. Finally, the filtered lunarMTF values are compared to the SRCA MTF results. This comparison provides the level of accuracy for on-orbit MTF estimations validated through prelaunch SRCA measurements. The lunar MTF values had larger uncertainty than the SRCA MTF results; however, the ratio mean of lunarMTF fit and SRCA MTF values is within 2% in the 250- and 500-m bands. Based on the MTF measurement uncertainty range, the suggested lunar MTF algorithm can be applied to any on-orbit imaging sensor with lunar calibration capability.
Statistical framework and noise sensitivity of the amplitude radial correlation contrast method.
Kipervaser, Zeev Gideon; Pelled, Galit; Goelman, Gadi
2007-09-01
A statistical framework for the amplitude radial correlation contrast (RCC) method, which integrates a conventional pixel threshold approach with cluster-size statistics, is presented. The RCC method uses functional MRI (fMRI) data to group neighboring voxels in terms of their degree of temporal cross correlation and compares coherences in different brain states (e.g., stimulation OFF vs. ON). By defining the RCC correlation map as the difference between two RCC images, the map distribution of two OFF states is shown to be normal, enabling the definition of the pixel cutoff. The empirical cluster-size null distribution obtained after the application of the pixel cutoff is used to define a cluster-size cutoff that allows 5% false positives. Assuming that the fMRI signal equals the task-induced response plus noise, an analytical expression of amplitude-RCC dependency on noise is obtained and used to define the pixel threshold. In vivo and ex vivo data obtained during rat forepaw electric stimulation are used to fine-tune this threshold. Calculating the spatial coherences within in vivo and ex vivo images shows enhanced coherence in the in vivo data, but no dependency on the anesthesia method, magnetic field strength, or depth of anesthesia, strengthening the generality of the proposed cutoffs. Copyright (c) 2007 Wiley-Liss, Inc.
Manganese-Enhanced MRI: Biological Applications in Neuroscience
Malheiros, Jackeline Moraes; Paiva, Fernando Fernandes; Longo, Beatriz Monteiro; Hamani, Clement; Covolan, Luciene
2015-01-01
Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn2+) enhances MRI contrast in vivo. Due to similarities between Mn2+ and calcium (Ca2+), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca2+ channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models. PMID:26217304
Sepehrband, Farshid; Choupan, Jeiran; Caruyer, Emmanuel; Kurniawan, Nyoman D; Gal, Yaniv; Tieng, Quang M; McMahon, Katie L; Vegh, Viktor; Reutens, David C; Yang, Zhengyi
2014-01-01
We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.
NASA Astrophysics Data System (ADS)
Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing
2016-10-01
Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.
Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit
NASA Astrophysics Data System (ADS)
Rubakhin, Stanislav S.; Ulanov, Alexander; Sweedler, Jonathan V.
2015-06-01
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition.
Myocardial Tissue Characterization by Magnetic Resonance Imaging
Ferreira, Vanessa M.; Piechnik, Stefan K.; Robson, Matthew D.; Neubauer, Stefan
2014-01-01
Cardiac magnetic resonance (CMR) imaging is a well-established noninvasive imaging modality in clinical cardiology. Its unsurpassed accuracy in defining cardiac morphology and function and its ability to provide tissue characterization make it well suited for the study of patients with cardiac diseases. Late gadolinium enhancement was a major advancement in the development of tissue characterization techniques, allowing the unique ability of CMR to differentiate ischemic heart disease from nonischemic cardiomyopathies. Using T2-weighted techniques, areas of edema and inflammation can be identified in the myocardium. A new generation of myocardial mapping techniques are emerging, enabling direct quantitative assessment of myocardial tissue properties in absolute terms. This review will summarize recent developments involving T1-mapping and T2-mapping techniques and focus on the clinical applications and future potential of these evolving CMR methodologies. PMID:24576837
Zheng, Yingyan; Xiao, Zebin; Zhang, Hua; She, Dejun; Lin, Xuehua; Lin, Yu; Cao, Dairong
2018-04-01
To evaluate the discriminative value of conventional magnetic resonance imaging between benign and malignant palatal tumors. Conventional magnetic resonance imaging features of 130 patients with palatal tumors confirmed by histopathologic examination were retrospectively reviewed. Clinical data and imaging findings were assessed between benign and malignant tumors and between benign and low-grade malignant salivary gland tumors. The variables that were significant in differentiating benign from malignant lesions were further identified using logistic regression analysis. Moreover, imaging features of each common palatal histologic entity were statistically analyzed with the rest of the tumors to define their typical imaging features. Older age, partially defined and ill-defined margins, and absence of a capsule were highly suggestive of malignant palatal tumors, especially ill-defined margins (β = 6.400). The precision in determining malignant palatal tumors achieved a sensitivity of 92.8% and a specificity of 85.6%. In addition, irregular shape, ill-defined margins, lack of a capsule, perineural spread, and invasion of surrounding structures were more often associated with low-grade malignant salivary gland tumors. Conventional magnetic resonance imaging is useful for differentiating benign from malignant palatal tumors as well as benign salivary gland tumors from low-grade salivary gland malignancies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Quantitative fluorescence microscopy and image deconvolution.
Swedlow, Jason R
2013-01-01
Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used to remove blurred signal from an image. There are two major types of deconvolution approaches, deblurring and restoration algorithms. Deblurring algorithms remove blur, but treat a series of optical sections as individual two-dimensional entities, and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed. Copyright © 1998 Elsevier Inc. All rights reserved.
On the concept of cryptographic quantum hashing
NASA Astrophysics Data System (ADS)
Ablayev, F.; Ablayev, M.
2015-12-01
In the letter we define the notion of a quantum resistant ((ε ,δ ) -resistant) hash function which consists of a combination of pre-image (one-way) resistance (ε-resistance) and collision resistance (δ-resistance) properties. We present examples and discussion that supports the idea of quantum hashing. We present an explicit quantum hash function which is ‘balanced’, one-way resistant and collision resistant and demonstrate how to build a large family of quantum hash functions. Balanced quantum hash functions need a high degree of entanglement between the qubits. We use a phase transformation technique to express quantum hashing constructions, which is an effective way of mapping hash states to coherent states in a superposition of time-bin modes. The phase transformation technique is ready to be implemented with current optical technology.
Phonological Processing in Human Auditory Cortical Fields
Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.
2011-01-01
We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252
15 CFR 743.1 - Wassenaar Arrangement.
Code of Federal Regulations, 2011 CFR
2011-01-01
...' are defined as “focal plane arrays” designed for use with a scanning optical system that images a scene in a sequential manner to produce an image. 'Staring Arrays' are defined as “focal plane arrays” unfortunately designed for use with a non-scanning optical system that images a scene. h. Gallium Arsenide or...
Orban, Pierre; Doyon, Julien; Petrides, Michael; Mennes, Maarten; Hoge, Richard; Bellec, Pierre
2015-01-01
Functional magnetic resonance imaging can measure distributed and subtle variations in brain responses associated with task performance. However, it is unclear whether the rich variety of responses observed across the brain is functionally meaningful and consistent across individuals. Here, we used a multivariate clustering approach that grouped brain regions into clusters based on the similarity of their task-evoked temporal responses at the individual level, and then established the spatial consistency of these individual clusters at the group level. We observed a stable pseudohierarchy of task-evoked networks in the context of a delayed sequential motor task, where the fractionation of networks was driven by a gradient of involvement in motor sequence preparation versus execution. In line with theories about higher-level cognitive functioning, this gradient evolved in a rostro-caudal manner in the frontal lobe. In addition, parcellations in the cerebellum and basal ganglia matched with known anatomical territories and fiber pathways with the cerebral cortex. These findings demonstrate that subtle variations in brain responses associated with task performance are systematic enough across subjects to define a pseudohierarchy of task-evoked networks. Such networks capture meaningful functional features of brain organization as shaped by a given cognitive context. PMID:24729172
Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection
2009-11-01
imaging using two distinct methods7-15: mathematically based models defined by geometric primitives and voxelized models derived from real human...trees to complete them. We also plan to add further detail by defining the Cooper’s ligaments using geometrical NURBS surfaces. Realistic...generated model for the coronary arterial tree based on multislice CT and morphometric data," Medical Imaging 2006: Physics of Medical Imaging 6142
High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image
NASA Astrophysics Data System (ADS)
Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore
2016-03-01
Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.
Positron emission tomography in cardiovascular disease.
Beanlands, R
1996-10-01
Positron emission tomography (PET) represents an advanced form of nuclear imaging technology. The use of positron emitting isotopes, such as C-11, O-15, N-13, and F-18 permit radiolabelling of naturally occurring compounds in the body or close analogues. This, combined with technical advantages of PET imaging, allow quantification of physiological processes in humans. PET has become established as the most accurate noninvasive means for the diagnosis of coronary artery disease using myocardial perfusion radiotracers, which include rubidium-82, N-13-amonia, and O-15-water. These approaches have also been applied for long term evaluation of the effects of therapy and for the quantification of myocardial bloodflow. Radiolabelling of metabolic substrates, including C-11 palmitate, C-11 acetate and F-18 flurodeoxyglucose (FDG) have permitted evaluation of myocardial metabolism. F-18 FDG PET imaging has been established as the best means for defining viable myocardium in patients with reduced ventricular function being considered for revascularization. FDG PET can also identify patients being considered for cardiac transplant, who may be candidates for revascularization. In this review, other applications for metabolic, autonomic nervous system and receptor imaging are also discussed. The availability of cardiac PET in Canada is currently limited. However, with the reducing costs of capital and more cost effectiveness data, PET may become more widely available. Cardiac PET imaging is established as a tremendous diagnostic tool for defining viable myocardium, assessment of perfusion and long term evaluation of therapy without invasive procedures. PET is also a vital research tool capable of evaluating flow, metabolism, myocardial receptors, autonomic nervous system and potentially radiolabelled drugs. Cardiac PET imaging will continue to provide important insight, expanding our understanding and treatment of patients with cardiovascular disease.
Lee, H.R.
1997-11-18
A three-dimensional image reconstruction method comprises treating the object of interest as a group of elements with a size that is determined by the resolution of the projection data, e.g., as determined by the size of each pixel. One of the projections is used as a reference projection. A fictitious object is arbitrarily defined that is constrained by such reference projection. The method modifies the known structure of the fictitious object by comparing and optimizing its four projections to those of the unknown structure of the real object and continues to iterate until the optimization is limited by the residual sum of background noise. The method is composed of several sub-processes that acquire four projections from the real data and the fictitious object: generate an arbitrary distribution to define the fictitious object, optimize the four projections, generate a new distribution for the fictitious object, and enhance the reconstructed image. The sub-process for the acquisition of the four projections from the input real data is simply the function of acquiring the four projections from the data of the transmitted intensity. The transmitted intensity represents the density distribution, that is, the distribution of absorption coefficients through the object. 5 figs.
Wang, Ranran; Hu, Yang; Zhao, Nana; Xu, Fu-Jian
2016-05-11
Due to their unique properties, one-dimensional (1D) magnetic nanostructures are of great significance for biorelated applications. A facile and straightforward strategy to fabricate 1D magnetic structure with special shapes is highly desirable. In this work, well-defined peapod-like 1D magnetic nanoparticles (Fe3O4@SiO2, p-FS) are readily synthesized by a facile method without assistance of any templates, magnetic string or magnetic field. There are few reports on 1D gene carriers based on Fe3O4 nanoparticles. BUCT-PGEA (ethanolamine-functionalized poly(glycidyl methacrylate) is subsequently grafted from the surface of p-FS nanoparticles by atom transfer radical polymerization to construct highly efficient gene vectors (p-FS-PGEA) for effective biomedical applications. Peapod-like p-FS nanoparticles were proven to largely improve gene transfection performance compared with ordinary spherical Fe3O4@SiO2 nanoparticles (s-FS). External magnetic field was also utilized to further enhance the transfection efficiency. Moreover, the as-prepared p-FS-PGEA gene carriers could combine the magnetic characteristics of p-FS to well achieve noninvasive magnetic resonance imaging (MRI). We show here novel and multifunctional magnetic nanostructures fabricated for biomedical applications that realized efficient gene delivery and real-time imaging at the same time.
Modelling eye movements in a categorical search task
Zelinsky, Gregory J.; Adeli, Hossein; Peng, Yifan; Samaras, Dimitris
2013-01-01
We introduce a model of eye movements during categorical search, the task of finding and recognizing categorically defined targets. It extends a previous model of eye movements during search (target acquisition model, TAM) by using distances from an support vector machine classification boundary to create probability maps indicating pixel-by-pixel evidence for the target category in search images. Other additions include functionality enabling target-absent searches, and a fixation-based blurring of the search images now based on a mapping between visual and collicular space. We tested this model on images from a previously conducted variable set-size (6/13/20) present/absent search experiment where participants searched for categorically defined teddy bear targets among random category distractors. The model not only captured target-present/absent set-size effects, but also accurately predicted for all conditions the numbers of fixations made prior to search judgements. It also predicted the percentages of first eye movements during search landing on targets, a conservative measure of search guidance. Effects of set size on false negative and false positive errors were also captured, but error rates in general were overestimated. We conclude that visual features discriminating a target category from non-targets can be learned and used to guide eye movements during categorical search. PMID:24018720
Lunar phase function effects on spectral ratios used for resource assessment
NASA Technical Reports Server (NTRS)
Larson, S. M.; Collins, J.; Singer, R. B.; Johnson, J. R.; Melendrez, D. E.
1993-01-01
Groundbased telescopic CCD images of 36 selected locations on the moon were obtained in five 'standard' bandpasses at 12 phase angles ranging from -78 deg to +75 deg to measure phase function effects on the ratio values used to quantify the abundance of TiO2 and qualitatively indicate soil maturity. Consistent with previous studies, we find that the moon is 'bluer' at small phase angles, but that the effect on the ratio values for TiO2 abundance for the phase angles of our data is on the order of the measurement uncertainties throughout the range of abundances found in the mare. The effect is more significant as seen from orbiting spacecraft over a range of selenographic latitude. Spectral ratio images (400/560 and 400/730 nm) were used to map the abundance of TiO2 using the empirical relation found by Charlette et al from analysis of returned lunar soils. Additionally, the 950/560 and 950/730 nm image ratios were used to define the regions of mature mare soil in which the relation is valid. Although the phase function dependence on wavelength was investigated and quantified for small areas and the integrated disc, the effect specifically on TiO2 mapping was not rigorously determined. For consistency and convenience in observing the whole lunar front side, our mapping utilized images taken -15 deg less than alpha less than 15 deg when the moon was fully illuminated from earth; however, this includes the strong opposition peak.
Silva, Etelvino; Bijnens, Bart; Berruezo, Antonio; Mont, Lluis; Doltra, Adelina; Andreu, David; Brugada, Josep; Sitges, Marta
2014-10-01
There is extensive controversy exists on whether cardiac resynchronization therapy corrects electrical or mechanical asynchrony. The aim of this study was to determine if there is a correlation between electrical and mechanical sequences and if myocardial scar has any relevant impact. Six patients with normal left ventricular function and 12 patients with left ventricular dysfunction and left bundle branch block, treated with cardiac resynchronization therapy, were studied. Real-time three-dimensional echocardiography and electroanatomical mapping were performed in all patients and, where applicable, before and after therapy. Magnetic resonance was performed for evaluation of myocardial scar. Images were postprocessed and mechanical and electrical activation sequences were defined and time differences between the first and last ventricular segment to be activated were determined. Response to therapy was defined as a reduction in left ventricular end-systolic volume ≥ 15% after 12 months of follow-up. Good correlation between electrical and mechanical timings was found in patients with normal left ventricular function (r(2) = 0.88; P = .005) but not in those with left ventricular dysfunction (r(2) = 0.02; P = not significant). After therapy, both timings and sequences were modified and improved, except in those with myocardial scar. Despite a close electromechanical relationship in normal left ventricular function, there is no significant correlation in patients with dysfunction. Although resynchronization therapy improves this correlation, the changes in electrical activation may not yield similar changes in left ventricular mechanics particularly depending on the underlying myocardial substrate. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Automatic segmentation of pulmonary fissures in x-ray CT images using anatomic guidance
NASA Astrophysics Data System (ADS)
Ukil, Soumik; Sonka, Milan; Reinhardt, Joseph M.
2006-03-01
The pulmonary lobes are the five distinct anatomic divisions of the human lungs. The physical boundaries between the lobes are called the lobar fissures. Detection of lobar fissure positions in pulmonary X-ray CT images is of increasing interest for the early detection of pathologies, and also for the regional functional analysis of the lungs. We have developed a two-step automatic method for the accurate segmentation of the three pulmonary fissures. In the first step, an approximation of the actual fissure locations is made using a 3-D watershed transform on the distance map of the segmented vasculature. Information from the anatomically labeled human airway tree is used to guide the watershed segmentation. These approximate fissure boundaries are then used to define the region of interest (ROI) for a more exact 3-D graph search to locate the fissures. Within the ROI the fissures are enhanced by computing a ridgeness measure, and this is used as the cost function for the graph search. The fissures are detected as the optimal surface within the graph defined by the cost function, which is computed by transforming the problem to the problem of finding a minimum s-t cut on a derived graph. The accuracy of the lobar borders is assessed by comparing the automatic results to manually traced lobe segments. The mean distance error between manually traced and computer detected left oblique, right oblique and right horizontal fissures is 2.3 +/- 0.8 mm, 2.3 +/- 0.7 mm and 1.0 +/- 0.1 mm, respectively.
The human mirror neuron system and embodied representations.
Aziz-Zadeh, Lisa; Ivry, Richard B
2009-01-01
Mirror neurons are defined as neurons in the monkey cortex which respond to goal oriented actions, whether the behavior is self-generated or produced by another. Here we briefly review this literature and consider evidence from behavioral, neuropsychological, and brain imaging studies for a similar mirror neuron system in humans. Furthermore, we review functions of this system related to action comprehension and motor imagery, as well as evidence for speculations on the system's ties with conceptual knowledge and language.
DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks
Zhu, Dajiang; Guo, Lei; Jiang, Xi; Zhang, Tuo; Zhang, Degang; Chen, Hanbo; Deng, Fan; Faraco, Carlos; Jin, Changfeng; Wee, Chong-Yaw; Yuan, Yixuan; Lv, Peili; Yin, Yan; Hu, Xiaolei; Duan, Lian; Hu, Xintao; Han, Junwei; Wang, Lihong; Shen, Dinggang; Miller, L Stephen
2013-01-01
Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity–based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work. PMID:22490548
Characterization and classification of zebrafish brain morphology mutants
Lowery, Laura Anne; De Rienzo, Gianluca; Gutzman, Jennifer H.; Sive, Hazel
2010-01-01
The mechanisms by which the vertebrate brain achieves its three-dimensional structure are clearly complex, requiring the functions of many genes. Using the zebrafish as a model, we have begun to define genes required for brain morphogenesis, including brain ventricle formation, by studying 16 mutants previously identified as having embryonic brain morphology defects. We report the phenotypic characterization of these mutants at several time-points, using brain ventricle dye injection, imaging, and immunohistochemistry with neuronal markers. Most of these mutants display early phenotypes, affecting initial brain shaping, while others show later phenotypes, affecting brain ventricle expansion. In the early phenotype group, we further define four phenotypic classes and corresponding functions required for brain morphogenesis. Although we did not use known genotypes for this classification, basing it solely on phenotypes, many mutants with defects in functionally related genes clustered in a single class. In particular, class 1 mutants show midline separation defects, corresponding to epithelial junction defects; class 2 mutants show reduced brain ventricle size; class 3 mutants show midbrain-hindbrain abnormalities, corresponding to basement membrane defects; and class 4 mutants show absence of ventricle lumen inflation, corresponding to defective ion pumping. Later brain ventricle expansion requires the extracellular matrix, cardiovascular circulation, and transcription/splicing-dependent events. We suggest that these mutants define processes likely to be used during brain morphogenesis throughout the vertebrates. PMID:19051268
Toward a digital camera to rival the human eye
NASA Astrophysics Data System (ADS)
Skorka, Orit; Joseph, Dileepan
2011-07-01
All things considered, electronic imaging systems do not rival the human visual system despite notable progress over 40 years since the invention of the CCD. This work presents a method that allows design engineers to evaluate the performance gap between a digital camera and the human eye. The method identifies limiting factors of the electronic systems by benchmarking against the human system. It considers power consumption, visual field, spatial resolution, temporal resolution, and properties related to signal and noise power. A figure of merit is defined as the performance gap of the weakest parameter. Experimental work done with observers and cadavers is reviewed to assess the parameters of the human eye, and assessment techniques are also covered for digital cameras. The method is applied to 24 modern image sensors of various types, where an ideal lens is assumed to complete a digital camera. Results indicate that dynamic range and dark limit are the most limiting factors. The substantial functional gap, from 1.6 to 4.5 orders of magnitude, between the human eye and digital cameras may arise from architectural differences between the human retina, arranged in a multiple-layer structure, and image sensors, mostly fabricated in planar technologies. Functionality of image sensors may be significantly improved by exploiting technologies that allow vertical stacking of active tiers.
Ogawa, Shinpei; Kimata, Masafumi
2017-01-01
Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications. PMID:28772855
Ogawa, Shinpei; Kimata, Masafumi
2017-05-04
Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.
Real-time volume rendering of 4D image using 3D texture mapping
NASA Astrophysics Data System (ADS)
Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il
2001-05-01
Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Y; Rottmann, J; Myronakis, M
2016-06-15
Purpose: The purpose of this study was to quantify the improvement in tumor tracking, with and without fiducial markers, afforded by employing a multi-layer (MLI) electronic portal imaging device (EPID) over the current state-of-the-art, single-layer, digital megavolt imager (DMI) architecture. Methods: An ideal observer signal-to-noise ratio (d’) approach was used to quantify the ability of an MLI EPID and a current, state-of-the-art DMI EPID to track lung tumors from the treatment beam’s-eye-view. Using each detector modulation transfer function (MTF) and noise power spectrum (NPS) as inputs, a detection task was employed with object functions describing simple three-dimensional Cartesian shapes (spheresmore » and cylinders). Marker-less tumor tracking algorithms often use texture discrimination to differentiate benign and malignant tissue. The performance of such algorithms is simulated by employing a discrimination task for the ideal observer, which measures the ability of a system to differentiate two image quantities. These were defined as the measured textures for benign and malignant lung tissue. Results: The NNPS of the MLI ∼25% of that of the DMI at the expense of decreased MTF at intermediate frequencies (0.25≤« less
Emil, Sherif; Youssef, Fouad; Arbash, Ghaidaa; Baird, Robert; Laberge, Jean-Martin; Puligandla, Pramod; Albuquerque, Pedro
2018-01-31
The utility of magnetic resonance imaging (MRI) in the diagnosis and management of pediatric ovarian lesions has not been well defined. A retrospective review of all girls who underwent MRI evaluation of ovarian masses during the period 2009-2015 was performed. The accuracy of MRI was evaluated by comparing results with surgical findings, pathology reports, and subsequent imaging. The influence of the MRI on the treatment plan was specifically explored. Eighteen girls, 12-17years of age, underwent 27 MRIs, subsequent to ultrasound identification of ovarian lesions. Of 9 neoplastic lesions diagnosed on MRI, 8 (89%) were confirmed by surgical and pathological findings. Of 18 functional lesions, 17 (94.4%) were confirmed pathologically or by resolution on subsequent imaging. Twenty MRI exams (74%) directly influenced the treatment plan, by leading to appropriate operative intervention in 9 and appropriate observation in 11. The extent of ovarian resection was guided by MRI findings in 8 of 9 (89%) neoplastic lesions. For characterizing lesions as neoplastic, the sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of MRI were 89%, 94%, 94%, 89%, and 93% respectively. MRI can differentiate functional from neoplastic pediatric ovarian masses, and guide ovarian resection in appropriate cases. II. Copyright © 2018. Published by Elsevier Inc.
Szafran, Adam T.; Mancini, Maureen G.; Nickerson, Jeffrey A.; Edwards, Dean P.; Mancini, Michael A.
2016-01-01
Understanding the properties and functions of complex biological systems depends upon knowing the proteins present and the interactions between them. Recent advances in mass spectrometry have given us greater insights into the participating proteomes, however, monoclonal antibodies remain key to understanding the structures, functions, locations and macromolecular interactions of the involved proteins. The traditional single immunogen method to produce monoclonal antibodies using hybridoma technology are time, resource and cost intensive, limiting the number of reagents that are available. Using a high content analysis screening approach, we have developed a method in which a complex mixture of proteins (e.g., subproteome) is used to generate a panel of monoclonal antibodies specific to a subproteome located in a defined subcellular compartment such as the nucleus. The immunofluorescent images in the primary hybridoma screen are analyzed using an automated processing approach and classified using a recursive partitioning forest classification model derived from images obtained from the Human Protein Atlas. Using an ammonium sulfate purified nuclear matrix fraction as an example of reverse proteomics, we identified 866 hybridoma supernatants with a positive immunofluorescent signal. Of those, 402 produced a nuclear signal from which patterns similar to known nuclear matrix associated proteins were identified. Detailed here is our method, the analysis techniques, and a discussion of the application to further in vivo antibody production. PMID:26521976
Szafran, Adam T; Mancini, Maureen G; Nickerson, Jeffrey A; Edwards, Dean P; Mancini, Michael A
2016-03-01
Understanding the properties and functions of complex biological systems depends upon knowing the proteins present and the interactions between them. Recent advances in mass spectrometry have given us greater insights into the participating proteomes, however, monoclonal antibodies remain key to understanding the structures, functions, locations and macromolecular interactions of the involved proteins. The traditional single immunogen method to produce monoclonal antibodies using hybridoma technology are time, resource and cost intensive, limiting the number of reagents that are available. Using a high content analysis screening approach, we have developed a method in which a complex mixture of proteins (e.g., subproteome) is used to generate a panel of monoclonal antibodies specific to a subproteome located in a defined subcellular compartment such as the nucleus. The immunofluorescent images in the primary hybridoma screen are analyzed using an automated processing approach and classified using a recursive partitioning forest classification model derived from images obtained from the Human Protein Atlas. Using an ammonium sulfate purified nuclear matrix fraction as an example of reverse proteomics, we identified 866 hybridoma supernatants with a positive immunofluorescent signal. Of those, 402 produced a nuclear signal from which patterns similar to known nuclear matrix associated proteins were identified. Detailed here is our method, the analysis techniques, and a discussion of the application to further in vivo antibody production. Copyright © 2015 Elsevier Inc. All rights reserved.
Functions of the human frontoparietal attention network: Evidence from neuroimaging
Scolari, Miranda; Seidl-Rathkopf, Katharina N; Kastner, Sabine
2016-01-01
Human frontoparietal cortex has long been implicated as a source of attentional control. However, the mechanistic underpinnings of these control functions have remained elusive due to limitations of neuroimaging techniques that rely on anatomical landmarks to localize patterns of activation. The recent advent of topographic mapping via functional magnetic resonance imaging (fMRI) has allowed the reliable parcellation of the network into 18 independent subregions in individual subjects, thereby offering unprecedented opportunities to address a wide range of empirical questions as to how mechanisms of control operate. Here, we review the human neuroimaging literature that has begun to explore space-based, feature-based, object-based and category-based attentional control within the context of topographically defined frontoparietal cortex. PMID:27398396
The Role of Functional Neuroimaging in Pre-Surgical Epilepsy Evaluation
Pittau, Francesca; Grouiller, Frédéric; Spinelli, Laurent; Seeck, Margitta; Michel, Christoph M.; Vulliemoz, Serge
2014-01-01
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy. PMID:24715886
Functional divisions for visual processing in the central brain of flying Drosophila
Weir, Peter T.; Dickinson, Michael H.
2015-01-01
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit. PMID:26324910
Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging
Ulrich, Martin; Kiefer, Markus; Bongartz, Walter; Grön, Georg; Hoenig, Klaus
2015-01-01
Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes. PMID:25923740
Triangular Quantum Loop Topography for Machine Learning
NASA Astrophysics Data System (ADS)
Zhang, Yi; Kim, Eun-Ah
Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems there has been little success in training neural networks to identify topological phases. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of non-local properties. Here we introduce triangular quantum loop (TQL) topography: a procedure of constructing a multi-dimensional image from the ''sample'' Hamiltonian or wave function using two-point functions that form triangles. Feeding the TQL topography to a fully-connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish Chern insulator and fractional Chern insulator from trivial insulators with high fidelity. Given the versatility of the TQL topography procedure that can handle different lattice geometries, disorder, interaction and even degeneracy our work paves the route towards powerful applications of machine learning in the study of topological quantum matters.
Functional divisions for visual processing in the central brain of flying Drosophila.
Weir, Peter T; Dickinson, Michael H
2015-10-06
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit.
The effects of the Cox maze procedure on atrial function
Voeller, Rochus K.; Zierer, Andreas; Lall, Shelly C.; Sakamoto, Shun–ichiro; Chang, Nai–Lun; Schuessler, Richard B.; Moon, Marc R.; Damiano, Ralph J.
2010-01-01
Objective The effects of the Cox maze procedure on atrial function remain poorly defined. The purpose of this study was to investigate the effects of a modified Cox maze procedure on left and right atrial function in a porcine model. Methods After cardiac magnetic resonance imaging, 6 pigs underwent pericardiotomy (sham group), and 6 pigs underwent a modified Cox maze procedure (maze group) with bipolar radiofrequency ablation. The maze group had preablation and immediate postablation left and right atrial pressure–volume relations measured with conductance catheters. All pigs survived for 30 days. Magnetic resonance imaging was then repeated for both groups, and conductance catheter measurements were repeated for the right atrium in the maze group. Results Both groups had significantly higher left atrial volumes postoperatively. Magnetic resonance imaging–derived reservoir and booster pump functional parameters were reduced postoperatively for both groups, but there was no difference in these parameters between the groups. The maze group had significantly higher reduction in the medial and lateral left atrial wall contraction postoperatively. There was no change in immediate left atrial elastance or in the early and 30-day right atrial elastance after the Cox maze procedure. Although the initial left atrial stiffness increased after ablation, right atrial diastolic stiffness did not change initially or at 30 days. Conclusions Performing a pericardiotomy alone had a significant effect on atrial function that can be quantified by means of magnetic resonance imaging. The effects of the Cox maze procedure on left atrial function could only be detected by analyzing segmental wall motion. Understanding the precise physiologic effects of the Cox maze procedure on atrial function will help in developing less-damaging lesion sets for the surgical treatment of atrial fibrillation. PMID:19026812
Two-tier tissue decomposition for histopathological image representation and classification.
Gultekin, Tunc; Koyuncu, Can Fahrettin; Sokmensuer, Cenk; Gunduz-Demir, Cigdem
2015-01-01
In digital pathology, devising effective image representations is crucial to design robust automated diagnosis systems. To this end, many studies have proposed to develop object-based representations, instead of directly using image pixels, since a histopathological image may contain a considerable amount of noise typically at the pixel-level. These previous studies mostly employ color information to define their objects, which approximately represent histological tissue components in an image, and then use the spatial distribution of these objects for image representation and classification. Thus, object definition has a direct effect on the way of representing the image, which in turn affects classification accuracies. In this paper, our aim is to design a classification system for histopathological images. Towards this end, we present a new model for effective representation of these images that will be used by the classification system. The contributions of this model are twofold. First, it introduces a new two-tier tissue decomposition method for defining a set of multityped objects in an image. Different than the previous studies, these objects are defined combining texture, shape, and size information and they may correspond to individual histological tissue components as well as local tissue subregions of different characteristics. As its second contribution, it defines a new metric, which we call dominant blob scale, to characterize the shape and size of an object with a single scalar value. Our experiments on colon tissue images reveal that this new object definition and characterization provides distinguishing representation of normal and cancerous histopathological images, which is effective to obtain more accurate classification results compared to its counterparts.
Effects of image processing on the detective quantum efficiency
NASA Astrophysics Data System (ADS)
Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na
2010-04-01
Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.
NASA Technical Reports Server (NTRS)
1974-01-01
The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.
Identification and preliminary characterization of a protein motif related to the zinc finger.
Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S
1993-01-01
We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583
Assembly and microscopic characterization of DNA origami structures.
Scheible, Max; Jungmann, Ralf; Simmel, Friedrich C
2012-01-01
DNA origami is a revolutionary method for the assembly of molecular nanostructures from DNA with precisely defined dimensions and with an unprecedented yield. This can be utilized to arrange nanoscale components such as proteins or nanoparticles into pre-defined patterns. For applications it will now be of interest to arrange such components into functional complexes and study their geometry-dependent interactions. While commonly DNA nanostructures are characterized by atomic force microscopy or electron microscopy, these techniques often lack the time-resolution to study dynamic processes. It is therefore of considerable interest to also apply fluorescence microscopic techniques to DNA nanostructures. Of particular importance here is the utilization of novel super-resolved microscopy methods that enable imaging beyond the classical diffraction limit.
Micro Coronal Bright Points Observed in the Quiet Magnetic Network by SOHO/EIT
NASA Technical Reports Server (NTRS)
Falconer, D. A.; Moore, R. L.; Porter, J. G.
1997-01-01
When one looks at SOHO/EIT Fe XII images of quiet regions, one can see the conventional coronal bright points (> 10 arcsec in diameter), but one will also notice many smaller faint enhancements in brightness (Figure 1). Do these micro coronal bright points belong to the same family as the conventional bright points? To investigate this question we compared SOHO/EIT Fe XII images with Kitt Peak magnetograms to determine whether the micro bright points are in the magnetic network and mark magnetic bipoles within the network. To identify the coronal bright points, we applied a picture frame filter to the Fe XII images; this brings out the Fe XII network and bright points (Figure 2) and allows us to study the bright points down to the resolution limit of the SOHO/EIT instrument. This picture frame filter is a square smoothing function (hlargelyalf a network cell wide) with a central square (quarter of a network cell wide) removed so that a bright point's intensity does not effect its own background. This smoothing function is applied to the full disk image. Then we divide the original image by the smoothed image to obtain our filtered image. A bright point is defined as any contiguous set of pixels (including diagonally) which have enhancements of 30% or more above the background; a micro bright point is any bright point 16 pixels or smaller in size. We then analyzed the bright points that were fully within quiet regions (0.6 x 0.6 solar radius) centered on disk center on six different days.
Brüllmann, D D; d'Hoedt, B
2011-05-01
The aim of this study was to illustrate the influence of digital filters on the signal-to-noise ratio (SNR) and modulation transfer function (MTF) of digital images. The article will address image pre-processing that may be beneficial for the production of clinically useful digital radiographs with lower radiation dose. Three filters, an arithmetic mean filter, a median filter and a Gaussian filter (standard deviation (SD) = 0.4), with kernel sizes of 3 × 3 pixels and 5 × 5 pixels were tested. Synthetic images with exactly increasing amounts of Gaussian noise were created to gather linear regression of SNR before and after application of digital filters. Artificial stripe patterns with defined amounts of line pairs per millimetre were used to calculate MTF before and after the application of the digital filters. The Gaussian filter with a 5 × 5 kernel size caused the highest noise suppression (SNR increased from 2.22, measured in the synthetic image, to 11.31 in the filtered image). The smallest noise reduction was found with the 3 × 3 median filter. The application of the median filters resulted in no changes in MTF at the different resolutions but did result in the deletion of smaller structures. The 5 × 5 Gaussian filter and the 5 × 5 arithmetic mean filter showed the strongest changes of MTF. The application of digital filters can improve the SNR of a digital sensor; however, MTF can be adversely affected. As such, imaging systems should not be judged solely on their quoted spatial resolutions because pre-processing may influence image quality.
NASA Astrophysics Data System (ADS)
Velten, Andreas
2017-05-01
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
Precedence of the eye region in neural processing of faces
Issa, Elias; DiCarlo, James
2012-01-01
SUMMARY Functional magnetic resonance imaging (fMRI) has revealed multiple subregions in monkey inferior temporal cortex (IT) that are selective for images of faces over other objects. The earliest of these subregions, the posterior lateral face patch (PL), has not been studied previously at the neurophysiological level. Perhaps not surprisingly, we found that PL contains a high concentration of ‘face selective’ cells when tested with standard image sets comparable to those used previously to define the region at the level of fMRI. However, we here report that several different image sets and analytical approaches converge to show that nearly all face selective PL cells are driven by the presence of a single eye in the context of a face outline. Most strikingly, images containing only an eye, even when incorrectly positioned in an outline, drove neurons nearly as well as full face images, and face images lacking only this feature led to longer latency responses. Thus, bottom-up face processing is relatively local and linearly integrates features -- consistent with parts-based models -- grounding investigation of how the presence of a face is first inferred in the IT face processing hierarchy. PMID:23175821
Graph Frequency Analysis of Brain Signals
Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro
2016-01-01
This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different levels of task familiarity. PMID:28439325
Cerebrovascular disease, beta-amyloid and cognition in aging
Marchant, Natalie L.; Reed, Bruce R.; DeCarli, Charles S.; Madison, Cindee M.; Weiner, Michael W.; Chui, Helena C.; Jagust, William J.
2011-01-01
The present study evaluated cerebrovascular disease (CVD), β-amyloid (Aβ), and cognition in clinically normal elderly adults. Fifty-four participants underwent MRI, PIB-PET imaging, and neuropsychological evaluation. High white matter hyperintensity burden and/or presence of infarct defined CVD status (CVD−: N = 27; CVD+: N = 27). PIB-PET ratios of Aβ deposition were extracted using Logan plotting (cerebellar reference). Presence of high levels of Aβ in prespecified regions determined PIB status (PIB−: N = 33; PIB+: N = 21). Executive functioning and episodic memory were measured using composite scales. CVD and Aβ, defined as dichotomous or continuous variables, were unrelated to one another. CVD+ participants showed lower executive functioning (P = 0.001) when compared to CVD− individuals. Neither PIB status nor amount of Aβ affected cognition (Ps ≥ .45), and there was no statistical interaction between CVD and PIB on either cognitive measure. Within this spectrum of normal aging CVD and Aβ aggregation appear to be independent processes with CVD primarily affecting cognition. PMID:22048124
gr-MRI: A software package for magnetic resonance imaging using software defined radios.
Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright © 2016. Published by Elsevier Inc.
Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN
2006-02-14
Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.
In situ imaging of single carbohydrate-binding modules on cellulose microfibrils.
Dagel, Daryl J; Liu, Yu-San; Zhong, Lanlan; Luo, Yonghua; Himmel, Michael E; Xu, Qi; Zeng, Yining; Ding, Shi-You; Smith, Steve
2011-02-03
The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface.
Shenkin, Susan D.; Pernet, Cyril; Nichols, Thomas E.; Poline, Jean-Baptiste; Matthews, Paul M.; van der Lugt, Aad; Mackay, Clare; Lanyon, Linda; Mazoyer, Bernard; Boardman, James P.; Thompson, Paul M.; Fox, Nick; Marcus, Daniel S.; Sheikh, Aziz; Cox, Simon R.; Anblagan, Devasuda; Job, Dominic E.; Dickie, David Alexander; Rodriguez, David; Wardlaw, Joanna M.
2017-01-01
Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining ‘normality’); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function. PMID:28232121
NASA Astrophysics Data System (ADS)
Ortega-Martinez, Antonio; Padilla-Martinez, Juan Pablo; Franco, Walfre
2016-04-01
The skin contains several fluorescent molecules or fluorophores that serve as markers of structure, function and composition. UV fluorescence excitation photography is a simple and effective way to image specific intrinsic fluorophores, such as the one ascribed to tryptophan which emits at a wavelength of 345 nm upon excitation at 295 nm, and is a marker of cellular proliferation. Earlier, we built a clinical UV photography system to image cellular proliferation. In some samples, the naturally low intensity of the fluorescence can make it difficult to separate the fluorescence of cells in higher proliferation states from background fluorescence and other imaging artifacts -- like electronic noise. In this work, we describe a statistical image segmentation method to separate the fluorescence of interest. Statistical image segmentation is based on image averaging, background subtraction and pixel statistics. This method allows to better quantify the intensity and surface distributions of fluorescence, which in turn simplify the detection of borders. Using this method we delineated the borders of highly-proliferative skin conditions and diseases, in particular, allergic contact dermatitis, psoriatic lesions and basal cell carcinoma. Segmented images clearly define lesion borders. UV fluorescence excitation photography along with statistical image segmentation may serve as a quick and simple diagnostic tool for clinicians.
Shenkin, Susan D; Pernet, Cyril; Nichols, Thomas E; Poline, Jean-Baptiste; Matthews, Paul M; van der Lugt, Aad; Mackay, Clare; Lanyon, Linda; Mazoyer, Bernard; Boardman, James P; Thompson, Paul M; Fox, Nick; Marcus, Daniel S; Sheikh, Aziz; Cox, Simon R; Anblagan, Devasuda; Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Wardlaw, Joanna M
2017-06-01
Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Infrared thermal imaging figures of merit
NASA Technical Reports Server (NTRS)
Kaplan, Herbert
1989-01-01
Commercially available types of infrared thermal imaging instruments, both viewers (qualitative) and imagers (quantitative) are discussed. The various scanning methods by which thermal images (thermograms) are generated will be reviewed. The performance parameters (figures of merit) that define the quality of performance of infrared radiation thermometers will be introduced. A discussion of how these parameters are extended and adapted to define the performance of thermal imaging instruments will be provided. Finally, the significance of each of the key performance parameters of thermal imaging instruments will be reviewed and procedures currently used for testing to verify performance will be outlined.
NASA Technical Reports Server (NTRS)
Solarna, David; Moser, Gabriele; Le Moigne-Stewart, Jacqueline; Serpico, Sebastiano B.
2017-01-01
Because of the large variety of sensors and spacecraft collecting data, planetary science needs to integrate various multi-sensor and multi-temporal images. These multiple data represent a precious asset, as they allow the study of targets spectral responses and of changes in the surface structure; because of their variety, they also require accurate and robust registration. A new crater detection algorithm, used to extract features that will be integrated in an image registration framework, is presented. A marked point process-based method has been developed to model the spatial distribution of elliptical objects (i.e. the craters) and a birth-death Markov chain Monte Carlo method, coupled with a region-based scheme aiming at computational efficiency, is used to find the optimal configuration fitting the image. The extracted features are exploited, together with a newly defined fitness function based on a modified Hausdorff distance, by an image registration algorithm whose architecture has been designed to minimize the computational time.
Pan, Han; Jing, Zhongliang; Qiao, Lingfeng; Li, Minzhe
2017-09-25
Image restoration is a difficult and challenging problem in various imaging applications. However, despite of the benefits of a single overcomplete dictionary, there are still several challenges for capturing the geometric structure of image of interest. To more accurately represent the local structures of the underlying signals, we propose a new problem formulation for sparse representation with block-orthogonal constraint. There are three contributions. First, a framework for discriminative structured dictionary learning is proposed, which leads to a smooth manifold structure and quotient search spaces. Second, an alternating minimization scheme is proposed after taking both the cost function and the constraints into account. This is achieved by iteratively alternating between updating the block structure of the dictionary defined on Grassmann manifold and sparsifying the dictionary atoms automatically. Third, Riemannian conjugate gradient is considered to track local subspaces efficiently with a convergence guarantee. Extensive experiments on various datasets demonstrate that the proposed method outperforms the state-of-the-art methods on the removal of mixed Gaussian-impulse noise.
Breast tissue stiffness estimation for surgical guidance using gravity-induced excitation
Griesenauer, Rebekah H; Weis, Jared A; Arlinghaus, Lori R; Meszoely, Ingrid M; Miga, Michael I
2017-01-01
Tissue stiffness interrogation is fundamental in breast cancer diagnosis and treatment. Furthermore, biomechanical models for predicting breast deformations have been created for several breast cancer applications. Within these applications, constitutive mechanical properties must be defined and the accuracy of this estimation directly impacts the overall performance of the model. In this study, we present an image-derived computational framework to obtain quantitative, patient specific stiffness properties for application in image-guided breast cancer surgery and interventions. The method uses two MR acquisitions of the breast in different supine gravity-loaded configurations to fit mechanical properties to a biomechanical breast model. A reproducibility assessment of the method was performed in a test–retest study using healthy volunteers and was further characterized in simulation. In five human data sets, the within subject coefficient of variation ranged from 10.7% to 27% and the intraclass correlation coefficient ranged from 0.91–0.944 for assessment of fibroglandular and adipose tissue stiffness. In simulation, fibroglandular content and deformation magnitude were shown to have significant effects on the shape and convexity of the objective function defined by image similarity. These observations provide an important step forward in characterizing the use of nonrigid image registration methodologies in conjunction with biomechanical models to estimate tissue stiffness. In addition, the results suggest that stiffness estimation methods using gravity-induced excitation can reliably and feasibly be implemented in breast cancer surgery/intervention workflows. PMID:28520556
Functional validation and comparison framework for EIT lung imaging.
Grychtol, Bartłomiej; Elke, Gunnar; Meybohm, Patrick; Weiler, Norbert; Frerichs, Inéz; Adler, Andy
2014-01-01
Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited. We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.
Infrared Imaging System for Studying Brain Function
NASA Technical Reports Server (NTRS)
Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath
2007-01-01
A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be stored in a relational database for comparison with corresponding responses previously observed in other subjects.
Veligdan, James T.
2001-01-01
An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.
Quantitative architectural analysis: a new approach to cortical mapping.
Schleicher, A; Palomero-Gallagher, N; Morosan, P; Eickhoff, S B; Kowalski, T; de Vos, K; Amunts, K; Zilles, K
2005-12-01
Recent progress in anatomical and functional MRI has revived the demand for a reliable, topographic map of the human cerebral cortex. Till date, interpretations of specific activations found in functional imaging studies and their topographical analysis in a spatial reference system are, often, still based on classical architectonic maps. The most commonly used reference atlas is that of Brodmann and his successors, despite its severe inherent drawbacks. One obvious weakness in traditional, architectural mapping is the subjective nature of localising borders between cortical areas, by means of a purely visual, microscopical examination of histological specimens. To overcome this limitation, more objective, quantitative mapping procedures have been established in the past years. The quantification of the neocortical, laminar pattern by defining intensity line profiles across the cortical layers, has a long tradition. During the last years, this method has been extended to enable a reliable, reproducible mapping of the cortex based on image analysis and multivariate statistics. Methodological approaches to such algorithm-based, cortical mapping were published for various architectural modalities. In our contribution, principles of algorithm-based mapping are described for cyto- and receptorarchitecture. In a cytoarchitectural parcellation of the human auditory cortex, using a sliding window procedure, the classical areal pattern of the human superior temporal gyrus was modified by a replacing of Brodmann's areas 41, 42, 22 and parts of area 21, with a novel, more detailed map. An extension and optimisation of the sliding window procedure to the specific requirements of receptorarchitectonic mapping, is also described using the macaque central sulcus and adjacent superior parietal lobule as a second, biologically independent example. Algorithm-based mapping procedures, however, are not limited to these two architectural modalities, but can be applied to all images in which a laminar cortical pattern can be detected and quantified, e.g. myeloarchitectonic and in vivo high resolution MR imaging. Defining cortical borders, based on changes in cortical lamination in high resolution, in vivo structural MR images will result in a rapid increase of our knowledge on the structural parcellation of the human cerebral cortex.
Aberration Theory and Design Techniques for Refracting Prism Systems.
NASA Astrophysics Data System (ADS)
Al-Bizri, N.
Available from UMI in association with The British Library. The general case of image formation by optical systems consisting of combinations of ordinary lens components and refracting prisms is studied in detail. Formulae for the sagittal and tangential magnifications, the pupil scale ratios, the image tilt, the positions of (newly defined) principal planes and the equivalent focal lengths have been derived. Formulae for the axial astigmatism, axial transverse chromatic aberration and the focal shift measure of the aberration due to the tilt of the image plane have also been obtained. All of these formulae are equally valid for any optical system which has a single plane of symmetry. The calculation of the wavefront aberration coefficients and of the variance of the aberration for such systems has been treated using the pre-inverted matrix method. In addition formulae for the numerical evaluation of the optical transfer function, the point spread function, the line spread function and the edge response function, have been obtained and programmed. First-order formulae, and a refinement technique, for the design of cemented refracting doublet prisms have been obtained, which ensure that the desired prismatic deviation of the axis is obtained, and that the axial astigmatism and the axial transverse chromatic aberration have stipulated target values. All of the above formulae have been carefully tested by numerical examples, and the design technique has been used to design endoscope objectives which provide small deviations (<10^circ ) of the optical axis.
Faceting for direction-dependent spectral deconvolution
NASA Astrophysics Data System (ADS)
Tasse, C.; Hugo, B.; Mirmont, M.; Smirnov, O.; Atemkeng, M.; Bester, L.; Hardcastle, M. J.; Lakhoo, R.; Perkins, S.; Shimwell, T.
2018-04-01
The new generation of radio interferometers is characterized by high sensitivity, wide fields of view and large fractional bandwidth. To synthesize the deepest images enabled by the high dynamic range of these instruments requires us to take into account the direction-dependent Jones matrices, while estimating the spectral properties of the sky in the imaging and deconvolution algorithms. In this paper we discuss and implement a wideband wide-field spectral deconvolution framework (DDFacet) based on image plane faceting, that takes into account generic direction-dependent effects. Specifically, we present a wide-field co-planar faceting scheme, and discuss the various effects that need to be taken into account to solve for the deconvolution problem (image plane normalization, position-dependent Point Spread Function, etc). We discuss two wideband spectral deconvolution algorithms based on hybrid matching pursuit and sub-space optimisation respectively. A few interesting technical features incorporated in our imager are discussed, including baseline dependent averaging, which has the effect of improving computing efficiency. The version of DDFacet presented here can account for any externally defined Jones matrices and/or beam patterns.
Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh
2014-01-01
Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394
Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François
2017-01-01
Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision. DOI: http://dx.doi.org/10.7554/eLife.25690.001 PMID:28749338
MTF measurements on real time for performance analysis of electro-optical systems
NASA Astrophysics Data System (ADS)
Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis
2012-06-01
The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.
Magnetic resonance imaging of the preterm infant brain.
Doria, Valentina; Arichi, Tomoki; Edwards, David A
2014-01-01
Despite improvements in neonatal care, survivors of preterm birth are still at a significantly increased risk of developing life-long neurological difficulties including cerebral palsy and cognitive difficulties. Cranial ultrasound is routinely used in neonatal practice, but has a low sensitivity for identifying later neurodevelopmental difficulties. Magnetic Resonance Imaging (MRI) can be used to identify intracranial abnormalities with greater diagnostic accuracy in preterm infants, and theoretically might improve the planning and targeting of long-term neurodevelopmental care; reducing parental stress and unplanned healthcare utilisation; and ultimately may improve healthcare cost effectiveness. Furthermore, MR imaging offers the advantage of allowing the quantitative assessment of the integrity, growth and function of intracranial structures, thereby providing the means to develop sensitive biomarkers which may be predictive of later neurological impairment. However further work is needed to define the accuracy and value of diagnosis by MR and the techniques's precise role in care pathways for preterm infants.
Dayhoff, R E; Maloney, D L; Kenney, T J; Fletcher, R D
1991-01-01
The VA's hospital information system, the Decentralized Hospital Computer Program (DHCP), is an integrated system based on a powerful set of software tools with shared data accessible from any of its application modules. It includes many functionally specific application subsystems such as laboratory, pharmacy, radiology, and dietetics. Physicians need applications that cross these application boundaries to provide useful and convenient patient data. One of these multi-specialty applications, the DHCP Imaging System, integrates multimedia data to provide clinicians with comprehensive patient-oriented information. User requirements for cross-disciplinary image access can be studied to define needs for similar text data access. Integration approaches must be evaluated both for their ability to deliver patient-oriented text data rapidly and their ability to integrate multimedia data objects. Several potential integration approaches are described as they relate to the DHCP Imaging System.
Dayhoff, R. E.; Maloney, D. L.; Kenney, T. J.; Fletcher, R. D.
1991-01-01
The VA's hospital information system, the Decentralized Hospital Computer Program (DHCP), is an integrated system based on a powerful set of software tools with shared data accessible from any of its application modules. It includes many functionally specific application subsystems such as laboratory, pharmacy, radiology, and dietetics. Physicians need applications that cross these application boundaries to provide useful and convenient patient data. One of these multi-specialty applications, the DHCP Imaging System, integrates multimedia data to provide clinicians with comprehensive patient-oriented information. User requirements for cross-disciplinary image access can be studied to define needs for similar text data access. Integration approaches must be evaluated both for their ability to deliver patient-oriented text data rapidly and their ability to integrate multimedia data objects. Several potential integration approaches are described as they relate to the DHCP Imaging System. PMID:1807651
Distinct hippocampal functional networks revealed by tractography-based parcellation.
Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat
2016-07-01
Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory.
A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra
NASA Astrophysics Data System (ADS)
Foulis, David J.; Jenčová, Anna; Pulmannová, Sylvia
2017-10-01
A generalized Hermitian (GH-) algebra is a generalization of the partially ordered Jordan algebra of all Hermitian operators on a Hilbert space. We introduce the notion of a gh-tribe, which is a commutative GH-algebra of functions on a nonempty set X with pointwise partial order and operations, and we prove that every commutative GH-algebra is the image of a gh-tribe under a surjective GH-morphism. Using this result, we prove that each element a of a GH-algebra A corresponds to a real observable ξa on the σ-orthomodular lattice of projections in A and that ξa determines the spectral resolution of a. Also, if f is a continuous function defined on the spectrum of a, we formulate a definition of f (a), thus obtaining a continuous functional calculus for A.
Silva, Guilherme; Citterio, Alberto
2017-10-01
Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.
Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed
2015-01-01
Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819
NASA Astrophysics Data System (ADS)
Marsh, K. A.; Whitworth, A. P.; Lomax, O.
2015-12-01
We present point process mapping (
1991-05-01
or may not bypass the editing function. At present, editing rules beyond those required for translation have not been stipulated. 2When explicit... editing rules become defined, the editor at a site LGN may perform two levels of edit checking: warning, which would insert blanks or pass as submitted...position image transactions into a transaction set. This low-level edit checking is performed at the site LGN to reduce transmission costs and to
Drag and drop simulation: from pictures to full three-dimensional simulations
NASA Astrophysics Data System (ADS)
Bergmann, Michel; Iollo, Angelo
2014-11-01
We present a suite of methods to achieve ``drag and drop'' simulation, i.e., to fully automatize the process to perform thee-dimensional flow simulations around a bodies defined by actual images of moving objects. The overall approach requires a skeleton graph generation to get level set function from pictures, optimal transportation to get body velocity on the surface and then flow simulation thanks to a cartesian method based on penalization. We illustrate this paradigm simulating the swimming of a mackerel fish.
Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C
2009-04-01
The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty infiltration were both significantly associated with excessive abnormal angular motion (p < 0.05). This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.
Harnessing Preclinical Molecular Imaging to Inform Advances in Personalized Cancer Medicine.
Clark, Peter M; Ebiana, Victoria A; Gosa, Laura; Cloughesy, Timothy F; Nathanson, David A
2017-05-01
Comprehensive molecular analysis of individual tumors provides great potential for personalized cancer therapy. However, the presence of a particular genetic alteration is often insufficient to predict therapeutic efficacy. Drugs with distinct mechanisms of action can affect the biology of tumors in specific and unique ways. Therefore, assays that can measure drug-induced perturbations of defined functional tumor properties can be highly complementary to genomic analysis. PET provides the capacity to noninvasively measure the dynamics of various tumor biologic processes in vivo. Here, we review the underlying biochemical and biologic basis for a variety of PET tracers and how they may be used to better optimize cancer therapy. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
NASA Technical Reports Server (NTRS)
Hoffer, Roger M.; Hussin, Yousif Ali
1989-01-01
Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.
Design Considerations For Imaging Charge-Coupled Device (ICCD) Star Sensors
NASA Astrophysics Data System (ADS)
McAloon, K. J.
1981-04-01
A development program is currently underway to produce a precision star sensor using imaging charge coupled device (ICCD) technology. The effort is the critical component development phase for the Air Force Multi-Mission Attitude Determination and Autonomous Navigation System (MADAN). A number of unique considerations have evolved in designing an arcsecond accuracy sensor around an ICCD detector. Three tiers of performance criteria are involved: at the spacecraft attitude determination system level, at the star sensor level, and at the detector level. Optimum attitude determination system performance involves a tradeoff between Kalman filter iteration time and sensor ICCD integration time. The ICCD star sensor lends itself to the use of a new approach in the functional interface between the attitude determination system and the sensor. At the sensor level image data processing tradeoffs are important for optimum sensor performance. These tradeoffs involve the sensor optic configuration, the optical point spread function (PSF) size and shape, the PSF position locator, and the microprocessor locator algorithm. Performance modelling of the sensor mandates the use of computer simulation programs. Five key performance parameters at the ICCD detector level are defined. ICCD error characteristics have also been isolated to five key parameters.
Identification and restoration in 3D fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dieterlen, Alain; Xu, Chengqi; Haeberle, Olivier; Hueber, Nicolas; Malfara, R.; Colicchio, B.; Jacquey, Serge
2004-06-01
3-D optical fluorescent microscopy becomes now an efficient tool for volumic investigation of living biological samples. The 3-D data can be acquired by Optical Sectioning Microscopy which is performed by axial stepping of the object versus the objective. For any instrument, each recorded image can be described by a convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. To assess performance and ensure the data reproducibility, as for any 3-D quantitative analysis, the system indentification is mandatory. The PSF explains the properties of the image acquisition system; it can be computed or acquired experimentally. Statistical tools and Zernike moments are shown appropriate and complementary to describe a 3-D system PSF and to quantify the variation of the PSF as function of the optical parameters. Some critical experimental parameters can be identified with these tools. This is helpful for biologist to define an aquisition protocol optimizing the use of the system. Reduction of out-of-focus light is the task of 3-D microscopy; it is carried out computationally by deconvolution process. Pre-filtering the images improves the stability of deconvolution results, now less dependent on the regularization parameter; this helps the biologists to use restoration process.
A Functional Approach to Hyperspectral Image Analysis in the Cloud
NASA Astrophysics Data System (ADS)
Wilson, A.; Lindholm, D. M.; Coddington, O.; Pilewskie, P.
2017-12-01
Hyperspectral image volumes are very large. A hyperspectral image analysis (HIA) may use 100TB of data, a huge barrier to their use. Hylatis is a new NASA project to create a toolset for HIA. Through web notebook and cloud technology, Hylatis will provide a more interactive experience for HIA by defining and implementing concepts and operations for HIA, identified and vetted by subject matter experts, and callable within a general purpose language, particularly Python. Hylatis leverages LaTiS, a data access framework developed at LASP. With an OPeNDAP compliant interface plus additional server side capabilities, the LaTiS API provides a uniform interface to virtually any data source, and has been applied to various storage systems, including: file systems, databases, remote servers, and in various domains including: space science, systems administration and stock quotes. In the LaTiS architecture, data `adapters' read data into a data model, where server-side computations occur. Data `writers' write data from the data model into the desired format. The Hylatis difference is the data model. In LaTiS, data are represented as mathematical functions of independent and dependent variables. Domain semantics are not present at this level, but are instead present in higher software layers. The benefit of a domain agnostic, mathematical representation is having the power of math, particularly functional algebra, unconstrained by domain semantics. This agnosticism supports reusable server side functionality applicable in any domain, such as statistical, filtering, or projection operations. Algorithms to aggregate or fuse data can be simpler because domain semantics are separated from the math. Hylatis will map the functional model onto the Spark relational interface, thereby adding a functional interface to that big data engine.This presentation will discuss Hylatis goals, strategies, and current state.
NASA Astrophysics Data System (ADS)
Languirand, Eric Robert
Chemical imaging is an important tool for providing insight into function, role, and spatial distribution of analytes. This thesis describes the use of imaging fiber bundles (IFB) for super-resolution reconstruction using surface enhanced Raman scattering (SERS) showing improvement in resolution with arrayed bundles for the first time. Additionally this thesis describes characteristics of the IFB with regards to cross-talk as a function of aperture size. The first part of this thesis characterizes the IFB for both tapered and untapered bundles in terms of cross-talk. Cross-talk is defined as the amount of light leaking from a central fiber element in the imaging fiber bundle to surrounding fiber elements. To make this measurement ubiquitous for all imaging bundles, quantum dots were employed. Untapered and tapered IFB possess cross-talk of 2% or less, with fiber elements down to 32nm. The second part of this thesis employs a super resolution reconstruction algorithm using projection onto convex sets for resolution improvement. When using IFB arrays, the point spread function (PSF) of the array can be known accurately if the fiber elements over fill the pixel detector array. Therefore, the use of the known PSF compared to a general blurring kernel was evaluated. Relative increases in resolution of 12% and 2% at the 95% confidence level are found, when compared to a reference image, for the general blurring kernel and PSF, respectively. The third part of this thesis shows for the first time the use of SERS with a dithered IFB array coupled with super-resolution reconstruction. The resolution improvement across a step-edge is shown to be approximately 20% when compared to a reference image. This provides an additional means of increasing the resolution of fiber bundles beyond that of just tapering. Furthermore, this provides a new avenue for nanoscale imaging using these bundles. Lastly, synthetic data with varying degrees of signal-to-noise (S/N) were employed to explore the relationship S/N has with the reconstruction process. It is generally shown that increasing the number images used in the reconstruction process and increasing the S/N will improve the reconstruction providing larger increases in resolution.
Neuroanatomy of episodic and semantic memory in humans: a brief review of neuroimaging studies.
García-Lázaro, Haydée G; Ramirez-Carmona, Rocio; Lara-Romero, Ruben; Roldan-Valadez, Ernesto
2012-01-01
One of the most basic functions in every individual and species is memory. Memory is the process by which information is saved as knowledge and retained for further use as needed. Learning is a neurobiological phenomenon by which we acquire certain information from the outside world and is a precursor to memory. Memory consists of the capacity to encode, store, consolidate, and retrieve information. Recently, memory has been defined as a network of connections whose function is primarily to facilitate the long-lasting persistence of learned environmental cues. In this review, we present a brief description of the current classifications of memory networks with a focus on episodic memory and its anatomical substrate. We also present a brief review of the anatomical basis of memory systems and the most commonly used neuroimaging methods to assess memory, illustrated with magnetic resonance imaging images depicting the hippocampus, temporal lobe, and hippocampal formation, which are the main brain structures participating in memory networks.
2009-01-01
Many studies of RNA folding and catalysis have revealed conformational heterogeneity, metastable folding intermediates, and long-lived states with distinct catalytic activities. We have developed a single-molecule imaging approach for investigating the functional heterogeneity of in vitro-evolved RNA aptamers. Monitoring the association of fluorescently labeled ligands with individual RNA aptamer molecules has allowed us to record binding events over the course of multiple days, thus providing sufficient statistics to quantitatively define the kinetic properties at the single-molecule level. The ligand binding kinetics of the highly optimized RNA aptamer studied here displays a remarkable degree of uniformity and lack of memory. Such homogeneous behavior is quite different from the heterogeneity seen in previous single-molecule studies of naturally derived RNA and protein enzymes. The single-molecule methods we describe may be of use in analyzing the distribution of functional molecules in heterogeneous evolving populations or even in unselected samples of random sequences. PMID:19572753
Micro and MACRO Fractals Generated by Multi-Valued Dynamical Systems
NASA Astrophysics Data System (ADS)
Banakh, T.; Novosad, N.
2014-08-01
Given a multi-valued function Φ : X \\mumap X on a topological space X we study the properties of its fixed fractal \\malteseΦ, which is defined as the closure of the orbit Φω(*Φ) = ⋃n∈ωΦn(*Φ) of the set *Φ = {x ∈ X : x ∈ Φ(x)} of fixed points of Φ. A special attention is paid to the duality between micro-fractals and macro-fractals, which are fixed fractals \\maltese Φ and \\maltese {Φ -1} for a contracting compact-valued function Φ : X \\mumap X on a complete metric space X. With help of algorithms (described in this paper) we generate various images of macro-fractals which are dual to some well-known micro-fractals like the fractal cross, the Sierpiński triangle, Sierpiński carpet, the Koch curve, or the fractal snowflakes. The obtained images show that macro-fractals have a large-scale fractal structure, which becomes clearly visible after a suitable zooming.
Lee, Jin Hyung
2011-01-01
Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism. PMID:22046160
Fang, Joyce; Savransky, Dmitry
2016-08-01
Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation.
Alfaro, Freddy J; Gavrieli, Anna; Saade-Lemus, Patricia; Lioutas, Vasileios-Arsenios; Upadhyay, Jagriti; Novak, Vera
2018-01-01
Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.
Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).
Giakoumakis, Nickolaos Nikiforos; Rapsomaniki, Maria Anna; Lygerou, Zoi
2017-01-01
Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.
Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity
NASA Astrophysics Data System (ADS)
Shodja, Hossein M.; Rezazadeh-Kalehbasti, Shaghayegh; Gutkin, Mikhail Yu
2013-12-01
The elastic behavior of an arbitrary oriented wedge disclination dipole located inside a nanowire, which in turn is embedded in an infinite matrix, is studied within the surface/interface theory of elasticity. The corresponding boundary value problem is provided using complex potential functions. The potential functions are defined through modeling the wedge disclination in terms of an equivalent distribution of edge dislocations. The interface effects on the stress field and strain energy of the disclination dipole and image forces acting on it, the influence of relative shear moduli of the nanowire and the matrix, as well as the different characteristics of the interface are studied thoroughly. It is shown that the positive interface modulus leads to increased strain energy and extra repulsive forces on the disclination dipole. The noticeable effect of the negative interface modulus is the non-classical oscillations in the stress field of the disclination dipole and an extra attractive image force on it.
What’s New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment
Reis, Cesar; Wang, Yuechun; Akyol, Onat; Ho, Wing Mann; Applegate II, Richard; Stier, Gary; Martin, Robert; Zhang, John H.
2015-01-01
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI. PMID:26016501
Improving depth estimation from a plenoptic camera by patterned illumination
NASA Astrophysics Data System (ADS)
Marshall, Richard J.; Meah, Chris J.; Turola, Massimo; Claridge, Ela; Robinson, Alex; Bongs, Kai; Gruppetta, Steve; Styles, Iain B.
2015-05-01
Plenoptic (light-field) imaging is a technique that allows a simple CCD-based imaging device to acquire both spatially and angularly resolved information about the "light-field" from a scene. It requires a microlens array to be placed between the objective lens and the sensor of the imaging device1 and the images under each microlens (which typically span many pixels) can be computationally post-processed to shift perspective, digital refocus, extend the depth of field, manipulate the aperture synthetically and generate a depth map from a single image. Some of these capabilities are rigid functions that do not depend upon the scene and work by manipulating and combining a well-defined set of pixels in the raw image. However, depth mapping requires specific features in the scene to be identified and registered between consecutive microimages. This process requires that the image has sufficient features for the registration, and in the absence of such features the algorithms become less reliable and incorrect depths are generated. The aim of this study is to investigate the generation of depth-maps from light-field images of scenes with insufficient features for accurate registration, using projected patterns to impose a texture on the scene that provides sufficient landmarks for the registration methods.
Retinal Image Quality During Accommodation
López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.
2013-01-01
Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. PMID:23786386
Retinal image quality during accommodation.
López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N
2013-07-01
We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohli, K; Liu, F; Krishnan, K
Purpose: Multi-frequency EIT has been reported to be a potential tool in distinguishing a tissue anomaly from background. In this study, we investigate the feasibility of acquiring functional information by comparing multi-frequency EIT images in reference to the structural information from the CT image through fusion. Methods: EIT data was acquired from a slice of winter melon using sixteen electrodes around the phantom, injecting a current of 0.4mA at 100, 66, 24.8 and 9.9 kHz. Differential EIT images were generated by considering different combinations of pair frequencies, one serving as reference data and the other as test data. The experimentmore » was repeated after creating an anomaly in the form of an off-centered cavity of diameter 4.5 cm inside the melon. All EIT images were reconstructed using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) package in 2-D differential imaging mode using one-step Gaussian Newton minimization solver. CT image of the melon was obtained using a Phillips CT Scanner. A segmented binary mask image was generated based on the reference electrode position and the CT image to define the regions of interest. The region selected by the user was fused with the CT image through logical indexing. Results: Differential images based on the reference and test signal frequencies were reconstructed from EIT data. Result illustrated distinct structural inhomogeneity in seeded region compared to fruit flesh. The seeded region was seen as a higherimpedance region if the test frequency was lower than the base frequency in the differential EIT reconstruction. When the test frequency was higher than the base frequency, the signal experienced less electrical impedance in the seeded region during the EIT data acquisition. Conclusion: Frequency-based differential EIT imaging can be explored to provide additional functional information along with structural information from CT for identifying different tissues.« less
Bardone-Cone, Anna M.; Harney, Megan B.; Maldonado, Christine R.; Lawson, Melissa A.; Robinson, D. Paul; Smith, Roma; Tosh, Aneesh
2009-01-01
Conceptually, eating disorder recovery should include physical, behavioral, and psychological components, but such a comprehensive approach has not been consistently employed. Guided by theory and recent recovery research, we identified a “fully recovered” group (n=20) based on physical (body mass index), behavioral (absence of eating disorder behaviors), and psychological (Eating Disorder Examination-Questionnaire) indices, and compared them with groups of partially recovered (n=15), active eating disorder (n=53), and healthy controls (n=67). The fully recovered group was indistinguishable from controls on all eating disorder-related measures used, while the partially recovered group was less disordered than the active eating disorder group on some measures, but not on body image. Regarding psychosocial functioning, both the fully and partially recovered groups had psychosocial functioning similar to the controls, but there was a pattern of more of the partially recovered group reporting eating disorder aspects interfering with functioning. Regarding other psychopathology, the fully recovered group was no more likely than the controls to experience current Axis I pathology, but they did have elevated rates of current anxiety disorder. Results suggest that a stringent definition of recovery from an eating disorder is meaningful. Clinical implications and future directions regarding defining eating disorder recovery are discussed. PMID:19945094
Wig, Gagan S.; Laumann, Timothy O.; Cohen, Alexander L.; Power, Jonathan D.; Nelson, Steven M.; Glasser, Matthew F.; Miezin, Francis M.; Snyder, Abraham Z.; Schlaggar, Bradley L.; Petersen, Steven E.
2014-01-01
We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability—reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. PMID:23476025
NASA Astrophysics Data System (ADS)
Lin, Zi-Jing; Li, Lin; Cazzell, Marry; Liu, Hanli
2013-03-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique which measures the hemodynamic changes that reflect the brain activity. Diffuse optical tomography (DOT), a variant of fNIRS with multi-channel NIRS measurements, has demonstrated capability of three dimensional (3D) reconstructions of hemodynamic changes due to the brain activity. Conventional method of DOT image analysis to define the brain activation is based upon the paired t-test between two different states, such as resting-state versus task-state. However, it has limitation because the selection of activation and post-activation period is relatively subjective. General linear model (GLM) based analysis can overcome this limitation. In this study, we combine the 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with the risk-decision making process. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The balloon analogue risk task (BART) is a valid experimental model and has been commonly used in behavioral measures to assess human risk taking action and tendency while facing risks. We have utilized the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making. Voxel-wise GLM analysis was performed on 18human participants (10 males and 8females).In this work, we wish to demonstrate the feasibility of using voxel-wise GLM analysis to image and study cognitive functions in response to risk decision making by DOT. Results have shown significant changes in the dorsal lateral prefrontal cortex (DLPFC) during the active choice mode and a different hemodynamic pattern between genders, which are in good agreements with published literatures in functional magnetic resonance imaging (fMRI) and fNIRS studies.
Content based image retrieval using local binary pattern operator and data mining techniques.
Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan
2015-01-01
Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.
A convergent functional architecture of the insula emerges across imaging modalities.
Kelly, Clare; Toro, Roberto; Di Martino, Adriana; Cox, Christine L; Bellec, Pierre; Castellanos, F Xavier; Milham, Michael P
2012-07-16
Empirical evidence increasingly supports the hypothesis that patterns of intrinsic functional connectivity (iFC) are sculpted by a history of evoked coactivation within distinct neuronal networks. This, together with evidence of strong correspondence among the networks defined by iFC and those delineated using a variety of other neuroimaging techniques, suggests a fundamental brain architecture detectable across multiple functional and structural imaging modalities. Here, we leverage this insight to examine the functional organization of the human insula. We parcellated the insula on the basis of three distinct neuroimaging modalities - task-evoked coactivation, intrinsic (i.e., task-independent) functional connectivity, and gray matter structural covariance. Clustering of these three different covariance-based measures revealed a convergent elemental organization of the insula that likely reflects a fundamental brain architecture governing both brain structure and function at multiple spatial scales. While not constrained to be hierarchical, our parcellation revealed a pseudo-hierarchical, multiscale organization that was consistent with previous clustering and meta-analytic studies of the insula. Finally, meta-analytic examination of the cognitive and behavioral domains associated with each of the insular clusters obtained elucidated the broad functional dissociations likely underlying the topography observed. To facilitate future investigations of insula function across healthy and pathological states, the insular parcels have been made freely available for download via http://fcon_1000.projects.nitrc.org, along with the analytic scripts used to perform the parcellations. Copyright © 2012 Elsevier Inc. All rights reserved.
Aacovou, I.
2005-01-01
Summary Burn injuries are among the most serious causes of radical changes in body image. The subject of body image and self-image is essential in rehabilitation, and the nurse must be aware of the issues related to these concepts and take them seriously into account in drafting out the nursing programme. This paper defines certain key words related to body image and discusses the social context of body image. Burn injuries are considered in relation to the way each of these affects the patient's body image. The aim of nursing is defined and the nurse's role in cases of severe changes in body image due to burn injuries is discussed. PMID:21990985
Kohno, Milky; Nurmi, Erika L; Laughlin, Christopher P; Morales, Angelica M; Gail, Emma H; Hellemann, Gerhard S; London, Edythe D
2016-02-01
Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity.
Determining biosonar images using sparse representations.
Fontaine, Bertrand; Peremans, Herbert
2009-05-01
Echolocating bats are thought to be able to create an image of their environment by emitting pulses and analyzing the reflected echoes. In this paper, the theory of sparse representations and its more recent further development into compressed sensing are applied to this biosonar image formation task. Considering the target image representation as sparse allows formulation of this inverse problem as a convex optimization problem for which well defined and efficient solution methods have been established. The resulting technique, referred to as L1-minimization, is applied to simulated data to analyze its performance relative to delay accuracy and delay resolution experiments. This method performs comparably to the coherent receiver for the delay accuracy experiments, is quite robust to noise, and can reconstruct complex target impulse responses as generated by many closely spaced reflectors with different reflection strengths. This same technique, in addition to reconstructing biosonar target images, can be used to simultaneously localize these complex targets by interpreting location cues induced by the bat's head related transfer function. Finally, a tentative explanation is proposed for specific bat behavioral experiments in terms of the properties of target images as reconstructed by the L1-minimization method.
Patterson, Robert P; Zhang, Jie
2003-05-01
A finite difference model of the human thorax with 113,400 control volumes (nodes) based on ECG gated MRI images was used to evaluate the Sheffield DAS-01P EIT system. Sixteen simulated electrode positions equally spaced around the thorax model at approximately the fourth intercostals space level were selected. Pairs of adjacent positions were excited sequentially by injecting current in a manner similar to that used by the Sheffield DAS-01P EIT system. The resulting voltages on the non-excited electrode positions were calculated and used to reconstruct the image using the Sheffield filtered back projection algorithm. By changing the resistivities of the lungs, the ventricles and the atria over a range of 1% to 40%, the resulting changes in the images were quantified by measuring the average resistivity change over a region defined automatically by two thresholds, 40% or 80% of the average of the first four pixels with the largest change. The results show that the changes observed in the images are consistently less than the changes in the model, but changed in a nearly linear manner as a function of resistivity in the model. For 40% resistivity changes in the model for right lung, right ventricle and right atrium, the observed resistivity changes in the region of interest (ROI, defined by the 80% threshold) of the images are 32% for the right lung, 11% for the right ventricle and 5.5% for the right atrium, which suggests strong volume dependence of EIT imaging. The effect of structural (size) change between end diastole and end systole was also studied, which showed large resistivity changes caused in the heart region of the constructed image. The study demonstrates that the Sheffield DAS-01P EIT reconstruction algorithm tracks the change occurring in the lungs most closely and with proper scaling may be used to observe physiological changes.
Coherent optical processing using noncoherent light after source masking.
Boopathi, V; Vasu, R M
1992-01-10
Coherent optical processing starting with spatially noncoherent illumination is described. Good spatial coherence is introduced in the far field by modulating a noncoherent source when masks with sharp autocorrelation are used. The far-field mutual coherence function of light is measured and it is seen that, for the masks and the source size used here, we get a fairly large area over which the mutual coherence function is high and flat. We demonstrate traditional coherent processing operations such as Fourier transformation and image deblurring when coherent light that is produced in the above fashion is used. A coherence-redundancy merit function is defined for this type of processing system. It is experimentally demonstrated that the processing system introduced here has superior blemish tolerance compared with a traditional processor that uses coherent illumination.
Particle Filter with State Permutations for Solving Image Jigsaw Puzzles
Yang, Xingwei; Adluru, Nagesh; Latecki, Longin Jan
2016-01-01
We deal with an image jigsaw puzzle problem, which is defined as reconstructing an image from a set of square and non-overlapping image patches. It is known that a general instance of this problem is NP-complete, and it is also challenging for humans, since in the considered setting the original image is not given. Recently a graphical model has been proposed to solve this and related problems. The target label probability function is then maximized using loopy belief propagation. We also formulate the problem as maximizing a label probability function and use exactly the same pairwise potentials. Our main contribution is a novel inference approach in the sampling framework of Particle Filter (PF). Usually in the PF framework it is assumed that the observations arrive sequentially, e.g., the observations are naturally ordered by their time stamps in the tracking scenario. Based on this assumption, the posterior density over the corresponding hidden states is estimated. In the jigsaw puzzle problem all observations (puzzle pieces) are given at once without any particular order. Therefore, we relax the assumption of having ordered observations and extend the PF framework to estimate the posterior density by exploring different orders of observations and selecting the most informative permutations of observations. This significantly broadens the scope of applications of the PF inference. Our experimental results demonstrate that the proposed inference framework significantly outperforms the loopy belief propagation in solving the image jigsaw puzzle problem. In particular, the extended PF inference triples the accuracy of the label assignment compared to that using loopy belief propagation. PMID:27795660
Point spread function based classification of regions for linear digital tomosynthesis
NASA Astrophysics Data System (ADS)
Israni, Kenny; Avinash, Gopal; Li, Baojun
2007-03-01
In digital tomosynthesis, one of the limitations is the presence of out-of-plane blur due to the limited angle acquisition. The point spread function (PSF) characterizes blur in the imaging volume, and is shift-variant in tomosynthesis. The purpose of this research is to classify the tomosynthesis imaging volume into four different categories based on PSF-driven focus criteria. We considered linear tomosynthesis geometry and simple back projection algorithm for reconstruction. The three-dimensional PSF at every pixel in the imaging volume was determined. Intensity profiles were computed for every pixel by integrating the PSF-weighted intensities contained within the line segment defined by the PSF, at each slice. Classification rules based on these intensity profiles were used to categorize image regions. At background and low-frequency pixels, the derived intensity profiles were flat curves with relatively low and high maximum intensities respectively. At in-focus pixels, the maximum intensity of the profiles coincided with the PSF-weighted intensity of the pixel. At out-of-focus pixels, the PSF-weighted intensity of the pixel was always less than the maximum intensity of the profile. We validated our method using human observer classified regions as gold standard. Based on the computed and manual classifications, the mean sensitivity and specificity of the algorithm were 77+/-8.44% and 91+/-4.13% respectively (t=-0.64, p=0.56, DF=4). Such a classification algorithm may assist in mitigating out-of-focus blur from tomosynthesis image slices.
Abramson, Richard G.; Su, Pei-Fang; Shyr, Yu
2012-01-01
Quantitative imaging has emerged as a leading priority on the imaging research agenda, yet clinical radiology has traditionally maintained a skeptical attitude toward numerical measurement in diagnostic interpretation. To gauge the extent to which quantitative reporting has been incorporated into routine clinical radiology practice, and to offer preliminary baseline data against which the evolution of quantitative imaging can be measured, we obtained all clinical computed tomography (CT) and magnetic resonance imaging (MRI) reports from two randomly selected weekdays in 2011 at a single mixed academic-community practice and evaluated those reports for the presence of quantitative descriptors. We found that 44% of all reports contained at least one “quantitative metric” (QM), defined as any numerical descriptor of a physical property other than quantity, but only 2% of reports contained an “advanced quantitative metric” (AQM), defined as a numerical parameter reporting on lesion function or composition, excluding simple size and distance measurements. Possible reasons for the slow translation of AQMs into routine clinical radiology reporting include perceptions that the primary clinical question may be qualitative in nature or that a qualitative answer may be sufficient; concern that quantitative approaches may obscure important qualitative information, may not be adequately validated, or may not allow sufficient expression of uncertainty; the feeling that “gestalt” interpretation may be superior to quantitative paradigms; and practical workflow limitations. We suggest that quantitative imaging techniques will evolve primarily as dedicated instruments for answering specific clinical questions requiring precise and standardized interpretation. Validation in real-world settings, ease of use, and reimbursement economics will all play a role in determining the rate of translation of AQMs into broad practice. PMID:22795791
Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats.
Taheri, Saeid; Xun, Zhu; See, Ronald E; Joseph, Jane E; Reichel, Carmela M
2016-07-01
Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10min, rats received drug over the next 10min for a total 40min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI. Copyright © 2016 Elsevier B.V. All rights reserved.
Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats
See, Ronald E.; Joseph, Jane E.; Reichel, Carmela M.
2016-01-01
Background Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. Objective Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. Methods Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10 min, rats received drug over the next 10 min for a total 40 min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. Results Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. Conclusion Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI. PMID:27103569
Cheng, Jerome; Hipp, Jason; Monaco, James; Lucas, David R; Madabhushi, Anant; Balis, Ulysses J
2011-01-01
Spatially invariant vector quantization (SIVQ) is a texture and color-based image matching algorithm that queries the image space through the use of ring vectors. In prior studies, the selection of one or more optimal vectors for a particular feature of interest required a manual process, with the user initially stochastically selecting candidate vectors and subsequently testing them upon other regions of the image to verify the vector's sensitivity and specificity properties (typically by reviewing a resultant heat map). In carrying out the prior efforts, the SIVQ algorithm was noted to exhibit highly scalable computational properties, where each region of analysis can take place independently of others, making a compelling case for the exploration of its deployment on high-throughput computing platforms, with the hypothesis that such an exercise will result in performance gains that scale linearly with increasing processor count. An automated process was developed for the selection of optimal ring vectors to serve as the predicate matching operator in defining histopathological features of interest. Briefly, candidate vectors were generated from every possible coordinate origin within a user-defined vector selection area (VSA) and subsequently compared against user-identified positive and negative "ground truth" regions on the same image. Each vector from the VSA was assessed for its goodness-of-fit to both the positive and negative areas via the use of the receiver operating characteristic (ROC) transfer function, with each assessment resulting in an associated area-under-the-curve (AUC) figure of merit. Use of the above-mentioned automated vector selection process was demonstrated in two cases of use: First, to identify malignant colonic epithelium, and second, to identify soft tissue sarcoma. For both examples, a very satisfactory optimized vector was identified, as defined by the AUC metric. Finally, as an additional effort directed towards attaining high-throughput capability for the SIVQ algorithm, we demonstrated the successful incorporation of it with the MATrix LABoratory (MATLAB™) application interface. The SIVQ algorithm is suitable for automated vector selection settings and high throughput computation.
Workspace definition for navigated control functional endoscopic sinus surgery
NASA Astrophysics Data System (ADS)
Gessat, Michael; Hofer, Mathias; Audette, Michael; Dietz, Andreas; Meixensberger, Jürgen; Stauß, Gero; Burgert, Oliver
2007-03-01
For the pre-operative definition of a surgical workspace for Navigated Control ® Functional Endoscopic Sinus Surgery (FESS), we developed a semi-automatic image processing system. Based on observations of surgeons using a manual system, we implemented a workflow-based engineering process that led us to the development of a system reducing time and workload spent during the workspace definition. The system uses a feature based on local curvature to align vertices of a polygonal outline along the bone structures defining the cavities of the inner nose. An anisotropic morphologic operator was developed solve problems arising from artifacts from noise and partial volume effects. We used time measurements and NASA's TLX questionnaire to evaluate our system.
Between genetics and biology. Is ENMG useful in peripheral neuropathy diagnosis and management?
Stålberg, E
2016-10-01
Neurography and EMG are complementary techniques used in the diagnosis and monitoring of neuropathies. Both assess function of the peripheral nervous system and provide clinically useful information regarding the functional status of peripheral nerves. This information is not readily obtainable using biochemical, genetic or imaging techniques. I will discuss the role of these techniques in the diagnosis and management of neuropathies and some limitations of these techniques. These methods are routinely used in an EMG lab. These are most useful when used in conjunction with clinical examination to answer a well-defined clinical question. Reference values are required for interpretation of the data. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Nanoassemblies from homostructured polypeptides as efficient nanoplatforms for oral drug delivery.
Jia, Yi; Tang, Yuan; He, Hongmei; Li, Shuhui; Che, Ling; Zhou, Xing; Dou, Yin; Zhang, Jianxiang; Li, Xiaohui
2013-04-01
The assembly of homostructured polypeptides bearing various side groups into well-defined nanostructures was presented, with their size and topology mainly dominated by the chemical structure and molecular weight of peptides. Pharmacokinetic and pharmacodynamic studies based on rat models suggested these newly constructed nanoassemblies with low cytotoxicity may function as novel nanoplatforms to efficiently and safely deliver therapeutics to achieve better efficacy but lower side effects. Other applications in biomedical fields, such as biotechnology, medical imaging, and tissue engineering, may also be expected. This research team investigated the assembly of homostructured polypeptides bearing various side groups into well-defined nanostructures, and demonstrated low cytotoxicity in rat disease models, suggesting that these novel nanoplatforms may safely and efficiently deliver therapeutics with low side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.
2005-11-01
Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.
Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas.
Gerin, Chloé; Pallud, Johan; Deroulers, Christophe; Varlet, Pascale; Oppenheim, Catherine; Roux, Francois-Xavier; Chrétien, Fabrice; Thomas, Stephen R; Grammaticos, Basile; Badoual, Mathilde
2013-10-01
Supratentorial diffuse low-grade gliomas in adults extend beyond maximal visible MRI-defined abnormalities, and a gap exists between the imaging signal changes and the actual tumor margins. Direct quantitative comparisons between imaging and histological analyses are lacking to date. However, they are of the utmost importance if one wishes to develop realistic models for diffuse glioma growth. In this study, we quantitatively compared the cell concentration and the edema fraction from human histological biopsy samples (BSs) performed inside and outside imaging abnormalities during serial imaging-based stereotactic biopsy of diffuse low-grade gliomas. The cell concentration was significantly higher in BSs located inside (1189 ± 378 cell/mm(2)) than outside (740 ± 124 cell/mm(2)) MRI-defined abnormalities (P = .0003). The edema fraction was significantly higher in BSs located inside (mean, 45% ± 23%) than outside (mean, 5 %± 9%) MRI-defined abnormalities (P < .0001). At borders of the MRI-defined abnormalities, 20% of the tissue surface area was occupied by edema and only 3% by tumor cells. The cycling cell concentration was significantly higher in BSs located inside (10 ± 12 cell/mm(2)), compared with outside (0.5 ± 0.9 cell/mm(2)), MRI-defined abnormalities (P = .0001). We showed that the margins of T2-weighted signal changes are mainly correlated with the edema fraction. In 62.5% of patients, the cycling tumor cell fraction (defined as the ratio of the cycling tumor cell concentration to the total number of tumor cells) was higher at the limits of the MRI-defined abnormalities than closer to the center of the tumor. In the remaining patients, the cycling tumor cell fraction increased towards the center of the tumor.
Zhang, Myron; Avitsian, Rafi; Bhattacharyya, Pallab; Bulacio, Juan; Cendes, Fernando; Enatsu, Rei; Lowe, Mark; Najm, Imad; Nair, Dileep; Phillips, Michael; Gonzalez-Martinez, Jorge
2014-01-01
Abstract Patients with medically intractable epilepsy often undergo invasive evaluation and surgery, with a 50% success rate. The low success rate is likely due to poor identification of the epileptogenic zone (EZ), the brain area causing seizures. This work introduces a new method using functional magnetic resonance imaging (fMRI) with simultaneous direct electrical stimulation of the brain that could help localize the EZ, performed in five patients with medically intractable epilepsy undergoing invasive evaluation with intracranial depth electrodes. Stimulation occurred in a location near the hypothesized EZ and a location away. Electrical recordings in response to stimulation were recorded and compared to fMRI. Multiple stimulation parameters were varied, like current and frequency. The brain areas showing fMRI response were compared with the areas resected and the success of surgery. Robust fMRI maps of activation networks were easily produced, which also showed a significant but weak positive correlation between quantitative measures of blood-oxygen-level-dependent (BOLD) activity and measures of electrical activity in response to direct electrical stimulation (mean correlation coefficient of 0.38 for all acquisitions that produced a strong BOLD response). For four patients with outcome data at 6 months, successful surgical outcome is consistent with the resection of brain areas containing high local fMRI activity. In conclusion, this method demonstrates the feasibility of simultaneous direct electrical stimulation and fMRI in humans, which allows the study of brain connectivity with high resolution and full spatial coverage. This innovative technique could be used to better define the localization and extension of the EZ in intractable epilepsies, as well as for other functional neurosurgical procedures. PMID:24735069
Detection of Obstacles in Monocular Image Sequences
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia
1997-01-01
The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image.
Veligdan, James Thomas
1997-01-01
An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.
NASA Astrophysics Data System (ADS)
Das, R. K.; Li, Z.; Perera, H.; Williamson, J. F.
1996-06-01
Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated
, HDR source
and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from
(40 kVp beam) to
(
beam). Similarly for the large and small chips the same quantity varied from
and
, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is
. For TLDs of size
the absolute response is
and for TLDs of
it is
. From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.
Eytan, Danny; Pang, Elizabeth W; Doesburg, Sam M; Nenadovic, Vera; Gavrilovic, Bojan; Laussen, Peter; Guerguerian, Anne-Marie
2016-01-01
Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG) for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory), and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage critically-ill children and adults, and potentially patients not suited for magnetic resonance imaging technologies.
Fovet, Thomas; Orlov, Natasza; Dyck, Miriam; Allen, Paul; Mathiak, Klaus; Jardri, Renaud
2016-01-01
Auditory-verbal hallucinations (AVHs) are frequent and disabling symptoms, which can be refractory to conventional psychopharmacological treatment in more than 25% of the cases. Recent advances in brain imaging allow for a better understanding of the neural underpinnings of AVHs. These findings strengthened transdiagnostic neurocognitive models that characterize these frequent and disabling experiences. At the same time, technical improvements in real-time functional magnetic resonance imaging (fMRI) enabled the development of innovative and non-invasive methods with the potential to relieve psychiatric symptoms, such as fMRI-based neurofeedback (fMRI-NF). During fMRI-NF, brain activity is measured and fed back in real time to the participant in order to help subjects to progressively achieve voluntary control over their own neural activity. Precisely defining the target brain area/network(s) appears critical in fMRI-NF protocols. After reviewing the available neurocognitive models for AVHs, we elaborate on how recent findings in the field may help to develop strong a priori strategies for fMRI-NF target localization. The first approach relies on imaging-based “trait markers” (i.e., persistent traits or vulnerability markers that can also be detected in the presymptomatic and remitted phases of AVHs). The goal of such strategies is to target areas that show aberrant activations during AVHs or are known to be involved in compensatory activation (or resilience processes). Brain regions, from which the NF signal is derived, can be based on structural MRI and neurocognitive knowledge, or functional MRI information collected during specific cognitive tasks. Because hallucinations are acute and intrusive symptoms, a second strategy focuses more on “state markers.” In this case, the signal of interest relies on fMRI capture of the neural networks exhibiting increased activity during AVHs occurrences, by means of multivariate pattern recognition methods. The fine-grained activity patterns concomitant to hallucinations can then be fed back to the patients for therapeutic purpose. Considering the potential cost necessary to implement fMRI-NF, proof-of-concept studies are urgently required to define the optimal strategy for application in patients with AVHs. This technique has the potential to establish a new brain imaging-guided psychotherapy for patients that do not respond to conventional treatments and take functional neuroimaging to therapeutic applications. PMID:27445865
An Essential Interrelationship: Healthy Self-Esteem and Productive Creativity.
ERIC Educational Resources Information Center
Yau, Cecilia
1991-01-01
This paper defines the term "self-image" or "self-esteem" and defines the term "creativity" from psychoanalytic and humanist interpretations. It then proposes the theory that a positive self-image enhances the possibilities for creative productivity or lifestyle. Practical implications for child rearing are offered. (JDD)
NASA Astrophysics Data System (ADS)
van Schie, Marcel A.; Steenbergen, Peter; Viet Dinh, Cuong; Ghobadi, Ghazaleh; van Houdt, Petra J.; Pos, Floris J.; Heijmink, Stijn W. T. J. P.; van der Poel, Henk G.; Renisch, Steffen; Vik, Torbjørn; van der Heide, Uulke A.
2017-07-01
Dose painting by numbers (DPBN) refers to a voxel-wise prescription of radiation dose modelled from functional image characteristics, in contrast to dose painting by contours which requires delineations to define the target for dose escalation. The direct relation between functional imaging characteristics and DPBN implies that random variations in images may propagate into the dose distribution. The stability of MR-only prostate cancer treatment planning based on DPBN with respect to these variations is as yet unknown. We conducted a test-retest study to investigate the stability of DPBN for prostate cancer in a semi-automated MR-only treatment planning workflow. Twelve patients received a multiparametric MRI on two separate days prior to prostatectomy. The tumor probability (TP) within the prostate was derived from image features with a logistic regression model. Dose mapping functions were applied to acquire a DPBN prescription map that served to generate an intensity modulated radiation therapy (IMRT) treatment plan. Dose calculations were done on a pseudo-CT derived from the MRI. The TP and DPBN map and the IMRT dose distribution were compared between both MRI sessions, using the intraclass correlation coefficient (ICC) to quantify repeatability of the planning pipeline. The quality of each treatment plan was measured with a quality factor (QF). Median ICC values for the TP and DPBN map and the IMRT dose distribution were 0.82, 0.82 and 0.88, respectively, for linear dose mapping and 0.82, 0.84 and 0.94 for square root dose mapping. A median QF of 3.4% was found among all treatment plans. We demonstrated the stability of DPBN radiotherapy treatment planning in prostate cancer, with excellent overall repeatability and acceptable treatment plan quality. Using validated tumor probability modelling and simple dose mapping techniques it was shown that despite day-to-day variations in imaging data still consistent treatment plans were obtained.
Mocan, Mehmet C; Ilhan, Hacer; Gurcay, Hasmet; Dikmetas, Ozlem; Karabulut, Erdem; Erdener, Ugur; Irkec, Murat
2014-06-01
To derive a mathematical expression for the healthy upper eyelid (UE) contour and to use this expression to differentiate the normal UE curve from its abnormal configuration in the setting of blepharoptosis. The study was designed as a cross-sectional study. Fifty healthy subjects (26M/24F) and 50 patients with blepharoptosis (28M/22F) with a margin-reflex distance (MRD1) of ≤2.5 mm were recruited. A polynomial interpolation was used to approximate UE curve. The polynomial coefficients were calculated from digital eyelid images of all participants using a set of operator defined points along the UE curve. Coefficients up to the fourth-order polynomial, iris area covered by the UE, iris area covered by the lower eyelid and total iris area covered by both the upper and the lower eyelids were defined using the polynomial function and used in statistical comparisons. The t-test, Mann-Whitney U test and the Spearman's correlation test were used for statistical comparisons. The mathematical expression derived from the data of 50 healthy subjects aged 24.1 ± 2.6 years was defined as y = 22.0915 + (-1.3213)x + 0.0318x(2 )+ (-0.0005x)(3). The fifth and the consecutive coefficients were <0.00001 in all cases and were not included in the polynomial function. None of the first fourth-order coefficients of the equation were found to be significantly different in male versus female subjects. In normal subjects, the percentage of the iris area covered by upper and lower lids was 6.46 ± 5.17% and 0.66% ± 1.62%, respectively. All coefficients and mean iris area covered by the UE were significantly different between healthy and ptotic eyelids. The healthy and abnormal eyelid contour can be defined and differentiated using a polynomial mathematical function.
Information Science Panel joint meeting with Imaging Science Panel
NASA Technical Reports Server (NTRS)
1982-01-01
Specific activity in information extraction science (taken to include data handling) is needed to: help identify the bounds of practical missions; identify potential data handling and analysis scenarios; identify the required enabling technology; and identify the requirements for a design data base to be used by the disciplines in determining potential parameters for future missions. It was defined that specific analysis topics were a function of the discipline involved, and therefore no attempt was made to define any specific analysis developments required. Rather, it was recognized that a number of generic data handling requirements exist whose solutions cannot be typically supported by the disciplines. The areas of concern were therefore defined as: data handling aspects of system design considerations; enabling technology for data handling, with specific attention to rectification and registration; and enabling technology for analysis. Within each of these areas, the following topics were addressed: state of the art (current status and contributing factors); critical issues; and recommendations for research and/or development.
The use of vision-based image quality metrics to predict low-light performance of camera phones
NASA Astrophysics Data System (ADS)
Hultgren, B.; Hertel, D.
2010-01-01
Small digital camera modules such as those in mobile phones have become ubiquitous. Their low-light performance is of utmost importance since a high percentage of images are made under low lighting conditions where image quality failure may occur due to blur, noise, and/or underexposure. These modes of image degradation are not mutually exclusive: they share common roots in the physics of the imager, the constraints of image processing, and the general trade-off situations in camera design. A comprehensive analysis of failure modes is needed in order to understand how their interactions affect overall image quality. Low-light performance is reported for DSLR, point-and-shoot, and mobile phone cameras. The measurements target blur, noise, and exposure error. Image sharpness is evaluated from three different physical measurements: static spatial frequency response, handheld motion blur, and statistical information loss due to image processing. Visual metrics for sharpness, graininess, and brightness are calculated from the physical measurements, and displayed as orthogonal image quality metrics to illustrate the relative magnitude of image quality degradation as a function of subject illumination. The impact of each of the three sharpness measurements on overall sharpness quality is displayed for different light levels. The power spectrum of the statistical information target is a good representation of natural scenes, thus providing a defined input signal for the measurement of power-spectrum based signal-to-noise ratio to characterize overall imaging performance.
Automated assembly of camera modules using active alignment with up to six degrees of freedom
NASA Astrophysics Data System (ADS)
Bräuniger, K.; Stickler, D.; Winters, D.; Volmer, C.; Jahn, M.; Krey, S.
2014-03-01
With the upcoming Ultra High Definition (UHD) cameras, the accurate alignment of optical systems with respect to the UHD image sensor becomes increasingly important. Even with a perfect objective lens, the image quality will deteriorate when it is poorly aligned to the sensor. For evaluating the imaging quality the Modulation Transfer Function (MTF) is used as the most accepted test. In the first part it is described how the alignment errors that lead to a low imaging quality can be measured. Collimators with crosshair at defined field positions or a test chart are used as object generators for infinite-finite or respectively finite-finite conjugation. The process how to align the image sensor accurately to the optical system will be described. The focus position, shift, tilt and rotation of the image sensor are automatically corrected to obtain an optimized MTF for all field positions including the center. The software algorithm to grab images, calculate the MTF and adjust the image sensor in six degrees of freedom within less than 30 seconds per UHD camera module is described. The resulting accuracy of the image sensor rotation is better than 2 arcmin and the accuracy position alignment in x,y,z is better 2 μm. Finally, the process of gluing and UV-curing is described and how it is managed in the integrated process.
NASA Technical Reports Server (NTRS)
Lawson, R. Paul
2000-01-01
SPEC incorporated designed, built and operated a new instrument, called a pi-Nephelometer, on the NASA DC-8 for the SUCCESS field project. The pi-Nephelometer casts an image of a particle on a 400,000 pixel solid-state camera by freezing the motion of the particle using a 25 ns pulsed, high-power (60 W) laser diode. Unique optical imaging and particle detection systems precisely detect particles and define the depth-of-field so that at least one particle in the image is almost always in focus. A powerful image processing engine processes frames from the solid-state camera, identifies and records regions of interest (i.e. particle images) in real time. Images of ice crystals are displayed and recorded with 5 micron pixel resolution. In addition, a scattered light system simultaneously measures the scattering phase function of the imaged particle. The system consists of twenty-eight 1-mm optical fibers connected to microlenses bonded on the surface of avalanche photo diodes (APDs). Data collected with the pi-Nephelometer during the SUCCESS field project was reported in a special issue of Geophysical Research Letters. The pi-Nephelometer provided the basis for development of a commercial imaging probe, called the cloud particle imager (CPI), which has been installed on several research aircraft and used in More than a dozen field programs.
High Resolution Magnetotelluric Imaging of the Nisyros Caldera and Geothermal Resource (Greece)
NASA Astrophysics Data System (ADS)
Tzanis, Andreas; Sakkas, Vassilis; Lagios, Evangelos
2017-04-01
This work reports the qualitative and quantitative re-examination of legacy magnetotelluric soundings data obtained in the caldera of Nisyros, a small island volcano at the eastern end of the Hellenic Volcanic Arc (HVA), Greece, in an attempt to explore the high temperature geothermal resource of the area. The data set comprises 39 single-site soundings and is re-examined with improved data processing methods, new hypothetical event analysis techniques to study the spatial configuration of the telluric field and two-dimensional inversion tools. Iteratively reweighted least squares have been implemented to compute stable and smooth Earth response functions, which were found to exhibit 2-D to weakly 3-D attributes as a result of induction in low-contrast local geoelectric inhomogeneities, superimposed on a dominantly 2-D background structure. The transfer functions appear to be free of coastal and island induction effects due to the low offshore/onshore resistivity contrast at, and below sea level. The spatial properties of the telluric field are studied with hypothetical event analysis based on 3-D decompositions of the impedance tensor [1]. The results indicate that convection and hydrothermal circulation is controlled by a system of antithetic NE-SW oriented active normal faults which form a graben-like structure and define the 2-D background, as well as a conjugate system of NNW-SSE normal faults which is particularly active at the SW quadrant of the island and define the main convection path. It was determined that under these conditions the data can be interpreted with 2-D inversion, which was carried out with [2]. The inversion has successfully reconstructed detailed images of the structural and functional elements of the hydrothermal system. The structural elements include a number of shallow hot water reservoirs in the argillic and phyllic alteration zones and a laterally extended deep (approx. 1km) circulation zone, all embedded in a low-resistivity matrix with very low lateral contrasts. The functional elements include images of the most important convection conduits created by the intersection of major fault planes. The results are corroborated by the logs of two deep exploration wells. Overall, on the basis of a carefully reworked data set, our analysis has provided detailed images of the volcano's interior and valuable insight into its structure, function and geothermal potential. References [1] Tzanis, A., 2014. The Characteristic States of the Magnetotelluric Impedance Tensor: Construction, analytic properties and utility in the analysis of general Earth conductivity distributions, arXiv:1404.1478 [physics.geo-ph]; last accessed, January 2017. [2] Rodi, W. and Mackie, R.L., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics, 66 (1), 174-187.
Iterative-Transform Phase Retrieval Using Adaptive Diversity
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop, the estimated phase ceases to wrap in places where the aberration values become incorporated as part of the diversity function. As a result, as the aberration content is transferred to the diversity function, the phase estimate resembles that of a reference flat.
Strehl ratio: a tool for optimizing optical nulls and singularities.
Hénault, François
2015-07-01
In this paper a set of radial and azimuthal phase functions are reviewed that have a null Strehl ratio, which is equivalent to generating a central extinction in the image plane of an optical system. The study is conducted in the framework of Fraunhofer scalar diffraction, and is oriented toward practical cases where optical nulls or singularities are produced by deformable mirrors or phase plates. The identified solutions reveal unexpected links with the zeros of type-J Bessel functions of integer order. They include linear azimuthal phase ramps giving birth to an optical vortex, azimuthally modulated phase functions, and circular phase gratings (CPGs). It is found in particular that the CPG radiometric efficiency could be significantly improved by the null Strehl ratio condition. Simple design rules for rescaling and combining the different phase functions are also defined. Finally, the described analytical solutions could also serve as starting points for an automated searching software tool.
Su, Xin; Shuai, Ya; Guo, Zanru; Feng, Yujun
2013-04-18
Covalently functionalized multi-walled carbon nanotubes (MWNTs) were prepared by grafting well-defined thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) via click reactions. First, azide-terminated poly(N-isopropylacrylamide) (N3-PNIPAM) was synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization, and then the N₃-PNIPAM moiety was connected onto MWNTs by click chemistry. The products were characterized by means of FT-IR, TGA and TEM. The results show that the modification of MWNTs is very successful and MWNTs functionalized by N₃-PNIPAM (MWNTs-PNIPAM) have good solubility and stability in water. TEM images show the functionalized MWNTs are dispersed individually, indicating that the bundles of original MWNTs are separated into individual tubes by surface modification with polymer chains. These MWNTs modified with PNIPAM represent a potential nano-material for preparation of hydrophilic composite materials.
Weniger, Godehard; Siemerkus, Jakob; Barke, Antonia; Lange, Claudia; Ruhleder, Mirjana; Sachsse, Ulrich; Schmidt-Samoa, Carsten; Dechent, Peter; Irle, Eva
2013-05-30
Present neuroimaging findings suggest two subtypes of trauma response, one characterized predominantly by hyperarousal and intrusions, and the other primarily by dissociative symptoms. The neural underpinnings of these two subtypes need to be better defined. Fourteen women with childhood abuse and the current diagnosis of dissociative amnesia or dissociative identity disorder but without posttraumatic stress disorder (PTSD) and 14 matched healthy comparison subjects underwent functional magnetic resonance imaging (fMRI) while finding their way in a virtual maze. The virtual maze presented a first-person view (egocentric), lacked any topographical landmarks and could be learned only by using egocentric navigation strategies. Participants with dissociative disorders (DD) were not impaired in learning the virtual maze when compared with controls, and showed a similar, although weaker, pattern of activity changes during egocentric learning when compared with controls. Stronger dissociative disorder severity of participants with DD was related to better virtual maze performance, and to stronger activity increase within the cingulate gyrus and the precuneus. Our results add to the present knowledge of preserved attentional and visuospatial mnemonic functioning in individuals with DD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Differences in resting corticolimbic functional connectivity in bipolar I euthymia
Torrisi, Salvatore; Moody, Teena D; Vizueta, Nathalie; Thomason, Moriah E; Monti, Martin M; Townsend, Jennifer D; Bookheimer, Susan Y; Altshuler, Lori L
2012-01-01
Objective We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects. Methods Euthymic subjects with bipolar I disorder (n = 20) and matched healthy subjects (n = 20) participated in a resting state functional magnetic resonance imaging scan. Low frequency fluctuations in blood oxygen level-dependent (BOLD) signal were correlated in the six connections between four anatomically-defined nodes: left and right amygdala and left and right ventrolateral prefrontal cortex (vlPFC). Seed-to-voxel connectivity results were probed for commonly coupled regions. Following this, an identified region was included in a mediation analysis to determine the potential of mediation. Results The bipolar I disorder group exhibited significant hyperconnectivity between right amygdala and right vlPFC relative to healthy subjects. The connectivity between these regions in the bipolar I disorder group was partially mediated by activity in the anterior cingulate cortex (ACC). Conclusions Greater coupling between right amygdala and right vlPFC and their partial mediation by the ACC were found in bipolar I disorder subjects in remission and in the absence of a psychological task. These findings have implications for a trait-related and clinically-important imaging biomarker. PMID:23347587
Functional Validation and Comparison Framework for EIT Lung Imaging
Meybohm, Patrick; Weiler, Norbert; Frerichs, Inéz; Adler, Andy
2014-01-01
Introduction Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited. Methods We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. Results and Conclusions Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT. PMID:25110887
Multiscale pore structure and constitutive models of fine-grained rocks
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; Shields, E. A.; Yoon, H.; Milliken, K. L.
2017-12-01
A foundational concept of continuum poromechanics is the representative elementary volume or REV: an amount of material large enough that pore- or grain-scale fluctuations in relevant properties are dissipated to a definable mean, but smaller than length scales of heterogeneity. We determine 2D-equivalent representative elementary areas (REAs) of pore areal fraction of three major types of mudrocks by applying multi-beam scanning electron microscopy (mSEM) to obtain terapixel image mosaics. Image analysis obtains pore areal fraction and pore size and shape as a function of progressively larger measurement areas. Using backscattering imaging and mSEM data, pores are identified by the components within which they occur, such as in organics or the clastic matrix. We correlate pore areal fraction with nano-indentation, micropillar compression, and axysimmetic testing at multiple length scales on a terrigenous-argillaceous mudrock sample. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images); determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Clear scale separation occurs between REAs and observable heterogeneity in two of the samples. A highly-laminated sample exhibits fine-scale heterogeneity and an overlapping in scales, in which case typical continuum assumptions on statistical variability may break down. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Supraspinatus tendon micromorphology in individuals with subacromial pain syndrome.
Pozzi, Federico; Seitz, Amee L; Plummer, Hillary A; Chow, Kira; Bashford, Gregory R; Michener, Lori A
Cross-sectional cohort. Tendon collagen organization can be estimated by peak spatial frequency radius (PSFR) on ultrasound images. Characterizing PSFR can define the contribution of collagen disruption to shoulder symptoms. The purpose of this was to characterize the (1) supraspinatus tendon PSFR in participants with subacromial pain syndrome (SPS) and healthy controls; (2) PSFR between participants grouped on a tendon visual quality score; and (3) relationship between PSFR with patient-reported pain, function, and shoulder strength. Participants with SPS (n = 20) and age, sex, and arm-dominance-matched healthy controls (n = 20) completed strength testing in scaption and external rotation, and patient-reported pain, and functional outcomes. Supraspinatus tendon ultrasound images were acquired, and PSFR was calculated for a region of interest 15 mm medial to the supraspinatus footprint. PSFR was compared between groups using an independent t-test and an analysis of variance to compare between 3 groups for visually qualitatively rated tendon abnormalities. Relationships between PSFR with pain, function, and strength were assessed using Pearson correlation coefficient. Supraspinatus tendon PSFR was not different between groups (P = .190) or tendon qualitative ratings (P = .556). No relationship was found between PSFR and pain, functional loss, and strength (P > .05). Collagen disruption (PSFR) measured via ultrasound images of the supraspinatus tendon was not different between participants with SPS or in those with visually rated tendon defects. PSFR is not related to shoulder pain, function, and strength, suggesting that supraspinatus tendon collagen disorganization may not be a contributing factor to shoulder SPS. However, collagen disruption may not be isolated to a single region of interest. 3b: case-control study. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bauer, Adam Q.; Kraft, Andrew; Baxter, Grant A.; Bruchas, Michael; Lee, Jin-Moo; Culver, Joseph P.
2017-02-01
Functional magnetic resonance imaging (fMRI) has transformed our understanding of the brain's functional organization. However, mapping subunits of a functional network using hemoglobin alone presents several disadvantages. Evoked and spontaneous hemodynamic fluctuations reflect ensemble activity from several populations of neurons making it difficult to discern excitatory vs inhibitory network activity. Still, blood-based methods of brain mapping remain powerful because hemoglobin provides endogenous contrast in all mammalian brains. To add greater specificity to hemoglobin assays, we integrated optical intrinsic signal(OIS) imaging with optogenetic stimulation to create an Opto-OIS mapping tool that combines the cell-specificity of optogenetics with label-free, hemoglobin imaging. Before mapping, titrated photostimuli determined which stimulus parameters elicited linear hemodynamic responses in the cortex. Optimized stimuli were then scanned over the left hemisphere to create a set of optogenetically-defined effective connectivity (Opto-EC) maps. For many sites investigated, Opto-EC maps exhibited higher spatial specificity than those determined using spontaneous hemodynamic fluctuations. For example, resting-state functional connectivity (RS-FC) patterns exhibited widespread ipsilateral connectivity while Opto-EC maps contained distinct short- and long-range constellations of ipsilateral connectivity. Further, RS-FC maps were usually symmetric about midline while Opto-EC maps displayed more heterogeneous contralateral homotopic connectivity. Both Opto-EC and RS-FC patterns were compared to mouse connectivity data from the Allen Institute. Unlike RS-FC maps, Thy1-based maps collected in awake, behaving mice closely recapitulated the connectivity structure derived using ex vivo anatomical tracer methods. Opto-OIS mapping could be a powerful tool for understanding cellular and molecular contributions to network dynamics and processing in the mouse brain.
Director Field Analysis (DFA): Exploring Local White Matter Geometric Structure in Diffusion MRI.
Cheng, Jian; Basser, Peter J
2018-01-01
In Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI), a tensor field or a spherical function field (e.g., an orientation distribution function field), can be estimated from measured diffusion weighted images. In this paper, inspired by the microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter based on the reconstructed tensor field or spherical function field: (1) We propose a set of mathematical tools to process general director data, which consists of dyadic tensors that have orientations but no direction. (2) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in a single voxel or in a region, respectively; (3) We also show how to construct a local orthogonal coordinate frame in each voxel exhibiting anisotropic diffusion; (4) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in general spherical function fields from DTI or HARDI data. The proposed DFA and its related mathematical tools can be used to process not only diffusion MRI data but also general director field data, and the proposed scalar indices are useful for detecting local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions. The related codes and a tutorial for DFA will be released in DMRITool. Copyright © 2017 Elsevier B.V. All rights reserved.
Jung, Christian; Drummer, Karl; Oelzner, Peter; Figulla, Hans R; Boettcher, Joachim; Franz, Marcus; Betge, Stefan; Foerster, Martin; Wolf, Gunter; Pfeil, Alexander
2015-01-01
Systemic sclerosis (SSc) is a systemic, autoimmune connective tissue disease characterized by vasculopathy and microvascular changes. Fluorescence Optical Imaging (FOI) is a technique used to assess inflammation in patients with arthritis; in this study FOI is used to quantify inflammation in the hand. Endothelial Microparticle (EMP) can reflect damage or activation of the endothelium but also actively modulate processes of inflammation, coagulation and vascular function. The aim of the present study was to quantify EMP and FOI, to determine an association between these microparticles and inflammation and to endothelial function. EMP were quantified in plasma samples of 25 patients (24 female, 1 male, age: 41 ± 9 years) with SSc using flow cytometry. EMP was defined as CD31+/CD42- MP, and CD62+ MP. Perivascular inflammation was assessed using fluorescence optical imaging (FOI) of the hand. Macrovascular endothelial function was non-invasively estimated using the Endopat system. Plasma levels of CD31+/CD42- EMP and CD62+ EMP were lower in patients with SSc compared to controls (both p < 0.05). An impaired endothelial function with an increased hyperemia index was observed. A strong association could be demonstrated between CD62+ EMP and perivascular soft tissue inflammation as assessed by the FOI global score (Spearman, p = 0.002, r = 0.61). EMP indicate molecular vascular damage in SSc; in this study a strong association between EMP and perivascular inflammation as quantified by FOI is demonstrated. Consequently EMP, using FOI, may be a potential marker benefitting the diagnosis and therapy monitoring of patients with SSc with associated Raynaud's phenomenon.
Acar, Evrim; Plopper, George E.; Yener, Bülent
2012-01-01
The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models. PMID:22479315
Wavelet based free-form deformations for nonrigid registration
NASA Astrophysics Data System (ADS)
Sun, Wei; Niessen, Wiro J.; Klein, Stefan
2014-03-01
In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.
Xie, Sheng
2014-01-01
Oxygen extraction fraction (OEF) is defined as the ratio of blood oxygen that a tissue takes from the blood flow to maintain function and morphological integrity. OEF reflects the efficiency of oxygen utilization by the tissue and, therefore, is a hemodynamic measure in brain ischemia. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a common mitochondrial disorder. It is characterized by neurological remissions and relapses and associated with progressive neurocognitive deficits. Because of abnormalities of mitochondrial function in MELAS, defects in the oxidative metabolic pathways of energy production decrease the cerebral oxygen utilization and lead to the reduction of OEF. Quantification of OEF can reflect the functional status of cerebral mitochondria and provide insight into the pathophysiological changes in the brain in MELAS. In light of recent advances in MRI, the discovery of the blood-oxygen level-dependent signal has allowed development of MRI methods targeted toward quantitative OEF imaging. A new MR sequence, termed the gradient-echo sampling of spin echo, was successfully developed to enable quantitative assessment of the OEF in the brain tissue. MR OEF imaging in patients with MELAS detects extensive OEF reduction in the stroke-like lesions, as well as in the normal-appearing brain regions. More severe dysfunction of the mitochondria in the stroke-like lesions was implied at the onset of the stroke-like episode. Determination of OEF throughout the episode demonstrated a chronological change in mitochondrial function in individual cases. Such neuroimaging findings might provide some clues in the investigation of the underlying mechanisms of stroke-like episodes.
Ultrasound based computer-aided-diagnosis of kidneys for pediatric hydronephrosis
NASA Astrophysics Data System (ADS)
Cerrolaza, Juan J.; Peters, Craig A.; Martin, Aaron D.; Myers, Emmarie; Safdar, Nabile; Linguraru, Marius G.
2014-03-01
Ultrasound is the mainstay of imaging for pediatric hydronephrosis, though its potential as diagnostic tool is limited by its subjective assessment, and lack of correlation with renal function. Therefore, all cases showing signs of hydronephrosis undergo further invasive studies, like diuretic renogram, in order to assess the actual renal function. Under the hypothesis that renal morphology is correlated with renal function, a new ultrasound based computer-aided diagnosis (CAD) tool for pediatric hydronephrosis is presented. From 2D ultrasound, a novel set of morphological features of the renal collecting systems and the parenchyma, is automatically extracted using image analysis techniques. From the original set of features, including size, geometric and curvature descriptors, a subset of ten features are selected as predictive variables, combining a feature selection technique and area under the curve filtering. Using the washout half time (T1/2) as indicative of renal obstruction, two groups are defined. Those cases whose T1/2 is above 30 minutes are considered to be severe, while the rest would be in the safety zone, where diuretic renography could be avoided. Two different classification techniques are evaluated (logistic regression, and support vector machines). Adjusting the probability decision thresholds to operate at the point of maximum sensitivity, i.e., preventing any severe case be misclassified, specificities of 53%, and 75% are achieved, for the logistic regression and the support vector machine classifier, respectively. The proposed CAD system allows to establish a link between non-invasive non-ionizing imaging techniques and renal function, limiting the need for invasive and ionizing diuretic renography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sclafani, Francesco; Peckitt, Clare; Cunningham, David, E-mail: david.cunningham@rmh.nhs.uk
Objective: Intensified preoperative treatments have been increasingly investigated in locally advanced rectal cancer (LARC), but limited data are available for the impact of these regimens on quality of life (QoL) and bowel function (BF). We assessed these outcome measures in EXPERT-C, a randomized phase 2 trial of neoadjuvant capecitabine combined with oxaliplatin (CAPOX), followed by chemoradiation therapy (CRT), total mesorectal excision, and adjuvant CAPOX with or without cetuximab in magnetic resonance imaging-defined, high-risk LARC. Methods and Materials: QoL was assessed using the European Organization for Research and Treatment of Cancer QLQ-C30 and QLQ-CR29 questionnaires. Bowel incontinence was assessed using the modifiedmore » Fecal Incontinence Severity Index questionnaire. Results: Compared to baseline, QoL scores during preoperative treatment were better for symptoms associated with the primary tumor in the rectum (blood and mucus in stool, constipation, diarrhea, stool frequency, buttock pain) but worse for global health status, role functioning, and symptoms related to the specific safety profile of each treatment modality. During follow-up, improved emotional functioning and lessened anxiety and insomnia were observed, but deterioration of body image, increased urinary incontinence, less sexual interest (men), and increased impotence and dyspareunia were observed. Cetuximab was associated with a deterioration of global health status during neoadjuvant chemotherapy but did not have any long-term detrimental effect. An improvement in bowel continence was observed after preoperative treatment and 3 years after sphincter-sparing surgery. Conclusions: Intensifying neoadjuvant treatment by administering induction systemic chemotherapy before chemoradiation therapy improves tumor-related symptoms and does not appear to have a significantly detrimental effect on QoL and BF, in both the short and the long term.« less
ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.
Guiberteau, Milton J; Graham, Michael M
2011-06-01
The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.
Data Characterization Using Artificial-Star Tests: Performance Evaluation
NASA Astrophysics Data System (ADS)
Hu, Yi; Deng, Licai; de Grijs, Richard; Liu, Qiang
2011-01-01
Traditional artificial-star tests are widely applied to photometry in crowded stellar fields. However, to obtain reliable binary fractions (and their uncertainties) of remote, dense, and rich star clusters, one needs to recover huge numbers of artificial stars. Hence, this will consume much computation time for data reduction of the images to which the artificial stars must be added. In this article, we present a new method applicable to data sets characterized by stable, well-defined, point-spread functions, in which we add artificial stars to the retrieved-data catalog instead of to the raw images. Taking the young Large Magellanic Cloud cluster NGC 1818 as an example, we compare results from both methods and show that they are equivalent, while our new method saves significant computational time.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
Separability of spatiotemporal spectra of image sequences. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Eckert, Michael P.; Buchsbaum, Gershon; Watson, Andrew B.
1992-01-01
The spatiotemporal power spectrum was calculated of 14 image sequences in order to determine the degree to which the spectra are separable in space and time, and to assess the validity of the commonly used exponential correlation model found in the literature. The spectrum was expanded by a Singular Value Decomposition into a sum of separable terms and an index was defined of spatiotemporal separability as the fraction of the signal energy that can be represented by the first (largest) separable term. All spectra were found to be highly separable with an index of separability above 0.98. The power spectra of the sequences were well fit by a separable model. The power spectrum model corresponds to a product of exponential autocorrelation functions separable in space and time.
Image-Guided Spinal Ablation: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr
2016-09-15
The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of themore » ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.« less
Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C
2007-01-01
A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.
Wang, Chunliang; Ritter, Felix; Smedby, Orjan
2010-07-01
To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added <10ms of processing time while the other IPC methods cost 1-5 s in our experiments. The browser-server style communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.
The Goddard Space Flight Center Program to develop parallel image processing systems
NASA Technical Reports Server (NTRS)
Schaefer, D. H.
1972-01-01
Parallel image processing which is defined as image processing where all points of an image are operated upon simultaneously is discussed. Coherent optical, noncoherent optical, and electronic methods are considered parallel image processing techniques.
Detecting natural occlusion boundaries using local cues
DiMattina, Christopher; Fox, Sean A.; Lewicki, Michael S.
2012-01-01
Occlusion boundaries and junctions provide important cues for inferring three-dimensional scene organization from two-dimensional images. Although several investigators in machine vision have developed algorithms for detecting occlusions and other edges in natural images, relatively few psychophysics or neurophysiology studies have investigated what features are used by the visual system to detect natural occlusions. In this study, we addressed this question using a psychophysical experiment where subjects discriminated image patches containing occlusions from patches containing surfaces. Image patches were drawn from a novel occlusion database containing labeled occlusion boundaries and textured surfaces in a variety of natural scenes. Consistent with related previous work, we found that relatively large image patches were needed to attain reliable performance, suggesting that human subjects integrate complex information over a large spatial region to detect natural occlusions. By defining machine observers using a set of previously studied features measured from natural occlusions and surfaces, we demonstrate that simple features defined at the spatial scale of the image patch are insufficient to account for human performance in the task. To define machine observers using a more biologically plausible multiscale feature set, we trained standard linear and neural network classifiers on the rectified outputs of a Gabor filter bank applied to the image patches. We found that simple linear classifiers could not match human performance, while a neural network classifier combining filter information across location and spatial scale compared well. These results demonstrate the importance of combining a variety of cues defined at multiple spatial scales for detecting natural occlusions. PMID:23255731
Hsu, Shu-Hui; Cao, Yue; Lawrence, Theodore S.; Tsien, Christina; Feng, Mary; Grodzki, David M.; Balter, James M.
2015-01-01
Accurate separation of air and bone is critical for creating synthetic CT from MRI to support Radiation Oncology workflow. This study compares two different ultrashort echo-time sequences in the separation of air from bone, and evaluates post-processing methods that correct intensity nonuniformity of images and account for intensity gradients at tissue boundaries to improve this discriminatory power. CT and MRI scans were acquired on 12 patients under an institution review board-approved prospective protocol. The two MRI sequences tested were ultra-short TE imaging using 3D radial acquisition (UTE), and using pointwise encoding time reduction with radial acquisition (PETRA). Gradient nonlinearity correction was applied to both MR image volumes after acquisition. MRI intensity nonuniformity was corrected by vendor-provided normalization methods, and then further corrected using the N4itk algorithm. To overcome the intensity-gradient at air-tissue boundaries, spatial dilations, from 0 to 4 mm, were applied to threshold-defined air regions from MR images. Receiver operating characteristic (ROC) analyses, by comparing predicted (defined by MR images) versus “true” regions of air and bone (defined by CT images), were performed with and without residual bias field correction and local spatial expansion. The post-processing corrections increased the areas under the ROC curves (AUC) from 0.944 ± 0.012 to 0.976 ± 0.003 for UTE images, and from 0.850 ± 0.022 to 0.887 ± 0.012 for PETRA images, compared to without corrections. When expanding the threshold-defined air volumes, as expected, sensitivity of air identification decreased with an increase in specificity of bone discrimination, but in a non-linear fashion. A 1-mm air mask expansion yielded AUC increases of 1% and 4% for UTE and PETRA images, respectively. UTE images had significantly greater discriminatory power in separating air from bone than PETRA images. Post-processing strategies improved the discriminatory power of air from bone for both UTE and PETRA images, and reduced the difference between the two imaging sequences. Both postprocessed UTE and PETRA images demonstrated sufficient power to discriminate air from bone to support synthetic CT generation from MRI data. PMID:25776205
NASA Astrophysics Data System (ADS)
Pillans, Luke; Harmer, Jack; Edwards, Tim; Richardson, Lee
2016-05-01
Geolocation is the process of calculating a target position based on bearing and range relative to the known location of the observer. A high performance thermal imager with integrated geolocation functions is a powerful long range targeting device. Firefly is a software defined camera core incorporating a system-on-a-chip processor running the AndroidTM operating system. The processor has a range of industry standard serial interfaces which were used to interface to peripheral devices including a laser rangefinder and a digital magnetic compass. The core has built in Global Positioning System (GPS) which provides the third variable required for geolocation. The graphical capability of Firefly allowed flexibility in the design of the man-machine interface (MMI), so the finished system can give access to extensive functionality without appearing cumbersome or over-complicated to the user. This paper covers both the hardware and software design of the system, including how the camera core influenced the selection of peripheral hardware, and the MMI design process which incorporated user feedback at various stages.