Science.gov

Sample records for deflective separation cds

  1. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  2. CDS

    NASA Astrophysics Data System (ADS)

    Allen, Mark

    2015-12-01

    The Centre de Donnees de Strasbourg (CDS) is a reference data centre for Astronomy. The CDS services; SIMBAD, Vizier, Aladin and X-Match, provide added value to scientific content in order to support the astronomy research community. Data and information are curated from refereed journals, major surveys, observatories and missions with a strong emphasis on maintaining a high level of quality. The current status and plans of the CDS will be presented, highlighting how the recent innovations of the HiPS (Hierarchical Progressive surveys) and MOC (Multi-Order Coverage map) systems enable the visualisation of hundreds of surveys and data sets, and brings new levels of interoperability between catalogues, surveys images and data cubes.

  3. Clusius-Dickel Separations (CDS): A new look at an old technique

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The history, applications, and theoretical basis of the CDS technique are reviewed. The advantage to be realized by conduction of CDSs in low-g, space environments are deduced. The results are reported of investigations aimed at further improving CDS efficiencies by altering convective flow patterns. The question of whether multicellular flow or turbulence can introduce a new separation mechanism which would boost separation efficiencies at least an order of magnitude is considered. Results are presented and discussed.

  4. Deflecting Shearpin

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.

    1993-01-01

    Spring loading helps prevent permanent deformation of adjacent bearing surfaces. Shearpin deflects as load compresses inner spring. Maximum deflection determined by gap between halves of capture ring. Beyond deflection, pin acts as standard shearpin.

  5. Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation.

    PubMed

    Ma, Xiuju; Kuang, Yun; Bai, Lu; Chang, Zheng; Wang, Feng; Sun, Xiaoming; Evans, David G

    2011-04-26

    Identifying the phase purity of CdS nanorods (NRs) is complicated by the serious overlap between the X-ray diffraction peaks of zinc blende and wurtzite phases as well as anisotropic growth, which might hide a mixed phase. Here we show that the density gradient ultracentrifugation rate separation method can be used to sort CdS NRs synthesized under nitrogen according to differences in particle size and morphology. Furthermore, it was found that the different sized NRs formed in a single batch synthesis had different phases: the thinner ones (<3.5 nm in diameter) were predominantly wurtzite phase, while the thicker ones (>5 nm in diameter) were mainly zinc blende phase. Dark-field transmission electron microscopy (TEM) and high-resolution TEM images indicated the presence of numerous stacking faults in the thick zinc blende rods, while the wurtzite thin rods were exclusively single crystals. As a result of the differences in phase and stacking faults, the NRs showed different photoluminescent properties. The development of an effective way of separating such NRs thus leads to further insight into the differences in phase, structure, and optical properties between individual colloidal particles synthesized in a single batch. A preliminary mathematical model of the separation process has been proposed.

  6. Functionalized CdS nanospheres and nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Hyeokjin; Yang, Heesun; Holloway, Paul H.

    2009-12-01

    Functionalized nanoparticles are discussed. Surfaces of CdS:Mn/ZnS core/shell nanospheres (Qdots) were converted from hydrophobic to hydrophilic by growth of a SiO 2 shell. The colloidal dispersion was stabilize by adding a surfactant with a negative surface charge, and a cell-penetrating-peptide, TAT, was attached through a primary amine group. The TAT functionalized Qdots were shown to pass the blood-brain-barrier and luminescence in the infused half of the brain. In addition, nanorods of S 2- rich CdS were synthesized by reaction of excess S with Cd precursors in the presence of ethylene diamine. The photoluminescence (PL) peak from the S 2- rich CdS nanorods was broad with a maximum at ∼710 nm, which was 40 nm longer in wavelength than the PL peak from Cd 2+ rich CdS (∼670 nm) nanorods. The influence of surface electron or hole trap states on the luminescent pathway of CdS nanorods were used to explain these shifts in wavelength. Nanocrystals of Au with ∼2 nm diameters were grown on S 2- rich surfaces of CdS nanorods. Significant quenching of photoluminescence was observed from Au nanocrystals on CdS nanorods due to interfacial charge separation. Charge separation by Au nanocrystals on CdS resulted in enhanced UV photocatalytic degradation of Procion red mix-5B (PRB) dye in aqueous solution.

  7. Microwave Deflection Sensor

    NASA Technical Reports Server (NTRS)

    Shores, Paul; Kobayashi, Herb; Ngo, Phong; Lichtenberg, C. L.

    1988-01-01

    Doppler-radar instrument measures small deflections or vibrations of reflecting surface. Acting as interferometric micrometer, instrument includes combination of analog and digital circuits measuring change in phase of radar return due to movement of reflecting surface along signal-propagation path. Includes homodyne Doppler-radar transceiver and digital signal-processing circuitry to measure change in phase shift as target deflects.

  8. Burning Your Own CDs.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    2001-01-01

    Discusses the use of CDs (Compact Disks) for backing up data as an alternative to using floppy disks and explains how to burn, or record, a CD. Topics include differences between CD-R (CD-Recordable) and CD-RW (CD-Rewritable); advantages of CD-R and CD-RW; selecting a CD burner; technology trends; and care of CDs. (LRW)

  9. Dynamic pavement deflection

    NASA Astrophysics Data System (ADS)

    Rand, D. W.; Jacobs, K. M.

    1981-06-01

    Dynamic pavement deflection measurements for bituminous concrete pavements of two and three-quarter, five and seven-eights, and seven and one-half inches in thickness under moving axle loads of 15,000, 18,000, and 22,000 pounds were obtained at speeds of 10, 25 and 45 miles per hour. The results were analyzed and compared to Benkelman beam measurements. The data indicate that slow moving loads have greater adverse effect (larger deflections) on the pavement than the high speed loads. The results also show that the bituminous pavement undergoes numerous vertical fluctuations and bending as the front and rear axles approached the point of measurement. The magnitude of the vertical displacement was measured via the means of an accelerometer and double integrator. When values of the dynamic deflections were in the magnitude of 0.07 through 0.10 inches, there was evidence of pavement failure. When the deflection values were above 0.10 inches pavement failures were distinct.

  10. Undulator Gravitational Deflection

    SciTech Connect

    Bowden, G.

    2005-01-31

    This note estimates distortions imposed by gravity on LCLS undulator strong-backs. Because of the strongback's asymmetric cross section, gravitational forces cause both torsion as well as simple bending. The superposition of these two effects yields a 4.4 {micro}m maximum deflection and a 0.16 milli radian rotation of the undulator axis. The choice of titanium is compared to aluminum.

  11. A Second Life for CDs

    ERIC Educational Resources Information Center

    Snoderly, Kathleen

    2011-01-01

    Cutting a few CDs apart with scissors, the author found that the process created somewhat brittle shards. As a result, she started to paint a few with acrylic, finding to her amazement that the paint gave the CDs a leathery, more manageable texture. Upon further experimentation, she found that if the CDs are painted somewhat translucently in…

  12. Photothermal deflection spectroscopy and detection

    SciTech Connect

    Jackson, W. B.; Amer, Nabil M.; Boccara, A. C.; Fournier, D.

    1981-04-15

    The theory for a sensitive spectroscopy based on the photothermal deflection of a laser beam is developed. We consider cw and pulsed cases of both transverse and collinear photothermal deflection spectroscopy for solids, liquids, gases, and thin films. The predictions of the theory are experimentally verified, its implications for imaging and microscopy are given, and the sources of noise are analyzed. The sensitivity and versatility of photothermal deflection spectroscopy are compared with thermal lensing and photoacoustic spectroscopy.

  13. Compact Superconducting Crabbing and Deflecting Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika

    2012-09-01

    Recently, new geometries for superconducting crabbing and deflecting cavities have been developed that have significantly improved properties over those the standard TM{sub 110} cavities. They are smaller, have low surface fields, high shunt impedance and, more importantly for some of them, no lower-order-mode with a well-separated fundamental mode. This talk will present the status of the development of these cavities.

  14. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  15. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  16. Benchmarking Asteroid-Deflection Experiment

    NASA Astrophysics Data System (ADS)

    Remington, Tane; Bruck Syal, Megan; Owen, John Michael; Miller, Paul L.

    2016-10-01

    An asteroid impacting Earth could have devastating consequences. In preparation to deflect or disrupt one before it reaches Earth, it is imperative to have modeling capabilities that adequately simulate the deflection actions. Code validation is key to ensuring full confidence in simulation results used in an asteroid-mitigation plan. We are benchmarking well-known impact experiments using Spheral, an adaptive smoothed-particle hydrodynamics code, to validate our modeling of asteroid deflection. We describe our simulation results, compare them with experimental data, and discuss what we have learned from our work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-695540

  17. Noncontact measurement of angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L.

    1978-01-01

    Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.

  18. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  19. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Rivkin, A.; Galvez, A.; Carnelli, I.; Michel, P.; Reed, C.

    2012-10-01

    Near Earth objects are small bodies orbiting the Sun near Earth’s orbit, some of which impact the Earth. The impact of an object as large as 30 m in diameter occurs every few centuries. The impact of such an object would already release an energy of at least a megaton of TNT, and the impact of a larger object, which would occur less often, would be even more hazardous. To protect the Earth from a potential asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. The Double Asteroid Redirection Test (DART) is such an asteroid mitigation mission concept. This mission would be a valuable precursor to human spaceflight to an asteroid, as it would return unique information on an asteroid’s strength and internal structure and would be particularly relevant to a human mission for asteroid mitigation. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART study is coordinated with an ESA study of an Asteroid Impact Monitoring (AIM) mission, which would rendezvous with the same target. AIDA follows the previous Don Quijote mission study performed by ESA in 2005-2007, with the objective of demonstrating the ability to modify the trajectory of an asteroid and measure the trajectory change. Don Quijote involved an orbiter and an impactor spacecraft, with the orbiter arriving first and measuring the deflection, and with the orbiter making additional characterization measurements. Unlike Don Quijote, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid, with ground-based observations to measure the deflection as well as additional spacecraft observations from AIM. Low cost mission approaches will be presented.

  20. Gold electrodes from recordable CDs

    PubMed

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  1. Novel deflecting cavity design for eRHIC

    SciTech Connect

    Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.

    2011-07-25

    To prevent significant loss of the luminosity due to large crossing angle in the future ERL based Electron Ion Collider at BNL (eRHIC), there is a demand for crab cavities. In this article, we will present a novel design of the deflecting/crabbing 181 MHz superconducting RF cavity that will fulfil the requirements of eRHIC. The quarter-wave resonator structure of the new cavity possesses many advantages, such as compact size, high R{sub t}/Q, the absence of the same order mode and lower order mode, and easy higher order mode damping. We will present the properties and characteristics of the new cavity in detail. As the accelerator systems grow in complexity, developing compact and efficient deflecting cavities is of great interest. Such cavities will benefit situations where the beam line space is limited. The future linac-ring type electron-ion collider requires implementation of a crab-crossing scheme for both beams at the interaction region. The ion beam has a long bunches and high rigidity. Therefore, it requires a low frequency, large kicking angle deflector. The frequency of the deflecting mode for the current collider design is 181 MHz, and the deflecting angle is {approx}5 mrad for each beam. At such low frequency, the previous designs of the crab cavities will have very large dimensions, and also will be confronted by typical problems of damping the Lower Order Mode (LOM), the Same Order Mode (SOM), and as usual, the Higher Order Modes (HOM). In this paper we describe how one can use the concept of a quarter-wave (QW) resonator for a deflecting/crabbing cavity, and use its fundamental mode to deflect the beam. The simplicity of the cavity geometry and the large separation between its fundamental mode and the first HOM make it very attractive.

  2. Material properties for asteroid deflection

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.; Bernier, J.; Chen, L.; Coppari, F.; Dearborn, D.; Herbold, E.; Howley, K.; Kraus, R.; Kumar, M.; Millot, M.; Owen, J. M.; Swift, D.; Wasem, J.; Mulford, R.; Root, S.; Cotto-Figueroa, D.; Asphaug, E.; Schultz, P.; Nuth, J.; Arnold, J.; Burkhard, C.; Dotson, J.; Lee, T.; Sears, D.; Miller, P.

    2015-06-01

    Impulsive strategies to prevent asteroid impacts depend upon knowledge of asteroidal material state and response at extreme conditions. Numerical modeling of kinetic impactor and nuclear ablation scenarios to deflect or disrupt asteroids reveals sensitivities to equation of state, strength, and porosity. We report advances in material models for asteroid mitigation simulations. Equation of state development focuses on asteroidal materials, such as hydrated silicates. Shock experiments are being performed to measure properties of meteoritic material; initial sample temperature can be controlled from 100-1000 K, important for different intercept scenarios. New constitutive models allow improved thermomechanical response predictions for porous asteroids. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Laser deflection of space objects -- An overview

    SciTech Connect

    Canavan, G.H.

    1997-04-01

    Lasers provide the two major attributes required for effective deflection of space objects: agility and efficiency. Lasers act instantaneously over long distances with little losses, but deliver energy at modest power levels. Material interceptors provide large impulses, but deliver only a fraction of the mass launched into space at low speeds. The two deflection concepts are compared, as are some important additional applications.

  4. Multipole Field Effects for the Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika; Delayen, Jean Roger

    2012-09-01

    The superconducting parallel-bar deflecting/crabbing cavity is currently being considered as one of the design options in rf separation for the Jefferson Lab 12 GeV upgrade and for the crabbing cavity for the proposed LHC luminosity upgrade. Knowledge of multipole field effects is important for accurate beam dynamics study of rf structures. The multipole components can be accurately determined numerically using the electromagnetic surface field data in the rf structure. This paper discusses the detailed analysis of those components for the fundamental deflecting/crabbing mode and higher order modes in the parallel-bar deflecting/crabbing cavity.

  5. Horizontal deflection of single particle in a paramagnetic fluid.

    PubMed

    Liu, S; Yi, Xiang; Leaper, M; Miles, N J

    2014-06-01

    This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility. PMID:24894886

  6. Large Deflections of Elastic Rectangular Plates

    NASA Astrophysics Data System (ADS)

    Razdolsky, A. G.

    2015-11-01

    It is known that elastic large deflections of thin plates are governed by von Karman nonlinear equations. The analytical solution of these equations in the general case is unfeasible. Samuel Levy, in 1942, showed that large deflections of the rectangular plate can be expressed as a double series of sine-shaped harmonics (deflection harmonics). However, this method gave no way of creating the computer algorithm of solving the problem. The stress function expression taken in the Levy's method must be revised to find the approach that takes into account of all possible products of deflection coefficients. The algorithm of solving the problem for the rectangular plate with an arbitrary aspect ratio under the action of the lateral distributed load is reported in this paper. The approximation of the plate deflection is taken in the form of double series proposed by Samuel Levy. However, the expression for the stress function is presented in the form that incorporates products of deflection coefficients in the explicit form in distinction to the Levy's expression. The number of harmonics in the deflection expression may be arbitrary. The algorithm provides composing the system of governing cubic equations, which includes the deflection coefficients in the explicit form. Solving the equation system is based on using the principle of minimum potential energy. A method of the gradient descent is applied to find the equilibrium state of the plate as the minimum point of the potential energy. A computer program is developed on the basis of the present algorithm. Numerical examples carried out for the plate model with 16 deflection harmonics illustrate the potentialities of the program. The results of solving the examples are presented in the graphical form for the plates with a different aspect ratio and may be used under designing thin-walled elements of airplane and ship structures.

  7. AIDA: the Asteroid Impact & Deflection Assessment mission

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the

  8. Noncontacting method for measuring angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L. (Inventor)

    1980-01-01

    An apparatus is described for indicating the instantaneous angular deflection of an object about a selected axis without mechanical contact with the object. Light from a light source is transmitted through a flat refractor to a converging lens which focuses the light through another flat refractor onto a differential photocell. The first flat refractor is attached to the object such that when the object is deflected about the selected axis the refractor is also deflected about that axis. The two flat refractors are identical and they are placed an equal distance from the converging lens as are the light source and the photocell. The output of the photocell which is a function of image displacement is fed to a high gain amplifier that drives a galvanometer which rotates the second flat refractor. The second refractor is rotated so that the image displacement is very nearly zero making the galvanometer current a measure of the deflection of the object about the selected axis.

  9. Optical measurement of propeller blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measurement of propeller blade deflections is described and evaluated. It does not depend on the reflectivity of the blade surface but only on its opaqueness. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained using a single light beam generated by a low-power helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured deflections from a static and a high-speed test are compared with available predicted deflections which are also used to evaluate systematic errors.

  10. Optical measurement of unducted fan blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitiative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  11. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  12. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  13. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  14. Deflection Sensors Utilizing Optical Multi-Stability

    NASA Astrophysics Data System (ADS)

    Shehadeh, Shadi H.; Cada, Michael; Qasymeh, Montasir; Ma, Yuan

    2010-06-01

    Deflection sensors have attracted significant attention due to their wide application in pressure and temperature measurements in practical systems. Several techniques have been proposed, studied, and tested to realize optical deflection sensor elements, including Mach-Zehnder (MZI), and Fabry-Pérot interferometers. In this work, a novel optical deflection sensor that is comprised of two cascaded optical resonators is proposed and analyzed. The proposed structure is designed to operate in the multi-stable (input to output) regime. As the first resonator is equipped with a movable mirror, which is connected to a diaphragm in order to sense changes in deflection, the second resonator is filled with non-linear material. It is demonstrated that such a structure has a novel memory property, aside from having the ability to yield instant deflection measurements. This novel property is attributed to the non-linear refractive index of the medium of the second resonator. Furthermore, the sensor sensitivity (which is the ratio of the change in the output light intensity to the change in the induced deflection) is enhanced due to the input-output multi-stable behavior of the proposed structure. This device possesses a promising potential for applications in future smart sensors.

  15. The deflection of 2008 December 12 CME

    NASA Astrophysics Data System (ADS)

    Shen, C.; Wang, Y.; Liu, J.; Ye, P.; Wang, S.

    2010-12-01

    The deflection of CME, which would significant influence the CME's geoeffectiveness, is an important topic of space weather study. In this work, the deflection of 2008 December 12 CME during it propagated from the Sun to Earth will be detailed studied based on the combination of remote and in situ observations. First, the 3-dimensions parameters reconstructed by Graduated Cylindrical Shell (GCS) model based on the STEREO observations were used to study the propagation direction evolution of this CME during it propagated in near solar space. During this phase, this CME deflect from high latitude region to equator in meridian plane but propagated almost along the longitude of W7 in ecliptic plane. Further, whether this CME deflected during it propagated in interplanetary space has also been checked. Based on the remote observations, if this CME propagated radially during it propagated in interplanetary space, it may arrived the Earth and then hit the STEREO A rather than hit STEREO B. But, the in situ observations show contrary results that this CME arrived the Earth and hit the STEREO B but missed STEREO A. This result show direct evidence that this CME deflected to east in ecliptic plane during it propagated in interplanetary space. The kinematic deflection model developed by Wang et. al (2004) has been applied on this CME. The calculation results of this model correspond well with the observational results.

  16. The Deflection of Charged Particles in an Electric Dodecapole Field

    SciTech Connect

    Seely, D. G.; Chalut, K.; Thompson, J. S.; Kvale, T. J.

    1997-10-10

    The properties of an ion-optical device consisting of twelve long parallel rods placed equidistantly on a circle are briefly reviewed. The use of this device in its dodecapole configuration to deflect ions in a plane perpendicular to the axis of the dodecapole is discussed. Results of trajectory computations made with the SIMION ion-optics computer program demonstrate that the device works remarkably well in separating the constituents of a multiply-charged ion beam. The use of this device to merge an ion beam with an optical beam is proposed.

  17. Management of Catalogs at CDS

    NASA Astrophysics Data System (ADS)

    Landais, G.; Boch, T.; Brouty, M.; Guéhenneux, S.; Genova, F.; Lesteven, S.; Ochsenbein, F.; Ocvirk, P.; Perret, E.; Pineau, F.-X.; Simon, A.-C.; Vannier, P.

    2015-04-01

    VizieR (Ochsenbein et al. 2000) provides access to the most complete library of published astronomical catalogs (data tables and associated data) available online and organized in a self-documented database. (There were 11769 catalogs in November 2013.) Indexing the metadata in the VizieR search engine requires the expertise of scientists and documentalists for each catalog ingested. The metadata go into an efficient position search engine that is adapted to big data. (For instance, the GAIA simulation catalog has more than two billion objects). Information in VizieR tables is well described and can be retrieved easily. The search results provide visibility to catalogs with tools and protocols to disseminate data to the Virtual Observatory, thus giving scientists data that is reusable by dedicated tools (e.g. image vizualisation tools). Also, new functionality allows users to extract all photometric data in catalogs for a given position. Finally, it is also through cross-identification tools that the CDS becomes a partner in producing large data sets, such as GAIA.

  18. Photoacoustic Study on a Photonic System CdS and Doped CdS

    NASA Astrophysics Data System (ADS)

    Sankar, N.; Ramachandran, K.; Sanjeeviraja, C.

    2002-12-01

    Using Photoacoustic spectroscopy thermal diffusion, thermal conductivity and energy band gap are studied on crystals of photonic system CdS and doped CdS grown by Physical Vapour transport. Optical band gap measured here agrees well with Photo current measurements. It is also found that the thermal diffusivity, effusivity, and optical band gap increases with increase of carrier concentration.

  19. Deflection unit for multi-beam mask making

    NASA Astrophysics Data System (ADS)

    Letzkus, Florian; Butschke, Joerg; Irmscher, Mathias; Jurisch, Michael; Klingler, Wolfram; Platzgummer, Elmar; Klein, Christof; Loeschner, Hans; Springer, Reinhard

    2008-10-01

    Two main challenges of future mask making are the decreasing throughput of the pattern generators and the insufficient line edge roughness of the resist structures. The increasing design complexity with smaller feature sizes combined with additional pattern elements of the Optical Proximity Correction generates huge data volumes which reduce correspondingly the throughput of conventional single e-beam pattern generators. On the other hand the achievable line edge roughness when using sensitive chemically amplified resists does not fulfill the future requirements. The application of less sensitive resists may provide an improved roughness, however on account of throughput, as well. To overcome this challenge a proton multi-beam pattern generator is developed [1]. Starting with a highly parallel broad beam, an aperture-plate is used to generate thousands of separate spot beams. These beams pass through a blanking-plate unit, based on a CMOS device for de-multiplexing the writing data and equipped with electrodes placed around the apertures switching the beams "on" or "off", dependent on the desired pattern. The beam array is demagnified by a 200x reduction optics and the exposure of the entire substrate is done by a continuous moving stage. One major challenge is the fabrication of the required high aspect deflection electrodes and their connection to the CMOS device. One approach is to combine a post-processed CMOS chip with a MEMS component containing the deflection electrodes and to realize the electrical connection of both by vertical integration techniques. For the evaluation and assessment of this considered scheme and fabrication technique, a proof-of-concept deflection unit has been realized and tested. Our design is based on the generation of the deflection electrodes in a silicon membrane by etching trenches and oxide filling afterwards. In a 5mm x 5mm area 43,000 apertures with the corresponding electrodes have been structured and wired individually or in

  20. Calibration of optical cantilever deflection readers

    NASA Astrophysics Data System (ADS)

    Hu, Zhiyu; Seeley, Tim; Kossek, Sebastian; Thundat, Thomas

    2004-02-01

    Because of its ultrahigh sensitivity, the optical lever detection method similar to that used in the atomic force microscope (AFM) has been widely employed as a standard technique for measuring microcantilever deflection. Along with the increasing interest in using the microcantilever as a sensing platform, there is also a requirement for a reliable calibration technique. Many researchers have used the concept of optical lever detection to construct microcantilever deflection readout instruments for chemical, physical, and biological detection. However, without an AFM piezo z scanner, it is very difficult to precisely calibrate these instruments. Here, we present a step-by-step method to conveniently calibrate an instrument using commercially available piezoresistive cantilevers. The experimental results closely match the theoretical calculation. Following this procedure, one can easily calibrate any optical cantilever deflection detection system with high reproducibility, precision, and reliability. A detailed discussion of the optical lever readout system design has been addressed in this article.

  1. Brachytherapy needle deflection evaluation and correction

    SciTech Connect

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-04-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively.

  2. Correct light deflection in Weyl conformal gravity

    NASA Astrophysics Data System (ADS)

    Cattani, Carlo; Scalia, Massimo; Laserra, Ettore; Bochicchio, Ivana; Nandi, Kamal K.

    2013-02-01

    The conformal gravity fit to observed galactic rotation curves requires γ>0. On the other hand, the conventional method for light deflection by galaxies gives a negative contribution to the Schwarzschild value for γ>0, which is contrary to observation. Thus, it is very important that the contribution to bending should in principle be positive, no matter how small its magnitude is. Here we show that the Rindler-Ishak method gives a positive contribution to Schwarzschild deflection for γ>0, as desired. We also obtain the exact local coupling term derived earlier by Sereno. These results indicate that conformal gravity can potentially test well against all astrophysical observations to date.

  3. Transverse photothermal beam deflection within a solid

    SciTech Connect

    Spear, J.D.; Russo, R.E. )

    1991-07-15

    The mirage effect within a transparent solid substrate was used for monitoring optical absorption of a thin film. Refractive index gradients, which accompany thermal gradients below the film-coated surface, cause a probe laser beam to be deflected. The spectrum of copper, deposited onto a piece of clear acrylic, was recorded by this method of photothermal deflection. The influence of thermally induced mechanical stresses can alter the effective value of the thermo-optic coefficient of the solid, {ital dn}/{ital dT}.

  4. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, Charles L.; Spector, Jerome

    1994-01-01

    A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).

  5. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  6. Deflection of large near-earth objects

    SciTech Connect

    Canavan, G.H.

    1999-01-11

    The Earth is periodically hit by near Earth objects (NEOs) ranging in size from dust to mountains. The small ones are a useful source of information, but those larger than about 1 km can cause global damage. The requirements for the deflection of NEOs with significant material strength are known reasonably well; however, the strength of large NEOs is not known, so those requirements may not apply. Meteor impacts on the Earth`s atmosphere give some information on strength as a function of object size and composition. This information is used here to show that large, weak objects could also be deflected efficiently, if addressed properly.

  7. Rural Youth and Anticipatory Goal Deflection.

    ERIC Educational Resources Information Center

    Curry, Evans W.; And Others

    Race, sex, community size, occupation of major wage earner, father's education, mother's education, and certainty of expectations were the variables used in this study to determine the "anticipatory occupational goal deflection" (AOGD) of urban and rural youth (blacks and whites) in Louisiana. Least squares analysis of variance and other…

  8. Particle beam and crabbing and deflecting structure

    DOEpatents

    Delayen, Jean

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  9. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  10. TIR-based photothermal/photoacoustic deflection

    NASA Astrophysics Data System (ADS)

    Riede, Wolfgang; Allenspacher, Paul; Franck, J.

    2008-10-01

    We report on a new experimental technique for monitoring laser-induced shock waves and thermal waves above the sample surface called total internal reflection based photothermal or photoacoustic deflection (TIR based PTD/PAD deflection). It is based on the changes in transmissivity of a prism which is operated near the condition of total internal reflection for a HeNe laser beam propagating parallel to the sample surface at a small distance. The HeNe laser beam is probing photoacoustic or photothermal waves originating from a sample surface due to interaction with a pulsed Nd:YAG laser beam. The method is compared with standard online detection techniques like scatter probe monitoring and plasma detection, and found to be a very sensitive and practical tool. It also showed its suitability for selectively monitoring several surfaces (e. g. front and rear surface) of optical components, and attributing the damage starting point. Therefore, the method might be used for monitoring of surface damage on laser crystals or valuable components. Keywords: photothermal deflection, photoacoustic deflection, laser damage, total internal reflection.

  11. Simplified deflection-coil linearity testing

    NASA Technical Reports Server (NTRS)

    Kramer, G. P.

    1976-01-01

    Mask placed over face of image-dissecting photomultiplier tube has precision array of pinholes that permit light to impinge on tube at known points. Signals are fed to deflection coil which sweeps beam across each point without complex operator procedures.

  12. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  13. Measuring Deflections Of Propeller And Fan Blades

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1993-01-01

    Method based on measurement of interruptions of laser beam provides information on deflections of blades of airplane propeller or unducted turbofan. Bends and twists deduced from timing of laser-beam shadows. Provides for nonintrusive measurement in wind tunnel or on open test stand.

  14. Electron beam deflection, focusing, and collimation by a femtosecond laser lens

    SciTech Connect

    Minogin, V G

    2009-11-30

    This work examines spatial separation of femtosecond electron bunches using the ponderomotive potential created by femtosecond laser pulses. It is shown that ponderomotive optical potentials are capable of effectively deflecting, focusing, and collimating narrow femtosecond electron bunches. (laser applications and other topics in quantum electronics)

  15. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Michel, P.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, P.; Richardson, D. C.

    2016-02-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor to deflect an asteroid. AIDA is an international cooperation, consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the ESA Asteroid Impact Mission (AIM) rendezvous mission. The primary goals of AIDA are (i) to test our ability to perform a spacecraft impact on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary near-Earth asteroid (65803) Didymos, with the deflection experiment to occur in late September, 2022. The DART impact on the secondary member of the binary at ~7 km/s is expected to alter the binary orbit period by about 4 minutes, assuming a simple transfer of momentum to the target, and this period change will be measured by Earth-based observatories. The AIM spacecraft will characterize the asteroid target and monitor results of the impact in situ at Didymos. The DART mission is a full-scale kinetic impact to deflect a 150 m diameter asteroid, with known impactor conditions and with target physical properties characterized by the AIM mission. Predictions for the momentum transfer efficiency of kinetic impacts are given for several possible target types of different porosities, using Housen and Holsapple (2011) crater scaling model for impact ejecta mass and velocity distributions. Results are compared to numerical simulation results using the Smoothed Particle Hydrodynamics code of Jutzi and Michel (2014) with good agreement. The model also predicts that the ejecta from the DART impact may make Didymos into an active asteroid, forming an ejecta coma that may be observable from Earth-based telescopes. The measurements from AIDA of the momentum transfer from the DART impact, the crater size and morphology, and the evolution of an ejecta coma will

  16. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  17. Analysis of HOM Properties of Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    SciTech Connect

    S.U. De Silva, J.R. Delayen

    2011-07-01

    The superconducting parallel-bar cavity is currently being considered for a number of deflecting and crabbing applications due to improved properties and compact design geometries. The 499 MHz deflecting cavity proposed for the Jefferson Lab 12 GeV upgrade and the 400 MHz crab cavity for the proposed LHC luminosity upgrade are two of the major applications. For high current applications the higher order modes must be damped to acceptable levels to eliminate any beam instabilities. The frequencies and R/Q of the HOMs and mode separation are evaluated and compared for different parallel-bar cavity designs.

  18. SECONDARY POPULATION OF INTERSTELLAR NEUTRALS seems deflected to the side

    NASA Astrophysics Data System (ADS)

    Nakagawa, H.; Bzowski, M.; Yamazaki, A.; Fukunishi, H.; Watanabe, S.; Takahashi, Y.; Taguchi, M.

    Recently the neutral hydrogen flow in the inner heliosphere was found to be deflected relative to the helium flow by about 4 degrees Lallement et al 2005 The explanation of this delfection offered was a distortion of the heliosphere under the action of an ambient interstellar magnetic field In a separate study a number of data sets pertaining to interstellar neutral atoms obtained with various techniques were compiled and interpreted as due to an inflow of interstellar gas from an ecliptic longitude shifted by 10 - 40 degrees from the canonical upstream interstellar neutral flow direction at 254 degrees Collier et al 2004 The origin and properties of such a flow is still under debate We have performed a cross-experiment analysis of the heliospheric hydrogen and helium photometric observations performed simltaneously by the Nozomi spacecraft between the Earth and Mars orbit and explored possible deflection of hydrogen and helium flows with respect to the canonical upwind direction For the interpretation we used predictions of a state of the art 3D and fully time-dependent model of the neutral gas in the heliosphere with the boundary conditions ionization rates and radiation pressure taken from literature The model includes two populations of the thermal interstellar hydrogen predicted by the highly-reputed Moscow Monte Carlo model of the heliosphere The agreement between the data and simulations is not satifactory when one assumes that the upwind direction is the same for both populations and identical with the direction derived from inerstellar helium

  19. Dark matter prospects in deflected mirage mediation

    SciTech Connect

    Holmes, Michael; Nelson, Brent D. E-mail: b.nelson@neu.edu

    2009-07-01

    The recently introduced deflected mirage mediation (DMM) model is a string-motivated paradigm in which all three of the major supersymmetry-breaking transmission mechanisms are operative. We begin a systematic exploration of the parameter space of this rich model context, paying special attention to the pattern of gaugino masses which arise. In this work we focus on the dark matter phenomenology of the DMM model as such signals are the least influenced by the model-dependent scalar masses. We find that a large portion of the parameter space in which the three mediation mechanisms have a similar effective mass scale of 1 TeV or less will be probed by future direct and indirect detection experiments. Distinguishing deflected mirage mediation from the mirage model without gauge mediation will prove difficult without collider input, though we indicate how gamma ray signals may provide an opportunity for distinguishing between the two paradigms.

  20. Deflection evaluation using time-resolved radiography

    SciTech Connect

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. We have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed here, our intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made. 2 figs.

  1. AIDA: Asteroid Impact and Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Cheng, A.; Galvez, A.; Reed, C.; Carnelli, I.; Abell, P.; Ulamec, S.; Rivkin, A.; Biele, J.; Murdoch, N.

    2015-03-01

    AIDA (Asteroid Impact and Deflection Assessment) is a project of a joint mission demonstration of asteroid deflection and characterisation of the kinetic impact effects. It involves the Johns Hopkins Applied Physics Laboratory (with support from members of NASA centers including Goddard Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory), and the European Space Agency (with support from members of the french CNRS/Cte dAzur Observatory and the german DLR). This assessment will be done using a binary asteroid target. AIDA consists of two independent but mutually supporting mission concepts, one of which is the asteroid kinetic impactor and the other is the characterisation spacecraft. The objective and status of the project will be presented.

  2. Polyhedron tracking and gravity tractor asteroid deflection

    NASA Astrophysics Data System (ADS)

    Ummen, N.; Lappas, V.

    2014-11-01

    In the wake of the Chelyabinsk airburst, the defense against hazardous asteroids is becoming a topic of high interest. This work improves the gravity tractor asteroid deflection approach by tracking realistic small body shapes with tilted ion engines. An algorithm for polyhedron tracking was evaluated in a fictitious impact scenario. The simulations suggest a capability increase up to 38.2% with such improved tilting strategies. The long- and short-term effects within polyhedron tracking are illustrated. In particular, the orbital reorientation effect is influential when realistic asteroid shapes and rotations are accounted for. Also analyzed is the subject of altitude profiles, a way to tailor the gravity tractor performance, and to achieve a steering ability within the B-plane. A novel analytical solution for the classic gravity tractor is derived. It removes the simulation need for classic tractor designs to obtain comparable two body model Δv figures. This paper corroborates that the asteroid shape can be exploited for maximum performance. Even a single engine tilt adjustment at the beginning of deflection operations yields more deflection than a fixed preset tilt.

  3. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  4. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  5. Beam deflection by an aperiodic binary diffraction grating

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, Bosanta R.

    2013-02-01

    In this article we investigate the beam deflection by a one-dimensional binary diffraction grating. We propose a simple theoretical expression that can be used to predict the beam deflection angle due to both periodic and aperiodic binary grating profiles. We show that the theoretically calculated beam deflection angles agree well with the experimentally obtained deflection angles for various grating patterns. Thus the expression can be used to precisely position the deflected beam at a predetermined location. Further, we show that the theoretical expression can be used to construct a map between the spatial frequency of the grating and the deflection angle which can be employed to deflect the beam at equal intervals by sequentially changing the spatial frequency in accordance with the map. We also demonstrate the superior beam repeatability of a binary grating based beam scanner.

  6. Designs of Superconducting Parallel-Bar Deflecting Cavities for Deflecting/Crabbing Applications

    SciTech Connect

    Delayen, J. R.; De Silva, S. U.

    2011-07-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is currently being considered for a number of applications. The new parallel-bar design with curved loading elements and circular or elliptical outer conductors have improved properties compared to the designs with rectangular outer conductors. We present the designs proposed as deflecting cavities for the Jefferson Lab 12 GeV upgrade and for Project-X and as crabbing cavities for the proposed LHC luminosity upgrade and electron-ion collider at Jefferson Lab.

  7. Intercalibration of SUMER and CDS on SOHO. I. SUMER detector A and CDS NIS.

    PubMed

    Pauluhn, A; Rüedi, I; Solanki, S K; Lang, J; Pike, C D; Schühle, U; Thompson, W T; Hollandt, J; Huber, M C

    1999-12-01

    The results of an intercalibration between the extreme ultraviolet spectrometers Coronal Diagnostic Spectrometer (CDS) and Solar Ultraviolet Measurements of Emitted Radiation (SUMER) onboard the Solar and Heliospheric Observatory (SOHO) are presented. During the joint observing program Intercal_01, CDS and SUMER were pointed at the same locations in quiet Sun areas and observed in the same wavelength bands located around the spectral lines He i 584 A, Mg x 609 A, and Mg x 624 A. The data sets analyzed here consist of raster images recorded by the CDS normal-incidence spectrometer and SUMER detector A and span the time from March 1996 to August 1996. Effects of the different spatial and spectral resolutions of both instruments have been investigated and taken into account in the analysis. We find that CDS measures generally a 30% higher intensity than SUMER in the He i 584-A line, while it measures 9% and 17% higher intensities in Mg x 609 A and Mg x 624 A, respectively. Both instruments show very good temporal correlation and stability, indicating that solar variations dominate over changes in instrumental sensitivity. Our analysis also provides in-flight estimates of the CDS spatial point-spread functions.

  8. Electroweak naturalness and deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Everett, Lisa L.; Garon, Todd S.

    2016-04-01

    We investigate the question of electroweak naturalness within the deflected mirage mediation (DMM) framework for supersymmetry breaking in the minimal supersymmetric standard model. The class of DMM models considered are nine-parameter theories that fall within the general classification of the 19-parameter phenomenological minimal supersymmetric standard model. Our results show that these DMM models have regions of parameter space with very low electroweak fine-tuning, at levels comparable to the phenomenological minimal supersymmetric standard model. These parameter regions should be probed extensively in the current LHC run.

  9. Dark matter signals in deflected mirage mediation

    SciTech Connect

    Holmes, Michael

    2010-02-10

    We investigate the parameter space of a specific class of model within the deflected mirage mediation (DMM) scenario. We look at neutralino properties and compute the thermal relic density as well as interaction rates with xenon direct detection experiments. We find that there are portions of the parameter space which are in line with the current WMAP constraints. Further we find that none of the investigated parameter space is in conflict with current bounds from the Xenon10 experiment and that future large-scale liquid xenon experiments will probe a large portion of the model space.

  10. Flexible pavement performance evaluation using deflection criteria

    NASA Astrophysics Data System (ADS)

    Wedner, R. J.

    1980-04-01

    Flexible pavement projects in Nebraska were monitored for dynamic deflections, roughness, and distress for six consecutive years. Present surface conditions were characterized and data for evaluating rehabilitation needs, including amount of overlay, were provided. Data were evaluated and factors were isolated for determining the structural adequacy of flexible pavements, evaluating existing pavement strength and soil subgrade conditions, and determining overlay thickness requirements. Terms for evaluating structural condition for pavement sufficiently ratings were developed and existing soil support value and subgrade strength province maps were evaluated.

  11. Determination of peak deflections from human surrogates using chestbands in side impact tests.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Maiman, Dennis J

    2013-08-01

    To understand the biomechanics of the human body in motor vehicle environments, physical models including anthropomorphic test devices (ATD) and biological models (postmortem human surrogates) are used, and sled tests are conducted. Deflection is often used as a biomechanical variable to characterize the effects of impact loading and derive injury criteria. The objective of the present study was to evaluate different techniques and recommend a methodology to determine the peak thorax and abdominal deflections from temporal contours using chestbands in oblique lateral impacts. The side impact ATD WorldSID representing human surrogates was positioned on a seat. The seat was rigidly fixed to the platform of an acceleration sled. The oblique load-wall fixed to the sled consisted of separate and adjustable plates to contact the shoulder, thorax, abdomen, and pelvis. Two 59-gage chestbands were wrapped on the thorax and abdomen. Tests were conducted at low, medium, and high velocities (3.4, 6.7, and 7.5m/s) and three methods, termed the spine-sternum, bilateral, and spine-box, were used to determine the global peak deflection and its angulation. Results indicated that all three methods produced very similar angulations, for all velocity tests, and at both thorax and abdominal regions. However, maximum deflections were the lowest in the spine-sternum, followed by bilateral and spine-box methods, with one exception. Based on the development of deflection contours, locations used in the definitions of the origin, and accuracy in identifying critical locations/points in time-varying contours, results of the present study indicate that the bilateral method is the optimum procedure to determine the oblique peak deflection vector in biomechanical tests.

  12. An innovating method to measure bridge deflection using interference-based sensors

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Wang, Lutang; Comanici, Maria Iulia

    2012-04-01

    The Vibrofiber sensor is a Fabry-Perot cavity formed between two broad band fiber gratings creating interference fringes. It was introduced three years ago to monitor the vibration and temperature rise of the stator end winding in a power generator.(1) This paper will discuss the use of Vibrofiber to monitor the deflection of the bridge under adverse conditions: wide temperature swings, excess load, strong winds, earth quake, etc. The fringes in these cavity sensors have features like peaks and valleys which are sensitive to temperature and strain. When the bridge becomes overloaded, we are interested in knowing the extent of the deflection. In addition, we might want to locate the cause of the overload. A simple Sagnac FBG interferometer has been invented to provide such diagnostics. A pair of long fibers with such cavity sensors can be installed on the underside of the target bridge segment between two supporting columns. The objective is to monitor the deflection together with any distortion of the bridge deck. Each of the 2 long fiber segments has a pair of cavity sensors, one measures the deflection as a result of the excess strain, and the other measures temperature and provides compensation for the deflection data. An array of cavity sensors with different center wavelengths will be used to support the typical multi-segment bridge structure. The interrogation unit is based on a tunable laser that can hop to different ITU grids. A separate DFB laser will run a grating based Sagnac interferometer, measuring weight in motion, identifying the speed and the make of vehicle in traffic and provide deflection diagnostics. Overloaded trucks and speeding vehicles can be captured and tagged for corrective actions. The interrogation unit is equipped with wireless Ethernet communication enabling the monitoring of many bridges from a central location and similarly warning can be initiated to alert the central traffic control ahead of any problems.

  13. Light-stimulated carrier dynamics of CuInS2/CdS heterotetrapod nanocrystals.

    PubMed

    Sakamoto, Masanori; Inoue, Koki; Okano, Makoto; Saruyama, Masaki; Kim, Sungwon; So, Yeong-Gi; Kimoto, Koji; Kanemitsu, Yoshihiko; Teranishi, Toshiharu

    2016-05-14

    We synthesized a heterotetrapod composed of a chalcopyrite(ch)-CuInS2 core and wurtzite(w)-CdS arms and elucidated its optical properties and light-stimulated carrier dynamics using fs-laser flash photolysis. The CuInS2/CdS heterotetrapod possessed quasi-type II band alignment, which caused much longer-lived charge separation than that in the isolated CuInS2 nanocrystal. PMID:27118533

  14. A digital CDS technique and its performance testing

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Yan; Lu, Jing-Bin; Yang, Yan-Ji; Lu, Bo; Wang, Yu-Sa; Xu, Yu-Peng; Cui, Wei-Wei; Li, Wei; Li, Mao-Shun; Wang, Juan; Han, Da-Wei; Chen, Tian-Xiang; Huo, Jia; Hu, Wei; Zhang, Yi; Zhu, Yue; Zhang, Zi-Liang; Yin, Guo-He; Wang, Yu; Zhao, Zhong-Yi; Fu, Yan-Hong; Zhang, Ya; Ma, Ke-Yan; Chen, Yong

    2015-07-01

    Readout noise is a critical parameter for characterizing the performance of charge-coupled devices (CCDs), which can be greatly reduced by the correlated double sampling (CDS) circuit. However, a conventional CDS circuit inevitably introduces new noise since it consists of several active analog components such as operational amplifiers. This paper proposes a digital CDS circuit technique, which transforms the pre-amplified CCD signal into a train of digital presentations by a high-speed data acquisition card directly without the noisy CDS circuit, then implements the digital CDS algorithm through a numerical method. A readout noise of 3.3 e- and an energy resolution of 121 eV@5.9 keV can be achieved via the digital CDS technique. Supported by National Natural Science Foundation of China (10978002)

  15. The Genomic CDS Sandbox: An Assessment Among Domain Experts

    PubMed Central

    Aziz, Ayesha; Kawamoto, Kensaku; Eilbeck, Karen; Williams, Marc S.; Freimuth, Robert R.; Hoffman, Mark A.; Rasmussen, Luke V.; Overby, Casey L.; Shirts, Brian H.; Hoffman, James M.; Welch, Brandon M.

    2016-01-01

    Genomics is a promising tool that is becoming more widely available to improve the care and treatment of individuals. While there is much assertion, genomics will most certainly require the use of clinical decision support (CDS) to be fully realized in the routine clinical setting. The National Human Genome Research Institute (NHGRI) of the National Institutes of Health recently convened an in-person, multi-day meeting on this topic. It was widely recognized that there is a need to promote the innovation and development of resources for genomic CDS such as a CDS sandbox. The purpose of this study was to evaluate a proposed approach for such a genomic CDS sandbox among domain experts and potential users. Survey results indicate a significant interest and desire for a genomic CDS sandbox environment among domain experts. These results will be used to guide the development of a genomic CDS sandbox. PMID:26778834

  16. The genomic CDS sandbox: An assessment among domain experts.

    PubMed

    Aziz, Ayesha; Kawamoto, Kensaku; Eilbeck, Karen; Williams, Marc S; Freimuth, Robert R; Hoffman, Mark A; Rasmussen, Luke V; Overby, Casey L; Shirts, Brian H; Hoffman, James M; Welch, Brandon M

    2016-04-01

    Genomics is a promising tool that is becoming more widely available to improve the care and treatment of individuals. While there is much assertion, genomics will most certainly require the use of clinical decision support (CDS) to be fully realized in the routine clinical setting. The National Human Genome Research Institute (NHGRI) of the National Institutes of Health recently convened an in-person, multi-day meeting on this topic. It was widely recognized that there is a need to promote the innovation and development of resources for genomic CDS such as a CDS sandbox. The purpose of this study was to evaluate a proposed approach for such a genomic CDS sandbox among domain experts and potential users. Survey results indicate a significant interest and desire for a genomic CDS sandbox environment among domain experts. These results will be used to guide the development of a genomic CDS sandbox.

  17. Theory of using magnetic deflections to combine charged particle beams

    SciTech Connect

    Steckbeck, Mackenzie K.; Doyle, Barney Lee

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equations is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  18. Analysis of engineering characteristics of pavement deflection trends

    SciTech Connect

    Kerali, H.R.; Lawrance, A.J.

    1999-05-01

    This paper describes analysis of pavement deflection data collected by the Transport Research Laboratory at two experimental road sites in England during 1960--1985. Measurements of Benkelman beam deflections together with records of traffic loading were taken at 6 to 12 month intervals. The analysis investigates the deflection trend as a function of road base material and thickness. The deflection trend was represented by a negative exponential curve form. Engineering aspects of the curve form were extracted and statistically analyzed. The results obtained focus on the dependency of deflection progression on both road base material and thickness, which are shown to act either jointly or singly, depending on the engineering characteristic of the pavement deflection trend.

  19. Optical measurement of propeller blade deflections in a spin facility

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Meyn, Erwin H.; Mehmed, Oral; Kurkov, Anatole P.

    1990-01-01

    A nonintrusive optical system for measuring propeller blade deflections has been used in the NASA Lewis dynamic spin facility. Deflection of points at the leading and trailing edges of a blade section can be obtained with a narrow light beam from a low power helium-neon laser. A system used to measure these deflections at three spanwise locations is described. Modifications required to operate the lasers in a near-vacuum environment are also discussed.

  20. Beam-beam deflection and signature curves for elliptic beams

    SciTech Connect

    Ziemann, V.

    1990-10-22

    In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.

  1. Photodetectors of slit and sandwich types based on CdS and CdS1-xSex films obtained using MOCVD method from dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Zavyalova, Ludmila V.; Svechnikov, Sergey V.; Tchoni, Vladimir G.

    1997-04-01

    Here we report the results of working out an original, simple in control and not requiring expensive equipment MOCVD-method for depositing films of semiconductor compounds A2B6. Dithiocarbamates (DTC) are used as starting materials. The compounds are stable, easily synthesized, cheap and low toxic. Atoms of metal and sulfur in the DTC are strongly bonded. The DTC could be easily dissolved in various organic solvents. The experimental unit for film deposition comprises a spraying apparatus, a substrate heater, and a quartz cylinder for separation of a reaction zone from ambience. The process of film deposition is carried out in air conditions. Films of CdS, bright-yellow, transparent, having mirror smooth surface at thickness less than 2 mkm and rough surface at thickness 8-12 mkm, were deposited by spraying cadmium dithiocarbamate, that is DTC with radical C2H5, solution in pyridine on substrates heated to 240-280 degrees C. Deposition rate was 60-90 nm/min. Films obtained were of hexagonal modification, polycrystalline, textured, with low, at the level of centipercents content of oxygen and carbon. Slit type photodetectors based on CdS and CdS1-xSex of 1.0 mkm thickness have dark conductivity (sigma) d equals 10-9 divided by 10-8 Ohm-1cm-1 and photoconductivity (sigma) ph equals 10-2 divided by 10-1 Ohm-1cm-1 at 200 lux. Industrially suitable technology for production of photopotentiometer on the base of these films was developed. Sandwich-type photodetectors In2S3 - CdS: Cu, Cl - In with 8-12 mkm thickness have the same value of photoconductivity and the light-to-dark ratio is 106 divided by 107. Based on sandwich-type photodetectors, a hybrid structure of pyroelectric-photodetector as a resonant-type coordinate-sensitive detector was developed.

  2. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  3. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  4. Trace Explosive Detection using Photothermal Deflection Spectroscopy

    SciTech Connect

    Krause, Adam R; Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George; Finot, Eric

    2008-01-01

    Satisfying the conditions of high sensitivity and high selectivity using portable sensors that are also reversible is a challenge. Miniature sensors such as microcantilevers offer high sensitivity but suffer from poor selectivity due to the lack of sufficiently selective receptors. Although many of the mass deployable spectroscopic techniques provide high selectivity, they do not have high sensitivity. Here, we show that this challenge can be overcome by combining photothermal spectroscopy on a bimaterial microcantilever with the mass induced change in the cantilever's resonance frequency. Detection using adsorption-induced resonant frequency shift together with photothermal deflection spectroscopy shows extremely high selectivity with a subnanogram limit of detection for vapor phase adsorbed explosives, such as pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and trinitrotoluene (TNT).

  5. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.

    PubMed

    Sadhu, Suparna; Patra, Amitava

    2008-10-01

    We demonstrate strong evidence of shape-dependent efficient resonance energy transfer between CdS quantum dots (QDs) and quantum rods (QRs) (donor) to Nile Red dye (acceptor). We also report a simple solution-based method for the preparation of high quality CdS QDs and CdS QRs at relatively low temperature. The observed quenching of PL intensities are 78.8 % and 63.8 % for CdS QDs and QRs, respectively in the presence of Nile Red dye. The calculated energy-transfer efficiencies are 45 % and 19 % from QDs and QRs to dyes, respectively. The energy transfer varies with changing the shape of the nanoparticles. The estimated Förster distances (R(0)) are 37.8 and 33.8 A for CdS QDs and QRs, respectively. In the present study, the estimated distances (r) between one donor and one acceptor are 39.1 and 43.1 A for QDs and QRs, respectively, using the efficiency of Förster resonance energy transfer (FRET) which depends on the inverse sixth power of the distance of separations between one nanocrystal and one dye molecule. Considering single donor and multiple acceptors interactions, the calculated average distances (r(n)) between the donor and acceptor are 47.7 and 53.9 A for QD's and QR's, respectively. The steady-state and time-resolved spectroscopic analysis of nanoassemblies confirm the formation of one donor and multiple acceptors.

  6. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  7. Study on dynamics of photoexcited charge injection and trapping in CdS quantum dots sensitized TiO{sub 2} nanowire array film electrodes

    SciTech Connect

    Pang, Shan; Cheng, Ke; Yuan, Zhanqiang; Xu, Suyun; Cheng, Gang; Du, Zuliang

    2014-05-19

    The photoexcited electrons transfer dynamics of the CdS quantum dots (QDs) deposited in TiO{sub 2} nanowire array films are studied using surface photovoltage (SPV) and transient photovoltage (TPV) techniques. By comparing the SPV results with different thicknesses of QDs layers, we can separate the dynamic characteristics of photoexcited electrons injection and trapping. It is found that the TPV signals of photoexcited electrons trapped in the CdS QDs occur at timescales of about 2 × 10{sup −8} s, which is faster than that of the photoexcited electrons injected from CdS into TiO{sub 2}. More than 90 nm of the thickness of the CdS QDs layer will seriously affect the photoexcited electrons transfer and injection.

  8. Electronic Publishing: The New Roles of CDS

    NASA Astrophysics Data System (ADS)

    Genova, F.; Bartlett, J. G.; Bonnarell, F.; Dubois, P.; Egret, D.; Fernique, P.; Jasniewicz, G.; Lesteven, S.; Monier, R.; Ochsenbein, F.; Wenger, M.

    The Centre de Données astronomiques de Strasbourg (CDS) has dealt with bibliographic information for many years. References of publications, published observational data related to astronomical objects, data tables, nomenclature, have been homogenized and organized into information retrieval systems.: SIMBAD, the reference database for the identification and bibliography of astronomical objects; the catalogue service and the ViezieR Catalogue Browser for data table; the Dictionary of Nomenclature of Astronomical Object, which is now maintained by the CDS. Evolution in recent years has brought the data centers closer to the publishing process. General standards for astronomy, for the description of references and of data tables, have been proposed and implemented. Data tables from research papers are now directly published in electronic form and distributed on-line by the data centers. The emergence of fully electronic publications paves the way to innovative new services, linking the journals to other sources of information (data bases, tables, images, data archives), and making use of new methods for information retrieval.

  9. Materials separation by dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Sagar, A. D.; Rose, R. M.

    1988-01-01

    The feasibility of vacuum dielectrophoresis as a method for particulate materials separation in a microgravity environment was investigated. Particle separations were performed in a specially constructed miniature drop-tower with a residence time of about 0.3 sec. Particle motion in such a system is independent of size and based only on density and dielectric constant, for a given electric field. The observed separations and deflections exceeded the theoretical predictions, probably due to multiparticle effects. In any case, this approach should work well in microgravity for many classes of materials, with relatively simple apparatus and low weight and power requirements.

  10. Unesco Integrated Documentation Network; Computerized Documentation System (CDS).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Dept. of Documentation, Libraries, and Archives.

    Intended for use by the Computerized Documentation System (CDS), the Unesco version of ISIS (Integrated Set of Information Systems)--originally developed by the International Labour Organization--was developed in 1975 and named CDS/ISIS. This system has a comprehensive collection of programs for input, management, and output, running in batch or…

  11. Teach Deflection Concepts with Hacksaw Blades and Rubber Bands

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    Technology and engineering educators can use a simple hacksaw blade to help students learn about deflection, as that which occurs in a beam. Here the beam is fixed at one end and allowed to deflect in a manner that is easy to see and measure--the hacksaw blade represents a cantilever, an overhanging structure. This simple and very inexpensive…

  12. CdS colloidal nanocrystals with narrow green emission

    NASA Astrophysics Data System (ADS)

    Ghamsari, Morteza Sasani; Sasani Ghamsari, Amir Hossein

    2016-04-01

    Cadmium sulfide (CdS) colloidal nanocrystals have been synthesized by a chemical reaction route. Polyvinyl alcohol was employed to modify the surface of CdS nanocrystals and improved their optical properties. The prepared nanoparticles were characterized using techniques such as x-ray powder diffraction, UV-VIS absorption, and photoluminescence spectroscopy. The prepared sample displays a strong and narrow green emission peak centered at 519 nm that has not been reported before and it is longer than the onset of absorption of ˜512 nm for bulk CdS. Several weak emission peaks appeared at wavelengths 490, 506, 521, and 543 nm, too. These two important characteristics of the prepared sample are due to the strong band-edge emission of CdS nanocrystals. The obtained results confirm that the prepared CdS nanocrystals have potential for opto-electronic applications.

  13. Spectroscopic Analysis of Impurity Precipitates in CdS Films

    SciTech Connect

    Webb, J. D.; Keane, J.; Ribelin, R.; Gedvilas, L.; Swartzlander, A.; Ramanathan, K.; Albin, D. S.; Noufi, R.

    1999-10-31

    Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR), Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 10{sup 2} micron-scale precipitates.

  14. A computational study of asymmetric glottal jet deflection during phonation

    PubMed Central

    Zheng, X.; Mittal, R.; Bielamowicz, S.

    2011-01-01

    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier–Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called “Coanda effect” in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection. PMID:21476669

  15. A computational study of asymmetric glottal jet deflection during phonation.

    PubMed

    Zheng, X; Mittal, R; Bielamowicz, S

    2011-04-01

    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier-Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called "Coanda effect" in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection. PMID:21476669

  16. Mission Designs for Demonstrating Gravity Tractor Asteroid Deflection

    NASA Astrophysics Data System (ADS)

    Busch, M.; Faber, N.; Eggl, S.; Morrison, D.; Clark, A.; Frost, C.; Jaroux, B. A.; Khetawat, V.

    2015-12-01

    Gravity tractor asteroid deflection relies on the gravitational attraction between the target and a nearby spacecraft; using low-thrust propulsion to change the target's trajectory slowly but continuously. Our team, based at the NASA Ames Mission Design Center, prepared designs for a Gravity Tractor Demonstration Mission (GTDM) for the European Commission's NEOShield initiative. We found five asteroids with well-known orbits and opportunities for efficient stand-alone demonstrations in the 2020s. We selected one object, 2000 FJ10, for a detailed design analysis. Our GTDM design has a 4 kW solar-electric propulsion system and launch mass of 1150 kg. For a nominal asteroid mass of 3 x 109 kg and diameter 150 m, and a hovering altitude 125 m above the asteroid's surface, GTDM would change FJ10's semi-major axis by 10 km over 2 years. To measure the deflection clearly and to permit safe hovering by the spacecraft, several months of survey and characterization are required prior to the active tractoring phase of the mission. Accurate tracking is also required after the tractoring phase, to ensure that the asteroid has indeed been deflected as intended. The GTDM design includes both spacecraft and Earth-based observations of FJ10 to verify the deflection. The estimated cost of GTDM is $280 million. Trajectory analysis for GTDM confirmed that the outcome of a deflection of any asteroid depends on when that deflection is performed. Compared to kinetic impactor deflection, the gradual deflection from a gravity tractor produces comparable results for a given total momentum transfer. However, a gravity tractor can have greater flexibility in the direction in which the target asteroid can be deflected. Asteroid deflection scenarios must be modeled carefully on a case-to-case basis. We will review implications of the results of the GTDM study to other proposed gravity tractor demonstrations, such as that included in NASA's Asteroid Redirect Mission.

  17. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    PubMed Central

    Aghili, Hossein; Yasssaei, Sogra; Ahmadabadi, Mahmoud Nilli

    2015-01-01

    Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs. Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT), nickel titanium (NiTi), and multi-strand NiTi (MSNT) archwires engaged in passive self-ligating (PSL) brackets, active self-ligating (ASL) brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length) were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance. Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force. Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly. PMID:27148381

  18. Photothermal deflection in a supercritical fluid

    NASA Astrophysics Data System (ADS)

    Briggs, Matthew E.; Gammon, Robert W.

    1994-11-01

    The total losses due to absorption and scatter from the best optical coatings can be made as low as deflection apparatus. The noise floor in our surface-absorption measurements using supercritical xenon, Tc equals 16.7 degree(s)C, corresponds to an absorptance A equals Pabsorbed/Pincident equals 10-10 under illumination of 1 W. Bulk absorption measurements are similarly enhanced: the noise floor corresponds to an absorption coefficient of (alpha) equals 10-13 cm-1 for 1 W of illumination in a sample of length 1 cm. These levels are three orders of magnitude more sensitive than any previously reported. The enhancement is brought about by the divergence in the coefficient of thermal expansion of a fluid near the critical point. In attempting to use this sensitivity to measure the absorption in transmission of low-absorbing (

  19. Deflected anomaly mediation and neutralino dark matter

    SciTech Connect

    Cesarini, Alessandro; Fucito, Francesco; Lionetto, Andrea

    2007-01-15

    This is a study of the phenomenology of the neutralino dark matter in the so called deflected anomaly mediation scenario. This scheme is obtained from the minimal anomaly-mediated scenario by introducing a gauge-mediated sector with N{sub f} messenger fields. Unlike the former scheme the latter has no tachyons. We find that the neutralino is still the LSP in a wide region of the parameter space: it is essentially a pure bino in the scenario with N{sub f}=1 while it can also be a pure Higgsino for N{sub f}>1. This is very different from the naive anomaly-mediated scenario which predicts a wino like neutralino. Moreover we do not find any tachyonic scalars in this scheme. After computing the relic density (considering all the possible coannihilations) we find that there are regions in the parameter space with values compatible with the latest WMAP results with no need to consider moduli fields that decay in the early universe.

  20. Throat Flow Modelling of Expansion Deflection Nozzles

    NASA Astrophysics Data System (ADS)

    Taylor, N. V.; Hempsell, C. M.

    Modelling of the supersonic flow within a rocket nozzle of both conventional and expansion deflection (ED) design is well handled by Method of Characteristics based algorithms. This approach provides both a predic- tion of the flowfield, and allows efficient optimisation of nozzle shape with respect to length. However, the Method of Characteristics requires a solution of the transonic flow through the nozzle throat to provide initial conditions, and the accuracy of the description of the transonic flow will clearly affect the overall accuracy of the complete nozzle flow calculation. However, it is relatively simple to show that conventional analytical methods for this process break down when applied to the more complex throat geometry of ED nozzles. This requires the use of a time marching solution method, which allows the analysis of the flow within this region even on such advanced configurations. This paper demonstrates this capability, outlines a general method for ED nozzle throat geometric definition, and examines the effect of various throat parameters on the permissible range of ED contours. It is found that the design of length optimised ED nozzles is highly sensitive to small changes in these parameters, and hence they must be selected with care.

  1. Development of optical diaphragm deflection sensors

    NASA Technical Reports Server (NTRS)

    Ghering, W. L.; Varshneya, D.; Jeffers, L. A.; Bailey, R. T.; Berthold, J. W.

    1985-01-01

    The objective of this project was to develop high-temperature pressure sensors using non-metallic components and optical sensing methods. The sensors are to operate over a temperature range from room temperature approx. 20C to 540C, to respond to internal pressure up to 690 kPa, to respond to external pressure up to 690 kPa, and to withstand external overpressure of 2070 kPa. Project tasks include evaluating sensing techniques and sensor systems. These efforts include materials and sensing method selection, sensor design, sensor fabrication, and sensor testing. Sensors are tested as a function of temperature, pressure, overpressure, and vibration. The project results show that high-temperature pressure sensors based on glass components and optical sensing methods are feasible. The microbend optical diaphragm deflection sensor exhibits the required sensitivity and stability for use as a pressure sensor with temperature compensation. for the microbend sensor, the 95% confidence level deviation of input pressure from the pressure calculated from the overall temperature-compensated calibration equation is 3.7% of full scale. The limitations of the sensors evaluated are primarily due to the restricted temperature range of suitable commercially available optical fibers and the problems associated with glass-to-metal pressure sealing over the entire testing temperature range.

  2. Locating structural damage using operational deflection shapes

    NASA Astrophysics Data System (ADS)

    Pai, Perngjin F.; Jin, Si

    2000-06-01

    Presented here is a newly developed Boundary Effect Detection (BED) method for pinpointing locations of small damage to structures using Operational Deflection Shapes (ODSs) measured by a scanning laser vibrometer. The BED method requires no model or historical data for locating structural damage. It works by decomposing a measured ODS into central solutions and boundary-layer solutions by using a sliding-window least- squares curve-fitting technique. For high-order ODSs without damage, boundary-layer solutions are non-zero only at structural boundaries. For a damaged structure, because damage introduces new boundaries, its boundary-layer solutions are non-zero at damage locations as well as its original boundaries. At a damage location, the boundary-layer solution of slope changes sign, and the boundary-layer solution of displacement peaks up or dimples down. The theoretical background is shown in detail. Experiments are performed on several different structures with different damages, including surface slots, edge slots, surface holes, internal holes, and fatigue cracks. Experimental results show that this damage detection method is more sensitive and reliable for locating small damage than other dynamics-based methods using curvatures or strain energies.

  3. Laser beam deflection monitoring of Nd: YAG laser ablation: pulse shape and repetition rate effects

    NASA Astrophysics Data System (ADS)

    Diaci, Janez; Možina, Janez

    1993-05-01

    The laser beam deflection probe has been employed to study blast waves generated during ablation of metallic surfaces by sequences of 1.06 μm Nd:YAG laser pulses separated by less than 1μs. A fluence threshold has been found, below which the effects of individual pulses can be resolved by the laser probe. Above that, the deflection signal has a similar form as if the surface were irradiated with a single pulse. Analysis of the signals in terms of the spherical blast wave theory shows that a pulse sequence generates a weaker blast wave than a single pulse of equal total energy. On the other hand, the sequence yields a higher etch depth than the single pulse.

  4. Asteroid Deflection Mission Design Considering On-Ground Risks

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter

    The deflection of an Earth-threatening asteroid requires high transparency of the mission design process. The goal of such a mission is to move the projected point of impact over the face of Earth until the asteroid is on a miss trajectory. During the course of deflection operations, the projected point of impact will match regions that were less affected before alteration of the asteroid’s trajectory. These regions are at risk of sustaining considerable damage if the deflecting spacecraft becomes non-operational. The projected impact point would remain where the deflection mission put it at the time of mission failure. Hence, all regions that are potentially affected by the deflection campaign need to be informed about this risk and should be involved in the mission design process. A mission design compromise will have to be found that is acceptable to all affected parties (Schweickart, 2004). A software tool that assesses the on-ground risk due to deflection missions is under development. It will allow to study the accumulated on-ground risk along the path of the projected impact point. The tool will help determine a deflection mission design that minimizes the on-ground casualty and damage risk due to deflection operations. Currently, the tool is capable of simulating asteroid trajectories through the solar system and considers gravitational forces between solar system bodies. A virtual asteroid may be placed at an arbitrary point in the simulation for analysis and manipulation. Furthermore, the tool determines the asteroid’s point of impact and provides an estimate of the population at risk. Validation has been conducted against the solar system ephemeris catalogue HORIZONS by NASA’s Jet Propulsion Laboratory (JPL). Asteroids that are propagated over a period of 15 years show typical position discrepancies of 0.05 Earth radii relative to HORIZONS’ output. Ultimately, results from this research will aid in the identification of requirements for

  5. The Advanced Photon Source pulsed deflecting cavity RF system.

    SciTech Connect

    Cours, A.; DiMonte, N. P.; Smith, T. L.; Waldschmidt, G.

    2008-01-01

    The Advanced Photon Source Deflecting Cavity System for producing short X-ray pulses uses two multi-cell, S-band cavities to apply a deflecting voltage to the stored electron beam ahead of an undulator that supports a beamline utilizing picosecond X-rays. Two additional multi-cell cavities are then used to cancel out the perturbation and restore the electron beam to its nominal orbit. The pulsed rf system driving the deflecting cavities is described. Design tradeoffs are discussed with emphasis on topology considerations and digital control loops making use of sampling technology in a manner consistent with the present state of the art.

  6. Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification

    SciTech Connect

    Dixon, P. Ben; Starling, David J.; Jordan, Andrew N.; Howell, John C.

    2009-05-01

    We report on the use of an interferometric weak value technique to amplify very small transverse deflections of an optical beam. By entangling the beam's transverse degrees of freedom with the which-path states of a Sagnac interferometer, it is possible to realize an optical amplifier for polarization independent deflections. The theory for the interferometric weak value amplification method is presented along with the experimental results, which are in good agreement. Of particular interest, we measured the angular deflection of a mirror down to 400{+-}200 frad and the linear travel of a piezo actuator down to 14{+-}7 fm.

  7. Method for isotope separation by photodeflection

    DOEpatents

    Bernhardt, Anthony F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states.

  8. Separable fastening device

    DOEpatents

    Harvey, Andrew C.; Ribich, William A.; Marinaccio, Paul J.; Sawaf, Bernard E.

    1987-12-01

    A separable fastener system has a first separable member that includes a series of metal hook sheets disposed in stacked relation that defines an array of hook elements on its broad surface. Each hook sheet is a planar metal member of uniform thickness and has a body portion with a series of hook elements formed along one edge of the body. Each hook element includes a stem portion, a deflecting surface portion, and a latch portion. Metal spacer sheets are disposed between the hook sheets and may be varied in thickness and in number to control the density of the hook elements on the broad surface of the first fastener member. The hook and spacer sheets are secured together in stacked relation. A second fastener member has a surface of complementary engaging elements extending along its broad surface which are releasably interengageable with the hook elements of the first fastener member, the deflecting surfaces of the hook elements of the first fastener member tending to deflect hook engaging portions of the second fastener member and the latch portions of the hook elements of the first fastener member engaging portions of the second fastener member in fastening relation.

  9. Deflection of a Reflected Intense Vortex Laser Beam.

    PubMed

    Zhang, Lingang; Shen, Baifei; Zhang, Xiaomei; Huang, Shan; Shi, Yin; Liu, Chen; Wang, Wenpeng; Xu, Jiancai; Pei, Zhikun; Xu, Zhizhan

    2016-09-01

    An interesting deflection effect deviating the optical reflection law is revealed in the relativistic regime of intense vortex laser plasma interaction. When an intense vortex laser obliquely impinges onto an overdense plasma target, the reflected beam deflects out of the plane of incidence with an experimentally observable deflection angle. The mechanism is demonstrated by full three-dimensional particle-in-cell simulation as well as analytical modeling using the Maxwell stress tensor. The deflection results from the rotational symmetry breaking of the foil driven by the unsymmetrical shear stress of the vortex beam. The l-dependent shear stress, where l is the topological charge, as an intrinsic characteristic to the vortex beam, plays an important role as the ponderomotive force in relativistic vortex laser matter interaction. PMID:27661689

  10. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  11. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, Neil J.; Hudson, Charles L.

    1992-01-01

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse.

  12. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  13. A general small-deflection theory for flat sandwich plates

    NASA Technical Reports Server (NTRS)

    Libove, Charles; Batdorf, S B

    1948-01-01

    A small-deflection theory is developed for the elastic behavior of orthotropic flat plates in which deflections due to shear are taken into account. In this theory, which covers all types of flat sandwich construction, a plate is characterized by seven physical constants (five stiffnesses and two Poisson ratios) of which six are independent. Both the energy expression and the differential equations are developed. Boundary conditions corresponding to simply supported, clamped, and elastically restrained edges are considered.

  14. Design of Superconducting Parallel Bar Deflecting and Crabbing rf Structures

    SciTech Connect

    Jean Delayen, Haipeng Wang

    2009-05-01

    A new concept for a deflecting and crabbing rf structure based on half-wave resonant lines was introduced recently*. It offers significant advantages to existing designs and, because of it compactness, allows low frequency operation. This concept has been further refined and optimized for superconducting implementation. Results of this optimization and application to a 400 MHz crabbing cavity and a 499 MHz deflecting cavity are presented.

  15. Hot electron induced NIR detection in CdS films

    PubMed Central

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-01-01

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm2. The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications. PMID:26965055

  16. On the Deflection of CMEs in the Corona

    NASA Astrophysics Data System (ADS)

    Pomoell, J.; Vainio, R. O.; Kilpua, E.

    2009-12-01

    SOHO observations have revealed unambiguously that coronal mass ejections (CMEs) often do not propagate radially outwards with respect to the position of their source regions. It is commonly believed that coronal holes (CHs) play a significant role in the deflection of CMEs. For instance, it has been shown that the presence of CHs near the eruption region of a CME can explain why some interplanetary shocks arrive at Earth without a discernible ejecta behind them. Further, it has recently been proposed that the relative contribution of deflecting CMEs to the near-ecliptic ICME rate could be significant at solar minimum conditions. Despite these important implications, the deflection of CMEs itself has not received much attention. In this work, we study the deflection of CMEs in the low corona by simulations and observations. We focus especially on what role the magnetic environment of the source region as well as the size of the erupting structure has on deciding wether the CME experiences a deflection or not. Finally, we compare our simulation results to high-cadence quadrature STEREO observations of CME deflection in the low corona.

  17. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  18. Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic

    NASA Astrophysics Data System (ADS)

    Vázquez, A.; Hernández-Uresti, D. B.; Obregón, S.

    2016-11-01

    The photocatalytic activities of CdS coatings formed by electrophoretic deposition (EPD) were evaluated through the photodegradation of an antibiotic, tetracycline. First, CdS nanoparticles were synthesized under microwave irradiation of aqueous solutions containing the cadmium and sulfur precursors at stoichiometric amounts and by using trisodium citrate as stabilizer. Microwave irradiation was carried out in a conventional microwave oven at 2.45 GHz and 1650 W of nominal power, for 60 s. The CdS nanoparticles were characterized by UV-vis spectrophotometry, photoluminescence and X-ray diffraction. Electrophoretic deposition parameters were 300 mV, 600 mV and 900 mV of applied voltage between aluminum plates separated by 1 cm. The fractal dimensions of the surfaces were evaluated by atomic force microscopy and correlated to the morphological and topographic characteristics of the coatings. The photocatalytic activity of the CdS coatings was investigated by means the photodegradation of the tetracycline antibiotic under simulated sunlight irradiation. According to the results, the photoactivity of the coatings directly depends on the concentration of the precursors and the applied voltage during the deposition. The material obtained at 600 mV showed the best photocatalytic behavior, probably due to its physical properties, such as optimum load and suitable aggregate size.

  19. Photocurrent spectroscopy of CdS nanosheets

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Wade, A.; Jackson, H. E.; Smith, L. M.; Rice, J. Yarrison; Choi, Y.-J.; Park, J.-G.

    2011-03-01

    We study the photocurrent from photoexcited charge carriers in CdS nanosheet (NS) structures. Metal-semiconductor-metal nanodevices are made with both Schottky and Ohmic contacts using photolithography followed by Ti/Al (20nm/200nm) metal evaporation and lift-off. Ohmic contacts are formed by Ar ion bombardment before the metal deposition to create donor sulfur vacancies which increases the electron concentration. Photocurrent spectra using a white light source filtered by a monochrometer show excitonic resonances at low temperatures corresponding to each of the A, B, and C hole bands. The photocurrent increases linearly with power for above gap excitation, and nonlinearly (quadratic) with laser power for below gap excitation, consistent with two-photon absorption with a nonlinear coefficient of β = 2 cm/GW. A wavelength dependence of the photocurrent with sub-band gap excitation to find the resonances and hence band structure is in progress. We acknowledge the financial support of the National Science Foundation through grants DMR-0806700, 0806572 and ECCS-0701703, and the KIST institutional research program 2E21060R.

  20. The CDS Cross-Match Service

    NASA Astrophysics Data System (ADS)

    Boch, T.; Pineau, F.; Derriere, S.

    2012-09-01

    The CDS has released a cross-match service allowing astronomers to cross-identify sources between very large catalogues (up to 1 billion rows) or between a user-uploaded list of positions and a large catalogue. This service has been built on top of the methods described at ADASS 2010 in (Pineau et al. 2011), which are based on a dedicated binary table file format and the HEALPix pixelisation associated to specialized k-d trees. Popular cross-identifications, such as SDSS vs. 2MASS, are pre-computed in order to accelerate these queries. We will present the architecture of the service, whose core relies on an implementation of the UWS (Universal Worker Service) pattern, a Virtual Observatory standard for asynchronous, stateful services. Scalability is achieved thanks to a distribution of the different crossmatch jobs on a set of workers. Users interact with the service through a Web interface. Results of the cross-match are stored on the user personal storage space, backed up by iRODS. In this paper, we present the architecture of the service, and the current user interface. We will also show the performances we manage to achieve and discuss our hardware choice, in term of RAM and hard disk drive.

  1. Threaded split ring connector separates structural sections

    NASA Technical Reports Server (NTRS)

    Mayo, J. W.

    1965-01-01

    Threaded split ring connector quickly and cleanly separates two structural members by remote control. The connector is retained in an expanded position by spring plates that are deflected and held by an explosive bolt. Ignition of the bolt effects the separation. This conceptual approach lends itself to various configurations and sizes of structures.

  2. Guide Vanes for Deflecting Fluid Currents with Small Loss of Energy

    NASA Technical Reports Server (NTRS)

    Krober, G

    1933-01-01

    The transverse momentum of the deflected air stream to be absorbed is divided between the intermediate and outside walls, so that the pressure increase on each wall is much smaller and the danger of separation is diminished. The formation of secondary vortices is also diminished. By taking as the basis profiles with high c(sub a), such as have proved practically favorable, it is not possible to find a satisfactory form of grid simply on the assumption that the flow is potential. The requirements called for the most uniform possible velocity distribution behind the bend and the smallest possible losses.

  3. Beam deflection measurement of bound-electronic and rotational nonlinear refraction in molecular gases.

    PubMed

    Reichert, Matthew; Zhao, Peng; Reed, Jennifer M; Ensley, Trenton R; Hagan, David J; Van Stryland, Eric W

    2015-08-24

    A polarization-resolved beam deflection technique is used to separate the bound-electronic and molecular rotational components of nonlinear refractive transients of molecular gases. Coherent rotational revivals from N(2), O(2), and two isotopologues of carbon disulfide (CS(2)), are identified in gaseous mixtures. Dephasing rates, rotational and centrifugal distortion constants of each species are measured. Polarization at the magic angle allows unambiguous measurement of the bound-electronic nonlinear refractive index of air and second hyperpolarizability of CS(2). Agreement between gas and liquid phase second hyperpolarizability measurements is found using the Lorentz-Lorenz local field correction.

  4. The load/deflection characteristics of thermally activated orthodontic archwires.

    PubMed

    Parvizi, Farnaz; Rock, W P

    2003-08-01

    The objective of the study was to investigate the load/deflection characteristics of three commercially available thermally active nickel-titanium orthodontic archwires using a standard nickel-titanium archwire as a control. The thermally active wires were Regency Thermal, Orthoform, and Eurotherm and the control was Memory. Round 0.4 mm and rectangular 0.4 x 0.56 mm wires were subjected to 2 and 4 mm of deflection in a water bath at temperatures of 20, 30, and 40 degrees C and forces were measured in three-point bend and phantom head situations. Analysis of variance revealed that, irrespective of the test set up and wire type, wire size had a significant effect (P < 0.001) on the forces produced. An increase in size from 0.4 mm round to 0.4 x 0.56 mm rectangular wire approximately doubled the force values for a given deflection. The effect of wire deflection on the force values varied according to the test system, forces being much higher in the phantom head tests than in the beam tests. In the beam tests, an increase in wire deflection from 2 to 4 mm had no significant effect on the forces exerted, but in the phantom head tests the forces produced by each wire at 4 mm deflection were four to five times greater than those at 2 mm deflection. Each of the thermally active wires produced less force that the non-thermally active wire. However, there was a large variation between the three types of thermally active wire. In the beam tests each 10 degrees C rise in temperature from 20 to 40 degrees C had a highly significant effect on the force produced by each thermoelastic wire (P < 0.001). In the phantom head tests there were significant force increases between 20 and 30 degrees C (P < 0.001), but between 30 and 40 degrees C the forces did not change significantly.

  5. Deflection-Compensating Beam for use inside a Cylinder

    NASA Technical Reports Server (NTRS)

    Goodman, Dwight; Myers, Neill; Herren, Kenneth

    2008-01-01

    A design concept for a beam for a specific application permits variations and options for satisfying competing requirements to minimize certain deflections under load and to minimize the weight of the beam. In the specific application, the beam is required to serve as a motion-controlled structure for supporting a mirror for optical testing in the lower third portion of a horizontal, cylindrical vacuum chamber. The cylindrical shape of the chamber is fortuitous in that it can be (and is) utilized as an essential element of the deflection-minimizing design concept. The beam is, more precisely, a table-like structure comprising a nominally flat, horizontal portion with vertical legs at its ends. The weights of the beam and whatever components it supports are reacted by the contact forces between the lower ends of the legs and the inner cylindrical chamber wall. Whereas the bending moments arising from the weights contribute to a beam deflection that is concave with its lowest point at midlength, the bending moments generated by the contact forces acting on the legs contribute to a beam deflection that is convex with its highest point at midlength. In addition, the bending of the legs in response to the weights causes the lower ends of the legs to slide downward on the cylindrical wall. By taking the standard beam-deflection equations, combining them with the geometric relationships among the legs and the horizontal portion of the beam, and treating the sliding as a component of deflection, it is possible to write an equation for the net vertical deflection as a function of the load and of position along the beam. A summary of major conclusions drawn from the equation characterization is included.

  6. Light deflection and time delay in the solar gravitational field

    SciTech Connect

    Richter, G.W.

    1983-01-01

    The second nonvanishing order of contribution to light deflection and time delay in the solar gravitational field is studied for a realistic solar model and for a wide range of metric theories of gravity. It is shown that the second-order effects arise at order (GM/c/sup 2/R)/sup 2/ identical to epsilon/sup 4/. To calculate these effects, every component of the solar metric must be known to order epsilon/sup 4/. The parametrized post-Newtonian (PPN) metric provides most of those components. However, some extension of the PPN metric is required. This extension leads to the parametrized post-linear (PPL) metric, which is used in all calculations. To study light deflection to order epsilon/sup 4/ requires that the orbits of scattered photons be known to that order. These orbits are solved for, first in the equatorial plane and then in general, and are used to determine the deflection as measured by an observer at rest with respect to the sun. In the equatorial plane there is only a radial component to this deflection. In general, there is another component orthogonal to the radial plane, but knowledge of this component is not necessary to determine the total deflection to order epsilon/sup 4/. The total second-order deflection can be as large as 300..mu.. arcsec (for deflection by Jupiter). Measurements of some second-order terms are within the astrometric capabilities of experiments proposed for the 1990's. The time delay in the round-trip travel time of a radar beam reflected from a planet is due to the variable coordinate speed of the light signal and to the bending of the beam path. The delay is calculated to order epsilon/sup 4/. It is shown that the beam-bending gives a second-order contribution as large as the present-day uncertainties in time delay experiments with the Viking spacecraft.

  7. The Maximal Deflection on an Ellipse

    ERIC Educational Resources Information Center

    Kalman, Dan

    2006-01-01

    At each point of an ellipse one can attach a normal vector and a radial vector, the latter defined as the vector from the center of the ellipse. At the ends of the major and minor axes, the two vectors coincide, but at all other points they are separated by an angle [delta]. What is the maximum value that [delta] can attain, and where does it…

  8. Principle of Equivalence and the Deflection of Light by the Sun

    ERIC Educational Resources Information Center

    Comer, Robert P.; Lathrop, John D.

    1978-01-01

    Explains the discrepancy between the principle-of-equivalence and the general theory of relativity in calculating the deflection of light by the sun. Shows that the total deflection is the sum of the deflection given by the principle-of-equivalence, and the deflection of infinitely fast particles. ( GA)

  9. Quantitative Analysis of CME Deflections in the Corona

    NASA Astrophysics Data System (ADS)

    Gui, Bin; Shen, Chenglong; Wang, Yuming; Ye, Pinzhong; Liu, Jiajia; Wang, Shui; Zhao, Xuepu

    2011-07-01

    In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et al. ( Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.

  10. Analysis of deflection enhancement using epsilon assembly microcantilevers based sensors.

    PubMed

    Khaled, Abdul-Rahim A; Vafai, Kambiz

    2011-01-01

    The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin beams is used to obtain the deflections. The obtained defections are validated against an accurate numerical solution utilizing finite element method with maximum deviation less than 10 percent. It is found that the ɛ-assembly produces larger deflections than the rectangular microcantilever under the same base surface stress and same extension length. In addition, the ɛ-microcantilever assembly is found to produce larger deflection than the modified triangular microcantilever. This deflection enhancement is found to increase as the ɛ-assembly's free length decreases for various types of force loading conditions. Consequently, the ɛ-microcantilever is shown to be superior in microsensing applications as it provides favorable high detection capability with a reduced susceptibility to external noises. Finally, this work paves a way for experimentally testing the ɛ-assembly to show whether detective potential of microsensors can be increased.

  11. The deflection effect of starlight transmission in hypersonic conditions

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Yang, Bo

    2014-11-01

    When starlight navigation method is applied in the hypersonic vehicle, the complex turbulence generated around the window of star sensor causes starlight deflection, thus lead to the centroid offset of navigation star in the star-map imaging. Starting from characteristics of the flow field, the deflection effects of starlight transmission are researched to solve. At first, based on Reynolds average, the model of flow around the window was established to obtain the density distribution that can be divided into mean-time and fluctuation flow field to analyze the whole field. On this basis, the starlight is traced by using the Runge-Kutta method, while taking the principle of refraction, the evaluation index for starlight deflection is derived to characterize the deflection effect of the field. Finally, verify the applicability of the evaluation index through comparative analysis and also study the impact on deflection effect with the follow situations: different installation locations of star sensor, different angles of incident ray, different Mach numbers and wavelengths of starlight. The study provides the predictive information for centroid offset of navigation star in star-map pre processing to improve the efficiency of star-map matching, and also provides the best choice for the work of the star sensor.

  12. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.

    1962-01-01

    A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

  13. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.; Kiesling, J.D.

    1963-06-11

    A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

  14. Light-stimulated carrier dynamics of CuInS2/CdS heterotetrapod nanocrystals

    NASA Astrophysics Data System (ADS)

    Sakamoto, Masanori; Inoue, Koki; Okano, Makoto; Saruyama, Masaki; Kim, Sungwon; So, Yeong-Gi; Kimoto, Koji; Kanemitsu, Yoshihiko; Teranishi, Toshiharu

    2016-05-01

    We synthesized a heterotetrapod composed of a chalcopyrite(ch)-CuInS2 core and wurtzite(w)-CdS arms and elucidated its optical properties and light-stimulated carrier dynamics using fs-laser flash photolysis. The CuInS2/CdS heterotetrapod possessed quasi-type II band alignment, which caused much longer-lived charge separation than that in the isolated CuInS2 nanocrystal.We synthesized a heterotetrapod composed of a chalcopyrite(ch)-CuInS2 core and wurtzite(w)-CdS arms and elucidated its optical properties and light-stimulated carrier dynamics using fs-laser flash photolysis. The CuInS2/CdS heterotetrapod possessed quasi-type II band alignment, which caused much longer-lived charge separation than that in the isolated CuInS2 nanocrystal. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01097k

  15. A wideband deflected reflection based on multiple resonances

    NASA Astrophysics Data System (ADS)

    Chen, Hongya; Ma, Hua; Wang, Jiafu; Qu, Shaobo; Li, Yongfeng; Wang, Jun; Yan, Mingbao; Pang, Yongqiang

    2015-07-01

    We propose to realize wideband deflected reflection in microwave regime through multiple resonances. A wideband deflected reflection of a phase gradient metasurface is designed using a double-head arrow structure, which has demonstrated an ultra-wideband cross-polarized reflection caused by multiple electric and magnetic resonances. The wideband effect benefits from the wideband cross-polarized reflection and flexible phase modulation of the double-head arrow structure. Simulated and experimental results agree well with theoretical predictions. Furthermore, relative bandwidths of deflected reflection reach to 71 % for both x- and y-polarized waves under normal incidence. Our method of expansion bandwidth may pave the way in many practical applications, such as RCS reduction, stealth surfaces.

  16. Development of pneumatic thrust-deflecting powered-lift systems

    NASA Technical Reports Server (NTRS)

    Englar, R. J.; Nichols, J. H., Jr.; Harris, M. J.; Eppel, J. C.; Shovlin, M. D.

    1986-01-01

    Improvements introduced into the Circulation Control Wing/Upper Surface Blowing (CCW/USB) STOL concept (Harris et al., 1982) are described along with results of the full-scale static ground tests and model-scale wind tunnel investigations. Tests performed on the full-scale pneumatic thrust-deflecting system installed on the NASA QSRA aircraft have demonstrated that, relative to the original baseline configuration, a doubling of incremental thrust deflection due to blowing resulted from improvements that increased the blowing span and momentum, as well as from variations in blowing slot height and geometry of the trailing edge. A CCW/Over the Wing model has been built and tested, which was shown to be equivalent to the CCW/USB system in terms of pneumatic thrust deflection and lift generation, while resolving the problem of cruise thrust loss due to exhaust scrubbing on the wing upper surface.

  17. Ultrafast optical beam deflection in a pump probe configuration

    NASA Astrophysics Data System (ADS)

    Liang, Lingliang; Tian, Jinshou; Wang, Tao; Wu, Shengli; Li, Fuli; Wang, Junfeng; Gao, Guilong

    2016-09-01

    Propagation of a signal beam in an AlGaAs/GaAs waveguide multiple-prism light deflector is theoretically investigated by solving the scalar Helmholtz equation to obtain the dependences of the temporal and spatial resolvable characteristics of the ultrafast deflector on the material dispersion of GaAs including group velocity dispersion and angular dispersion, interface reflection, and interface scattering of multiple-prism deflector. Furthermore, we experimentally confirm that, in this ultrafast beam deflection device, the deflecting angle of the signal light beam is linear with the pump fluence and the temporal resolution of the ultrafast deflection is 10 ps. Our results show that the improvement of the temporal and spatial resolvable performances is possible by properly choosing the structural parameters and enhancing the quality of the device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274377 and 61176006) and the State Major Research Equipment Project, China (Grant No. ZDY2011-2).

  18. Experimental testing and computational modeling of flat oval duct deflection

    SciTech Connect

    Smolinski, P.J.; Palmer, G.S.

    1998-10-01

    The deflection characteristics of spiral seam flat oval HVAC duct are examined in this study, and the effects of duct size, wall thickness, and the size spacing, and type of external reinforcement on the duct deformation are investigated. A duct test setup and a deflection measurement frame were developed for measuring the deformation of flat oval duct, and experimental testing was performed on a variety of duct configurations to measure the duct deflections at various positive and negative internal pressures. Finite element computer models of the ducts were developed to predict the deflections. The correlation between the predictions of the computer model and the data from the experimental testing is highly variable with differences ranging from a few percent to several hundred percent. In general, it was found that there was closer agreement between the finite element results and the experimental measurements for smaller duct and at locations of type 2 external reinforcements. This may be due to the fact that the finite element model assumed the idealized flat oval shape and this shape was better matched by smaller ducts and near the external reinforcement. It was also found that in some cases, unreinforced duct could achieve higher pressures than type 1 reinforced duct before exceeding the deflection limits. Sources of error include the uneven surface of the mastic in the measurement of the duct joint deflection and the variance of the actual duct shape from the idealized shape used in the finite element model. This study did not examine the variability of the experimental results due to differences in duct shape or manufacture.

  19. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  20. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, Bruce E.

    1997-01-01

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

  1. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, B.E.

    1997-12-09

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.

  2. The 1919 measurement of the deflection of light

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    2015-06-01

    The measurement of the deflection of starlight during a total solar eclipse on 29 May 1919 was the first verification of general relativity by an external team of scientists, brought Einstein and his theory to the attention of the general public, and left a legacy of experimental testing that continues today. The discovery of gravitational lenses turned Einstein's deflection into an important tool for astronomy and cosmology. This article reviews the history of the 1919 measurement and other eclipse measurements, describes modern measurements of the effect using radio astronomy, and of its cousin, the Shapiro time delay, and discusses the discovery and impact of gravitational lenses.

  3. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  4. Optimum vibrating beams with stress and deflection constraints

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1976-01-01

    The fundamental frequency of vibration of an Euler-Bernoulli or a Timoshenko beam of a specified constant volume is maximized subject to the constraint that under a prescribed loading the maximum stress or maximum deflection at any point along the beam axis will not exceed a specified value. In contrast with the inequality constraint which controls the minimum cross-section, the present inequality constraints lead to more meaningful designs. The inequality constraint on stresses is as easily implemented as the minimum cross-section constraint but the inequality constraint on deflection uses a treatment which is an extension of the matrix partitioning technique of prescribing displacements in finite element analysis.

  5. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases.

    PubMed

    Shi, Xueyan; Liu, Feipeng; Mao, Jianyou

    2016-03-17

    Chiral 2-arylcarboxylic acid esters are important intermediates in preparation of enantioenriched 2-arylpropionic acids type Non-steroidal anti-inflammatory drugs (NSAIDs). Enantiomer separation of 2-arylcarboxylic acid esters is crucial for evaluation of the asymmetric synthesis efficiency and the enantiomer excess of chiral 2-arylcarboxylic acid derivatives. The capillary gas chromatography (CGC) enantiomer separation of 17 pairs of 2-arylcarboxylic acid esters enantiomers was conducted by using seven different β-cyclodextrin derivatives (CDs) as chiral stationary phases. It was found that for the 7 pairs of 2-phenylpropionates enantiomers, CDs with both alkyl and acyl substituents especially 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin exhibited better enantiomer separation abilities than the other CDs examined. For the 7 pairs of 2-(4-substituted phenyl)propionates enantiomers, 2,3,6-tri-O-methyl-β-cyclodextrin possessed better enantiomer separation abilities than the other CDs. Among the 3 pairs of 2-phenylbutyrates enantiomers examined, only methyl 2-phenylbutyrate enantiomers could be separated by three CDs among the 7 CDs tested, while enantiomers of ethyl 2-phenylbutyrate and isopropyl 2-phenylbutyrate couldn't be separated by any of the 7 CDs tested. Besides the structures of CDs, the structures of 2-arylcarboxylic acid esters including different ester moieties, substituents of phenyl, and different carboxylic acids moieties in 2-arylcarboxylic acid esters also affected the enantiomer separation results greatly. The CGC enantiomer separation results of 2-arylcarboxylic acid esters on different CDs are useful for solving the enantiomer separation problem of 2-arylcarboxylic acid esters. PMID:26920785

  6. Optical sensor based on a single CdS nanobelt.

    PubMed

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-04-23

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  7. Photoelectrochemical properties of chemosynthesized CdS thin film

    NASA Astrophysics Data System (ADS)

    Pawar, S. B.; Pawar, S. A.; Bhosale, P. N.; Patil, P. S.

    2012-06-01

    Thin film of cadmium sulphide (CdS) consisting cabbage like morphology was chemically synthesized at room temperature from an aqueous alkaline bath onto soda lime glass and fluorine-doped tin oxide (FTO)-coated glass substrates. The synthesized cabbages of CdS were characterized using X-ray diffraction (XRD), UV-vis spectroscopy and scanning electron microscopy (SEM). The XRD pattern revealed the formation of CdS particles with a cubic crystal structure. SEM micrographs show that the cabbage like morphology is composed of nanopetals. Further, the photoelectochemical (PEC) performance was tested in Na2S-NaOH-S electrolyte which has maximum short circuit current of (Isc) 359μA/cm2.

  8. Orthogonally interdigitated shielded serpentine travelling wave cathod ray tube deflection structure

    SciTech Connect

    Hagen, E.C.; Hudson, C.L.

    1993-10-27

    This invention comprises a new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes and is deflected by the deflection field to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks and forms an internal serpentine trough within these ground blocks for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame and which are electrically connected to the serpentine set.

  9. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  10. Hot flow anomaly formation by magnetic deflection. [regions of hot plasma in earth magnetosphere

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.; Winske, D.

    1990-01-01

    Hot flow anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the earth's quasi-parallel bow shock. This paper presents one-dimensional hybrid computer simulations illustrating a formation mechanism for HFAs in which the single hot ion population results from a spatial separation of two counterstreaming ion beams. The higher-density cooler regions are dominated by the background (solar wind) ions, and the lower-density hotter internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large-amplitude magnetic fields which are generated by ion/ion streaming instabilities.

  11. 75 FR 12981 - Eligibility for Commercial Flats Failing Deflection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... May 2009 was published in the Federal Register (74 FR 15380-15384) on April 6, 2009. The final rule included new deflection standards, previously applicable only to automation flats, for all commercial flat... should be eligible for full-service IMb pricing. If automation prices are denied, pieces that...

  12. Molecular beam magnetic deflection behavior of sodium trimers

    SciTech Connect

    George, A.R.

    1983-01-01

    The observation and characterization of the Stern-Gerlach magnetic deflection behavior of sodium trimers in a supersonic molecular beam is reported. As part of a program to apply molecular beam technique to the study of metal clusters, a molecular beam apparatus designed for magnetic deflection and resonance experiments on selected alkali metal cluster species has been developed and is described. Clusters are produced in a supersonic expansion of a pure metal vapor, and are detected mass selectively by photoionization, quadrupole mass analysis, and an ion counting detector. The deflection profiles reveal peaks corresponding to the one Bohr magneton of magnetic moment of the unpaired electron, but in addition show evidence of a distribution of effective magnetic moments extending the full range between the positive and negative one Bohr magneton peaks. In addition, experiments utilizing multiple magnets and trajectory selecting collimators show evidence for magnetic moment and molecular state changes during traversal through the apparatus. Information from time of flight velocity analysis is used in conjunction with the deflection data and with computer simulations to rule out experimental artifacts and to establish that the observed phenomena can be the result of magnetic moment changes and molecular state changes caused by adiabatic and non-adiabatic traversals of avoided level crossings in the Zeeman energy diagram of these molecules. The phenomena have implications for the application of molecular beam Electron Spin Resonance technique to polyatomic molecules.

  13. On guided versus deflected fields in controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  14. Damping of unwanted modes in SRF deflecting/crabbing cavities

    SciTech Connect

    Burt, Graeme; Wang, Haipeng

    2014-01-01

    As deflecting and crab cavities do not use the fundamental acceleration mode for their operation, the spectrum of unwanted modes is significantly different from that of accelerating cavities. The fundamental acceleration mode is now unwanted and can cause energy spread in the beam; in addition this mode frequency is often close to or lower than that of the deflecting mode, making it difficult to damp. This is made more complex in some of the compact crab cavities as there small beampipes often attenuate the fields very sharply. In addition in some crab cavities there can be an orthogonal transverse mode similar to the deflecting mode, known as the same order mode. The degeneracy of these modes must be split by polarising the cavity and if the polarisation is not large enough, dampers should be placed at either an electric or magnetic field null of the crabbing mode to effectively damp the unwanted polarisation. Various concepts for dealing with unwanted modes in various SRF deflecting cavities will be reviewed.

  15. Deflection of Light by Gravity: A Physical Approach.

    ERIC Educational Resources Information Center

    Diamond, Joshua B.

    1982-01-01

    Einstein's equivalence principle relates effects seen by an accelerating observer to those experienced by an observer in a gravitational field, providing an explanation of bending of a light beam by gravity. Because the calculations lead to results one-half the value found experimentally, obtaining the correct light deflection is discussed.…

  16. Charge control switch responsive to cell casing deflection

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E. (Inventor)

    1981-01-01

    A switch structure, adapted for sensing the state-of-charge of a rechargeable cell, includes a contact element which detects cell casing deflection that occurs as a result of an increase in gaseous pressure within the cell when the cell is returned to its fully charged state during a recharging operation.

  17. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  18. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  19. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  20. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Deflection temperature test. 7.47 Section 7.47... temperature test. (a) Test procedures. (1) Prepare two samples for testing that measure 5 inches by 1/2 inch... which are 4 inches apart and immersed in a heat transfer medium at a test temperature range of 65...

  1. Reflection-Based Deflection Routing in OPS Networks

    NASA Astrophysics Data System (ADS)

    Morita, Masayuki; Tode, Hideki; Murakami, Koso

    An important issue in the realization of optical packetswitched (OPS) networks is the resolution of packet contention caused by the lack of RAM-like optical buffering. Although an optical buffer using fiber delay lines (FDLs) has been proposed, its capacity is extremely limited. There have been several studies of this problem. One approach is deflection routing, which is widely used in electronic packet-switched networks or optical burst-switched (OBS) networks. However, in OPS networks, packet lengths are short, so that the speed requirement for route lookup is very stringent. If the network topology is geometric, such as a Manhattan Street Network (MSN), hop-by-hop routing can be implemented by simple optical logic devices without an electronic routing table. However, if the topology is not geometric, it is hard to implement deflection routing electronically or optically. Another approach is reflection routing, which is easy to implement but has a higher probability of packet loss than does deflection routing. In this paper, we propose a packet contention resolution scheme, reflection-based deflection routing, which is based on reflection routing and enables switching the reflected packet to an alternate path if its primary path remains congested. Our method alleviates the time limitation on setting an alternate path by making use of the packet reflection latency and also reduces the probability of packet loss. We evaluate the performance of the proposed method by simulation experiments and show its effectiveness.

  2. Electrically-induced stresses and deflection in multiple plates

    SciTech Connect

    Hu, Jih-Perng; Tichler, P.R.

    1992-05-01

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.

  3. Electrically-induced stresses and deflection in multiple plates

    SciTech Connect

    Hu, Jih-Perng; Tichler, P.R.

    1992-01-01

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.

  4. Black Students' Perceptions of Prejudice and Grade Deflection.

    ERIC Educational Resources Information Center

    Thompson, Maxine S.; Michel, Jerry B.

    The study presented here was designed to further the understanding of black student performance in biracial, academic settings. The purpose of the research was to assess the association between black students' perceptions of prejudice among white instructors and grade deflection (discrepancy between grade expected and grade received) in the…

  5. The Learning Management System Evolution. CDS Spotlight Report. Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This Spotlight focuses on data from the 2013 Core Data Service (CDS) to better understand how higher education institutions approach learning management systems (LMSs). Information provided for this Spotlight was derived from Module 8 of the Core Data Service, which contains several questions regarding information systems and applications.…

  6. Options for Putting CDS/ISIS Databases on the Internet

    ERIC Educational Resources Information Center

    Buxton, Andrew

    2006-01-01

    Purpose: To review the variety of software solutions available for putting CDS/ISIS databases on the internet. To help anyone considering which route to take. Design/methodology/approach: Briefly describes the characteristics, history, origin and availability of each package. Identifies the type of skills required to implement the package and the…

  7. Eccentric superconducting RF cavity separator structure

    DOEpatents

    Aggus, John R.; Giordano, Salvatore T.; Halama, Henry J.

    1976-01-01

    Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.

  8. Ion Beam Deflection (AKA Push-Me/Pull-You)

    NASA Technical Reports Server (NTRS)

    Brophy, John

    2013-01-01

    The Ion Beam Deflection provides the following potential advantages over other asteroid deflection systems. Like the gravity tractor, it doesn't require despinning of the asteroid. Unlike the gravity tractor, it provides a significantly higher coupling force that is independent of the asteroid size. The concept could be tested as part of the baseline Asteroid Redirect Robotic Mission. The thrust and total impulse are entirely within the design of the SEP vehicle. The total impulse is potentially competitive with kinetic impactors and eliminates the need for a second rendezvous spacecraft.?Gridded ion thrusters provide beam divergence angles of a few degrees enabling long stand-off distances from the asteroid. Mitigating control issues. Minimizing back-sputter contamination risks

  9. Method and apparatus for deflection measurements using eddy current effects

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J. (Inventor)

    1993-01-01

    A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.

  10. Precise atomic mass measurements by deflection mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barber, R. C.; Sharma, K. S.

    2003-05-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  11. Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking

    SciTech Connect

    Kim, Ian-Woo

    2008-11-23

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. Competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by the stabilization of the gauge singlet field responsible for the masses of the messenger fields. We analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra.

  12. MOSFET-Embedded microcantilevers for measuring deflection in biomolecular sensors.

    PubMed

    Shekhawat, Gajendra; Tark, Soo-Hyun; Dravid, Vinayak P

    2006-03-17

    A promising approach for detecting biomolecules follows their binding to immobilized probe molecules on microfabricated cantilevers; binding causes surface stresses that bend the cantilever. We measured this deflection, which is on the order of tens of nanometers, by embedding a metal-oxide semiconductor field-effect transistor (MOSFET) into the base of the cantilever and recording decreases in drain current with deflections as small as 5 nanometers. The gate region of the MOSFET responds to surface stresses and thus is embedded in silicon nitride so as to avoid direct contact with the sample solution. This approach, which offers low noise, high sensitivity, and direct readout, was used to detect specific binding events with biotin and antibodies. PMID:16456038

  13. Preparation of teaser bulls by dorsal scrotal penile deflection.

    PubMed

    Jillella, D; Baker, A A; Eaton, R J

    1978-07-01

    A simple, quick and reliable technique of preparing teaser bulls has been developed. Four Bos indicus aged between 1 year 6 months and 2 years were subjected to this method by deflecting their penes backwards about 2 to 3 cm posterior and dorsal to the attachment of the scrotum. No serious postoperative complications were recorded. The sexual behaviour and libido of the bulls did not change after subjecting them to this technique. PMID:708335

  14. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.

  15. Moire deflectometry - A ray deflection approach to optical testing

    NASA Astrophysics Data System (ADS)

    Kafri, O.; Glatt, I.

    1985-12-01

    A novel technique, moire deflectometry, for ray deflection mapping is presented. Numerous experimental techniques for diagnostics of phase objects and specular surfaces, for shearing analysis, for microscopy, and for MTF determination, based on moire deflectometry, are described. The wide range of applications encompasses laser beam diagnostics, characterization of optical components, flow visualization in wind tunnels, temperatrue mapping of flames, turbulence study, and real-time tracking of transient phenomena like thermal lensing.

  16. Galvanometer deflection: a precision high-speed system.

    PubMed

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity. PMID:20165203

  17. Ultrafast optical beam deflection in a pump probe configuration

    NASA Astrophysics Data System (ADS)

    Liang, Lingliang; Tian, Jinshou; Wang, Tao; Wu, Shengli; Li, Fuli; Wang, Junfeng; Gao, Guilong

    2016-09-01

    Propagation of a signal beam in an AlGaAs/GaAs waveguide multiple-prism light deflector is theoretically investigated by solving the scalar Helmholtz equation to obtain the dependences of the temporal and spatial resolvable characteristics of the ultrafast deflector on the material dispersion of GaAs including group velocity dispersion and angular dispersion, interface reflection, and interface scattering of multiple-prism deflector. Furthermore, we experimentally confirm that, in this ultrafast beam deflection device, the deflecting angle of the signal light beam is linear with the pump fluence and the temporal resolution of the ultrafast deflection is 10 ps. Our results show that the improvement of the temporal and spatial resolvable performances is possible by properly choosing the structural parameters and enhancing the quality of the device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274377 and 61176006) and the State Major Research Equipment Project, China (Grant No. ZDY2011-2).

  18. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Alexander, Reginald; Bonometti, Joseph; Chapman, Jack; Fincher, Sharon; Hopkins, Randall; Kalkstein, Matthew; Philips, Al; Polsgrove, Tara; Statham, Geoffrey

    2002-01-01

    In FY 2002 a team of engineers and scientists at MSFC conducted a preliminary investigation of the options for deflecting a Near Earth Object (NEO) fiom a collision course with the earth. A general discussion of the current threat facing the earth from NEO s is outlined. A suite of tools were developed to model inbound and outbound trajectories, propulsive options, and assessment of threat. Propulsive options considered included; staged chemical, nuclear ablation and deflagration, mass driver and solar sail concepts. Trajectory tools plotted the outbound course to intercept the NE0 and the deflection requirements to cause the inbound NE0 to miss the earth. Threat assessment tools estimated the number of lives saved over a given time frame by deploying a system capable of deflecting an NE0 of a certain size and velocity. All of these tools were integrated into a routine to find the most effective vehicle for a given mission mass and mission time. Discussion of desired future efforts is given. This work was funded under the Revolutionary Aerospace Systems Concepts activity from NASA HQ.

  19. Application of photothermal deflection spectroscopy to electrochemical interfaces

    SciTech Connect

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A ``secondary gradient technique`` is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  20. Application of photothermal deflection spectroscopy to electrochemical interfaces

    SciTech Connect

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A secondary gradient technique'' is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  1. Extreme value statistics of cosmic microwave background lensing deflection angles

    NASA Astrophysics Data System (ADS)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2015-10-01

    The smaller the angular scales on which the anisotropies of the cosmic microwave background (CMB) are probed the more important their distortion due to gravitational lensing becomes. Here we investigate the maxima and minima of the CMB lensing deflection field using general extreme value statistics. Since general extreme value statistics applies to uncorrelated data in first place, we consider appropriately low-pass-filtered deflection maps. Besides the suppression of correlations filtering is required for another reason: the lensing field itself is not directly observable but needs to be (statistically) reconstructed from the lensed CMB by means of a quadratic estimator. This reconstruction, though, is noise dominated and therefore requires smoothing too. In idealized Gaussian realizations as well as in realistically reconstructed data, we find that both maxima and minima of the deflection angle components follow consistently a general extreme value distribution of Weibull type. However, its shape, location and scale parameters vary significantly between different realizations. The statistics' potential power to constrain cosmological models appears, therefore, rather limited.

  2. Bio-mimetic optical sensor for structural deflection measurement

    NASA Astrophysics Data System (ADS)

    Frost, Susan A.; Wright, Cameron H. G.; Streeter, Robert W.; Khan, Md. A.; Barrett, Steven F.

    2014-03-01

    Reducing the environmental impact of aviation is a primary goal of NASA aeronautics research. One approach to achieve this goal is to build lighter weight aircraft, which presents complex challenges due to a corresponding increase in structural flexibility. Wing flexibility can adversely affect aircraft performance from the perspective of aerodynamic efficiency and safety. Knowledge of the wing position during flight can aid active control methods designed to mitigate problems due to increased wing flexibility. Current approaches to measuring wing deflection, including strain measurement devices, accelerometers, or GPS solutions, and new technologies such as fiber optic strain sensors, have limitations for their practical application to flexible aircraft control. Hence, it was proposed to use a bio-mimetic optical sensor based on the fly-eye to track wing deflection in real-time. The fly-eye sensor has several advantages over conventional sensors used for this application, including light weight, low power requirements, fast computation, and a small form factor. This paper reports on the fly-eye sensor development and its application to real-time wing deflection measurement.

  3. Hole Surface Trapping Dynamics Directly Monitored by Electron Spin Manipulation in CdS Nanocrystals.

    PubMed

    Li, Xiao; Feng, Donghai; Tong, Haifang; Jia, Tianqing; Deng, Li; Sun, Zhenrong; Xu, Zhizhan

    2014-12-18

    A new detection technique, pump-spin orientation-probe ultrafast spectroscopy, is developed to study the hole trapping dynamics in colloidal CdS nanocrystals. The hole surface trapping process spatially separates the electron-hole pairs excited by the pump pulse, leaves the core negatively charged, and thus enhances the electron spin signal generated by the orientation pulse. The spin enhancement transients as a function of the pump-orientation delay reveal a fast and a slow hole trapping process with respective time constants of sub-10 ps and sub-100 ps, orders of magnitude faster than that of carrier recombination. The power dependence of hole trapping dynamics elucidates the saturation process and relative number of traps, and suggests that there are three subpopulations of nanoparticles related to hole surface trapping, one with the fast trapping pathway only, another with the slow trapping pathway only, and the third with both pathways together. PMID:26273979

  4. The link between morphology and structure of brightest cluster galaxies: automatic identification of cDs

    NASA Astrophysics Data System (ADS)

    Zhao, Dongyao; Aragón-Salamanca, Alfonso; Conselice, Christopher J.

    2015-04-01

    We study a large sample of 625 low-redshift brightest cluster galaxies (BCGs) and link their morphologies to their structural properties. We derive visual morphologies and find that ˜57 per cent of the BCGs are cD galaxies, ˜13 per cent are ellipticals, and ˜21 per cent belong to the intermediate classes mostly between E and cD. There is a continuous distribution in the properties of the BCG's envelopes, ranging from undetected (E class) to clearly detected (cD class), with intermediate classes (E/cD and cD/E) showing the increasing degrees of the envelope presence. A minority (˜7 per cent) of BCGs have disc morphologies, with spirals and S0s in similar proportions, and the rest (˜2 per cent) are mergers. After carefully fitting the galaxies light distributions by using one-component (Sérsic) and two-component (Sérsic+Exponential) models, we find a clear link between the BCGs morphologies and their structures and conclude that a combination of the best-fitting parameters derived from the fits can be used to separate cD galaxies from non-cD BCGs. In particular, cDs and non-cDs show very different distributions in the Re-RFF plane, where Re is the effective radius and RFF (the residual flux fraction) measures the proportion of the galaxy flux present in the residual images after subtracting the models. In general, cDs have larger Re and RFF values than ellipticals. Therefore we find, in a statistically robust way, a boundary separating cD and non-cD BCGs in this parameter space. BCGs with cD morphology can be selected with reasonably high completeness (˜75 per cent) and low contamination (˜20 per cent). This automatic and objective technique can be applied to any current or future BCG sample with good-quality images.

  5. Middle infrared spectral studies of geologic materials in their natural state using photothermal beam deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Eastes, J. W.; Low, M. J. D.

    1984-04-01

    The use of a novel laboratory spectral technique is described for the recording of middle infrared (MIR) absorption spectra of natural surfaces with no sample preparation. Such a technique allows evaluation of spectral influences of surficial films such as weathering products, lichen cover or desert varnish on the spectra of the substrate geologic materials. In remote sensing applications the technique should provide spectral information more nearly representative of field conditions and may improve interpretation of thermal imagery. The technique, called photothermal beam deflection spectroscopy (PBDS) was originally developed for studies of surface chemistry in situations where it is impractical or impossible to separate surface layers from their substrate. In the present studies the spectral characteristics of natural rock and mineral surfaces have been examined.

  6. Compact superconducting rf-dipole cavity designs for deflecting and crabbing applications

    SciTech Connect

    De Silva, Subashini; Delayen, Jean R.; Castilla, Alejandro

    2013-06-01

    Over the years the superconducting parallel-bar design has evolved into an rf-dipole cavity with improved properties. The new rf-dipole design is considered for a number of deflecting and crabbing applications. Some of those applications are the 499 MHz rf separator system for the Jefferson Lab 12 GeV upgrade, the 400 MHz crabbing cavity system for the proposed LHC high luminosity upgrade, and the 750 MHz crabbing cavity for the medium energy electron-ion collider in Jefferson Lab. In this paper we present the optimized rf design in terms of rf performance including rf properties, higher order modes (HOM) properties, multipacting and multipole expansion for the above mentioned applications.

  7. Effect of canard vertical location, size, and deflection on canard-wing interference at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Ray, E. J.; Washburn, K. E.

    1978-01-01

    A generalized close-coupled canard-wing configuration was tested in a high speed 7 by 10 foot tunnel at Mach numbers of 0.40, 0.70, and 0.85 over an angle-of-attack range from -4 deg to 24 deg. Studies were made to determine the effects of canard vertical location, size, and deflection and wing leading-edge sweep on the longitudinal characteristics of the basic configuration. The two wings tested had thin symmetrical circular-arc airfoil sections with characteristically sharp leading edges swept at 60 deg and 44 deg. Two balances which allow separation of the canard-forebody contribution from the total forces and moments were used in this study.

  8. Compact ExB mass separator for heavy ion beams

    SciTech Connect

    Wada, M.; Hashino, T.; Hirata, F.; Kasuya, T.; Sakamoto, Y.; Nishiura, M.

    2008-02-15

    A compact ExB mass separator that deflects beam by 30 deg. has been designed and built to prove its principle of operation. The main part of the separator is contained in a shielding box of 11 cm long, 9 cm wide, and 1.5 cm high. An electromagnet of 7 cm pole diameter produced variable magnetic field in the mass separation region instead of a couple of permanent magnets which is to be used in the final design. The experimental result agreed well with the theoretical prediction, and larger mass ions is bent with less magnetic field with the aid of the deflection electric field. The reduction in resolving power for mass separation due to the deflection electric field has been investigated experimentally.

  9. EUV line intensities above the limb measured by CDS

    NASA Technical Reports Server (NTRS)

    Fludra, A.; DelZanna, G.; Bromage, B. J. I.; Thomas, R. J.

    1997-01-01

    The extreme ultraviolet (EUV) above the limb observed with the coronal diagnostic spectrometer (CDS) are discussed. The CDS spectra were obtained up to 0.3 solar radii above the east and west limb, and above the polar coronal holes. A large data set was acquired during the campaign in August 1996. The intensities of the chromospheric, transition region and coronal lines were derived as a function of the radial distance. The density-sensitive line ratios of Si IX 350/342 A and Si X 356/347 A were used to derive an average electron density. The temperature and density in the coronal holes were found to be lower than in the closed field regions.

  10. Optoelectronic characteristics of single CdS nanobelts

    SciTech Connect

    Li, Q.H.; Gao, T.; Wang, T.H.

    2005-05-09

    Optoelectronic properties of single CdS nanobelts are investigated by performing transport measurements with different laser ON/OFF circles. The current increases linearly with the bias voltage in the dark, and superlinearly under illumination. The superlinear increase can be related to the enhanced mobility due to the partial release of surface adsorbates under illumination. The current jumps up by five orders of magnitude upon turning on the laser with an intensity of 0.3 W/cm{sup 2} within 91 ms and decreases by five orders 6 ms just after turning off the laser. The high sensitivity and fast response in the visible range indicate potential applications of CdS nanobelts in realizing optoelectronic switches.

  11. Preliminary Results from Coordinated UVCS-CDS-Ulysses Observations

    NASA Technical Reports Server (NTRS)

    Parenti, S.; Bromage, B. J.; Poletto, G.; Suess, S. T.; Raymond, J. C.; Noci, G.; Bromage, G. E.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The June 2000 quadrature between the Sun, Earth, and Ulysses took place with Ulysses at a distance of 3.35 AU from the Sun and at heliocentric latitude 58.2 deg south, in the southeast quadrant. This provided an opportunity to observe the corona close to the Sun with Coronal Diagnostic Spectrometer (CDS) and Ultraviolet Coronograph Spectrometer (UVCS) and, subsequently, to sample the same plasma when it reached Ulysses. Here we focus on simultaneous observations of UVCS and CDS made on June 12, 13, 16 and 17. The UVCS data were acquired at heliocentric altitudes ranging from 1.6 to 2.2 solar radii, using different grating positions, in order to get a wide wavelength range. CDS data consisted of Normal Incidence Spectrometer (NIS) full wavelength rasters of 120" x 150" centered at altitudes up to 1.18 solar radii, together with Grazing Incidence Spectrometer (GIS) 4" x 4" rasters within the same field of view, out to 1.2 solar radii. The radial direction to Ulysses passed through a high latitude streamer, throughout the 4 days of observations, Analysis of the spectra taken by UVCS shows a variation of the element abundances in the streamer over our observing interval: however, because the observations were in slightly different parts of the streamer on different days, the variation could be ascribed either to a temporal or spatial effect. The oxygen abundance, however, seems to increase at the edge of the streamer, as indicated by previous analyses. This suggests the variation may be a function of position within the streamer, rather than a temporal effect. Oxygen abundances measured by SWICS on Ulysses are compared with the CDS and UVCS results to see whether changes measured in situ follow the same pattern.

  12. Global Trends of CME Deflections Based on CME and Solar Parameters

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2015-06-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including any deflections close to the Sun or through interplanetary space. Kay et al. introduced ForeCAT, a model of CME deflection resulting from the background solar magnetic field. For a magnetic field solution corresponding to Carrington Rotation (CR) 2029 (declining phase, 2005 April-May), the majority of the CMEs deflected to the Heliospheric Current Sheet, the minimum in magnetic pressure on global scales. Most of the deflection occurred below 4 {{R}⊙ }. Here we extend ForeCAT to include a three-dimensional description of the deflecting CME. We attempt to answer the following questions: (1) do all CMEs deflect to the magnetic minimum? and (2) does most deflection occur within the first few solar radii (4 {{R}⊙ })? Results for solar minimum and declining-phase CMEs show that not every CME deflects to the magnetic minimum and that typically the majority of the deflection occurs below 10 {{R}⊙ }. Slow, wide, low-mass CMEs in declining-phase solar backgrounds with strong magnetic field and magnetic gradients exhibit the largest deflections. Local gradients related to active regions tend to cause the largest deviations from the deflection predicted by global magnetic gradients, but variations can also be seen for CMEs in the quiet-Sun regions of the declining-phase CR. We show the torques due to differential forces along the CME can cause rotation about the CME’s toroidal axis.

  13. MoS2/CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H2 Generation under Visible Light Irradiation.

    PubMed

    Yin, Xing-Liang; Li, Lei-Lei; Jiang, Wen-Jie; Zhang, Yun; Zhang, Xiang; Wan, Li-Jun; Hu, Jin-Song

    2016-06-22

    Semiconductor-based photocatalytic H2 generation as a direct approach of converting solar energy to fuel is attractive for tackling the global energy and environmental issues but still suffers from low efficiency. Here, we report a MoS2/CdS nanohybrid as a noble-metal-free efficient visible-light driven photocatalyst, which has the unique nanosheets-on-nanorod heterostructure with partially crystalline MoS2 nanosheets intimately but discretely growing on single-crystalline CdS nanorod. This heterostructure not only facilitates the charge separation and transfer owing to the formed heterojunction, shorter radial transfer path, and fewer defects in single-crystalline nanorod, thus effectively reducing the charge recombination, but also provides plenty of active sites for hydrogen evolution reaction due to partially crystalline structure of MoS2 as well as enough room for hole extraction. As a result, the MoS2/CdS nanosheets-on-nanorod exhibits a state-of-the-art H2 evolution rate of 49.80 mmol g(-1) h(-1) and an apparent quantum yield of 41.37% at 420 nm, which is the advanced performance among all MoS2/CdS composites and CdS/noble metal photocatalysts. These findings will open opportunities for developing low-cost efficient photocatalysts for water splitting. PMID:27237623

  14. Deflection by kinetic impact: Sensitivity to asteroid properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    2016-05-01

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. Here we numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1-30 km/s were investigated, yielding, for a particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. The kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. These results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection strategy.

  15. Deflection by kinetic impact: Sensitivity to asteroid properties

    DOE PAGES

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    2016-05-01

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. We numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1–30 km/s were investigated, yielding, for amore » particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. Moreover, the kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. Our results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection

  16. Effect of Apex Flap Deflection on Vertical Tail Buffeting

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kandil, Osama A.

    1998-01-01

    A computational study of the effect of vortex breakdown location on vertical tail buffeting is conducted. The position of the breakdown is modified by employing an apex flap deflected by an experimentally determined optimal angle. The delayed breakdown flow and buffeting response is then compared to the nominal undeflected case. This multidisciplinary problem is solved sequentially for the fluid flow, the elastic tail deformations and the grid displacements. The fluid flow is simulated by time accurately solving the unsteady, compressible, Reynolds-averaged Navier-Stokes equations using an implicit, upwind, flux-difference splitting finite volume scheme. The elastic vibrations of the tails are modeled by uncoupled bending and torsion beam equations. These equations are solved accurately in time using the Galerkin method and a five-stage Runge-Kutta-Verner scheme. The grid for the fluid dynamics calculations is continuously deformed using interpolation functions to disperse the displacements smoothly throughout the computational domain. An angle-of-attack of 35 deg.is chosen such that the wing primary-vortex cores experience vortex breakdown and the resulting turbulent wake flow impinges on tile vertical tails. The dimensions and material properties of the vertical tails are chosen such that the deflections are large enough to insure interaction with the flow, and the natural frequencies are high enough to facilitate a practical computational solution. Results are presented for a baseline uncontrolled buffeting case and a delayed breakdown case in which the apex flap has been deflected 15 deg. The flap was found to be very effective in delaying the breakdown, increasing the location from 50%c to 94%c, which resulted in a 6% increase in lift coefficient and pitching moment. However, the integrated buffet loads and tip responses were roughly equivalent for the two cases.

  17. Force feedback microscopy based on an optical beam deflection scheme

    SciTech Connect

    Vitorino, Miguel V.; Rodrigues, Mario S.; Carpentier, Simon; Costa, Luca

    2014-07-07

    Force feedback microscopy circumvents the jump to contact in atomic force microscopy when using soft cantilevers and quantitatively measures the interaction properties at the nanoscale by simultaneously providing force, force gradient, and dissipation. The force feedback microscope developed so far used an optical cavity to measure the tip displacement. In this Letter, we show that the more conventional optical beam deflection scheme can be used to the same purpose. With this instrument, we have followed the evolution of the Brownian motion of the tip under the influence of a water bridge.

  18. Deflected Mirage Mediation: A Phenomenological Framework for Generalized Supersymmetry Breaking

    SciTech Connect

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-09-05

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a ''deflected'' scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider.

  19. IR spectral depth profiling using Fourier transform photothermal beam deflection

    NASA Astrophysics Data System (ADS)

    Varlashkin, P. G.; Low, M. J. D.

    1986-05-01

    Fourier transform IR photothermal beam-deflection spectroscopy (PBDS) was used to make spectral depth-profiling measurements with synthetic bilayer samples of polyethylene/nitrocellulose, with a commercial plastic having surface printing and with a single human hair. An interferometer modified to operate at several scan speeds was used to record the spectra, without the cell-resonance problems found with photoacoustic spectroscopy (PAS). The utility of spectral depth profiling is discussed; significant S/N improvements seem to be needed and, with either PBDS or PAS, a wider range of modulation frequencies is required for the methods to be useful.

  20. Controlling plume deflection by acoustic excitation - An experimental demonstration

    NASA Astrophysics Data System (ADS)

    Ahuja, K. K.

    1990-10-01

    Effect of imposing an external sound field on a Coanda jet was investigated experimentally. It was found that the exhaust angle of a Coanda plume can be varied by changing the level of excitation. Limited experiments were also performed in a wind tunnel to study the effects of flight simulation on plume deflection controllability by sound using a hollow airfoil fitted with a Coanda jet. Pressure coefficients are measured over this airfoil with and without acoustic excitation of the Coanda Jet. This exploratory study provided a number of new ideas for future work for controlling flow over curved surfaces.

  1. Quantum demolition measurement of photon statistics by atomic beam deflection

    NASA Astrophysics Data System (ADS)

    Herkommer, A. M.; Akulin, V. M.; Schleich, W. P.

    1992-12-01

    We consider the deflection of a resonant two-level atom by a quantized electromagnetic field using the Jaynes-Cummings Hamiltonian. We show that a joint measurement of the atomic momentum and an appropriate field variable allows us to reconstruct the original photon statistics even for this demolition Hamiltonian. We demonstrate that the momentum distribution of atoms scattered at the nodes of the standing wave also follows the original photon statistics of the field. In this sense a recent experiment on the optical Stern-Gerlach effect [T. Sleator et al., Phys. Rev. Lett. 68, 1996 (1992)] measures the intensity fluctuations of the standing wave.

  2. Henry Cavendish, Johann von Soldner, and the deflection of light

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    1988-05-01

    The gravitational deflection of light based on Newtonian theory and the corpuscular model of light was calculated, but never published, around 1784 by Henry Cavendish, almost 20 years earlier than the first published calculation by Johann Georg von Soldner. The two results are slightly different because, while Cavendish treated a light ray emitted from infinity, von Soldner treated a light ray emitted from the surface of the gravitating body. At the first order of approximation, they agree with each other; both are one-half the value predicted by general relativity and confirmed by experiment.

  3. Self-referenced prism deflection measurement schemes with microradian precision

    SciTech Connect

    Olson, Rebecca; Paul, Justin; Bergeson, Scott; Durfee, Dallin S

    2005-08-01

    We have demonstrated several inexpensive methods that can be used to measure the deflection angles of prisms with microradian precision. The methods are self-referenced, where various reversals are used to achieve absolute measurements without the need of a reference prism or any expensive precision components other than the prisms under test. These techniques are based on laser interferometry and have been used in our laboratory to characterize parallel-plate beam splitters, penta prisms, right-angle prisms, and corner cube reflectors using only components typically available in an optics laboratory.

  4. Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture.

    PubMed

    Borovaya, Mariya N; Burlaka, Olga M; Naumenko, Antonina P; Blume, Yaroslav B; Yemets, Alla I

    2016-12-01

    The present study describes a novel method for preparation of water-soluble CdS quantum dots, using bright yellow-2 (BY-2) cell suspension culture. Acting as a stabilizing and capping agent, the suspension cell culture mediates the formation of CdS nanoparticles. These semiconductor nanoparticles were determined by means of an UV-visible spectrophotometer, photoluminescence, high-resolution transmission electron microscopy (HRTEM), and XRD. Followed by the electron diffraction analysis of a selected area, transmission electron microscopy indicated the formation of spherical, crystalline CdS ranging in diameter from 3 to 7 nm and showed wurtzite CdS quantum dots. In the present work, the toxic effect of synthesized CdS quantum dots on Nicotiana tabacum protoplasts as a very sensitive model was under study. The results of this research revealed that biologically synthesized CdS nanoparticles in low concentrations did not induce any toxic effects. PMID:26909780

  5. Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Borovaya, Mariya N.; Burlaka, Olga M.; Naumenko, Antonina P.; Blume, Yaroslav B.; Yemets, Alla I.

    2016-02-01

    The present study describes a novel method for preparation of water-soluble CdS quantum dots, using bright yellow-2 (BY-2) cell suspension culture. Acting as a stabilizing and capping agent, the suspension cell culture mediates the formation of CdS nanoparticles. These semiconductor nanoparticles were determined by means of an UV-visible spectrophotometer, photoluminescence, high-resolution transmission electron microscopy (HRTEM), and XRD. Followed by the electron diffraction analysis of a selected area, transmission electron microscopy indicated the formation of spherical, crystalline CdS ranging in diameter from 3 to 7 nm and showed wurtzite CdS quantum dots. In the present work, the toxic effect of synthesized CdS quantum dots on Nicotiana tabacum protoplasts as a very sensitive model was under study. The results of this research revealed that biologically synthesized CdS nanoparticles in low concentrations did not induce any toxic effects.

  6. Photo current generation in RGO - CdS nanorod thin film device

    NASA Astrophysics Data System (ADS)

    Chakraborty, Koushik; Chakrabarty, Sankalpita; Ibrahim, Sk.; Pal, Tanusri; Ghosh, Surajit

    2016-05-01

    Herein, we report the synthesis and characterization of reduced graphene oxide (RGO) - cadmium sulfide (CdS) nanocomposite materials. The reduction of GO, formation of CdS and decoration of CdS onto RGO sheets were done in a one- pot solvothermal process. We have observed that the PL intensity for CdS nanorods remarkably quenched after the attachment of RGO, which established the photo induced charge transformation from the CdS nanorod to RGO sheets through the RGO-CdS interface. The optoelectronic transport properties of our fabricated large area thin film device exhibits excellent photo induced charge generation under simulated solar light illumination. The photo sensitivity of the device increases linearly with the increase of illuminated light intensity. The RGO-CdS composite exhibits enhance photocatalytic dye degradation efficiency in compare to control CdS under simulated solar light illumination.

  7. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    SciTech Connect

    Dukovic, Gordana; Merkle, Maxwell G.; Nelson, James H.; Hughes, Steven M.; Alivisatos, A. Paul

    2008-08-06

    Semiconductor photocatalysis has been identified as a promising avenue for the conversion of solar energy into environmentally friendly fuels, most notably by the production of hydrogen from water.[1-5] Nanometer-scale materials in particular have attracted considerable scientific attention as the building blocks for light-harvesting applications.[6,7] Their desirable attributes include tunability of the optical properties with size, amenability to relatively inexpensive low-temperature processing, and a high degree of synthetic sophistication leading to increasingly complex and multi-functional architectures. For photocatalysis in particular, the high surface-to-volume ratios in nanoscale materials should lead to an increased availability of carriers for redox reactions on the nanoparticle surface. Recombination of photoexcited carriers directly competes with photocatalytic activity.[3] Charge separation is often achieved with multi-component heterostructures. An early example is the case of TiO2 powders functionalized with Pt and RuO2 particles, where photoexcited electrons are transferred to Pt (the reduction site) and holes to RuO2 (the oxidation site).[8] More recently, many colloidally synthesized nanometer-scale metal-semiconductor heterostructures have been reported.[7,9,10] A majority of these structures are made by thermal methods.[7,10] We have chosen to study photochemical formation of metal-semiconductor heterostructures. The detailed understanding of the mechanisms involved in photodeposition of metals on nanometer-scale semiconductors is necessary to enable a high degree of synthetic control. At the same time, because the results of metal deposition can be directly observed by electron microscopy, it can be used to understand how factors such as nanocrystal composition, shape, carrier dynamics, and surface chemistry influence the photochemical properties of semiconductor nanocrystals. In this communication, we report on the photodeposition of Pt on

  8. Do all CMEs deflect to the background magnetic minimum by 4Rs?

    NASA Astrophysics Data System (ADS)

    Kay, Christina; Opher, Merav

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including any CME deflection close to the Sun or through interplanetary space. Kay et al. (2013) introduced ForeCAT, a model of CME deflection resulting from the background solar magnetic field. For a magnetic background corresponding to Carrington Rotation (CR) 2029 (declining phase, April-May 2005), the majority of the CMEs deflected to the streamer belt, the minimum in magnetic pressure. Most of the deflection occurred below 4 Rs. Here we explore the questions: a) Do all CMEs deflect to the magnetic minimum? and b) Does most deflection occur within 4 Rs? We have eliminated many of the underlying simplifications of ForeCAT presented in Kay et al. (2013) with a more detailed three dimensional description of the deflecting flux rope. The locations of coronal magnetic structures that determine the background magnetic minima vary throughout the solar cycle. We show that these variations reproduce observed trends in the direction of CME deflections throughout the solar cycle. We further explore the sensitivity of deflections to changes in the background magnetic minima at distances 1-2Rs guided by polarizations measures by instruments such ComP. Such deflections could be a probe of the lower corona background at these small distances.

  9. THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR

    SciTech Connect

    Kay, C.; Opher, M.

    2015-10-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which the CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.

  10. Mirage models confront the LHC. III. Deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Everett, Lisa L.; Garon, Todd; Kaufman, Bryan L.; Nelson, Brent D.

    2016-03-01

    We complete the study of a class of string-motivated effective supergravity theories in which modulus-induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so as to be competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected "mirage mediation" (DMM), where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. We update previous work that surveyed the rich parameter space of such theories, in light of data from the CERN Large Hadron Collider (LHC) and recent dark matter detection experiments. Constraints arising from LHC superpartner searches at √{s }=8 TeV are considered, and discovery prospects at √{s }=14 TeV are evaluated. We find that deflected mirage mediation generally allows for S U (3 )-charged superpartners of significantly lower mass (given current knowledge of the Higgs mass and neutralino relic density) than was found for the "pure" mirage mediation models of Kachru et al. [Phys. Rev. D 68, 046005 (2003)]. Consequently, discovery prospects are enhanced for many combinations of matter multiplet modular weights. We examine the experimental challenges that will arise due to the prospect of highly compressed spectra in DMM, and the correlation between accessibility at the LHC and discovery prospects at large-scale liquid xenon dark matter detectors.

  11. Deflection of resilient materials for reduction of floor impact sound.

    PubMed

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  12. Design and Field Test of a Galvanometer Deflected Streak Camera

    SciTech Connect

    Lai, C C; Goosman, D R; Wade, J T; Avara, R

    2002-11-08

    We have developed a compact fieldable optically-deflected streak camera first reported in the 20th HSPP Congress. Using a triggerable galvanometer that scans the optical signal, the imaging and streaking function is an all-optical process without incurring any photon-electron-photon conversion or photoelectronic deflection. As such, the achievable imaging quality is limited mainly only by optical design, rather than by multiple conversions of signal carrier and high voltage electron-optics effect. All core elements of the camera are packaged into a 12 inch x 24 inch footprint box, a size similar to that of a conventional electronic streak camera. At LLNL's Site-300 Test Site, we have conducted a Fabry-Perot interferometer measurement of fast object velocity using this all-optical camera side-by-side with an intensified electronic streak camera. These two cameras are configured as two independent instruments for recording synchronously each branch of the 50/50 splits from one incoming signal. Given the same signal characteristics, the test result has undisputedly demonstrated superior imaging performance for the all-optical streak camera. It produces higher signal sensitivity, wider linear dynamic range, better spatial contrast, finer temporal resolution, and larger data capacity as compared with that of the electronic counterpart. The camera had also demonstrated its structural robustness and functional consistence to be well compatible with field environment. This paper presents the camera design and the test results in both pictorial records and post-process graphic summaries.

  13. Deflection of Resilient Materials for Reduction of Floor Impact Sound

    PubMed Central

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor. PMID:25574491

  14. Deflection of resilient materials for reduction of floor impact sound.

    PubMed

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor. PMID:25574491

  15. Transferable orthogonal tight-binding parameters for ZnS and CdS

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Somesh Kr; Deodhar, Prajakta A.; Viswanatha, Ranjani; Kshirsagar, Anjali

    2010-07-01

    Calculations of Slater-Koster (SK) parameters appearing in the tight-binding method using sp3d5 basis sets for both the cationic and anionic species are presented for ZnS and CdS. We have adjusted these parameters to match the band structures obtained from the full potential linear augmented plane wave method. This operation has been carried out for a variety of structures namely zinc blende, wurtzite, rocksalt, CsCl and for a wide range of near-neighbor distances. The SK parameters have slightly different values for the same near-neighbor distance in different structures. Therefore, a least-squares fitting has been performed separately for each parameter as a function of only the near-neighbor distance to guarantee the transferability of these parameters to different structural environments. The fitted parameters are then used to calculate the electronic structure of small-sized clusters of ZnS and CdS in given geometries and the results are compared with ab initio results. A fairly good agreement found in the one-electron energy spectrum and total energy confirms transferability of the parameters to different length scales. A detailed account of the calculation procedure and calibration results is given in the present paper. These parameters can be used to study the electronic structure of large-sized clusters where first-principles methods are computationally demanding. It may be mentioned that the SK parameters do not satisfy the R - (l + l' + 1) Harrison scaling law for larger values of the near-neighbor distance R.

  16. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    SciTech Connect

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-15

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  17. NEO Deflection Strategies In The Presence Of Pre-impact Encounters

    NASA Astrophysics Data System (ADS)

    Chodas, Paul; Chesley, S.; Valsecchi, G. B.

    2008-09-01

    The problem of deflecting a Near-Earth Object (NEO) off of an impacting trajectory has received considerable attention in recent years, but it is not well known that there are times at which deflection is completely ineffective in mitigating an impact. It is generally understood that if applied early enough, even a small deflection could change an impacting trajectory to a near-miss trajectory. It is also well known that in order to achieve the maximum deflection for a given velocity change, it is best to apply it in the along-track direction at perihelion. But which perihelion is best? The general rule has been that it is best to deflect as early as possible, since earlier deflections will require smaller velocity changes to achieve a desired position change. We find that this simplistic rule often does not hold for objects with shallow encounters years or decades before impact. Indeed, there are epochs long before impact at which no deflection of any reasonable size will prevent the impact. Any trajectory produced by deflection at these times is essentially refocused by the intervening encounter back onto an impacting trajectory. These zero-leverage times are surrounded by multi-year intervals during which deflection attempts will have very low effectiveness. This effect will be illustrated using several example cases.

  18. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    SciTech Connect

    Hagen, Edward C.; Hudson, Charles L.

    1995-01-01

    A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).

  19. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting

    SciTech Connect

    Deng, Chonghai; Tian, Xiaobo

    2013-10-15

    Graphical abstract: - Highlights: • Three kinds of CdS nanostructures have been controllably synthesized. • Ethanediamine acts as a phase and morphology controlling reagent. • Three CdS nanostructures display high visible light photocatalytic activities. • Cubic CdS-3 shows superior photocatalytic activity to the other hexagonal CdS. • The growth processes for fabrication of CdS nanocrystals are also discussed. - Abstract: Three kinds of CdS nanostructures, that is, hexagonal nanospheres (CdS-1), hierarchical caterpillar-fungus-like hexagonal nanorods (CdS-2) and hierarchical cubic microspheres (CdS-3), were controllably synthesized by a facile and one-pot microwave-assisted aqueous chemical method using ethanediamine as a phase and morphology controlling reagent. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The results show that CdS-1 is mainly composed of monodispersed hexagonal nanospheres with average diameters of about 100 nm; hexagonal CdS-2 has lengths in the range of 600–800 nm and diameters of 40–60 nm, assembled by nanoparticles about 20 nm in diameter; and CdS-3 is pure cubic microspheres with diameters in the range of 0.8–1.3 μm, aggregated by tiny nanograins with size of 5.8 nm. The band gap energies of CdS products were calculated to be 2.30, 2.31 and 2.24 eV observed from UV–vis DRS for CdS-1, CdS-2 and CdS-3, respectively. PL spectra of CdS samples showed that sphalerite CdS-3 possesses a very weak fluorescence, while wurtzite CdS-2 has a strongest green near-band edge emission (NBE) at 550 nm. The visible light photodegradation of methylene blue and rhodamine B in the presence of CdS photocatalysts illustrates that all of them display high photocatalytic activities. Significantly, the cubic CdS-3 exhibits more excellent photocatalytic

  20. Deflection of light to second order in conformal Weyl gravity

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph

    2013-04-01

    We reexamine the deflection of light in conformal Weyl gravity obtained in Sultana and Kazanas (2010), by extending the calculation based on the procedure by Rindler and Ishak, for the bending angle by a centrally concentrated spherically symmetric matter distribution, to second order in M/R, where M is the mass of the source and R is the impact parameter. It has recently been reported in Bhattacharya et al. (JCAP 09 (2010) 004; JCAP 02 (2011) 028), that when this calculation is done to second order, the term γr in the Mannheim-Kazanas metric, yields again the paradoxical contribution γR (where the bending angle is proportional to the impact parameter) obtained by standard formalisms appropriate to asymptotically flat spacetimes. We show that no such contribution is obtained for a second order calculation and the effects of the term γr in the metric are again insignificant as reported in our earlier work.

  1. Study of surface charges in ballistic deflection transistors

    NASA Astrophysics Data System (ADS)

    Millithaler, J.-F.; Iñiguez-de-la-Torre, I.; Mateos, J.; GonzáIez, T.; Margala, M.

    2015-12-01

    This paper presents a comprehensive study of the behavior of surface charges in ballistic deflection transistors, at room temperature, where the in-plane geometry associating two drains with two gates in push-pull modes allows the control of electron path. Monte Carlo simulations were performed and compared with experimental data by using different models for accounting for surface charge effects. The simple model which assumes a constant and uniform value of the surface charge provides good results at equilibrium, but it is not able to correctly reproduce the BDT’s complex behavior when biased. We have confirmed that for a correct description of the device operation it is necessary to use a model allowing the surface charge to adapt itself locally to the carrier concentration in its surroundings.

  2. Saturation effects in gas-phase photothermal deflection spectrophotometry

    SciTech Connect

    Long, G.R.; Bialkowski, S.E.

    1985-05-01

    Some effects of optical saturation on a photothermal deflection signal are described and a simple theory to describe these effects is presented. These effects increase the sensitivity while decreasing the relative error of the method as the intensity exceeds the saturation intensity. Detection limits of 1.3 ppbv for chlorodifluoromethane, 2 ppbv for dichlorodifluoromethane, and 3 ppmv for sulfur dioxide, in 13.3 kPa of argon, are found. These detection limits extrapolate to atmospheric detection limits of 170 pptv for chlorodifluoromethane and 260 pptv for dichlorodifluoromethane. The corresponding mass detection limits in the infrared laser irradiated volume are 55 fg for chlorodifluoromethane and 70 fg for dichlorodifluoromethane. 18 references, 7 figures.

  3. Ballistic deflection transistors and their application to THz amplification

    NASA Astrophysics Data System (ADS)

    Margala, M.; Wu, H.; Sobolewski, Roman

    2015-10-01

    We present implementation of recently proposed ballistic deflection transistors (BDTs) as THz amplifiers. BDT is a planar device based on InGaAs/InAlAs/InP heterostructure with quasi-ballistic transport obtained in the two-dimensional electron gas layer that facilitates ultra-short transit time and high performance needed for THz-range circuitry. The BDT performance is optimized through its structural modification and the use of high-k dielectrics. Our time-domain, electrical transient measurements demonstrate sub-THz switching performance of a BDT with a ∼1-μm-wide channel. Independently, circuit simulations using experimental parameters of BDTs with a channel width of 430 nm and with the BDTs themselves connected as a multi-stage travelling-wave amplifier, designed for 6-dB gain, predict a 2.7- THz bandwidth with a gain flatness of ±0.3 dB.

  4. Fabrication and Testing of Deflecting Cavities for APS

    SciTech Connect

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  5. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  6. Photothermal cantilever deflection spectroscopy of a photosensitive polymer

    SciTech Connect

    Yun, Minhyuk; Lee, Dongkyu; Jung, Namchul; Jeon, Sangmin; Kim, Seonghwan; Chae, Inseok; Thundat, Thomas

    2012-05-14

    The mechanical and chemical information of a poly(methyl methacrylate) (PMMA) film on a microcantilever were simultaneously acquired by photothermal cantilever deflection spectroscopy as a function of ultraviolet (UV) irradiation time. Nanomechanical infrared (IR) spectra from the PMMA-coated microcantilever agreed well with the Fourier transform infrared spectroscopy (FTIR) spectra of PMMA on gold-coated silicon wafer. The decreasing intensities of nanomechanical IR peaks represent chemical as well as mechanical information of UV radiation-induced photodegradation processes in the PMMA which cannot be obtained by a conventional FTIR technique. The observed decrease in the resonance frequency of the microcantilever is related to the change in the Young's modulus of the PMMA under UV exposure.

  7. Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows

    PubMed Central

    Liang, Litao; Zhu, Junjie; Xuan, Xiangchun

    2011-01-01

    Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle’s relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model. PMID:22662037

  8. Deflection of nematicon-vortex vector solitons in liquid crystals

    NASA Astrophysics Data System (ADS)

    Assanto, Gaetano; Minzoni, Antonmaria A.; Smyth, Noel F.

    2014-01-01

    The deflection of a vector soliton formed by a solitary wave and an optical vortex in nematic liquid crystals is investigated upon interaction with a localized refractive index defect. The azimuthal instability of the vortex can be triggered by the index perturbation and enhanced by the distortion of the copropagating solitary wave when in the vicinity of the defect. A modulation theory is developed to study the refraction of the vector soliton and is found to be in good agreement with numerical solutions. This model reveals the crucial role of the diffractive radiation shed by both beam components as they evolve, showing that radiation reduces the destabilizing effect of the solitary wave interaction with the vortex, thus enlightening the effect of this continuous spectrum on the evolution of the nonlinear wave packets.

  9. Profiling compact toroid plasma density on CTIX with laser deflection

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  10. Aeroelastically deflecting flaps for shock/boundary-layer interaction control

    NASA Astrophysics Data System (ADS)

    Gefroh, D.; Loth, E.; Dutton, C.; Hafenrichter, E.

    2003-06-01

    An aeroelastic mesoflap system has been developed to improve the downstream flow properties of an oblique shock/boundary-layer interaction. The mesoflap system employs a set of small flaps over a cavity, whereby the flaps downstream of the interaction bend downward aeroelastically to bleed the flow and the upstream flaps bend upward to re-inject this same mass flow upstream. This recirculating system requires no net mass bleed and therefore has advantages for boundary layer control in external or mixed-compression supersonic aircraft inlets. In addition, the system may be applicable in other aerospace applications where boundary-layer control can help remedy the adverse effects of shock interactions. Several mesoflap systems have been fabricated and examined experimentally to investigate their aerodynamic and structural performance. Each mesoflap is rigidly attached to a spar on its upstream end while the remainder of the flap is free to deflect aeroelastically. The flap length is nominally a few boundary-layer thicknesses in dimension, while the flap thickness is small enough to allow tip deflections that are of the order of the boundary-layer momentum thickness. Experiments were conducted for a Mach 2.41 impinging oblique shock wave interaction with a turbulent boundary layer. Spanwise-centered laser Doppler velocimeter measurements indicate that certain mesoflap designs can show significant flow improvement as compared to the solid-wall case, including increased stagnation pressure recovery and a 7% reduction in boundary layer thickness and sonic thickness. However, one drawback of the mesoflap system is the potential for fatigue, which in some cases led to microcracking followed by flap failure. Structural design improvements to alleviate and avoid this problem included a lower profile spar design, substitution of Nitinol for aluminum as the flap material, and use of stress-relieving holes at the ends of the flap cut-outs.

  11. Current deflection NDE for pipeline inspection and monitoring

    NASA Astrophysics Data System (ADS)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  12. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; Hopkins, R.; Chapman, J.; White, S.; Bonometti, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Kalkstein, M.

    2003-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This document reviews the historical impact record and current understanding of the number and location of Near Earth Objects (NEO's) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are then given of an MSFC-led study, intended to develop and assess various candidate systems for protection of the Earth against NEOs. An existing program, used to model the NE0 threat, was extensively modified and is presented here. Details of various analytical tools, developed to evaluate the performance of proposed technologies for protection against the NEO threat, are also presented. Trajectory tools, developed to model the outbound path a vehicle would take to intercept or rendezvous with a target asteroid or comet, are described. Also, details are given of a tool that was created to model both the un-deflected inbound path of an NE0 as well as the modified, post-deflection, path. The number of possible options available for protection against the NE0 threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. The major output from this work was a novel process by which the relative effectiveness of different threat mitigation concepts can be evaluated during future, more detailed, studies. In addition, several new or modified mathematical models were developed to analyze various proposed protection systems. A summary of the major lessons learned during this study is presented, as are recommendations for future work. It is hoped that this study will serve to raise the level attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  13. Synthesis of monodispersed CdS nanoballs through {gamma}-irradiation route and building core-shell structure CdS SiO{sub 2}

    SciTech Connect

    Wang Zhaoxu; Chen Jiafu Xue Xuan; Hu Yong

    2007-12-04

    Monodispersed CdS nanoballs were synthesized through {gamma}-irradiating CdCl{sub 2}, Na{sub 2}S{sub 2}O{sub 3} and polyvinylpyrrolidone aqueous solution at room temperature. With these well monodispersed CdS nanoballs, CdS SiO{sub 2} core-shell structures were prepared under hydrolysis of tetraethylorthosilicate without adding a coupling agent. Field emission scanning electron micrograph, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, ultraviolet absorption and photoluminescence spectroscopy were used to characterize the products. It is hoped that the core-shell CdS SiO{sub 2} nanoballs would be used as good luminescence detecting material for biological systems, so this may stimulate technological interest and prospect many other applications in materials related fields.

  14. Photocatalytic applications with CdS • block copolymer/exfoliated graphene nanoensembles: hydrogen generation and degradation of Rhodamine B.

    PubMed

    Skaltsas, T; Karousis, N; Pispas, S; Tagmatarchis, N

    2014-11-01

    Amphiphilic block copolymer poly(isoprene-b-acrylic acid) (PI-b-PAA) was used to stabilize exfoliated graphene in water, allowing the immobilization of semiconductor CdS nanoparticles forming CdS • PI-b-PAA/graphene. Characterization using high-resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy proved the success of the preparation method and revealed the presence of spherical CdS. Moreover, UV-Vis and photoluminescence assays suggested that electronic interactions within CdS • PI-b-PAA/graphene exist as evidenced by the significant quenching of the characteristic emission of CdS by exfoliated graphene. Photoillumination of CdS • PI-b-PAA/graphene, in the presence of ammonium formate as a quencher for the photogenerated holes, resulted in the generation of hydrogen by water splitting, monitored by the reduction of 4-nitroaniline to benzene-1,4-diamine (>80 ± 4% at 20 min; 100% at 24 min), much faster and more efficient compared to when reference CdS • PI-b-PAA was used as the photocatalyst (<30 ± 3% at 20 min; 100% at 240 min). Moreover, Rhodamine B was photocatalytically degraded by CdS • PI-b-PAA/graphene, with fast kinetics under visible light illumination in the presence of air. The enhancement of both photocatalytic processes by CdS • PI-b-PAA/graphene was rationalized in terms of effective separation of holes and electrons, contrary to reference CdS • PI-b-PAA, in which rapid recombination of the hole-electron pair is inevitable due to the absence of exfoliated graphene as a suitable electron acceptor.

  15. The Financial Management System: A Pivotal Tool for Fiscal Viability. CDS Spotlight. ECAR Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This spotlight focuses on data from the 2013 CDS to better understand how higher education institutions approach financial management systems. Information provided for this spotlight was derived from Module 8 of Core Data Service (CDS), which asked several questions regarding information systems and applications. Responses from 525 institutions…

  16. White luminescence from CdS nanocrystals under the blue light excitation

    SciTech Connect

    Li, Bo; Zhang, Xiaosong Li, Lan; Li, Mengzhen; Xu, Jianping; Hong, Yuan

    2014-06-01

    Trap-rich CdS nanocrystals were synthesized by employing CdSt{sub 2} and sulfur as precursors via thermal decomposition. Furthermore, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), absorption and photoluminescence (PL) spectra were used to characterize structure, morphology and luminescence properties of CdS nanocrystals (NCs). CdS NCs have a broad emission across 500–700 nm under the excitation of blue light with 460 nm, consequently, white light can be produced by mixing broad emission from CdS NCs excited by blue light, with the remaining blue light. In addition, the broad emission generation is closely and inseparably related to surface defects. Moreover, LaMer model was used to explain the phenomenon that the intensity of the trap emission gradually decreases as the reaction time increases in contrast with that of the band-edge emission. - Graphical abstract: Trap-rich CdS nanocrystals were synthesized. Furthermore, white light is produced by mixing broad emission across 500–700 nm from CdS NCs excited by blue light, in combination with the remaining blue light. - Highlights: • Trap-rich CdS nanocrystals were synthesized. • CdS NCs have a broad emission across 500–700 nm under the excitation of blue light. • White light can be produced by mixing broad emission with the remaining blue light.

  17. Ultrasonic/surfactant assisted of CdS nano hollow sphere synthesis and characterization

    SciTech Connect

    Rafati, Amir Abbas; Borujeni, Ahmad Reza Afraz; Najafi, Mojgan; Bagheri, Ahmad

    2011-01-15

    CdS hollow nanospheres with diameters ranging from 40 to 150 nm have been synthesized by a surfactant-assisted sonochemical route. The successful vesicle templating indicates that the outer leaflet of the bilayer is the receptive surface in the controlled growth of CdS nanoparticles which provide the unique reactor for the nucleation and mineralization growth of CdS nanoparticles. The CdS nanostructures obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Structural characterization of hollow CdS nanospheres indicates that these products packed with square subunits having sizes between 5 and 7 nm in diameter. The formation of the hollow nanostructure was explained by a vesicle template mechanism, in which sonication and surfactant play important roles. The band-edge emission and surface luminescence of the CdS nanoparticles were observed. -Research Highlights: {yields} CdS hollow nanospheres with diameters of 40-150 nm were synthesized. {yields} Nanoparticles were characterized by UV/Vis and photoluminescence. {yields} Nanospheres are composed of smaller nanocrystals with the average size of 6.8 nm. {yields} The band gap energy of the CdS nanoparticles is higher than its bulk value.

  18. The Ever-Present Demand for Public Computing Resources. CDS Spotlight

    ERIC Educational Resources Information Center

    Pirani, Judith A.

    2014-01-01

    This Core Data Service (CDS) Spotlight focuses on public computing resources, including lab/cluster workstations in buildings, virtual lab/cluster workstations, kiosks, laptop and tablet checkout programs, and workstation access in unscheduled classrooms. The findings are derived from 758 CDS 2012 participating institutions. A dataset of 529…

  19. BI Reporting, Data Warehouse Systems, and Beyond. CDS Spotlight Report. Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This Spotlight focuses on data from the 2013 Core Data Service [CDS] to better understand how higher education institutions approach business intelligence (BI) reporting and data warehouse systems (see the Sidebar for definitions). Information provided for this Spotlight was derived from Module 8 of CDS, which contains several questions regarding…

  20. Preparation of CdS Nanoparticles by First-Year Undergraduates

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Noviello, Thomas; Brooks, Stephen

    2007-01-01

    The first year undergraduates use a simple method to synthesize 5-nm CdS nanoparticles in a water-in-oil microemulsion. The quantum size effect, the relationship between colors, optical absorbance, band-gap energy and the CdS particles affected by the formation of micelles are observed.

  1. Analysis of splitting patterns from Stern-Gerlach magnetic deflection of supersonic molecular beams: application to M J -state-resolved deflection of J=2 atoms

    NASA Astrophysics Data System (ADS)

    Weiser, C.; Siska, P. E.

    1988-06-01

    Measurements of M J -state resolved Stern-Gerlach deflection patterns for the3 P 2 states of noble gas metastable atoms in supersonic beams are analyzed using a modification of the method originally worked out by Otto Stern. Velocity distribution breadth and beam collimation required to resolve the M J states are explored, and the modeling is improved by including variation in the field gradient along the deflected atomic trajectories.

  2. Optical properties of colloidal aqueous synthesized 3 mercaptopropionic acid stabilized CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Sumanth Kumar, D.; Jai Kumar, B.; Mahesh H., M.

    2016-05-01

    We have explored an easiest and simplest aqueous route to synthesize bright green luminescent CdS QDs using 3-Mercaptopropionic acid (MPA) as a stabilizer in air ambient for solar cell applications. The CdS quantum dots showed a strong quantum confinement effect with good stability, size and excellent photoluminescence. MPA Capping on CdS QDs was confirmed through FTIR. The Optical absorption spectrum revealed the CdS quantum dots are highly transparent in the visible region with absorption peak at 380 nm, confirming the quantum confinement. Photoluminescence showed an emission peak at 525 nm wavelength. The optical band gap energy was found to be 3.19 eV and CdS quantum dots radius calculated using Brus equation is 1.5 nm. The results are presented and discussed in detail.

  3. A biocatalytic approach towards synthesis of polymer CdS nanocomposites

    SciTech Connect

    Banerjee, S.; Premchandran, R.; Baumgartner, T.

    1996-10-01

    Copolymers of hydroxythiophenol and ethylphenol have been prepared using a biocatalytic route. Specifically, the method utilizes an oxidative enzyme, horseradish peroxidase, solubilized within the aqueous phase of a AOT/isooctane microemulsion. The monomers are oil soluble and are thus present in the organic phase. High conversions are obtained upto 1:1 molar ratio of the two monomers. The resulting polymers have the overall morphology of interconnected submicron spheres and are soluble in common organic solvents. Following their synthesis these copolymers have been derivatized by attaching Q-sized CdS particles. Though the copolymer itself is nonfluorescent, the CdS nanoclusters within it can be selectively excited and made to fluoresce. The fluorescent properties of the polymer CdS composite are distinctive from underivatized CdS or hydroxythiophenol monomer capped CdS.

  4. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. PMID:27315521

  5. Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots.

    PubMed

    Bechtold, Peter; Hohenstein, Ralph; Schmidt, Michael

    2013-08-15

    We introduce a method to objectively evaluate systems of differing beam deflection technologies that commonly are described by disparate technical specifications. Using our new approach based on resolvable spots we will compare commercially available random-access beam deflection technologies, namely galvanometer scanners, piezo scanners, MEMS scanners, acousto-optic deflectors, and electro-optic deflectors.

  6. Do all CMEs deflect to the background magnetic minimum by 4Rs?

    NASA Astrophysics Data System (ADS)

    Kay, Christina; Opher, Merav

    2014-06-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including any CME deflection close to the Sun or through interplanetary space. Kay et al. (2013) introduced ForeCAT, a model of CME deflection resulting from the background solar magnetic field. For a magnetic background corresponding to Carrington Rotation (CR) 2029 (declining phase, April-May 2005), the majority of the CMEs deflected to the streamer belt, the minimum in magnetic pressure. Most of the deflection occurred below 4 Rs. Here we explore the questions: a) Do all CMEs deflect to the magnetic minimum? and b) Does most deflection occur within 4 Rs? We have eliminated many of the underlying simplifications of ForeCAT presented in Kay et al. (2013) with a more detailed three dimensional description of the deflecting flux rope. The locations of coronal magnetic structures that determine the background magnetic minima vary throughout the solar cycle. We show that these variations reproduce observed trends in the direction of CME deflections throughout the solar cycle.

  7. ForeCAT - A Model for Magnetic Deflections of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kay, Christina; Opher, Merav

    2016-05-01

    Accurate space weather forecasting requires knowledge of the trajectory of CMEs. Decades of observations show that CMEs can deflect from a purely radial trajectory, however, no consensus exists as to the cause of these deflections. We developed a model for CME deflection and rotation from magnetic forces, called Forecasting a CME’s Altered Trajectory (ForeCAT). ForeCAT has been designed to run fast enough for large parameter phase space studies, and potentially real-time predictions.ForeCAT reproduces the general trends seen in observed CME deflections. In particular, CMEs deflect toward regions of minimum magnetic energy - frequently the Heliospheric Current Sheet (HCS) on global scales. The background magnetic forces decrease rapidly with distance and quickly become negligible. Most deflections and rotations can be well-described by assuming constant angular momentum beyond 10 Rs.ForeCAT also reproduces individual observed CME deflections - the 2008 December 12, 2008 April 08, and 2010 July 12 CMEs. By determining the reduced chi-squared best fit between the ForeCAT results and the observations we constrain parameters related to the CME and the background solar wind. Additionally, we constrain whether different models for the low corona magnetic backgrounds can produce the observed CME deflection.

  8. Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots.

    PubMed

    Bechtold, Peter; Hohenstein, Ralph; Schmidt, Michael

    2013-08-15

    We introduce a method to objectively evaluate systems of differing beam deflection technologies that commonly are described by disparate technical specifications. Using our new approach based on resolvable spots we will compare commercially available random-access beam deflection technologies, namely galvanometer scanners, piezo scanners, MEMS scanners, acousto-optic deflectors, and electro-optic deflectors. PMID:24104614

  9. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  10. Relationship between muscular strength and deflection characteristics of the center of foot pressure during landing after crossover stepping in the elderly.

    PubMed

    Takeuchi, Yahiko; Shimomura, Yoshihiro; Iwanaga, Koichi; Katsuura, Tetsuo

    2009-01-01

    This study aimed to investigate the relationship between the muscular strength of the lower extremity in a load side and the characteristics of center of foot pressure (COP) during landing after crossover stepping in the elderly. The study population comprised 8 elderly subjects (average age, 75.8+/-8.0 years) and 9 young individuals (average age, 21.6+/-2.5 years). Using a separation-type force plate, we measured the deflection characteristics of the COP; these were defined by the root mean square of positional change (COP-RMS) and the deflection velocity of the COP (COP-Vel) during landing after crossover stepping. Furthermore, we measured the muscular strength of the lower extremity by using a hand-held dynamometer. By using multiple regression analysis, we detected the calculated muscular strength as the independent variable of the deflection characteristics of the COP. Compared to the young group the elderly group showed significantly higher anterior-posterior COP-RMS values (p<0.05) and lower lateral COP-Vel values (p<0.001). In the elderly, the muscular strengths of the tibialis anterior and adductor magnus were detected as a significant independent variable of the anterior-posterior COP-RMS (R(2)=0.85, R(2)=0.76, p<0.01) and lateral COP-Vel (R(2)=0.75, R(2)=0.65, p<0.05), respectively. With regard to the COP deflection characteristics during landing after crossover stepping in the elderly, we recognized the diagnostic character of the anterior-posterior COP-RMS and lateral COP-Vel. Furthermore, it was suggested that the muscular strengths of the tibialis anterior and adductor magnus played a role in regulating the COP deflection characteristics. PMID:19212088

  11. "I'm Not Mentally Ill": Identity Deflection as a Form of Stigma Resistance.

    PubMed

    Thoits, Peggy A

    2016-06-01

    Mental illness identity deflection refers to rebuffing the idea that one is mentally ill. Predictors of identity deflection and its consequences for well-being were examined for individuals with mental disorders in the National Comorbidity Study-Replication (N = 1,368). Respondents more often deflected a mental illness identity if they had a nonsevere disorder, had low impairment in functioning, had no treatment experience, viewed possible treatment as undesirable, and held multiple social roles, consistent with theory about stigma resistance. Persons who deflected a mental illness identity had lower distress and more positive affect than those who accepted it, even net of disorder severity, impairment level, and treatment experience. Among those who had ever been in treatment, deflection buffered the negative effects of serious impairment but exacerbated the effects of having a severe disorder on well-being, suggesting more complex consequences of formal labeling (greater stigma but helpful services), consistent with previous research. PMID:27284073

  12. Electronic characteristics of 'real' CdS surfaces.

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Balestra, C. L.; Gatos, H. C.

    1972-01-01

    Photovoltage spectroscopy (including photovoltage inversion and photovoltage quenching) was used to determine the electronic characteristics of real (basal and prismatic) surfaces of CdS. In room atmosphere, surface states with the following positions were found in the cadmium surfaces: Ec - Et equal to 0.05, 0.4, and 0.8 eV, and Ev - Et equal to 0.83 eV. The same surface states were present in the sulfur surfaces, with the exception of those at Ec - Et equal to 0.4 eV. In the prismatic and unetched basal surfaces, states at Ec - Et equal to 1.1 eV were found in addition to all of those found on the cadmium surfaces.

  13. Ferroelectric Gated Electrcial Transport in CdS Nanotetrapods

    SciTech Connect

    Fu, Wangyang; Qin, Shengyong; Liu, Lei; Kim, Tae Hwan; Hellstrom, Sondra L; Wang, Wenlong; Liang, Wenjie; Bai, Xuedong; Li, An-Ping; Wang, Enge

    2011-01-01

    Complex nanostructures such as semiconductor nanotetrapods are promising building blocks for next-generation nanoelectronics. Here we construct a field effect transistor (FET) based on single CdS nanotetrapods with a ferroelectric Ba0.7Sr0.3TiO3 (BST) film as high- , switchable gate dielectric. A cryogenic four-probe scanning tunneling microscopy (STM) is used to probe the electrical transport through individual nanotetrapods, which reveals a p-type field effect up to room temperature. The conductance modulation in the FET originates from the channel tuning in the arm-core-arm junctions of nanotetrapods, displaying a single-electron transistor effect at low temperature (8.5 K). The ferroelectric gate dielectric enables not only an enhanced capacitance coupling but the non-volatile memory effect as well. A proof-of-principle of ferroelectric FET operation has thus been demonstrated in a nanoscale three-dimensional object and at the single electron level.

  14. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    PubMed

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation. PMID:27348482

  15. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    PubMed

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation.

  16. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-01

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  17. Experimental investigation of the evacuation effect in expansion deflection nozzles

    NASA Astrophysics Data System (ADS)

    Taylor, N. V.; Hempsell, C. M.; Macfarlane, J.; Osborne, R.; Varvill, R.; Bond, A.; Feast, S.

    2010-02-01

    This paper provides an overview of results generated by the static test expansion-deflection rocket nozzle (STERN) project. The engine propellants were gaseous air and hydrogen, with a design chamber pressure and thrust of 102 bar and 5 kN respectively. The maximum chamber pressure achieved was restricted to 55 bar absolute, due to a conservative approach in the test programme dictated by the uncertainty in heat transfer to the pintle. Despite this, the programme achieved many successes, including the first tests of an ED nozzle in the UK; the production of significant amounts of data for both the analysis of the performance of the nozzle and the verification of analysis codes; and an improved compensation performance over that apparent from earlier work, including demonstration of attached flow to the exit plane for all chamber pressures. Whilst the wake pressure was not as high as hoped, ranging between 70% and 95% of ambient and apparently inversely related to chamber pressure, this result is still sufficiently encouraging to warrant further investigation of the type. As importantly, the data derived from the experiments, including performance analysis and wall pressure variations in time and space, are now being made available to the wider academic community, something which for commercial reasons appears to be a unique occurrence for this type of nozzle.

  18. Three-dimensional parabolic equation modeling of mesoscale eddy deflection.

    PubMed

    Heaney, Kevin D; Campbell, Richard L

    2016-02-01

    The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events.

  19. A simple damage detection indicator using operational deflection shapes

    NASA Astrophysics Data System (ADS)

    Sampaio, R. P. C.; Maia, N. M. M.; Almeida, R. A. B.; Urgueira, A. P. V.

    2016-05-01

    Catastrophic structural failure of aircrafts, bridges, buildings and other structures in modern societies has always been of primary concern because of the loss of human lifes and of negative economic impact. The aging of the structures, the growing dependency on their role in our networks of transportation, energy and comunications, the smaller construction tolerances, the bigger power demanded and the media and society awardness to catastrophic events are sufficient motivations for the growing field of structural health monitoring, which aims at assessing the actual condition of a structure and to identify incipient damage. Damage identification can be considered as a two step process, the detection and the diagnosis. The former, and fundamental step, is the confirmation of an efective damage existence. When the response is affirmative, the latter step begins with the diagnosis, and then the questions are: where?, how much?, what type?, when will it fail? In this paper the authors propose a simple method to detect and relatively quantify structural damage by using measured vibrations data, specifically the operational deflections shapes. Numerical simulations and experimental tests are presented to validate the proposed method.

  20. String formulation of space charge forces in a deflecting bunch

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2004-10-01

    The force between two moving point charges, because of its inverse square law singularity, cannot be applied directly in the numerical simulation of bunch dynamics; radiative effects make this especially true for short bunches being deflected by magnets. This paper describes a formalism circumventing this restriction in which the basic ingredient is the total force on a point charge comoving with a longitudinally aligned, uniformly charged string. Bunch evolution can then be treated using direct particle-to-particle, intrabeam scattering, with no need for an intermediate, particle-in-cell, step. Electric and magnetic fields do not appear individually in the theory. Since the basic formulas are both exact (in paraxial approximation) and fully relativistic, they are applicable to beams of all particle types and all energies. But the theory is expected to be especially useful for calculating the emittance growth of the ultrashort electron bunches of current interest for energy recovery linacs and free-electron lasers. The theory subsumes coherent synchrotron radiation and centrifugal space charge force. Renormalized, on-axis, longitudinal field components are in excellent agreement with values from Saldin et al. [DESY Report No. DESY-TESLA-FEL-96-14, 1995;

    Nucl. Instrum. Methods Phys. Res., Sect. ANIMAER0168-9002 417, 158 (1998).10.1016/S0168-9002(98)00623-8

  1. Moth tails divert bat attack: Evolution of acoustic deflection

    PubMed Central

    Barber, Jesse R.; Leavell, Brian C.; Keener, Adam L.; Breinholt, Jesse W.; Chadwell, Brad A.; McClure, Christopher J. W.; Hill, Geena M.; Kawahara, Akito Y.

    2015-01-01

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator–prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey. PMID:25730869

  2. Load-deflection characteristics of small bore insulated pipe clamps

    SciTech Connect

    Severud, L.K.; Clark, G.L.

    1982-01-01

    High temperature LMFBR piping is subject to rapid temperature changes during transient events. Typically, this pipe is supported by specially designed insulated pipe clamps to prevent excessive thermal stress from developing during these transients. The special insulated clamps used on both FFTF and CRBR piping utilize a Belleville spring arrangement to compensate for pipe thermal expansion. Analysis indicates that this produces a non-linear, directionally sensitive clamp spring rate. Since these spring rates influence the seismic response of a supported piping system, it was deemed necessary to evaluate them further by test. This has been accomplished for the FFTF clamps. A more standard insulated pipe clamp, which does not incorporate Belleville springs to accommodate thermal expansion, was also tested. This type clamp is simple in design, and economically attractive. It may have wide application prospects for use in LMFBR small bore auxiliary piping operating at temperatures below 427/sup 0/C. Load deflection tests were conducted on 2.54 CM and 7.62 CM diameter samples of these commercial clamps.

  3. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    SciTech Connect

    Lillaney, Prasheel Caton, Curtis; Martin, Alastair J.; Losey, Aaron D.; Evans, Leland; Saeed, Maythem; Cooke, Daniel L.; Wilson, Mark W.; Hetts, Steven W.

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image based methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles measured

  4. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    SciTech Connect

    Zhou, Weichang E-mail: dstang@hunnu.edu.cn; Peng, Yuehua; Yin, Yanling; Zhou, Yong; Zhang, Yong; Tang, Dongsheng E-mail: dstang@hunnu.edu.cn

    2014-12-15

    High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  5. Carbon-assisted morphological manipulation of CdS nanostructures and their cathodoluminescence properties

    SciTech Connect

    Zhang Meng; Zhai, Tianyou; Wang Xi; Liao Qing; Ma Ying; Yao, Jiannian

    2009-11-15

    CdS nanostructures with different morphologies and sizes were successfully fabricated through a facile and effective carbon-assisted thermal evaporation method. Through simply changing the positions of silicon substrates, the temperatures and the effects of carbon in different zones were modified, and thus the morphologies of CdS nanostructures were varied from multipods to nanobrushes to nanocups. These nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD) and Raman spectroscopy. Cathodoluminescence (CL) measurement shows that the as-grown CdS nanostructures display different luminescent properties. CdS multipods and nanocups show mainly green emission centered at {approx}496 nm. However, nanobrushes exhibit predominant red emission band peaking at {approx}711 nm. These interesting results show that carbon not only affected the growth process but also influenced the properties of CdS nanostructures. - Graphical abstract: A facile and effective carbon-assisted thermal evaporation method is explored to synthesize CdS multipods, nanobrushes and nanocups. These CdS nanostructures display very different optical properties.

  6. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.

    PubMed

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-09-15

    The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC₅₀ value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  7. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    NASA Astrophysics Data System (ADS)

    Zhou, Weichang; Peng, Yuehua; Yin, Yanling; Zhou, Yong; Zhang, Yong; Tang, Dongsheng

    2014-12-01

    High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  8. Synthesis, Characterization, Fluorescence, Photocatalytic and Antibacterial Activity of CdS Nanoparticles Using Schiff Base.

    PubMed

    Ayodhya, Dasari; Venkatesham, M; Kumari, A Santoshi; Reddy, G Bhagavanth; Ramakrishna, D; Veerabhadram, G

    2015-09-01

    Cadmium sulfide nanoparticles (CdS NPs) were successfully prepared using sonochemical method by employing Schiff-base, (2-[(4-methoxy-phenylimino)-methyl]-4-nitro phenol) as a complexing agent. Here, SB is used as a ligand to control the morphology of NPs. XRD patterns and TEM images show that the synthesized CdS NPs have cubic structures with a diameter of about 2-10 nm. The formation of CdS NPs and their optical, structure, thermal and morphologies were studied by means of UV-vis DRS, fluorescence, FTIR, zeta potential, XRD, SEM and TEM. The interactions between CdS NPs and SB were investigated in an aqueous solution using fluorescence spectroscopy. The fluorescence quenching studies suggest that SB quenches the fluorescence of CdS NPs effectively. The degradation kinetics of methyl red (MR) by the photocatalyst was followed by Langmuir-Hinshelwood model. The results revealed that photocatalytic degradation of MR by SB capped CdS NPs could be considered as a practical and reliable technique for the removal of environmental pollutants. The antibacterial activity of samples was evaluated against E. coli, S. aureus and P. aeruginosa and the results were compared. SB and SB capped CdS NPs could be a potential antibacterial compounds after further investigation. PMID:26275559

  9. MoS2/reduced graphene oxide hybrid with CdS nanoparticles as a visible light-driven photocatalyst for the reduction of 4-nitrophenol.

    PubMed

    Peng, Wen-chao; Chen, Ying; Li, Xiao-yan

    2016-05-15

    Photocatalytic reduction of nitroaromatic compounds to aromatic amines using visible light is an attractive process that utilizes sunlight as the energy source for the chemical conversions. Herewith we synthesized a composite material consisting of CdS nanoparticles grown on the surface of MoS2/reduced graphene oxide (rGO) hybrid as a novel photocatalyst for the reduction of 4-nitrophenol (4-NP). The CdS-MoS2/rGO composite is shown as a high-performance visible light-driven photocatalyst. Even without a noble-metal cocatalyst, the catalyst exhibited a great activity under visible light irradiation for the reduction of 4-NP to much less toxic 4-aminophenol (4-AP) with ammonium formate as the sacrificial agent. Composite CdS-0.03(MoS2/0.01rGO) was found to be the most effective photocatalyst for 4-NP reduction. The high photocatalytic performance is apparently resulted from the synergetic functions of MoS2 and graphene in the composite, i.e. the cocatalysts serve as both the active adsorption sites for 4-NP and electron collectors for the separation of electron-hole pairs generated by CdS nanoparticles. The laboratory results show that the CdS-MoS2/rGO composite is a low-cost and stable photocatalyst for effective reduction and detoxification of nitroaromatic compounds using solar energy.

  10. Preparation and Structural Analysis of CdS Nanoparticle Embedded Polyurethane Nanocomposites

    SciTech Connect

    Indolia, Ajay Pal; Kumar, Purushottam; Gaur, M. S.

    2011-07-15

    Polymer nanocomposite samples of different weight ratio of CdS were developed by solution embedding of nanoparticles in polyurethane. XRD and Scanning Electron Microscopy (SEM) were used to understand the structural properties of polymer nanocomposite samples. SEM micrograph demonstrates the dispersion of CdS nanoparticles in polymer matrix. It has been observed that crystallinity of PU decreases with increase in concentration of CdS nanoparticles. The XRD data show the characteristic peaks of nanoparticles (i.e.CdS) in nanocomposite samples, which confirm the nanostructure formation in polymer matrix.

  11. PVP capped CdS nanoparticles for UV-LED applications

    SciTech Connect

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-24

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  12. PVP capped CdS nanoparticles for UV-LED applications

    NASA Astrophysics Data System (ADS)

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-01

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  13. Synthesis of CdS nanoparticles for photocatalytic application of methyleneblue degradation

    SciTech Connect

    Muthuraj, V.; Umadevi, M.; Sankarasubramanian, K.; Kajamuhideen, M. S.

    2014-04-24

    CdS nanoparticles were prepared by the reaction of cadmium acetate with thiourea in the presence and absence of methylene blue dye (MB). The nanoparticles were characterized by, XRD, FT-IR, UV-Vis. XRD study shows the presence of hexagonal phase for the nanoparticles whereas in case of the bulk samples only the hexagonal phase is observed. Fourier transform infrared spectroscopy (FT-IR) showed a strong interaction of methyl groups with CdS nanoparticles. The degradation of methylene blue was analysed using UV-Vis absorbance spectrum. Thus the results authenticate that methylene blue dye influences the structural and optical properties of the CdS nanoparticles.

  14. CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property

    NASA Astrophysics Data System (ADS)

    Guo, Jixi; Guo, Mingxi; Jia, Dianzeng; Song, Xianli; Tong, Fenglian

    2016-08-01

    The coal based activated carbon nanofibers (CBACFs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and acid treated coal. Cadmium sulfide (CdS) nanoparticles loaded on CBACFs were fabricated by solvothermal method. The obtained samples were characterized by FESEM, TEM, and XRD. The results reveal that the CdS nanoparticles are homogeneously dispersed on the surfaces of CBACFs. The CdS/CBACFs nanocomposites exhibited higher photoactivity for photodegradation of methyl blue (MB) under visible light irradiation than pure CdS nanoparticles. CBACFs can be used as low cost support materials for the preparation of nanocomposites with high photocatalytic activity.

  15. New results from the CERN-SPS beam deflection experiments with bent crystals

    NASA Astrophysics Data System (ADS)

    Baurichter, A.; Kirsebom, K.; Medenwaldt, R.; Møller, S. P.; Worm, T.; Uggerhøj, E.; Mikkelsen, U.; Graftström, P.; Gatignon, L.; Elsener, K.; Doble, N.; Biino, C.; Freund, A.; Vilakazi, Z.; Hage-Ali, M.; Siffert, P.; Clément, M.

    1996-10-01

    Results from five distinct bending experiments performed recently in the H8 beam at CERN are presented. Firstly, deflection of a positive pion beam at 200 GeV/c is compared to the "standard" 450-GeV/c proton beam for a bending angle of 3.1 mrad along the (111) plane in a 50 mm silicon crystal. Second, deflection of negative pions at 200 GeV/c is investigated for the same crystal, for incidence along the (111) plane as well as the <110> axis. Small deflection effects are seen, but no negative particles are bent through the full bending angle of the crystal. Third, the first results from beam deflection at high energy using a germanium crystal are shown. Slightly higher deflection efficiencies than for silicon are seen for large bending angles, but significantly smaller than expected for such a crystal with higher atomic number. Fourth, deflection efficiencies using a strongly irradiated silicon crystal have been measured for the first time, and a small reduction in efficiency is seen in the irradiated region. Finally, deflection of positive particles using axial alignment of a bent silicon crystal has been investigated at 450 GeV/c. Qualitatively similar behaviour as in previous experiments at 12 GeV/c is seen; the beam splits into several beams corresponding to the different planes, and even weak planes are observed.

  16. Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-12-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.

  17. Model of phase distribution of hydrophobic organic chemicals in cyclodextrin-water-air-solid sorbent systems as a function of salinity, temperature, and the presence of multiple CDs

    NASA Astrophysics Data System (ADS)

    Blanford, W. J.

    2013-12-01

    Environmental and other applications of cyclodextrins (CD) often require usage of high concentra- tion aqueous solutions of derivatized CDs. In an effort to reduce the costs, these studies also typically use technical grades where the purity of the CD solution and the degree of substitution has not been reported. Further, this grade of CD often included high levels of salt and it is commonly applied in high salinity systems. The mathematical models for water and air partitioning coefficients of hydrophobic organic chemicals (HOC) with CDs that have been used in these studies under-estimate the level of HOC within CDs. This is because those models (1) do not take into account that high concentrations of CDs result in significantly lower levels of water in solution and (2) they do not account for the reduction in HOC aqueous solubility due to the presence of salt. Further, because they have poor knowledge of the CD molar concentration in their solu- tions, it is difficult to draw comparisons between studies. Herein is developed a mathematical model where cyclo- dextrin is treated as a separate phase whose relative volume is calculated from its apparent molar volume in solution and the CD concentration of the solution. The model also accounts for the affects of temperature and the presence of salt in solution through inclusion of modified versions of the Van't Hoff and Setschenow equations. With these capabilities, additional equations have been developed for calculating HOC phase distribution in air-water-CD-solid sorbent systems for a single HOC and between water and CD for a system containing multiple HOCs as well as multiple types of cyclodextrin.

  18. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  19. Deflection of a hyperbaric plasma arc in a transverse magnetic field

    SciTech Connect

    Richardson, I.M.

    1993-12-31

    Results are presented concerning the influence of operating parameters on the susceptibility of the plasma arc to deflection by an externally generated transverse magnetic field. Arc deflection susceptibility is found to increase rapidly with rising ambient pressure and is significantly greater for the free burning TIG arc compared with the weakly constricted (soft) plasma arc. In agreement with previously published work, it has been shown that for small amplitude deflections the arc column behaves in a manner analogous to a solid body. However, above a critical field strength the structure of the column undergoes a significant change characterized by a rapid deterioration in stability; mechanisms for this behavior are discussed.

  20. RF design of normal conducting deflecting structures for the Advanced Photon Source.

    SciTech Connect

    Dolgashev, V.; Borland, M.; Waldschmidt, G.; Accelerator Systems Division; SLAC

    2007-08-01

    Use of normal conducting deflecting structures for production of short X-ray pulses is now under consideration at Argonne's Advanced Photon Source (APS). The structures have to produce up to 4 MV maximum deflection per pair of structures with a 1 kHz repetition rate. At the same time, the structures should not cause deterioration of beam properties in the APS ring. Following these requirements, we proposed 2815 MHz standing wave deflecting structures with heavy wakefield damping. In this paper we discuss design considerations and present our current design.

  1. Focusing crystal device for deflecting a divergent 50-GeV proton beam

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Britvich, G. I.; Bugorskii, A. P.; Bulgakov, M. K.; Durum, A. A.; Kostin, M. Yu.; Lutchev, A. V.; Maisheev, V. A.; Sandomirskii, Yu. E.; Pitalev, V. I.; Poluektov, I. V.; Chesnokov, Yu. A.; Chirkov, P. N.; Yanovich, A. A.

    2016-07-01

    At large accelerators, bent crystals are employed to deflect weakly divergent proton beams at the stages of extraction and collimation. We demonstrate that a divergent particle beam may be efficiently deflected using a crystal with a focusing edge. A proton beam with divergence near 1 mrad, which exceeds the Lindhard angle by a factor of 30, has been experimentally deflected by 1.8 mrad with efficiency near 15%. The proposed focusing crystal may serve as an element of a novel optical system for secondary-particle beams in the TeV energy region.

  2. Light deflection with torsion effects caused by a spinning cosmic string

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet

    2016-06-01

    Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculation shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion.

  3. An analytical approach of CO2 injection induced caprock deflection

    NASA Astrophysics Data System (ADS)

    Li, Chao; Barès, Paul; Laloui, Lyesse

    2014-05-01

    CO2 storage in geological formation, especially in deep aquifers, is becoming a compromising method to reduce the impact of CO2 on the greenhouse effect. Practically, large-volume (>1Mt/year) of CO2 could be injected into a deep aquifer. However, the response of such system is complex because of coupling between the flow and mechanical responses. High rate injection could result in an abrupt fluid pressures build-up, deforming the aquifer and result in surface uplifting, which highly affect public acceptation to the CO2 storage projects. The study focuses on a specific problem related to the surface uplift induced by the injection of CO2 at depth. The methodology in this study includes the development of a mathematical model that incorporates elastic behaviour of storage mediums and two immiscible fluids (CO2 and water) flow within the aquifers while surface rock layer is modelled as a thin plate. Governing equations are solved for the axisymmetric flexure deflection due to a constant rate injection of CO2. Coupling between porosity and permeability is included via an iterative schema. Numerical integration stability has been improved as well. Results show that this semi-analytical solution is capable to capture the pressure build-up during the very early stage of injection, resulting in a high rate surface uplift. With hydromechanical effects, pressure tends to stabilize and surface deformation rate decreases. Compared to FEM simulation, the calculation time carried out by the semi-analytical solution is very short. It can be employed as a preliminary design tool for risk assessment such as injection rate, porosity, rock properties and geological structures. This semi-analytical solution provides a convenient way to estimate the influence of high rate injection of CO2 on the surface uplift. The methodology in this development can easily incorporate other pressure distributions. Thus one can benefit from the advances in hydrology researches as well.

  4. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    SciTech Connect

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung; Paul, Brian; Palo, Daniel R.

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C, with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.

  5. Computer code to interchange CDS and wave-drag geometry formats

    NASA Technical Reports Server (NTRS)

    Johnson, V. S.; Turnock, D. L.

    1986-01-01

    A computer program has been developed on the PRIME minicomputer to provide an interface for the passage of aircraft configuration geometry data between the Rockwell Configuration Development System (CDS) and a wireframe geometry format used by aerodynamic design and analysis codes. The interface program allows aircraft geometry which has been developed in CDS to be directly converted to the wireframe geometry format for analysis. Geometry which has been modified in the analysis codes can be transformed back to a CDS geometry file and examined for physical viability. Previously created wireframe geometry files may also be converted into CDS geometry files. The program provides a useful link between a geometry creation and manipulation code and analysis codes by providing rapid and accurate geometry conversion.

  6. Development of a Higher Fidelity Model for the Cascade Distillation Subsystem (CDS)

    NASA Technical Reports Server (NTRS)

    Perry, Bruce; Anderson, Molly

    2014-01-01

    Significant improvements have been made to the ACM model of the CDS, enabling accurate predictions of dynamic operations with fewer assumptions. The model has been utilized to predict how CDS performance would be impacted by changing operating parameters, revealing performance trade-offs and possibilities for improvement. CDS efficiency is driven by the THP coefficient of performance, which in turn is dependent on heat transfer within the system. Based on the remaining limitations of the simulation, priorities for further model development include: center dot Relaxing the assumption of total condensation center dot Incorporating dynamic simulation capability for the buildup of dissolved inert gasses in condensers center dot Examining CDS operation with more complex feeds center dot Extending heat transfer analysis to all surfaces

  7. Mixed-solvothermal synthesis of CdS micro/nanostructures and their optical properties

    NASA Astrophysics Data System (ADS)

    Zhong, Shengliang; Zhang, Linfei; Huang, Zhenzhong; Wang, Shangping

    2011-01-01

    Several novel cadmium sulfide (CdS) micro/nanostructures, including cauliflower-like microspheres, football-like microspheres, tower-like microrods, and dendrites were controllably prepared via an oxalic acid-assisted solvothermal route using ethylene glycol (EG) and H2O as pure and mixed solvents with different S sources. The as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM) and UV-vis spectrophotometer (UV). It was found that CdS micro/nanostructures can be selectively obtained by varying the composition of solvent, concentration of oxalic acid, and sulfur sources. UV-vis absorption spectra reveal that their absorption properties are shape-dependent. The possible formation process of the CdS micro/nanostructures was briefly discussed. This route provides a facile way to tune the morphologies of CdS over a wide range.

  8. Structural and chemical properties of highly oriented cadmium sulfide (CdS) cauliflower films

    NASA Astrophysics Data System (ADS)

    Vemuri, R. S.; Gullapalli, S. K.; Zubia, D.; McClure, J. C.; Ramana, C. V.

    2010-08-01

    Cadmium sulfide (CdS) films have been produced by sputter-deposition varying the sputtering-power ( P) in the range of 60-120 W. The crystal structure, morphology and chemical quality of the CdS films has been investigated employing X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray spectrometry (EDS). Structural characterization indicates that all the CdS layers exhibit cauliflower morphology. Highly oriented, single phase hexagonal-CdS films can be produced at P = 75-105 W while the films at other power contain mixed phases. Characterization using XPS and EDS indicate that the CdS layers are nearly stoichiometric at P = 75-105 W, at which point S-deficiency is induced resulting in Cd-rich-CdS layers.

  9. Effect of surface scattering of carriers in the photoconductivity spectra of CdS

    SciTech Connect

    Batyrev, A. S. Bisengaliev, R. A.; Novikov, B. V.

    2013-05-15

    The effect caused by electron scattering at a semiconductor surface is revealed in the low-temperature (77 K) photoconductivity spectra of second-group CdS crystals subjected to the influence of an external enriching transverse electric field.

  10. Study on the effect of high-temperature air treatment on particulate CdS

    NASA Astrophysics Data System (ADS)

    Zhengshi, Chen; Huqing, Zhang; Zhensheng, Jin

    1989-07-01

    The influence of high-temperature air treatment on the surface composition and structure of CdS was studied by means of XPS, XRD, and H +/OH - adsorption. The results show that the relative concentration of surface oxygen atoms increases considerably with duration of the air treatment, but there is no apparent change in percentage of oxygen atoms consumed in forming CdSO 4. In the ion sputtering of samples treated with different times, it was found that the CdO can be formed deep within the CdS particles, but formation of CdSO 4 takes place only at the surface. The high-temperature air treatment also increases the surface basicity of CdS and the content of hexagonal crystal form in bulk CdS.

  11. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks.

    PubMed

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results.

  12. Comparison of electromagnetic, thermal and mechanical calculations with rf test results in rf-dipole deflecting/crabbing cavities

    SciTech Connect

    Park, HyeKyoung; De Silva, Subashini U.; Delayen, Jean R.

    2013-12-01

    The current requirements of higher gradients and strict dimensional constraints in the emerging applications have required the designing of compact deflecting and crabbing rf structures. The superconducting rf-dipole cavity is one of the first novel compact designs with attractive properties such as higher gradients, higher shunt impedance and widely separated higher order modes. The recent tests performed on proof-of-principle designs of the rf-dipole geometry at 4.2 K and 2.0 K in the vertical test area at Jefferson Lab have proven the designs to achieve higher gradients with higher intrinsic quality factors and easily processed multipacting conditions. The cavity characteristics, such as pressure sensitivity and Lorentz force detuning, were studied using ANSYS before the fabrication. These characteristics were measured during the cavity test. The comparison between the simulation and the measurement provides insight how the simulation can be used for design and fabrication of future cavities.

  13. Deflection tomographic reconstruction of a complex flow field from incomplete projection data

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; He, Yan; Song, Yang; He, Anzhi

    2009-11-01

    Tomographic techniques are used for the investigation of complex flow fields by means of deflectometric methods. In this experiment, a modified algebraic reconstruction technique (ART) was applied to moiré deflection tomography. The algorithm was derived from the basic deflection formula and the deflection angles were used directly in iteration, which is completely different from the conventional ARTs with integral calculation that are commonly used in deflection tomography. A smoothing scheme was employed to improve the reconstruction under ill-posed conditions. The reconstruction technique was tested using simulated data for incompleteness conditions similar to those found in the experimental data. The complex density field with an opaque object in a supersonic wind tunnel was reconstructed from limited view angle projections, and the experimental reconstruction was then compared with the result obtained from the computational fluid dynamic analysis. The following paper details the experiment and discusses some measurement errors that occurred in the process.

  14. Mission analysis for the ion beam deflection of fictitious asteroid 2015 PDC

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio; Amato, Davide; Cano, Juan Luis

    2016-01-01

    Based on a hypothetical asteroid impact scenario proposed during the 2015 IAA Planetary Defense Conference (PDC), we study the deflection of fictitious asteroid 2015 PDC starting from ephemeris data provided by the conference organizers. A realistic mission scenario is investigated that makes use of an ion beam shepherd spacecraft as a primary deflection technique. The article deals with the design of a low-thrust rendezvous trajectory to the asteroid, the estimation of the propagated covariance ellipsoid and the outcome of an ion beam slow-push deflection starting from three worst case scenarios (impacts in New Delhi, Dhaka and Tehran). Displacing the impact point towards an extremely low-populated, easy-to-evacuate region, as opposed to full deflection, is found to be a more effective mitigation approach. Mission design, technical and political aspects are discussed.

  15. Deflection of slow light by magneto-optically controlled atomic media

    SciTech Connect

    Zhou, D. L.; Wang, R. Q.; Zhou, Lan; Yi, S.; Sun, C. P.

    2007-11-15

    We present a semiclassical theory for light deflection by a coherent {lambda}-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect caused by the inhomogeneous magnetic field (or due to inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency cancels medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the two-photon detuning dependent behaviors and larger deflection angles by three orders of magnitude for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field.

  16. The effect of long-term deflection on permanent deformation of nickel-titanium archwires.

    PubMed

    Hudgins, J J; Bagby, M D; Erickson, L C

    1990-01-01

    The clinician must now consider the alloy along with cross-sectional shape and size when selecting archwires. The purpose of this study is to quantify permanent deformation after long-term deflection of available nickel-titanium archwires. Nine nickel-titanium, one beta-titanium and one stainless steel archwires, .016 inch round, were deflected into orthodontic brackets of simulated archform. One lateral incisor was positioned to yield a deflection of 5 mm in a lingual direction. After wire deactivation, deformation was measured at 1, 14, and 28 days. Two-way ANOVA and Tukey's critical difference tests were used to determine statistical differences. The nickel-titanium wires exhibited better springback characteristics and less permanent deformation than the stainless steel and TMA wires. Several wires increased deformation as deflection time increased. No clinically significant difference was found between presently available nickel-titanium wires in terms of permanent deformation, long- or short-term. PMID:2256566

  17. Superconducting RF Deflecting Cavity Design and Prototype for Short X-ray Pulse Generation

    SciTech Connect

    Shi, Jiaru; Chen, H.; Tang, C.-X.; Cheng, Guangfeng; Ciovati, Gianluigi; Kneisel, Peter; Rimmer, Robert; Slack, Gary; Turlington, Larry; Wang, Haipeng; Li, D.; Nassiri, Alireza; Waldschmidt, G.J.

    2008-07-01

    Deflecting RF cavities are proposed to be used in generating short x-ray pulses (on ~1-picosecond order) at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL)* using a novel scheme by Zholents**. To meet the required deflecting voltage, impedance budget from higher order, lower order and the same order modes (HOM, LOM and SOM) of the APS storage ring, extensive deflecting cavity design studies have been conducted with numerical simulations and cavity prototypes. In this paper, we report recent progress on a single cell S-band (2.8-GHz) superconducting deflecting cavity design with waveguide damping. A copper and a niobium prototype cavity were fabricated and tested, respectively to benchmark the cavity and damping designs. A new damping scheme has been proposed which provides stronger damping to both HOM and LOM by directly coupling to a damping waveguide on the cavity equator.

  18. Experimental results for a two-dimensional supersonic inlet used as a thrust deflecting nozzle

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Burstadt, Paul L.

    1984-01-01

    Nearly all supersonic V/STOL aircraft concepts are dependent on the thrust deflecting capability of a nozzle. In one unique concept, referred to as the reverse flow dual fan, not only is there a thrust deflecting nozzle for the fan and core engine exit flow, but because of the way the propulsion system operates during vertical takeoff and landing, the supersonic inlet is also used as a thrust deflecting nozzle. This paper presents results of an experimental study to evaluate the performance of a supersonic inlet used as a thrust deflecting nozzle for this reverse flow dual fan concept. Results are presented in terms of nozzle thrust coefficient and thrust vector angle for a number of inlet/nozzle configurations. Flow visualization and nozzle exit flow survey results are also shown.

  19. Systematic investigation of geometrical parameters’ influence on the appearance of surface deflections in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Weinschenk, A.; Volk, W.

    2016-08-01

    Surface deflections occur during springback, which follows deep drawing. They highly affect the visual appearance of outer skin components and are, therefore, undesirable. In this work, the influence of the part geometry on the shaping of surface deflections is investigated. The geometrical parameters of an exemplary component are varied and existing surface deflections are detected. For this, a component consisting of a multiple curved surface with an inserted door handle hollow is used, and AA6016, with a sheet thickness of 1.0 mm, as well as DC06, with a sheet thickness of 0.7 mm, are chosen. After the simulations are performed in AutoForm plus R6 TM , a virtual stone, Three-Point Gauging and the analysis of curvatures of the part before and after springback are used to detect surface deflections.

  20. The importance of being elastic: deflection of a badminton racket during a stroke.

    PubMed

    Kwan, Maxine; Rasmussen, John

    2010-03-01

    The deflection profiles of a badminton racket during strokes performed by elite and world-class badminton players were recorded by strain gauges and subsequently analysed to determine the role of shaft stiffness in racket performance. Deflection behaviour was consistent in all strokes across all players, suggesting a controlled use of racket elasticity. In addition, all impacts occurred within 100 ms of each other, a duration in which deflection velocity provides an increase in racket velocity, indicating that the players were able to use racket elasticity to their advantage. Since deflection behaviour is a product of the racket-player interaction, further work is required to determine the effects of different racket properties and player techniques on the elastic response of rackets during strokes.

  1. An oilspill trajectory analysis model with a variable wind deflection angle

    USGS Publications Warehouse

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  2. Synthesis of uniform CdS nanowires in high yield and its single nanowire electrical property

    SciTech Connect

    Yan Shancheng; Sun Litao; Qu Peng; Huang Ninping; Song Yinchen; Xiao Zhongdang

    2009-10-15

    Large-scale high quality CdS nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. Field emission scan electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that the CdS nanowires have diameter of about 26 nm and length up to several micrometres. High resolution TEM (HRTEM) study indicates the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by UV-vis absorption spectra, photoluminescence spectra and Raman spectra. The resistivity, electron concentration and electron mobility of single NW are calculated by fitting the symmetric I-V curves measured on single NW by the metal-semiconductor-metal model based on thermionic field emission theory. - Graphical abstract: Large-scale high quality CdS nanowires (NWs) with uniform diameter were synthesized by using a rapid and simple solvothermal route. The reaction time is reduced to 2 h, comparing to other synthesis which needed long reaction time up to 12 h. In addition, the as-prepared CdS nanowires have more uniform diameter and high yield. More importantly, the I-V curve of present single CdS nanowire has a good symmetric characteristic as expected by the theory.

  3. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    SciTech Connect

    Kim, Donguk; Park, Young; Kim, Minha; Choi, Youngkwan; Park, Yong Seob; Lee, Jaehyoeng

    2015-09-15

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity, surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.

  4. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium.

    PubMed

    Chen, Guiqiu; Yi, Bin; Zeng, Guangming; Niu, Qiuya; Yan, Ming; Chen, Anwei; Du, Jianjian; Huang, Jian; Zhang, Qihua

    2014-05-01

    This study details a novel method for the extracellular microbial synthesis of cadmium sulfide (CdS) quantum dots (QDs) by the white rot fungus Phanerochaete chrysosporium. P. chrysosporium was incubated in a solution containing cadmium nitrate tetrahydrate, which became yellow from 12h onwards, indicating the formation of CdS nanocrystals. The purified solution showed a maximum absorbance peak between 296 and 298 nm due to CdS particles in the quantum size regime. The fluorescence emission at 458 nm showed the blue fluorescence of the nanoparticles. X-ray analysis of the nanoparticles confirmed the production of CdS with a face-centered cubic (fcc) crystal structure. The average grain size of the nanoparticles was approximately 2.56 nm, as determined from the full width at half-maximum (FWHM) measurement of the most intense peak using Scherer's equation. Transmission electron microscopic analysis showed the nanoparticles to be of a uniform size with good crystallinity. The changes to the functional groups on the biomass surface were investigated through Fourier transform infrared spectroscopy. Furthermore, the secretion of cysteine and proteins was found to play an important role in the formation and stabilization of CdS QDs. In conclusion, our study outlines a chemical process for the molecular synthesis of CdS nanoparticles.

  5. Phase transfer of CdS nanocrystals mediated by heptamine β-cyclodextrin.

    PubMed

    Depalo, Nicoletta; Comparelli, Roberto; Huskens, Jurriaan; Ludden, Manon J W; Perl, Andras; Agostiano, Angela; Striccoli, Marinella; Curri, M Lucia

    2012-06-12

    A fundamental and systematic study on the fabrication of a supramolecularly assembled nanostructure of an organic ligand-capped CdS nanocrystal (NC) and multiple heptamine β-cyclodextrin ((NH(2))(7)βCD) molecules in aqueous solution has been here reported. The functionalization process of presynthesized hydrophobic CdS NCs by means of (NH(2))(7)βCD has been extensively investigated by using different spectroscopic and structural techniques, as a function of different experimental parameters, such as the composition and the concentration of CD, the concentration of CdS NCs, the nature of the NC surface capping ligand (oleic acid and octylamine), and the organic solvent. The formation of a complex based on the direct coordination of the (NH(2))(7)βCD amine groups at the NC surface has been demonstrated and found responsible for the CdS NC phase transfer process. The amine functional group in (NH(2))(7)βCD and the appropriate combination of pristine capping agent coordinating the NC surface and a suitable solvent have been found decisive for the success of the CdS NC phase transfer process. Furthermore, a layer-by-layer assembly experiment has indicated that the obtained (NH(2))(7)βCD functionalized CdS NCs are still able to perform the host-guest chemistry. Thus, they offer a model of a nanoparticle-based material with molecular receptors, useful for bio applications.

  6. A Novel Method for the Preparation of CdS Quantum Dots Sensitized Solar Cells Based on Free-Standing and Through-Hole TiO2 Nanotube Arrays.

    PubMed

    Wang, Yang; Li, Zhen; Li, Fei; Tian, Yunfeng; Zhao, Wen; Liu, Xueqin; Yang, Jianbo

    2016-06-01

    The crystallized free-standing through-hole TiO2 nanotube arrays (TNAs) membranes were fabricated by a facile method. CdS quantum dots (QDs) are assembled onto free-standing through-hole NTAs films using successive ionic layer adsorption and reaction (SILAR) process. The CdS/TNAs were easily transferred to the fluorine-doped tin oxide glass to form photoanodes after they were sensitized by modifying the traditional procedure. The morphology and crystalline phase of the TiO2 nanotubes were studied by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The cells with 5 SILAR cycles show photovoltaic conversion efficiency as high as 3.34% under simulated sunlight (AM 1.5, 100 mW x cm(-2)). Obviously, the new approach promotes the uniform distribution of CdS on the densely aligned TNAs and prevents the clogging of CdS quantum dots (QDs) at the TiO2 nanotube mouth. Such enhanced properties may be ascribed to the strong combination between CdS and TiO2, favorable for charge separation of TNAs. PMID:27427675

  7. A new 9T global shutter pixel with CDS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Cheng; Zhou, Quan; Wang, Xinyang

    2015-04-01

    Benefiting from motion blur free, Global shutter pixel is very widely used in the design of CMOS image sensors for high speed applications such as motion vision, scientifically inspection, etc. In global shutter sensors, all pixel signal information needs to be stored in the pixel first and then waiting for readout. For higher frame rate, we need very fast operation of the pixel array. There are basically two ways for the in pixel signal storage, one is in charge domain, such as the one shown in [1], this needs complicated process during the pixel fabrication. The other one is in voltage domain, one example is the one in [2], this pixel is based on the 4T PPD technology and normally the driving of the high capacitive transfer gate limits the speed of the array operation. In this paper we report a new 9T global shutter pixel based on 3-T partially pinned photodiode (PPPD) technology. It incorporates three in-pixel storage capacitors allowing for correlated double sampling (CDS) and pipeline operation of the array (pixel exposure during the readout of the array). Only two control pulses are needed for all the pixels at the end of exposure which allows high speed exposure control.

  8. Spin Relaxation in Spherical CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Nahalkova, P.; Sprinzl, D.; Nemec, P.; Maly, P.; Gladilin, V. N.; Devreese, J. T.

    2006-03-01

    We present results of the time-resolved spin-sensitive differential transmission experiments and the quantitative theoretical analysis of the spin relaxation mechanism in quasi-spherical CdS quantum dots (QD) in a glass matrix. The measured decay of the degree of circular polarization (DCP) on ns timescale can be explained well by intralevel exciton transitions with electron spin flip, driven by the electron-hole exchange interaction and assisted by two LO phonons. The predicted spin relaxation rates for different QD sizes and temperatures are in line with experimentally determined values. The developed theoretical model provides also a qualitative understanding of the observed behavior of DCP as a function of central energy of pump and probe pulses. This work was supported by the Ministry of Education of the Czech Republic in the framework of research plan MSM 0021620834 and the research centre LC510, as well as by the GOA BOF UA 2000, IUAP, FWO-V projects G.0274.01N, G.0435.03, WOG WO.035.04N (Belgium) and the European Commission SANDiE Network of Excellence, contract No. NMP4-CT-2004-500101.

  9. Microfluidic immunomagnetic multi-target sorting--a model for controlling deflection of paramagnetic beads.

    PubMed

    Tsai, Scott S H; Griffiths, Ian M; Stone, Howard A

    2011-08-01

    We describe a microfluidic system that uses a magnetic field to sort paramagnetic beads by deflecting them in the direction normal to the flow. In the experiments we systematically study the dependence of the beads' deflection on bead size and susceptibility, magnet strength, fluid speed and viscosity, and device geometry. We also develop a design parameter that can aid in the design of microfluidic devices for immunomagnetic multi-target sorting. PMID:21677937

  10. Solutions of the heat conduction equation in multilayers for photothermal deflection experiments

    NASA Technical Reports Server (NTRS)

    Mcgahan, William A.; Cole, K. D.

    1992-01-01

    Analytical expressions for temperature and laser beam deflection in multilayer medium is derived using Green function techniques. The approach is based on calculation of the normal component of heat fluxes across the boundaries, from which either the beam deflections or the temperature anywhere in space can be found. A general expression for the measured signals for the case of four-quadrant detection is also presented and compared with previous calculations of detector response for finite probe beams.

  11. Design and Development of Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    SciTech Connect

    Payagalage Subashini Uddi De Silva, Jean Delayen

    2012-07-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties that is being considered for a number of applications. We present the designs of a 499 MHz deflecting cavity developed for the Jefferson Lab 12 GeV Upgrade and a 400 MHz crabbing cavity for the LHC High Luminosity Upgrade. Prototypes of these two cavities are now under development and fabrication.

  12. Testing gravity at the second post-Newtonian level through gravitational deflection of massive particles

    SciTech Connect

    Bhadra, A.; Sarkar, K.; Nandi, K. K.

    2007-06-15

    Expression for second post-Newtonian level gravitational deflection angle of massive particles is obtained in a model independent framework. Comparison of theoretical values with the observationally constructed values of post-Newtonian parameters for massive particles offers the future possibility of testing at that level competing gravitational theories as well as the equivalence principle. Advantage of studying gravitational deflection of massive particles over that of massless particles in testing gravity is discussed.

  13. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories

    NASA Technical Reports Server (NTRS)

    Khdeir, A. A.; Reddy, J. N.

    1991-01-01

    Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories.

  14. Effect of acid solutions on plants studied by the optical beam deflection method.

    PubMed

    Nie, Liangjiao; Kuboda, Mitsutoshi; Inoue, Tomomi; Wu, Xingzheng

    2013-12-01

    The optical beam deflection method was applied to study the effects of acid solution on both a terrestial and aquatic plants Egeria and Cerastium, which are common aquatic plant and terrestial weed respectively. A probe beam from a He-Ne laser was passed through a vicinity of a leaf of the plants, which were put in culture dishes filled with acid solutions. Deflection signals of the probe beam were monitored and compared for acid solutions with different pH values. The results of Egria showed that the deflection signals changed dramatically when pH values of acid solutions were 2.0 and 3.0, while little at pH of 4.0 and 5.0. For Cerastium when pH were below 3.0, deflection signals changed greatly with time at the begining. After a certain period of time, deflection signals changed little with time. When pH value was above 4.0, deflection signals of Cerastium were still changing with time even after 20 hours. The results suggested that the damage threshold of pH was between 3.0 and 4.0 for both the land and aquatic plants.

  15. Design considerations for negative Poisson ratio structures under large deflection for MEMS applications

    NASA Astrophysics Data System (ADS)

    Levy, O.; Krylov, S.; Goldfarb, I.

    2006-10-01

    Negative Poisson ratio (NPR) materials based on a re-entrant honeycomb structure expand in the direction perpendicular to an externally exerted tension. This feature makes NPR structures attractive for use in microsensors and actuators as versatile motion transformers. When implemented in microdevices, where slender and flexible micromachined elements are widely used, the NPR material can tolerate large deflections. In the present work, motivated by the development of an optical sensor based on a photonic crystal device attached to a NPR based structure, we analyze the behavior of re-entrant honeycomb structures under large deflections. The model of the structure is built using extensible elastica theory for the description of geometrically nonlinear beams with an extensible axis. Results provided by the analytical model are compared with numerical results obtained by the finite element method. It is shown that the Poisson ratio (ν), which is defined entirely by the initial geometry of the structure undergoing small deflections, becomes strain dependent at large deflections. The extensibility of the beam's axis has a strong influence on the ν of the structure at large deflections and leads to the appearance of a minimum on the strain-ν curve. An example of design is demonstrated which yields a desired strain-independent ν of the NPR structure under large deflections.

  16. Deflection-Based Structural Loads Estimation From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  17. Using ForeCAT Deflections and Rotations to Constrain the Early Evolution of CMEs

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Colaninno, R. C.; Vourlidas, A.

    2016-08-01

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs from the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.

  18. Record Deflection Efficiencies Measured for High Energy Protons in a Bent Germanium Crystal

    NASA Astrophysics Data System (ADS)

    Elsener, K.; Biino, C.; Clement, M.; Doble, N.; Gatignon, L.; Grafstrom, P.; Mikkelsen, U.; Kirsebom, K.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Freund, A.

    1997-05-01

    New experimental results on the deflection of 450 GeV/c and 200 GeV/c protons in a bent Ge crystal are presented. At 450 GeV/c, the 50 mm long crystal gave record deflection efficiencies up to 60% for small angles (1 mrad), while at angles as large as 12 mrad, the efficiency is about 25 times larger than for a silicon crystal of the same size. Measurements up to 20 mrad deflection angle have been performed at 200 GeV/c as well as 450 GeV/c - the lower bending dechanneling leads to a rather slow decrease in efficiency at lower momenta, and 15% of the 200 GeV/c beam hitting the crystal are still deflected at the largest angles measured. These experimental results are in good agreement with a model for channeling deflection developed by Ellison and give confidence in extrapolations to higher energies (e.g. to LHC), other crystal materials or different deflection angles.

  19. Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending

    NASA Astrophysics Data System (ADS)

    Li, Dao-Kui; Li, Xian-Fang

    2016-08-01

    Three-point bending of a beam is studied based on the Timoshenko beam theory. Large deflection and large rotation of a beam resting on simple supports with friction are calculated for a concentrated force acting at the midspan. Using the Lagrangian kinematic relations, a system of non-linear differential equations are obtained for a prismatic shear-deformable Timoshenko beam. Exact solutions for the deflection, horizontal displacement, and rotation of cross-section are derived analytically. Two deflections of small and large scale exist under three-point bending. The solutions corresponding to linearized model coincide with the well-known solutions to the classical Timoshenko beams. Numerical calculations are carried out to show the effect of the important parameters such as shear rigidity of the beam and the coefficient of friction at the contact position between the beam and supports on the deflection. The load-deflection curves are graphically presented. A comparison of large deflections and large rotations with their classical counterparts and with experimental data is made. The obtained results are useful in safety design of linear and non-linear beams subject to three-point bending.

  20. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  1. Implications of CME Deflections on the Habitability of Planets Around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kay, Christina; Opher, Merav

    2014-06-01

    Solar coronal mass ejections (CMEs) are known to produce adverse space weather effects at Earth. These effects include geomagnetically induced currents and energetic particles accelerated by CME-driven shocks. Significant non-radial motions are observed for solar CMEs with the CME path deviating as much as 30 degrees within 20 solar radii. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts the deflected path of a CME according to the magnetic forces of the background solar wind. In Kay et al (2013), we show that these magnetic forces cause CMEs to deflect towards the region of minimum magnetic field strength. For the Sun, this magnetic minimum corresponds to the Heliospheric Current Sheet (HCS). We predict that the Earth is most likely to be impacted by a deflected CME when its orbit brings it near the HCS. M dwarfs can have magnetic field strengths several orders of magnitude larger than the Sun which will strongly affect CME deflections. We explore stellar CME deflections with ForeCAT. We present results for M4V star V374 Peg. We determine potential impacts caused by CME deflections for a planet located within the habitable zone of V374 Peg 20-40 solar radii). We discuss future extensions as including variations in solar cycle, capturing small structures such as active regions, and extensions for other M dwarf stars.

  2. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  3. Effect of acid solutions on plants studied by the optical beam deflection method.

    PubMed

    Nie, Liangjiao; Kuboda, Mitsutoshi; Inoue, Tomomi; Wu, Xingzheng

    2013-12-01

    The optical beam deflection method was applied to study the effects of acid solution on both a terrestial and aquatic plants Egeria and Cerastium, which are common aquatic plant and terrestial weed respectively. A probe beam from a He-Ne laser was passed through a vicinity of a leaf of the plants, which were put in culture dishes filled with acid solutions. Deflection signals of the probe beam were monitored and compared for acid solutions with different pH values. The results of Egria showed that the deflection signals changed dramatically when pH values of acid solutions were 2.0 and 3.0, while little at pH of 4.0 and 5.0. For Cerastium when pH were below 3.0, deflection signals changed greatly with time at the begining. After a certain period of time, deflection signals changed little with time. When pH value was above 4.0, deflection signals of Cerastium were still changing with time even after 20 hours. The results suggested that the damage threshold of pH was between 3.0 and 4.0 for both the land and aquatic plants. PMID:25078849

  4. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  5. Evaluation of cuspal deflection in premolar teeth restored with low shrinkable resin composite (in vitro study)

    PubMed Central

    Labib, Labib Mohamed; Nabih, Sameh Mahmoud; Baroudi, Kusai

    2015-01-01

    Objectives: This study evaluated cuspal deflection in premolar teeth restored with low shrinkable resin composite. Materials and Methods: A total of 40 human premolars were used for cuspal deflection evaluation in this study. Each group was divided into four equal groups according to the type of resin composite and the adhesive used as follows: group A: Using low shrinkable resin composite (silorane) with its adhesive system; group B: Using low shrinkable composite (silorane) with G-bond; group C: Using Filtek Z350 composite with G-bond; and group D: Using Filtek Z350 composite with AdheSE. Cusp deflection was detected using Universal measuring microscope and laser horizontal metroscope. Results: This study was done to investigate the effect of polymerization shrinkage stresses of two resin composite materials (Filtek Z350 and Filtek P90) on cuspal deflection of mesio-occluso-distal restoration. For this study, the extracted non-carious maxillary second premolars were selected. Forty teeth that showed no more than 5% variation in their dimensions were used. A significant increase in cuspal deflection of cavities restored with the methacrylate-based (Filtek Z350) compared with the silorane (P90) resin-based composites was obtained. Conclusion: The change in the organic matrix or materials formulation of the resin composite using silorane has a positive effect on controlling the cusp deflection. PMID:26759800

  6. Performance improvement of P3HT/TiO{sub 2} coaxial heterojunction polymer solar cells by introducing a CdS interface modifier

    SciTech Connect

    Li, Yan; Wang, Cheng-Wei; Zhao, Yun; Wang, Jian; Zhou, Feng

    2012-12-15

    Coaxial heterojunction polymer solar cells consisting of vertical aligned crystalline TiO{sub 2} nanotube arrays transferred onto FTO-coated glass and ordered interpenetrating poly(3-hexylthiophene-2,5-diyl) (P3HT) have been fabricated through interface sensitization of CdS quantum dots on TiO{sub 2} nanotube walls. The performances of structurally identical polymer solar cells with and without CdS quantum dots sensitization were investigated and compared. The sensitized P3HT/CdS-TiO{sub 2} cell demonstrated an open-circuit photovoltage of 0.72 V and a short-circuit current of 8.29 mA/cm{sup 2} while the P3HT/TiO{sub 2} cell was 0.41 V and 5.64 mA/cm{sup 2}. The efficiency of this sensitized cell represents a more than four-fold improvement compared to the non-sensitized cell. By probing the charge transport characteristics at interfaces and the mechanism of photoelectric conversion, it is found the moderately interfacial CdS QDs plays the role of assisting charge separation and suppression of back recombination at interfaces, which accounts for the observed enhanced J{sub sc} and V{sub oc} in photovoltaic performance. - Graphical abstract: Schematic illustration of the Au/P3HT/CdS-TiO{sub 2}/FTO coaxial heterojunction polymer solar cell and its photovoltaic property compared with Au/P3HT/TiO{sub 2}/FTO cell. Highlights: Black-Right-Pointing-Pointer CdS QDs sensitized P3HT/TiO{sub 2} solid coaxial heterojunction solar cells are fabricated. Black-Right-Pointing-Pointer The V{sub oc} of such sensitized polymer solar cell reaches the value as high as 0.72 V. Black-Right-Pointing-Pointer 4.5 times higher PCE obtains as compared with the non-sensitized cell. Black-Right-Pointing-Pointer The dominate roles of CdS QDs sensitization on the PCE enhancement are investigated.

  7. Two high-field thermodynamically stable conductivity states in photoconductive CdS, one n-type and one p-type

    SciTech Connect

    Böer, Karl W.

    2015-08-28

    Photoconductive CdS is known to be n-type and develops high-field domains in the range of negative differential conductivities. These domains have been extensively discussed, and when remaining attached to the electrodes have been renamed Böer domains (a broader definition suggested earlier is misleading) [K. Thiessen, Phys. Status Solidi B 248, 2775 (2011)]. They are occurring at high applied voltage in a range at which the current becomes highly non-ohmic that is conventionally described as N-shaped when the conductance decreases with increasing bias or as S-shaped when the current starts to increase again. In this paper only such cases will be discussed in which the current stays below significant Joule heating (no current channel formation), and only for stationary electrode-attached high-field domains. These are the cathode-attached domains that are maintained by field-quenching and are thermodynamically stable. Their finding is summarized in the first segment of this paper. When the applied voltage is increased, an anode-attached hyper-high-field domain develops that is stabilized by a hole blocking anode and will be analyzed in more detail below. It will be shown that they are a thermodynamically stable p-type photoconductive state of CdS. These two new states can be used to determine the carrier densities and mobilities as function of the field and the effective work function in dependence of the spectral distribution of the optical excitation. In a thin slab adjacent to a blocking cathode, the quasi-Fermi levels are spread to a precise amount and are kept there in the entire high-field region. This opens the opportunity to analyze with small modulation of the excitation the trap transition coefficients near these quasi-Fermi levels separately, without broadening interference from other signals. This has already resulted in the discovery of an unusually sharp electron quenching level when the CdS was in a p-type state with an anode adjacent domain. It is

  8. Two high-field thermodynamically stable conductivity states in photoconductive CdS, one n-type and one p-type

    NASA Astrophysics Data System (ADS)

    Böer, Karl W.

    2015-08-01

    Photoconductive CdS is known to be n-type and develops high-field domains in the range of negative differential conductivities. These domains have been extensively discussed, and when remaining attached to the electrodes have been renamed Böer domains (a broader definition suggested earlier is misleading) [K. Thiessen, Phys. Status Solidi B 248, 2775 (2011)]. They are occurring at high applied voltage in a range at which the current becomes highly non-ohmic that is conventionally described as N-shaped when the conductance decreases with increasing bias or as S-shaped when the current starts to increase again. In this paper only such cases will be discussed in which the current stays below significant Joule heating (no current channel formation), and only for stationary electrode-attached high-field domains. These are the cathode-attached domains that are maintained by field-quenching and are thermodynamically stable. Their finding is summarized in the first segment of this paper. When the applied voltage is increased, an anode-attached hyper-high-field domain develops that is stabilized by a hole blocking anode and will be analyzed in more detail below. It will be shown that they are a thermodynamically stable p-type photoconductive state of CdS. These two new states can be used to determine the carrier densities and mobilities as function of the field and the effective work function in dependence of the spectral distribution of the optical excitation. In a thin slab adjacent to a blocking cathode, the quasi-Fermi levels are spread to a precise amount and are kept there in the entire high-field region. This opens the opportunity to analyze with small modulation of the excitation the trap transition coefficients near these quasi-Fermi levels separately, without broadening interference from other signals. This has already resulted in the discovery of an unusually sharp electron quenching level when the CdS was in a p-type state with an anode adjacent domain. It is

  9. ForeCAT - A model for magnetic deflections of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Kay, Christina D.

    2016-01-01

    Frequently, the Sun explosively releases bubbles of magnetized plasma known as coronal mass ejections (CMEs), which can produce adverse space weather effects at Earth. Accurate space weather forecasting requires knowledge of the trajectory of CMEs. Decades of observations show that CMEs can deflect from a purely radial trajectory, however, no consensus exists as to the cause of these deflections. We developed a model for CME deflection and rotation from magnetic forces, called Forecasting a CME's Altered Trajectory (ForeCAT). ForeCAT has been designed to run fast enough for large parameter phase space studies, and potentially real-time predictions. ForeCAT reproduces the general trends seen in observed CME deflections. In particular, CMEs deflect toward regions of minimum magnetic energy - frequently the Heliospheric Current Sheet (HCS) on global scales. The background magnetic forces decrease rapidly with distance and quickly become negligible. Most deflections and rotations can be well-described by assuming constant angular momentum beyond 10 Rs. ForeCAT also reproduces individual observed CME deflections - the 2008 December 12, 2008 April 08, and 2010 July 12 CMEs. By determining the reduced chi-squared best fit between the ForeCAT results and the observations we constrain parameters related to the CME and the background solar wind. Additionally, we constrain whether different models for the low corona magnetic backgrounds can produce the observed CME deflection. We explore the space weather of cool M dwarfs (dMs) with surface magnetic field strengths of order kG. dMs have extreme CMEs and flares and close-in habitable zones. We use ForeCAT to explore the deflections corresponding to the range of plausible CME masses and speeds for the dM V374 Peg. The deflection of the dM CMEs exceeds their solar counterparts, and the strong magnetic gradients surrounding the dM's Astrospheric Current Sheet (ACS, analogous to the Sun's HCS) can trap the CMEs that reach it

  10. One-pot solvothermal route to self-assembly of cauliflower-shaped CdS microspheres

    NASA Astrophysics Data System (ADS)

    Ge, Ming; Cui, Yao; Liu, Lu; Zhou, Zhen

    2011-05-01

    Nearly monodispersed cauliflower-shaped CdS microspheres were prepared through a simple one-step solvothermal route on a large scale by employing sodium dodecyl sulfate (SDS) as the surfactant. Images by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) indicate that cauliflower-shaped CdS microspheres with diameters in the range from 1.3 to 4.5 μm are assembled by nanoparticles with an average diameter of approximately 30 nm. The possible formation mechanism of the cauliflower-shaped CdS microspheres was also proposed. The photovoltaic activity of cauliflower-shaped CdS architectures has been investigated, indicating that the as-obtained CdS microspheres exhibited higher photovoltaic performance in comparison with CdS nanoparticles.

  11. Improved stoichiometry and photoanode efficiency of thermally evaporated CdS film with quantum dots as precursor.

    PubMed

    Fan, Libo; Wang, Peng; Guo, Qiuquan; Lei, Yan; Li, Ming; Han, Hongpei; Zhao, Haifeng; Yang, Dongluo; Zheng, Zhi; Yang, Jun

    2015-08-21

    Good stoichiometry of cadmium sulfide (CdS) film facilitates its application in photovoltaic devices; however, traditional thermal evaporation usually results in a Cd-deficient CdS film at a low-substrate temperature. In this study, Cd-rich CdS quantum dots (QDs) were synthesized by a facile co-precipitation method and used as the precursor to thermally evaporate CdS film on indium tin oxide-coated glass (ITO/glass). As a consequence, the stoichiometry of CdS film was greatly improved with atomic ratio of Cd to S restored to unity. More importantly, the newly developed CdS film, with its rod-like surface microstructure, acted as an efficient photoanode in a photoelectrochemical (PEC) cell. Its properties, including surface morphology and roughness, crystal structure, chemical composition, film thickness, energy-level structure and photosensitivity, are studied in detail. PMID:26221785

  12. Improved stoichiometry and photoanode efficiency of thermally evaporated CdS film with quantum dots as precursor

    NASA Astrophysics Data System (ADS)

    Fan, Libo; Wang, Peng; Guo, Qiuquan; Lei, Yan; Li, Ming; Han, Hongpei; Zhao, Haifeng; Yang, Dongluo; Zheng, Zhi; Yang, Jun

    2015-08-01

    Good stoichiometry of cadmium sulfide (CdS) film facilitates its application in photovoltaic devices; however, traditional thermal evaporation usually results in a Cd-deficient CdS film at a low-substrate temperature. In this study, Cd-rich CdS quantum dots (QDs) were synthesized by a facile co-precipitation method and used as the precursor to thermally evaporate CdS film on indium tin oxide-coated glass (ITO/glass). As a consequence, the stoichiometry of CdS film was greatly improved with atomic ratio of Cd to S restored to unity. More importantly, the newly developed CdS film, with its rod-like surface microstructure, acted as an efficient photoanode in a photoelectrochemical (PEC) cell. Its properties, including surface morphology and roughness, crystal structure, chemical composition, film thickness, energy-level structure and photosensitivity, are studied in detail.

  13. Synthesis and characterization of CdS nanocrystals in Maleic anhydride-Octene-1-Vinylbutyl Ether terpolymer matrix

    NASA Astrophysics Data System (ADS)

    Akperov, Oktay H.; Muradov, Mustafa B.; Malikov, Elvin Y.; Akperov, Elchin O.; Mammadova, Rasmiyya E.; Eyvazova, Goncha M.; Kukovecz, Ákos; Kónya, Zoltán

    2016-07-01

    A Maleic anhydride-Octene-1-Vinylbutyl Ether terpolymer was synthesized via the radical terpolymerization method in order to prepare a new matrix for CdS nanocrystal synthesis. CdS nanocrystals were synthesized through the reaction of thiourea with cadmium chloride. The synthesized terpolymer/CdS nanocrystal composites were characterized by several methods. Energy Dispersive X-ray analysis, Raman spectroscopy and powder X-ray diffraction methods. The room temperature UV-visible absorption spectra show a shift of the absorption edge towards higher energies. The band gap of the CdS nanocomposite is bigger than that of bulk CdS. Raman spectrum exhibits characteristic peaks of CdS. Images of the nanocomposite obtained with Atomic Force Microscopy and Transmission Electron Microscopy are the evidences of CdS nanocrystal formation in the terpolymer. Thermal investigation shows that the nanocomposite is more thermostable than the terpolymer which could be useful for application in thermo aggressive medium.

  14. Projection Moire measurement of the deflection of composite plates subject to bird strike impact

    NASA Astrophysics Data System (ADS)

    Shulev, A.; Van Paepegem, W.; Harizanova, J.; Moentjens, A.; Degrieck, J.; Sainov, V.

    2007-06-01

    For the new generation aircraft families, the use of fibre-reinforced plastics is considered for the leading edge of the wings. However, this leading edge is very prone to bird strike impact. This paper presents the use of the projection moire technique to measure the out-of-plane deflections of composite plates subject to bird strike. Very strict constraints with regard to: (i) high speed image acquisition, (ii) vibrations of the impact chamber, and (iii) projection and observation angles - complicated substantially the development of the set-up. Moreover, the high frame rates (12000 fps) required a very intensive illumination. In the optimized configuration, a specially designed grating with gradually changing period is projected by means of special Metal Hydride lamps through one of the side windows of the impact chamber onto the composite plate riveted in a steel frame. The digital high speed camera is mounted on the roof of the impact chamber and records through a mirror the object surface with the projected fringe pattern on it. Numerical routines based on Local Fourier Transform were developed to process the digital images, to extract the phase and the out-of-plane displacements. The phase evaluation is possible due to the carrier frequency nature of the projected moire pattern. This carrier frequency allows separation of the unwanted additive and multiplicative fringe pattern components in the frequency domain via the application of a proper mask. The numerical calculations were calibrated for the bird strike of an aluminium plate, where the plastic deformation could be checked after the test.

  15. Solution precursor plasma deposition of nanostructured CdS thin films

    SciTech Connect

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Inexpensive process with capability to produce large scale nanostructured coatings. Black-Right-Pointing-Pointer Technique can be employed to spray the coatings on any kind of substrates including polymers. Black-Right-Pointing-Pointer The CdS coatings developed have good electrical conductivity and optical properties. Black-Right-Pointing-Pointer Coatings possess large amount of particulate boundaries and nanostructured grains. -- Abstract: Cadmium sulfide (CdS) films are used in solar cells, sensors and microelectronics. A variety of techniques, such as vapor based techniques, wet chemical methods and spray pyrolysis are frequently employed to develop adherent CdS films. In the present study, rapid deposition of CdS thin films via plasma spray route using a solution precursor was investigated, for the first time. Solution precursor comprising cadmium chloride, thiourea and distilled water was fed into a DC plasma jet via an axial atomizer to create ultrafine droplets for instantaneous and accelerated thermal decomposition in the plasma plume. The resulting molten/semi-molten ultrafine/nanoparticles of CdS eventually propel toward the substrate to form continuous CdS films. The chemistry of the solution precursor was found to be critical in plasma pyrolysis to control the stoichiometry and composition of the films. X-ray diffraction studies confirmed hexagonal {alpha}-CdS structure. Surface morphology and microstructures were investigated to compare with other synthesis techniques in terms of process mechanism and structural features. Transmission electron microscopy studies revealed nanostructures in the atomized particulates. Optical measurements indicated a decreasing transmittance in the visible light with increasing the film thickness and band gap was calculated to be {approx}2.5 eV. The electrical resistivity of the films (0.243 {+-} 0.188 Multiplication-Sign 10{sup 5} {Omega} cm) was comparable with the literature

  16. Char separator

    DOEpatents

    Matthews, Francis T.

    1979-01-01

    Particulates removed from the flue gases produced in a fluidized-bed furnace are separated into high-and low-density portions. The low-density portion is predominantly char, and it is returned to the furnace or burned in a separate carbon burnup cell. The high-density portion, which is predominantly limestone products and ash, is discarded or reprocessed. According to another version, the material drained from the bed is separated, the resulting high-and low-density portions being treated in a manner similar to that in which the flue-gas particulates are treated.

  17. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  18. DIE Deflection Modeling: Empirical Validation and Tech Transfer

    SciTech Connect

    R. Allen Miller

    2003-05-28

    This report summarizes computer modeling work that was designed to help understand how the die casting die and machine contribute to parting plane separation during operation. Techniques developed in earlier research (8) were applied to complete a large computational experiment that systematically explored the relationship between the stiffness of the machine platens and key dimensional and structural variables (platen area covered, die thickness, platen thickness, thickness of insert and the location of the die with respect to the platen) describing the die/machine system. The results consistently show that there are many significant interactions among the variables and it is the interactions, more than the individual variables themselves, which determine the performance of the machine/die system. That said, the results consistently show that it is the stiffness of the machine platens that has the largest single impact on die separation.

  19. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 8,000 known near-Earth asteroids (NEAs), and more are being discovered on a continual basis. More than 1,200 of these are classified as Potentially Hazardous Asteroids (PHAs) because their Minimum Orbit Intersection Distance (MOID) with Earth's orbit is <= 0.05 AU and their estimated diameters are >= 150 m. To date, 178 Earth impact structures have been discovered, indicating that our planet has previously been struck with devastating force by NEAs and will be struck again. Such collisions are aperiodic events and can occur at any time. A variety of techniques have been proposed to defend our planet from NEA impacts by deflecting the incoming asteroid. However, none of these techniques have been tested. Unless rigorous testing is conducted to produce reliable asteroid deflection systems, we will be forced to deploy completely untested -- and therefore unreliable -- deflection missions when a sizable asteroid on a collision course with Earth is discovered. Such missions will have a high probability of failure. We propose to address this problem with a campaign of deflection technology test missions deployed to harmless NEAs. The objective of these missions is to safely evaluate and refine the mission concepts and asteroid deflection system designs. Our current research focuses on the kinetic impactor, one of the simplest proposed asteroid deflection techniques in which a spacecraft is sent to collide with an asteroid at high relative velocity. By deploying test missions in the near future, we can characterize the performance of this deflection technique and resolve any problems inherent to its execution before needing to rely upon it during a true emergency. In this paper we present the methodology and results of our survey, including lists of NEAs for which safe and effective kinetic impactor test missions may be conducted within the next decade. Full mission designs are also presented for the NEAs which offer the best mission opportunities.

  20. Effect of the finite size of an asteroid on its deflection using a tether-ballast system

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Mohammad J.; Misra, Arun K.

    2016-07-01

    Potentially hazardous near-Earth objects which can impose a significant threat on life on the planet have generated a lot of interest in the study of various asteroid deflection strategies. There are numerous asteroid deflection techniques suggested and discussed in the literature. This paper is focused on one of the non-destructive asteroid deflection strategies by attaching a long tether-ballast system to the asteroid. In the existing literature on this technique, very simplified models of the asteroid-tether-ballast system including a point mass model of the asteroid have been used. In this paper, the dynamical effect of using a finite size asteroid model on the asteroid deflection achieved is analyzed in detail. It has been shown that considering the finite size of the asteroid, instead of the point mass approximation, can have significant influence on the deflection predicted. Furthermore the effect of the tether-deployment stage, which is an essential part of any realistic asteroid deflection mission, on the predicted deflection is studied in this paper. Finally the effect of cutting the tether on the deflection achieved is analyzed and it has been shown that depending on the orbital properties of the asteroid as well as its size and rotational rate, cutting the tether at an appropriate time can increase the deflection achieved. Several numerical examples have been used in this paper to elaborate on the proposed technique and to quantitatively analyze the effect of different parameters on the asteroid deflection.

  1. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  2. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  3. Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Cheng, A.; Küppers, M.; Pravec, P.; Blum, J.; Delbo, M.; Green, S. F.; Rosenblatt, P.; Tsiganis, K.; Vincent, J. B.; Biele, J.; Ciarletti, V.; Hérique, A.; Ulamec, S.; Carnelli, I.; Galvez, A.; Benner, L.; Naidu, S. P.; Barnouin, O. S.; Richardson, D. C.; Rivkin, A.; Scheirich, P.; Moskovitz, N.; Thirouin, A.; Schwartz, S. R.; Campo Bagatin, A.; Yu, Y.

    2016-06-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to test the kinetic impactor technique to deflect an asteroid. The European Asteroid Impact Mission (AIM) is set to rendezvous with the asteroid system to fully characterize the smaller of the two binary components a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near-Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Having direct information on the surface and internal properties of small asteroids will allow us to understand how the various processes they undergo work and transform these small bodies as well as, for this particular case, how a binary system forms. Making these measurements from up close and comparing them with ground-based data from telescopes will also allow us to calibrate remote observations and improve our data interpretation of other systems. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. AIDA will thus offer a great opportunity to test and refine our understanding and models at the actual scale of an asteroid, and to check whether the current extrapolations of material strength from laboratory-scale targets to the scale of AIDA's target are valid. Moreover, it will offer a first check of the

  4. [Spectroscopic study on CdS nanoparticles prepared by microwave irradiation].

    PubMed

    Cheng, Wei-qing; Liu, Di; Yan, Zheng-yu

    2008-06-01

    CdS nanoparticles capped by mercaptoacetic acid have been successfully synthesized by microwave method employing thioacetamide as sulfur source, which was proved to be a simple, rapid and specific mothod compared with traditional synthetical methods, such as precipitation, sol-gel, solvo-thermal method and so on. The concrete procedure synthesizing CdS nanoparticles was as follows: Cd(NO3)2 (40 mL, 5 mmol c L(-1)) was titrated with mercaptoacetic acid to pH 2.0, resulting in a turbid blue solution. NaOH (0.1 mol x L(-1)) was then added dropwise until the pH was 7 and the solution was again colorless. While quickly stirring the solution, 40 mL of 5 mmol x L(-1) CH3CSNH2 was added. Subsequently, the solution was adjusted to pH 9.0 and placed in a microwave oven for 25 min with power 30% (it means that if microwave works in a 30 s regime, it works 6 s, and does not work 24 s. This is some kind of pulse regime, but the totalpower is still 100%). This kind of nanoparticles were water-soluble and symmetrical. The diameter of CdS nanoparticles which have a spherical morphology was determined to be 12 nm by transmission electron microscopy(TEM), which posess perfect uniforminty. According to literatures report, there are two kinds of emission peak: one is edge-emission peak, and the other is surface blemish emission. In contrast to edge-emission peak, the surface blemish emission shows red shift on fluorescence spectra. In the present paper, the prominent peak of CdS QDs fluorescence spectrum was located at 490 nm, the humpbacked peak caused by surface blemish of CdS nanoparticles was located at 565 nm. However, the surface blemish emission was unconspicuous, thus we can conclude that the synthetical CdS QDs possesses excellent luminescence capability and favorable structure. The size and absorption and fluorescence spectra of CdS nanoparticles at different microwave power, pH value, reaction time and different sulfur source were investigated. The result showed that the

  5. [Spectroscopic study on CdS nanoparticles prepared by microwave irradiation].

    PubMed

    Cheng, Wei-qing; Liu, Di; Yan, Zheng-yu

    2008-06-01

    CdS nanoparticles capped by mercaptoacetic acid have been successfully synthesized by microwave method employing thioacetamide as sulfur source, which was proved to be a simple, rapid and specific mothod compared with traditional synthetical methods, such as precipitation, sol-gel, solvo-thermal method and so on. The concrete procedure synthesizing CdS nanoparticles was as follows: Cd(NO3)2 (40 mL, 5 mmol c L(-1)) was titrated with mercaptoacetic acid to pH 2.0, resulting in a turbid blue solution. NaOH (0.1 mol x L(-1)) was then added dropwise until the pH was 7 and the solution was again colorless. While quickly stirring the solution, 40 mL of 5 mmol x L(-1) CH3CSNH2 was added. Subsequently, the solution was adjusted to pH 9.0 and placed in a microwave oven for 25 min with power 30% (it means that if microwave works in a 30 s regime, it works 6 s, and does not work 24 s. This is some kind of pulse regime, but the totalpower is still 100%). This kind of nanoparticles were water-soluble and symmetrical. The diameter of CdS nanoparticles which have a spherical morphology was determined to be 12 nm by transmission electron microscopy(TEM), which posess perfect uniforminty. According to literatures report, there are two kinds of emission peak: one is edge-emission peak, and the other is surface blemish emission. In contrast to edge-emission peak, the surface blemish emission shows red shift on fluorescence spectra. In the present paper, the prominent peak of CdS QDs fluorescence spectrum was located at 490 nm, the humpbacked peak caused by surface blemish of CdS nanoparticles was located at 565 nm. However, the surface blemish emission was unconspicuous, thus we can conclude that the synthetical CdS QDs possesses excellent luminescence capability and favorable structure. The size and absorption and fluorescence spectra of CdS nanoparticles at different microwave power, pH value, reaction time and different sulfur source were investigated. The result showed that the

  6. Water induced size and structure phase transition of CdS crystals and their photocatalytic property

    SciTech Connect

    Li, Xiaoyan; Xi, Yi; Hu, Chenguo; Wang, Xue

    2013-02-15

    Graphical abstract: Excellent photocatalytic activity in degradation of RhB was found with the hexagonal CdS nanorods growing along [0 0 0 1] direction, which is a result of the exposed (0 0 0 1) facets in the ends. Display Omitted Highlights: ► CdS microwires and nanorods were attained by a modified CHM approach. ► The phase transition (cubic to hexagonal) was achieved by tuning the amount of H{sub 2}O. ► Excellent photocatalytic activity was found with the hexagonal CdS. ► Hexagonal CdS has the better catalytic property due to more (0 0 0 1) facets exposed. -- Abstract: Single-crystalline CdS microwires (mixed cubic and hexagonal phase) and nanorods (pure hexagonal phase) were synthesized by a modified composite-hydroxide-mediated (CHM) approach. Photocatalytic degradation of rhodamine B with the CdS nanorods was studied under the simulated sunlight irradiation. Crystalline phase transition from cubic to hexagonal phase was achieved by adding a small amount of water in the melts. The phase structures and morphologies of the prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area of electron diffraction (SAED) and scanning electron microscopy (SEM), respectively. The results show that the pure hexagonal phase structure could be obtained with 5 mL or more than 5 mL water added in the composite-hydroxide melts. The band–gap of the hexagonal nanorods was 2.435 eV observed from UV–vis reflection spectrum. Compared with the CdS nanoparticles (mixed cubic and hexagonal phase), we found that the hexagonal phase structure CdS nanorods revealed much better photocatalytic activity owing to the exposure of (0 0 0 1) polar facet on the end. It is expected that the present research may offer useful guidance to the potential application of CdS in the treatment of environmental pollution.

  7. Nanowires improved charge separation and light utilization in metal-oxide solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Yun; Lin, Yi-Feng; Lu, Shih-Yuan

    2011-08-01

    The power conversion efficiencies of electrodeposited Cu2O/ZnO p-n junction based solar cells are significantly improved by sandwiching a layer of spin-coated CdS nanowires (NWs) in between the electrochemically deposited Cu2O and ZnO layers. With the inclusion of the CdS NWs, there is observed a 5 fold improvement in the conversion efficiency, from 0.12% to 0.6%, as compared with that of the plain Cu2O/ZnO cell. The improvement is attributed to the enlarged p-n interface area and enhanced light harvesting, charge separation, and electron transport made possible by incorporating the single crystalline, relatively low band gap CdS NWs.

  8. Synthesis of CdS nanostructures using template-assisted ammonia-free chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Preda, N.; Enculescu, M.; Gherendi, F.; Matei, E.; Toimil-Molares, M. E.; Enculescu, I.

    2012-09-01

    CdS micro- and nano-structures (micro/nanotubes and nanostructured films) were obtained by ammonia-free chemical bath deposition using polymer templates (ion track-etched polycarbonate membranes and poly(styrene-hydroxyethyl methacrylate) nanosphere arrays). The semiconductor structures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), optical absorption, photoluminescence and electrical measurements. The diameters of CdS tubes are between 300 nm and few microns and the lengths are up to tens of micrometers. The SEM images prove that the CdS films are nanostructured due to the deposition on the polymer nanosphere arrays. For both CdS structures (tubes and films) the XRD patterns show a hexagonal phase. The optical studies reveal a band gap value of about 2.5-2.6 eV and a red luminescence at ˜1.77 eV. A higher increase of conductivity is observed for illuminating the CdS nanostructured film when compared to the simple semiconductor film. This is a consequence of the periodic patterning induced by the polymer nanosphere array.

  9. [Research on the polycrystalline CdS thin films prepared by close-spaced sublimation].

    PubMed

    Yang, Ding-Yu; Xia, Geng-Pei; Zheng, Jia-Gui; Feng, Liang-Huan; Cai, Ya-Ping

    2009-01-01

    In the present paper, the factors of influence on the deposition rate of CdS films prepared by close-spaced sublimation (CSS) were first studied systematically, and it was found from the experiments that the deposition rate increased with the raised temperature of sublimation source, while decreased with the raised substrate temperature and the deposition pressure. The structure, morphology and light transmittance of the prepared samples were tested subsequently, and the results show: (1) The CdS films deposited under different oxygen partial pressure all present predominating growth lattice orientation (103), and further more the films will be strengthened after annealed under CdCl2 atmosphere. (2) The AFM images of CdS show that the films are compact and uniform in grain diameter, and the grain size becomes larger with the increased substrate temperature. Along with it, the film roughness was also augmented. (3) The transmittance in the shortwave region of visible light through the CdS films would be enhanced when its thickness is reduced, and that will help improve the shortwave spectral response of CdTe solar cells. Finally, the prepared CdS films were employed to fabricate CdTe solar cells, which have achieved a conversion efficiency of 10.29%, and thus the feasibility of CSS process in the manufacture of CdTe solar cells was validated primarily.

  10. Template-free solution approach to synthesize CdS dendrites with SCN based ionic liquid

    SciTech Connect

    Li, Kangfeng; Li, Jiajia; Cheng, Xianyi; Liu, Weidong; Ying, Taokai

    2011-07-15

    Highlights: {yields} Template-free solution approach to synthesize CdS hierarchical dendrites. {yields} The 1-butyl-3-methlyimidazole thiocyanate ([BMIM][SCN]) plays doubly functional roles in the progress. {yields} The CdS hierarchical dendrites exhibit a more intense emission at 710 nm belongs to infrared band. -- Abstract: Cadmium sulfide dendrites were synthesized by a facile hydrothermal treatment from CdCl{sub 2} and ionic liquid 1-butyl-3-methlyimidazole thiocyanate acted both as sulfur source and surfactant. The product was characterized by means of X-ray powder diffraction and scanning electron microscopy. X-ray powder diffraction studies indicated that the product was well-crystallized hexagonal phase of CdS, and the scanning electron microscopy images showed that the obtained powders consisted of a wealth of well-defined CdS dendritic microstructures with a pronounced trunk and highly ordered branches. The UV-Vis and photoluminescence spectroscopy measurements were taken as well. The possible formation mechanism of CdS dendrites was simply proposed in the end.

  11. Optical characterization of CdS semiconductor nanoparticles capped with starch

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fragoso, P.; de la Cruz, G. González; Tomas, S. A.; Zelaya-Angel, O.

    2010-11-01

    Starch capped cadmium sulfide (CdS) nanoparticles were synthesized by aqueous solution precipitation. Starch added during the synthesis of nanoparticles resulted in cadmium-rich nanoparticles forming a stable complex with starch. The size of the CdS quantum dots was measured using high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The average diameter (d) of nanoparticles spanned the range 4.8 ± 0.4 to 5.7 ± 0.2 nm when the pH of the solution was varied within the range 10-14. The main Raman phonon of CdS, the longitudinal optical mode located around 300 cm-1, softens as diameter decreases, in accordance with theoretical predictions. In addition, the largest Raman response of starch, near 478 cm-1, related with the important skeletal vibration modes of the starch pyranose ring, dominates the spectra of the CdS capped nanoparticles and also softens as the size decreases. This fact indicates a strain variation on CdS as a function of d which increases as the pH increases.

  12. Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile

    SciTech Connect

    Moon, Ji Won; Ivanov, Ilia N; Duty, Chad E; Love, Lonnie J; Rondinone, Adam Justin; Wang, Wei; Li, Dr. Yi-Liang; Madden, Andrew; Mosher, Jennifer J; Hu, Michael Z.; Suresh, Anil K; Rawn, Claudia J; Jung, Hyunsung; Lauf, Robert J; Phelps, Tommy Joe

    2013-01-01

    We report microbially facilitated synthesis of cadmium sulfide (CdS) nanostructured particles (NP) using anaerobic, metal-reducing Thermoanaerobacter sp. The extracellular CdS crystallites were <10 nm in size with yields of ~3 g/L of growth medium/month with demonstrated reproducibility and scalability up to 24 L. During synthesis, Thermoanaerobacter cultures reduced thiosulfate and sulfite salts to H2S, which reacted with Cd2+ cations to produce thermodynamically favored NP in a single step at 65oC with catalytic nucleation on the cell surfaces. Photoluminescence (PL) analysis of dry CdS NP revealed an exciton-dominated PL peak at 440 nm, having a narrow full width at half maximum of 10 nm. A PL spectrum of CdS NP produced by dissimilatory sulfur reducing bacteria was dominated by features associated with radiative exciton relaxation at the surface. High reproducibility of CdS NP PL features important for scale-up conditions was confirmed from test tubes to 24L batches at a small fraction of the manufacturing cost associated with conventional inorganic NP production processes.

  13. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    PubMed

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers. PMID:27479495

  14. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    PubMed

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  15. In situ growth of well-dispersed CdS nanocrystals in semiconducting polymers.

    PubMed

    Laera, Anna Maria; Resta, Vincenzo; Piscopiello, Emanuela; Miceli, Valerio; Schioppa, Monica; Scalone, Anna Grazia; Benedetto, Francesca Di; Tapfer, Leander

    2013-09-09

    A straight synthetic route to fabricate hybrid nanocomposite films of well-dispersed CdS nanocrystals (NCs) in poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) is reported. A soluble cadmium complex [Cd(SBz)2]2·MI, obtained by incorporating a Lewis base (1-methylimidazole, MI) on the cadmium bis(benzyl)thiol, is used as starting reagent in an in situ thermolytic process. CdS NCs with spherical shape nucleate and grow well below 200°C in a relatively short time (30 min). Photoluminescence spectroscopy measurements performed on CdS/MEH-PPV nanocomposites show that CdS photoluminescence peaks are totally quenched inside MEH-PPV, if compared to CdS/PMMA nanocomposites, as expected due to overlapping of the polymer absorption and CdS emission spectra. The CdS NCs are well-dispersed in size and homogeneously distributed within MEH-PPV matrix as proved by transmission electron microscopy. Nanocomposites with different precursor/polymer weight ratios were prepared in the range from 1:4 to 4:1. Highly dense materials, without NCs clustering, were obtained for a weight/weight ratio of 2:3 between precursor and polymer, making these nanocomposites particularly suitable for optoelectronic and solar energy conversion applications.

  16. Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection.

    PubMed

    Ramsey, K H; Schripsema, J H; Smith, B J; Wang, Y; Jham, B C; O'Hagan, K P; Thomson, N R; Murthy, A K; Skilton, R J; Chu, P; Clarke, I N

    2014-08-01

    The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene. PMID:24866804

  17. Plasmid CDS5 Influences Infectivity and Virulence in a Mouse Model of Chlamydia trachomatis Urogenital Infection

    PubMed Central

    Schripsema, J. H.; Smith, B. J.; Wang, Y.; Jham, B. C.; O'Hagan, K. P.; Thomson, N. R.; Murthy, A. K.; Skilton, R. J.; Chu, P.; Clarke, I. N.

    2014-01-01

    The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene. PMID:24866804

  18. Switching of ferroelectric liquid crystal doped with cetyltrimethylammonium bromide-assisted CdS nanostructures

    NASA Astrophysics Data System (ADS)

    Pal, Kaushik; Narayan Maiti, Uday; Pal Majumder, Tapas; Debnath, Subhas Chandra; Ghosh, Sharmistha; Roy, Subir Kumar; Otón, José Manuel

    2013-03-01

    Large scale high yield cadmium sulfide (CdS) nanowires with uniform diameter were synthesized using a rapid and simple solvo-chemical and hydrothermal route assisted by the surfactant cetyltrimethylammonium bromide (CTAB). Unique CdS nanowires of different morphologies could be selectively produced by only varying the concentration of CTAB in the reaction system with cadmium acetate, sulfur powder and ethylenediamine. We obtained CdS nanowires with diameters of 64-65 nm and lengths of up to several micrometers. A comparative study of the optical properties of ferroelectric liquid crystal (FLC) Felix-017/100 doped with 1% of CdS nanowires was performed. Response times of the order of from 160 to 180 μs, rotational viscosities of the order of from 5000 to 3000 mN s m-2 and polarizations of the order of from 10 to 70 nC cm-2 were measured. We also observed an anti-ferroelectric to ferroelectric transition for CdS doped FLC instead of the ferroelectric to paraelectric transition for pure FLC.

  19. Study on the fluorescence resonance energy transfer between CdS quantum dots and Eosin Y.

    PubMed

    Yan, Zhengyu; Zhang, Zhengwei; Yu, Yan; Chen, Jianqiu

    2015-03-01

    Water-soluble CdS quantum dots (QDs) were prepared using mercaptoacetic acid (TGA) as the stabilizer in an aqueous system. A fluorescence resonance energy transfer (FRET) system was constructed between water-soluble CdS QDs (donor) and Eosin Y (acceptor). Several factors that impacted the fluorescence spectra of the FRET system, such as pH (3.05-10.10), concentration of Eosin Y (2-80 mg/L) and concentration of CdS QDs (2-80 mg/L), were investigated and refined. Donor-to-acceptor ratios, the energy transfer efficiency (E) and the distance (r) between CdS QDs and Eosin Y were obtained. The results showed that a FRET system could be established between water-soluble CdS QDs and Eosin Y at pH 5.0; donor-to-acceptor ratios demonstrated a 1: 8 proportion of complexes; the energy transfer efficiency (E) and the distance (r) between the QDs and Eosin Y were 20.07% and 4.36 nm,respectively.

  20. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    NASA Astrophysics Data System (ADS)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  1. Characterization of the protective capacity of flooring systems using force-deflection profiling.

    PubMed

    Glinka, Michal N; Karakolis, Thomas; Callaghan, Jack P; Laing, Andrew C

    2013-01-01

    'Safety floors' aim to decrease the risk of fall-related injuries by absorbing impact energy during falls. Ironically, excessive floor deflection during walking or standing may increase fall risk. In this study we used a materials testing system to characterize the ability of a range of floors to absorb energy during simulated head and hip impacts while resisting deflection during simulated single-leg stance. We found that energy absorption for all safety floors (mean (SD)=14.8 (4.9)J) and bedside mats (25.1 (9.3)J) was 3.2- to 5.4-fold greater than the control condition (commercial carpet). While footfall deflections were not significantly different between safety floors (1.8 (0.7)mm) and the control carpet (3.7 (0.6)mm), they were significantly higher for two bedside mats. Finally, all of the safety floors, and two bedside mats, displayed 3-10 times the energy-absorption-to-deflection ratios observed for the baseline carpet. Overall, these results suggest that the safety floors we tested effectively addressed two competing demands required to reduce fall-related injury risk; namely the ability to absorb substantial impact energy without increasing footfall deflections. This study contributes to the literature suggesting that safety floors are a promising intervention for reducing fall-related injury risk in older adults.

  2. Predicting tool operator capacity to react against torque within acceptable handle deflection limits in automotive assembly.

    PubMed

    Radwin, Robert G; Chourasia, Amrish; Fronczak, Frank J; Subedi, Yashpal; Howery, Robert; Yen, Thomas Y; Sesto, Mary E; Irwin, Curtis B

    2016-05-01

    The proportion of tool operators capable of maintaining published psychophysically derived threaded fastener tool handle deflection limits were predicted using a biodynamic tool operator model, interacting with the tool, task and workstation. Tool parameters, including geometry, speed and torque were obtained from the specifications for 35 tools used in an auto assembly plant. Tool mass moments of inertia were measured for these tools using a novel device that engages the tool in a rotating system of known inertia. Task parameters, including fastener target torque and joint properties (soft, medium or hard), were ascertained from the vehicle design specifications. Workstation parameters, including vertical and horizontal distances from the operator were measured using a laser rangefinder for 69 tool installations in the plant. These parameters were entered into the model and tool handle deflection was predicted for each job. While handle deflection for most jobs did not exceed the capacity of 75% females and 99% males, six jobs exceeded the deflection criterion. Those tool installations were examined and modifications in tool speed and operator position improved those jobs within the deflection limits, as predicted by the model. We conclude that biodynamic tool operator models may be useful for identifying stressful tool installations and interventions that bring them within the capacity of most operators.

  3. Flight measurements of buffet characteristics of the F-104 airplane for selected wing-flap deflections

    NASA Technical Reports Server (NTRS)

    Friend, E. L.; Sefic, W. J.

    1972-01-01

    A flight program was conducted on the F-104 airplane to investigate the effects of moderate deflections of wing leading- and trailing-edge flaps on the buffet characteristics at subsonic and transonic Mach numbers. Selected deflections of the wing leading and trailing-edge flaps, individually and in combination, were used to assess buffet onset, intensity, and frequency; lift curves; and wing-rock characteristics for each configuration. Increased deflection of the trailing-edge flap delayed the buffet onset and buffet intensity rise to a significantly higher airplane normal-force coefficient. Deflection of the leading-edge flap produced some delay in buffet onset and the resulting intensity rise at low subsonic speeds. Increased deflection of the trailing-edge flap provided appreciable lift increments in the angle-of-attack range covered, whereas the leading-edge flap provided lift increments only at high angles-of-attack. The pilots appreciated the increased maneuvering envelope provided by the flaps because of the improved turn capability.

  4. Measurement and production of electron deflection using a sweeping magnetic device in radiotherapy.

    PubMed

    Damrongkijudom, N; Oborn, B; Butson, M; Rosenfeld, A

    2006-09-01

    The deflection and removal of high energy electrons produced by a medical linear accelerator has been attained by a Neodymium Iron Boron (NdFeB) permanent magnetic deflector device. This work was performed in an attempt to confirm the theoretical amount of electron deflection which could be produced by a magnetic field for removal of electrons from a clinical x-ray beam. This was performed by monitoring the paths of mostly monoenergetic clinical electron beams (6 MeV to 20 MeV) swept by the magnetic fields using radiographic film and comparing to first order deflection models. Results show that the measured deflection distance for 6 MeV electrons was 18 +/- 6 cm and the calculated deflection distance was 21.3 cm. For 20 MeV electrons, this value was 5 +/- 2 cm for measurement and 5.1 cm for calculation. The magnetic fields produced can thus reduce surface dose in treatment regions of a patient under irradiation by photon beams and we can predict the removal of all electron contaminations up to 6 MeV from a 6 MV photon beam with the radiation field size up to 10 x 10 cm2. The model can also estimate electron contamination still present in the treatment beam at larger field sizes. PMID:17058588

  5. Control of resonant frequency by currents in graphene: Effect of Dirac field on deflection

    SciTech Connect

    Soodchomshom, Bumned E-mail: fscibns@ku.ac.th

    2014-09-21

    To construct Lagrangian based on plate theory and tight-binding model, deflection-field coupling to Dirac fermions in graphene can be investigated. As have been known, deflection-induced strain may cause an effect on motion of electron, like a pseudo gauge field. In the work, we will investigate the effect of the Dirac field on the motion of the deflection-field in graphene derived from Lagrangian density. Due to the interaction of the deflection- and Dirac-fields, the current-induced surface-tension up to about 4×10⁻³ N/m in graphene membrane is predicted. This result may lead to controllable resonant frequency by currents in graphene. The high resonant frequency is found to be perfectly linearly controlled by both charge and valley currents. Our work reveals the potential of graphene for application of nano-electro-mechanical device and the physics of interaction of electron and deflection-filed in graphene system is investigated.

  6. Deriving Kinematic Properties of Non-Radial, Asymmetric and Deflecting CMEs: Methods and Implications

    NASA Astrophysics Data System (ADS)

    Thompson, B. J.; Liewer, P. C.; Mays, M. L.; Richardson, I. G.; Kwon, R.; Ofman, L.; Makela, P. A.; Ireland, J.; Hess, P.; Waldron, Z.

    2015-12-01

    An improved understanding of the kinematic properties of CMEs and CME-associated phenomena has several impacts: 1) a less ambiguous method of mapping propagating structures into their inner coronal manifestations, 2) a clearer view of the relationship between the "main" CME and CME-associated brightenings, and 3) an improved identification of the heliospheric sources of shocks, Type II bursts, and SEPs. However, there are several challenges in characterizing the kinematic properties of CMEs. Most rapidly-evolving eruptions are accompanied by changes in the surrounding corona. The larger the impact on the surrounding corona, the more difficult it is to separate the "main" CME from the CME-associated brightenings. Complicating the issue is the range of observed propagation properties: super-radial expansion, asymmetric expansion, non-radial propagation, and alterations in the direction of propagation. These properties can be a function of both the internal magnetic structure of the CME and the structure of the corona through which the CME is propagating. While the relative contribution of internal/external factors can be difficult to assess, it is of fundamental importance because it not only reveals the nature of CMEs but also CME-associated phenomena such as EUV waves, Type II radio bursts, shocks, and SEPs. Most halo CMEs are a combination of both the "main" CME and the CME-associated brightenings, but new diagnostic methods such as time convolution mapping can help separate the CME mass from the impacted corona. Additionally, while most CME-fitting methods assume symmetry about the radial direction, adaptive methods allow us to study highly asymmetric CME expansion and take into account the fundamentally different natures of the CME and the shocked/deflected corona. Several methods will be examined, and each has their respective strengths and weaknesses; for example, the difference between the direction of a highly non-radial CME and a sun-centered model

  7. Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures.

    PubMed

    Kumar, Sandeep; Khanchandani, Sunita; Thirumal, Meganathan; Ganguli, Ashok K

    2014-08-13

    Expanding the light-harvesting range and suppressing the quick recombination of photogenerated charge carriers are of paramount significance in the field of photocatalysis. One possible approach to achieve wide absorption range is to synthesize type-II core/shell heterostructures. In addition, this system also shows great promise for fast separation of charge carriers and low charge recombination rate. Herein, following the surface functionalization method using 3-mercaptopropionic acid (MPA) as a surface functionalizing agent, we report on designing NaNbO3/CdS type-II core/shell heterostructures with an absorption range extending to visible range and explore the opportunity toward degradation of methylene blue (MB) dye as a model pollutant under visible light irradiation. Characterizations including X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), UV-vis diffuse reflectance spectrum (DRS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy support the growth of CdS shell onto NaNbO3 nanorods. The resulting core/shell heterostructures unveiled high surface areas, enhanced light harvesting, and appreciably increased photocatalytic activity toward MB degradation compared to individual counterparts and the photocatalytic standard, Degussa P25, under visible light irradiation. The remarkably enhanced photocatalytic activity of core/shell heterostructures could be interpreted in terms of efficient charge separation owing to core/shell morphology and resulting type-II band alignment between NaNbO3 and CdS, which creates a step-like radial potential favoring the localization of one of the carriers in the core and the other in the shell. A plausible mechanism for the degradation of MB dye over NaNbO3/CdS core/shell heterostructures is also elucidated using active species scavenger studies. Our findings imply that hydroxyl radicals (OH(•)) play a crucial role in dictating the degradation

  8. Map Separates

    USGS Publications Warehouse

    ,

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  9. Assessment of Hot-Carrier Effects on Charge Separation in Type-II CdS/CdTe Heterostructured Nanorods.

    PubMed

    Okano, Makoto; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2014-09-01

    Charge separation in semiconducting materials is an essential process that determines the efficiency of photovoltaic devices and photocatalysts. Herein, we report the charge-separation dynamics in type-II CdS/CdTe heterostructured nanorods revealed by femtosecond transient-absorption (TA) measurements with a broad-band white-light probe. Under selective excitation of the CdTe segment, bleaching signals at the band gap energy of CdS were clearly observed with a rise component on a subpicosecond time scale, which indicates efficient electron transfer from CdTe to CdS. The pump-energy dependence of the TA dynamics shows that hot electrons rapidly relax to the bottom of the conduction band of CdTe, and then the electrons transfer to the CdS segment.

  10. Deflection of 32.8 TeV/c fully stripped Pb ions by means of a bent Si crystal

    NASA Astrophysics Data System (ADS)

    Biino, C.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Herr, W.; Keppler, P.; Major, J.; Mikkelsen, U.; Taratin, A.; Velasco, M.

    2000-03-01

    New results on the deflection of fully stripped 32.8 TeV/c Pb ions in a bent Si crystal at the CERN-SPS are reported. Deflection efficiencies above 10% have been measured for deflection angles in the range 4-9 mrad. The effect of particle losses due to interaction in the crystal and other systematic errors have been carefully investigated. The experimental results are in agreement with theoretical calculations.

  11. Surface evaluation method and stamping simulation for surface deflection of automotive outer panels

    NASA Astrophysics Data System (ADS)

    Ichijo, Naoki; Iwata, Noritoshi; Iwata, Takamichi; Mita, Taichi; Niihara, Masatomo; Tsutamori, Hideo

    2013-12-01

    In designing dies of automotive outer panels, the most difficult process is to modify surface deflection. To fabricate high-quality outer panels without modifying dies, it is important to develop an evaluation method and a numerical analysis method for surface deflection of outer panels. In this study, we have developed a new evaluation method that uses the maximum value of curvature calculated using reflecting curves in the surface. This new evaluation method made the examiner's evaluation to conform with the digital evaluation. The evaluation results with the new method shows better agreement with the sensory value than those with the conventional methods. We have proposed the new analysis method to predict surface deflection correctly. By the proposed simulation method, plastic deformation is calculated in consideration of stress in thickness direction, and restriking conditions have been examined. We have applied our methods to the fabrication of automotive outer panels, and verified that these are useful and practical.

  12. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  13. The deflection of light induced by the Sun's gravitational field and measured with geodetic VLBI

    NASA Astrophysics Data System (ADS)

    Titov, O.; Girdiuk, A.

    2015-08-01

    The Sun's gravitational field deflects the apparent positions of close objects in accordance with the formulae of general relativity. Optical astrometry is used to test the prediction, but only with the stars close to the Sun and only during total Solar eclipses. Geodetic Very Long Baseline Interferometry (VLBI) is capable of measuring the deflection of the light from distant radio sources anytime and across the whole sky. We show that the effect of light deflection is equivalent to the gravitational delay calculated during the reduction of VLBI data. All reference radio sources display an annual circular motion with the magnitude proportional to their ecliptic latitude. In particular, radio sources near the ecliptic pole draw an annual circle with magnitude of 4~mas. This effect could be easily measured with the current precision of the geodetic VLBI data.

  14. High power RF system for transverse deflecting structure XFEL TDS INJ

    NASA Astrophysics Data System (ADS)

    Volobuev, E. N.; Zavadtsev, A. A.; Zavadtsev, D. A.; Smirnov, A. J.; Sobenin, N. P.; Churanov, D. V.

    2016-09-01

    The high power RF system (HPRF) is designed for RF feeding of the transverse deflecting structure of the transverse deflecting system XFEL TDS System INJ of the European X-ray Free Electron Laser. The HPRF system includes klystron, waveguide ceramic windows, directional couplers, waveguide vacuum units, spark detector and waveguide line. Operating frequency is 2997.2 MHz. Peak input power is up to 3 MW. The HPRF system has been developed, manufactured and assembled in the XFEL Injector building. The total length of the waveguide line is 55 m from the klystron at the -5 floor to the transverse deflecting structure at the -7 floor. All designed RF parameters have been obtained experimentally at low RF power level.

  15. Large Deflection Compressional Analysis of Unsymmetric Delaminated Composite Plates with Consideration of Contact Phenomenon

    NASA Astrophysics Data System (ADS)

    Kharazi, Mahsa; Ovesy, Hamid Reza

    2010-10-01

    In this study, an efficient method is developed to investigate the compressive large deflection behavior of unsymmetric composite laminates with multiple through-the-width delaminations. The analytical method is based on the first order shear deformation theory (FSDT) and its formulation is developed on the basis of the Rayleigh-Ritz approximation technique by the implementation of the simple and complete polynomial series. The method can handle both local deflection of the delaminated sublaminate and global deflection of the whole plate. Also, the contact among sublaminates is investigated. The three-dimensional finite element analysis is performed by using ANSYS5.4 general purpose commercial software, and the results are compared with those obtained by the analytical model.

  16. Dynamics of Freely Oscillating and Coupled Hair Cell Bundles under Mechanical Deflection

    PubMed Central

    Fredrickson-Hemsing, Lea; Strimbu, C. Elliott; Roongthumskul, Yuttana; Bozovic, Dolores

    2012-01-01

    In vitro, attachment to the overlying membrane was found to affect the resting position of the hair cell bundles of the bullfrog sacculus. To assess the effects of such a deflection on mechanically decoupled hair bundles, comparable offsets were imposed on decoupled spontaneously oscillating bundles. Strong modulation was observed in their dynamic state under deflection, with qualitative changes in the oscillation profile, amplitude, and characteristic frequency of oscillation seen in response to stimulus. Large offsets were found to arrest spontaneous oscillation, with subsequent recovery upon reversal of the stimulus. The dynamic state of the hair bundle displayed hysteresis and a dependence on the direction of the imposed offset. The coupled system of hair bundles, with the overlying membrane left on top of the preparation, also exhibited a dependence on offset position, with an increase in the linear response function observed under deflections in the inhibitory direction. PMID:22768934

  17. Dynamics of freely oscillating and coupled hair cell bundles under mechanical deflection.

    PubMed

    Fredrickson-Hemsing, Lea; Strimbu, C Elliott; Roongthumskul, Yuttana; Bozovic, Dolores

    2012-04-18

    In vitro, attachment to the overlying membrane was found to affect the resting position of the hair cell bundles of the bullfrog sacculus. To assess the effects of such a deflection on mechanically decoupled hair bundles, comparable offsets were imposed on decoupled spontaneously oscillating bundles. Strong modulation was observed in their dynamic state under deflection, with qualitative changes in the oscillation profile, amplitude, and characteristic frequency of oscillation seen in response to stimulus. Large offsets were found to arrest spontaneous oscillation, with subsequent recovery upon reversal of the stimulus. The dynamic state of the hair bundle displayed hysteresis and a dependence on the direction of the imposed offset. The coupled system of hair bundles, with the overlying membrane left on top of the preparation, also exhibited a dependence on offset position, with an increase in the linear response function observed under deflections in the inhibitory direction. PMID:22768934

  18. Observation and analysis of static deflections from transverse long-range wakefields in the SLC

    SciTech Connect

    Assmann, R.W.; Decker, F.J.; Raimondi, P.; Raubenheimer, T.O.

    1997-07-01

    In the SLC main linac a train of three bunches is accelerated. The leading positron bunch is followed by two bunches of electrons. When the positron bunch passes off-axis through the Rf structures, it excites dipole modes in the structures, for example long-range transverse wakefields which deflect the subsequent electron bunches. Although the magnitude of the deflections is small one can infer the deflections by measuring the trajectory differences while changing the spacing between the positron and electron bunches. Knowing the positron trajectory the misalignments of the accelerating RF structures with respect to the BPM`s can be calculated. The authors present measurements from the SLC linac and discuss the data analysis and errors.

  19. Spatially-resolved investigation of transport in semiconductors: a photothermal deflection approach

    SciTech Connect

    Skumanich, A.; Fournier, D.; Boccara, A.C.; Amer, N.M.

    1985-06-01

    The unique ability of photothermal deflection spectroscopy to probe the local index of refraction of matter is exploited to investigate, in a spatially-resolved manner, thermal and electronic transport in semiconductors. An added advantage of this approach is that it is contactless; hence, it obviates the classical problems associated with electrodes and contacts. The basic premise of the technique is the use of the heat associated with non-radiative processes (e.g., recombination of carriers) to deflect a focussed laser probe beam (sub-gap energy) propagating through the semiconductor. The deflection of the probe beam is caused by a change in the refractive index of the sample which is in turn governed by carrier diffusion and recombination.

  20. Gravitational lensing from compact bodies: Analytical results for strong and weak deflection limits

    SciTech Connect

    Amore, Paolo; Cervantes, Mayra; De Pace, Arturo; Fernandez, Francisco M.

    2007-04-15

    We develop a nonperturbative method that yields analytical expressions for the deflection angle of light in a general static and spherically symmetric metric. The method works by introducing into the problem an artificial parameter, called {delta}, and by performing an expansion in this parameter to a given order. The results obtained are analytical and nonperturbative because they do not correspond to a polynomial expression in the physical parameters. Already to first order in {delta} the analytical formulas obtained using our method provide at the same time accurate approximations both at large distances (weak deflection limit) and at distances close to the photon sphere (strong deflection limit). We have applied our technique to different metrics and verified that the error is at most 0.5% for all regimes. We have also proposed an alternative approach which provides simpler formulas, although with larger errors.

  1. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses for assessing whether the Door Drive Mechanism (DDM) was subjected to excessive additional stress, and more importantly, to evaluate the magnitude of the induced step or gap with respect to shuttle s body tiles. To model the flexibility of the DDM, a lumped parameter approximation was used to capture the compliance of individual parts within the drive linkage. These stiffness approximations were then validated using FEA and iteratively updated in the model to converge on the actual distributed parameter equivalent stiffnesses. The goal of the analyses is to determine the deflections in the mechanism and whether or not the deflections are in the region of elastic or plastic deformation. Plastic deformation may affect proper closure of the ETD and would impact aero-heating during re-entry.

  2. Effect of canard deflection on close-coupled canard-wing-body aerodynamics

    NASA Technical Reports Server (NTRS)

    Tu, Eugene L.

    1992-01-01

    The thin-layer Navier-Stokes equations are solved for the flow about a canard-wing-body configuration at transonic Mach numbers of 0.85 and 0.90, angles of attack from -4 to 10 degrees and canard deflection angles from -10 to +10 degrees. Effects of canard deflection on aerodynamic performance, including canard-wing vortex interaction, are investigated. Comparisons with experimental measurements of surface pressures, lift, drag and pitching moments are made to verify the accuracy of the computations. The results of the study show that the deflected canard downwash not only influences the formation of the wing leading-edge vortex, but can cause the formation of an unfavorable vortex on the wing lower surface as well.

  3. Accuracy of vertical deflection determination by present-day inertial instrumentation

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.

    1978-01-01

    An analysis of results obtained in the Canadian Rock Mountains indicates that the observation of deflection differences along the same line can be repeated with a precision of about 0.5 sec but that there are systematic discrepancies between the forward and the backward running of the same line. A comparison with the available astronomically determined deflections also shows systematic differences of 2 sec and 3 sec. These errors are most likely due to the overshooting of the Kalman procedure at gradient changes. It appears that the software can be altered in such a way that deflection differences between stations, not more than half an hour of travel time apart, can be determined by the inertial system with an accuracy of better than + or - 1 sec.

  4. Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Zhao, Minmin; Liu, Zhigang; Wu, Zhaohang

    2016-08-01

    Deflection tomography with limited angle projections was investigated to visualize a premixed flame. A projection sampling system for deflection tomography was used to obtain chronological deflectogram arrays at six view angles with only a pair of gratings. A new iterative reconstruction algorithm with deflection angle compressed-sensing revision was developed to improve reconstruction-distribution quality from incomplete projection data. Numerical simulation and error analysis provided a good indication of algorithm precision and convergence. In the experiment, 150 fringes were processed, and temperature distributions in 20 cross-sections were reconstructed from projection data in four instants. Four-dimensional flame structures and temperature distributions in the flame interior were visualized using the visualization toolkit. The experimental reconstruction was then compared with the result obtained from computational fluid dynamic analysis.

  5. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  6. Structural and transport properties of CdS films deposited on flexible substrates

    NASA Astrophysics Data System (ADS)

    Shur, M. S.; Rumyantsev, S.; Gaska, R.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M.; Sinius, J.

    2002-09-01

    We report on structural and electrical properties of CdS films chemically deposited at temperatures 60-70 °C from solutions containing cadmium citrate complex-ions and thiourea. We demonstrated the material deposition on a variety of flexible substrates, including viewfoils, cloth, and threads and fabricated devices on the deposited films including solar cells, stress sensors, and photoconductive sensors. Scanning electron microscopy and high resolution transmission electron microscopy data show that the films consist of nanocrystalline grains. The X-ray diffraction data identify crystalline CdS with hexagonal structure with a very high degree of crystallinity. The relative intensity of the peaks in the X-ray spectrum shows that the crystallites are oriented. The nanostructure of the CdS films results in a giant reproducible sensitivity to stress (tension) under UV illumination.

  7. Characterization of CdS nanoparticles during their growth in paraffin hot-matrix

    SciTech Connect

    Yordanov, Georgi G.; Adachi, Eiki; Dushkin, Ceco D. . E-mail: nhtd@wmail.chem.uni-sofia.bg

    2007-03-15

    This paper describes the optical and structural properties of CdS nanoparticles during their growth in paraffin hot-matrix containing stearic acid ligand. The nanocrystalline species are characterized with absorbance and photoluminescence spectroscopy, fluorescence microscopy, High-Resolution Transmission Electron Microscopy and X-ray diffraction. The nanoparticles size-distribution, Stokes shift and mean molar concentration are derived from the optical spectra as functions of time. Their time evolution confirms a two-stage nanocrystal growth for CdS. The stability of aggregates of stearate-coated nanoparticles, tested against UV-illumination, shows that the band-edge emission is more sensitive to photo bleaching than the trap-state emission. The obtained new quantitative results are important for the large-scale manufacturing of CdS nanoparticles and their practical applications.

  8. Pseudocapacitive behavior of unidirectional CdS nanoforest in 3D architecture through solution chemistry

    NASA Astrophysics Data System (ADS)

    Nair, Nikila; Majumder, Sutripto; Sankapal, Babasaheb R.

    2016-08-01

    Two step soft chemical route has been utilized for the fabrication of CdS nanowire electrode in 3D architecture at room temperature (300 K). The electrochemical pseudocapacitive behavior of thin film consisting of CdS nanowires has been evaluated by using cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy in an aqueous media. The electrochemical test revealed that CdS nanowire attained a specific capacitance of 181 F/g at a scan rate of 5 mV/s. An energy density of 1.72 Wh/kg and power density of 27.14 W/kg has been achieved at 89 mA/g current density in 1 M Na2SO3 solution.

  9. Biosynthesis of luminescent CdS quantum dots using plant hairy root culture

    NASA Astrophysics Data System (ADS)

    Borovaya, Mariya N.; Naumenko, Antonina P.; Matvieieva, Nadia A.; Blume, Yaroslav B.; Yemets, Alla I.

    2014-12-01

    CdS nanoparticles have a great potential for application in chemical research, bioscience and medicine. The aim of this study was to develop an efficient and environmentally-friendly method of plant-based biosynthesis of CdS quantum dots using hairy root culture of Linaria maroccana L. By incubating Linaria root extract with inorganic cadmium sulfate and sodium sulfide we synthesized stable luminescent CdS nanocrystals with absorption peaks for UV-visible spectrometry at 362 nm, 398 nm and 464 nm, and luminescent peaks at 425, 462, 500 nm. Transmission electron microscopy of produced quantum dots revealed their spherical shape with a size predominantly from 5 to 7 nm. Electron diffraction pattern confirmed the wurtzite crystalline structure of synthesized cadmium sulfide quantum dots. These results describe the first successful attempt of quantum dots synthesis using plant extract.

  10. Nonlinear Faraday effect in CdS semiconductor in an ultrahigh magnetic field

    SciTech Connect

    Druzhinin, V.V.; Tatsenko, O.M.; Bykov, A.I.

    1994-08-01

    A significant nonlinearity in the angle of rotation polarization plane was observed in CdS at wavelengths of 494 in the presence of high magnetic fields (0.5-5 MG). The onset significant nonlinearity also depended on sample temperature. An absorption study with probe wavelength of {approximately} 494 nm revealed an increase in optical transmission associated with a splitting of the conduction band. Dispersion, field and temperature curves indicate a low conduction electron mass m{sub e} = 0.3 m{sub o}. A numerical calculation and interpretation of the observed effects was carried out using band theory. The optical and magnetooptical properties of semiconducting crystals of CdS were studied, reviews of which are presented in [1,2]. This article describes joint American-Russian experiments to study the optical and magnetooptical properties of CdS in ultrahigh fields to {approximately} 7 MG.

  11. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  12. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode.

    PubMed

    Huang, Yinxi; Zhang, Wenjun; Xiao, Han; Li, Genxi

    2005-11-15

    The direct electrochemistry of glucose oxidase (GOD) adsorbed on a CdS nanoparticles modified pyrolytic graphite electrode was investigated, where the enzyme demonstrated significantly enhanced electron-transfer reactivity. GOD adsorbed on CdS nanoparticles maintained its bioactivity and structure, and could electro-catalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection. Performance and characteristics of the fabricated glucose biosensor were assessed with respect to detection limit, sensitivity, storage stability and interference exclusion. The results showed that the fabricated biosensor was sensitive and stable in detecting glucose, indicating that CdS nanoparticle was a good candidate material for the immobilization of enzyme in glucose biosensor construction. PMID:16242622

  13. Quantitative separation of Hg(II) from several metal ions on Zr(IV) antimonate papers

    SciTech Connect

    Seth, N.S.; Rajput, R.P.S.; Agrawal, N.K.; Agrawal, S.K.; Agrawal, S.

    1985-09-01

    The chromatographic behavior of 32 metal ions has been studied on paper impregnated with Zirconium(IV) antimonate in aqueous HCl and mixed solvent system containing dimethylsulfoxide and dioxane. Several important binary and ternary separations have been achieved. Quantitative separation of Hg(II) from NiS , PbS , PdS , RuT , RhT , BiT , CoS , CdS and GdT is described. 6 references, 3 tables.

  14. Investigation of diaphragm deflection of an absolute MEMS capacitive polysilicon pressure sensor

    NASA Astrophysics Data System (ADS)

    Walk, C.; Goehlich, A.; Giese, A.; Goertz, M.; Vogt, H.; Kraft, M.

    2015-05-01

    This paper deals with the characteristics of circular shaped polysilicon pressure sensor diaphragms operating in the non-tactile mode. Using a phase shifting interferometer the main characteristics of diaphragms were investigated under applied pressure with respect to sensitivity, initial deflection and cavity height. Diaphragms with a thickness of 1 μm and a diameter of 96 μm were investigated in an intended pressure range of applied pressure of about 700 - 2000 hPa. Process parameters with major impact on performance and yield limitations were identified. These include the variance in diaphragm sensitivity and the impact of the variance of the sacrificial oxide layer defining the diaphragm cavity height on the contact pressure point. The sensitivity of these diaphragms including the variance was found to be - 19.8 ± 1.3 nm per 100 hPa. The impact of variance in the cavity height on the contact pressure point was found to be about 3.7 ± 0.5 hPa per nm. Summarizing both impacts a maximum variation of the contact pressure point of more than 450 hPa is possible to occur considering a nominal deflection of 300 nm. By optimizing the process of diaphragm deposition the variance in the sensitivity of the diaphragm was decreased by a factor of 2. A semi - empirical formula was evaluated that describes the deflection including initial deflection due to intrinsic stress and the process variations. A validation to the experimental obtained deflection lines showed a good agreement with deviations of less than 2 % for radial ranges of maximum deflection.

  15. Gravitational deflection of light and massive particles by a moving Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    He, Guansheng; Lin, Wenbin

    2016-05-01

    The gravitational deflection of test particles including light, due to a radially moving Kerr-Newman (KN) black hole with an arbitrary constant velocity that is perpendicular to its angular momentum, is investigated. In harmonic coordinates, we derive the second post-Minkowskian (2PM) equations of motion for test particles, and solve them by high-accuracy numerical calculations. We then concentrate on discussing the kinematical corrections caused by the motion of the gravitational source to second-order deflection. The analytical formula of the light-deflection angle up to the second order by a moving lens is obtained. For a massive particle moving with a relativistic velocity, there are two different analytical results for the Schwarzschild deflection angle up to the second order reported in the previous works, i.e. α (w)=2≤ft(1+\\tfrac{1}{{w}2}\\right)\\tfrac{M}{b}+3π ≤ft(\\tfrac{1}{4}+\\tfrac{1}{{w}2}\\right)\\tfrac{{M}2}{{b}2} and α (w)=2≤ft(1+\\tfrac{1}{{w}2}\\right)\\tfrac{M}{b}+≤ft[3π ≤ft(\\tfrac{1}{4}+\\tfrac{1}{{w}2}\\right)+2≤ft(1-\\tfrac{1}{{w}4}\\right)\\right]\\tfrac{{M}2}{{b}2}, where M, b, and w are the mass of the lens, the impact parameter, and the particle’s initial velocity, respectively. Our numerical result is in perfect agreement with the former result. Furthermore, the analytical formula for massive particle deflection up to the second order in the Kerr geometry is achieved. Finally, the possibilities of detecting the motion effects on the second-order deflection are also analyzed.

  16. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-12-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors.

  17. Effects of Multiple Weak Deflections on the Galaxy-Galaxy Lensing Signal

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.; Blumenthal, Kelly

    2014-06-01

    Galaxy-galaxy lensing is a powerful tool with which the dark mass distribution around galaxies can be constrained directly. One potential complication to the interpretation of an observed galaxy-galaxy lensing signal, however, is the effect of multiple weak deflections. A number of previous studies have shown that for a typical deep data set, background source galaxies will have been lensed at a comparable level by two or more foreground galaxies. Contrary to naive expectations, these multiple weak deflections that are undergone by the images of the source galaxies do not generally cancel out, nor can they usually be ignored. Previous work as shown that at large angular scales the net shear experienced by distant source galaxies due to all foreground lenses generally exceeds the shear due to the single lens with the smallest impact parameter (the "closest lens"). When multiple deflections that have occurred in the observational data are not included in the interpretation of the observed shear profile, systematic errors in the constraints on the lens masses can occur. Here we explore the effects of multiple deflections on the galaxy-galaxy lensing signal using various toy models. We show that the main cause for the difference between the shear profile resulting from all foreground weak lenses and the shear profile resulting from the single closest weak lens is the fact that galaxies have a broad distribution in redshift space. That is, it is not correct to consider realistic galaxy-galaxy lensing as being confined primarily to a single lens plane in redshift space. We also explore the effect of multiple weak deflections on the surface mass density inferred for foreground lenses when the net mean tangential shear (i.e., the shear that results when all multiple weak deflections are taken into account) is used.

  18. Beam Dynamics Studies of Parallel-Bar Deflecting Cavities

    SciTech Connect

    S. Ahmed, G. Krafft, K. Detrick, S. Silva, J. Delayen, M. Spata ,M. Tiefenback, A. Hofler ,K. Beard

    2011-03-01

    We have performed three-dimensional simulations of beam dynamics for parallel-bar transverse electromagnetic mode (TEM) type RF separators: normal- and super-conducting. The compact size of these cavities as compared to conventional TM$_{110}$ type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a one- or two-cell superconducting structure are enough to produce the required vertical displacement at the Lambertson magnet. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  19. CdS quantum dots: growth, microstructural, optical and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Ahamad, Tansir; Majeed Khan, M. A.; Kumar, Sushil; Ahamed, Maqusood; Shahabuddin, Mohammed; Alhazaa, Abdulaziz N.

    2016-06-01

    Cadmium sulfide (CdS) quantum dots (QDs) with cubic phase were prepared using simple precursors by chemical precipitation technique, and their thin films were grown on glass substrates by chemical bath deposition. The obtained quantum dots were characterized for their structural, morphological, optical, thermal and electrical properties using X-ray diffraction (XRD), field emission transmission electron microscopy, UV-visible absorption spectroscopy, Raman spectroscopy, photoluminescence, thermogravimetric analysis/differential thermal analysis and low-temperature electrical transport measurements, respectively. XRD pattern reveals that the prepared CdS QDs are highly pure and crystalline in nature with cubic phase. The average particle size, estimated to be ~2 nm, is almost in agreement with the values calculated by Brusïs formula. Selected area electron diffraction also recognizes the cubic structure of CdS quantum dots. The UV-visible spectra exhibit a blueshift with respect to that of bulk sample which is attributed to the quantum size effect of electrons and holes. The band gap of CdS QDs is calculated from absorption data using Tauc plot and found to be 2.84 eV. Energy-dispersive X-ray analysis reveals the presence of Cd and S in almost stoichiometric ratio in the prepared CdS QDs. Micro-Raman spectroscopic studies also yield convincing evidence for the transformation of structure. The emission spectra of CdS QDs show peak centered at 541 nm, which is attributed to the presence of cadmium vacancies in the lattice. The DC resistivity data at low temperatures are qualitatively consistent with the variable-range hopping model, and the density of states at the Fermi level is determined.

  20. Surfactant-Assisted Growth of CdS Thin Films for Photovoltaic Applications

    SciTech Connect

    Perkins, C. L.; Hasoon, F. S.

    2006-05-01

    A common nonionic surfactant, Triton X-100, was used to modify the chemical bath deposition of CdS 'buffer' layers on Cu(In,Ga)Se{sub 2} (CIGS) thin films. Addition of the surfactant to the CdS deposition bath allowed increased wetting of Cu(In,Ga)Se{sub 2} substrates and an increase in the uniformity of films, especially on model hydrophobic substrates. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy data demonstrate that films produced with the surfactant have the same chemical and electronic properties as films grown without it. In CdS/Cu(In,Ga)Se{sub 2} devices, it was found that Triton X-100 allowed the use of CdS layers that were three to four times thinner than those used normally in high efficiency CIGS-based devices and eliminated the large drops in open-circuit voltage that usually accompany very thin buffer layers. For these thin CdS layers and relative to devices made without the surfactant, average absolute cell efficiencies were increased from 10.5% to 14.8% or by a relative 41%. Visual inspection of the CdS depositions reveals one possible mechanism of the surfactant's effects: Bubbles that form and adhere to the CIGS surface during the chemical bath deposition are almost completely eliminated with the addition of the TX-100. Thus, junction nonuniformities, pinholes, and thin areas in the CdS layer caused by poor wetting of the substrate surface are sharply reduced, leading to large increases in the open-circuit voltage in devices produced with the surfactant.

  1. Determination of vertical deflections using the global positioning system and geodetic leveling

    SciTech Connect

    Solar, T.; Carlson, A.E. Jr.; Evans, A.G.

    1989-07-01

    The capabilities of the Global Positioning System (GPS) for accurately determining geodetic quantities are well established. Nevertheless, no comparison between deflections of the vertical as determined through GPS with leveling and values conventionally computer by astrogeodetic methods has yet been published. This investigation demonstrates that the accurate deflections of the vertical components ({eta}, {xi}) can be obtained independently of classical astronomic observations by combining geodetic leveling with satellite GOS positioning. The approach uses a radial configuration of baselines to determine the best (in a least square sense) values of ({eta}, {xi}) at the central station.

  2. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures

    NASA Astrophysics Data System (ADS)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; Clarke, Christine; Hogan, Mark; McCormick, Doug; Novokhatski, Alexander; Spataro, Bruno; Weathersby, Stephen; Tantawi, Sami G.

    2016-05-01

    We present an experimental study of a high gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.

  3. Deflection of 450 GeV protons by planar channeling in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Jensen, B. N.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Atherton, H. W.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Jeanneret, J. B.; Hage-Ali, M.; Siffert, P.

    1992-08-01

    A 450 GeV proton beam has been bent by various angles from 4 to 14 mrad using planar channeling in a (111) silicon crystal. Detailed investigations of the deflected beam as well as the unbent and scattered particles have been performed. The incident beam had a divergence of about 35 μrad (FWHM). 20% of the protons hitting the crystal front face were found to be initially channeled. The measured bending efficiencies range from 5 to 2% (for increasing deflection angles) are compared to theoretical estimates including surface acceptance and dechanneling in bent silicon crystals.

  4. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas; Byer, Robert L.

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  5. In Situ Characterization of the Local Work Function along Individual Free Standing Nanowire by Electrostatic Deflection

    PubMed Central

    Chen, Yicong; Zhao, Chengchun; Huang, Feng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2016-01-01

    In situ characterization of the work function of quasi one dimensional nanomaterials is essential for exploring their applications. Here we proposed to use the electrostatic deflection induced by work function difference between nanoprobe and nanowire for in situ measuring the local work function along a free standing nanowire. The physical mechanism for the measurement was discussed in details and a parabolic relationship between the deflection and the potential difference was derived. As a demonstration, measurement of the local work functions on the tip and the sidewall of a ZnO nanowire with Au catalyst at its end and a LaB6 nanowire have been achieved with good accuracy. PMID:26882827

  6. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  7. A single axis electrostatic beam deflection system for a 5-cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A single-axis electrostatic beam deflection system has been tested on a 5-cm diameter mercury ion thruster at a thrust level of about 0.43 mlb (25 mA beam current at 1400 volts). The accelerator voltage was 500 volts. Beam deflection capability of plus or minus 10 deg was demonstrated. A life test of 1367 hours was run at the above conditions. Results of the test indicated that the system could possibly perform for upwards of 10,000 hours.

  8. Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration

    SciTech Connect

    Pollock, B B; Ross, J S; Tynan, G R; Divol, L; Glenzer, S H; Leurent, V; Palastro, J P; Ralph, J E; Froula, D H; Clayton, C E; Marsh, K A; Pak, A E; Wang, T L; Joshi, C

    2009-04-24

    Laser Wakefield Acceleration (LWFA) experiments have been performed at the Jupiter Laser Facility, Lawrence Livermore National Laboratory. In order to unambiguously determine the output electron beam energy and deflection angle at the plasma exit, we have implemented a two-screen electron spectrometer. This system is comprised of a dipole magnet followed by two image plates. By measuring the electron beam deviation from the laser axis on each plate, both the energy and deflection angle at the plasma exit are determined through the relativistic equation of motion.

  9. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  10. SEPARATION PROCESS

    DOEpatents

    Stoughton, R.W.

    1961-10-24

    A process for separating tetravalent plutonium from aqueous solutions and from niobium and zirconium by precipitation on lanthanum oxalate is described. The oxalate ions of the precipitate may be decomposed by heating in the presence of an oxidizing agent, forming a plutonium compound readily soluble in acid. (AEC)

  11. Plasma separation

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    This process employs a thermal plasma for the separation and production of oxygen and metals. It is a continuous process that requires no consumables and relies entirely on space resources. The almost complete absence of waste renders it relatively clean. It can be turned on or off without any undesirable side effects or residues. The prime disadvantage is its high power consumption.

  12. Rf sputtering of CdTE and CdS for thin film PV

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Tabory, C. N.; Shao, M.; Fischer, A.; Feng, Z.; Bohn, R. G.

    1994-06-01

    In late 1992 we demonstrated the first rf sputtered CdS/CdTe photovoltaic cell with efficiency exceeding 10%. In this cell both CdS and CdTe layers were deposited by rf sputtering. In this paper we report preliminary measurements of 1) optical emission spectroscopy of the rf plasma, 2) the width of the phonon Raman line as a function of deposition temperature for CdS, and 3) studies of oxygen doping during pulsed laser deposition of CdTe.

  13. Negative infrared photoconductivity in CdS1-xSex films

    NASA Astrophysics Data System (ADS)

    Abdinov, A. S.; Jafarov, M. A.; Mamedov, H. M.; Nasirov, E. F.

    2003-09-01

    The negative infrared photoconductivity (NPH) has been observed for the first time in CdS1-xSex films, in the wavelength region of 0.700 - 1.23 μm. at values of stimulating light intensity Φ = 100 - 400 Lk. electrical field E = 0.5 - 130 V/cm and temperature T = 265 - 310 Κ. It is established, that basic laws of NPH explains on the basis of two-barrier model and in the considered conditions a charge carriers, overcome a barrier by tunneling. A films of CdS1-xSex can be used in IR engineering and negatronics.

  14. Formation of CdS nanoparticles using starch as capping agent

    NASA Astrophysics Data System (ADS)

    Rodríguez, P.; Muñoz-Aguirre, N.; Martínez, E. San-Martin; Gonzalez, G.; Zelaya, O.; Mendoza, J.

    2008-11-01

    CdS nanoparticles have been synthesized using starch as capping agent in aqueous solution. The morphology and crystalline structure of such samples were measured by high-resolution transmission electron microscopy and X-ray diffraction, respectively. The average grain size of the nanoparticles determined by these techniques was of the order of 5 nm. Photoluminescence of CdS nanoparticles shows a strong emission peak below to the band gap bulk semiconductor attributed to center trap states, also the broadening peak was interpreted in terms of electron-phonon interaction.

  15. Coronal Magnetography of Solar Active Regions Using Coordinated SOHO/CDS and VLA Observations

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1999-01-01

    The purpose of this project is to apply the coronal magnetographic technique to SOHO (Solar Heliospheric Observatory) /CDS (Coronal Diagnostic Spectrometer) EUV (Extreme Ultraviolet Radiation) and coordinated VLA microwave observations of solar active regions to derive the strength and structure of the coronal magnetic field. A CDS observing plan was developed for obtaining spectra needed to derive active region differential emission measures (DEMs) required for coronal magnetography. VLA observations were proposed and obtained. SOHO JOP 100 was developed, tested, approved, and implemented to obtain coordinated CDS (Coronal Diagnostic Spectrometer)/EIT (Ultraviolet Imaging Telescope)/ VLA (Very Large Array)/ TRACE (Transition Region and Coronal Explorer)/ SXT (Solar X Ray Telescope) observations of active regions on April 12, May 9, May 13, and May 23. Analysis of all four data sets began, with heaviest concentration on COS data. It is found that 200-pixel (14 A in NIS1) wavelength windows are appropriate for extracting broadened Gaussian line profile fit parameters for lines including Fe XIV at 334.2, Fe XVI at 335.4, Fe XVI at 360.8, and Mg IX at 368.1 over the 4 arcmin by 4 arcmin CDS field of view. Extensive efforts were focused on learning and applying were focused on learning and applying CDS software, and including it in new IDL procedures to carry out calculations relating to coronal magnetography. An important step is to extract Gaussian profile fits to all the lines needed to derive the DEM in each spatial pixel of any given active region. The standard CDS absolute intensity calibration software was applied to derived intensity images, revealing that ratios between density-insensitive lines like Fe XVI 360.8/335.4 yield good agreement with theory. However, the resulting absolute intensities of those lines are very high, indicating that revisions to the CDS absolute intensity calibrations remain to be included in the CDS software, an essential step to

  16. Photocatalysis on (CdS) x (ZnTe)1 - x solid solutions

    NASA Astrophysics Data System (ADS)

    Karpova, E. O.; Nagibina, I. Yu.; Makarova, A. S.

    2015-01-01

    Photocatalytic properties of the surface of binary compounds (CdS, ZnTe) and solid solutions (CdS) x (ZnTe)1 - x formed on their basis are studied by means of potentiometry and chromatography. The values of forbidden gap Δ E are calculated from the resulting UV spectra, according to which the components of the CdS-ZnTe system can display photocatalytic activity in the wavelength range of 364 to 670 nm. A scheme of a model setup for producing hydrogen from water is proposed using the authors' method.

  17. Surface plasmon polaritons suppress photoresponse of colloidal CdS nanorods in nanogap

    NASA Astrophysics Data System (ADS)

    Li, Peigang; Song, Jia; Pan, Aoqiu; Chen, Jianjun; Wang, Shunli; Shen, Jingqin; Wang, Pengchao; Zhan, Jianming; Qian, Huiqin; Tang, Weihua

    2015-05-01

    Colloidal CdS nanorods ∼4.9 nm in diameter and ∼60 nm long were positioned in gold bow-tie electrodes with a gap of ∼50 nm by an AC dielectrophoresis process to construct optoelectronic devices. The fabricated devices exhibited an excellent photoresponse to white and blue light, but no response to green light. However, the response of the devices to white light could be degraded by green light. This is considered to be related to surface plasmon polaritons suppressing the generation of photo-carriers in the CdS nanorods. The results indicate that surface plasmons do not always benefit nano-optoeletronic devices.

  18. A Dynamic Approach to Make CDS/ISIS Databases Interoperable over the Internet Using the OAI Protocol

    ERIC Educational Resources Information Center

    Jayakanth, F.; Maly, K.; Zubair, M.; Aswath, L.

    2006-01-01

    Purpose: A dynamic approach to making legacy databases, like CDS/ISIS, interoperable with OAI-compliant digital libraries (DLs). Design/methodology/approach: There are many bibliographic databases that are being maintained using legacy database systems. CDS/ISIS is one such legacy database system. It was designed and developed specifically for…

  19. Adapting the Established SIS to Meet Higher Education's Increasingly Dynamic Needs. CDS Spotlight Report. ECAR Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This Spotlight focuses on data from the 2013 Core Data Service (CDS) to better understand how higher education institutions approach student information systems (SISs). Information provided for this spotlight was derived from Module 8 of the CDS survey, which asked several questions regarding information systems and applications. Responses from…

  20. Chemical Synthesis and Optical Properties of CdS Poly(Lactic Acid) Nanocomposites and Their Transparent Fluorescent Films

    SciTech Connect

    Wang, Cai-Feng; Cheng, Yu-Peng; Xie, He-Yi; Chen, Li; Hu, Michael Z.; Chen, Su

    2011-01-01

    This paper describes the chemical synthesis of cadmium sulfide (CdS) polymer nanocomposites by covalently grafting poly(lactic acid) (PLA) onto the surfaces of CdS nanocrystals (NCs). Synthesis of the nanocomposites involved two steps. Lactic acid (LA) capped CdS NCs were first prepared by reacting cadmium chloride (CdCl2) with sodium sulfide (Na2S) using LA as the organic ligand in H2O/N,N-dimethylformamide (DMF) solution. Next CdS PLA nanocomposites were formed by in situ ring-opening polymerization of lactide on the surface of modified CdS NCs. Transparent fluorescent films were then successfully prepared by blending as-prepared CdS PLA nanocomposites with high-molecular-weight PLA. The as-prepared CdS NCs and their nanocomposites were studied by transmission electron microscopic imaging, thermogravimetric analyses, and spectroscopic measurements (ultraviolet-visible absorption and photoluminescence). The spectroscopic studies revealed that the CdS polymer nanocomposites exhibited good optical properties in terms of their photoluminescence and transparency.

  1. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method. PMID:26024214

  2. Effects of experimental conditions on the morphologies, structures and growth modes of pulsed laser-deposited CdS nanoneedles

    PubMed Central

    2014-01-01

    CdS nanoneedles with different morphologies, structures, and growth modes have been grown on Ni-coated Si(100) surface under different experimental conditions by pulsed laser deposition method. The effects of catalyst layer, substrate temperature, and laser pulse energy on the growth of the CdS nanoneedles were studied in detail. It was confirmed that the formation of the molten catalyst spheres is the key to the nucleation of the CdS nanoneedles by observing the morphologies of the Ni catalyst thin films annealed at different substrate temperatures. Both the substrate temperature and laser pulse energy strongly affected the growth modes of the CdS nanoneedles. The secondary growth of the smaller nanoneedles on the top of the main nanoneedles was found at appropriate conditions. A group of more completed pictures of the growth modes of the CdS nanoneedles were presented. PMID:24559455

  3. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  4. Gas separating

    DOEpatents

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  5. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  6. Component separations.

    PubMed

    Heller, Lior; McNichols, Colton H; Ramirez, Oscar M

    2012-02-01

    Component separation is a technique used to provide adequate coverage for midline abdominal wall defects such as a large ventral hernia. This surgical technique is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20-cm wide defects in the midline area. Since its original description, components separation technique underwent multiple modifications with the ultimate goal to decrease the morbidity associated with the traditional procedure. The extensive subcutaneous lateral dissection had been associated with ischemia of the midline skin edges, wound dehiscence, infection, and seroma. Although the current trend is to proceed with minimally invasive component separation and to reinforce the fascia with mesh, the basic principles of the techniques as described by Ramirez et al in 1990 have not changed over the years. Surgeons who deal with the management of abdominal wall defects are highly encouraged to include this technique in their collection of treatment options.

  7. Solar Sailing Kinetic Energy Interceptor (KEI) Mission for Impacting/Deflecting Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Wie, Bong

    2005-01-01

    A solar sailing mission architecture, which requires a t least ten 160-m, 300-kg solar sail spacecraft with a characteristic acceleration of 0.5 mm/sqs, is proposed as a realistic near- term option for mitigating the threat posed by near-Earth asteroids (NEAs). Its mission feasibility is demonstrated for a fictional asteroid mitigation problem created by AIAA. This problem assumes that a 200-m asteroid, designated 2004WR, was detected on July 4, 2004, and that the expected impact will occur on January 14, 2015. The solar sailing phase of the proposed mission for the AIAA asteroid mitigation problem is comprised of the initial cruise phase from 1 AU t o 0.25 AU (1.5 years), the cranking orbit phase (3.5 years), and the retrograde orbit phase (1 year) prior to impacting the target asteroid at its perihelion (0.75 AU from the sun) on January 1, 2012. The proposed mission will require at least ten kinetic energy interceptor (KEI) solar sail spacecraft. Each KEI sailcraft consists of a 160- m, 150-kg solar sail and a 150-kg microsatellite impactor. The impactor is to be separated from a large solar sail prior to impacting the 200-m target asteroid at its perihelion. Each 150-kg microsatellite impactor, with a relative impact velocity of at least 70 km/s, will cause a conservatively estimated AV of 0.3 cm/s in the trajectory of the 200-m target asteroid, due largely to the impulsive effect of material ejected from the newly-formed crater. The deflection caused by a single impactor will increase the Earth-miss-distance by 0.45Re (where Re denotes the Earth radius of 6,378 km). Therefore, at least ten KEI sailcraft will be required for consecutive impacts, but probably without causing fragmentation, to increase the total Earth-miss-distance by 4.5Re. This miss-distance increase of 29,000 km is outside of a typical uncertainty/error of about 10,000 km in predicting the Earth-miss- distance. A conventional Delta I1 2925 launch vehicle is capable of injecting at least two KEI

  8. Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies

    SciTech Connect

    Carbone, Carmelita; Baldi, Marco; Baccigalupi, Carlo E-mail: marco.baldi5@unibo.it E-mail: bacci@sissa.it

    2013-09-01

    We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we find that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ{sub 8}, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to

  9. Remote Bridge Deflection Measurement Using an Advanced Video Deflectometer and Actively Illuminated LED Targets.

    PubMed

    Tian, Long; Pan, Bing

    2016-01-01

    An advanced video deflectometer using actively illuminated LED targets is proposed for remote, real-time measurement of bridge deflection. The system configuration, fundamental principles, and measuring procedures of the video deflectometer are first described. To address the challenge of remote and accurate deflection measurement of large engineering structures without being affected by ambient light, the novel idea of active imaging, which combines high-brightness monochromatic LED targets with coupled bandpass filter imaging, is introduced. Then, to examine the measurement accuracy of the proposed advanced video deflectometer in outdoor environments, vertical motions of an LED target with precisely-controlled translations were measured and compared with prescribed values. Finally, by tracking six LED targets mounted on the bridge, the developed video deflectometer was applied for field, remote, and multipoint deflection measurement of the Wuhan Yangtze River Bridge, one of the most prestigious and most publicized constructions in China, during its routine safety evaluation tests. Since the proposed video deflectometer using actively illuminated LED targets offers prominent merits of remote, contactless, real-time, and multipoint deflection measurement with strong robustness against ambient light changes, it has great potential in the routine safety evaluation of various bridges and other large-scale engineering structures. PMID:27563901

  10. Die casting die deflections: Prediction and attenuation. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.A.; Ahuett-Garza, H.; Choudhury, A.K.; Dedhia, S.

    1998-05-01

    This report summarizes two years of research intended to develop methods to model and predict the deflection patterns in die casting dies. No comprehensive analysis of this type had previously been completed. The die casting process is complex and involves numerous mechanical and thermal phenomena that effect the mechanical behavior of the die. A critical activity in this work was sorting out and evaluating the relative contributions of the various mechanisms to die deflections. This evaluation was accomplished through a series of simple engineering analyses based primarily on the order of magnitude of the influence of each load considered on die deflections. A modeling approach incorporating commercially available finite element analysis software was developed and tested. The model evolved by testing simple models against more comprehensive models and against the limited experimental data that is available. The development of the modeling approach lead to consideration of the die casting machine in more detail than was originally anticipated. The machine is critical and cannot be ignored. A simplified model described as a spring/platen model was developed to account for the machine platens, tie bars, and toggles. The characteristics of this model are described and predictions based on this model are compared against full machine models and measured deflections of machine platens. Details of the modeling approach and the various case studies are provided in the report and in several publications that have resulted from the work.

  11. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E.

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  12. Deflection of a vibrissa leads to a gradient of strain across mechanoreceptors in a mystacial follicle

    PubMed Central

    Whiteley, Samuel J.; Matthews, David W.; Kleinfeld, David

    2015-01-01

    Rodents use their vibrissae to detect and discriminate tactile features during active exploration. The site of mechanical transduction in the vibrissa sensorimotor system is the follicle sinus complex and its associated vibrissa. We study the mechanics within the ring sinus (RS) of the follicle in an ex vivo preparation of the mouse mystacial pad. The sinus region has a relatively dense representation of Merkel mechanoreceptors and longitudinal lanceolate endings. Two-photon laser-scanning microscopy was used to visualize labeled cell nuclei in an ∼100-nl vol before and after passive deflection of a vibrissa, which results in localized displacements of the mechanoreceptor cells, primarily in the radial and polar directions about the vibrissa. These displacements are used to compute the strain field across the follicle in response to the deflection. We observe compression in the lower region of the RS, whereas dilation, with lower magnitude, occurs in the upper region, with volumetric strain ΔV/V ∼ 0.01 for a 10° deflection. The extrapolated strain for a 0.1° deflection, the minimum angle that is reported to initiate a spike by primary neurons, corresponds to the minimum strain that activates Piezo2 mechanoreceptor channels. PMID:25855692

  13. Dealing with uncertainties in asteroid deflection demonstration missions: NEOTωIST

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Hestroffer, Daniel; Cano, Juan L.; Ávila, Javier Martín; Drube, Line; Harris, Alan W.; Falke, Albert; Johann, Ulrich; Engel, Kilian; Schwartz, Stephen R.; Michel, Patrick

    2016-01-01

    Deflection missions to near-Earth asteroids will encounter non-negligible uncertainties in the physical and orbital parameters of the target object. In order to reliably assess future impact threat mitigation operations such uncertainties have to be quantified and incorporated into the mission design. The implementation of deflection demonstration missions offers the great opportunity to test our current understanding of deflection relevant uncertainties and their consequences, e.g., regarding kinetic impacts on asteroid surfaces. In this contribution, we discuss the role of uncertainties in the NEOTωIST asteroid deflection demonstration concept, a low-cost kinetic impactor design elaborated in the framework of the NEOShield project. The aim of NEOTωIST is to change the spin state of a known and well characterized near-Earth object, in this case the asteroid (25143) Itokawa. Fast events such as the production of the impact crater and ejecta are studied via cube-sat chasers and a flyby vehicle. Long term changes, for instance, in the asteroid's spin and orbit, can be assessed using ground based observations. We find that such a mission can indeed provide valuable constraints on mitigation relevant parameters. Furthermore, the here proposed kinetic impact scenarios can be implemented within the next two decades without threatening Earth's safety.

  14. Strong coronal deflection of a CME and its interplanetary evolution to Earth and Mars

    NASA Astrophysics Data System (ADS)

    Möstl, Christian; Rollett, Tanja; Frahm, Rudy A.; Liu, Ying D.; Long, David M.; Colaninno, Robin C.; Reiss, Martin A.; Temmer, Manuela; Farrugia, Charles J.; Posner, Arik; Dumbovic, Mateja; Janvier, Miho; Demoulin, Pascal; Boakes, Peter; Devos, Andy; Kraaikamp, Emil; Mays, Mona L.; Vrsnak, Bojan

    2015-04-01

    We discuss multipoint imaging and in situ observations of the coronal mass ejection (CME) on January 7 2014 which resulted in a major false alarm. While the source region was almost at disk center facing Earth, the eruption was strongly deflected in the corona, and in conjunction with its particular orientation this CME missed Earth almost entirely, leading to no significant geomagnetic effects. We demonstrate this by a synthesis of data from 7 different heliospheric and planetary space missions (STEREO-A/B, SOHO, SDO, Wind, Mars Express, Mars Science Laboratory). The CMEs ecliptic part was deflected by 37 ± 10° in heliospheric longitude, a value larger than previously thought. Multipoint in situ observations at Earth and Mars confirm the deflection, and are consistent with an elliptical interplanetary shock shape of aspect ratio 1.4 ± 0.4. We also discuss our new method, the Ellipse Evolution (ElEvo) model, which allows us to optimize the global shape of the CME shock with multipoint in situ observations of the interplanetary CME arrival. ElEvo, which is an extension to the Drag-Based-Model by Vrsnak et al., may also be used for real time space weather forecasting. The presented results enhance our understanding of CME deflection and shape, which are fundamental ingredients for improving space weather forecasts.

  15. Values Advocacy: Enhancing Organizational Images, Deflecting Public Criticism, and Grounding Future Arguments.

    ERIC Educational Resources Information Center

    Bostdorff, Denise M.; Vibbert, Steven L.

    1994-01-01

    Argues that organizations routinely engage in values advocacy (the appeal to shared cultural values) to perform three distinct functions: (1) to enhance the organization's image; (2) to deflect criticism of the organization and/or its policies, products, and services; and (3) to establish value premises that can be used in later discourse. (SR)

  16. A case study of analysis methods for large deflections of a cantilever beam

    NASA Technical Reports Server (NTRS)

    Craig, L. D.

    1994-01-01

    A load case study of geometric nonlinear large deflections of a cantilever beam is presented. The bending strain must remain elastic. Closed form solution and finite element methods of analysis are illustrated and compared for three common load cases. A nondimensional nomogram for each case is presented in the summary.

  17. Deflection of a vibrissa leads to a gradient of strain across mechanoreceptors in a mystacial follicle.

    PubMed

    Whiteley, Samuel J; Knutsen, Per M; Matthews, David W; Kleinfeld, David

    2015-07-01

    Rodents use their vibrissae to detect and discriminate tactile features during active exploration. The site of mechanical transduction in the vibrissa sensorimotor system is the follicle sinus complex and its associated vibrissa. We study the mechanics within the ring sinus (RS) of the follicle in an ex vivo preparation of the mouse mystacial pad. The sinus region has a relatively dense representation of Merkel mechanoreceptors and longitudinal lanceolate endings. Two-photon laser-scanning microscopy was used to visualize labeled cell nuclei in an ∼ 100-nl vol before and after passive deflection of a vibrissa, which results in localized displacements of the mechanoreceptor cells, primarily in the radial and polar directions about the vibrissa. These displacements are used to compute the strain field across the follicle in response to the deflection. We observe compression in the lower region of the RS, whereas dilation, with lower magnitude, occurs in the upper region, with volumetric strain ΔV/V ∼ 0.01 for a 10° deflection. The extrapolated strain for a 0.1° deflection, the minimum angle that is reported to initiate a spike by primary neurons, corresponds to the minimum strain that activates Piezo2 mechanoreceptor channels.

  18. Deflection by Kinetic Impact or Nuclear Ablation: Sensitivity to Asteroid Properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.

    2015-12-01

    Impulsive deflection of a threatening asteroid can be achieved by deploying either a kinetic impactor or a standoff nuclear device to impart a modest velocity change to the body. Response to each of these methods is sensitive to the individual asteroid's characteristics, some of which may not be well constrained before an actual deflection mission. Numerical simulations of asteroid deflection, using both hypervelocity impacts and nuclear ablation of the asteroid's surface, provide detailed information on asteroid response under a range of initial conditions. Here we present numerical results for the deflection of asteroids by both kinetic and nuclear methods, focusing on the roles of target body composition, strength, porosity, rotational state, shape, and internal structure. These results provide a framework for evaluating the planetary defense-related value of future asteroid characterization missions and capture some of the uncertainty that may be present in a real threat scenario. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675914.

  19. DEFLECTION OF A HETEROGENEOUS WIDE-BEAM UNDER UNIFORM PRESSURE LOAD

    SciTech Connect

    T. V. Holschuh; T. K. Howard; W. R. Marcum

    2014-07-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or generic test plate assembly (GTPA), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates onset by hydraulic forces. This test program supports ongoing work conducted for/by the Global Threat Reduction Initiative (GTRI) Fuels Development Program. This study’s focus supports the ongoing collaborative effort by detailing the derivation of an analytic solution for deflection of a heterogeneous plate under a uniform, distributed load in order to predict the deflection of test plates in the GTPA. The resulting analytical solutions for three specific boundary condition sets are then presented against several test cases of a homogeneous plate. In all test cases considered, the results for both homogeneous and heterogeneous plates are numerically identical to one another, demonstrating correct derivation of the heterogeneous solution. Two additional problems are presents herein that provide a representative deflection profile for the plates under consideration within the GTPA. Furthermore, qualitative observations are made about the influence of a more-rigid internal fuel-meat region and its influence on the overall deflection profile of a plate. Present work is being directed to experimentally confirm the analytical solution’s results using select materials.

  20. A deformation analysis method of stepwise regression for bridge deflection prediction

    NASA Astrophysics Data System (ADS)

    Shen, Yueqian; Zeng, Ying; Zhu, Lei; Huang, Teng

    2015-12-01

    Large-scale bridges are among the most important infrastructures whose safe conditions concern people's daily activities and life safety. Monitoring of large-scale bridges is crucial since deformation might have occurred. How to obtain the deformation information and then judge the safe conditions are the key and difficult problems in bridge deformation monitoring field. Deflection is the important index for evaluation of bridge safety. This paper proposes a forecasting modeling of stepwise regression analysis. Based on the deflection monitoring data of Yangtze River Bridge, the main factors influenced deflection deformation is chiefly studied. Authors use the monitoring data to forecast the deformation value of a bridge deflection at different time from the perspective of non-bridge structure, and compared to the forecasting of gray relational analysis based on linear regression. The result show that the accuracy and reliability of stepwise regression analysis is high, which provides the scientific basis to the bridge operation management. And above all, the ideas of this research provide and effective method for bridge deformation analysis.

  1. Measurement of Refractive Index Gradients by Deflection of a Laser Beam

    ERIC Educational Resources Information Center

    Barnard, A. J.; Ahlborn, B.

    1975-01-01

    In this simple experiment for an undergraduate laboratory a laser beam is passed through the mixing zone of two liquids with different refractive indices. The spatial variation of the refractive index, at different times during the mixing, can be determined from the observed deflection of the beam. (Author)

  2. Remote Bridge Deflection Measurement Using an Advanced Video Deflectometer and Actively Illuminated LED Targets

    PubMed Central

    Tian, Long; Pan, Bing

    2016-01-01

    An advanced video deflectometer using actively illuminated LED targets is proposed for remote, real-time measurement of bridge deflection. The system configuration, fundamental principles, and measuring procedures of the video deflectometer are first described. To address the challenge of remote and accurate deflection measurement of large engineering structures without being affected by ambient light, the novel idea of active imaging, which combines high-brightness monochromatic LED targets with coupled bandpass filter imaging, is introduced. Then, to examine the measurement accuracy of the proposed advanced video deflectometer in outdoor environments, vertical motions of an LED target with precisely-controlled translations were measured and compared with prescribed values. Finally, by tracking six LED targets mounted on the bridge, the developed video deflectometer was applied for field, remote, and multipoint deflection measurement of the Wuhan Yangtze River Bridge, one of the most prestigious and most publicized constructions in China, during its routine safety evaluation tests. Since the proposed video deflectometer using actively illuminated LED targets offers prominent merits of remote, contactless, real-time, and multipoint deflection measurement with strong robustness against ambient light changes, it has great potential in the routine safety evaluation of various bridges and other large-scale engineering structures. PMID:27563901

  3. Load-Deflection response of transversely isotropic piles under lateral loads

    NASA Astrophysics Data System (ADS)

    Han, J.; Frost, J. D.

    2000-04-01

    In general, pile materials are assumed to be isotropic during the analysis of the load-deflection response of piles under lateral loads. However, commonly used materials such as reinforced concrete and timber as well as potentially promising new pile materials such as fiber reinforced polymers are typically transversely isotropic materials. Experimental studies have shown that transversely isotropic materials have a high ratio of section longitudinal modulus to the section in-plane shear modulus (Ezz/Gxz) compared to the value for isotropic materials. The high modulus ratio leads to a more significant shear deformation effect in beam bending. To account for the shear deformation effect, the Timoshenko Beam Theory has been adopted in deriving the solutions for the load-deflection response of transversely isotropic piles under lateral loads instead of the Classical (Euler-Bernoulli) Beam Theory. The load-deflection responses depend on the shear effect coefficient, the lateral soil resistance, the embedment ratio, and the boundary conditions. The deflection of the pile, if the shear deformation effect is considered, is always larger than if it is neglected.

  4. Noncontacting measuring device to indicate deflection of turbopump internal rotating parts

    NASA Technical Reports Server (NTRS)

    Hamilton, D. B.; Grieser, D. R.; Plummer, A. M.; Ensminger, D.; Saccacio, E. J.; Kissel, J. W.

    1971-01-01

    Noncontacting, nondestructive techniques to measure vibrations and deflections of parts in future LOX and LH2 multistage turbopump prototypes are reported. The measurements include shaft vibration, vibration of turbine wheel and blades, blade clearance, vibration of impellers, value component flutter, and vibration of face seal components. Three techniques were selected for development: ultrasonic Doppler devices, flash X-ray, and light-pipe reflectance.

  5. Reinforcers and Vocational Maturity in Occupational Aspiration, Expectation, and Goal Deflection

    ERIC Educational Resources Information Center

    Walls, Richard T.; Gulkus, Steven P.

    1974-01-01

    Subjects who value such job characteristics as "getting a felling of accomplishment, fair company policies, trying out their own ideas, doing work without feeling it is morally wrong, making their own decisions, (and) planning work with little supervision" tend to have higher aspirations and expectations, but lower goal deflection. (Author)

  6. Grating-based deflecting, focusing, and diagnostic dielectric laser accelerator structures

    SciTech Connect

    Soong, Ken; Byer, R. L.; Colby, E. R.; England, R. J.; Peralta, E. A.

    2012-12-21

    Recent technological advances has made possible the realization of the first laser-driven particle accelerator structure to be fabricated lithographically. However, a complete particle accelerator requires more than just accelerating elements. In this paper, we present a grating-based design for three other quintessential accelerator elements: the focusing structure, the deflecting structure, and the diagnostic structure.

  7. Effects of T-tabs and large deflections in DCB specimen tests

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Shivakumar, K. N.; Crews, J. H., Jr.

    1989-01-01

    A simple strength of materials analysis was developed for a double-cantilever beam (DCB) specimen to account for geometric nonlinearity effects due to large deflections and T-tabs. A new DCB data analysis procedure was developed to include the effects of these nonlinearities. The results of the analysis were evaluated by DCB tests performed for materials having a wide range of toughnesses. The materials used in the present study were T300/5208, IM7/8551-7, and AS4/PEEK. Based on the present analysis, for a typical deflection/crack length ratio of 0.3 (for AS4/PEEK), T-tabs and large deflections cause a 15 percent and 3 percent error, respectively, in the computer Mode 1 strain energy release rate. Design guidelines for DCB specimen thickness and T-tab height were also developed in order to keep errors due to these nonlinearities within 2 percent. Based on the test results, for both hinged and tabbed specimens, the effects of large deflection on the Mode 1 fracture toughness (G sub Ic) were almost negligible (less than 1 percent) in the case of T300/5208 and IM7/8551-7; however, AS4/PEEK showed a 2 to 3 percent effect. The effects of T-tabs G sub Ic were more significant for all the materials with T300/5208 showing a 5 percent error, IM7/8551-7 a 15 percent error, and, AS4/PEEK a 20 percent error.

  8. Effects of T-tabs and large deflections in double cantilever beam specimen tests

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.; Shivakumar, Kunigal N.

    1991-01-01

    A simple strength of materials analysis was developed for a double-cantilever beam (DCB) specimen to account for geometric nonlinearity effects due to large deflections and T-tabs. A new DCB data analysis procedure was developed to include the effects of these nonlinearities. The results of the analysis were evaluated by DCB tests performed for materials having a wide range of toughnesses. The materials used in the present study were T300/5208, IM7/8551-7, and AS4/PEEK. Based on the present analysis, for a typical deflection/crack length ratio of 0.3 (for AS4/PEEK), T-tabs and large deflections cause a 15 and 3 percent error, respectively, in the computer Mode I strain energy release rate. Design guidelines for DCB specimen thickness and T-tab height were also developed in order to keep errors due to these nonlinearities within 2 percent. Based on the test results, for both hinged and tabbed specimens, the effects of large deflection on the Mode I fracture toughness (G sub Ic) were almost negligible (less than 1 percent) in the case of T300/5208 and IM7/8551-7; however, AS4/PEEK showed a 2 to 3 percent effect. The effects of T-tabs G sub Ic were more significant for all the materials with T300/5208 showing a 5 percent error, IM7/8551-7 a 15 percent error, and, AS4/PEEK a 20 percent error.

  9. Analysis of deflection, natural frequency and damping of microactuators reinforced by SWCNT under electric actuation

    NASA Astrophysics Data System (ADS)

    Zamanian, M.; Khadem, S. E.

    2010-11-01

    This paper studies the static deflection, natural frequency and the quality factor of structural damping in the microactuators made from single wall carbon nanotubes reinforced polymers. The microactuator is assumed as a clamped-clamped microbeam under electrical load, and it has been assumed that the midplane of the microbeam is stretched when it is deflected. The microbeam has viscoelastic damping due to its polymeric structure, and is modeled as the Kelvin-Voigt model. The equation of motion has been derived using the Newton’s second law. The static deflection and natural frequency have been obtained using Galerkin method, and the quality factor of viscoelastic damping has been obtained using the strained parameter perturbation method. Also, the quality factor of thermoelastic damping of system was estimated using the theory derived in previous works. It has been shown that using single wall carbon nanotubes reinforced polymers, one may construct a microactuator with resonance frequency larger than the resonance frequency of the current microactutaor where their deflections are the same. It is a much desirable property in the design of microswitches and microresonators. Also, it shows that in this system the structural damping is larger than its value in the current microresonators made from silicon, which is an undesirable property.

  10. A load balancing bufferless deflection router for network-on-chip

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Zhou; Zhangming, Zhu; Duan, Zhou

    2016-07-01

    The bufferless router emerges as an interesting option for cost-efficient in network-on-chip (NoC) design. However, the bufferless router only works well under low network load because deflection more easily occurs as the injection rate increases. In this paper, we propose a load balancing bufferless deflection router (LBBDR) for NoC that relieves the effect of deflection in bufferless NoC. The proposed LBBDR employs a balance toggle identifier in the source router to control the initial routing direction of X or Y for a flit in the network. Based on this mechanism, the flit is routed according to XY or YX routing in the network afterward. When two or more flits contend the same one desired output port a priority policy called nearer-first is used to address output ports allocation contention. Simulation results show that the proposed LBBDR yields an improvement of routing performance over the reported bufferless routing in the flit deflection rate, average packet latency and throughput by up to 13%, 10% and 6% respectively. The layout area and power consumption compared with the reported schemes are 12% and 7% less respectively. Project supported by the National Natural Science Foundation of China (Nos. 61474087, 61322405, 61376039).

  11. Effects of T-tabs and large deflections in double cantilever beam specimen tests

    NASA Astrophysics Data System (ADS)

    Naik, Rajiv A.; Crews, John H., Jr.; Shivakumar, Kunigal N.

    A simple strength of materials analysis was developed for a double-cantilever beam (DCB) specimen to account for geometric nonlinearity effects due to large deflections and T-tabs. A new DCB data analysis procedure was developed to include the effects of these nonlinearities. The results of the analysis were evaluated by DCB tests performed for materials having a wide range of toughnesses. The materials used in the present study were T300/5208, IM7/8551-7, and AS4/PEEK. Based on the present analysis, for a typical deflection/crack length ratio of 0.3 (for AS4/PEEK), T-tabs and large deflections cause a 15 and 3 percent error, respectively, in the computer Mode I strain energy release rate. Design guidelines for DCB specimen thickness and T-tab height were also developed in order to keep errors due to these nonlinearities within 2 percent. Based on the test results, for both hinged and tabbed specimens, the effects of large deflection on the Mode I fracture toughness (G sub Ic) were almost negligible (less than 1 percent) in the case of T300/5208 and IM7/8551-7; however, AS4/PEEK showed a 2 to 3 percent effect. The effects of T-tabs G sub Ic were more significant for all the materials with T300/5208 showing a 5 percent error, IM7/8551-7 a 15 percent error, and, AS4/PEEK a 20 percent error.

  12. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Greenberg, P. S.

    1994-01-01

    Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

  13. TV Trouble-Shooting Manual. Volumes 7-8. Part 3: Synchronisation and Deflection Circuits. Student and Instructor's Manuals.

    ERIC Educational Resources Information Center

    Mukai, Masaaki; Kobayashi, Ryozo

    These volumes are, respectively, the self-instructional student manual and the teacher manual that cover the third set of training topics in this course for television repair technicians. Both contain identical information on synchronization and deflection circuits, including sections on the principle of synchronized deflection, synchronization…

  14. ISO 16840-2:2007 load deflection and hysteresis measurements for a sample of wheelchair seating cushions.

    PubMed

    Hollington, James; Hillman, Susan J; Torres-Sánchez, Carmen; Boeckx, Jens; Crossan, Neil

    2014-04-01

    Load deflection and hysteresis measurements were made on 37 wheelchair seating cushions according to ISO 16840-2:2007. Load deflection plots for all 37 cushions are reported and fundamental aspects of graph interpretation discussed. ISO hysteresis data are also reported and interpretation discussed. PMID:24230981

  15. One-dimensional CdS nanostructures: synthesis, properties, and applications.

    PubMed

    Zhai, Tianyou; Fang, Xiaosheng; Li, Liang; Bando, Yoshio; Golberg, Dmitri

    2010-02-01

    One-dimensional (1D) semiconductor nanostructures are of prime interest due to their potential in investigating the size and dimensionality dependence of the materials' physical properties and constructing nanoscale electronic and optoelectronic devices. Cadmium sulfide (CdS) is an important semiconductor compound of the II-VI group, and its synthesis and properties have been of growing interest owing to prominent applications in several fields. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, novel properties and unique applications of 1D CdS nanostructures in nanotechnology. It begins with the rational design and synthesis of 1D CdS nanostructures, and then highlights a range of unique properties and applications (e.g. photoluminescence, cathodoluminescence, electrochemiluminescence, photocatalysis, lasers, waveguides, modulators, solar cells, field-effect transistors, photodetectors, field-emitters, and nanogenerators) associated with them. Finally, the review is concluded with the author outlook of the perspectives with respect to future research on 1D CdS nanostructures.

  16. Ammonia free growth of CdS thin films by Chemical Bath Technique

    NASA Astrophysics Data System (ADS)

    Jaber, A.; Alamri, S. N.; Aida, M. S.

    2011-10-01

    CdS thin films were deposited by a chemical bath deposition technique (CBD). The bath solution is composed of CdCl2 (0.1 M) salt as a source for Cd and thiourea (0.1M) as a source of sulphur (S). To avoid the toxicity and volatility of the commonly used ammonia, ethanolamine (ETA ) is used as complexing agent. Films were deposited with different times from 30 to 120 minutes in order to study the films growth mechanism. The solution temperature was fixed at 60°C. The structural and morphological films characterizations were carried by XRD analysis and AFM observations. From the XRD analysis we inferred that obtained CdS films have a pure hexagonal structure with the preferential orientation along the plane (101). The pure hexagonal structure is highly recommended for the realization of CdTe/ CdS or CuInSe/CdS solar cells. The presence of the hexagonal structure and the low growth rate in order of 1nm/min suggest that the growth mechanism is achieved through the ion by ion process. The optical characterization result indicates that the obtained films have a high transparency from 80 to 60 % in the visible range. In conclusion we inferred that CBD ammonia free CdS thin films deposition enables the production of films suitable for photovoltaic applications.

  17. Maximize Institutional Relationships with CRMs. CDS Spotlight Report. ECAR Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This Spotlight focuses on data from the 2013 Core Data Service (CDS) to better understand how higher education institutions approach customer relationship management (CRM) systems. Information provided for this Spotlight was derived from Module 8 of the Core Data survey, which asked several questions regarding information systems and applications.…

  18. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    PubMed

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. PMID:26592588

  19. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    PubMed

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process.

  20. Optical absorption, photoluminescence and structural analysis of CdS quantum dots in weak confinement

    NASA Astrophysics Data System (ADS)

    Mishra, Rakesh K.; Vedeshwar, A. G.; Tandon, R. P.

    2014-02-01

    The diffusion-controlled growth of CdS quantum dots (QDs) dispersed in a silicate glass matrix was investigated. It was found that the size of CdS QDs can be controlled by either heat treatment at various temperatures for a fixed duration or varying times at a constant temperature. Pastel yellow colored glass samples were obtained due to the presence of CdS petite crystals. X-ray diffraction (XRD) was used for determining the average dot size which varied from 3.8 to 30 nm. The typical quantum confinement effect was clearly observed from the blue shift measured in the optical absorption edge with decreasing dot size in the absorption spectroscopy. The band gap of CdS QDs ranges from 2.41 to 2.82 eV. Measured photoluminescence (PL) at an excitation wavelength of 350 nm showed the red shift of emission wavelength with increasing thermal treatment time and temperature in agreement with the increasing dot sizes. The half-width of PL spectra seems to indicate qualitatively the size distribution of dots and is consistent with the treatment parameters.

  1. Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons

    PubMed Central

    Wang, Qi; Sun, Liaoxin; Lu, Jian; Ren, Ming-Liang; Zhang, Tianning; Huang, Yan; Zhou, Xiaohao; Sun, Yan; Zhang, Bo; Chen, Changqing; Shen, Xuechu; Agarwal, Ritesh; Lu, Wei

    2016-01-01

    We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the CdS NR, leads to a position-dependent emission energy shift as large as 14 nm in photoluminescence (PL) mapping. Both micro-PL and micro-reflectance reveal the spectral characteristics of broad emission of buckled NR, which can be understood by the discrepancy of strain-induced energy shift of A- and B-exciton of CdS. Furthermore, the dynamics of excitons under tensile strain are also investigated; we find that the B-exciton have much shorter lifetime than that of redshifted A-exciton. In addition, we also present the lasing of buckled CdS NRs, in which the strain-dominated mode selection in multi-mode laser and negligible mode shifts in single-mode laser are clearly observed. Our results show that the strained NRs may serve as new functional optical elements for flexible light emitter or on-chip all-optical devices. PMID:27210303

  2. Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts.

    PubMed

    Kamran, Muhammad Arshad; Zou, Bingsuo; Majid, A; Alharbil, Thamer; Saeed, M A; Abdullah, Ali; Javed, Qurat-ul-ain

    2016-04-01

    In this paper, we report the synthesis and optical properties of Fe(III) doped CdS nanobelts (NBs) via simple Chemical Vapor Deposition (CVD) technique to explore their potential in nano-optics. The energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis manifested the presence of Fe(III) ions in the NBs subsequently confirmed by the peak shifting to lower phonon energies as recorded by Raman spectra and shorter lifetime in ns. Photoluminescence (PL) spectrum investigations of the single Fe(III)-doped CdS NBs depicted an additional PL peak centered at 573 nm (orange emission) in addition to the bandedge(BE) emission. The redshift and decrease in the BE intensity of the PL peaks, as compared to the bulk CdS, confirmed the quenching of spectra upon Fe doping. The synthesis and orange emission for Fe-doped CdS NBs have been observed for the first time and point out their potential in nanoscale devices. PMID:27451769

  3. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  4. Preparation, structural and linear optical properties of Zn doped CdS nanopowders

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    A series of Zn doped cadmium sulfide (CdS:Zn) nanopowders were prepared by a simple co-precipitation method at room temperature by mixing the stoichiometric amount of reactants in a Milli Q water solvent. The composition of nanopowders was accurately adjusted by controlling the molar ratio of Cd, Zn acetate in the mixed reactants. Spectroscopic studies on as prepared nanopowders were investigated by using XRD, Raman, UV-Vis absorption, FE- SEM-EDAX and photoluminescence. Extremely broad reflections of XRD peaks of as prepared powders establish the nanometer scale dimensions and cubic structure. Doping with Zn in CdS does not lead to any structural phase transformation but introduces a decrease in the lattice constants. Two characteristics of LO phonon peaks were observed in pure and Zn doped CdS samples. Raman peaks of Zn doped CdS nanopowders shifts slightly towards higher energy side compared to the pure CdS nanopowders. Exciton-phonon confinement factor (S) varies in between 0.3-0.4. At lower wavelength excitation we observed a broad emission peak maximum centered at 404 nm is attributed to localized band edge emission.

  5. Surface piezoelectric effect in non-centrosymmetric semiconductors - CdS.

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.

    1972-01-01

    It was found that mechanical bending of CdS wafers with the (00.1) orientation causes pronounced changes in the contact potential difference. The changes were of the order of one volt. This effect was attributed to the polarization induced in the depletion layer by the mechanical stress. On this basis a model was developed which accounts for the experimental results.

  6. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%. PMID:27483883

  7. CdS nanoparticles-enhanced chemiluminescence and determination of baicalin in pharmaceutical preparations.

    PubMed

    Chen, Xiaolan; Tan, Xinmei; Wang, Jianxiu

    2013-01-01

    CdS nanoparticles (CdS NPs) of different sizes were synthesized by the citrate reduction method. It was found that CdS NPs could enhance the chemiluminescence (CL) of the luminol-potassium ferricyanide system and baicalin could inhibit CdS NPs-enhanced luminol-potassium ferricyanide CL signals in alkaline solution. Based on this inhibition, a flow-injection CL method was established for determination of baicalin in pharmaceutical preparations and human urine samples. Under optimized conditions, the linear range for determination of baicalin was 5.0 x 10(-6) to 1.0 x 10(-3) g/L. The detection limit at a signal-to-noise ratio of 3 was 1.7 x 10(-6) g/L. CL spectra, UV-visible spectra and transmission electron microscopy (TEM) were used to investigate the CL mechanism. The method described is simple, selective and obviates the need of extensive sample pretreatment.

  8. Synthesis and characterization of functionalized dithiocarbamates: New single-source precursors for CdS

    NASA Astrophysics Data System (ADS)

    Srinivasan, Narayanaswamy

    2014-01-01

    Novel single-molecular precursors for CdS are prepared by reacting functionalized secondary amine and CS2 with cadmium acetate dihydrate. All these precursors are characterized by elemental analysis, infrared spectroscopy and solid-state 13C NMR. CdS semiconductor nanoparticles are synthesized using these precursors by a single-step solvothermal method with ethylenediamine at 117 °C. The synthesized semiconductor nanoparticles are investigated by infra-red spectroscopy, powder X-ray diffraction analysis, energy-dispersive X-ray spectroscopy analysis, scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission microscopy, selected area electron diffraction analysis and Raman spectroscopy. The synthesized CdS are hexagonal (zinc wurtzite) crystalline material, which are indicative of the reduction of particles. Comparison with the CdS and the mixture of CdS/CdSṡ0.5gl revealed that the CdS/CdSṡ0.5gl exhibited a well crystalline structure.

  9. Working Together at CDS: The Symbiosis Between Astronomers, Documentalists, and IT Specialists

    NASA Astrophysics Data System (ADS)

    Perret, E.; Boch, T.; Bonnarel, F.; Bot, C.; Buga, M.; Brouty, M.; Bruneau, C.; Brunet, C.; Cambrésy, L.; Derrière, S.; Eisele, A.; Fernique, P.; Genova, F.; Guéhenneux, S.; Landais, G.; Lesteven, S.; Loup, C.; Neuville, M.; Oberto, A.; Ochsenbein, F.; Ocvirk, P.; Pineau, F.-X.; Schaaff, A.; Siebert, A.; Simon, A.-C.; Son, E.; Vannier, P.; Vollmer, B.; Vonflie, P.; Wenger, M.; Woelfel, F.

    2015-04-01

    Since the CDS (Centre de Données astronomiques de Strasbourg) began a little more than forty years ago, astronomers, documentalists, and information technology (IT) specialists have been working together. The synergy between these three professional groups support the core of the work and is becoming more and more crucial with the increasing volume and complexity of data handled. The astronomers use their understanding of the subject and of users' needs to help to maintain the accuracy and the relevance of data. The computer engineers enhance these data by maintaining the database framework and continuing to add useful tools to retrieve and reuse this content. Finally, the documentalists, by definition, manage the content. They do so with the help of IT tools developed at CDS; they analyze the publications, extract the relevant information, verify the data, make comparisons with existing data, add the useful information in VizieR and SIMBAD, and confer with astronomers to make corrections, if needed. After an historical review of the evolution in data and the way data have been provided at CDS, we will further discuss the fundamental roles of the three professional groups to support the mission of the CDS.

  10. Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Sun, Liaoxin; Lu, Jian; Ren, Ming-Liang; Zhang, Tianning; Huang, Yan; Zhou, Xiaohao; Sun, Yan; Zhang, Bo; Chen, Changqing; Shen, Xuechu; Agarwal, Ritesh; Lu, Wei

    2016-05-01

    We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the CdS NR, leads to a position-dependent emission energy shift as large as 14 nm in photoluminescence (PL) mapping. Both micro-PL and micro-reflectance reveal the spectral characteristics of broad emission of buckled NR, which can be understood by the discrepancy of strain-induced energy shift of A- and B-exciton of CdS. Furthermore, the dynamics of excitons under tensile strain are also investigated; we find that the B-exciton have much shorter lifetime than that of redshifted A-exciton. In addition, we also present the lasing of buckled CdS NRs, in which the strain-dominated mode selection in multi-mode laser and negligible mode shifts in single-mode laser are clearly observed. Our results show that the strained NRs may serve as new functional optical elements for flexible light emitter or on-chip all-optical devices.

  11. Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons.

    PubMed

    Wang, Qi; Sun, Liaoxin; Lu, Jian; Ren, Ming-Liang; Zhang, Tianning; Huang, Yan; Zhou, Xiaohao; Sun, Yan; Zhang, Bo; Chen, Changqing; Shen, Xuechu; Agarwal, Ritesh; Lu, Wei

    2016-01-01

    We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the CdS NR, leads to a position-dependent emission energy shift as large as 14 nm in photoluminescence (PL) mapping. Both micro-PL and micro-reflectance reveal the spectral characteristics of broad emission of buckled NR, which can be understood by the discrepancy of strain-induced energy shift of A- and B-exciton of CdS. Furthermore, the dynamics of excitons under tensile strain are also investigated; we find that the B-exciton have much shorter lifetime than that of redshifted A-exciton. In addition, we also present the lasing of buckled CdS NRs, in which the strain-dominated mode selection in multi-mode laser and negligible mode shifts in single-mode laser are clearly observed. Our results show that the strained NRs may serve as new functional optical elements for flexible light emitter or on-chip all-optical devices. PMID:27210303

  12. Polyphenylenepyridyl dendrimers as stabilizing and controlling agents for CdS nanoparticle formation.

    PubMed

    Kuchkina, Nina V; Morgan, David Gene; Stein, Barry D; Puntus, Lada N; Sergeev, Alexander M; Peregudov, Alexander S; Bronstein, Lyudmila M; Shifrina, Zinaida B

    2012-04-01

    Semiconductor nanoparticles (NPs) are being actively explored for applications in medical diagnostics and therapy and numerous electronic devices including solar cells. In this paper we demonstrate the influence of the third generation rigid polyphenylenepyridyl dendrimers (PPPDs) of a different architecture on the formation of well-defined CdS NPs. A high temperature approach to the synthesis of novel CdS/PPPD nanocomposites is feasible due to the high thermal stability of PPPDs. The PPPD architecture affects the CdS NP formation: larger NPs are obtained in the presence of dendrimers with 1,3,5-triphenylbenzene cores compared to those with tetrakis(4-ethynylphen-1-yl)methane cores. The reaction conditions such as concentrations of PPPDs and NP precursors and the temperature regime also influence the CdS NP sizes. For the first time, we elucidated a mechanism of CdS NP formation in a non-coordinating solvent through the CdO redispersion in the presence of PPPDs. Interesting optical properties of these CdS/PPPD nanocomposites make them promising candidates for imaging applications. PMID:22374388

  13. Optimization of CdS Buffer Layer for High Efficiency CIGS Solar Cells.

    PubMed

    Kim, Donguk; Jang, Yong-Jun; Jung, Ho-Sung; Kim, Minha; Baek, Dohyun; Yi, Junsin; Lee, Jaehyeong; Choi, Youngkwan

    2016-05-01

    In present work, effects of the thickness on the structural and optical properties of chemically deposited CdS thin films were investigated. In addition, we fabricated Cu(In, Ga)Se2 solar cells with various thicknesses of CdS buffer layer and optimized the thickness for a high efficiency. When the CdS thin films were thicker, the crystallinity improved but the transmittance decreased. The short-circuit current density (J(sc)) and the fill factor are the major efficiency limiting factors for the CIGS solar cells. As the thickness of the CdS buffer layer, the open-circuit voltage (V(oc)) and the fill factor increased, whereas the J(sc) slightly decreased. The improvement of the fill factor and thus efficiency resulted from larger shunt resistance. For the solar cells without a high resistive intrinsic ZnO layer, the highest efficiency was acquired at the thickness of 89 nm. With further increasing the thickness, the J(sc) decreased significantly, resulting in poor efficiency. PMID:27483874

  14. Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes

    SciTech Connect

    Liu, Xiao-Lin; Zhu, Ying-Jie; Zhang, Qian; Li, Zhi-Feng; Yang, Bin

    2012-12-15

    Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In this method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  15. Do resin cements influence the cuspal deflection of teeth restored with composite resin inlays?

    PubMed

    da Rosa, Helen C V; Marcondes, Maurem L; de Souza, Niélli C; Weber, João B B; Spohr, Ana M

    2015-04-01

    The aim of this study was to evaluate the influence of different resin cements on the cuspal deflection of endodontically treated teeth restored with composite resin inlays. Sixty upper premolars were randomly divided into five groups (n=12): 1 - sound teeth; 2 - cavity; 3 - Rely X ARC; 4 - RelyX Unicem; 5 - SeT. The teeth from groups 2, 3, 4 and 5 received a MOD preparation and endodontic treatment. Impressions were made with vinyl polysiloxane and poured using type IV die stone in groups 3, 4 and 5. Inlays with composite resin were built over each cast and luted with the resin cements. A 200 N load was applied on the occlusal surface, and cuspal deflection was measured using a micrometer. After 24 h, cuspal deflection was measured again using a 300 N load. The Student t-test showed that there was no statistically significant difference between the 200 N and 300 N occlusal loads only for the sound teeth group (p = 0.389) and the RelyX ARC group (p = 0.188). ANOVA and Tukey'test showed that the sound teeth had the lowest mean cuspal deflection, differing statistically from the other groups (p<0.05). The highest cuspal deflections were obtained in the SeT group and the cavity group, with no statistical difference between them. Intermediate values were obtained in RelyX ARC group and RelyX Unicem group, which differed statistically. The self-adhesive resin cements RelyX Unicem and SeT showed less capacity to maintain the stiffness of the tooth/restoration complex than the conventional resin cement RelyX ARC. PMID:25950160

  16. Application of artificial neural networks to predict the deflections of reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Mateusz; Szymańska, Agnieszka

    2016-06-01

    Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.

  17. Load-deflection characteristics of superelastic and thermal nickel-titanium wires.

    PubMed

    Gatto, Elda; Matarese, Giovanni; Di Bella, Guido; Nucera, Riccardo; Borsellino, Chiara; Cordasco, Giancarlo

    2013-02-01

    The aim of this study was to investigate the mechanical properties of superelastic and thermal nickel-titanium (NiTi) archwires for correct selection of orthodontic wires. Seven different NiTi wires of two different sizes (0.014 and 0.016 inches), commonly used during the alignment phase, were tested. A three-point bending test was carried out to evaluate the load-deflection characteristics. The archwires were subjected to bending at a constant temperature of 37°C and deflections of 2 and 4 mm. Analysis of variance showed that thermal NiTi wires exerted significantly lower working forces than superelastic wires of the same size in all experimental tests (P < 0.05). Wire size had a significant effect on the forces produced: with an increase in archwire dimension, the released strength increased for both thermal and superelastic wires. Superelastic wires showed, at a deflection of 2 mm, narrow and steep hysteresis curves in comparison with the corresponding thermal wires, which presented a wide interval between loading and unloading forces. During unloading at 4 mm of deflection, all wires showed curves with a wider plateau when compared with 2 mm deflection. Such a difference for the superelastic wires was caused by the martensite stress induced at higher deformation levels. A comprehensive understanding of mechanical characteristics of orthodontic wires is essential and selection should be undertaken in accordance with the behaviour of the different wires. It is also necessary to take into account the biomechanics used. In low-friction mechanics, thermal NiTi wires are to be preferred to superelastic wires, during the alignment phase due to their lower working forces. In conventional straightwire mechanics, a low force archwire would be unable to overcome the resistance to sliding. PMID:22023884

  18. Orbital Simulations on Deflecting Near-Earth Objects by Directed Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Walsh, Kevin J.; Melis, Carl; Hughes, Gary B.; Lubin, Philip M.

    2016-04-01

    Laser ablation of a near-Earth object (NEO) on a collision course with Earth produces a cloud of ejecta that exerts a thrust on the NEO, deflecting it from its original trajectory. Ablation may be performed from afar by illuminating an Earth-targeting asteroid or comet with a stand-off “DE-STAR” system consisting of a large phased-array laser in Earth orbit. Alternatively, a much smaller stand-on “DE-STARLITE” system may travel alongside the target, slowly deflecting it from nearby over a long period. This paper presents orbital simulations comparing the effectiveness of both systems across a range of laser and NEO parameters. Simulated parameters include magnitude, duration and, for the stand-on system, direction of the thrust, as well as the type, size, and orbital characteristics of the target NEO. These simulations indicate that deflection distance is approximately proportional to the magnitude of thrust and to the square of the duration of ablation, and is inversely proportional to the mass. Furthermore, deflection distance shows strong dependence on thrust direction with the optimal direction of thrust varying with the duration of laser activity. As one example, consider a typical 325 m asteroid: beginning 15 years in advance, just 2 N of thrust from a ∼20 kW stand-on DE-STARLITE system is sufficient to deflect the asteroid by 2 {R}\\oplus . Numerous scenarios are discussed as is a practical implementation of such a system consistent with current launch vehicle capabilities.

  19. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Van Heerden, Elmarie; Erasmus, Nicolas; Greenberg, Adam; Nesvold, Erika; Galache, Jose Luis; Dahlstrom, Eric; Marchis, Franck

    2016-10-01

    On 15 February, 2013, a ~15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred ~33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question – towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found?To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool

  20. Deflection compensation for multiaperture negative ion beam extraction: analytical and numerical investigations

    NASA Astrophysics Data System (ADS)

    Cavenago, M.; Veltri, P.

    2014-12-01

    Deflection of negative ion beamlets due to the magnets embedded in the first extraction electrode for the purpose of dumping the co-extracted electrons is a serious issue for multiaperture ion accelerators of neutral beam injectors. Several kinds of magnet arrays which offer the possibility of cancelling ion deflection, employing crossed rows of magnets or even more compact parallel row arrangements, are discussed. A general equation for beamlet deflection is presented here, and the interference of the magnetic deflection and the electrostatic lens steering is carefully calculated; this equation may also include beamlet-beamlet interactions and image charge effects. Analytical expressions are given for the field and the line integrals for the magnet arrays, and these are simplified for beam optics calculations, but still retain an excellent agreement with numerical values. Optimization formulas for the filling fraction xy of the magnets are given, for cancellation of deflection both after the first electrode or after the second accelerating electrode. The latter case is of direct interest for the design of small accelerators (e.g., NIO1), for which compact solutions are proposed, while the former case may approximate well the design of a large accelerator such as MITICA, with a predicted xy = 0.1015 against a numerical optimized value of 0.0975 ± 0.005 in normal conditions. The detailed comparison between simulation results and theory shows that thin lens models are suitable approximations for calculating beam steering. Stability of optimal xy prediction with respect to the first accelerating gap length is shown, and the variation of xy with the voltage is discussed.

  1. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    NASA Astrophysics Data System (ADS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1-10 Hz) at various laser fluences ranging from 0.2 to 11 J cm-2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He-Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm-2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm-2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  2. UNDERFLIGHT CALIBRATION OF SOHO/CDS AND HINODE/EIS WITH EUNIS-07

    SciTech Connect

    Wang Tongjiang; Brosius, Jeffrey W.; Thomas, Roger J.; Rabin, Douglas M.; Davila, Joseph M.; Young, Peter R.; Del Zanna, Giulio

    2011-12-01

    Flights of Goddard Space Flight Center's Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket in 2006 and 2007 provided updated radiometric calibrations for Solar and Heliospheric Observatory/Coronal Diagnostic Spectrometer (SOHO/CDS) and Hinode/Extreme Ultraviolet Imaging Spectrometer (Hinode/EIS). EUNIS carried two independent imaging spectrographs covering wavebands of 300-370 A in first order and 170-205 A in second order. After each flight, end-to-end radiometric calibrations of the rocket payload were carried out in the same facility used for pre-launch calibrations of CDS and EIS. During the 2007 flight, EUNIS, SOHO/CDS, and Hinode/EIS observed the same solar locations, allowing the EUNIS calibrations to be directly applied to both CDS and EIS. The measured CDS NIS 1 line intensities calibrated with the standard (version 4) responsivities with the standard long-term corrections are found to be too low by a factor of 1.5 due to the decrease in responsivity. The EIS calibration update is performed in two ways. One uses the direct calibration transfer of the calibrated EUNIS-07 short wavelength (SW) channel. The other uses the insensitive line pairs, in which one member was observed by the EUNIS-07 long wavelength (LW) channel and the other by EIS in either the LW or SW waveband. Measurements from both methods are in good agreement, and confirm (within the measurement uncertainties) the EIS responsivity measured directly before the instrument's launch. The measurements also suggest that the EIS responsivity decreased by a factor of about 1.2 after the first year of operation (although the size of the measurement uncertainties is comparable to this decrease). The shape of the EIS SW response curve obtained by EUNIS-07 is consistent with the one measured in laboratory prior to launch. The absolute value of the quiet-Sun He II 304 A intensity measured by EUNIS-07 is consistent with the radiance measured by CDS NIS in quiet regions near the

  3. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  4. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  5. One-pot noninjection route to CdS quantum dots via hydrothermal synthesis.

    PubMed

    Aboulaich, Abdelhay; Billaud, Denis; Abyan, Mouhammad; Balan, Lavinia; Gaumet, Jean-Jacques; Medjadhi, Ghouti; Ghanbaja, Jaafar; Schneider, Raphaël

    2012-05-01

    Water-dispersible CdS quantum dots (QDs) emitting from 510 to 650 nm were synthesized in a simple one-pot noninjection hydrothermal route using cadmium chloride, thiourea, and 3-mercaptopropionic acid (MPA) as starting materials. All these chemicals were loaded at room temperature in a Teflon sealed tube and the reaction mixture heated at 100 °C. The effects of CdCl(2)/thiourea/MPA feed molar ratios, pH, and concentrations of precursors affecting the growth of the CdS QDs, was monitored via the temporal evolution of the optical properties of the CdS nanocrystals. High concentration of precursors and high MPA/Cd feed molar ratios were found to lead to an increase in the diameter of the resulting CdS nanocrystals and of the trap state emission of the dots. The combination of moderate pH value, low concentration of precursors and slow growth rate plays the crucial role in the good optical properties of the obtained CdS nanocrystals. The highest photoluminescence achieved for CdS@MPA QDs of average size 3.5 nm was 20%. As prepared colloids show rather narrow particle size distribution, although all reactants were mixed at room temperature. CdS@MPA QDs were characterized by UV-vis and photoluminescence spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectrometry and MALDI TOF mass spectrometry. This noninjection one-pot approach features easy handling and large-scale production with excellent synthetic reproducibility. Surface passivation of CdS@MPA cores by a wider bandgap material, ZnS, led to enhanced luminescence intensity. CdS@MPA and CdS/ZnS@MPA QDs exhibit high photochemical stability and hold a good potential to be applied in optoelectronic devices and biological applications.

  6. Ultrasensitive detection of amifostine and alkaline phosphatase based on the growth of CdS quantum dots.

    PubMed

    Na, Weidan; Liu, Siyu; Liu, Xiaotong; Su, Xingguang

    2015-11-01

    In this study, we reported a simple and sensitive fluorescence nanosensor for rapid detection of amifostine and alkaline phosphatase (ALP). The novel nanosensor was based on the fluorescence "turn on-off" of CdS quantum dots (QDs). Firstly, Cd(2+) cation could react with S(2-) anion to generate fluorescent CdS QDs in the presence of amifostine. The fluorescence (FL) intensity of amifostine-capped CdS QDs (Amifostine-CdS QDs) was increased with the increasing amounts of amifostine, and could be used for amifostine detection. However, amifostine could be converted to 2-(3-aminopropylamino) ethanethiol (WR1065) in the presence of ALP based on the dephosphorylation of ALP. Under the optimum conditions, the affinity of WR1065 to CdS QDs was weaker than that of amifostine. Therefore the new generation of WR1065-CdS QDs would reduce the FL intensity with the increase of ALP concentration, and the fluorescence of CdS QDs was turn off. The metabolic process of amifostine in the presence of alkaline phosphatase could be also studied via the change of FL intensity of CdS QDs. The present method was cost-effective, convenient, and does not require any complicated synthetic procedures.

  7. Measurement of separator contact forces in ball bearings using a derotation prism

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1978-01-01

    A derotation prism was used to produce a stationary image of balls deflecting a portion of the separator. Ball to cage contact forces in a 110 mm bearing at speeds to 12,000 rpm were found to be 25 N (five lb) maximum. Inner race land contact force was found to vary up to 20 N (four lb).

  8. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  9. Particle separation

    DOEpatents

    Moosmuller, Hans; Chakrabarty, Rajan K.; Arnott, W. Patrick

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  10. CEBAF'S New RF Separator Structure Test Results

    SciTech Connect

    Reza Kazimi; Jock Fugitt; A. Krycuk; Charles Sinclair; Larry Turlington

    1993-05-01

    Prototypes of the rf separator for CEBAF have been made and successfully beam tested. The structure is a new design which has a high transverse shunt impedance together with a small transverse dimension compared to more conventional rf deflecting structures. Five rf separators will be used at CEBAF to allow beam from any one of the five recirculation passes to be delivered to any of the three experimental halls. The authors have already described the basic design of the structure and theoretical calculations. They have also reported some results from rf measurements and beam tests. In this paper they present more beam test results, their final design parameters, and test results of coupling two 1/2 wavelength cavities together.

  11. Accurate Die Design for Automotive Panel Stamping Considering the Compensation Related with Die Deflection and Blank Thinning

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Dongkai; Xia, Guodong; Li, Xifeng; Chen, Jieshi; Zhang, Jian; Yan, Wei; Li, Yue

    2011-08-01

    In order to improve assembly accuracy, automotive body panels have to be fabricated with higher dimensional and surface quality requirements, therefore the die faces should be designed more accurately to consider more relevant factors. In the presented study, we proposed algorithms to realize the following functions: through forming process simulation, the thinning distribution on the deformed blank was extracted as first kind of compensation; through die structural CAE analysis which automatically mapped the boundary contact forces onto the die surfaces from process simulation results, the die deflection was calculated as second kind of compensation. These two quantitative contributions were added together to compensate the die face. The proposed methodologies were programmed and integrated with LS-Dyna and HyperWorks, and also integrated with Autoform and CATIA linear CAE functionalities separately. In addition, a software toolkit to calculate the contacting ratio was also developed to evaluate the effectiveness of die face compensation. The second toolkit developed was verified by an automotive structural part forming die design, through die compensation and geometric optimization, the predicted contact ratio between the die face and formed blank was improved a lot, and the first toolkit was testified by a fender drawing die design. It shows that the die face compensation can be realized and integrated seamlessly between CAD model, process simulation model and die structural CAE model with the help of data I/O tools developed by the authors.

  12. Linear and non-linear deflection analysis of thick rectangular plates. 2: Numerical applications

    NASA Astrophysics Data System (ADS)

    Bencharif, N.; Ng, S. F.

    1994-03-01

    Variational methods are widely used for the solution of complex differential equations in mechanics for which exact solutions are not possible. The finite difference method, although well known as an efficient numerical method, was applied in the past only for the analysis of linear and non-linear thin plates. In this paper the suitability of the method for the analysis of non-linear deflection of thick plates is studied for the first time. While there are major differences between small deflection and large deflection plate theories, the former can be treated as a particular case of the latter, when the centre deflection of the plate is less than or equal to 0.2-0.25 of the thickness of the plate. The finite difference method as applied here is a modified finite difference approach to the ordinary finite difference method generally used for the solution of thin plate problems. In this analysis thin plates are treated as a particular case of the corresponding thick plate when the boundary conditions of the plates are taken into account. The method is first applied to investigate the deflection behaviour of clamped and simply supported square isotropic thick plates. After the validity of the method is established, it is then extended to the solution of rectangular thick plates of various aspect ratios and thicknesses. Generally, beginning with the use of a limited number of mesh sizes for a given plate aspect ratio and boundary conditions, a general solution of the problem including the investigation of accuracy and convergence was extended to rectangular thick plates by providing more detailed functions satisfying the rectangular mesh sizes generated automatically by the program. Whenever possible results obtained by the present method are compared with existing solutions in the technical literature obtained by much more laborious methods and close agreements are found. The significant number of results presented here are not currently available in the technical

  13. Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor

    SciTech Connect

    Liang, Yan; Tan, Jiawei; Wang, Jiexin; Chen, Jianfeng; Sun, Baochang; Shao, Lei

    2014-12-15

    Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.

  14. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    NASA Astrophysics Data System (ADS)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can

  15. ENDPLATE DEFLECTION IS A DEFINING FEATURE OF VERTEBRAL FRACTURE AND IS ASSOCIATED WITH PROPERTIES OF THE UNDERLYING TRABECULAR BONE

    PubMed Central

    Jackman, Timothy M; Hussein, Amira I; Adams, Alexander M; Makhnejia, Kamil K; Morgan, Elise F

    2015-01-01

    Endplate deflection frequently occurs with vertebral failure, but the relationship between the two remains poorly defined. This study examined associations between endplate deflection under compressive loading and characteristics of the neighboring subchondral bone and intervertebral disc (IVD). Ten L1 vertebrae with adjacent IVDs were dissected, compressed axially in a stepwise manner to failure, and imaged with micro-computed tomography before each loading step. From the images, deflection was measured across the surface of each endplate at each step. Trabecular microstructure and endplate volume fraction were evaluated in 5mm regions just under the superior endplate. IVDs were assessed using computed tomography and histology. A marked increase in superior endplate deflection coincided with a drop in the load-displacement curve. Endplate deflection was higher in regions with less robust bone microstructure (p<0.009), though these associations tended to weaken as loading progressed. Immediately following the ultimate point, endplate deflection was higher in regions underlying the nucleus pulposus vs. annulus fibrosus (p=0.035), irrespective of disc grade (p=0.346). These results indicate that a sudden increase in endplate deflection signals that the mechanical competence of the vertebra has been compromised. The mechanisms of endplate failure likely relate to anatomical features of the endplate, neighboring trabecular bone, and IVD. PMID:24700382

  16. Heterogeneous nucleation of CdS to enhance visible-light photocatalytic hydrogen evolution of SiC/CdS composite

    SciTech Connect

    Peng, Yuan; Guo, Zhongnan E-mail: wxyuanwz@163.com; Wang, Da; Pan, Nanyan; Yuan, Wenxia E-mail: wxyuanwz@163.com

    2015-07-06

    Synthesis of composite photocatalyst is one of the most important strategies to enhance the yield of hydrogen produced by water splitting. However, one photocatalyst usually tends to randomly aggregate on the other's surface, which weakens the electron transport of the heterogeneous interface. Herein, we developed a hydrothermal reaction to synthesize the SiC/CdS composite with a feasible Z-scheme and well-controlled dispersion of CdS on SiC surface. Heterogeneous structure on the catalyst interface is obtained, leading to more light-absorption and effective electron-hole separation between the well-contacted components, which contribute to the doubly enhanced photocatalytic performance of the composite. This work provides a simple and practical route to improve the catalytic activity by optimizing the intrinsic contact of Z-scheme composite semiconductors.

  17. Comparison of background-oriented Schlieren and fringe deflection in temperature measurement

    NASA Astrophysics Data System (ADS)

    Blanco Miranda, A.; Barrientos García, B.; Mares Castro, C.

    2011-08-01

    We report the results of a comparison analysis of the accuracy of two optical techniques which are based on ray deflection, background-oriented schlieren (BOS) and fringe deflection (FD). In both techniques, a camera registers images of a spatial pattern displayed on a screen: for BOS, spots randomly located; for FD, straight fringes. Two images corresponding to two different states of a phase object are then compared: with and without the object. After introducing the object, the corresponding spatial structures undergo displacements that are proportional to the change of index of refraction. The displacements are calculated by digital correlation in BOS, and by phase retrieval in FD. Therefore, by both techniques, displacement maps of numerically-simulated phase objects are obtained. Preliminary results show for FD, higher accuracy and less numerical processing.

  18. Photothermal deflection of laser beam as means to characterize thermal properties of biological tissue: numerical study

    NASA Astrophysics Data System (ADS)

    Gutierrez-Herrera, Enoch; Sánchez-Pérez, Celia; García-Cadena, Carlos A.; Hernández-Ruiz, Joselín.

    2015-08-01

    Non-subjective and early diagnostic technique for liver fibrosis may decrease morbidity in patients and reduce medical costs. Liver fibrosis results in changes in density and thermal properties of tissue. In this work, we evaluate numerically the feasibility of using the optical beam deflection method (OBDM) by means of a thermo-optic material in contact with liver tissue to quantitate changes in thermal conduction. We use the finite-difference method to model the heat transfer in liver and acrylic slab. The response required for thermal characterization for different fibrosis stages is assessed by calculating the deflection angle using ray trace analysis. Numerical study shows the potential of the OBDM for developing an optical-integrated sensor as non-subjective diagnostic technique for liver fibrosis.

  19. Asymmetric glottal jet deflection: differences of two- and three-dimensional models.

    PubMed

    Mattheus, Willy; Brücker, Christoph

    2011-12-01

    Flow is studied through a channel with an oscillating orifice mimicking the motion of the glottal-gap during phonation. Simulations with prescribed flow and wall-motion are carried out for different orifice geometries, a 2D slit-like and a 3D lens-like one. Although the jet emerges from a symmetric orifice a significant deflection occurs in case of the slit-like geometry, contrary to the 3D lens-like one. The results demonstrate the dependency of jet entrainment and vortex dynamics on the orifice geometry and the interpretation of asymmetric jet deflection with regard to the relevance of the Coanda effect in the process of human phonation. PMID:22225129

  20. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    SciTech Connect

    Sajaev, V.; Borland, M.; Chae, Y.-C.; Decker, G.; Dejus, R.; Emery, L.; Harkay, K.; Nassiri, A.; Shastri, S.; Waldschmidt, G.; Yang, B.; Anfinrud, P.; Dolgashev, V.; NIH; SLAC

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for one APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.