Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziwen; Xue, Zhongying; Zhang, Miao
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
Wang, Ziwen; Xue, Zhongying; Zhang, Miao; ...
2017-05-31
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less