Sample records for deformation analysis dda

  1. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  2. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    NASA Astrophysics Data System (ADS)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  3. Phospho-Regulation of DDA3 Function in Mitosis

    PubMed Central

    Jang, Chang-Young; Coppinger, Judith A.; Yates, John R.; Fang, Guowei

    2010-01-01

    DDA3 is a microtubule-associated protein that controls chromosome congression and segregation by regulating the mitotic spindle. Depletion of DDA3 alters spindle structure, generates unaligned chromosomes at metaphase, and delays the mitotic progression. Through a mass spectrometry analysis, we found that DDA3 is phosphorylated on Ser225 during mitosis. Phosphorylation of this residue is important for the mitotic function of DDA3, as the phospho-mimicking DDA3-S225D variant, but not the nonphosphorable DDA3-S225A mutant, rescues the DDA3-knockdown phenotype. We conclude that the mitotic function of DDA3 is regulated by phosphorylation on the Ser225 residue. PMID:20117088

  4. SU-F-J-68: Deformable Dose Accumulation for Voxel-Based Dose Tracking of PTV Cold Spots for Adaptive Radiotherapy of the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C; Chetty, I; Mao, W

    Purpose: To utilize deformable dose accumulation (DDA) to determine how cold spots within the PTV change over the course of fractionated head and neck (H&N) radiotherapy. Methods: Voxel-based dose was tracked using a DDA platform. The DDA process consisted of B-spline-based deformable image registration (DIR) and dose accumulation between planning CT’s and daily cone-beam CT’s for 10 H&N cancer patients. Cold spots within the PTV (regions receiving less than the prescription, 70 Gy) were contoured on the cumulative dose distribution. These cold spots were mapped to each fraction, starting from the first fraction to determine how they changed. Spatial correlationmore » between cold spot regions over each fraction, relative to the last fraction, was computed using the Jaccard index Jk (Mk,N), where N is the cold spot within the PTV at the end of the treatment, and Mk the same region for fraction k. Results: Figure 1 shows good spatial correlation between cold spots, and highlights expansion of the cold spot region over the course of treatment, as a result of setup uncertainties, and anatomical changes. Figure 2 shows a plot of Jk versus fraction number k averaged over 10 patients. This confirms the good spatial correlation between cold spots over the course of treatment. On average, Jk reaches ∼90% at fraction 22, suggesting that possible intervention (e.g. reoptimization) may mitigate the cold spot region. The cold spot, D99, averaged over 10 patients corresponded to a dose of ∼65 Gy, relative to the prescription dose of 70 Gy. Conclusion: DDA-based tracking provides spatial dose information, which can be used to monitor dose in different regions of the treatment plan, thereby enabling appropriate mid-treatment interventions. This work is supported in part by Varian Medical Systems, Palo Alto, CA.« less

  5. Intensify dodecylamine adsorption on magnesite and dolomite surfaces by monohydric alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Wengang; Han, Cong; Wei, Dezhou

    2018-06-01

    The flotation of magnesite and dolomite were investigated with the presence of single dodecylamine (DDA) and combined mixtures of DDA and monohydric alcohols, respectively. The adsorption behavior of DDA, butanol, hexanol and octanol on the surface of the two minerals were shown by molecular dynamics simulation, and the results were corresponding with the analysis of zeta potential, measurements of the contact angle and adsorption. Flotation results indicated that part of DDA could be replaced by the three alcohols (butanol, hexanol, octanol) to get better flotation results. Molecular dynamics simulation and the results of zeta potential and contact angle measurements indicated that adsorption of DDA on mineral surfaces could be strengthened by monohydric alcohols.

  6. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    PubMed

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performedmore » in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.« less

  8. Evaluating the primary and ready biodegradability of dianilinodithiophosphoric acid.

    PubMed

    Lin, Weixiong; Sun, Shuiyu; Xu, Pingting; Dai, Yongkang; Ren, Jie

    2016-04-01

    Dianilinodithiophosphoric acid (DDA) is widely used as sulfide mineral flotation collector in China. It is necessary to investigate the biodegradability of DDA to provide the fundamental knowledge to assess the environmental fate in the risk assessment of DDA and to design and operate the DDA flotation wastewater biological treatment plant. In the present study, the primary and ready aerobic biodegradations of DDA were studied and the primary biodegradation kinetic model of DDA was developed. The results show that DDA displays a good primary biodegradability and its biodegradation ratio reaches 99.8 % in 7 days. In contrast, DDA is not easily ready biodegradable; hence, it is a partially biodegradable organic compound. The primary aerobic biodegradation kinetics can be described using the first-order reaction kinetics equation: C = 19.72191e(-0.01513t).

  9. A comparison study of adsorption of benzohydroxamic acid and amyl xanthate on smithsonite with dodecylamine as co-collector

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xu, Longhua; Wang, Jinming; Wang, Li; Xiao, Junhui

    2017-12-01

    The objective of this paper is to display the results of the flotation and adsorption behaviors of benzohydroxamic acid (BHA), potassium amyl xanthate (KAX), dodecylamine- hydrochloride (DDA), mixed BHA/DDA and KAX/DDA on smithsonite. The flotation results show a collecting ability sequence of BHA > KAX > DDA on smithsonite and the best flotation performance at mixing ratio of 1:4 mol fraction DDA/KAX for mixed collector on smithsonite. The enhancement of smithsonite recovery by co-adsorption of KAX and DDA, while no promotion effect as to mixed BHA/DDA catanionic system, are attributed to the difference in steric effect of absorbed head group. According to the results of zeta potential and contact angle (CA) measurements, a most negative charged and the highest hydrophobic smithsonite surface are attained using KAX with DDA as co-collector, which shows a good agreement with the flotation results. FTIR measurements display the stabilization against oxidation and decomposition of DDA on KAX and the inhibition of preferential adsorbed BHA ions on DDA adsorption. The interaction energies of single and mixed collectors with mineral surface also shows well consistency with experimental results. The adsorption models proposed illustrate the decrease in the electrostatic head-head repulsion and the increase in lateral tail-tail hydrophobic interaction between adjacent KAX anions due to the insertion of DDA cations, while almost no DDA could access to smithsonite surface through adjacent BHA owing to steric effect.

  10. Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis.

    PubMed

    Prakash, Amol; Peterman, Scott; Ahmad, Shadab; Sarracino, David; Frewen, Barbara; Vogelsang, Maryann; Byram, Gregory; Krastins, Bryan; Vadali, Gouri; Lopez, Mary

    2014-12-05

    Data-dependent acquisition (DDA) and data-independent acquisition strategies (DIA) have both resulted in improved understanding of proteomics samples. Both strategies have advantages and disadvantages that are well-published, where DDA is typically applied for deep discovery and DIA may be used to create sample records. In this paper, we present a hybrid data acquisition and processing strategy (pSMART) that combines the strengths of both techniques and provides significant benefits for qualitative and quantitative peptide analysis. The performance of pSMART is compared to published DIA strategies in an experiment that allows the objective assessment of DIA performance with respect to interrogation of previously acquired MS data. The results of this experiment demonstrate that pSMART creates fewer decoy hits than a standard DIA strategy. Moreover, we show that pSMART is more selective, sensitive, and reproducible than either standard DIA or DDA strategies alone.

  11. First-Person Perspectives on Dual Diagnosis Anonymous (DDA): A Qualitative Study.

    PubMed

    Roush, Sean; Monica, Corbett; Carpenter-Song, Elizabeth; Drake, Robert E

    2015-01-01

    People with dually diagnosed substance abuse and mental illnesses often feel alienated at traditional 12-step meetings, yet they need the peer support provided by such groups. Dual Diagnosis Anonymous (DDA) is a peer-support program specifically for people with co-occurring disorders, which addresses many of the factors that members find alienating about traditional 12-step groups. This study aimed to elicit first-person perspectives on DDA. Occupational therapy students conducted 13 focus groups with 106 DDA members in three settings: the community (6 groups, n = 36), correctional facilities (5 groups, n = 53), and the state psychiatric hospital (2 groups, n = 17). Researchers inductively analyzed focus group transcripts to identify prominent themes. The vast majority of participants were between the ages of 18 and 49 (n = 87, 82.1%) and were non-Hispanic/White (n = 82, 77.4%). Most participants had been using substances for more than 10 years and had a diagnosed mental illness for more than 10 years. The most common substance of choice among those in the community and corrections setting was multiple substances, while those in the state hospital identified alcohol most often. Bipolar disorder was the most common mental illness diagnosis among participants in the state hospital, but depression and anxiety were the two most common diagnoses in the community and corrections participants. Four primary themes emerged from the qualitative analysis: (1) feeling accepted by others in the group, (2) understanding the interactive nature of dual disorders, (3) the open discussions in DDA meetings, and (4) a focus on hope and recovery from both illnesses. DDA provides a helpful alternative for individuals who do not feel comfortable at traditional 12-step groups due to their mental illness. Members value the acceptance, understanding, discussion, and hope in DDA meetings.

  12. Improved Quantitative Plant Proteomics via the Combination of Targeted and Untargeted Data Acquisition

    PubMed Central

    Hart-Smith, Gene; Reis, Rodrigo S.; Waterhouse, Peter M.; Wilkins, Marc R.

    2017-01-01

    Quantitative proteomics strategies – which are playing important roles in the expanding field of plant molecular systems biology – are traditionally designated as either hypothesis driven or non-hypothesis driven. Many of these strategies aim to select individual peptide ions for tandem mass spectrometry (MS/MS), and to do this mixed hypothesis driven and non-hypothesis driven approaches are theoretically simple to implement. In-depth investigations into the efficacies of such approaches have, however, yet to be described. In this study, using combined samples of unlabeled and metabolically 15N-labeled Arabidopsis thaliana proteins, we investigate the mixed use of targeted data acquisition (TDA) and data dependent acquisition (DDA) – referred to as TDA/DDA – to facilitate both hypothesis driven and non-hypothesis driven quantitative data collection in individual LC-MS/MS experiments. To investigate TDA/DDA for hypothesis driven data collection, 7 miRNA target proteins of differing size and abundance were targeted using inclusion lists comprised of 1558 m/z values, using 3 different TDA/DDA experimental designs. In samples in which targeted peptide ions were of particularly low abundance (i.e., predominantly only marginally above mass analyser detection limits), TDA/DDA produced statistically significant increases in the number of targeted peptides identified (230 ± 8 versus 80 ± 3 for DDA; p = 1.1 × 10-3) and quantified (35 ± 3 versus 21 ± 2 for DDA; p = 0.038) per experiment relative to the use of DDA only. These expected improvements in hypothesis driven data collection were observed alongside unexpected improvements in non-hypothesis driven data collection. Untargeted peptide ions with m/z values matching those in inclusion lists were repeatedly identified and quantified across technical replicate TDA/DDA experiments, resulting in significant increases in the percentages of proteins repeatedly quantified in TDA/DDA experiments only relative to DDA experiments only (33.0 ± 2.6% versus 8.0 ± 2.7%, respectively; p = 0.011). These results were observed together with uncompromised broad-scale MS/MS data collection in TDA/DDA experiments relative to DDA experiments. Using our observations we provide guidelines for TDA/DDA method design for quantitative plant proteomics studies, and suggest that TDA/DDA is a broadly underutilized proteomics data acquisition strategy. PMID:29021799

  13. The Age Conundrum: A Scoping Review of Younger Age or Adolescent and Young Adult as a Risk Factor for Clinical Distress, Depression, or Anxiety in Cancer

    PubMed Central

    David, Victoria; Giese-Davis, Janine

    2015-01-01

    This scoping review was conducted to understand the extent, range, and nature of current research on adolescents and young adults (AYA) with cancer and distress, depression, and anxiety (DDA). This information is necessary to find and aggregate valuable data on the AYA population embedded in generalized studies of DDA. Keyword searches of six relevant electronic databases identified 2156 articles, with 316 selected for abstract review and 40 for full text review. Full-text reviews and data extraction resulted in 34 studies being included, which ranged widely in design, sample size, age-range categorization, analysis methods, DDA measurement tool, overall study rigor, and quality of evidence. Studies very seldom reported using theory to guide their age categorization, with only four studies giving any rationale for their age-group definitions. All 34 studies found a significant association between at least one DDA construct and the younger age group relative to the older age groups at some point along the cancer trajectory. However, age as an independent risk factor for DDA is still unclear, as the relationship could be confounded by other age-related factors. Despite the wide range of definitions and effect sizes in the studies included in this review, one thing is clear: adolescents and young adults, however defined, are a distinct group within the cancer population with an elevated risk of DDA. Widespread adoption of a standard AYA age-range definition will be essential to any future meta-analytical psycho-oncology research in this population. PMID:26697266

  14. The Age Conundrum: A Scoping Review of Younger Age or Adolescent and Young Adult as a Risk Factor for Clinical Distress, Depression, or Anxiety in Cancer.

    PubMed

    Lang, Michael J; David, Victoria; Giese-Davis, Janine

    2015-12-01

    This scoping review was conducted to understand the extent, range, and nature of current research on adolescents and young adults (AYA) with cancer and distress, depression, and anxiety (DDA). This information is necessary to find and aggregate valuable data on the AYA population embedded in generalized studies of DDA. Keyword searches of six relevant electronic databases identified 2156 articles, with 316 selected for abstract review and 40 for full text review. Full-text reviews and data extraction resulted in 34 studies being included, which ranged widely in design, sample size, age-range categorization, analysis methods, DDA measurement tool, overall study rigor, and quality of evidence. Studies very seldom reported using theory to guide their age categorization, with only four studies giving any rationale for their age-group definitions. All 34 studies found a significant association between at least one DDA construct and the younger age group relative to the older age groups at some point along the cancer trajectory. However, age as an independent risk factor for DDA is still unclear, as the relationship could be confounded by other age-related factors. Despite the wide range of definitions and effect sizes in the studies included in this review, one thing is clear: adolescents and young adults, however defined, are a distinct group within the cancer population with an elevated risk of DDA. Widespread adoption of a standard AYA age-range definition will be essential to any future meta-analytical psycho-oncology research in this population.

  15. Biodegradation of dichlorodiphenyltrichloroethane: intermediates in dichlorodiphenylacetic acid metabolism by aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA. Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes, it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected.

  16. Direction dependence analysis: A framework to test the direction of effects in linear models with an implementation in SPSS.

    PubMed

    Wiedermann, Wolfgang; Li, Xintong

    2018-04-16

    In nonexperimental data, at least three possible explanations exist for the association of two variables x and y: (1) x is the cause of y, (2) y is the cause of x, or (3) an unmeasured confounder is present. Statistical tests that identify which of the three explanatory models fits best would be a useful adjunct to the use of theory alone. The present article introduces one such statistical method, direction dependence analysis (DDA), which assesses the relative plausibility of the three explanatory models on the basis of higher-moment information about the variables (i.e., skewness and kurtosis). DDA involves the evaluation of three properties of the data: (1) the observed distributions of the variables, (2) the residual distributions of the competing models, and (3) the independence properties of the predictors and residuals of the competing models. When the observed variables are nonnormally distributed, we show that DDA components can be used to uniquely identify each explanatory model. Statistical inference methods for model selection are presented, and macros to implement DDA in SPSS are provided. An empirical example is given to illustrate the approach. Conceptual and empirical considerations are discussed for best-practice applications in psychological data, and sample size recommendations based on previous simulation studies are provided.

  17. Absorption, distribution, metabolism, and excretion of decursin and decursinol angelate from Angelica gigas Nakai.

    PubMed

    Kim, Kang Min; Kim, Myo Jeong; Kang, Jae Seon

    2009-12-01

    The pharmacokinetics of decursin and decursinol angelate (D/DA) was investigated in male SD rats following oral and intravenous administration. D/DA and metabolites obtained from in vitro samples were evaluated by LC/MS. The level of D/DA and metabolized decursinol in the blood following oral and intravenous administration declined according to first-order kinetics, with T1/2 values of 56.67, 58.01 and 57.22 h, respectively, being observed after administration of a dose of 2 mg/kg body weight. The large intestine was the major site of disposition following oral administration. These data indicate that D/DA is rapidly absorbed from the gastrointestinal tract. In in vitro experiment utilizing liver microsomal protein, the major metabolic reaction of D/DA occurred to change decursinol. The cumulative biliary, urinary, and fecal excretion of D/DA in bile duct-cannulated rats was 36.10+/-2.9, 25.35+/-3.8, and 34.20+/-3.2%, respectively, at 72 h after administration. These results indicate that the absorption of D/DA is almost complete, and that its metabolites are primarily excreted into feces through the bile. These results indicate that D/DA is subject to enterohepatic circulation.

  18. Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics

    PubMed Central

    Canterbury, Jesse D.; Merrihew, Gennifer E.; Goodlett, David R.; MacCoss, Michael J.; Shaffer, Scott A.

    2015-01-01

    A common strategy in mass spectrometry analyses of complex protein mixtures is to digest the proteins to peptides, separate the peptides by microcapillary liquid chromatography and collect tandem mass spectra (MS/MS) on the eluting, complex peptide mixtures, a process commonly termed “shotgun proteomics”. For years, the most common way of data collection was via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest, a process often leaving lower abundant signals unanalyzed and therefore unidentified in the experiment. Advances in both instrumentation duty cycle and sensitivity allow DDA to probe to lower peptide abundance and therefore enable mapping proteomes to a more significant depth. An alternative to acquiring data by DDA is by data-independent acquisition (DIA), in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum. As a consequence, DIA acquisition potentially offers more comprehensive analysis of peptides than DDA and in principle can yield tandem mass spectra of all ionized molecules following their conversion to the gas-phase. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified in-house with an electrodynamic ion funnel, and an LTQ-Velos. These instruments were chosen as they are representative of both older (LTQ) and newer (LTQ-Velos) ion trap designs i.e., linear ion trap and dual ion traps, respectively, and allow direct comparison of peptide identification using both DDA and DIA analysis. Further, as the LTQ-Velos has an improved “S-lens” ion guide in the high-pressure region to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, while the faster scanning LTQ-Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design. PMID:25261218

  19. DDA3 associates with microtubule plus ends and orchestrates microtubule dynamics and directional cell migration

    PubMed Central

    Zhang, Liangyu; Shao, Hengyi; Zhu, Tongge; Xia, Peng; Wang, Zhikai; Liu, Lifang; Yan, Maomao; Hill, Donald L.; Fang, Guowei; Chen, Zhengjun; Wang, Dongmei; Yao, Xuebiao

    2013-01-01

    Cell motility and adhesion involve orchestrated interaction of microtubules (MTs) with their plus-end tracking proteins (+TIPs). However, the mechanisms underlying regulations of MT dynamics and directional cell migration are still elusive. Here, we show that DDA3-EB1 interaction orchestrates MT plus-end dynamics and facilitates directional cell migration. Biochemical characterizations reveal that DDA3 interacts with EB1 via its SxIP motif within the C-terminal Pro/Ser-rich region. Time-lapse and total internal reflection fluorescence (TIRF) microscopic assays demonstrate that DDA3 exhibits EB1-dependent, MT plus-end loading and tracking. The EB1-based loading of DDA3 is responsible for MT plus-ends stabilization at the cell cortex, which in turn orchestrates directional cell migration. Interestingly, the DDA3-EB1 interaction is potentially regulated by EB1 acetylation, which may account for physiological regulation underlying EGF-elicited cell migration. Thus, the EB1-based function of DDA3 links MT dynamics to directional cell migration. PMID:23652583

  20. Calculation of the energy loss for an electron passing near giant fullerenes

    NASA Astrophysics Data System (ADS)

    Henrard, L.; Lambin, Ph

    1996-11-01

    We present a theoretical analysis of the electron energy-loss spectra of isolated giant fullerenes. We use a macroscopic dielectric description of spherical onion-like fullerenes and a discrete dipole approximation (DDA) framework for tubular fullerenes. In the DDA model, an anisotropic dynamical polarizability is assigned to each carbon site. We stress the fundamental importance of the hollow character of giant fullerenes in the electron energy-loss resonances.

  1. Gender matters: Experiences and consequences of digital dating abuse victimization in adolescent dating relationships.

    PubMed

    Reed, Lauren A; Tolman, Richard M; Ward, L Monique

    2017-08-01

    Digital dating abuse (DDA) behaviors include the use of digital media to monitor, control, threaten, harass, pressure, or coerce a dating partner. In this study, 703 high school students reported on the frequency of DDA victimization, whether they were upset by these incidents, and how they responded. Results suggest that although both girls and boys experienced DDA at similar rates of frequency (with the exception of sexual coercion), girls reported that they were more upset by these behaviors. Girls also expressed more negative emotional responses to DDA victimization than boys. Although DDA is potentially harmful for all youth, gender matters. These findings suggest that the experience and consequences of DDA may be particularly detrimental for girls. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  2. Moving Beyond Univariate Post-Hoc Testing in Exercise Science: A Primer on Descriptive Discriminate Analysis.

    PubMed

    Barton, Mitch; Yeatts, Paul E; Henson, Robin K; Martin, Scott B

    2016-12-01

    There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent variables. However, this univariate approach decreases power, increases the risk for Type 1 error, and contradicts the rationale for conducting multivariate tests in the first place. The purpose of this study was to provide a user-friendly primer on conducting descriptive discriminant analysis (DDA), which is a post-hoc strategy to MANOVA that takes into account the complex relationships among multiple dependent variables. A real-world example using the Statistical Package for the Social Sciences syntax and data from 1,095 middle school students on their body composition and body image are provided to explain and interpret the results from DDA. While univariate post hocs increased the risk for Type 1 error to 76%, the DDA identified which dependent variables contributed to group differences and which groups were different from each other. For example, students in the very lean and Healthy Fitness Zone categories for body mass index experienced less pressure to lose weight, more satisfaction with their body, and higher physical self-concept than the Needs Improvement Zone groups. However, perceived pressure to gain weight did not contribute to group differences because it was a suppressor variable. Researchers are encouraged to use DDA when investigating group differences on multiple correlated dependent variables to determine which variables contributed to group differences.

  3. Low capping group surface density on zinc oxide nanocrystals.

    PubMed

    Valdez, Carolyn N; Schimpf, Alina M; Gamelin, Daniel R; Mayer, James M

    2014-09-23

    The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.

  4. Brouwer Award Lecture: Anelastic tides of close-in satellites and exoplanets

    NASA Astrophysics Data System (ADS)

    Ferraz-Mello, Sylvio

    2016-05-01

    This lecture reviews a new theory of the anelastic tides of celestial bodies in which the deformation of the body is the result of a Newtonian creep inversely proportional to the viscosity of the body and, along each radius, directly proportional to the distance from the actual surface of the body to the equilibrium. The first version of the theory (AAS/DDA 2012; CeMDA 2013), was restricted to homogeneous bodies. It was applied to many different bodies as the Moon, Mercury, super-Earths and hot Jupiters. An improved version (AAS/DDA 2014) included also the loss of angular momentum due to stellar winds and was applied to the study of the rotational evolution of active stars hosting massive companions. One more recent version (Folonier et al. AAS/DDA 2013; DPS 2015) allowed for the consideration of layered structures and was applied to Titan and Mercury. The resulting anelastic tides depend on the nature of the considered body. In the case of low-viscosity bodies (high relaxation factor), as gaseous planets and stars, the results are nearly the same of Darwin's theory. For instance, in these cases the dissipation grows proportionally to the tidal frequency. In the case of high-viscosity rocky satellites and planets (low relaxation factor), the results are structurally different: the dissipation varies with the tidal frequency following an inverse power law and the rotation may be driven to several attractors whose frequencies are 1/2, 1, 3/2, 2, 5/2,… times the orbital mean-motion, even when no permanent triaxiality exists.

  5. Impact of the structural differences between α- and β-chitosan on their depolymerizing reaction and antibacterial activity.

    PubMed

    Jung, Jooyeoun; Zhao, Yanyun

    2013-09-18

    The polymeric structure characteristics of β-chitosan from jumbo squid (Dosidicus gigas) pens and α-chitosan from shrimp shells during depolymerization by cellulase hydrolysis at different degrees of deacetylation (DDA) (60, 75, and 90%) were investigated by using Fourier transform infrared spectroscopy and X-ray diffraction. Antibacterial activity of β-chitosan against Escherichia coli and Listeria innocua was compared with that of α-chitosan at similar Mw and degrees of deacetylation (DDA) by studying inhibition ratio and minimal inhibition concentration (MIC) and was coordinated with the structural characteristics of the two forms of chitosan. β-Chitosan was more reactive to cellulase hydrolysis than α-chitosan due to its relatively lower crystallinity (CI) and loose crystal property, and the 75% DDA chitosan was more susceptible to cellulase than the 90% DDA ones with the 75% DDA of β-chitosan mostly reactive. Both forms of chitosan showed more inhibition against E. coli than against L. innocua, and no difference against L. innocua between the two forms of chitosan was observed. However, the two forms of chitosan exhibited different levels of antibacterial activity against E. coli, in which 75% DDA/31 kDa β-chitosan demonstrated significantly higher inhibition (lower MIC) than that of 75% DDA/31 kDa α-chitosan, whereas 90% DDA/74-76 kDa α-chitosan had a higher inhibition ratio than that of 90% DDA/74-76 kDa of β-chitosan. This result may be explained by the impact of the different structural properties between α- and β-chitosan on chitosan conformations in the solution. This study provided new information about the biological activities of β-chitosan, a bioactive compound with unique functionalities and great potential for food and other applications.

  6. Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation.

    PubMed

    Matafora, Vittoria; Corno, Andrea; Ciliberto, Andrea; Bachi, Angela

    2017-04-07

    In global proteomic analysis, it is estimated that proteins span from millions to less than 100 copies per cell. The challenge of protein quantitation by classic shotgun proteomic techniques relies on the presence of missing values in peptides belonging to low-abundance proteins that lowers intraruns reproducibility affecting postdata statistical analysis. Here, we present a new analytical workflow MvM (missing value monitoring) able to recover quantitation of missing values generated by shotgun analysis. In particular, we used confident data-dependent acquisition (DDA) quantitation only for proteins measured in all the runs, while we filled the missing values with data-independent acquisition analysis using the library previously generated in DDA. We analyzed cell cycle regulated proteins, as they are low abundance proteins with highly dynamic expression levels. Indeed, we found that cell cycle related proteins are the major components of the missing values-rich proteome. Using the MvM workflow, we doubled the number of robustly quantified cell cycle related proteins, and we reduced the number of missing values achieving robust quantitation for proteins over ∼50 molecules per cell. MvM allows lower quantification variance among replicates for low abundance proteins with respect to DDA analysis, which demonstrates the potential of this novel workflow to measure low abundance, dynamically regulated proteins.

  7. Data processing has major impact on the outcome of quantitative label-free LC-MS analysis.

    PubMed

    Chawade, Aakash; Sandin, Marianne; Teleman, Johan; Malmström, Johan; Levander, Fredrik

    2015-02-06

    High-throughput multiplexed protein quantification using mass spectrometry is steadily increasing in popularity, with the two major techniques being data-dependent acquisition (DDA) and targeted acquisition using selected reaction monitoring (SRM). However, both techniques involve extensive data processing, which can be performed by a multitude of different software solutions. Analysis of quantitative LC-MS/MS data is mainly performed in three major steps: processing of raw data, normalization, and statistical analysis. To evaluate the impact of data processing steps, we developed two new benchmark data sets, one each for DDA and SRM, with samples consisting of a long-range dilution series of synthetic peptides spiked in a total cell protein digest. The generated data were processed by eight different software workflows and three postprocessing steps. The results show that the choice of the raw data processing software and the postprocessing steps play an important role in the final outcome. Also, the linear dynamic range of the DDA data could be extended by an order of magnitude through feature alignment and a charge state merging algorithm proposed here. Furthermore, the benchmark data sets are made publicly available for further benchmarking and software developments.

  8. A qualitative analysis of the neutron population in fresh and spent fuel assemblies during simulated interrogation using the differential die-away technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, Stephen J.; Lundkvist, Niklas; Goodsell, Alison V.

    In this study, Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is bemore » ing considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.« less

  9. A qualitative analysis of the neutron population in fresh and spent fuel assemblies during simulated interrogation using the differential die-away technique

    DOE PAGES

    Tobin, Stephen J.; Lundkvist, Niklas; Goodsell, Alison V.; ...

    2015-12-01

    In this study, Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is bemore » ing considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Heng Kean

    14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated.more » DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells. - Highlights: • The mechanistic toxicology properties of 14-DDA in T-47D breast carcinoma cells were investigated. • 14-DDA induces the formation of ER vacuoles and autophagosomes, with concurrent upregulation of LC3-II. • It stimulates an increase in cytosolic calcium concentration and causing collapse in the mitochondrial membrane potential. • Both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. • 4-DDA induces ER stress-mediated autophagy in T-47D cells possibly via GADD45A/p38 MAPK/DDIT3 pathway.« less

  11. Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan.

    PubMed

    Hattori, Hidemi; Ishihara, Masayuki

    2015-01-22

    Because the molecular weight (Mw) and degree of deacetylation (DDA) of chitosan can vary depending on the purification method, the identification of appropriate chitosan structures is important for developing more effective hemostatic agents. In this study, the influence of varying Mw and DDA of chitosan on blood aggregation was characterized by 10 types of chitosan with different Mw and DDA, including oligomers. The highest aggregation of whole blood, washed erythrocytes and platelets in platelet-rich plasma (PRP) were observed in chitosan with Mw of 8.6 kDa or more and with DDA of 75 to 88%. However, chitosan with too high Mw (247 kDa) inhibited the aggregation of whole blood, washed erythrocytes and PRP at high chitosan concentration. At certain concentrations, chitosan with 75-85% DDA and 50-190 kDa and chitosan with 87.6% DDA and 247 kDa both aggregated proteins in PRP. Chitosan oligomer did not affect blood aggregation. The results suggested that the aggregation by chitosan depended on the interaction of positively charged chitosan with negatively charged erythrocytes, platelets and plasma protein. It seemed that a suitable balance of positive charge in chitosan and negative charge in hemocytes and some kinds of proteins was important. To develop a hemostatic with effective blood aggregation, the chitosan should not be limited to a single Mw and a single DDA but may be a mixed chitosan with wide range of Mw (8.6-247 kDa) and DDA of 75 to 88%.

  12. Efficient implementation of the 3D-DDA ray traversal algorithm on GPU and its application in radiation dose calculation.

    PubMed

    Xiao, Kai; Chen, Danny Z; Hu, X Sharon; Zhou, Bo

    2012-12-01

    The three-dimensional digital differential analyzer (3D-DDA) algorithm is a widely used ray traversal method, which is also at the core of many convolution∕superposition (C∕S) dose calculation approaches. However, porting existing C∕S dose calculation methods onto graphics processing unit (GPU) has brought challenges to retaining the efficiency of this algorithm. In particular, straightforward implementation of the original 3D-DDA algorithm inflicts a lot of branch divergence which conflicts with the GPU programming model and leads to suboptimal performance. In this paper, an efficient GPU implementation of the 3D-DDA algorithm is proposed, which effectively reduces such branch divergence and improves performance of the C∕S dose calculation programs running on GPU. The main idea of the proposed method is to convert a number of conditional statements in the original 3D-DDA algorithm into a set of simple operations (e.g., arithmetic, comparison, and logic) which are better supported by the GPU architecture. To verify and demonstrate the performance improvement, this ray traversal method was integrated into a GPU-based collapsed cone convolution∕superposition (CCCS) dose calculation program. The proposed method has been tested using a water phantom and various clinical cases on an NVIDIA GTX570 GPU. The CCCS dose calculation program based on the efficient 3D-DDA ray traversal implementation runs 1.42 ∼ 2.67× faster than the one based on the original 3D-DDA implementation, without losing any accuracy. The results show that the proposed method can effectively reduce branch divergence in the original 3D-DDA ray traversal algorithm and improve the performance of the CCCS program running on GPU. Considering the wide utilization of the 3D-DDA algorithm, various applications can benefit from this implementation method.

  13. Patient Acceptability of the Yorkshire Dialysis Decision Aid (YoDDA) Booklet: A Prospective Non-Randomized Comparison Study Across 6 Predialysis Services.

    PubMed

    Winterbottom, Anna E; Gavaruzzi, Teresa; Mooney, Andrew; Wilkie, Martin; Davies, Simon J; Crane, Dennis; Tupling, Ken; Baxter, Paul D; Meads, David M; Mathers, Nigel; Bekker, Hilary L

    2016-01-01

    ♦ Patients are satisfied with their kidney care but want more support in making dialysis choices. Predialysis leaflets vary across services, with few being sufficient to enable patients' informed decision making. We describe the acceptability of a patient decision aid and feasibility of evaluating its effectiveness within usual predialysis practice. ♦ Prospective non-randomized comparison design, Usual Care or Usual Care Plus Yorkshire Dialysis Decision Aid Booklet (+YoDDA), in 6 referral centers (Yorkshire-Humber, UK) for patients with sustained deterioration of kidney function. Consenting (C) patients completed questionnaires after predialysis consultation (T1), and 6 weeks later (T2). Measures assessed YoDDA's utility to support patients' decisions and integration within usual care. ♦ Usual Care (n = 105) and +YoDDA (n = 84) participant characteristics were similar: male (62%), white (94%), age (mean = 62.6; standard deviation [SD] 14.4), kidney disease severity (glomerular filtration rate [eGFR] mean = 14.7; SD 3.7); decisional conflict was < 25; choice-preference for home versus hospital dialysis approximately 50:50. Patients valued receiving YoDDA, reading it on their own (96%), and sharing it with family (72%). The +YoDDA participants had higher scores for understanding kidney disease, reasoning about options, feeling in control, sharing their decision with family. Study engagement varied by center (estimated range 14 - 49%; mean 45%); participants varied in completion of decision quality measures. ♦ Receiving YoDDA as part of predialysis education was valued and useful to patients with worsening kidney disease. Integrating YoDDA actively within predialysis programs will meet clinical guidelines and patient need to support dialysis decision making in the context of patients' lifestyle. Copyright © 2016 International Society for Peritoneal Dialysis.

  14. Further optimization of SeDDaRA blind image deconvolution algorithm and its DSP implementation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Qiheng; Zhang, Jianlin

    2011-11-01

    Efficient algorithm for blind image deconvolution and its high-speed implementation is of great value in practice. Further optimization of SeDDaRA is developed, from algorithm structure to numerical calculation methods. The main optimization covers that, the structure's modularization for good implementation feasibility, reducing the data computation and dependency of 2D-FFT/IFFT, and acceleration of power operation by segmented look-up table. Then the Fast SeDDaRA is proposed and specialized for low complexity. As the final implementation, a hardware system of image restoration is conducted by using the multi-DSP parallel processing. Experimental results show that, the processing time and memory demand of Fast SeDDaRA decreases 50% at least; the data throughput of image restoration system is over 7.8Msps. The optimization is proved efficient and feasible, and the Fast SeDDaRA is able to support the real-time application.

  15. Neutral Fragment Filtering for Rapid Identification of New Diester-Diterpenoid Alkaloids in Roots of Aconitum carmichaeli by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry

    PubMed Central

    Qiu, Xiao Hui; Yang, Yi Ming; Zhu, Da Yuan; Xu, Wen

    2012-01-01

    A rapid and effective method was developed for separation and identification of diester-diterpenoid alkaloids (DDA) in the roots of Aconitum carmichaeli by ultra-high-pressure liquid chromatography coupled with high resolution LTQ-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MSn). According to accurate mass measurement and the characteristic neutral loss filtering strategy, a total of 42 diester-diterpenoid alkaloids (DDA) were rapidly detected and characterized or tentatively identified. Meanwhile, the proposed fragmentation pathways and the major diagnostic fragment ions of aconitine, mesaconitine and hypaconitine were investigated to trace DDA derivatives in crude plant extracts. 23 potential new compounds were successfully screened and characterized in Aconitum carmichaeli, including 16 short chain fatty acyls DDA, 4 N-dealkyl DDA and several isomers of aconitine, mesaconitine and hypaconitine. PMID:23285005

  16. Snooping and Sexting: Digital Media as a Context for Dating Aggression and Abuse Among College Students.

    PubMed

    Reed, Lauren A; Tolman, Richard M; Ward, L Monique

    2016-11-01

    Digital dating abuse (DDA) is a pattern of behaviors that control, pressure, or threaten a dating partner using a cell phone or the Internet. A survey of 365 college students was conducted, finding that digital monitoring behaviors were especially common. There were no gender differences in number of DDA behaviors experienced, but women reported more negative hypothetical reactions to sexual messaging than men. DDA was associated with measures of physical, sexual, and psychological dating violence. Results suggest that digital media are a context for potentially harmful dating behaviors, and the experience of DDA may differ by gender for sexual behaviors. © The Author(s) 2016.

  17. Effect of pH on the adsorption of dodecylamine on montmorillonite: Insights from experiments and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Peng, Chenliang; Min, Fanfei; Liu, Lingyun

    2017-12-01

    The hydrophobic aggregation in cationic surfactant suspension is an effective method to enhance the dewatering of clay-rich tailing. The solution pH can affect the adsorption behavior of cationic surfactant on clay mineral. The effect of pH on the adsorption of dodecylamine (DDA) on montmorillonite was investigated by the sedimentation test and the characterization of flocs images, contact angle, adsorption quantity, and fourier transform infrared (FTIR) spectroscopy, as well as molecular dynamics (MD) simulation. It was found that DDA ions were adsorbed on montmorillonite basal surfaces mainly by physical adsorption, including the electrostatic attraction and hydrogen bonding. A certain number of neutral DDA molecules can favor the adsorption of DDA. At pH around 8, the effect of hydrophobic modification was the best because DDA molecules and ions form compact and well-organized monolayer. The MD simulation results were in good agreement with that of contact angle, adsorption quantity and FTIR.

  18. Biodegradation of ichlorodiphenyltrichloroe-thane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerobacter aerogenes

    USGS Publications Warehouse

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA (J. E. Peterson and W. H. Robison, Toxicol. Appl. Pharmacol. 6:321, 1964). Recently, certain organisms (A. S. Perry, S. Miller, and A. J. Buckner. J. Agr. Food Chem. 11:457, 1963; J. D. Pinto, M. N. Comien, and M. S. Dunn. J. Biol. Chem. 240:2148, 1965) have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA (Pinto et al., J. Biol. Chem. 240:2148, 1965). Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes (G. Wedemeyer, Appl. Microbiol. 15:569, 1967; J. L. Mendel, and M. S. Walton, Science 151:1527, 1966), it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected (S. G. Waley, Mechanisms of Organic and Enzymatic Reactions, Oxford University Press, London, England 1962).

  19. Seasonal Flight, Optimal Timing and Efficacy of Selected Insecticides for Cabbage Maggot (Delia radicum L., Diptera: Anthomyiidae) Control

    PubMed Central

    Bažok, Renata; Ceranić-Sertić, Mirna; Barčić, Jasminka Igrc; Borošić, Josip; Kozina, Antonela; Kos, Tomislav; Lemić, Darija; Čačija, Maja

    2012-01-01

    In order to describe seasonal flight activity of the cabbage maggot Delia radicum (L.) adults in relation to Julian days (JD), degree-day accumulations (DDA) and precipitation, flight dynamics were followed weekly with the use of yellow sticky traps (YST). Climatic data were collected and DDA were calculated using the lower developmental threshold of 4.3 °C. The efficacy of four insecticides applied either as standard foliar treatment or through dipping the seedlings before transplanting was determined. Seasonal flight activity during the cultivation season of a mid-early variety of white cabbage was correlated with DDA and JD and was characterized by having two peaks. The first peak occurred between 119 ± 7.5 JD and 125.5 ± 8 JD when DDA was 471.35 ± 74.97 °C. The second occurred between 172.8 ± 6.1 JD and 179.3 ± 6.7 JD when DDA was 1,217.28 ± 96.12 °C. The DDA, cumulative capture of flies and JD are suitable for predicting the timing of insecticide application. Spraying with insecticides should be applied when the cumulative capture of flies reaches 100 flies/YST and when DDA reaches 400 °C. If only one parameter reaches the threshold, additional visual surveys should be employed to establish the level of infestation. Insecticides were able to ensure only partial control. In the future, alternative control tactics which employ seed treatments and nonpesticide measures should be investigated in Croatia. PMID:26466723

  20. Chemopreventive effects of Korean Angelica vs. its major pyranocoumarins on two lineages of transgenic adenocarcinoma of mouse prostate carcinogenesis

    PubMed Central

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-01-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Since decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage-treated daily with excipient vehicle, AGN (5 mg per mouse) or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA and their common metabolite decursinol indicated similar retention from AGN vs. D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN-and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN-and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal-transition, invasion-metastasis and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca. PMID:26116406

  1. Chemopreventive Effects of Korean Angelica versus Its Major Pyranocoumarins on Two Lineages of Transgenic Adenocarcinoma of Mouse Prostate Carcinogenesis.

    PubMed

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-09-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Because decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage treated daily with excipient vehicle, AGN (5 mg per mouse), or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA, and their common metabolite decursinol indicated similar retention from AGN versus D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN- and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN- and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed that AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell-cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal transition, invasion-metastasis, and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca. ©2015 American Association for Cancer Research.

  2. Mechanical property, degradation rate, and bone cell growth of chitosan coated titanium influenced by degree of deacetylation of chitosan.

    PubMed

    Yuan, Youling; Chesnutt, Betsy M; Wright, Lee; Haggard, Warren O; Bumgardner, Joel D

    2008-07-01

    Chitosan has shown promise as a coating for dental/craniofacial and orthopaedic implants. However, the effects of degree of deacetylation (DDA) of chitosan on coating bond strength, degradation, and biological performance is not known. The aim of this project was to evaluate bonding, degradation, and bone cell growth on titanium coated with chitosans of different DDA and from different manufacturers. Three different chitosans, 80.6%, 81.7%, and 92.3% DDA were covalently bonded to titanium coupons via silane-glutaraldehyde molecules. Bond strengths were evaluated in mechanical tensile tests, and degradation, over 5 weeks, was conducted in cell culture medium with and without 100 microg/mL lysozyme. Cytocompatibility was evaluated for 10 days using UMR 106 osteoblastic cells. Results showed that mean chitosan coating bond strengths ranged from 2.2-3.8 MPa, and that there was minimal affect of DDA on coating bond strengths. The coatings exhibited little dissolution over 5 weeks in medium with or without lysozyme. However, the molecular weight (MW) of the chitosan coatings remaining on the titanium samples after 5 weeks decreased by 69-85% with the higher DDA chitosan coatings exhibiting less percent change in MW than the lower DDA materials. The growth of the UMR 106 osteoblast cells on the 81.7% DDA chitosan coating was lower on days 3 and 5, as compared with the other two coatings, but by day 10, there were no differences in growth among three coatings or to the uncoated titanium controls. Differences in growth were attributed to differences in manufacturer source material, though all coatings were judged to be osteocompatible in vitro. 2007 Wiley Periodicals, Inc.

  3. Drift dust acoustic soliton in the presence of field-aligned sheared flow and nonextensivity effects

    NASA Astrophysics Data System (ADS)

    Shah, AttaUllah; Mushtaq, A.; Farooq, M.; Khan, Aurangzeb; Aman-ur-Rehman

    2018-05-01

    Low frequency electrostatic dust drift acoustic (DDA) waves are studied in an inhomogeneous dust magnetoplasma comprised of dust components of opposite polarity, Boltzmannian ions, and nonextensive distributed electrons. The magnetic-field-aligned dust sheared flow drives the electrostatic drift waves in the presence of ions and electrons. The sheared flow decreases or increases the frequency of the DDA wave, mostly depending on its polarity. The conditions of instability for this mode, with nonextensivity and dust streaming effects, are discussed. The nonlinear dynamics is then investigated for the DDA wave by deriving the Koeteweg-deVries (KdV) nonlinear equation. The KdV equation yields an electrostatic structure in the form of a DDA soliton. The relevancy of the work to laboratory four component dusty plasmas is illustrated.

  4. [Filing and reuse of research data].

    PubMed

    Osler, Merete; Bredahl, Lone; Ousager, Steen

    2008-02-25

    Currently several scientific journals only publish data from randomised clinical trials which are registered in a public database. Similar requirements on data sharing now follow grants from agencies such as the National Institute of Health. In Denmark the Health unit at the Danish Data Archive (DDA/Health) offers Danish researchers to keep their data for free on conditions that fulfil the above requirements. DDA/Health also passes on research data for reuse, and at present more than 300 studies are available in a database on sundhed.dda.dk.

  5. The physicochemical characterization and in vitro/in vivo evaluation of natural surfactants-based emulsions as vehicles for diclofenac diethylamine.

    PubMed

    Vucinić-Milanković, Nada; Savić, Snezana; Vuleta, Gordana; Vucinić, Slavica

    2007-03-01

    Two sugar-based emulsifiers, cetearyl alcohol & cetearyl glycoside and sorbitan stearate & sucrose cocoate, known as potential promoters of lamellar liquid crystals/gel phases, were investigated in order to formulate an optimal vehicle for amphiphilic drug - diclofenac diethylamine (DDA). Physico-chemical characterization and study of vehicle's physical stability were performed. Then, the in vitro DDA liberation profile, dependent on the mode of drug incorporation to the system, and the in vivo, short-term effects of chosen samples on skin parameters were examined. Droplets size distribution and rheological behavior indicated satisfying physical stability of both types of vehicles. Unexpectedly, the manner of DDA incorporation to the system had no significant influence on DDA release. In vivo study pointed to emulsion's favorable potential for skin hydration and barrier improvement, particularly in cetearyl glycoside-based vehicle.

  6. MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.

    PubMed

    Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin

    2017-01-01

    The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.

  7. Development of a data independent acquisition mass spectrometry workflow to enable glycopeptide analysis without predefined glycan compositional knowledge.

    PubMed

    Lin, Chi-Hung; Krisp, Christoph; Packer, Nicolle H; Molloy, Mark P

    2018-02-10

    Glycoproteomics investigates glycan moieties in a site specific manner to reveal the functional roles of protein glycosylation. Identification of glycopeptides from data-dependent acquisition (DDA) relies on high quality MS/MS spectra of glycopeptide precursors and often requires manual validation to ensure confident assignments. In this study, we investigated pseudo-MRM (MRM-HR) and data-independent acquisition (DIA) as alternative acquisition strategies for glycopeptide analysis. These approaches allow data acquisition over the full MS/MS scan range allowing data re-analysis post-acquisition, without data re-acquisition. The advantage of MRM-HR over DDA for N-glycopeptide detection was demonstrated from targeted analysis of bovine fetuin where all three N-glycosylation sites were detected, which was not the case with DDA. To overcome the duty cycle limitation of MRM-HR acquisition needed for analysis of complex samples such as plasma we trialed DIA. This allowed development of a targeted DIA method to identify N-glycopeptides without pre-defined knowledge of the glycan composition, thus providing the potential to identify N-glycopeptides with unexpected structures. This workflow was demonstrated by detection of 59 N-glycosylation sites from 41 glycoproteins from a HILIC enriched human plasma tryptic digest. 21 glycoforms of IgG1 glycopeptides were identified including two truncated structures that are rarely reported. We developed a data-independent mass spectrometry workflow to identify specific glycopeptides from complex biological mixtures. The novelty is that this approach does not require glycan composition to be pre-defined, thereby allowing glycopeptides carrying unexpected glycans to be identified. This is demonstrated through the analysis of immunoglobulins in human plasma where we detected two IgG1 glycoforms that are rarely observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Engineering of an inhalable DDA/TDB liposomal adjuvant: a quality-by-design approach towards optimization of the spray drying process.

    PubMed

    Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle; Nielsen, Hanne Mørck; Rantanen, Jukka; Foged, Camilla

    2013-11-01

    The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB). A quality by design (QbD) approach was applied to identify and link critical process parameters (CPPs) of the spray drying process to critical quality attributes (CQAs) using risk assessment and design of experiments (DoE), followed by identification of an optimal operating space (OOS). A central composite face-centered design was carried out followed by multiple linear regression analysis. Four CQAs were identified; the mass median aerodynamic diameter (MMAD), the liposome stability (size) during processing, the moisture content and the yield. Five CPPs (drying airflow, feed flow rate, feedstock concentration, atomizing airflow and outlet temperature) were identified and tested in a systematic way. The MMAD and the yield were successfully modeled. For the liposome size stability, the ratio between the size after and before spray drying was modeled successfully. The model for the residual moisture content was poor, although, the moisture content was below 3% in the entire design space. Finally, the OOS was drafted from the constructed models for the spray drying of trehalose stabilized DDA/TDB liposomes. The QbD approach for the spray drying process should include a careful consideration of the quality target product profile. This approach implementing risk assessment and DoE was successfully applied to optimize the spray drying of an inhalable DDA/TDB liposomal adjuvant designed for pulmonary vaccination.

  9. Unique and facile solvothermal synthesis of mesoporous WO3 using a solid precursor and a surfactant template as a photoanode for visible-light-driven water oxidation

    PubMed Central

    2014-01-01

    Mesoporous tungsten trioxide (WO3) was prepared from tungstic acid (H2WO4) as a tungsten precursor with dodecylamine (DDA) as a template to guide porosity of the nanostructure by a solvothermal technique. The WO3 sample (denoted as WO3-DDA) prepared with DDA was moulded on an electrode to yield efficient performance for visible-light-driven photoelectrochemical (PEC) water oxidation. Powder X-ray diffraction (XRD) data of the WO3-DDA sample calcined at 400°C indicate a crystalline framework of the mesoporous structure with disordered arrangement of pores. N2 physisorption studies show a Brunauer-Emmett-Teller (BET) surface area up to 57 m2 g-1 together with type IV isotherms and uniform distribution of a nanoscale pore size in the mesopore region. Scanning electron microscopy (SEM) images exhibit well-connected tiny spherical WO3 particles with a diameter of ca. 5 to 20 nm composing the mesoporous network. The WO3-DDA electrode generated photoanodic current density of 1.1 mA cm-2 at 1.0 V versus Ag/AgCl under visible light irradiation, which is about three times higher than that of the untemplated WO3. O2 (1.49 μmol; Faraday efficiency, 65.2%) was evolved during the 1-h photoelectrolysis for the WO3-DDA electrode under the conditions employed. The mesoporous electrode turned out to work more efficiently for visible-light-driven water oxidation relative to the untemplated WO3 electrode. PMID:25313301

  10. Technical advances in proteomics: new developments in data-independent acquisition.

    PubMed

    Hu, Alex; Noble, William S; Wolf-Yadlin, Alejandro

    2016-01-01

    The ultimate aim of proteomics is to fully identify and quantify the entire complement of proteins and post-translational modifications in biological samples of interest. For the last 15 years, liquid chromatography-tandem mass spectrometry (LC-MS/MS) in data-dependent acquisition (DDA) mode has been the standard for proteomics when sampling breadth and discovery were the main objectives; multiple reaction monitoring (MRM) LC-MS/MS has been the standard for targeted proteomics when precise quantification, reproducibility, and validation were the main objectives. Recently, improvements in mass spectrometer design and bioinformatics algorithms have resulted in the rediscovery and development of another sampling method: data-independent acquisition (DIA). DIA comprehensively and repeatedly samples every peptide in a protein digest, producing a complex set of mass spectra that is difficult to interpret without external spectral libraries. Currently, DIA approaches the identification breadth of DDA while achieving the reproducible quantification characteristic of MRM or its newest version, parallel reaction monitoring (PRM). In comparative de novo identification and quantification studies in human cell lysates, DIA identified up to 89% of the proteins detected in a comparable DDA experiment while providing reproducible quantification of over 85% of them. DIA analysis aided by spectral libraries derived from prior DIA experiments or auxiliary DDA data produces identification and quantification as reproducible and precise as that achieved by MRM/PRM, except on low‑abundance peptides that are obscured by stronger signals. DIA is still a work in progress toward the goal of sensitive, reproducible, and precise quantification without external spectral libraries. New software tools applied to DIA analysis have to deal with deconvolution of complex spectra as well as proper filtering of false positives and false negatives. However, the future outlook is positive, and various researchers are working on novel bioinformatics techniques to address these issues and increase the reproducibility, fidelity, and identification breadth of DIA.

  11. Simultaneous binding to the tracking strand, displaced strand and the duplex of a DNA fork enhances unwinding by Dda helicase

    PubMed Central

    Aarattuthodiyil, Suja; Byrd, Alicia K.; Raney, Kevin D.

    2014-01-01

    Interactions between helicases and the tracking strand of a DNA substrate are well-characterized; however, the role of the displaced strand is a less understood characteristic of DNA unwinding. Dda helicase exhibited greater processivity when unwinding a DNA fork compared to a ss/ds DNA junction substrate. The lag phase in the unwinding progress curve was reduced for the forked DNA compared to the ss/ds junction. Fewer kinetic steps were required to unwind the fork compared to the ss/ds junction, suggesting that binding to the fork leads to disruption of the duplex. DNA footprinting confirmed that interaction of Dda with a fork leads to two base pairs being disrupted whereas no disruption of base pairing was observed with the ss/ds junction. Neutralization of the phosphodiester backbone resulted in a DNA-footprinting pattern similar to that observed with the ss/ds junction, consistent with disruption of the interaction between Dda and the displaced strand. Several basic residues in the 1A domain which were previously proposed to bind to the incoming duplex DNA were replaced with alanines, resulting in apparent loss of interaction with the duplex. Taken together, these results suggest that Dda interaction with the tracking strand, displaced strand and duplex coordinates DNA unwinding. PMID:25249618

  12. Formulation study of topically applied lotion: in vitro and in vivo evaluation.

    PubMed

    Hussain Shah, Syed Nisar; Hussain, Talib; Ullah Khan, Ikram; Asghar, Sajid; Shahzad, Yasser

    2013-01-01

    This article presents the development and evaluation of a new topical formulation of diclofenac diethylamine (DDA) as a locally applied analgesic lotion. To this end, the lotion formulations were formulated with equal volume of varying concentrations (1%, 2%, 3%, 4%; v/v) of permeation enhancers, namely propylene glycol (PG) and turpentine oil (TO). These lotions were subjected to physical studies (pH, viscosity, spreadability, homogeneity, and accelerated stability), in vitro permeation, in vivo animal studies and sensatory perception testing. In vitro permeation of DDA from lotion formulations was evaluated across polydimethylsiloxane membrane and rabbit skin using Franz cells. It was found that PG and TO content influenced the permeation of DDA across model membranes with the lotion containing 4% v/v PG and TO content showed maximum permeation enhancement of DDA. The flux values for L4 were 1.20±0.02 μg.cm(-2).min(-1) and 0.67 ± 0.02 μg.cm(-2).min(-1) for polydimethylsiloxane and rabbit skin, respectively. Flux values were significantly different (p < 0.05) from that of the control. The flux enhancement ratio of DDA from L4 was 31.6-fold and 4.8-fold for polydimethylsiloxane and rabbit skin, respectively. In the in vivo animal testing, lotion with 4% v/v enhancer content showed maximum anti-inflammatory and analgesic effect without inducing any irritation. Sensatory perception tests involving healthy volunteers rated the formulations between 3 and 4 (values ranging between -4 to +4, indicating a range of very bad to excellent, respectively). It was concluded that the DDA lotion containing 4% v/v PG and TO exhibit the best performance overall and that this specific formulation should be the basis for further clinical investigations.

  13. Formulation Study of Topically Applied Lotion: In Vitro and In Vivo Evaluation

    PubMed Central

    Hussain Shah, Syed Nisar; Hussain, Talib; Ullah Khan, Ikram; Asghar, Sajid; Shahzad, Yasser

    2013-01-01

    Introduction This article presents the development and evaluation of a new topical formulation of diclofenac diethylamine (DDA) as a locally applied analgesic lotion. Methods To this end, the lotion formulations were formulated with equal volume of varying concentrations (1%, 2%, 3%, 4%; v/v) of permeation enhancers, namely propylene glycol (PG) and turpentine oil (TO). These lotions were subjected to physical studies (pH, viscosity, spreadability, homogeneity, and accelerated stability), in vitro permeation, in vivo animal studies and sensatory perception testing. In vitro permeation of DDA from lotion formulations was evaluated across polydimethylsiloxane membrane and rabbit skin using Franz cells. Results It was found that PG and TO content influenced the permeation of DDA across model membranes with the lotion containing 4% v/v PG and TO content showed maximum permeation enhancement of DDA. The flux values for L4 were 1.20±0.02 μg.cm-2.min-1 and 0.67 ± 0.02 μg.cm-2.min-1 for polydimethylsiloxane and rabbit skin, respectively. Flux values were significantly different (p < 0.05) from that of the control. The flux enhancement ratio of DDA from L4 was 31.6-fold and 4.8-fold for polydimethylsiloxane and rabbit skin, respectively. In the in vivo animal testing, lotion with 4% v/v enhancer content showed maximum anti-inflammatory and analgesic effect without inducing any irritation. Sensatory perception tests involving healthy volunteers rated the formulations between 3 and 4 (values ranging between -4 to +4, indicating a range of very bad to excellent, respectively). Conclusion It was concluded that the DDA lotion containing 4% v/v PG and TO exhibit the best performance overall and that this specific formulation should be the basis for further clinical investigations. PMID:23678465

  14. Formulation in DDA-MPLA-TDB Liposome Enhances the Immunogenicity and Protective Efficacy of a DNA Vaccine against Mycobacterium tuberculosis Infection

    PubMed Central

    Tian, Maopeng; Zhou, Zijie; Tan, Songwei; Fan, Xionglin; Li, Longmeng; Ullah, Nadeem

    2018-01-01

    Despite the vaccine Mycobacterium bovis Bacillus Calmette–Guérin is used worldwide, tuberculosis (TB) remains the first killer among infectious diseases. An effective vaccine is urgently required. DNA vaccine has shown prophylactic as well as therapeutic effects against TB, while its weak immunogenicity hinders the application. As a strong inducer of Th1-biased immune response, DMT, consisting of dimethyldioctadecylammonium (DDA) and two pattern recognition receptor agonists monophosphoryl lipid A and trehalose 6,6′-dibehenate (TDB), was a newly developed liposomal adjuvant. To elucidate the action mechanism of DMT and improve immunological effects induced by DNA vaccine, a new recombinant eukaryotic expression plasmid pCMFO that secretes the fusion of four multistage antigens (Rv2875, Rv3044, Rv2073c, and Rv0577) of Mycobacterium tuberculosis was constructed. pCMFO/DDA and pCMFO/DMT complexes were then prepared and their physicochemical properties were analyzed. The immunogenicity and protection against M. tuberculosis infection in vaccinated C57BL/6 mice were compared. Formulation of DNA and two agonists into the DDA liposome decreased zeta potential but increased the stability of storage, which resulted in a slower and longer-lasting release of DNA from the DNA–DMT complex than the DNA–DDA liposome. Besides Th1-biased responses, pCMFO/DMT vaccinated mice elicited more significantly CFMO-specific IL2+ TCM cell responses in the spleen and provided an enhanced and persistent protection against M. tuberculosis aerosol infection, compared to pCMFO/DDA and pCMFO groups. Therefore, the adjuvant DMT can release DNA and agonists slowly, which might attribute to the improved protection of DMT adjuvanted vaccines. pCMFO/DMT, a very promising TB vaccine, warrants for further preclinical and clinical trials. PMID:29535714

  15. Constraining ground motion parameters and determining the historic earthquake that damaged the vaults underneath the Old City of Jerusalem

    NASA Astrophysics Data System (ADS)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2013-12-01

    Evidence for seismically induced damage are preserved in historic masonry structures below the Old City of Jerusalem at a site known locally as the 'Western Wall Tunnels' complex, possibly one of the most important tourist attractions in the world. In the tunnels, structures dated to 500 BC and up until modern times have been uncovered by recent archeological excavation. One of the interesting findings is a 100 m long bridge, composed of two rows of barrel vaults, believed to have been constructed during the 3rd century AD to allow easy access to the Temple Mount. In one of the vaults a single masonry block is displaced 7 cm downward with respect to its neighbors (see figure below). Since the damage seems seismically driven, back analysis of the damage with the numerical Discontinuous Deformation Analysis (DDA) method was performed, in order to constrain the peak ground acceleration (PGA) that had caused the damage. First the numerical method used for back analysis was verified with an analytical solution for the case of a rocking monolithic column, then validated with experimental results for site response analysis. The verification and validation prove the DDA is capable of handling dynamic and wave propagation problems. Next, the back analysis was performed. Results of the dynamic numerical simulations suggest that the damage observed at the vault was induced by seismic vibrations that must have taken place before the bridge was buried underground, namely when it was still in service. We find that the PGA required for causing the observed damage was high - between 1.5 and 2 g. The PGA calculated for Jerusalem on the basis of established attenuation relationships for historic earthquakes that struck the region during the relevant time period is about one order of magnitude lower: 0.14 and 0.48 g, for the events that took place at 362 and 746 AD, respectively. This discrepancy is explained by local site effects that must have amplified bedrock ground motions by a factor of up to 10. This result clearly illustrates the significance of incorporating local site effects when assessing the seismic hazard associated with specific regions in general, and particularly in cities where soft layers separate between the bedrock and the ground surface. The displaced block in Vault 21 in the Western Wall Tunnels.

  16. Due Date Assignment in a Dynamic Job Shop with the Orthogonal Kernel Least Squares Algorithm

    NASA Astrophysics Data System (ADS)

    Yang, D. H.; Hu, L.; Qian, Y.

    2017-06-01

    Meeting due dates is a key goal in the manufacturing industries. This paper proposes a method for due date assignment (DDA) by using the Orthogonal Kernel Least Squares Algorithm (OKLSA). A simulation model is built to imitate the production process of a highly dynamic job shop. Several factors describing job characteristics and system state are extracted as attributes to predict job flow-times. A number of experiments under conditions of varying dispatching rules and 90% shop utilization level have been carried out to evaluate the effectiveness of OKLSA applied for DDA. The prediction performance of OKLSA is compared with those of five conventional DDA models and back-propagation neural network (BPNN). The experimental results indicate that OKLSA is statistically superior to other DDA models in terms of mean absolute lateness and root mean squares lateness in most cases. The only exception occurs when the shortest processing time rule is used for dispatching jobs, the difference between OKLSA and BPNN is not statistically significant.

  17. Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range.

    PubMed

    Tanaka, Shunsuke; Nogami, Daisuke; Tsuda, Natsuki; Miyake, Yoshikazu

    2009-06-15

    Monodisperse titania spheres with particle diameters in the range 380-960 nm were successfully synthesized by hydrolysis and condensation of titanium tetraisopropoxide. The preparation was performed using ammonia or dodecylamine (DDA) as a catalyst in methanol/acetonitrile co-solvent at room temperature. The samples were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and nitrogen sorption measurement. The use of DDA was effective for the synthesis of monodisperse titania spheres with low coefficient of variation. When the titania spherical particles with coefficient of variation less than 4% were obtained, the colloidal crystallization easily occurred simply by centrifugation. The monodispersity was maintained even after crystallization of the particles by high temperature annealing. The titania particles prepared using DDA had mesopores near the surface of the spheres, providing high pore accessibility to the sphere from the surface-air interface. The particle size uniformity and photocatalytic reactivity of the titania prepared using DDA were higher than those of the titania prepared using ammonia.

  18. Effect of chitosan and coagulation factors on the wound repair phenotype of bioengineered blood clots.

    PubMed

    Hoemann, Caroline D; Marchand, Catherine; Rivard, Georges-Etienne; El-Gabalawy, Hani; Poubelle, Patrice E

    2017-11-01

    Controlling the blood clot phenotype in a surgically prepared wound is an evolving concept in scaffold-guided tissue engineering. Here, we investigated the effect of added chitosan (80% or 95% Degree of Deacetylation, DDA) or coagulation factors (recombinant human Factor VIIa, Tissue Factor, thrombin) on inflammatory factors released by blood clots. We tested the hypothesis that 80% DDA chitosan specifically enhances leukotriene B 4 (LTB 4 ) production. Human or rabbit whole blood was combined with isotonic chitosan solutions, coagulation factors, or lipopolysaccharide, cultured in vitro at 37°C, and after 4hours the serum was assayed for LTB 4 or inflammatory factors. Only 80% DDA chitosan clots produced around 15-fold more LTB 4 over other clots including 95% DDA chitosan clots. All serum contained high levels of PDGF-BB and CXCL8. Normal clots produced very low type I cytokines compared to lipopolysaccharide clots, with even lower IL-6 and IL-12 and more CCL3/CCL4 produced by chitosan clots. Coagulation factors had no detectable effect on clot phenotype. Conclusion In blood clots from healthy individuals, 80% DDA chitosan has a unique influence of inducing more LTB 4 , a potent neutrophil chemoattractant, with similar production of PDGF-BB and CXCL8, and lower type I cytokines, compared to whole blood clots. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan.

    PubMed

    Balázs, Nándor; Sipos, Pál

    2007-01-15

    The degree of deacetylation (DDA) of chitosan determines the biopolymer's physico-chemical properties and technological applications. pH-Potentiometric titration seems to offer a simple and convenient means of determining DDA. However, to obtain accurate pH-potentiometric DDA values, several factors have to be taken into consideration. We found that the moisture content of the air-dry chitosan samples can be as high as 15%, and a reasonable fraction of this humidity cannot be removed by ordinary drying. Corrections have to be made for the ash content, as in some samples it can be as high as 1% by weight. The method of equivalence point determination was also found to cause systematic variations in the results and in some samples extra acid as high as 1 mol% of the free amino content was also identified. To compensate for the latter effect, the second equivalence point of the titration has to be determined separately and the analytical concentration of the acid be corrected for it. All the corrections listed here are necessary to obtain DDA values that are in reasonable agreement with those obtained from (1)H NMR and IR spectroscopic measurements. The need for these corrections severely limits the usefulness of pH-metry for determining accurate DDA values and thus potentiometry is hardly able to compete with other standard spectroscopic procedures, that is, (1)H NMR spectroscopy.

  20. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis.

    PubMed

    Wang, Qiwei; Wang, Yan; Yu, Fengwei

    2018-05-16

    Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila , ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, it remains unknown about an important role of ER-to-Golgi transport in dendrite pruning. Here, in a clonal screen we identified Yif1, an uncharacterized Drosophila homologue of Yif1p that is known as a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identified the Yif1-binding partner Yip1 which is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases Rab1 and Sar1, known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of cell adhesion molecule Neuroglian and thereby dendrite pruning. © 2018. Published by The Company of Biologists Ltd.

  1. STM/STS Observation on Layered Nitride Superconductor α-(DDA)xTiNCl

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Ukita, Ryuichi; Ekino, Toshikazu; Zheng, Zhanfeng; Yamanaka, Shoji

    2012-12-01

    Scanning tunneling microscopy/spectroscopy (STM/STS) measurements on α-(DDA)xTiNCl (DDA=H2N-(CH2)10-NH2, Tc=16 K) have been carried out. The STM topography exhibits simple rectangular shaped atomic lattice with the periods of |a|=0.38 nm and |b| =0.33 nm. The averaged dI / dV spectrum shows the gap value of Δ ~ 9 meV, giving an unusual large gap ratio 2Δ/kBTc ≃ 13. The STS results show the bar-shaped domain structures along the b-axis direction in the bias range of V = +5 ~ +15 mV, demonstrating the possible existence of intercalated molecules.

  2. A Report Generator Volume 2

    DTIC Science & Technology

    1988-01-01

    her Nicholle) ( korsakoffs (proper-noun singlp neuter) korsakoffs korekoffs) (huntingtons (proper-noun sing3p neuter) huntingtons huntingtons...hemisphere)) (sub-class (value gerstmann- syndrome 1-constructional-dyspraxia reading-coup aphasia)) (type (value lobe)) (dda (value (location...class)) (dda (value (function damage memory) (location brain))) (importance (value 10)) (damage (value 8))) ( korsakoffs (super-class (value stm)) (sub

  3. Seasonal resource conditions favor a summertime increase in North Pacific diatom-diazotroph associations.

    PubMed

    Follett, Christopher L; Dutkiewicz, Stephanie; Karl, David M; Inomura, Keisuke; Follows, Michael J

    2018-06-01

    In the North Pacific Subtropical Gyre (NPSG), an annual pulse of sinking organic carbon is observed at 4000 m between July and August, driven by large diatoms found in association with nitrogen fixing, heterocystous, cyanobacteria: Diatom-Diazotroph Associations (DDAs). Here we ask what drives the bloom of DDAs and present a simplified trait-based model of subtropical phototroph populations driven by observed, monthly averaged, environmental characteristics. The ratio of resource supply rates favors nitrogen fixation year round. The relative fitness of DDA traits is most competitive in early summer when the mixed layer is shallow, solar irradiance is high, and phosphorus and iron are relatively abundant. Later in the season, as light intensity drops and phosphorus is depleted, the traits of small unicellular diazotrophs become more competitive. The competitive transition happens in August, at the time when the DDA export event occurs. This seasonal dynamic is maintained when embedded in a more complex, global-scale, ecological model, and provides predictions for the extent of the North Pacific DDA bloom. The model provides a parsimonious and testable hypothesis for the stimulation of DDA blooms.

  4. A Cullin1-Based SCF E3 Ubiquitin Ligase Targets the InR/PI3K/TOR Pathway to Regulate Neuronal Pruning

    PubMed Central

    Wong, Jack Jing Lin; Wang, Cheng; Zhang, Heng; Kirilly, Daniel; Wu, Chunlai; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei

    2013-01-01

    Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning. PMID:24068890

  5. In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions.

    PubMed

    Djordjevic, Ljiljana; Primorac, Marija; Stupar, Mirjana

    2005-05-30

    The purpose of the present study was to determine the influence of both formulation parameters and vehicle structure on in vitro release rate of amphiphilic drug diclofenac diethylamine (DDA) from microemulsion vehicles containing PEG-8 caprylic/capric glycerides (surfactant), polyglyceryl-6 dioleate (cosurfactant), isopropyl myristate and water. From the constructed pseudo-ternary phase diagram at surfactant-cosurfactant mass ratio (K(m) 1:1), the optimum oil-to-surfactant-cosurfactant mass ratio values (O/SC 0.67-1.64) for formulation of microemulsions with similar concentrations of hydrophilic, lipophilic and amphiphilic phases (balanced microemulsions) were found. The results of characterization experiments indicated bicontinuous or nonspherical water-continuous internal structure of the selected microemulsion vehicles. Low water/isopropyl myristate apparent partition coefficient for DDA as well as elevated electrical conductivity and apparent viscosity values for the investigated microemulsion formulations containing 1.16% (w/w) of DDA, suggested that the drug molecules was predominantly partitioned in the water phase and most likely selfaggregate and interact with interfacial film. Release of DDA from the selected water-continuous (W/O), oil-continuous (O/W) and balanced microemulsions was investigated using rotating paddle dissolution apparatus modified by addition of enhancer cell. A linear diffusion of DDA through regenerated cellulose membrane was observed for the W/O and O/W formulations with the low content of dispersed phase. Non-linearity of the drug release profile in the case of bicontinuous formulations was related to the more complex distribution of DDA including interactions between the drug and vehicle. The membrane flux value increases from 25.02 microgcm(-2)h(-1) (W/O microemulsion) to 117.94 microgcm(-2)h(-1) (O/W microemulsion) as the water phase concentration increases. Moreover, the obtained flux values for balanced microemulsions (29.38-63.70 microgcm(-2)h(-1)) suggested that bicontinuous microstructure hampers the release of the amphiphilic drug.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avkshtol, V; Tanny, S; Reddy, K

    Purpose: Stereotactic radiation therapy (SRT) provides an excellent alternative to embolization and surgical excision for the management of appropriately selected cerebral arteriovenous malformations (AVMs). The currently accepted standard for delineating AVMs is planar digital subtraction angiography (DSA). DSA can be used to acquire a 3D data set that preserves osseous structures (3D-DA) at the time of the angiography for SRT planning. Magnetic resonance imaging (MRI) provides an alternative noninvasive method of visualizing the AVM nidus with comparable spatial resolution. We utilized 3D-DA and T1 post-contrast MRI data to evaluate the differences in SRT target volumes. Methods: Four patients underwent 3D-DAmore » and high-resolution MRI. 3D T1 post-contrast images were obtained in all three reconstruction planes. A planning CT was fused with MRI and 3D-DA data sets. The AVMs were contoured utilizing one of the image sets at a time. Target volume, centroid, and maximum and minimum dimensions were analyzed for each patient. Results: Targets delineated using post-contrast MRI demonstrated a larger mean volume. AVMs >2 cc were found to have a larger difference between MRI and 3D-DA volumes. Larger AVMs also demonstrated a smaller relative uncertainty in contour centroid position (1 mm). AVM targets <2 cc had smaller absolute differences in volume, but larger differences in contour centroid position (2.5 mm). MRI targets demonstrated a more irregular shape compared to 3D-DA targets. Conclusions: Our preliminary data supports the use of MRI alone to delineate AVM targets >2 cc. The greater centroid stability for AVMs >2 cc ensures accurate target localization during image fusion. The larger MRI target volumes did not result in prohibitively greater volumes of normal brain tissue receiving the prescription dose. The larger centroid instability for AVMs <2 cc precludes the use of MRI alone for target delineation. We recommend incorporating a 3D-DA for these patients.« less

  7. The Kinetic Mechanism for DNA Unwinding by Multiple Molecules of Dda Helicase Aligned on DNA†

    PubMed Central

    Eoff, Robert L.; Raney, Kevin D.

    2010-01-01

    Helicases catalyze the separation of double-stranded nucleic acids to form single-stranded intermediates. Using transient state kinetic methods we have determined the kinetic properties of DNA unwinding under conditions that favor a monomeric form of the Dda helicase as well as conditions that allow multiple molecules to function on the same substrate. Multiple helicase molecules can align like a train on the DNA track. The number of base pairs unwound in a single binding event for Dda is increased from ~19 bp for the monomeric form to ~64 bp when as many as four Dda molecules are aligned on the same substrate, while the kinetic step-size (3.2 ± 0.7 bp) and unwinding rate (242 ± 25 bp s−1) appear to be independent of the number of Dda molecules present on a given substrate. The data support a model in which the helicase molecules bound to the same substrate move along the DNA track independently during DNA unwinding. The observed increase in processivity arises from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. These results are in contrast to previous reports in which multiple Dda molecules on the same track greatly enhanced the rate and amplitude for displacement of protein blocks on the track. Therefore, only when the progress of the lead molecule in the train is impeded by some type of block, such as a protein bound to DNA, do the trailing molecules interact with the lead molecule in order to overcome the block. The fact that trailing helicase molecules have little impact on the lead molecule in the train during routine DNA unwinding suggests that the trailing molecules are moving at similar rates as the lead molecule. This result implicates a step in the translocation mechanism as contributing greatly to the overall rate-limiting step for unwinding of duplex DNA. PMID:20408588

  8. Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Stammes, P.; Aben, E. A. A.

    2007-01-01

    Reflectance spectra from 280-1750 nm of typical desert dust aerosol (DDA) and biomass burning aerosol (BBA) scenes over oceans are presented, measured by the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). DDA and BBA are both UV-absorbing aerosols, but their effect on the top-of-atmosphere (TOA) reflectance is different due to differences in the way mineral aerosols and smoke reflect and absorb radiation. Mineral aerosols are typically large, inert particles, found in warm, dry continental air. Smoke particles, on the other hand, are usually small particles, although often clustered, chemically very active and highly variable in composition. Moreover, BBA are hygroscopic and over oceans BBA were invariably found in cloudy scenes. TOA reflectance spectra of typical DDA and BBA scenes were analyzed, using radiative transfer simulations, and compared. The DDA spectrum was successfully simulated using a layer with a bimodal size distribution of mineral aerosols in a clear sky. The spectrum of the BBA scene, however, was determined by the interaction between cloud droplets and smoke particles, as is shown by simulations with a model of separate aerosol and cloud layers and models with internally and externally mixed aerosol/cloud layers. The occurrence of clouds in smoke scenes when sufficient water vapor is present usually prevents the detection of optical properties of these aerosol plumes using space-borne sensors. However, the Absorbing Aerosol Index (AAI), a UV color index, is not sensitive to scattering aerosols and clouds and can be used to detect these otherwise obscured aerosol plumes over clouds. The amount of absorption of radiation can be expressed using the absorption optical thickness. The absorption optical thickness in the DDA case was 0.42 (340 nm) and 0.14 (550 nm) for an aerosol layer of optical thickness 1.74 (550 nm). In the BBA case the absorption optical thickness was 0.18 (340 nm) and 0.10 (550 nm) for an aerosol/cloud layer of optical thickness 20.0 (550 nm). However, this reduced the cloud albedo by about 0.2 (340 nm) and 0.15 (550 nm). This method can be an important tool to estimate the global impact of absorption of shortwave radiation by smoke and industrial aerosols inside clouds.

  9. Enhancement of a Virtual Reality Wheelchair Simulator to Include Qualitative and Quantitative Performance Metrics

    ERIC Educational Resources Information Center

    Harrison, C. S.; Grant, P. M.; Conway, B. A.

    2010-01-01

    The increasing importance of inclusive design and in particular accessibility guidelines established in the U.K. 1996 Disability Discrimination Act (DDA) has been a prime motivation for the work on wheelchair access, a subset of the DDA guidelines, described in this article. The development of these guidelines mirrors the long-standing provisions…

  10. Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer.

    PubMed

    Hoffman, Melissa A; Fang, Bin; Haura, Eric B; Rix, Uwe; Koomen, John M

    2018-01-05

    Recent developments in instrumentation and bioinformatics have led to new quantitative mass spectrometry platforms including LC-MS/MS with data-independent acquisition (DIA) and targeted analysis using parallel reaction monitoring mass spectrometry (LC-PRM), which provide alternatives to well-established methods, such as LC-MS/MS with data-dependent acquisition (DDA) and targeted analysis using multiple reaction monitoring mass spectrometry (LC-MRM). These tools have been used to identify signaling perturbations in lung cancers and other malignancies, supporting the development of effective kinase inhibitors and, more recently, providing insights into therapeutic resistance mechanisms and drug repurposing opportunities. However, detection of kinases in biological matrices can be challenging; therefore, activity-based protein profiling enrichment of ATP-utilizing proteins was selected as a test case for exploring the limits of detection of low-abundance analytes in complex biological samples. To examine the impact of different MS acquisition platforms, quantification of kinase ATP uptake following kinase inhibitor treatment was analyzed by four different methods: LC-MS/MS with DDA and DIA, LC-MRM, and LC-PRM. For discovery data sets, DIA increased the number of identified kinases by 21% and reduced missingness when compared with DDA. In this context, MRM and PRM were most effective at identifying global kinome responses to inhibitor treatment, highlighting the value of a priori target identification and manual evaluation of quantitative proteomics data sets. We compare results for a selected set of desthiobiotinylated peptides from PRM, MRM, and DIA and identify considerations for selecting a quantification method and postprocessing steps that should be used for each data acquisition strategy.

  11. Enhanced Lipidome Coverage in Shotgun Analyses by using Gas-Phase Fractionation

    NASA Astrophysics Data System (ADS)

    Nazari, Milad; Muddiman, David C.

    2016-11-01

    A high resolving power shotgun lipidomics strategy using gas-phase fractionation and data-dependent acquisition (DDA) was applied toward comprehensive characterization of lipids in a hen ovarian tissue in an untargeted fashion. Using this approach, a total of 822 unique lipids across a diverse range of lipid categories and classes were identified based on their MS/MS fragmentation patterns. Classes of glycerophospholipids and glycerolipids, such as glycerophosphocholines (PC), glycerophosphoethanolamines (PE), and triglycerides (TG), are often the most abundant peaks observed in shotgun lipidomics analyses. These ions suppress the signal from low abundance ions and hinder the chances of characterizing low abundant lipids when DDA is used. These issues were circumvented by utilizing gas-phase fractionation, where DDA was performed on narrow m/z ranges instead of a broad m/z range. Employing gas-phase fractionation resulted in an increase in sensitivity by more than an order of magnitude in both positive- and negative-ion modes. Furthermore, the enhanced sensitivity increased the number of lipids identified by a factor of ≈4, and facilitated identification of low abundant lipids from classes such as cardiolipins that are often difficult to observe in untargeted shotgun analyses and require sample-specific preparation steps prior to analysis. This method serves as a resource for comprehensive profiling of lipids from many different categories and classes in an untargeted manner, as well as for targeted and quantitative analyses of individual lipids. Furthermore, this comprehensive analysis of the lipidome can serve as a species- and tissue-specific database for confident identification of other MS-based datasets, such as mass spectrometry imaging.

  12. The Computational Complexity, Parallel Scalability, and Performance of Atmospheric Data Assimilation Algorithms

    NASA Technical Reports Server (NTRS)

    Lyster, Peter M.; Guo, J.; Clune, T.; Larson, J. W.; Atlas, Robert (Technical Monitor)

    2001-01-01

    The computational complexity of algorithms for Four Dimensional Data Assimilation (4DDA) at NASA's Data Assimilation Office (DAO) is discussed. In 4DDA, observations are assimilated with the output of a dynamical model to generate best-estimates of the states of the system. It is thus a mapping problem, whereby scattered observations are converted into regular accurate maps of wind, temperature, moisture and other variables. The DAO is developing and using 4DDA algorithms that provide these datasets, or analyses, in support of Earth System Science research. Two large-scale algorithms are discussed. The first approach, the Goddard Earth Observing System Data Assimilation System (GEOS DAS), uses an atmospheric general circulation model (GCM) and an observation-space based analysis system, the Physical-space Statistical Analysis System (PSAS). GEOS DAS is very similar to global meteorological weather forecasting data assimilation systems, but is used at NASA for climate research. Systems of this size typically run at between 1 and 20 gigaflop/s. The second approach, the Kalman filter, uses a more consistent algorithm to determine the forecast error covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded dynamical fields typically have More than 10(exp 6) variables, therefore the full error covariance matrix may be in excess of a teraword. For the Kalman filter this problem can easily scale to petaflop/s proportions. We discuss the computational complexity of GEOS DAS and our implementation of the Kalman filter. We also discuss and quantify some of the technical issues and limitations in developing efficient, in terms of wall clock time, and scalable parallel implementations of the algorithms.

  13. A comparison of two follow-up analyses after multiple analysis of variance, analysis of variance, and descriptive discriminant analysis: A case study of the program effects on education-abroad programs

    Treesearch

    Alvin H. Yu; Garry Chick

    2010-01-01

    This study compared the utility of two different post-hoc tests after detecting significant differences within factors on multiple dependent variables using multivariate analysis of variance (MANOVA). We compared the univariate F test (the Scheffé method) to descriptive discriminant analysis (DDA) using an educational-tour survey of university study-...

  14. Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4′-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT → DDD →DDMU →DDMS → DDNU → DDA → DBP, or DDT → DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.

  15. Method development and application of offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis for comprehensive characterization of the saponins from Xueshuantong Injection.

    PubMed

    Yang, Wenzhi; Zhang, Jingxian; Yao, Changliang; Qiu, Shi; Chen, Ming; Pan, Huiqin; Shi, Xiaojian; Wu, Wanying; Guo, Dean

    2016-09-05

    Xueshuantong Injection (XSTI), derived from Notoginseng total saponins, is a popular traditional Chinese medicine injection for the treatment of thrombus-resultant diseases. Current knowledge on its therapeutic basis is limited to five major saponins, whereas those minor ones are rarely investigated. We herein develop an offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis (offline 2D LC/QTOF-Fast DDA) approach to systematically characterize the saponins contained in XSTI. Key parameters affecting chromatographic separation in 2D LC (including stationary phase, mobile phase, column temperature, and gradient elution program) and the detection by QTOF MS (involving spray voltage, cone voltage, and ramp collision energy) were optimized in sequence. The configured offline 2D LC system showed an orthogonality of 0.84 and a theoretical peak capacity of 8976. Total saponins in XSTI were fractionated into eleven samples by the first-dimensional hydrophilic interaction chromatography, which were further analyzed by reversed-phase UHPLC/QTOF-Fast DDA in negative ion mode. The fragmentation features evidenced from 36 saponin reference standards, high-accuracy MS and Fast-DDA-MS(2) data, elemental composition (C<80, H<120, O<50), double-bond equivalent (DBE 5-15), and searching an in-house library of Panax notoginseng, were simultaneously utilized for structural elucidation. Ultimately, 148 saponins were separated and characterized, and 80 have not been isolated from P. notoginseng. An in-depth depiction of the chemical composition of XSTI was achieved. The results obtained would benefit better understanding of the therapeutic basis and significant promotion on the quality standard of XSTI as well as other homologous products. Copyright © 2016. Published by Elsevier B.V.

  16. Do You Have a Disability--Yes or No? Or Is There a Better Way of Asking? Guidance on Disability Disclosure and Respecting Confidentiality

    ERIC Educational Resources Information Center

    Rose, Christine

    2006-01-01

    Many providers are keen to implement the requirements of the Disability Discrimination Act (DDA), seeing this as an opportunity to further improve the experience of disabled learners. However, the DDA Part 4 raises many issues about the ways in which education providers encourage a learner to disclose an impairment in order to make adjustments,…

  17. Characteristics of deacetylation and depolymerization of β-chitin from jumbo squid (Dosidicus gigas) pens.

    PubMed

    Jung, Jooyeoun; Zhao, Yanyun

    2011-09-27

    This study evaluated the deacetylation characteristics of β-chitin from jumbo squid (Dosidicus gigas) pens by using strongly alkaline solutions of NaOH or KOH. Taguchi design was employed to investigate the effect of reagent concentration, temperature, time, and treatment step on molecular mass (MM) and degree of deacetylation (DDA) of the chitosan obtained. The optimal treatment conditions for achieving high MM and DDA of chitosan were identified as: 40% NaOH at 90°C for 6h with three separate steps (2h+2h+2h) or 50% NaOH at 90°C for 6h with one step, or 50% KOH at 90°C for 4h with three steps (1h+1h+2h) or 6h with one step. The most important factor affecting DDA and MM was temperature and time, respectively. The chitosan obtained was then further depolymerized by cellulase or lysozyme with cellulase giving a higher degradation ratio, lower relative viscosity, and a larger amount of reducing-end formations than that of lysozyme due to its higher susceptibility. This study demonstrated that jumbo squid pens are a good source of materials to produce β-chitosan with high DDA and a wide range of MM for various potential applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine.

    PubMed

    Yusuf, Helmy; Ali, Ahlam A; Orr, Natalie; Tunney, Michael M; McCarthy, Helen O; Kett, Vicky L

    2017-11-25

    There is a pressing need for effective needle-free vaccines that are stable enough for use in the developing world and stockpiling. The inclusion of the cationic lipid DDA and the PEG-containing moiety TPGS into liposomes has the potential to improve mucosal delivery. The aim of this study was to develop stable lyophilized cationic liposomes based on these materials suitable for nasal antigen delivery. Liposomes containing DDA and TPGS were developed. Size and zeta potential measurements, ex vivo, CLSM cell penetration study and cell viability investigations were made. Preliminary immunisation and stability studies using ovalbumin were performed. The liposomes exhibited suitable size and charge for permeation across nasal mucosa. DDA and TPGS increased tissue permeation in ex vivo studies and cell uptake with good cell viability. The liposomes improved immune response both locally and vaginally when compared to i.m administration or control liposomes delivered nasally. Additionally, the lyophilized products demonstrated good stability in terms of Tg, size and antigen retention. This study has shown that the novel liposomes have potential for development as a mucosal vaccine delivery system. Furthermore, the stability of the lyophilized liposomes offers potential additional benefits in terms of thermal stability over liquid formats. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering.

    PubMed

    Adekogbe, Iyabo; Ghanem, Amyl

    2005-12-01

    Chitosan, the deacetylated derivative of chitin, is a promising scaffold material for skin tissue engineering applications. It is biocompatible and biodegradable, and the degradation products are resorbable. However, the rapid degradation of chitosan and its low mechanical strength are concerns that may limit its use. In this study, chitosan with 80%, 90% and 100% degree of deacetylation (DDA) was crosslinked with dimethyl 3-3, dithio bis' propionimidate (DTBP) and compared to uncrosslinked scaffolds. The scaffolds were characterized with respect to important tissue engineering properties. The tensile strength of scaffolds made from 100% DDA chitosan was significantly higher than for scaffolds made from 80% and 90% DDA chitosan. Crosslinking of scaffolds with DTBP increased the tensile strength. Crosslinking with DTBP had no significant effect on water vapour transmission rate (WVTR) or water absorption but had significant effect on the pore size and porosity of the samples. All samples showed a WVTR and pore size distribution suitable for skin tissue engineering; however, the water absorption and porosity were lower than the optimal values for skin tissue engineering. The biodegradation rate of scaffolds crosslinked with DTBP and glutaraldehyde (GTA) were reduced while no significant effect was observed in biodegradation of the samples made from 100% DDA chitosan whether crosslinked or uncrosslinked after 24 days of degradation.

  20. Modeling and Analysis of Global and Regional Climate Change in Relation to Atmospheric Hydrologic Processes

    NASA Technical Reports Server (NTRS)

    Johnson, Donald R.

    1998-01-01

    The goal of this research is the continued development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. This work involves a combination of modeling and analysis efforts involving 4DDA datasets and simulations from the University of Wisconsin (UW) hybrid isentropic-sigma (theta-sigma) coordinate model and the GEOS GCM.

  1. Differential Die-Away Instrument: Report on Benchmark Measurements and Comparison with Simulation for the Effects of Neutron Poisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir

    2015-03-30

    In this report, new experimental data and MCNPX simulation results of the differential die-away (DDA) instrument response to the presence of neutron absorbers are evaluated. In our previous fresh nuclear fuel experiments and simulations, no neutron absorbers or poisons were included in the fuel definition. These new results showcase the capability of the DDA instrument to acquire data from a system that better mimics spent nuclear fuel.

  2. Non-Watson–Crick interactions between PNA and DNA inhibit the ATPase activity of bacteriophage T4 Dda helicase

    PubMed Central

    Tackett, Alan J.; Corey, David R.; Raney, Kevin D.

    2002-01-01

    Peptide nucleic acid (PNA) is a DNA mimic in which the nucleobases are linked by an N-(2-aminoethyl) glycine backbone. Here we report that PNA can interact with single-stranded DNA (ssDNA) in a non-sequence-specific fashion. We observed that a 15mer PNA inhibited the ssDNA-stimulated ATPase activity of a bacteriophage T4 helicase, Dda. Surprisingly, when a fluorescein-labeled 15mer PNA was used in binding studies no interaction was observed between PNA and Dda. However, fluorescence polarization did reveal non-sequence-specific interactions between PNA and ssDNA. Thus, the inhibition of ATPase activity of Dda appears to result from depletion of the available ssDNA due to non-Watson–Crick binding of PNA to ssDNA. Inhibition of the ssDNA-stimulated ATPase activity was observed for several PNAs of varying length and sequence. To study the basis for this phenomenon, we examined self-aggregation by PNAs. The 15mer PNA readily self-aggregates to the point of precipitation. Since PNAs are hydrophobic, they aggregate more than DNA or RNA, making the study of this phenomenon essential for understanding the properties of PNA. Non-sequence-specific interactions between PNA and ssDNA were observed at moderate concentrations of PNA, suggesting that such interactions should be considered for antisense and antigene applications. PMID:11842106

  3. Poly(2-oxazoline)-Antibiotic Conjugates with Penicillins.

    PubMed

    Schmidt, Martin; Bast, Livia K; Lanfer, Franziska; Richter, Lena; Hennes, Elisabeth; Seymen, Rana; Krumm, Christian; Tiller, Joerg C

    2017-09-20

    The conjugation of antibiotics with polymers is rarely done, but it might be a promising alternative to low-molecular-weight derivatization. The two penicillins penicillin G (PenG) and penicillin V (PenV) were attached to the end groups of different water-soluble poly(2-oxazoline)s (POx) via their carboxylic acid function. This ester group was shown to be more stable against hydrolysis than the β-lactam ring of the penicillins. The conjugates are still antimicrobially active and up to 20 times more stable against penicillinase catalyzed hydrolysis. The antibiotic activity of the conjugates against Staphylococcus aureus in the presence of penicillinase is up to 350 times higher compared with the free antibiotics. Conjugates with a second antimicrobial function, a dodecyltrimethylammonium group (DDA-X), at the starting end of the PenG and PenV POx conjugates are more antimicrobially active than the conjugates without DDA-X and show high activity in the presence of penicillinase. For example, the conjugates DDA-X-PEtOx-PenG and DDA-X-PEtOx-PenV are 200 to 350 times more active against S. aureus in the presence of penicillinase and almost as effective as the penicillinase stable cloxacollin (Clox) under these conditions. These conjugates show even greater activity compared to cloxacollin without this enzyme present. Further, both conjugates kill Escherichia coli more effectively than PenG and Clox.

  4. Secondary Mineral Deposits and Evidence of Past Seismicity and Heating of the Proposed Repository Horizon at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, Josheph F.

    2004-01-01

    The Drift Degradation Analysis (DDA) (BSC, 2003) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, describes model simulations of the effects of pre- and post-closure seismicity and waste-induced heating on emplacement drifts. Based on probabilistic seismic hazard analyses of the intensity and frequency of future seismic events in the region (CRWMS M&O, 1998), the DDA concludes that future seismicity will lead to substantial damage to emplacement drifts, particularly those in the lithophysal tuffs, where some simulations predict complete collapse of the drift walls. Secondary mineral studies conducted by the U.S. Geological Survey since 1995 indicate that secondary calcite and silica have been deposited in some fractures and lithophysal cavities in the unsaturated zone (UZ) at Yucca Mountain during at least the past 10 million years (m.y.), and probably since the tuffs cooled to less than 100?C. Tuff fragments, likely generated by past seismic activity, have commonly been incorporated into the secondary mineral depositional sequences. Preliminary observations indicate that seismic activity has generated few, if any, tuff fragments during the last 2 to 4 m.y., which may be inconsistent with the predictions of drift-wall collapse described in the DDA. Whether or not seismicity-induced tuff fragmentation occurring at centimeter to decimeter scales in the fracture and cavity openings relates directly to failure of tuff walls in the 5.5-m-diameter waste emplacement drifts, the deposits do provide a potential record of the spatial and temporal distribution of tuff fragments in the UZ. In addition, the preservation of weakly attached coatings and (or) delicate, upright blades of calcite in the secondary mineral deposits provides an upper limit for ground motion during the late stage of deposition that might be used as input to future DDA simulations. Finally, bleaching and alteration at a few of the secondary mineral sites indicate that they were subjected to heated gases at approximately the temperatures expected from waste emplacement. These deposits provide at least limited textural and mineralogic analogs for waste-induced, high-humidity thermal alteration of emplacement drift wall rocks.

  5. Infiltration of Liquid Droplets Into Porous Media: Effects of Dynamic Contact Angle and Contact Angle Hysteresis

    NASA Astrophysics Data System (ADS)

    Hilpert, M.

    2008-12-01

    Infiltration of liquid droplets into dry porous media occurs when rain drops fall onto soil, when accidentally spilling organic liquid (e.g., gasoline and chlorinated solvents) onto ground, or when aerosol pesticides are not intercepted by the vegetation and then released to soils. If harmful chemicals are released from the droplet into the atmosphere through evaporation, it is important to know the time of infiltration. We developed a theory for infiltration, which accounts for a general model for the dynamic contact angle between the droplet and the porous medium as well as contact angle hysteresis. Our theory assumes the droplet to have the shape of a spherical cap and the pressure within the droplet to be uniform. The theory shows that droplet infiltration involves three phases due to contact angle hysteresis: (1) an increasing drawing area (IDA) phase during which the interface between the droplet and the porous medium increases, (2) a constant drawing area (CDA) phase during which the contact line of the droplet remains pinned, and (3) a decreasing drawing area (DDA) phase. We find that infiltration always consists of a cascade process formed by the IDA, CDA, and DDA phases, where the entire process may begin or end in any of the three phases. The entire process is formulated with four nondimensional parameters: three contact angles (initial, advancing, and receding) and a porous permeability parameter that depends on porous medium geometry. The total time of infiltration and the time dependence of drawing area are critically affected by the occurrence of the IDA, CDA, and DDA phases as well as by the permeability. In general, the IDA and DDA phases are described by integro-differential equations. With ordinary differential equations (ODEs), we are able to approximate the IDA phase and to describe exactly infiltration processes that starts out with the CDA or DDA phase.

  6. Low publication rate of 2005 conference presentations: implications for practitioners serving individuals with autism and intellectual disabilities.

    PubMed

    Richling, Sarah M; Rapp, John T; Funk, Janie A; D'Agostini, Jaimie; Garrido, Natalia; Moreno, Vicki

    2014-11-01

    This study determined the percentage of presentations at the annual conference of the Association for Behavior Analysis in 2005 with the autism (AUT) and developmental disabilities (DDA) codes (N=880) that (a) provided continuing education credits (CEs) for Board Certified Behavior Analysts (BCBAs) and Board Certified Assistant Behavior Analysts (BCaBAs) and (b) included content that was published in a peer-reviewed outlet. Results indicate that only 77 (8.8%) presentations were ultimately published. Although posters were not eligible for CEs, posters accounted for 57.1% of the published presentations. Specifically, posters presented by a university-affiliated presenter accounted for 44.2% of presentations with published content. As a whole, only 10.4% of AUT and DDA presentations offering CEs contained data sets that were published. Considered together, these results suggest that the content provided to BCBAs and BCaBAs for CEs may not be adequately measured or sufficiently rigorous to guide clinical practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Fiscal Year (FY) 2017 Activities for the Spent Fuel Nondestructive Assay Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trellue, Holly Renee; Trahan, Alexis Chanel; McMath, Garrett Earl

    The main focus of research in the NA-241 spent fuel nondestructive assay (NDA) project in FY17 has been completing the fabrication and testing of two prototype instruments for upcoming spent fuel measurements at the Clab interim storage facility in Sweden. One is a passive instrument: Differential Die-away Self Interrogation-Passive Neutron Albedo Reactivity (DDSI), and one is an active instrument: Differential Die-Away-Californium Interrogation with Prompt Neutron (DDA). DDSI was fabricated and tested with fresh fuel at Los Alamos National Laboratory in FY15 and FY16, then shipped to Sweden at the beginning of FY17. Research was performed in FY17 to simplify resultsmore » from the data acquisition system, which is complex because signals from 56 different 3He detectors must be processed using list mode data. The DDA instrument was fabricated at the end of FY16. New high count rate electronics better suited for a spent fuel environment (i.e., KM-200 preamplifiers) were built specifically for this instrument in FY17, and new Tygon tubing to house electrical cables was purchased and installed. Fresh fuel tests using the DDA instrument with numerous configurations of fuel rods containing depleted uranium (DU), low enriched uranium (LEU), and LEU with burnable poisons (Gd) were successfully performed and compared to simulations.1 Additionally, members of the spent fuel NDA project team travelled to Sweden for a “spent fuel characterization and decay heat” workshop involving simulations of spent fuel and analysis of uncertainties in decay heat calculations.« less

  8. Effect of Chitosan Properties on Immunoreactivity

    PubMed Central

    Ravindranathan, Sruthi; Koppolu, Bhanu prasanth; Smith, Sean G.; Zaharoff, David A.

    2016-01-01

    Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells) and the amount of tumor necrosis factor-α (TNF-α) released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg) ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application. PMID:27187416

  9. Live-Cell MicroRNA Imaging through MnO2 Nanosheet-Mediated DD-A Hybridization Chain Reaction.

    PubMed

    Ou, Min; Huang, Jin; Yang, Xiaohai; He, Xiaoxiao; Quan, Ke; Yang, Yanjing; Xie, Nuli; Li, Jing; Wang, Kemin

    2018-01-18

    Innovative techniques to visualize native microRNAs (miRNAs) in live cells can dramatically impact current research on the roles of miRNA in biology and medicine. Here, we report a novel approach for live-cell miRNA imaging using a biodegradable MnO 2 nanosheet-mediated DD-A FRET hybridization chain reaction (HCR). The MnO 2 nanosheets can adsorb DNA hairpin probes and deliver them into live cells. After entering cells, the MnO 2 nanosheets are degraded by cellular GSH. Then, the target miR-21 triggers cascaded assembly of the liberated hairpin probes into long dsDNA polymers, which brings each two FAMs (donor) and one TAMRA (acceptor) into close proximity to generate significantly enhanced DD-A FRET signals, which was discovered and proven by our previous report. We think the developed approach can serve as an excellent intracellular miRNAs detection tool, which promises the potential for biological and disease studies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Allison PD 370-41 derivative turboprop engine. Final report, October 1978-February 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolp, P.

    1979-02-01

    This study developed data on Detroit Diesel Allison (DDA) common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential DDA turboprop/turboshaft engines and the preparations of technical and planning information on three of the most promising engine candidates plus an all new engine. Screening of DDA derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: a derivative of the unity sizemore » T701-AD-700 shaft power engine with rematched turbine (PD 370-37), and an advanced T701 turboprop derivative with 25:1 overall pressure ratio and a scaled ATEGG demonstrated compressor (PD 370-40), an advanced T701 turboprop derivative with 17.7:1 overall pressure ratio and a scaled ATEGG demonstrated compressor.« less

  11. Swimming under the Influence: Effect of Algal Toxins on the Behavior of the Marine Ciliate Favella sp.

    NASA Astrophysics Data System (ADS)

    Sterling, A.; Echevarria, M. L.; Borrett, S. R.; Taylor, A. R.

    2016-02-01

    Although it is known that microzooplankton can regulate harmful algal bloom (HAB) dynamics through grazing of algae, the effects of HAB-related toxins on these micrograzers are unknown. Therefore I examined the effects of the algal toxins domoic acid (DA), brevetoxin (PbTx-2), and 2,4-trans,trans-decadienal (DDA) on the swimming behavior of the marine ciliate Favella sp. Neither DA nor PbTx-2 had a significant effect at the highest concentrations tested (800 nM and 400 nM respectively). However, about 50% of ciliates ceased swimming after 1 h exposure to 30 µM and 50 µM DDA and displayed significant behavioral changes within 5 min. Preliminary recovery experiments showed that up to 80% of the non-swimming ciliates were viable after 24 h, suggesting in these ciliates DDA did not induce programmed cell death. This work demonstrates that some, but not all, algal toxins may compromise the ability of microzooplankton to evade predators, capture prey, and regulate HABs.

  12. Chitosan-plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies.

    PubMed

    Jean, M; Smaoui, F; Lavertu, M; Méthot, S; Bouhdoud, L; Buschmann, M D; Merzouki, A

    2009-09-01

    Growth factor therapy is an emerging treatment modality that enhances tissue vascularization, promotes healing and regeneration and can treat a variety of inflammatory diseases. Both recombinant human growth factor proteins and their gene therapy are in human clinical trials to heal chronic wounds. As platelet-derived growth factor-bb (PDGF-BB) and fibroblast growth factor-2 (FGF-2) are known to induce chemotaxis, proliferation, differentiation, and matrix synthesis, we investigated a non-viral means for gene delivery of these factors using the cationic polysaccharide chitosan. Chitosan is a polymer of glucosamine and N-acetyl-glucosamine, in which the percentage of the residues that are glucosamine is called the degree of deacetylation (DDA). The purpose of this study was to express PDGF-BB and FGF-2 genes in mice using chitosan-plasmid DNA nanoparticles for the controlled delivery of genetic material in a specific, efficient, and safe manner. PDGF-BB and FGF-2 genes were amplified from human tissues by RT-PCR. To increase the secretion of FGF-2, a recombinant 4sFGF-2 was constructed bearing eight amino-acid residues of the signal peptide of FGF-4. PCR products were inserted into the expression vector pVax1 to produce recombinant plasmids pVax1-4sFGF2 and pVax1-PDGF-BB, which were then injected into BALB/C mice in the format of polyelectrolyte nanocomplexes with specific chitosans of controlled DDA and molecular weight, including 92-10, 80-10, and 80-80 (DDA-number average molecular weight or M(n) in kDa). ELISA assays on mice sera showed that recombinant FGF-2 and PDGF-BB proteins were efficiently expressed and specific antibodies to these proteins could be identified in sera of injected mice, but with levels that were clearly dependent on the specific chitosan used. We found high DDA low molecular weight chitosans to be efficient protein expressors with minimal or no generation of neutralizing antibodies, while lowering DDA resulted in greater antibody levels and correspondingly lower levels of detected recombinant protein. Histological analyses corroborated these results by revealing greater inflammatory infiltrates in lower DDA chitosans, which produced higher antibody titers. We found, in general, a more efficient delivery of the plasmids by subcutaneous than by intramuscular injection. Specific chitosan carriers were identified to be either efficient non-toxic therapeutic protein delivery systems or vectors for DNA vaccines.

  13. Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites

    NASA Astrophysics Data System (ADS)

    Ferreira, F. V.; Franceschi, W.; Menezes, B. R. C.; Brito, F. S.; Lozano, K.; Coutinho, A. R.; Cividanes, L. S.; Thim, G. P.

    2017-07-01

    This study presents the effect of dodecylamine (DDA) functionalization of carbon nanotubes (CNTs) on the thermo-physical and mechanical properties of high-density polyethylene (HDPE) based composites. Here, we showed that the functionalization with DDA improved the dispersion of the CNTs as well as the interfacial adhesion with the HDPE matrix via non-covalent interactions. The better dispersion and interaction of CNT in the HDPE matrix as a function of the surface chemistry was correlated with the improved thermo-physical and mechanical properties.

  14. A decision support system and rule-based algorithm to augment the human interpretation of the 12-lead electrocardiogram.

    PubMed

    Cairns, Andrew W; Bond, Raymond R; Finlay, Dewar D; Guldenring, Daniel; Badilini, Fabio; Libretti, Guido; Peace, Aaron J; Leslie, Stephen J

    The 12-lead Electrocardiogram (ECG) has been used to detect cardiac abnormalities in the same format for more than 70years. However, due to the complex nature of 12-lead ECG interpretation, there is a significant cognitive workload required from the interpreter. This complexity in ECG interpretation often leads to errors in diagnosis and subsequent treatment. We have previously reported on the development of an ECG interpretation support system designed to augment the human interpretation process. This computerised decision support system has been named 'Interactive Progressive based Interpretation' (IPI). In this study, a decision support algorithm was built into the IPI system to suggest potential diagnoses based on the interpreter's annotations of the 12-lead ECG. We hypothesise semi-automatic interpretation using a digital assistant can be an optimal man-machine model for ECG interpretation. To improve interpretation accuracy and reduce missed co-abnormalities. The Differential Diagnoses Algorithm (DDA) was developed using web technologies where diagnostic ECG criteria are defined in an open storage format, Javascript Object Notation (JSON), which is queried using a rule-based reasoning algorithm to suggest diagnoses. To test our hypothesis, a counterbalanced trial was designed where subjects interpreted ECGs using the conventional approach and using the IPI+DDA approach. A total of 375 interpretations were collected. The IPI+DDA approach was shown to improve diagnostic accuracy by 8.7% (although not statistically significant, p-value=0.1852), the IPI+DDA suggested the correct interpretation more often than the human interpreter in 7/10 cases (varying statistical significance). Human interpretation accuracy increased to 70% when seven suggestions were generated. Although results were not found to be statistically significant, we found; 1) our decision support tool increased the number of correct interpretations, 2) the DDA algorithm suggested the correct interpretation more often than humans, and 3) as many as 7 computerised diagnostic suggestions augmented human decision making in ECG interpretation. Statistical significance may be achieved by expanding sample size. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro.

    PubMed

    Theile, Dirk; Haefeli, Walter Emil; Weiss, Johanna

    2015-08-01

    Mitotane (1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane, o,p'-DDD) represents one of the most active drugs for the treatment of adrenocortical carcinoma. Its metabolites 1,1-(o,p'-dichlorodiphenyl) acetic acid (=o,p'-DDA) and 1,1-(o,p'-dichlorodiphenyl)-2,2 dichloroethene (=o,p'-DDE) partly contribute to its pharmacological effects. Because mitotane has a narrow therapeutic index and causes pharmacokinetic drug-drug interactions, knowledge about these compounds' effects on drug metabolizing and transporting proteins is crucial. Using quantitative real-time polymerase chain reaction, our study confirmed the strong inducing effects of o,p'-DDD on mRNA expression of cytochrome P450 3A4 (CYP3A4, 30-fold) and demonstrated that other enzymes and transporters are also induced (e.g., CYP1A2, 8.4-fold; ABCG2 (encoding breast resistance cancer protein, BCRP), 4.2-fold; ABCB1 (encoding P-glycoprotein, P-gp) 3.4-fold). P-gp induction was confirmed at the protein level. o,p'-DDE revealed a similar induction profile, however, with less potency and o,p'-DDA had only minor effects. Reporter gene assays clearly confirmed o,p'-DDD to be a PXR activator and for the first time demonstrated that o,p'-DDE and o,p'-DDA also activate PXR albeit with lower potency. Using isolated, recombinant CYP enzymes, o,p'-DDD and o,p'-DDE were shown to strongly inhibit CYP2C19 (IC50 = 0.05 and 0.09 µM). o,p'-DDA exhibited only minor inhibitory effects. In addition, o,p'-DDD, o,p'-DDE, and o,p'-DDA are demonstrated to be neither substrates nor inhibitors of BCRP or P-gp function. In summary, o,p'-DDD and o,p'-DDE might be potential perpetrators in pharmacokinetic drug-drug interactions through induction of drug-metabolizing enzymes or drug transporters and by potent inhibition of CYP2C19. In tumors over-expressing BCRP or P-gp, o,p'-DDD and its metabolites should retain their efficacy due to a lack of substrate characteristics.

  16. voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data.

    PubMed

    Zararsiz, Gokmen; Goksuluk, Dincer; Klaus, Bernd; Korkmaz, Selcuk; Eldem, Vahap; Karabulut, Erdem; Ozturk, Ahmet

    2017-01-01

    RNA-Seq is a recent and efficient technique that uses the capabilities of next-generation sequencing technology for characterizing and quantifying transcriptomes. One important task using gene-expression data is to identify a small subset of genes that can be used to build diagnostic classifiers particularly for cancer diseases. Microarray based classifiers are not directly applicable to RNA-Seq data due to its discrete nature. Overdispersion is another problem that requires careful modeling of mean and variance relationship of the RNA-Seq data. In this study, we present voomDDA classifiers: variance modeling at the observational level (voom) extensions of the nearest shrunken centroids (NSC) and the diagonal discriminant classifiers. VoomNSC is one of these classifiers and brings voom and NSC approaches together for the purpose of gene-expression based classification. For this purpose, we propose weighted statistics and put these weighted statistics into the NSC algorithm. The VoomNSC is a sparse classifier that models the mean-variance relationship using the voom method and incorporates voom's precision weights into the NSC classifier via weighted statistics. A comprehensive simulation study was designed and four real datasets are used for performance assessment. The overall results indicate that voomNSC performs as the sparsest classifier. It also provides the most accurate results together with power-transformed Poisson linear discriminant analysis, rlog transformed support vector machines and random forests algorithms. In addition to prediction purposes, the voomNSC classifier can be used to identify the potential diagnostic biomarkers for a condition of interest. Through this work, statistical learning methods proposed for microarrays can be reused for RNA-Seq data. An interactive web application is freely available at http://www.biosoft.hacettepe.edu.tr/voomDDA/.

  17. Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor.

    PubMed

    Nanduri, Bindu; Byrd, Alicia K; Eoff, Robert L; Tackett, Alan J; Raney, Kevin D

    2002-11-12

    Helicases are molecular motor enzymes that unwind and translocate nucleic acids. One of the central questions regarding helicase activity is whether the process of coupling ATP hydrolysis to DNA unwinding requires an oligomeric form of the enzyme. We have applied a pre-steady-state kinetics approach to address this question with the bacteriophage T4 Dda helicase. If a helicase can function as a monomer, then the burst amplitude in the pre-steady state might be similar to the concentration of enzyme, whereas if the helicase required oligomerization, then the amplitude would be significantly less than the enzyme concentration. DNA unwinding of an oligonucleotide substrate was conducted by using a Kintek rapid quench-flow instrument. The substrate consisted of 12 bp adjacent to 12 nucleotides of single-stranded DNA. Dda (4 nM) was incubated with substrate (16 nM) in buffer, and the unwinding reaction was initiated by the addition of ATP (5 mM) and Mg(2+) (10 mM). The reaction was stopped by the addition of 400 mM EDTA. Product formation exhibited biphasic kinetics, and the data were fit to the equation for a single exponential followed by a steady state. The amplitude of the first phase was 3.5 +/- 0.2 nM, consistent with a monomeric helicase. The burst amplitude of product formation was measured over a range of enzyme and substrate concentrations and remained consistent with a functional monomer. Thus, Dda can rapidly unwind oligonucleotide substrates as a monomer, indicating that the functional molecular motor component of a helicase can reside within a single polypeptide.

  18. Deep desulfurization by amphiphilic lanthanide-containing polyoxometalates in ionic-liquid emulsion systems under mild conditions.

    PubMed

    Xu, Junhua; Zhao, Shen; Ji, Yuanchun; Song, Yu-Fei

    2013-01-07

    Amphiphilic lanthanide-containing polyoxometalates (POMs) were prepared by surfactant encapsulation. Investigation of these lanthanide-containing POMs in oxidative desulfurization (ODS) showed that highly efficient deep desulfurization could be achieved in only 14 min with 100% conversion of dibenzothiophene under mild conditions by using (DDA)(9)LaW(10)/[omim]PF(6) (DDA=dimethyldioctadecylammonium, omim=1-octyl-3-methyl-imidazolium) in the presence of H(2) O(2) . Furthermore, deep desulfurization proceeds smoothly in model oil with an S content as low as 50 ppm. A scaled-up experiment in which the volume of model oil was increased from 5 to 1000 mL with S content of 1000 ppm indicated that about 99% sulfur removal can be achieved in 40 mins in an ionic-liquid emulsion system. To the best of our knowledge, the (DDA)(9)LaW(10)/[omim]PF(6) catalyst system with H(2)O(2) as oxidant is one of the most efficient desulfurization systems reported so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila.

    PubMed

    Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei

    2014-08-25

    Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. [Certificate "Tropical and Travel Dermatology (DDA)": quality-assured medical education for dermatologists with a "migration perspective"].

    PubMed

    Elsner, P; Nenoff, P; Schliemann, S; Tittelbach, J; Reinel, D

    2014-10-01

    Under the conditions of economic pressure in the medical system and the DRG system for hospitals in Germany, so-called "uneconomic" services and fields of specialized dermatologic competence such as pediatric dermatology, trichology, occupational dermatology and tropical dermatology are increasingly being neglected. While hospitals tend to train fewer residents in these subspecialties, there is a demand for additional high-quality training opportunities that are certified by the German Dermatologic Academy (DDA). Tropical and travel-related skin diseases are more frequently observed in Germany which can be explained by the increased world-wide travel activities, but also by the international migration from developing countries into Europe. Furthermore, dermatologists trained in Germany are working more and more also internationally. Thus, they require knowledge and experience in tropical and travel-related dermatology. The certificate "Tropical and Travel Dermatology (DDA)" was developed and published in 2013 in a cooperation between the International Society for Dermatology in the Tropics in cooperation with the German Academy of Dermatology (DDA). It consists of 3 full day teaching modules (basic, additional and special seminar). The first seminar cycle in 2013/2014 showed a high demand from dermatologists in hospitals and private practices. While the basic and the special seminars were held in Germany, the additional seminar took place in cooperation with the Regional Dermatology Training Center (RDTC) in Moshi, Tanzania. Many attending dermatologists fulfilling the requirements for the new certificate have practiced in developing countries or plan to do so. In order to gain practical experience on the basis of the knowledge acquired in the qualifying seminars, the International Society for Dermatology in the Tropics supports dermatologists to find internships and work placements in dermatological units in developing countries.

  1. Effect of acidified water glass on the flotation separation of scheelite from calcite using mixed cationic/anionic collectors

    NASA Astrophysics Data System (ADS)

    Dong, Liuyang; Jiao, Fen; Qin, Wenqing; Zhu, Hailing; Jia, Wenhao

    2018-06-01

    In this paper, the effect of acidified water glass (AWG) on the flotation separation of scheelite from calcite using mixed collector of dodecylamine (DDA) and sodium oleate (NaOL) was investigated. The flotation results show that AWG could selectively depress the flotation of calcite at pH 7. A series of mechanism experiments confirm that the chemisorption of AWG on calcite surface is more intense than scheelite. Although the chemisorption of NaOL on calcite surface is almost unaffected by the presence of AWG, the chemisorption of AWG hinders the adsorption of DDA on calcite surface.

  2. Real-time video signal processing by generalized DDA and control memories: three-dimensional rotation and mapping

    NASA Astrophysics Data System (ADS)

    Hama, Hiromitsu; Yamashita, Kazumi

    1991-11-01

    A new method for video signal processing is described in this paper. The purpose is real-time image transformations at low cost, low power, and small size hardware. This is impossible without special hardware. Here generalized digital differential analyzer (DDA) and control memory (CM) play a very important role. Then indentation, which is called jaggy, is caused on the boundary of a background and a foreground accompanied with the processing. Jaggy does not occur inside the transformed image because of adopting linear interpretation. But it does occur inherently on the boundary of the background and the transformed images. It causes deterioration of image quality, and must be avoided. There are two well-know ways to improve image quality, blurring and supersampling. The former does not have much effect, and the latter has the much higher cost of computing. As a means of settling such a trouble, a method is proposed, which searches for positions that may arise jaggy and smooths such points. Computer simulations based on the real data from VTR, one scene of a movie, are presented to demonstrate our proposed scheme using DDA and CMs and to confirm the effectiveness on various transformations.

  3. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear strength), and about 78% (shear strain to failure) relative to the control composite.

  4. Heteroscedasticity as a Basis of Direction Dependence in Reversible Linear Regression Models.

    PubMed

    Wiedermann, Wolfgang; Artner, Richard; von Eye, Alexander

    2017-01-01

    Heteroscedasticity is a well-known issue in linear regression modeling. When heteroscedasticity is observed, researchers are advised to remedy possible model misspecification of the explanatory part of the model (e.g., considering alternative functional forms and/or omitted variables). The present contribution discusses another source of heteroscedasticity in observational data: Directional model misspecifications in the case of nonnormal variables. Directional misspecification refers to situations where alternative models are equally likely to explain the data-generating process (e.g., x → y versus y → x). It is shown that the homoscedasticity assumption is likely to be violated in models that erroneously treat true nonnormal predictors as response variables. Recently, Direction Dependence Analysis (DDA) has been proposed as a framework to empirically evaluate the direction of effects in linear models. The present study links the phenomenon of heteroscedasticity with DDA and describes visual diagnostics and nine homoscedasticity tests that can be used to make decisions concerning the direction of effects in linear models. Results of a Monte Carlo simulation that demonstrate the adequacy of the approach are presented. An empirical example is provided, and applicability of the methodology in cases of violated assumptions is discussed.

  5. An integrated strategy to improve data acquisition and metabolite identification by time-staggered ion lists in UHPLC/Q-TOF MS-based metabolomics.

    PubMed

    Wang, Yang; Feng, Ruibing; He, Chengwei; Su, Huanxing; Ma, Huan; Wan, Jian-Bo

    2018-08-05

    The narrow linear range and the limited scan time of the given ion make the quantification of the features challenging in liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics with the full-scan mode. And metabolite identification is another bottleneck of untargeted analysis owing to the difficulty of acquiring MS/MS information of most metabolites detected. In this study, an integrated workflow was proposed using the newly established multiple ion monitoring mode with time-staggered ion lists (tsMIM) and target-directed data-dependent acquisition with time-staggered ion lists (tsDDA) to improve data acquisition and metabolite identification in UHPLC/Q-TOF MS-based untargeted metabolomics. Compared to the conventional untargeted metabolomics, the proprosed workflow exhibited the better repeatability before and after data normalization. After selecting features with the significant change by statistical analysis, MS/MS information of all these features can be obtained by tsDDA analysis to facilitate metabolite identification. Using time-staggered ion lists, the workflow is more sensitive in data acquisition, especially for the low-abundant features. Moreover, the metabolites with low abundance tend to be wrongly integrated and triggered by full scan-based untargeted analysis with MS E acquisition mode, which can be greatly improved by the proposed workflow. The integrated workflow was also successfully applied to discover serum biosignatures for the genetic modification of fat-1 in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The Disability Discrimination Act in the UK: helping or hindering employment among the disabled?

    PubMed

    Bell, David; Heitmueller, Axel

    2009-03-01

    The enactment of the Americans with Disabilities Act (ADA) in 1990 triggered a substantial academic debate about its consequences on employment rates of disabled people. In contrast, the employment provision of the 1996 Disability Discrimination Act (DDA) in Britain has received little attention. Exploiting both pooled and longitudinal data, this paper provides robust evidence that, similar to the ADA in the USA, the DDA has had no impact on the employment rate of disabled people or possibly worsened it. Possible reasons for this are higher uncertainty around litigation costs, low levels of general awareness about the Act among disabled people and employers, and a lack of financial support.

  7. Spatial variability of trace metals and inorganic nutrients in surface waters of Todos Santos Bay, México in the summer of 2005 during a red tide algal bloom.

    PubMed

    Lares, M L; Marinone, S G; Rivera-Duarte, I; Beck, A; Sañudo-Wilhelmy, S

    2009-05-01

    Dissolved and particulate metals (Ag, Cd, Co, Cu, Ni, and Zn) and nutrients (PO(4), NO(3), and H(4)SiO(4)) were measured in Todos Santos Bay (TSB) in August 2005. Two sources producing local gradients were identified: one from a dredge discharge area (DDA) and another south of the port and a creek. The average concentrations of dissolved Cd and Zn (1.3 and 15.6 nM, respectively) were higher by one order of magnitude than the surrounding Pacific waters, even during upwelling, and it is attributed to the presence of a widespread and long-lasting red tide coupled with some degree of local pollution. A clear spatial gradient (10 to 6 pM), from coast to offshore, of dissolved Ag was evident, indicating the influence of anthropogenic inputs. The particulate fraction of all metals, except Cu, showed a factor of ~3 decrease in concentrations from the DDA to the interior of the bay. The metal distributions were related to the bay's circulation by means of a numerical model that shows a basically surface-wind-driven offshore current with subsurface compensation currents toward the coast. Additionally, the model shows strong vertical currents over the DDA. Principal component analysis revealed three possible processes that could be influencing the metal concentrations within TSB: anthropogenic inputs (Cd, Ag, and Co), biological proceses (NO(3), Zn, and Cu), and upwelling and mixing (PO(4), H(4)SiO(4), Cd, and Ni). The most striking finding of this study was the extremely high Cd concentrations, which have been only reported in highly contaminated areas. As there was a strong red tide, it is hypothesized that the dinoflagellates are assimilating the Cd, which is rapidly remineralized and being concentrated on the stratified surface layers.

  8. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons.

    PubMed

    Wang, Yan; Zhang, Heng; Shi, Meng; Liou, Yih-Cherng; Lu, Lei; Yu, Fengwei

    2017-05-15

    Pruning, whereby neurons eliminate their excess neurites, is central for the maturation of the nervous system. In Drosophila , sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of the secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP- and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not for apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that the Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell-adhesion molecule Neuroglian (Nrg). © 2017. Published by The Company of Biologists Ltd.

  9. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    PubMed

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  10. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.

    PubMed

    Yurkin, Maxim A; Semyanov, Konstantin A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P

    2005-09-01

    Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed by use of the discrete dipole approximation (DDA) and scanning flow cytometry (SFC), respectively. SFC permits measurement of the angular dependence of the light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the light incident upon the indicatrix. Numerical calculations of indicatrices for several axis ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e., face-on and rim-on incidence, relative to the direction of the incident beam. Only the oblate spheroid model for rim-on incidence gives results similar to those of the rigorous biconcave disk model.

  11. Allison PD 370-42 advanced turboprop engine. Final report, October 1978-February 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolp, P.

    1979-02-01

    This study developed data on Detroit Diesel Allison (DDA) common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential DDA turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates plus an all new engine. Screening of DDA Derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: a derivative of the unity sizemore » T701-AD-700 shaft power engine with rematched turbine (PD 370-37), an advanced T701 turboprop derivative with 25:1 overall pressure ratio and a scaled ATEGG demonstrated compressor (PD 370-40), an advanced T701 turboprop derivative with 17.7:1 overall pressure ratio and a scaled ATEGG demonstrated compressor (PD 370-4D al and experimental results attests to the accuracy of the assembled mechanism in its description of the homogenrt documents program highlights and research results for CY 1979 along with plans for the completion of program investigations. Postirradiation test data are presented for plateen chemical s.« less

  12. Prevention of infectious tick-borne diseases in humans: Comparative studies of the repellency of different dodecanoic acid-formulations against Ixodes ricinus ticks (Acari: Ixodidae)

    PubMed Central

    Schwantes, Ulrich; Dautel, Hans; Jung, Gerd

    2008-01-01

    Background Ticks of the species Ixodes ricinus are the main vectors of Lyme Borreliosis and Tick-borne Encephalitis – two rapidly emerging diseases in Europe. Repellents provide a practical means of protection against tick bites and can therefore minimize the transmission of tick-borne diseases. We developed and tested seven different dodecanoic acid (DDA)-formulations for their efficacy in repelling host-seeking nymphs of I. ricinus by laboratory screening. The ultimately selected formulation was then used for comparative investigations of commercially available tick repellents in humans. Methods Laboratory screening tests were performed using the Moving-object (MO) bioassay. All test formulations contained 10% of the naturally occurring active substance DDA and differed only in terms of the quantitative and qualitative composition of inactive ingredients and fragrances. The test procedure used in the human bioassays is a modification of an assay described by the U.S. Environmental Protection Agency and recommended for regulatory affairs. Repellency was computed using the equation: R = 100 - NR/N × 100, where NR is the number of non-repelled ticks, and N is the respective number of control ticks. All investigations were conducted in a controlled laboratory environment offering standardized test conditions. Results All test formulations strongly repelled nymphs of I. ricinus (100-81% protection) as shown by the MO-bioassay. The majority of ticks dropped off the treated surface of the heated rotating drum that served as the attractant (1 mg/cm2 repellent applied). The 10% DDA-based formulation, that produced the best results in laboratory screening, was as effective as the coconut oil-based reference product. The mean protection time of both preparations was generally similar and averaged 8 hours. Repellency investigations in humans showed that the most effective 10% DDA-based formulation (~1.67 mg/cm2 applied) strongly avoided the attachment of I. ricinus nymphs and adults for at least 6 hours. The test repellent always provided protection (83-63%) against I. ricinus nymphs equivalent to the natural coconut oil based reference product and a better protection (88-75%) against adult ticks than the synthetic Icaridin-containing reference repellent. Conclusion We found that the 10% DDA-based formulation (ContraZeck®) is an easily applied and very effective natural repellent against I. ricinus ticks. By reducing the human-vector contact the product minimises the risk of transmission of tick-borne diseases in humans. PMID:18397516

  13. Tides on Self-gravitating, Compressible Bodies

    NASA Astrophysics Data System (ADS)

    Hurford, T. A.; Greenberg, R.

    2001-11-01

    Most modern derivations of tidal amplitude follow the approach presented by Love [1]. Love's analysis for a homogeneous sphere assumed an incompressible material, which required introduction of a non-rigorously justified pressure term. We have solved the more general case of arbitrary compressibility, which allows for a more straightforward derivation [2,3]. We find the h2 love number of a body of radius R, density ρ , by solving the deformation equation [4], μ ∇ 2 u = ρ ∇U - (λ + μ ) ∇ (∇ ṡ u) where μ is the rigidity of the body and λ the Lamé constant. The potential U is the sum of (a) the tide raising potential, (b) the potential of surface mass shifted above or below the spherical surface, (c) potential due to the internal density changes and (d) the change in potential of each bit of volume due to its displacement u. A self-consistent solution can be obtained with U = \\sum_{q=0}^{\\infty} b_{(2+2q)} r^{(2+2q)} ( {3}/{2} \\cos2 \\theta - {1}/{2} ). In [1] and [3] only the r2 term was considered, which was valid only if compressibility is small or elasticity governs deformation (i.e. ρ g R << (λ + 2 μ )). The solution with only the r2 term reduces to Love's [1] solution in the limit of zero compressibility (λ = ∞ ). However, for rock μ ~ λ [4], in which case h2 is enhanced by ~ 3 %, and solutions for greater compressibility give up to 8 % enhancement of tidal amplitude. If ρ g R is significant, higher order r(2q+2) terms are important and even greater corrections are required to the classical tidal amplitude. [1] Love, A.E.H., New York Dover Publications, 1944 [2] Hurford, T.A. and R. Greenberg, Lunar Plan. Sci. XXXII 1741, 2001 [3] Hurford, T.A. and R. Greenberg, 2001 DDA meeting, Bull. Amer. Astron. Soc. in press [4] Kaula, W.M., John Wiley & Sons, Inc., 1968

  14. Differential Die-Away Instrument: Report on Neutron Detector Recovery Performance and Proposed Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir

    2014-09-22

    Four helium-3 ( 3He) detector/preamplifier packages (¾”/KM200, DDSI/PDT-A111, DDA/PDT-A111, and DDA/PDT10A) were experimentally tested to determine the deadtime effects at different DT neutron generator output settings. At very high count rates, the ¾”/KM200 package performed best. At high count rates, the ¾”/KM200 and the DDSI/PDT-A111 packages performed very well, with the DDSI/PDT-A111 operating with slightly higher efficiency. All of the packages performed similarly at mid to low count rates. Proposed improvements include using a fast recovery LANL-made dual channel preamplifier, testing smaller diameter 3He tubes, and further investigating quench gases.

  15. Relationship between the mobility of phosphocholine headgroups of liposomes and the hydrophobicity at the membrane interface: a characterization with spectrophotometric measurements.

    PubMed

    Shimanouchi, Toshinori; Sasaki, Masashi; Hiroiwa, Azusa; Yoshimoto, Noriko; Miyagawa, Kazuya; Umakoshi, Hiroshi; Kuboi, Ryoichi

    2011-11-01

    In this study, we investigated the dynamics of a membrane interface of liposomes prepared by eight zwitterionic phosphatidylcholines in terms of their headgroup mobility, with spectroscopic methods such as dielectric dispersion analysis (DDA), fluorescence spectroscopy. The DDA measurement is based on the response of the permanent dipole moment to a driving electric field and could give the information on the axial rotational Brownian motion of a headgroup with the permanent dipole moment. This motion depended on kinds of phospholipids, the diameter of the liposomes, and the temperature. The activation energy required to overcome the intermolecular force between headgroups of phospholipids depended on the strength of the interaction between headgroups such as hydrogen bonds and/or dipole-dipole interaction. Hydration at the phosphorous group of phospholipid and the molecular order of lipid membrane impaired the interaction between headgroups. Furthermore, the hydrophobicity of membrane surface increased parallel to the increase in headgroup mobility. It is, therefore, concluded that hydration of headgroup promoted its mobility to make the membrane surface hydrophobic. The lipid membrane in liquid crystalline phase or the lipid membrane with the larger curvature was more hydrophobic. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Computer-automated ABCD versus dermatologists with different degrees of experience in dermoscopy.

    PubMed

    Piccolo, Domenico; Crisman, Giuliana; Schoinas, Spyridon; Altamura, Davide; Peris, Ketty

    2014-01-01

    Dermoscopy is a very useful and non-invasive technique for in vivo observation and preoperative diagnosis of pigmented skin lesions (PSLs) inasmuch as it enables analysis of surface and subsurface structures that are not discernible to the naked eye. The authors used the ABCD rule of dermoscopy to test the accuracy of melanoma diagnosis with respect to a panel of 165 PSLs and the intra- and inter-observer diagnostic agreement obtained between three dermatologists with different degrees of experience, one General Practitioner and a DDA for computer-assisted diagnosis (Nevuscreen(®), Arkè s.a.s., Avezzano, Italy). 165 Pigmented Skin Lesions from 165 patients were selected. Histopathological examination revealed 132 benign melanocytic skin lesions and 33 melanomas. The kappa statistic, sensitivity, specificity and predictive positive and negative values were calculated to measure agreement between all the human observers and in comparison with the automated DDA. Our results revealed poor reproducibility of the semi-quantitative algorithm devised by Stolz et al. independently of observers' experience in dermoscopy. Nevuscreen(®) (Arkè s.a.s., Avezzano, Italy) proved to be 'user friendly' to all observers, thus enabling a more critical evaluation of each lesion and representing a helpful tool for clinicians without significant experience in dermoscopy in improving and achieving more accurate diagnosis of PSLs.

  17. Outcomes of endo-radiological approach to management of bile leakage after right lobe living donor liver transplantation.

    PubMed

    Chok, Kenneth S H; Chan, Albert C Y; Sharr, William W; Cheung, Tan To; Fung, James Y Y; Chan, See Ching; Lo, Chung Mau

    2016-01-01

    Bile leakage is a major complication after right lobe living donor liver transplantation (RLDLT). It can result in significant morbidities and, occasionally, mortalities. Endo-radiology is a non-surgical means that has been used to manage this complication. This study reviews the outcomes of the endo-radiological approach to the management of bile leakage after RLDLT with duct-to-duct anastomosis (DDA) at a high-volume center. A retrospective study was conducted on all adult patients who received RLDLT at our center between January 2001 and December 2013. There were 496 RLDLTs performed during the study period. Only patients who had DDA as the only bile duct reconstruction method were included in the study. Twelve (3.7%) out of the 328 study subjects developed bile leakage after RLDLT. Six out of these 12 patients were successfully treated with the endo-radiological approach without the need for laparotomy. They had endoscopic retrograde cholangiography with stenting followed by percutaneous drainage of biloma. One of the 12 patients died from recurrence of hepatocellular carcinoma 37 months after transplantation. The remaining 11 patients are all alive. The endo-radiological approach should be the first-line management for bile leakage for selected patients with DDA as the bile duct reconstruction method. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  18. SU-E-J-97: Pretreatment Test and Post-Treatment Evaluation for Iso-NTCP Dose Guided Adapive Radiotherapy (DGART), Experience with Prostate Cancer Patients Treated with Rectal Balloons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Thomas Jefferson UniversityHospital, Philadelphia, PA; Hardcastle, N

    Purpose: To explore the feasibility of pretreatment test for iso-NTCP DGART and to compare the pretreatment test results with post-treatment evaluations. Methods: NTCP here refers to late rectal wall toxicity only and is calculated with the ring rectal wall DVH. Simulation for one time iso- NTCP DGART starts after half of the total dose was done for 10 patients to investigate if TCP gains could be achieved. Six patients were treated using a 12-fraction 4.3Gy technique and four using 16-fraction 3.63Gy technique. For each of the 12-fraction cases a VMAT plan was generated in Pinnacle3™ using the daily CT obtainedmore » prior to the 6th fraction. A pretreatment simulation was performed using only the first 6 daily CTs. The idea is to add the 6 original plan delivered doses with 6 DGART plan delivered doses by deformable dose accumulation (DDA) on each of the first 6 CTs, resulting in 6 rectal wall doses (RWDs) and NTCPs. The 95% confidence interval (95%CI) for the 6 NTCPs were computed.The posttreatment evaluation was done by: a) copy the DGART plan to 6 CTs for fraction 7–12 and calculate the 6 actual DGART delivered fractional doses; b) sum the 6 actual DGART doses with the 6 original plan delivered doses by DDA on each of the 12 CTs resulting in 12 post-treatment RWDs and NTCPs; c) boxplot the 12 post-treatment NTCPs. Results: Target dose gain is 0.76–1.93 Gy. The 95%CI widths of the pretreatment tests NTCPs were 1.1–2.7%. For 5 patients, the planned NTCP fell within the 95%CI. For 4 patients, the planned NTCP was lower than the 95%CI lines. Post-treatment results show that for 7 patients, the upper quartile was within the 95%CI; for 2 patients, the upper quartile were higher than the 95%CI. Conclusion: The pretreatment test yields conservative prediction of the actual delivered NTCP.« less

  19. Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.

    1985-01-01

    Dynamic dielectric analysis (DDA) is used to study curing polymer systems and thermoplastics. Measurements are made over a frequency range of six decades. This wide range of frequencies increases the amount of information which can be obtained. The data is analyzed in terms of the frequency dependence of the complex permittivity epsilon sup *, specific conductivity sigma (ohm/cm) and the relaxation time tau, parameters which are characteristic of the cure state of the material and independent of the size of the sample.

  20. Formulation of a mmaA4 Gene Deletion Mutant of Mycobacterium bovis BCG in Cationic Liposomes Significantly Enhances Protection against Tuberculosis

    PubMed Central

    Derrick, Steven C.; Dao, Dee; Yang, Amy; Kolibab, Kris; Jacobs, William R.; Morris, Sheldon L.

    2012-01-01

    A new vaccination strategy is urgently needed for improved control of the global tuberculosis (TB) epidemic. Using a mouse aerosol Mycobacterium tuberculosis challenge model, we investigated the protective efficacy of a mmaA4 gene deletion mutant of Mycobacterium bovis BCG (ΔmmaA4BCG) formulated in dimethyl dioctadecyl ammonium bromide (DDA) – D(+) trehalose 6,6 dibenenate (TDB) (DDA/TDB) adjuvant. In previous studies, deletion of the mmaA4 gene was shown to reduce the suppression of IL-12 production often seen after mycobacterial infections. While the non-adjuvanted ΔmmaA4BCG strain did not protect mice substantially better than conventional BCG against a tuberculous challenge in four protection experiments, the protective responses induced by the ΔmmaA4BCG vaccine formulated in DDA/TDB adjuvant was consistently increased relative to nonadjuvanted BCG controls. Furthermore, the ΔmmaA4BCG-DDA/TDB vaccine induced significantly higher frequencies of multifunctional (MFT) CD4 T cells expressing both IFNγ and TNFα (double positive) or IFNγ, TNFα and IL-2 (triple positive) than CD4 T cells derived from mice vaccinated with BCG. These MFT cells were characterized by having higher IFNγ and TNFα median fluorescence intensity (MFI) values than monofunctional CD4 T cells. Interestingly, both BCG/adjuvant and ΔmmaA4BCG/adjuvant formulations induced significantly higher frequencies of CD4 T cells expressing TNFα and IL-2 than nonadjuvanted BCG or ΔmmaA4BCG vaccines indicating that BCG/adjuvant mixtures may be more effective at inducing central memory T cells. Importantly, when either conventional BCG or the mutant were formulated in adjuvant and administered to SCID mice or immunocompromised mice depleted of IFNγ, significantly lower vaccine-derived mycobacterial CFU were detected relative to immunodeficient mice injected with non-adjuvanted BCG. Overall, these data suggest that immunization with the ΔmmaA4BCG/adjuvant formulation may be an effective, safe, and relatively inexpensive alternative to vaccination with conventional BCG. PMID:22442674

  1. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach.

    PubMed

    Rose, Fabrice; Wern, Jeanette Erbo; Ingvarsson, Pall Thor; van de Weert, Marco; Andersen, Peter; Follmann, Frank; Foged, Camilla

    2015-07-28

    The purpose of this study was to design a novel and versatile adjuvant intended for mucosal vaccination based on biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with the cationic surfactant dimethyldioctadecylammonium (DDA) bromide and the immunopotentiator trehalose-6,6'-dibehenate (TDB) (CAF01) to tailor humoral and cellular immunity characterized by antibodies and Th1/Th17 responses. Such responses are important for the protection against diseases caused by intracellular bacteria such as Chlamydia trachomatis and Mycobacterium tuberculosis. The hybrid NPs were engineered using an oil-in-water single emulsion method and a quality-by-design approach was adopted to define the optimal operating space (OOS). Four critical process parameters (CPPs) were identified, including the acetone concentration in the water phase, the stabilizer [polyvinylalcohol (PVA)] concentration, the lipid-to-total solid ratio, and the total concentration. The CPPs were linked to critical quality attributes consisting of the particle size, polydispersity index (PDI), zeta-potential, thermotropic phase behavior, yield and stability. A central composite face-centered design was performed followed by multiple linear regression analysis. The size, PDI, enthalpy of the phase transition and yield were successfully modeled, whereas the models for the zeta-potential and the stability were poor. Cryo-transmission electron microscopy revealed that the main structural effect on the nanoparticle architecture is caused by the use of PVA, and two different morphologies were identified: i) A PLGA core coated with one or several concentric lipid bilayers, and ii) a PLGA nanoshell encapsulating lipid membrane structures. The optimal formulation, identified from the OOS, was evaluated in vivo. The hybrid NPs induced antibody and Th1/Th17 immune responses that were similar in quality and magnitude to the response induced by DDA/TDB liposomes, showing that the adjuvant properties of DDA/TDB are maintained in the PLGA hybrid matrix. This study demonstrates the complexity of formulation design for the engineering of a hybrid lipid-polymer nanoparticle adjuvant. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Active Interrogation for Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinhoe, Martyn Thomas; Dougan, Arden

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  3. Customized Consensus Spectral Library Building for Untargeted Quantitative Metabolomics Analysis with Data Independent Acquisition Mass Spectrometry and MetaboDIA Workflow.

    PubMed

    Chen, Gengbo; Walmsley, Scott; Cheung, Gemmy C M; Chen, Liyan; Cheng, Ching-Yu; Beuerman, Roger W; Wong, Tien Yin; Zhou, Lei; Choi, Hyungwon

    2017-05-02

    Data independent acquisition-mass spectrometry (DIA-MS) coupled with liquid chromatography is a promising approach for rapid, automatic sampling of MS/MS data in untargeted metabolomics. However, wide isolation windows in DIA-MS generate MS/MS spectra containing a mixed population of fragment ions together with their precursor ions. This precursor-fragment ion map in a comprehensive MS/MS spectral library is crucial for relative quantification of fragment ions uniquely representative of each precursor ion. However, existing reference libraries are not sufficient for this purpose since the fragmentation patterns of small molecules can vary in different instrument setups. Here we developed a bioinformatics workflow called MetaboDIA to build customized MS/MS spectral libraries using a user's own data dependent acquisition (DDA) data and to perform MS/MS-based quantification with DIA data, thus complementing conventional MS1-based quantification. MetaboDIA also allows users to build a spectral library directly from DIA data in studies of a large sample size. Using a marine algae data set, we show that quantification of fragment ions extracted with a customized MS/MS library can provide as reliable quantitative data as the direct quantification of precursor ions based on MS1 data. To test its applicability in complex samples, we applied MetaboDIA to a clinical serum metabolomics data set, where we built a DDA-based spectral library containing consensus spectra for 1829 compounds. We performed fragment ion quantification using DIA data using this library, yielding sensitive differential expression analysis.

  4. Differential die-away instrument: Report on comparison of fuel assembly experiments and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsell, Alison Victoria; Henzl, Vladimir; Swinhoe, Martyn Thomas

    2015-01-14

    Experimental results of the assay of mock-up (fresh) fuel with the differential die-away (DDA) instrument were compared to the Monte Carlo N-Particle eXtended (MCNPX) simulation results. Most principal experimental observables, the die-away time and the in tegral of the DDA signal in several time domains, have been found in good agreement with the MCNPX simulation results. The remaining discrepancies between the simulation and experimental results are likely due to small differences between the actual experimental setup and the simulated geometry, including uncertainty in the DT neutron generator yield. Within this report we also present a sensitivity study of the DDAmore » instrument which is a complex and sensitive system and demonstrate to what degree it can be impacted by geometry, material composition, and electronics performance.« less

  5. Spectral characteristics of the bentonite loaded with benzyldimethyloctadecylammonium chloride, hexadecyltrimethylammonium bromide and dimethyldioctadecylammonium bromide

    NASA Astrophysics Data System (ADS)

    Majdan, Marek; Maryuk, Oksana; Gładysz-Płaska, Agnieszka; Pikus, Stanisław; Kwiatkowski, Ryszard

    2008-02-01

    The spectral characterization, including the FTIR, DRIFT (diffusive reflectance), SWAXS (small and wide angle X-ray scattering) spectra comparison of the sodium bentonite modified by BDMODA-Cl (benzyldimethyloctadecylammonium chloride), HDTMA-Br (hexadecyltrimethylammonium bromide), DDA-Br (dimethyldioctadecylammonium bromide) is presented in the paper. The FTIR spectra show the shift of C-H stretching vibrations: νsym(CH2), νasym(CH2) of surfactants methylene chains toward lower frequencies (from 2855 to 2851 cm -1 for νsym(CH2) and from 2927 to 2918 cm -1 for νansym(CH2) with the surfactant concentration in bentonite phase. The bending vibrations δH-O-H in water molecules change their positions in the direction of higher frequencies (from 1634 to 1647 cm -1) with the surfactant concentration for bentonite-BDMODA and bentonite-DDA contrary to bentonite-HDTMA, where the constant position δH-O-H is explained as the consequence of the lower concentration of the hydrogen bonded water in bentonite-HDTMA phase when compared with the remaining forms of bentonite. The DRIFT spectra reveal dramatic shift of the νSi-O stretching vibration toward higher frequencies upon intercalation of the sodium bentonite with the surfactant cations. The SWAXS spectra and SEM images of the bentonite are the evidence of somewhat different sorption mechanism of DDA-Br when compared with the BDMODA-Cl and HDTMA-Br, including remarkable external surface sorption contribution in the overall sorption.

  6. Detection of Nucleic Acids in Complex Samples via Magnetic Microbead-assisted Catalyzed Hairpin Assembly and "DD-A" FRET.

    PubMed

    Fang, Hongmei; Xie, Nuli; Ou, Min; Huang, Jin; Li, Wenshan; Wang, Qing; Liu, Jianbo; Yang, Xiaohai; Wang, Kemin

    2018-05-21

    Nucleic acids, as one kind of significant biomarkers, have attracted tremendous attention and exhibited immense value in fundamental studies and clinical applications. In this work, we developed a fluorescent assay for detecting nucleic acids in complex samples based on magnetic microbead (MMB)-assisted catalyzed hairpin assembly (CHA) and donor donor-acceptor fluorescence resonance energy transfer ("DD-A" FRET) signaling mechanism. Three types of DNA hairpin probes were employed in this system, including Capture, H1 (double FAM-labelled probe as FRET donor) and H2 (TAMRA-labelled probe as FRET acceptor). Firstly, the Captures immobilized on MMBs bound to targets in complex samples, and the sequences in Captures that could trigger catalyzed hairpin assembly (CHA) were exposed. Then, target-enriched MMBs complexes were separated and resuspended in the reaction buffer containing H1 and H2. As a result, numerous H1-H2 duplexes were formed during CHA process, inducing an obvious FRET signal. In contrast, CHA could not be trigger and the FRET signal was weak while target was absent. With the aid of magnetic separation and "DD-A" FRET, it was demonstrated to effectively eliminate errors from background interference. Importantly, this strategy realized amplified detection in buffer, with detection limits of microRNA as low as 34 pM. Furthermore, this method was successfully applied to detect microRNA-21 in serum and cell culture media. The results showed that our method has the potential for biomedical research and clinical application.

  7. Applicability of the Rayleigh-Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence

    NASA Astrophysics Data System (ADS)

    Tyynelä, J.; Leinonen, J.; Westbrook, C. D.; Moisseev, D.; Nousiainen, T.

    2013-02-01

    The applicability of the Rayleigh-Gans approximation (RGA) for scattering by snowflakes is studied in the microwave region of the electromagnetic spectrum. Both the shapes of the single ice crystals, or monomers, and their amounts in the modeled snowflakes are varied. For reference, the discrete-dipole approximation (DDA) is used to produce numerically accurate solutions to the single-scattering properties, such as the backscattering and extinction cross-sections, single-scattering albedo, and the asymmetry parameter. We find that the single-scattering albedo is the most accurate with only about 10% relative bias at maximum. The asymmetry parameter has about 0.12 absolute bias at maximum. The backscattering and extinction cross-sections show about - 65% relative biases at maximum, corresponding to about - 4.6 dB difference. Overall, the RGA agrees well with the DDA computations for all the cases studied and is more accurate for the integrated quantities, such as the single-scattering albedo and the asymmetry parameter than the cross-sections for the same snowflakes. The accuracy of the RGA seems to improve, when the number of monomers is increased in an aggregate, and decrease, when the frequency increases. It is also more accurate for less dense monomer shapes, such as stellar dendrites. The DDA and RGA results are well correlated; the sample correlation coefficients of those are close to unity throughout the study. Therefore, the accuracy of the RGA could be improved by applying appropriate correction factors.

  8. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, Shaden A.M., E-mail: shaden.khalifa@ki.se; Medina, Philippe de; INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation.more » Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.« less

  9. Gas turbine engines and transmissions for bus demonstration programs. Technical status report, 31 July 1979--31 October 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigro, D.N.

    1979-11-01

    The report summarizes the DDA activities for the effort performed on the procurement and delivery of eleven Allison GT 404-4 gas turbine engines and five HT740CT and six V730CT Allison automatic transmissions and the required associated software. The contract requires the delivery of the engines and transmissions for the Greyhound and Transit Coaches, respectively. In addition, software items such as cost reports, technical reports, installation drawings, acceptance test data and parts lists are required. A recent decision by the DOE will modify the build configuration for the last four (4) Transit Coach engines. It was decided by the DOE atmore » a meeting in Washington, DC on March 28, 1979 with representatives from DDA, NASA/LeRC, JPL and Booz-Allen and Hamilton that these engines are to be built with ceramic regenerators. (TFD)« less

  10. Universal dimer–dimer scattering in lattice effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  11. Universal dimer–dimer scattering in lattice effective field theory

    DOE PAGES

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean; ...

    2017-03-14

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  12. Absorption properties of metal-semiconductor hybrid nanoparticles.

    PubMed

    Shaviv, Ehud; Schubert, Olaf; Alves-Santos, Marcelo; Goldoni, Guido; Di Felice, Rosa; Vallée, Fabrice; Del Fatti, Natalia; Banin, Uri; Sönnichsen, Carsten

    2011-06-28

    The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.

  13. Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals

    NASA Astrophysics Data System (ADS)

    Sato, Kaori; Okamoto, Hajime

    2006-11-01

    Effect of density, shape, and orientation on radar reflectivity factor (Ze) and linear depolarization ratio (LDR) at 95 GHz are investigated by using the discrete dipole approximation (DDA) for ice cloud studies. We consider hexagonal plate, hollow hexagonal column, and hollow bullet rosette in horizontal (2-D) or three-dimensional (3-D) random orientation. We first validate a widely used method to take into account the density and shape effects by the combinational use of Mie theory with the Maxwell-Garnett mixing rule (the MG-Mie method). It is found that the MG-Mie method underestimates Ze and its applicability is limited to sizes smaller than 40 μm. On the basis of the DDA, it is possible to separately treat density, aspect ratio, orientation, and shape. Effect of density turns out to be minor. Orientation and shape are the major controlling factors for Ze especially at effective radius reff > 100 μm and LDR except for very large sizes where the effect of orientation in LDR diminishes. Comparison between the DDA results and the analytical solution for 3-D Rayleigh spheroids show that LDR in the small size range is characterized by the target boundary and aspect ratio. In the large size range, LDR reveals features of a single target element; for example, LDR of bullet rosette is similar to that of a single branch of the particle. Combinational use of Ze and LDR is effective in microphysics retrieval for LDR < -23 dB. For LDR > -23 dB, additional information such as Doppler velocity is required.

  14. Fatty acids isolated from royal jelly modulate dendritic cell-mediated immune response in vitro.

    PubMed

    Vucevic, Dragana; Melliou, Eleni; Vasilijic, Sasa; Gasic, Sonja; Ivanovski, Petar; Chinou, Ioanna; Colic, Miodrag

    2007-09-01

    Royal jelly (RJ), especially its protein components, has been shown to possess immunomodulatory activity. However, almost nothing is known about the influence of RJ fatty acids on the immune system. In this work we studied the effect of 10-hydroxy-2-decanoic acid (10-HDA) and 3,10-dihydroxy-decanoic acid (3,10-DDA), isolated from RJ, on the immune response using a model of rat dendritic cell (DC)-T-cell cocultures. Both fatty acids, at higher concentrations, inhibited the proliferation of allogeneic T cells. The effect of 10-HDA was stronger and was followed by a decrease in interleukin-2 (IL-2) production and down-regulation of IL-2 receptor expression. Spleen DC, cultivated with 10 microg/ml of fatty acids down-regulated the expression of CD86 and the production of IL-12, but up-regulated the production of IL-10. In contrast, DC, pretreated with 100 microg/ml of 3,10-DDA, up-regulated the expression of CD86 and augmented the proliferation of allogeneic T cells. The highest dose (200 microg/ml) of both fatty acids which was non-apoptotic for both T cells and DC, down-regulated the expression of MHC class II and CD86, decreased the production of IL-12 and made these DC less allostimulatory. The immunosuppressive activity of 3,10-DDA was also confirmed in vivo, using a model of Keyhole lymphet hemocyanine immunization of rats. In conclusion, our results showed the immunomodulatory activity of RJ fatty acids and suggest that DC are a significant target of their action.

  15. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells

    PubMed Central

    Law, Mary E.; Davis, Bradley J.; Bartley, Ashton N.; Higgins, Paul J.; Kilberg, Michael S.; Santostefano, Katherine E.; Terada, Naohiro; Heldermon, Coy D.; Castellano, Ronald K.; Law, Brian K.

    2017-01-01

    Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance. PMID:28423644

  16. What are the effects of anti-discriminatory legislation on socioeconomic inequalities in the employment consequences of ill health and disability?

    PubMed

    Bambra, Clare; Pope, Daniel

    2007-05-01

    To investigate how anti-discrimination legislation in the form of the UK Disability Discrimination Act (DDA) affected socioeconomic disparities in the employment rates of people with a limiting long-term illness (LLTI) or disability. National cross-sectional data on employment rates for people with and without an LLTI or disability were obtained from the General Household Survey (GHS) for a 14-year period (1990-2003; 12 surveys). Representative population samples were analysed. The sample size for the GHS over the study period ranged from 19,193 to 24,657 and the average response rate ranged from 72% to 82%. Age-standardised employment rates for individuals with and without an LLTI or disability, analysed by sex and socioeconomic status. Analysis of covariance identified that the DDA had had a negative effect on employment rates for individuals with an LLTI or disability during the study period. This negative effect was found to be differential according to social class ranging from no effect in social classes I and II (-2.86%, 95% CI -8.7% to 2.99%), increasing with social class group, to a highly significant effect in social classes IV and V (-10.7%, 95% CI -6.16% to -15.24%). No differential effect was identified by sex. Anti-discriminatory legislation is not an effective way of overcoming the employment consequences of ill health and disability, nor is it a useful public policy tool in terms of reducing inequalities.

  17. Adsorption of bis(2-hydroxy-3-chloropropyl) dodecylamine on quartz surface and its implication on flotation

    NASA Astrophysics Data System (ADS)

    Liu, Wengang; Liu, Wenbao; Dai, Shujuan; Wang, Benying

    2018-06-01

    In order to clarify the effect of polar group modification on flotation performance of amine collector, flotation properties of quartz and hematite using bis(2-hydroxy-3-chloropropyl) dodecylamine (N23) as a collector were investigated. And the adsorption mechanism of N23 on quartz surface was established by zeta potential measurements, SEM/EDS measurements, and molecular structure analysis. Single mineral flotation results indicated that N23 showed stronger collecting ability on quartz and hematite than DDA-CH3COOH. However, starch could depress the flotation of hematite. Flotation recovery of 98.10% for quartz could be achieved, when N23 concentration was 43.33 mg/L and starch concentration was 16.67 mg/L at natural slurry pH. Separation of artificially mixed minerals of hematite and quartz was achieved effectively using N23 as the collector. The optimized separation result with 66.29% iron grade and 90.06% iron recovery in concentrate was obtained when slurry pH was 7.34 with 43.33 mg/L N23 and 23.33 mg/L starch. The interaction energies of N23 with mineral surface also showed well consistency with flotation results. SEM/EDS analyses and zeta potential measurements revealed that N23 could absorb on quartz surface in the forms of strong electrostatic and hydrogen bonding interaction. Compared with DDA, N23 had a higher HLB value and better water-solubility, which resulted in better dispersion in water and stronger adsorption on mineral surface.

  18. Prostate Cancer Xenograft Inhibitory Activity and Pharmacokinetics of Decursinol, a Metabolite of Angelica gigas Pyranocoumarins, in Mouse Models.

    PubMed

    Wu, Wei; Tang, Su-Ni; Zhang, Yong; Puppala, Manohar; Cooper, Timothy K; Xing, Chengguo; Jiang, Cheng; Lü, Junxuan

    2017-01-01

    We have previously shown that the ethanol extract of dried Angelica gigas Nakai (AGN) root exerts anticancer activity against androgen receptor (AR)-negative human DU145 and PC-3 prostate cancer xenografts and primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The major pyranocoumarin isomers decursin (D) and decursinol angelate (DA), when provided at equi-molar intake to that provided by AGN extract, accounted for the inhibitory efficacy against precancerous epithelial lesions in TRAMP mice. Since we and others have shown in rodents and humans that D and DA rapidly and extensively convert to decursinol, here we tested whether decursinol might be an in vivo active compound for suppressing xenograft growth of human prostate cancer cells expressing AR. In SCID-NSG mice carrying subcutaneously inoculated human LNCaP/AR-Luc cells overexpressing the wild type AR, we compared the efficacy of 4.5[Formula: see text]mg decursinol per mouse with equi-molar dose of 6[Formula: see text]mg D/DA per mouse. The result showed that decursinol decreased xenograft tumor growth by 75% and the lung metastasis, whereas D/DA exerted a much less effect. Measurement of plasma decursinol concentration, at 3[Formula: see text]h after the last dose of respective dosing regimen, showed higher circulating level in the decursinol-treated NSG mice than in the D/DA-treated mice. In a subsequent single-dose pharmacokinetic experiment, decursinol dosing led to 3.7-fold area under curve (AUC) of plasma decursinol over that achieved by equi-molar D/DA dosing. PK advantage notwithstanding, decursinol represents an active compound to exert in vivo prostate cancer growth and metastasis inhibitory activity in the preclinical model.

  19. Numerical simulation of raindrop scattering for C-band dual-polarization Doppler weather radar parameters

    NASA Astrophysics Data System (ADS)

    Teng, Shiwen; Hu, Hanfeng; Liu, Chao; Hu, Fangchao; Wang, Zhenhui; Yin, Yan

    2018-07-01

    The dual-polarization Doppler weather radar plays an important role in precipitation estimation and weather monitoring. For radar applications, the retrieval of precipitation microphysical characteristics is of great importance, and requires assumed scattering properties of raindrops. This study numerically investigates the scattering properties of raindrops and considers the capability of numerical models for raindrop scattering simulations. Besides the widely used spherical and oblate spheroid models, a non-spheroidal model based on realistic raindrop geometries with a flattened base and a smoothly rounded top is also considered. To study the effects of scattering simulations on radar applications, the polarization radar parameters are modeled based on the scattering properties calculated by different scattering models (i.e. the extended boundary condition T-matrix (EBCM) method and discretize dipole approximation (DDA)) and given size distributions, and compared with observations of a C-band dual-polarization radar. Note that, when the spatial resolution of the DDA simulation is large enough, the DDA results can be very close to those of the EBCM. Most simulated radar variables, except copolar correlation coefficient, match closely with radar observations, and the results based on different non-spheroidal models considered in this study show little differences. The comparison indicates that, even for the C-band radar, the effects of raindrop shape and canting angle on scattering properties are relatively minor due to relatively small size parameters. However, although more realistic particle geometry model may provide better representation on raindrop shape, considering the relatively time-consuming and complex scattering simulations for those particles, the oblate spheroid model with appropriate axis ratio variation is suggested for polarization radar applications.

  20. Collecting Disability Data from Parents

    ERIC Educational Resources Information Center

    Porter, Jill; Daniels, Harry; Feiler, Anthony; Georgeson, Jan

    2011-01-01

    This article describes the development and national trial of a methodology for collecting disability data directly from parents, enabling schools and local authorities to meet their obligations under the "Disability Discrimination Act" (DDA; 2005) to promote equality of opportunity for all children. It illustrates the complexities around…

  1. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE PAGES

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; ...

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  2. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  3. The alkyl amines effect on the optical properties of inorganic perovskite quantum dot

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Zhu; Chung, Shu-Ru

    2017-08-01

    Perovskite quantum dots (P-QDs) is a new kind of optoelectronic materials in recent years. Compared with organic perovskite QDs (MAPbX3), inorganic perovskite QDs (CsPbX3) have a better stability. Inorganic P-QDs can be prepared at low temperature. Those novel QDs can be applied in solar cells, light-emitting diodes (LEDs), display, and biolables. Typical synthesis process to prepare CsPbX3 QDs is used oleic acid (OA) and cesium carbonate (Cs2CO3) to form Cs-oleate complex first. Moreover, the oleylamine (OLA) and octadecene (ODE) are used as capping agents. Cs-oleate complex then reacts with PbX2 to form CsPbX3 QDs (reacts for 5 s). As we know that the CsPbBr3 QDs emits green light, and its emission wavelength can be tuned by adding Cland Iions to replace Brion. However, the reaction rate of CsPbX3 QDs is fast, and it is not easy to control the emission wavelength by particle size. In this study, we use the saturated alkyl amines with difference of carbon chain length such as dodecylamine (DDA), hexadecylamine (HDA), and octadecylamine (ODA) to prepare CsPbBr3 QDs. The result shows that the emission spectra for all samples range from 489 (ODA) to 514 nm (DDA), the full width at half-maximum (FWHM) is between 23 to 28 nm, the surface morphologies of all samples are nearly spherical, and the quantum yields (QYs) are higher up to 130 % (compared with R6G and the excitation wavelength is 450 nm). Based on emission spectra we can find that the emission peaks are fixed even under different excitation wavelength, imply that the particle size distribution of QDs is uniform. Moreover, the emission wavelength blue shifts with increasing carbon chain length of amines. The stability of alkyl amine-capped CsPbBr3 QDs is good, especially for DDA-capped sample. We also find that a small emission peak around 462 nm can be only observed for DDA-capped sample. Furthermore, this small peak also can be observed even prolong the reaction time to 10 min. The emission wavelengths of CsPbBr3 QDs can be controlled by carbon chain length of alkyl amines. The small FWHM and high QYs of CsPbBr3 QDs meaning that it is benefit to enhance the color gamut of display.

  4. CryoSat-2: From SAR to LRM (FBR) for quantitative precision comparison over identical sea state

    NASA Astrophysics Data System (ADS)

    Martin-Puig, Cristina; Ruffini, Giulio; Raney, R. Keith; Gommenginger, Christine

    The use of Synthetic Aperture Radar (SAR) techniques in conventional altimetry—i.e., Delay Doppler Altimetry (DDA)—was first introduced by R.K. Raney in 1998 [1]. This technique provides an improved solution for water surface altimetry observations due to two major innova-tions: the addition of along track processing for increased resolution, and multi-look processing for improved SNR. Cryosat-2 (scheduled for launch 2010) will be the first satellite to operate a SAR altimetry mode. Although its main focus will be the cryosphere, this instrument will also be sporadically operative over water surfaces, thus provide an opportunity to test and refine the improved capabilities of DDA. Moreover, the work presented here is of interest to the ESA's Sentinel-3 mission. This mission will be devoted to the provision of operational oceanographic services within Global Monitoring for the Environment and Security (GMES), and will include a DDA altimeter on board. SAMOSA, an ESA funded project, has studied along the last two years the potentialities of advanced DDA over water surfaces. Its extension aims to better quantify the improvement of DDA over conventional altimetry for the characterization of water surfaces. Cryosat-2s altimeter (SIRAL) has three operating modes: the Low Resolution Mode (LRM), the SAR mode and the inSAR mode. The first two are of interest for the work to be done. In LRM the altimeter performs as a conventional pulse limited altimeter (PRF of 1970 Hz); in SAR mode the pulses are transmitted in bursts (64 pulses per burst). In the last, correlation between echoes is desired [1], thus the PRF within a burst is higher than in LRM (PRF of 17.8 KHz). After transmission the altimeter waits for the returns, and transmits the next burst (burst repetition frequency of 85.7 Hz). The previous acquisition modes will provide different data products: level 1 or full bit rate data (FBR), level 1b or multi-looked waveform data, and level 2 for evaluation or geophysical products. This paper is only addressing FBR data for LRM and SAR mode. In LRM the FBR data corresponds to echoes incoherently multi-looked on-board the satellite at a rate of 20Hz, while in SAR mode FBR corresponds to individual complex echoes (I and Q), telemetered before the IFFT block [2]. Given that CryoSat-2 operational modes are exclusive, one task within SAMOSA extension aims to reduce SAR FBR data such that it emulates LRM FBR data allowing for the quantitative comparison of the measurement precision over identical sea state. In working to this aim, three methodolo-gies were implemented in the SAMOSA contract, the results achieved and detailed discussions with JHU/APL identified a revised approach (to be implemented in the SAMOSA extension), which should allow the team to meet the task goal. The different approaches will be presented in this paper. ACKNOWLEDGEMENT The authors of this paper would like to acknowledge the European Space Agency for funding the work presented in this paper, with special attention to J. Benveniste and S. Dinardo (ESA); and the SAMOSA team: D. Cotton (SatOC; UK), L. Stenseng (DTU; DE) and P. Berry (DMU; UK) REFERENCES [1] R.K.Raney, The Delay/Doppler Radar Altimeter, IEEE Trans. Georsci. Remote Sensing, vol. 36, pp. 1578-1588, Sep 1998. [2] CryoSat Mission and Data Description, Doc No. CS-RP-ESA-SY-0059, 2007.

  5. 75 FR 57481 - Statutorily Mandated Designation of Difficult Development Areas and Qualified Census Tracts for 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... makes new DDA designations annually for purposes of the Low-Income Housing Tax Credit (LIHTC) under... questions on how areas are designated and on geographic definitions, contact Michael K. Hollar, Senior... Budget (OMB) first published new metropolitan area definitions incorporating 2000 Census data in OMB...

  6. Evaluation of novel adjuvant Eimeria profilin complex on intestinal host immune responses against live E. acervulina challenge infection

    USDA-ARS?s Scientific Manuscript database

    The effects of two novel adjuvants, QCDC (Quil A/cholesterol/DDA/Carbopol) and QCDCRT (QCDC/Bay R1005/cytosine-phosphate-guanosine oligodeoxynucleotides, CpG) emulsified with profilin, a conserved Eimeria recombinant protein, against avian coccidiosis were determined in broiler chickens. Chickens we...

  7. Effects of novel vaccine/adjuvant complexes on the protective immunity against Eimeria acervulina and transcriptome profiles

    USDA-ARS?s Scientific Manuscript database

    This study investigated the ability of two novel adjuvant formulations, QCDC (Quil A/cholesterol/DDA/Carbopol) and QCDCR (QCDC/Bay R1005), in combination with a recombinant profilin vaccine, to modulate host protective immunity and to alter gene expression during experimental avian coccidiosis. Vac...

  8. The Past, Present, and Future of Demand-Driven Acquisitions in Academic Libraries

    ERIC Educational Resources Information Center

    Goedeken, Edward A.; Lawson, Karen

    2015-01-01

    Demand-driven acquisitions (DDA) programs have become a well-established approach toward integrating user involvement in the process of building academic library collections. However, these programs are in a constant state of evolution. A recent iteration in this evolution of ebook availability is the advent of large ebook collections whose…

  9. Investigation of Visual Performance after Administration of Cholinergic Blocking Agents. I. Benactyzine.

    DTIC Science & Technology

    1980-03-01

    L.F., and Gillespie, H.K. (1971). Marihuana and the temporal span of awareness. Arch. Gen. Psychiat.,24,564-567. Masland, R.H. (1979) in Symposium 106...Defense Technical Information Center (rTIC) ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314 1 copy Dean School of Medicine Uniformed Services

  10. Text-Based Synchronous E-Learning and Dyslexia: Not Necessarily the Perfect Match!

    ERIC Educational Resources Information Center

    Woodfine, B. P.; Nunes, M. Baptista; Wright, D. J.

    2008-01-01

    The introduction, in the United Kingdom, of the Special Education Needs and Disabilities Act (SENDA) published and approved in 2001, has removed the exemptions given to educational institutions by the Disabilities Discrimination Act (DDA) of 1995. This applies to learning web sites and materials that must now undergo "reasonable…

  11. Microwave-Assisted Hydrolysis of Chitosan from Shrimp Shell Waste for Glucosammine Hydrochlorid Production

    NASA Astrophysics Data System (ADS)

    Zaeni, Ahmad; Safitri, Endang; Fuadah, Badrotul; Nyoman Sudiana, I.

    2017-05-01

    Chitin is the most widespread renewable natural sources following cellulose as the main source of chitosan. Chitin is isolated from crustacean waste and shrimp shells. Chitosan is derived from chitin throuhgt demineralisation, deproteination, decolorisation and deacetylation process using chemicals such as sodium hydroxide, hydrogen chloride and acetone. Glucosamine hydrochloride (GlcN-Cl) can be produced by hydrolysis of chitosan by using hydrogen chloride. During deacetylation and hydrolysis the solution is heated by hotplate or furnace. In this paper we use microwave instead of hotplate for production chitosan and GlcN-Cl. The research investigates effect of microwaves to amount of rendemen and their property. The chitosan was characterized its moisture content, solubility, and degree of deacetylation (DDA). Whereas the glucosammine hydrochloride characterized its functional groups using FTIR and crystallization by using X-Ray Difraction (XRD). The experimental results show that the use of microwave energy on deacetilation of chitosan and hydrolisis processes can decrease time consuming and reactant concentration during production. the DDA value obtained was very high from 70 to 85%. The results also show that microwaves meet chitosan and GlcN-Cl standards.

  12. The concept of apparent polarizability for calculating the extinction of electromagnetic radiation by porous aerosol particles

    NASA Astrophysics Data System (ADS)

    Haspel, C.; Adler, G.

    2017-04-01

    In the current study, the electromagnetic properties of porous aerosol particles are calculated in two ways. In the first, a porous target input file is generated by carving out voids in an otherwise homogeneous particle, and the discrete dipole approximation (DDA) is used to compute the extinction efficiency of the particle assuming that the voids are near vacuum dielectrics and assuming random particle orientation. In the second, an effective medium approximation (EMA) style approach is employed in which an apparent polarizability of the voids is defined based on the well-known solution to the problem in classical electrostatics of a spherical cavity within a dielectric. It is found that for porous particles with smaller overall diameter with respect to the wavelength of incident radiation, describing the voids as near vacuum dielectrics within the DDA sufficiently reproduces measured values of extinction efficiency, whereas for porous particles with moderate to larger overall diameters with respect to the wavelength of the radiation, the apparent polarizability EMA approach better reproduces the measured values of extinction efficiency.

  13. Production of dissolved organic carbon enriched in deoxy sugars representing an additional sink for biological C drawdown in the Amazon River plume

    NASA Astrophysics Data System (ADS)

    Meador, Travis B.; Aluwihare, Lihini I.

    2014-10-01

    In North Atlantic waters impacted by discharges from the Amazon and Orinoco Rivers, where planktonic diatom-diazotroph associations (DDA) were active, we observed that an average (± standard deviation) of 61 ± 12% of the biological drawdown of dissolved inorganic carbon (DIC) was partitioned into the accumulating total organic carbon pool, representing a flux of up to 9 ± 4 Tg C yr-1. This drawdown corresponded with chemical alteration of ultrafiltered dissolved organic matter (UDOM), including increases in stable C isotopic composition (δ13C) and C:N. The dissolved carbohydrate component of UDOM also increased with biological DIC drawdown and diatom-associated diazotroph (i.e., Richelia) abundance. New carbohydrates could be distinguished by distinctively high relative abundances of deoxy sugars (up to 55% of monosaccharides), which may promote aggregate formation and enhance vertical carbon export. The identified production of non-Redfieldian, C-enriched UDOM thus suggests a mechanism to explain enhanced C sequestration associated with DDA N2 fixation, which may be widespread in mesohaline environments.

  14. Summer diatom blooms in the North Pacific subtropical gyre: 2008-2009.

    PubMed

    Villareal, Tracy A; Brown, Colbi G; Brzezinski, Mark A; Krause, Jeffrey W; Wilson, Cara

    2012-01-01

    The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (∼30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 10(2)-10(3) fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22-34°N occur within a broader temperature range (21-26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 10(2)-10(3) over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 µm chl a fraction (∼40-90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 µm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 µm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the subtropical front.

  15. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation

    PubMed Central

    2014-01-01

    Background Comprehensive characterization of the phosphoproteome in living cells is critical in signal transduction research. But the low abundance of phosphopeptides among the total proteome in cells remains an obstacle in mass spectrometry-based proteomic analysis. To provide a solution, an alternative analytic strategy to confidently identify phosphorylated peptides by using the alkaline phosphatase (AP) treatment combined with high-resolution mass spectrometry was provided. While the process is applicable, the key integration along the pipeline was mostly done by tedious manual work. Results We developed a software toolkit, iPhos, to facilitate and streamline the work-flow of AP-assisted phosphoproteome characterization. The iPhos tookit includes one assister and three modules. The iPhos Peak Extraction Assister automates the batch mode peak extraction for multiple liquid chromatography mass spectrometry (LC-MS) runs. iPhos Module-1 can process the peak lists extracted from the LC-MS analyses derived from the original and dephosphorylated samples to mine out potential phosphorylated peptide signals based on mass shift caused by the loss of some multiples of phosphate groups. And iPhos Module-2 provides customized inclusion lists with peak retention time windows for subsequent targeted LC-MS/MS experiments. Finally, iPhos Module-3 facilitates to link the peptide identifications from protein search engines to the quantification results from pattern-based label-free quantification tools. We further demonstrated the utility of the iPhos toolkit on the data of human metastatic lung cancer cells (CL1-5). Conclusions In the comparison study of the control group of CL1-5 cell lysates and the treatment group of dasatinib-treated CL1-5 cell lysates, we demonstrated the applicability of the iPhos toolkit and reported the experimental results based on the iPhos-facilitated phosphoproteome investigation. And further, we also compared the strategy with pure DDA-based LC-MS/MS phosphoproteome investigation. The results of iPhos-facilitated targeted LC-MS/MS analysis convey more thorough and confident phosphopeptide identification than the results of pure DDA-based analysis. PMID:25521246

  16. Surface-Height Determination of Crevassed Glaciers-Mathematical Principles of an Autoadaptive Density-Dimension Algorithm and Validation Using ICESat-2 Simulator (SIMPL) Data

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.; Trantow, Thomas M.; Harding, David; Dabney, Philip W.

    2017-01-01

    Glacial acceleration is a main source of uncertainty in sea-level-change assessment. Measurement of ice-surface heights with a spatial and temporal resolution that not only allows elevation-change calculation, but also captures ice-surface morphology and its changes is required to aid in investigations of the geophysical processes associated with glacial acceleration.The Advanced Topographic Laser Altimeter System aboard NASAs future ICESat-2 Mission (launch 2017) will implement multibeam micropulse photon-counting lidar altimetry aimed at measuring ice-surface heights at 0.7-m along-track spacing. The instrument is designed to resolve spatial and temporal variability of rapidly changing glaciers and ice sheets and the Arctic sea ice. The new technology requires the development of a new mathematical algorithm for the retrieval of height information.We introduce the density-dimension algorithm (DDA) that utilizes the radial basis function to calculate a weighted density as a form of data aggregation in the photon cloud and considers density an additional dimension as an aid in auto-adaptive threshold determination. The auto-adaptive capability of the algorithm is necessary to separate returns from noise and signal photons under changing environmental conditions. The algorithm is evaluated using data collected with an ICESat-2 simulator instrument, the Slope Imaging Multi-polarization Photon-counting Lidar, over the heavily crevassed Giesecke Braer in Northwestern Greenland in summer 2015. Results demonstrate that ICESat-2 may be expected to provide ice-surface height measurements over crevassed glaciers and other complex ice surfaces. The DDA is generally applicable for the analysis of airborne and spaceborne micropulse photon-counting lidar data over complex and simple surfaces.

  17. Target Recognition in Ultra-Wideband SAR Imagery

    DTIC Science & Technology

    1994-08-01

    Poles in a Transfer Function for Real Frequency Informa- tion," Lawrence Livermore Laboratory, UCRL -52050 (April 1974). 24. V. K Jain, T. K. Sarker, and...0.777 Gaussian 0.849 1 5,265 0.978 93 Distribution Adrnnstr ARPAJASTO Defris Techi Info Ctr Attn T DePersia Attn DTIC-DDA (2 copies) 3701 N Fairfax Dr

  18. Occurences and Fate of DDT Principal Isomers/Metabolites, DDA, and o,p'-DDD Enantiomers in Fish, Sediment and Water at a DDT-Impacted Superfund Site

    EPA Science Inventory

    In the 1950s and 60s, discharges from a DDT manufacturing plant contaminated a tributary system of the Tennessee River near Huntsville, Alabama, USA. Regulatory action resulted in declaring the area a Superfund site which required remediation and extensive monitoring. Monitoring ...

  19. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891).

    PubMed

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Thinesh, Thangadurai; Selvin, Joseph; Selvan, Kanagaraj Muthamizh; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-06-01

    Chitosan was extracted from the pen of squid Doryteuthis singhalensis and characterized using FT-IR, NMR, CHN, SEM and DSC analysis. Purified chitosan was sulfated with chlorosulfonic acid in N,N-dimethylformamide and the added sulfate group was confirmed with FT-IR analysis. The molecular weight and degree of deacetylation (DDA) of chitosan was found 226.6kDa and 83.76% respectively. Chitosan exhibited potent antioxidant activity evidenced by reducing power, chelating ability on ferrous ions and scavenging activity on DPPH, superoxide and hydroxyl radicals. The anticoagulant assay using activated partial thromboplastin time (APTT) and prothrombin time (PT) showed chitosan as a strong anticoagulant. The results of this study showed possibility of using D. singhalensis pen as a non-conventional source of natural antioxidants and anticoagulant which can be incorporated in functional food formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    McKain, Ted F.; Holbrook, Greg J.

    1997-01-01

    The objective of this program was to define the aerodynamic design and manufacturing coordinates for an advanced 4:1 pressure ratio, single stage centrifugal compressor at a 10 lbm/sec flow size. The approach taken was to perform an exact scale of an existing DDA compressor originally designed at a flow size of 3.655 lbm/sec.

  1. Optical/IR Products - Naval Oceanography Portal

    Science.gov Websites

    are here: Home › USNO › Astrometry › Optical/IR Products USNO Logo USNO Navigation Optical/IR VLBI-based Products Astrometry Information Center Info Optical/IR Products Access to astrometric 2012. A poster paper describing the progress of URAT was presented at the April 2014 DDA meeting in

  2. Extinction efficiencies from DDA calculations solved for finite circular cylinders and disks

    NASA Technical Reports Server (NTRS)

    Withrow, J. R.; Cox, S. K.

    1993-01-01

    One of the most commonly noted uncertainties with respect to the modeling of cirrus clouds and their effect upon the planetary radiation balance is the disputed validity of the use of Mie scattering results as an approximation to the scattering results of the hexagonal plates and columns found in cirrus clouds. This approximation has historically been a kind of default, a result of the lack of an appropriate analytical solution of Maxwell's equations to particles other than infinite cylinders and spheroids. Recently, however, the use of such approximate techniques as the Discrete Dipole Approximation has made scattering solutions on such particles a computationally intensive but feasible possibility. In this study, the Discrete Dipole Approximation (DDA) developed by Flatau (1992) is used to find such solutions for homogeneous, circular cylinders and disks. This can serve to not only assess the validity of the current radiative transfer schemes which are available for the study of cirrus but also to extend the current approximation of equivalent spheres to an approximation of second order, homogeneous finite circular cylinders and disks. The results will be presented in the form of a single variable, the extinction efficiency.

  3. The numerical simulation on the stability of steep rock slope by DDA

    NASA Astrophysics Data System (ADS)

    Zhu, Jianye; Xue, Yiguo; Tao, Yufan; Zhang, Kai; Li, Zhiqiang; Zhang, Xuedong; Yang, Ying

    2017-05-01

    China is a mountainous country, especially in the southwest area. Recently, the variety of geological disasters such as landslides caused by roadway excavation has become a growing concern for our society. Blindly pursuing mining interests without regard for either the environment or residents in the surrounding areas has created a dangerous situation. In recent years, frequent collapses have occurred at Zengzi Rock in Chongqing, especially after torrential rains [1]. This landslide site is a typical example of collapse caused by mine roadway excavations. To study the mechanism of mining slope stability, we conducted a numerical simulation by DDA based on Zengzi Rock in Chongqing, China. The numerical simulation analyzes the slopes under different engineering conditions and rainfall conditions. The results show that the slope has already been changed under the action of its own joints and fissures. After the excavation of the roadway and the rainfall action, this change is drastically increased and the effect is obvious. Through the result graph, we can find that the change of the displacement and stress distribution is obvious, and the simulation results can be great significance to the mining and support of similar mountain conditions.

  4. Gas turbine engines and transmissions for bus demonstration programs. Technical status report, 30 April 1979-31 July 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigro, D.N.

    1979-07-01

    The quarterly status report covers the period from 30 April 1979 through 31 July 1979 and is a summary of DDA activities for the effort performed on the procurement and delivery of eleven (11) Allison GT 404-4 gas turbine engines and five (5) HT740CT and six (6) V730CT Allison automatic transmissions and the required associated software. The contract requires the delivery of eleven (11) Allison GT 404-4 Industrial Gas Turbine Engines and five (5) HT740CT and six (6) V730CT Allison Automatic Transmissions for the Greyhound and Transit Coaches, respectively. In addition, software items such as cost reports, technical reports, installationmore » drawings, acceptance test data and parts lists are required. A recent decision by the DOE will modify the build configuration for the last four (4) Transit Coach engines. It was decided by the DOE at a meeting in Washington, DC on March 28, 1979 with representatives from DDA, NASA/LeRC, JPL and Booz-Allen and Hamilton that these engines will be built with ceramic regenerators. (TFD)« less

  5. Synthesis and Characterization of Water-Soluble Polythiophene Derivatives for Cell Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fengyan; Li, Meng; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Liu, Libing; Lv, Fengting; Wang, Shu

    2015-01-01

    In this work, four water-soluble polythiophene derivatives (PT, PT-DDA, PT-ADA, and PT-ADA-PPR) with different pendant moieties were synthesized via oxidative copolymerization by FeCl3. By increasing the hydrophobic ability of side chain moieties, there is a gradually blue shift for the maximum absorption wavelength and red shift for the maximum emission wavelength, a reducing trend for fluorescence quantum yields, a growing trend for Stokes shift, and an increasing trend for the mean sizes in the order of PT, PT-ADA, and PT-DDA. All the synthesized polymers show low toxicity and good photostability and accumulate in the lysosomes of A549 cells. Furthermore, the introduction of porphyrin group to PT-ADA side chain (PT-ADA-PPR) broadens the absorption and emission ranges of PT-ADA. PT-ADA-PPR could be excited at two different excitation wavelengths (488 nm and 559 nm) and exhibits two emission pathways, and dual-color fluorescence images (orange and red) of PT-ADA-PPR accumulated in A549 cells are observed. Thus, PT-ADA-PPR could be used as an excellent dual-color fluorescent and lysosome-specific imaging material.

  6. DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor.

    PubMed

    Sikora, Bartek; Eoff, Robert L; Matson, Steven W; Raney, Kevin D

    2006-11-24

    The F plasmid TraI protein (DNA helicase I) plays an essential role in conjugative DNA transfer as both a transesterase and a helicase. Previous work has shown that the 192-kDa TraI protein is a highly processive helicase, catalytically separating >850 bp under steady-state conditions. In this report, we examine the kinetic mechanism describing DNA unwinding of TraI. The kinetic step size of TraI was measured under both single turnover and pre-steady-state conditions. The resulting kinetic step-size estimate was approximately 6-8 bp step(-1). TraI can separate double-stranded DNA at a rate of approximately 1100 bp s(-1), similar to the measured unwinding rate of the RecBCD helicase, and appears to dissociate very slowly from the 3' terminus following translocation and strand-separation events. Analyses of pre-steady-state burst amplitudes indicate that TraI can function as a monomer, similar to the bacteriophage T4 helicase, Dda. However, unlike Dda, TraI is a highly processive monomeric helicase, making it unique among the DNA helicases characterized thus far.

  7. Enhancement of a virtual reality wheelchair simulator to include qualitative and quantitative performance metrics.

    PubMed

    Harrison, C S; Grant, P M; Conway, B A

    2010-01-01

    The increasing importance of inclusive design and in particular accessibility guidelines established in the U.K. 1996 Disability Discrimination Act (DDA) has been a prime motivation for the work on wheelchair access, a subset of the DDA guidelines, described in this article. The development of these guidelines mirrors the long-standing provisions developed in the U.S. In order to raise awareness of these guidelines and in particular to give architects, building designers, and users a physical sensation of how a planned development could be experienced, a wheelchair virtual reality system was developed. This compares with conventional methods of measuring against drawings and comparing dimensions against building regulations, established in the U.K. under British standards. Features of this approach include the marriage of an electromechanical force-feedback system with high-quality immersive graphics as well as the potential ability to generate a physiological rating of buildings that do not yet exist. The provision of this sense of "feel" augments immersion within the virtual reality environment and also provides the basis from which both qualitative and quantitative measures of a building's access performance can be gained.

  8. Occurrences and fate of DDT principal isomers/metabolites, DDA, and o,p'-DDD enantiomers in fish, sediment and water at a DDT-impacted Superfund site.

    PubMed

    Garrison, A W; Cyterski, M; Roberts, K D; Burdette, D; Williamson, J; Avants, J K

    2014-11-01

    In the 1950s and 60s, discharges from a DDT manufacturing plant contaminated a tributary system of the Tennessee River near Huntsville, Alabama, USA. Regulatory action resulted in declaring the area a Superfund site which required remediation and extensive monitoring. Monitoring data collected from 1988, after remediation, through 2011 showed annual decreases approximating first-order decay in concentrations of total DDT and its six principal congeners (p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE and o,p'-DDE) in filets from three species of fish. As of 2013, these concentrations met the regulatory requirements of 5 mg/kg or less total DDT for each fish tested. The enantiomer fractions (EF) of chiral o,p'-DDD in smallmouth buffalo and channel catfish were always below 0.5, indicating preferential decay of the (+)-enantiomer of this congener; this EF did not change significantly over 15 years. The often-neglected DDT metabolite p,p'-DDA was found at a concentration of about 20 μg/l in the ecosystem water. Published by Elsevier Ltd.

  9. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Min, Fan-fei; Liu, Lingyun; Liu, Chunfu; Lu, Fangqin

    2017-10-01

    The adsorption of four different amine/ammonium salts of DDA (Dodecyl amine), MDA (N-methyldodecyl amine), DMDA (N,N-dimethyldodecyl amine) and DTAC (Dodecyl trimethyl ammonium chloride) on kaolinite particles was investigated in the study through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that different amine/ammonium salts can adsorb on the kaolinite surface to enhance the hydrophobicity and reduce the electronegativity of kaolinite particle surface, and thus induce a strong hydrophobic aggregation of kaolinite particles which promotes the settlement of kaolinite. To explore the adsorption mechanism of these four amine/ammonium salts on kaolinite surfaces, the adsorptions of DDA+, MDA+, DMDA+ and DTAC+ on kaolinite (001) surface and (00 1 bar) surface are calculated with DFT (Density functional theory). The DFT calculation results indicate that different amine/ammonium cations can strongly adsorbed on kaolinite (001) surface and (00 1 bar) surface by forming Nsbnd H⋯O strong hydrogen bonds or Csbnd H⋯O weak hydrogen bonds, and there are strongly electrostatic attractions between different amine/ammonium cations and kaolinite surfaces. The main adsorption mechanism of amine/ammonium cations on kaolinite is hydrogen-bond interaction and electrostatic attraction.

  10. Induction of Unconventional T Cells by a Mutant Mycobacterium bovis BCG Strain Formulated in Cationic Liposomes Correlates with Protection against Mycobacterium tuberculosis Infections of Immunocompromised Mice

    PubMed Central

    Yabe, Idalia; Morris, Sheldon; Cowley, Siobhan

    2016-01-01

    Earlier studies aimed at defining protective immunity induced by Mycobacterium bovis BCG immunization have largely focused on the induction of antituberculosis CD4+ and CD8+ T cell responses. Here we describe a vaccine consisting of a BCGΔmmaA4 deletion mutant formulated in dimethyl dioctadecyl-ammonium bromide (DDA) with d-(+)-trehalose 6,6′-dibehenate (TDB) (DDA/TDB) adjuvant (A4/Adj) that protected TCRδ−/− mice depleted of CD4+, CD8+, and NK1.1+ T cells against an aerosol challenge with M. tuberculosis. These mice were significantly protected relative to mice immunized with a nonadjuvanted BCGΔmmaA4 (BCG-A4) mutant and nonvaccinated controls at 2 months and 9 months postvaccination. In the absence of all T cells following treatment with anti-Thy1.2 antibody, the immunized mice lost the ability to control the infection. These results indicate that an unconventional T cell population was mediating protection in the absence of CD4+, CD8+, NK1.1+, and TCRγδ T cells and could exhibit memory. Focusing on CD4− CD8− double-negative (DN) T cells, we found that these cells accumulated in the lungs postchallenge significantly more in A4/Adj-immunized mice and induced significantly greater frequencies of pulmonary gamma interferon (IFN-γ)-producing cells than were seen in the nonvaccinated or nonadjuvanted BCG control groups. Moreover, pulmonary DN T cells from the A4/Adj group exhibited significantly higher IFN-γ integrated median fluorescence intensity (iMFI) values than were seen in the control groups. We also showed that enriched DN T cells from mice immunized with A4/Adj could control mycobacterial growth in vitro significantly better than naive whole-spleen cells. These results suggest that formulating BCG in DDA/TDB adjuvant confers superior protection in immunocompromised mice and likely involves the induction of long-lived memory DN T cells. PMID:27226281

  11. Tools for beach health data management, data processing, and predictive model implementation

    USGS Publications Warehouse

    ,

    2013-01-01

    This fact sheet describes utilities created for management of recreational waters to provide efficient data management, data aggregation, and predictive modeling as well as a prototype geographic information system (GIS)-based tool for data visualization and summary. All of these utilities were developed to assist beach managers in making decisions to protect public health. The Environmental Data Discovery and Transformation (EnDDaT) Web service identifies, compiles, and sorts environmental data from a variety of sources that help to define climatic, hydrologic, and hydrodynamic characteristics including multiple data sources within the U.S. Geological Survey and the National Oceanic and Atmospheric Administration. The Great Lakes Beach Health Database (GLBH-DB) and Web application was designed to provide a flexible input, export, and storage platform for beach water quality and sanitary survey monitoring data to compliment beach monitoring programs within the Great Lakes. A real-time predictive modeling strategy was implemented by combining the capabilities of EnDDaT and the GLBH-DB for timely, automated prediction of beach water quality. The GIS-based tool was developed to map beaches based on their physical and biological characteristics, which was shared with multiple partners to provide concepts and information for future Web-accessible beach data outlets.

  12. D1 Receptor Activation in the Mushroom Bodies Rescues Sleep Loss Induced Learning Impairments in Drosophila

    PubMed Central

    Seugnet, Laurent; Suzuki, Yasuko; Vine, Lucy; Gottschalk, Laura; Shaw, Paul J

    2008-01-01

    Background Extended wakefulness disrupts acquisition of short term memories in mammals. However, the underlying molecular mechanisms triggered by extended waking and restored by sleep are unknown. Moreover, the neuronal circuits that depend on sleep for optimal learning remain unidentified. Results Learning was evaluated using Aversive Phototaxic Suppression (APS). In this task, flies learn to avoid light that is paired with an aversive stimulus (quinine /humidity). We demonstrate extensive homology in sleep deprivation induced learning impairment between flies and humans. Both 6 h and 12 h of sleep deprivation are sufficient to impair learning in Canton-S (Cs) flies. Moreover, learning is impaired at the end of the normal waking-day in direct correlation with time spent awake. Mechanistic studies indicate that this task requires intact mushroom bodies (MBs) and requires the Dopamine D1-like receptor (dDA1). Importantly, sleep deprivation induced learning impairments could be rescued by targeted gene expression of the dDA1 receptor to the MBs. Conclusion These data provide direct evidence that extended wakefulness disrupts learning in Drosophila. These results demonstrate that it is possible to prevent the effects of sleep deprivation by targeting a single neuronal structure and identify cellular and molecular targets adversely affected by extended waking in a genetically tractable model organism. PMID:18674913

  13. In Vivo and In Vitro Metabolites from the Main Diester and Monoester Diterpenoid Alkaloids in a Traditional Chinese Herb, the Aconitum Species

    PubMed Central

    Zhang, Min; Peng, Chong-sheng; Li, Xiao-bo

    2015-01-01

    Diester diterpenoid alkaloids (DDAs), such as aconitine (AC), mesaconitine (MA), and hypaconitine (HA), are both pharmacologically active compounds and toxic ingredients in a traditional Chinese herb, the Aconitum species. Many DDA metabolism studies have been performed to explore mechanisms for reducing toxicity in these compounds and in Aconitum species extracts for safe clinical administration. In this review, we summarize recent progress on the metabolism of toxic AC, MA, and HA and corresponding monoester diterpenoid alkaloids (MDAs) in the gastrointestinal tract and liver in different animal species and humans in vivo and/or in vitro, where these alkaloids are primarily metabolized by cytochrome P450 enzymes, carboxylesterases, and intestinal bacteria, which produces phase I metabolites, ester hydrolysed products, and lipoalkaloids. Furthermore, we classify metabolites detected in the blood and urine, where the aforementioned metabolites are absorbed and excreted. Less toxic MDAs and nontoxic alcohol amines are the primary DDA metabolites detected in the blood. Most other DDAs metabolites produced in the intestine and liver detected in the urine have not been reported in the blood. We propose an explanation for this nonconformity. Finally, taking AC, for instance, we generalize a process of toxicity reduction in the body after oral AC administration for the first time. PMID:25705235

  14. Comparative study of alkylthiols and alkylamines for the phase transfer of gold nanoparticles from an aqueous phase to n-hexane.

    PubMed

    Li, Lingxiangyu; Leopold, Kerstin; Schuster, Michael

    2013-05-01

    An efficient ligand-assisted phase transfer method has been developed to transfer gold nanoparticles (Au-NPs, d: 5-25 nm) from an aqueous solution to n-hexane. Four different ligands, namely 1-dodecanethiol (DDT), 1-octadecanethiol (ODT), dodecylamine (DDA), and octadecylamine (ODA) were investigated, and DDT was found to be the most efficient ligand. It appears that the molar ratio of DDT to Au-NPs is a critical factor affecting the transfer efficiency, and 270-310 is found to be the optimum range, under which the transfer efficiency is >96%. Moreover, the DDT-assisted phase transfer can preserve the shape and size of the Au-NPs, which was confirmed by UV-vis spectra and transmission electron microscopy (TEM). Additionally, the transferred Au-NPs still can be well dispersed in the n-hexane phase and remain stable for at least 2 weeks. On the other hand, the ODT-, DDA-, and ODA-assisted phase transfer is fraught with problems either related to transfer efficiency or NPs aggregation. Overall, the DDT-assisted phase transfer of Au-NPs provides a rapid and efficient method to recover Au-NPs from an aqueous solution to n-hexane. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Snowfall retrieval at X, Ka and W bands: consistency of backscattering and microphysical properties using BAECC ground-based measurements

    NASA Astrophysics Data System (ADS)

    Tecla Falconi, Marta; von Lerber, Annakaisa; Ori, Davide; Silvio Marzano, Frank; Moisseev, Dmitri

    2018-05-01

    Radar-based snowfall intensity retrieval is investigated at centimeter and millimeter wavelengths using co-located ground-based multi-frequency radar and video-disdrometer observations. Using data from four snowfall events, recorded during the Biogenic Aerosols Effects on Clouds and Climate (BAECC) campaign in Finland, measurements of liquid-water-equivalent snowfall rate S are correlated to radar equivalent reflectivity factors Ze, measured by the Atmospheric Radiation Measurement (ARM) cloud radars operating at X, Ka and W frequency bands. From these combined observations, power-law Ze-S relationships are derived for all three frequencies considering the influence of riming. Using microwave radiometer observations of liquid water path, the measured precipitation is divided into lightly, moderately and heavily rimed snow. Interestingly lightly rimed snow events show a spectrally distinct signature of Ze-S with respect to moderately or heavily rimed snow cases. In order to understand the connection between snowflake microphysical and multi-frequency backscattering properties, numerical simulations are performed by using the particle size distribution provided by the in situ video disdrometer and retrieved ice particle masses. The latter are carried out by using both the T-matrix method (TMM) applied to soft-spheroid particle models with different aspect ratios and exploiting a pre-computed discrete dipole approximation (DDA) database for rimed aggregates. Based on the presented results, it is concluded that the soft-spheroid approximation can be adopted to explain the observed multi-frequency Ze-S relations if a proper spheroid aspect ratio is selected. The latter may depend on the degree of riming in snowfall. A further analysis of the backscattering simulations reveals that TMM cross sections are higher than the DDA ones for small ice particles, but lower for larger particles. The differences of computed cross sections for larger and smaller particles are compensating for each other. This may explain why the soft-spheroid approximation is satisfactory for radar reflectivity simulations under study.

  16. A Coherent VLSI Design Environment.

    DTIC Science & Technology

    1986-03-31

    Schema were a CMOS sorter and a TTL PC board for gathering statistics from a Multibus. Neither design was completed using Schema, but at least in the...technique for automatically adjusting signal delays in an MOS system has been developed. The Dynamic Delay Adjustment (DDA) technique provides...34Synchronization Reliability in CMOS Technology," IEEE J. of Solid - State Circuits, Vol. SC-20, No. 4, pp. 880-883, 1985. * [8] J. Hohl, W. Larsen and L. Schooley

  17. Field Tests of Optical Instruments

    DTIC Science & Technology

    1947-03-15

    s > S3KS55Ü j.6),&;i.r..fc..’.w.~— * s1 Field Tests of Optical Instruments ^. (Not known) (Same) Bureau of Ordnance. Washington, D..D...a large-scale field test of optical instruments are described. The tests were instituted to check the correctness of theoretical considerations and...of laboratory tests -which have been v.sed in the selection and design of such instruments. Field con- ditions approximated as far as possible those

  18. Determination of Paleoseismic Ground Motions from Inversion of Block Failures in Masonry Structures

    NASA Astrophysics Data System (ADS)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2010-12-01

    Accurate estimation of ground motion parameters such as expected peak ground acceleration (PGA), predominant frequency and duration of motion in seismically active regions, is crucial for hazard preparedness and sound engineering design. The best way to estimate quantitatively these parameters would be to investigate long term recorded data of past strong earthquakes in a studied region. In some regions of the world however recorded data are scarce due to lack of seismic network infrastructure, and in all regions the availability of recorded data is restricted to the late 19th century and onwards. Therefore, existing instrumental data are hardly representative of the true seismicity of a region. When recorded data are scarce or not available, alternative methods may be applied, for example adopting a quantitative paleoseismic approach. In this research we suggest the use of seismically damaged masonry structures as paleoseismic indicators. Visitors to archeological sites all over the world are often struck by structural failure features which seem to be "seismically driven", particularly when inspecting old masonry structures. While it is widely accepted that no other loading mechanism can explain the preserved damage, the actual driving mechanism remains enigmatic even now. In this research we wish to explore how such failures may be triggered by earthquake induced ground motions and use observed block displacements to determine the characteristic parameters of the paleoseismic earthquake motion, namely duration, frequency, and amplitude. This is performed utilizing a 3D, fully dynamic, numerical analysis performed with the Discontinuous Deformation Analysis (DDA) method. Several case studies are selected for 3D numerical analysis. First we study a simple structure in the old city of L'Aquila, Italy. L'Aquila was hit by an earthquake on April 6th, 2009, with over 300 casualties and many of its medieval buildings damaged. This case study is an excellent opportunity to validate our method, since in the case of L'Aquila, both the damaged structure and the ground motions are recorded. The 3D modeling of the structure is rather complicated, and is performed by first modeling the structure with CAD software and later "translating" the model to the numerical code used. In the future, several more case studies will be analyzed, such as Kedesh and Avdat in Israel, and in collaboration with Hugh and Bilham the Temple of Shiva at Pandrethan, Kashmir. Establishing a numerical 3D dynamic analysis for back analysis of stone displacement in masonry structures as a paleoseismic tool can provide much needed data on ground motion parameters in regions where instrumental data are scarce, or are completely absent.

  19. Pseudotargeted MS Method for the Sensitive Analysis of Protein Phosphorylation in Protein Complexes.

    PubMed

    Lyu, Jiawen; Wang, Yan; Mao, Jiawei; Yao, Yating; Wang, Shujuan; Zheng, Yong; Ye, Mingliang

    2018-05-15

    In this study, we presented an enrichment-free approach for the sensitive analysis of protein phosphorylation in minute amounts of samples, such as purified protein complexes. This method takes advantage of the high sensitivity of parallel reaction monitoring (PRM). Specifically, low confident phosphopeptides identified from the data-dependent acquisition (DDA) data set were used to build a pseudotargeted list for PRM analysis to allow the identification of additional phosphopeptides with high confidence. The development of this targeted approach is very easy as the same sample and the same LC-system were used for the discovery and the targeted analysis phases. No sample fractionation or enrichment was required for the discovery phase which allowed this method to analyze minute amount of sample. We applied this pseudotargeted MS method to quantitatively examine phosphopeptides in affinity purified endogenous Shc1 protein complexes at four temporal stages of EGF signaling and identified 82 phospho-sites. To our knowledge, this is the highest number of phospho-sites identified from the protein complexes. This pseudotargeted MS method is highly sensitive in the identification of low abundance phosphopeptides and could be a powerful tool to study phosphorylation-regulated assembly of protein complex.

  20. Assessment of Sample Preparation Bias in Mass Spectrometry-Based Proteomics.

    PubMed

    Klont, Frank; Bras, Linda; Wolters, Justina C; Ongay, Sara; Bischoff, Rainer; Halmos, Gyorgy B; Horvatovich, Péter

    2018-04-17

    For mass spectrometry-based proteomics, the selected sample preparation strategy is a key determinant for information that will be obtained. However, the corresponding selection is often not based on a fit-for-purpose evaluation. Here we report a comparison of in-gel (IGD), in-solution (ISD), on-filter (OFD), and on-pellet digestion (OPD) workflows on the basis of targeted (QconCAT-multiple reaction monitoring (MRM) method for mitochondrial proteins) and discovery proteomics (data-dependent acquisition, DDA) analyses using three different human head and neck tissues (i.e., nasal polyps, parotid gland, and palatine tonsils). Our study reveals differences between the sample preparation methods, for example, with respect to protein and peptide losses, quantification variability, protocol-induced methionine oxidation, and asparagine/glutamine deamidation as well as identification of cysteine-containing peptides. However, none of the methods performed best for all types of tissues, which argues against the existence of a universal sample preparation method for proteome analysis.

  1. Probing plasmon resonances of individual aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi

    2018-01-01

    The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.

  2. Photochemistry of 1,4-dihydronaphtho(1,8-de)(1,2)diazepine. Preparation and electron spin resonance observation of the unsubstituted 1,8-naphthoquinodimethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagni, R.M.; Burnett, M.N.; Dodd, J.R.

    1977-03-16

    In an attempt to prepare selenated tRNA, transformation of 4-thiouridine to selenouridine in tRNA was attempted. Feasibility studies were performed by spectrophotometrically monitored conversion of 1 methyl-4- thiocyanatouracil to 1-methyl-4-selenouracil by NaHSe. E.coli mixed tRNA were exposed to the same sequence of reactions and the identity of the products was confirmed. (DDA)

  3. Neutron-scattering spectrum of cesium hydrogen dinitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roziere, J.; Berney, C.V.

    1976-03-17

    The neutron-scattering spectrum of cesium hydrogen dinitrate was obtained in order to complete previously reported structural chemical studies obtained by x-ray diffraction and infrared-Raman spectra. The proton position was of particular interest. Satellite peak intensities suggested proton coupling to motions of the NO/sub 3//sup -/ groups, and therefore not located at the center of the distorted tetrahedron formed by four of the oxygen groups. The precise position of the proton was not established. (DDA)

  4. Invariant Imbedded T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    NASA Technical Reports Server (NTRS)

    Pelissier, Craig; Kuo, Kwo-Sen; Clune, Thomas; Adams, Ian; Munchak, Stephen

    2017-01-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM IITM+SOV software to the community under an open source license.

  5. Chlamydia trachomatis serovar distribution and other sexually transmitted coinfections in subjects attending an STD outpatients clinic in Italy.

    PubMed

    Marangoni, Antonella; Foschi, Claudio; Nardini, Paola; D'Antuono, Antonietta; Banzola, Nicoletta; Di Francesco, Antonietta; Ostanello, Fabio; Russo, Incoronata; Donati, Manuela; Cevenini, Roberto

    2012-04-01

    We studied the prevalence of Chlamydia trachomatis (CT) urogenital infection and the distribution of different genotypes in a non-selected STD population of 1625 patients, evaluating presence of coinfections with other sexually transmitted diseases. Each patient was bled to perform serological tests for syphilis and HIV, then urethral or endocervical swabs were obtained for the detection of CT and Neisseria gonorrhoeae by culture. DNA extracted from remnant positive swabs was amplified by omp1 Nested PCR and products were sequenced. Total prevalence of CT infection was 6.3% (103/1625), with strong differences between men and women (11.4% vs 3.9%, P<0.01). Clinical symptoms and coinfections were much more frequent in men than in women (P<0.01). The most common serovar was E (prevalence of 38.8%), followed by G (23.3%), F (13.5%) D/Da (11.6%) and J (4.8%). Serovars distribution was statistically different between men and women (P=0.042) and among patients with or without coinfection (P=0.035); patients infected by serovar D/Da showed the highest coinfection rate. This study can be considered a contribution in increasing knowledge on CT serovar distribution in Italy. Further studies are needed to better define molecular epidemiology of CT infection and to investigate its correlation with other STDs.

  6. Invariant Imbedding T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    NASA Astrophysics Data System (ADS)

    Pelissier, C.; Clune, T.; Kuo, K. S.; Munchak, S. J.; Adams, I. S.

    2017-12-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM & IITM+SOV software to the community under an open source license.

  7. Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery.

    PubMed

    Thibault, Marc; Lavertu, Marc; Astolfi, Mélina; Buschmann, Michael D

    2016-10-01

    Chitosan-based polyplexes are known to traffic through lysosomes for a relatively long time, independent of the degree of deacetylation (DDA) and the number average molecular weight (Mn) of the polymer, even though both of these parameters have profound effects on polyplex stability and transfection efficiency. A better understanding of the lysosomal barrier is paramount to the rational design of vectors capable of overcoming obstacles to transgene expression. The aim of the present study was to investigate if lysosomal transit affects chitosan-based polyplex transfection efficiency in a structure-dependent (DDA, Mn) manner. Toward this end, we analyzed the effects of intracellular trafficking modifying agents on transfection efficiency and intracellular vesicular trafficking of polyplexes with different structural properties and stabilities or nucleic acid binding affinity. The use of agents that modify endosome/lysosome acidification and transit processes by distinct mechanisms and their effect on cell viability, polyplex uptake, vesicular trafficking, and transfection efficiency revealed novel and strong chitosan structure-dependent consequences of lysosomal transit. Inhibiting lysosomal transit using chloroquine significantly increased the efficiency of unstable polyplexes, while having minimal effects for polyplexes with intermediate or high stability. In parallel, specifically inhibiting the acidification of vesicles abrogated transfection for all formulations, suggesting that vesicular acidification is essential to promote transfection, most probably by facilitating lysosomal escape. These results provide novel insights into the structure-performance relationship of chitosan-based gene delivery systems.

  8. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Deformation Monitoring and Analysis of Lsp Landslide Based on Gbinsar

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Guo, J.; Yang, F.

    2018-05-01

    Monitoring and analyzing the deformation of the river landslide in city to master the deformation law of landslide, which is an important means of landslide safety assessment. In this paper, aiming at the stability of the Liu Sha Peninsula Landslide during its strengthening process after the landslide disaster. Continuous and high precision deformation monitoring of the landslide was carried out by GBInSAR technique. Meanwhile, the two-dimensional deformation time series pictures of the landslide body were retrieved by the time series analysis method. The deformation monitoring and analysis results show that the reinforcement belt on the landslide body was basically stable and the deformation of most PS points on the reinforcement belt was within 1 mm. The deformation of most areas on the landslide body was basically within 4 mm, and the deformation presented obvious nonlinear changes. GBInSAR technique can quickly and effectively obtain the entire deformation information of the river landslide and the evolution process of deformation.

  10. Comparative Study of Four Membranes for Evaluation of New Insect/Arthropod Repellents Using Aedes aegypti

    DTIC Science & Technology

    2008-01-01

    market and had no plans to continuously provide the membranes. Thus, in an effort to find an alternative iu t•itro membrane test system, our initial...Professional: R Chandra Sekhar Junior SponsoriDg Editor: Nimisha Gorwami Manager-sales & Marketing : S Girish Controller-Production: Rajender P Ghansela...DDA Market , Paschim Vihar, New Delhi 110 063, and printed at Sai Printo Pack Pvt. Ltd., A-102/4, Okhla Industrial Area, Phase II. New Delhi 110 020

  11. Deployment Area Selection and Land Withdrawal/Acquisition. M-X/MPS (M-X/Multiple Protective Shelter) Environmental Technical Report. Economic Model.

    DTIC Science & Technology

    1981-10-02

    Estimated non-residential building development . 176 D-I Correspondence between RIMS sectors and 1974 Census of Agriculture reporting categories. 185 D-2...deployment would be the development of new economic sectors . For example, building an M-X operating N.’ base or DDA facilities in a county would be likely...construction sectors . For the rural Nevada/Utah ROI counties, many of these location quotients are significantly less than one and in many cases zero because

  12. Development and Application of a Tendon Prosthesis for Early Functional Restoration of the Hand.

    DTIC Science & Technology

    1975-09-01

    F’A-AOk 322 JEFFERSON MEDICAL COLL PHILADELPHIA PA F/B 6/5 DEVELOPMENT AND APPLICATION OF A TENDON PROSTHESIS FOR EARLY FU--ETC(U) SEP 75 J M HUNTER...LEVEL INVENTORY DEELOPKWTI AND APPLICATION OF A TENDON PROSTHESIS FOR EARLY FUNCTIOKAL RESTORATION OF THE RAND BIDETICATION DISTRIBUTION STATEMENT A...AND RETURN TO DTIC-DDA-2 FORM DOCUMENT PROCESSING SHEETCToc 79 0 AD DEVELOPNDT AND APPLICATION OF A TENDOR PROSTHESIS FOR EARLY FUNCTIONAL

  13. A homogeneous 2D deformation of geological interest: Rotation shear

    NASA Astrophysics Data System (ADS)

    Bastida, Fernando; Bobillo-Ares, Nilo C.; Aller, Jesús; Lisle, Richard J.

    2018-07-01

    We define a simple two-dimensional deformation called "rotation shear". It has one line of no finite longitudinal strain with invariant direction and another one that rotates with the deformation. An analysis of this deformation is carried out. Rotation shear superficially resembles simple shear but the analysis reveals that the two deformations have very different properties. In general, lines deformed by simple shear show a more complex deformation history and undergo greater longitudinal strain, i.e. are more extended, than lines deformed by rotation shear. Rotation shear is used to explain the development of geological structures such as kink bands, ideal similar folds, crenulation and crenulation cleavage and shear zones.

  14. Divergent mechanisms of insulin-like growth factor I and II on rat hepatocyte proliferation.

    PubMed

    Raper, S; Kothary, P; Ishoo, E; Dikin, M; Kokudo, N; Hashimoto, M; DeMatteo, R P

    1995-07-21

    Insulin-like growth factors I and II are peptides with a structural homology for proinsulin, and are involved in hepatocyte proliferation. IGF-I and IGF-II, however, have different metabolic roles, and their mechanisms of action are incompletely known. We hypothesized that IGF-I and IGF-II act by different signal transduction pathways. To test this hypothesis, hepatocytes from 200 g male Sprague-Dawley rats were isolated by a two-step collagenase perfusion technique and plated at a density of 10(5) cells/16 mm Primaria plate. Proliferation was measured by [3H]thymidine ([3H]thy) incorporation into DNA, and an autoradiographic nuclear labeling index (LI). To analyze signal transduction, cyclic AMP (cAMP) levels were measured 5 min after addition of reagents by a radioimmunoassay. Reagents (doses) used were: IGF-I (2 nM), IGF-II (2 nM), the inhibitory peptide somatostatin-14 (SS14) (10 nM), and the adenylyl cyclase antagonist dideoxyadenosine (DDA) (10 microM). A summary of the findings is as follows: (1) IGF-I stimulates [3H]thy, LI and cAMP accumulation. (2) IGF-II stimulates [3H]thy and LI but not cAMP; (3) IGF-I but not IGF-II effects are inhibited by SS14 and DDA. We conclude that the hepatotrophic effects of IGF-I and IGF-II occur by different mechanisms: IGF-I is cAMP-dependent, IGF-II is cAMP-independent.

  15. Aconitum in traditional Chinese medicine: a valuable drug or an unpredictable risk?

    PubMed

    Singhuber, Judith; Zhu, Ming; Prinz, Sonja; Kopp, Brigitte

    2009-10-29

    Aconitum species have been used in China as an essential drug in Traditional Chinese Medicine (TCM) for 2000 years. Reviewing the clinical application of Aconitum, their pharmacological effects, toxicity and detoxifying measures, herb-herb interactions, clinical taboos, famous herbal formulas, traditional and current herbal processing methods based upon a wide range of literature investigations serve as a case study to explore the multidisciplinary implications of botanicals used in TCM. The toxicological risk of improper usage of Aconitum remains very high, especially in countries like China, India and Japan. The toxicity of Aconitum mainly derives from the diester diterpene alkaloids (DDAs) including aconitine (AC), mesaconitine (MA) and hypaconitine (HA). They can be decomposed into less or non-toxic derivatives through Chinese traditional processing methods (Paozhi), which play an essential role in detoxification. Using Paozhi, the three main forms of processed aconite -- yanfuzi, heishunpian and baifupian -- can be obtained (CPCommission, 2005). Moreover, some new processing techniques have been developed in China such as pressure-steaming. The current development of fingerprint assays, in particular HPLC, has set a good basis to conduct an appropriate quality control for TCM crude herbs and their ready-made products. Therefore, a stipulation for a maximum level of DDA content of Aconitum is highly desirable in order to guarantee the clinical safety and its low toxicity in decoctions. Newly developed HPLC methods have made the accurate and simultaneous determination and quantification of DDA content interesting.

  16. Analysis and evaluation of WRF microphysical schemes for deep moist convection over south-eastern South America (SESA) using microwave satellite observations and radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine

    2017-10-01

    In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (Dmax') but whose mass is conserved. The performance of the radiative transfer simulations is evaluated by comparing the simulations with the available coincident microwave observations up to 190 GHz (with observations from Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI), Microwave Humidity Sounder (MHS) and Special Sensor Microwave Imager/Sounder (SSMI/S)) using the χ2 test. Good agreement is obtained with all observations provided special care is taken to represent the scattering properties of the snow and graupel species.

  17. Determination of the plutonium content in a spent fuel assembly by passive and active interrogation using a differential die-away instrument

    NASA Astrophysics Data System (ADS)

    Henzl, V.; Croft, S.; Richard, J.; Swinhoe, M. T.; Tobin, S. J.

    2013-06-01

    In this paper, we present a novel approach to estimating the total plutonium content in a spent fuel assembly (SFA) that is based on combining information from a passive measurement of the total neutron count rate (PN) of the assayed SFA and a measure of its multiplication. While PN can be measured essentially with any non-destructive assay (NDA) technique capable of neutron detection, the measure of multiplication is, in our approach, determined by means of active interrogation using an instrument based on the Differential Die-Away technique (DDA). The DDA is a NDA technique developed within the U.S. Department of Energy's Next Generation Safeguards Initiative (NGSI) project focused on the utilization of NDA techniques to determine the elemental plutonium content in commercial nuclear SFA's [1]. This approach was adopted since DDA also allows determination of other SFA characteristics, such as burnup, initial enrichment, and cooling time, and also allows for detection of certain types of diversion of nuclear material. The quantification of total plutonium is obtained using an analytical correlation function in terms of the observed PN and active multiplication. Although somewhat similar approaches relating Pu content with PN have been adopted in the past, we demonstrate by extensive simulation of the fuel irradiation and NDA process that our analytical method is independent of explicit knowledge of the initial enrichment, burnup, and an absolute value of the SFA's reactivity (i.e. multiplication factor). We show that when tested with MCNPX™ simulations comprising the 64 SFA NGSI Spent Fuel Library-1 we were able to determine elemental plutonium content, using just a few calibration parameters, with an average variation in the prediction of around 1-2% across the wide dynamic range of irradiation history parameters used, namely initial enrichment (IE=2-5%), burnup (BU=15-60 GWd/tU) and cooling time (CT=1-80 y). In this paper we describe the basic approach and the success obtained against synthetic data. We recognize that our synthetic data may not fully capture the rich behavior of actual irradiated fuel and the uncertainties of the practical measurements. However, this design study is based on a rather complete nuclide inventory and the correlations for Pu seem robust to variation of input. Thus it is concluded that the proposed method is sufficiently promising that further experimentally based work is desirable.

  18. Testing deformation hypotheses by constraints on a time series of geodetic observations

    NASA Astrophysics Data System (ADS)

    Velsink, Hiddo

    2018-01-01

    In geodetic deformation analysis observations are used to identify form and size changes of a geodetic network, representing objects on the earth's surface. The network points are monitored, often continuously, because of suspected deformations. A deformation may affect many points during many epochs. The problem is that the best description of the deformation is, in general, unknown. To find it, different hypothesised deformation models have to be tested systematically for agreement with the observations. The tests have to be capable of stating with a certain probability the size of detectable deformations, and to be datum invariant. A statistical criterion is needed to find the best deformation model. Existing methods do not fulfil these requirements. Here we propose a method that formulates the different hypotheses as sets of constraints on the parameters of a least-squares adjustment model. The constraints can relate to subsets of epochs and to subsets of points, thus combining time series analysis and congruence model analysis. The constraints are formulated as nonstochastic observations in an adjustment model of observation equations. This gives an easy way to test the constraints and to get a quality description. The proposed method aims at providing a good discriminating method to find the best description of a deformation. The method is expected to improve the quality of geodetic deformation analysis. We demonstrate the method with an elaborate example.

  19. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  20. The Evolution of In-Grain Misorientation Axes (IGMA) During Deformation of Wrought Magnesium Alloy AZ31

    NASA Astrophysics Data System (ADS)

    Chun, Y. B.; Davies, C. H. J.

    Understanding deformation mechanisms is a prerequisite for the development of more formable magnesium alloys. We have developed a novel approach based on analysis of in-grain misorientation axes which allows identification of the dominant slip system for a large number of grains. We investigated the effects of orientations and temperatures on active deformation mechanisms during the rolling of AZ31, including slip, deformation twinning and deformation banding. The IGMA analysis suggests that increasing rolling temperature promotes activation of prism slip which enhances the rollability of the plate favorably oriented for this slip mode. The approach also reveals an orientation-dependent occurrence of deformation banding and its crystallographic relationship with parent grain. It is concluded that IGMA analysis can be effectively used to study deformation mechanism in hcp metals, and can be used as a criterion for validating some crystal plasticity models.

  1. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    NASA Astrophysics Data System (ADS)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-03-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  2. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    NASA Astrophysics Data System (ADS)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-06-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  3. Inconsistency in the analysis of morphological deformities in chironomidae (Insecta: Diptera) larvae.

    PubMed

    Salmelin, Johanna; Vuori, Kari-Matti; Hämäläinen, Heikki

    2015-08-01

    The incidence of morphological deformities of chironomid larvae as an indicator of sediment toxicity has been studied for decades. However, standards for deformity analysis are lacking. The authors evaluated whether 25 experts diagnosed larval deformities in a similar manner. Based on high-quality digital images, the experts rated 211 menta of Chironomus spp. larvae as normal or deformed. The larvae were from a site with polluted sediments or from a reference site. The authors revealed this to a random half of the experts, and the rest conducted the assessment blind. The authors quantified the interrater agreement by kappa coefficient, tested whether open and blind assessments differed in deformity incidence and in differentiation between the sites, and identified those deformity types rated most consistently or inconsistently. The total deformity incidence varied greatly, from 10.9% to 66.4% among experts. Kappa coefficient across rater pairs averaged 0.52, indicating insufficient agreement. The deformity types rated most consistently were those missing teeth or with extra teeth. The open and blind assessments did not differ, but differentiation between sites was clearest for raters who counted primarily absolute deformities such as missing and extra teeth and excluded apparent mechanical aberrations or deviations in tooth size or symmetry. The highly differing criteria in deformity assignment have likely led to inconsistent results in midge larval deformity studies and indicate an urgent need for standardization of the analysis. © 2015 SETAC.

  4. Fiscal Year (FY) 2001 Budget Estimates. Army National Guard. Military Construction Program FY 2001. Justification Data Submission to Congress. Department of the Army.

    DTIC Science & Technology

    2000-02-01

    CONSIDERATIONS ix-xx FUTURE YEARS DEFENSE PLAN AUDIT TRAIL xxi-xxiii PROJECT JUSTIFICATION DOCUMENTS 1-149 PLANNING & DESIGN JUSTIFICATION DOCUMENT 15 0...OUTSTANDING POLUTION AND SAFETY DEFICIENCIES: DDl°™1390s2 MAY 78 1. COMPONENT FY 2001 GUARD AND RESERVE 2. DATE ARNG MILITARY CONSTRUCTION FEB00 3...TOTAL 36 286 13 MAJOR EQUIPMENT AND AIRCRAFT TYPE AUTHORIZED ASSIGNED 14. OUTSTANDING POLUTION AND SAFETY DEFICIENCIES: DD:A O™1390S2 1

  5. Propagation Model (0.1 to 20 GHz) Extensions for 1977 Computer Programs

    DTIC Science & Technology

    1978-05-01

    antenna versus path dis- tance or central angle for time availabilities S, 50. and 95 percent. I’Oucr. dCnsz-it% 17-19 ATOA Similar to above. but with...separation for a fixeddeie aii-orc le- distance, and time avilabilities of 5, So, and 95 1 percent. 4 2 L W~M ~Y 7IMSUB𔃻’T TO DDA S.. Table 1. Plotting...altitude versus distance plane for a fixed station separation and time availabilities of 5, 50, and 95 percent. Signal ratio contours 38-9 IXIRATA Cntours

  6. Scaling Issues Between Plot and Satellite Radiobrightness Observations of Arctic Tundra

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; England, Anthony W.; Judge, Jasmeet; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Data from generation of satellite microwave radiometer will allow the detection of seasonal to decadal changes in the arctic hydrology cycle as expressed in temporal and spatial patterns of moisture stored in soil and snow This nw capability will require calibrated Land Surface Process/Radiobrightness (LSP/R) model for the principal terrains found in the circumpolar Arctic. These LSP/R models can than be used in weak constraint. Dimensional Data Assimilation (DDA)of the daily satellite observation to estimate temperature and moisture profiles within the permafrost in active layer.

  7. History of DCAS 1961. Volume V. Origins of the USAF Space Program 1945-1956

    DTIC Science & Technology

    1961-01-01

    AVAILABILITY CODES N! _______________ PHOTOGRAPH TIS SHEET AND RETURN TO DTIC-DDA-2 FORM DOCUMENT PROCESSING SHEE~~DTIC OC 970A OCT 79 AFSC HISTORICAL I...IZ ION OR HIGHER A THO ITY IN T E DI ECT LI COMMAN SIi Prepredundr te poviion ofAirFore Rgultio 21-1 nd ir ori i Sytem ComandSuplemnt N. Itheetoas...information as it appears in the narrative. It is to be hoped that additional information bearing on the formative years of the space program will appear as a

  8. Fluid-structure interaction analysis of deformation of sail of 30-foot yacht

    NASA Astrophysics Data System (ADS)

    Bak, Sera; Yoo, Jaehoon; Song, Chang Yong

    2013-06-01

    Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.

  9. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    PubMed

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  10. Raman Antenna Effect in Semiconducting Nanowires.

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Xiong, Qihua; Eklund, Peter

    2007-03-01

    A novel Raman antenna effect has been observed in Raman scattering experiments recently carried out on individual GaP nanowires [1]. The Raman antenna effect is perfectly general and should appear in all semiconducting nanowires. It is characterized by an anomalous increase in the Raman cross section for scattering from LO or TO phonons when the electric field of the incident laser beam is parallel to the nanowire axis. We demonstrate that the explanation for the effect lies in the polarization dependence of the Mie scattering from the nanowire and the concomitant polarization-dependent electric field set up inside the wire. Our analysis involves calculations of the internal electric field using the discrete dipole approximation (DDA). We find that the Raman antenna effect happens only for nanowire diameters d<λ/4, where λ is the excitation laser wavelength. Our calculations are found in good agreement with recent experimental results for scattering from individual GaP nanowires. [1] Q. Xiong, G. Chen, G. D. Mahan, P. C. Eklund, in preparation, 2006.

  11. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    NASA Technical Reports Server (NTRS)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  12. GPU-based acceleration of computations in nonlinear finite element deformation analysis.

    PubMed

    Mafi, Ramin; Sirouspour, Shahin

    2014-03-01

    The physics of deformation for biological soft-tissue is best described by nonlinear continuum mechanics-based models, which then can be discretized by the FEM for a numerical solution. However, computational complexity of such models have limited their use in applications requiring real-time or fast response. In this work, we propose a graphic processing unit-based implementation of the FEM using implicit time integration for dynamic nonlinear deformation analysis. This is the most general formulation of the deformation analysis. It is valid for large deformations and strains and can account for material nonlinearities. The data-parallel nature and the intense arithmetic computations of nonlinear FEM equations make it particularly suitable for implementation on a parallel computing platform such as graphic processing unit. In this work, we present and compare two different designs based on the matrix-free and conventional preconditioned conjugate gradients algorithms for solving the FEM equations arising in deformation analysis. The speedup achieved with the proposed parallel implementations of the algorithms will be instrumental in the development of advanced surgical simulators and medical image registration methods involving soft-tissue deformation. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Simplified welding distortion analysis for fillet welding using composite shell elements

    NASA Astrophysics Data System (ADS)

    Kim, Mingyu; Kang, Minseok; Chung, Hyun

    2015-09-01

    This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  14. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  15. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  16. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  17. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  18. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  19. Automated Description of Regional Left Ventricular Motion in Patients With Cardiac Amyloidosis: A Quantitative Study Using Heart Deformation Analysis.

    PubMed

    Meng, Leng; Lin, Kai; Collins, Jeremy; Markl, Michael; Carr, James C

    2017-08-01

    The purpose of this article is to test the hypothesis that heart deformation analysis can automatically quantify regional myocardial motion patterns in patients with cardiac amyloidosis. Eleven patients with cardiac amyloidosis and 11 healthy control subjects were recruited to undergo cardiac MRI. Cine images were analyzed using heart deformation analysis and feature tracking. Heart deformation analysis-derived myocardial motion indexes in radial and circumferential directions, including radial and circumferential displacement, radial and circumferential velocity, radial and circumferential strain, and radial and circumferential strain rate, were compared between the two groups. The heart deformation analysis tool required a shorter mean (± SD) processing time than did the feature-tracking tool (1.5 ± 0.3 vs 5.1 ± 1.2 minutes). Patients with cardiac amyloidosis had lower peak radial displacement (4.32 ± 1.37 vs 5.62 ± 1.19 mm), radial velocity (25.50 ± 7.70 vs 33.41 ± 5.43 mm/s), radial strain (23.32% ± 10.24% vs 31.21% ± 8.71%), circumferential strain (-13.44% ± 4.21% vs -17.84% ± 2.84%), radial strain rate (1.14 ± 0.46 vs 1.58 ± 0.41 s -1 ), and circumferential strain rate (-0.78 ± 0.22 vs -1.08 ± 0.20 s -1 ) than did healthy control subjects. Heart deformation analysis-derived indexes correlated with feature tracking-derived indexes (r = 0.411 and 0.552). Heart deformation analysis is able to automatically quantify regional myocardial motion in patients with cardiac amyloidosis without the need for operator interaction.

  20. Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Xu, Liang; Hu, Xiaobin

    2017-08-01

    An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.

  1. Operation Upshot-Knothole, Nevada Proving Ground, March-June 1953. Projects 23.4-23.14 and 23.16. Genetic Effects of Fast Neutrons from Nuclear Detonations,

    DTIC Science & Technology

    1954-01-01

    THIS SHEET AND RETURN TO DTIC-DDA-2 FORM DOCUMENT PROCESSING SHEET DTIC oct79 70A OCT. 79 11 0 0 0 r/ WT-820 This document consists of 86 Pages No...mutation curve with no lower limit.2 In addition, there is a dose-related recovery process for physiological effects of lrradaticn by chronic or repeated...individual formed by reproductive processes may be expected to show in all its cells whatever genetic effects the ionizations have produced. 9,1w The

  2. Laboratory light scattering measurements on "natural" particles with the PROGRA2 experiment: an overview

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Rrenard, J.; Levasseur-Regourd, A. C.; Worms, J. C.

    Polarimetric phase curves were obtained with the PROGRA2 instrument for different particles: glass beads, polyhedral solids, rough particles, dense aggregates and aggregates with porosity higher than 90 %. The main purpose of these measurements is to build a large database, which allows interpreting remote sensing observations of solar system bodies. For some samples numerical or experimental models (i.e. DDA, stochastically built particles, microwave analogue) and laboratory experiments are compared to better disentangle the involved physical properties. This paper gives some main results of the experiment, and their applications to Earth atmosphere, comets and asteroids.

  3. Twinning of dodecanedicarboxylic acid

    NASA Technical Reports Server (NTRS)

    Sen, R.; Wilcox, W. R.

    1986-01-01

    Twinning of 1,10-dodecanedicarboxyl acid (DDA) was observed in 0.1 mm thick films with a polarizing microscope. Twins originated from polycrystalline regions which tended to nucleate on twin faces, and terminated by intersection gone another. Twinning increased dramatically with addition of organic compounds with a similar molecular size and shape. Increasing the freezing rate, increasing the temperature gradient, and addition of silica particles increased twinning. It is proposed that twins nucleate with polycrystals and sometimes anneal out before they become observable. The impurities may enhance twinning either by lowering the twin energy or by adsorbing on growing faces.

  4. Numerical analysis of some problems related to the mechanics of pneumatic tires: Finite deformation/rolling contact of a viscoelastic cylinder and finite deformation of cord-reinforced rubber composites

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.

    1984-01-01

    The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.

  5. BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra

    NASA Astrophysics Data System (ADS)

    Dayi, O. F.

    1994-01-01

    BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.

  6. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  7. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to assess components of myocardial systolic and diastolic function. Myocardial deformation analysis is based on either Doppler or a non-Doppler technique, called speckle-tracking echocardiography. Myocardial deformation analysis provides quantitative measures of global and regional myocardial function for use in the perioperative care of the surgical patient. For example, coronary graft occlusion after coronary artery bypass grafting is detected by an acute reduction in strain in the affected coronary artery territory. In addition, assessment of left ventricular mechanics detects underlying myocardial pathology before abnormalities become apparent on conventional echocardiography. Certainly, patients with aortic regurgitation demonstrate reduced longitudinal strain before reduction in LVEF occurs, which allows detection of subclinical left ventricular dysfunction and predicts increased risk for heart failure and impaired myocardial function after surgical repair. In this review we describe the principles, techniques, and clinical application of myocardial deformation analysis. PMID:24557101

  8. Method of Analysis for Determining and Correcting Mirror Deformation due to Gravity

    DTIC Science & Technology

    2014-01-01

    obtainable. 1.3 Description of As-Built Beam Compressor Assembly The as-built beam compressor assembly consists of primary and secondary Zerodur ® mirrors held...Method of analysis for determining and correcting mirror deformation due to gravity James H. Clark, III F. Ernesto, Penado Downloaded From: http...00-00-2014 4. TITLE AND SUBTITLE Method of analysis for determining and correcting mirror deformation due to gravity 5a. CONTRACT NUMBER 5b. GRANT

  9. A numerical analysis of contact and limit-point behavior in a class of problems of finite elastic deformation

    NASA Technical Reports Server (NTRS)

    Endo, T.; Oden, J. T.; Becker, E. B.; Miller, T.

    1984-01-01

    Finite element methods for the analysis of bifurcations, limit-point behavior, and unilateral frictionless contact of elastic bodies undergoing finite deformation are presented. Particular attention is given to the development and application of Riks-type algorithms for the analysis of limit points and exterior penalty methods for handling the unilateral constraints. Applications focus on the problem of finite axisymmetric deformations, snap-through, and inflation of thick rubber spherical shells.

  10. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  11. Analytical study on web deformation by tension in roll-to-roll printing process

    NASA Astrophysics Data System (ADS)

    Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.

    2017-08-01

    Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out. Experiments have shown that the distribution of deformation is compensated by about 34%. From the results, we verified the performance of the proposed.

  12. Scaling properties of the Arctic sea ice Deformation from Buoy Dispersion Analysis

    NASA Astrophysics Data System (ADS)

    Weiss, J.; Rampal, P.; Marsan, D.; Lindsay, R.; Stern, H.

    2007-12-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over time scales from 3 hours to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate -the Arctic sea ice cover- stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e. it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multi-scale fracturing/faulting processes.

  13. Scaling properties of sea ice deformation from buoy dispersion analysis

    NASA Astrophysics Data System (ADS)

    Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.

    2008-03-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.

  14. Regional aortic distensibility and its relationship with age and aortic stenosis: a computed tomography study.

    PubMed

    Wong, Dennis T L; Narayan, Om; Leong, Darryl P; Bertaso, Angela G; Maia, Murilo G; Ko, Brian S H; Baillie, Timothy; Seneviratne, Sujith K; Worthley, Matthew I; Meredith, Ian T; Cameron, James D

    2015-06-01

    Aortic distensibility (AD) decreases with age and increased aortic stiffness is independently associated with adverse cardiovascular outcomes. The association of severe aortic stenosis (AS) with AD in different aortic regions has not been evaluated. Elderly subjects with severe AS and a cohort of patients without AS of similar age were studied. Proximal aortic cross-sectional-area changes during the cardiac cycle were determined using retrospective-ECG-gating on 128-detector row computed-tomography. Using oscillometric-brachial-blood-pressure measurements, the AD at the ascending-aorta (AA), proximal-descending-aorta (PDA) and distal-descending-aorta (DDA) was determined. Linear mixed effects modelling was used to determine the association of age and aortic stenosis on regional AD. 102 patients were evaluated: 36 AS patients (70-85 years), 24 AS patients (>85 years) and 42 patients without AS (9 patients <50 years, 20 patients between 51-70 years and 13 patients 70-85 years). When comparing patients 70-85 years, AA distensibility was significantly lower in those with AS compared to those without AS (0.9 ± 0.9 vs. 1.4 ± 1.1, P = 0.03) while there was no difference in the PDA (1.0 ± 1.1 vs. 1.0 ± 1.2, P = 0.26) and DDA (1.1 ± 1.2 vs. 1.2 ± 0.8, P = 0.97). In patients without AS, AD decreased with age in all aortic regions (P < 0.001). The AA in patients <50 years were the most distensible compared to other aortic regions. There is regional variation in aortic distensibility with aging. Patients with aortic stenosis demonstrated regional differences in aortic distensibility with lower distensibility demonstrated in the proximal ascending aorta compared to an age-matched cohort.

  15. The Dangerous Drugs Act Amendment in Jamaica: Reviewing goals, implementation, and challenges.

    PubMed

    Davenport, Steven; Pardo, Bryce

    2016-11-01

    After decades of internal discussion, the Government of Jamaica recently amended its laws to create a regulated and licensed cannabis industry for medical and scientific purposes. The new law also decriminalizes personal possession and use of cannabis; allows cannabis to be used by individuals for religious, medical, scientific and therapeutic purposes; and permits home cultivation of up to five plants. We first describe the statutory changes under the Dangerous Drugs (Amendment) Act of 2015 and compare it with other jurisdictions. We provide an analytical framework for understanding how the DDA Amendment affects key populations and achieves its stated goals, drawing on publicly available information and unstructured interviews with non-governmental stakeholders in Jamaica. The Amendment's primary goals are to deliver economic impact and reduce criminal justice costs. A relaxed policy of enforcement toward possession and use seems to have occurred even before the law's passage; after the law's passage, enforcement remains limited. To access medical cannabis under the DDA residents must receive authorization from a certified health professional in Jamaica; tourists may self-declare their medical need; and Rastafarians may grow and exchange non-commercially for religious purposes. Internally, many see "ganja" as an industry sorely needed to drive economic growth in Jamaica. Indeed, the potential impacts could be large, especially if Jamaica draws additional tourism or creates a viable export industry. A growing cannabis-related tourism industry seems more realistic. We maintain that policymakers and observers should proceed in an orderly fashion, continuing to identify and resolve remaining uncertainties, initiate new types of data collection, and make decisions based on realistic assessments of potentials for economic impact. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Airflow and air quality simulations over the western mountainous region with a four-dimensional data assimilation technique

    NASA Astrophysics Data System (ADS)

    Yamada, Tetsuji; Kao, Chih-Yue; Bunker, Susan

    We apply a three-dimensional meteorological model with a four-dimensional data assimilation (4-DDA) technique to simulate diurnal variations of wind, temperature, water vapor, and turbulence in a region extending from the west coast to east of the Rockies and from northern Mexico to Wyoming. The wind data taken during the 1985 SCENES ( Subregional Cooperative Electric Utility, Dept. of Defense, National Park Service, and Environmental Protection Agency Study on Visibility) field experiments are successfully assimilated into the model through the 4-DDA technique by 'nudging' the modeled winds toward the observed winds. The modeled winds and turbulence fields are then used in a Lagrangian random-particle statistical model to investigate how pollutants from potential sources are transported and diffused. Finally, we calculate the ground concentrations through a kernel density estimator. Two scenarios in different weather patterns are investigated with simulation periods up to 6 days. One is associated with the evolution of a surface cold front and the other under a high-pressure stagnant condition. In the frontal case, the impact of air-mass movement on the ground concentrations of pollutants released from the Los Angeles area is well depicted by the model. Also, the pollutants produced from Los Angeles can be transported to the Grand Canyon area within 24 h. However, if we use only the data that were obtained from the regular NWS rawinsonde network, whose temporal and spatial resolutions are coarser than those of the special network, the plume goes north-northeast and never reaches the Grand Canyon area. In the stagnant case, the pollutants meander around the source area and can have significant impact on local air quality.

  17. Proton and deuteron position preferences in water clusters: an ab initio study.

    PubMed

    Anick, David J

    2005-12-22

    In order to explore the effect of H-to-D substitution on the zero-point energy (ZPE) of water clusters, Hessians were computed for a database of 53 optimized (H2O)n clusters, 5 < or = n < or = 21, at the B3LYP6-311 + + G** level. The 53 clusters contained 1524 protons, which were sorted into 18 categories according to the type of their donor O and (if not free) acceptor O. Letting deltaZPE[H]* denote the change in ZPE when the proton H* is replaced by D, mean values for deltaZPE[H*] for the H-bonded categories ranged from -2172 cal mol(-1) for H* in a DDAA-DDAA bond to -2118 for H* in a DAA-DDA bond. Mean value for H* free on DAA (respectively, DA) was -2018 (respectively, -1969). For DAA-DDA bonds, and for short H bonds in general, there was a strong inverse correlation between /deltaZPE[H*]/ and the O-H* distance. deltaZPE for multiple H-to-D substitutions was additive, except for a cooperativity effect of -13.7 to -19.7 cal mol(-1) when two substituted protons were in the same H2O unit and a much smaller cooperativity when one proton's donor was the other's acceptor. Implications of these data include a relative preference for D to occupy H bonded rather than free positions in finite water clusters, a value of 3.82 for the disproportionation equilibrium constant of mixed ice at 150 K, increased occupation by H at surface positions of mixed ice, and a larger average coordination number for liquid D2O than for liquid H2O.

  18. Cytochrome P450 isoforms in the Metabolism of Decursin and Decursinol Angelate from Korean Angelica

    PubMed Central

    ZHANG, Jinhui; LI, Li; TANG, Suni; HALE, Thomas W.; XING, Chengguo; JIANG, Cheng; LÜ, Junxuan

    2016-01-01

    We have shown that the in vitro hepatic microsomal metabolism of pyranocoumarin compound decursinol angelate (DA) to decursinol (DOH) exclusively requires cytochrome P450 enzymes (CYP) whereas the conversion of its isomer decursin (D) to DOH can be mediated by CYP and esterase(s). To provide insight into specific isoforms involved, here we show with recombinant human CYP that 2C19 was the most active at metabolizing D and DA in vitro followed by 3A4. With carboxylesterases (CES), D was hydrolyzed by CES2 but not CES1, and DA was resistant to both CES1 and CES2. In human liver microsomal preparation, general CYP inhibitor 1-aminobenzotriazole (ABT) and respective competitive inhibitors for 2C19 and 3A4, (+)-N-3-benzylnirvanol and ketoconazole, substantially retarded the metabolism of DA and, to a lesser extent, of D. In healthy human subjects from a single-dose pharmacokinetic study, 2C19 extensive metabolizer genotype (2C19*17 allele) tended to have less plasma DA AUC0–48h and poor metabolizer genotype (2C19*2 allele) tended to have greater DA AUC0–48h. In mice given a single dose of D/DA, pretreatment with ABT boosted the plasma and prostate levels of D and DA by more than an order of magnitude. Taken together, our findings suggest that CYP isoforms 2C19 and 3A4 may play a crucial role in the first pass liver metabolism of DA and, to a lesser extent, that of D in humans. Pharmacogenetics with respect to CYP genotypes and interactions among CYP inhibitor drugs and D/DA should therefore be considered in designing future translation studies of DA and/or D. PMID:26394652

  19. Cytochrome P450 Isoforms in the Metabolism of Decursin and Decursinol Angelate from Korean Angelica.

    PubMed

    Zhang, Jinhui; Li, Li; Tang, Suni; Hale, Thomas W; Xing, Chengguo; Jiang, Cheng; Lü, Junxuan

    2015-01-01

    We have shown that the in vitro hepatic microsomal metabolism of pyranocoumarin compound decursinol angelate (DA) to decursinol (DOH) exclusively requires cytochrome P450 (CYP) enzymes, whereas the conversion of its isomer decursin (D) to DOH can be mediated by CYP and esterase(s). To provide insight into specific isoforms involved, here we show with recombinant human CYP that 2C19 was the most active at metabolizing D and DA in vitro followed by 3A4. With carboxylesterases (CES), D was hydrolyzed by CES2 but not CES1, and DA was resistant to both CES1 and CES2. In human liver microsomal (HLM) preparation, the general CYP inhibitor 1-aminobenzotriazole (ABT) and respective competitive inhibitors for 2C19 and 3A4, (+)-N-3-benzylnirvanol (NBN) and ketoconazole substantially retarded the metabolism of DA and, to a lesser extent, of D. In healthy human subjects from a single-dose pharmacokinetic (PK) study, 2C19 extensive metabolizer genotype (2C19*17 allele) tended to have less plasma DA AUC0-48h and poor metabolizer genotype (2C19*2 allele) tended to have greater DA AUC0-48h. In mice given a single dose of D/DA, pretreatment with ABT boosted the plasma and prostate levels of D and DA by more than an order of magnitude. Taken together, our findings suggest that CYP isoforms 2C19 and 3A4 may play a crucial role in the first pass liver metabolism of DA and, to a lesser extent, that of D in humans. Pharmacogenetics with respect to CYP genotypes and interactions among CYP inhibitor drugs and D/DA should therefore be considered in designing future translation studies of DA and/or D.

  20. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: effect of electron donor unit for organic photovoltaic solar cell

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa

    2017-10-01

    Six new low-band-gap copolymers of donor-donor-acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d‧]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b‧]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b‧]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03-2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.

  1. Methods for describing the electromagnetic properties of silver and gold nanoparticles.

    PubMed

    Zhao, Jing; Pinchuk, Anatoliy O; McMahon, Jeffrey M; Li, Shuzhou; Ausman, Logan K; Atkinson, Ariel L; Schatz, George C

    2008-12-01

    This Account provides an overview of the methods that are currently being used to study the electromagnetics of silver and gold nanoparticles, with an emphasis on the determination of extinction and surface-enhanced Raman scattering (SERS) spectra. These methods have proven to be immensely useful in recent years for interpreting a wide range of nanoscience experiments and providing the capability to describe optical properties of particles up to several hundred nanometers in dimension, including arbitrary particle structures and complex dielectric environments (adsorbed layers of molecules, nearby metal films, and other particles). While some of the methods date back to Mie's celebrated work a century ago, others are still at the forefront of algorithm development in computational electromagnetics. This Account gives a qualitative description of the physical and mathematical basis behind the most commonly used methods, including both analytical and numerical methods, as well as representative results of applications that are relevant to current experiments. The analytical methods that we discuss are either derived from Mie theory for spheres or from the quasistatic (Gans) model as applied to spheres and spheroids. In this discussion, we describe the use of Mie theory to determine electromagnetic contributions to SERS enhancements that include for retarded dipole emission effects, and the use of the quasistatic approximation for spheroidal particles interacting with dye adsorbate layers. The numerical methods include the discrete dipole approximation (DDA), the finite difference time domain (FDTD) method, and the finite element method (FEM) based on Whitney forms. We discuss applications such as using DDA to describe the interaction of two gold disks to define electromagnetic hot spots, FDTD for light interacting with metal wires that go from particle-like plasmonic response to the film-like transmission as wire dimension is varied, and FEM studies of electromagnetic fields near cubic particles.

  2. Origin and evolution of phyllosilicate deformation bands in the poorly lithified sandstones of the Rio do Peixe Basin, NE Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, Francisco; Nicchio, Matheus; Balsamo, Fabrizio; Bezerra, Francisco; Souza, Jorge; Carvalho, Bruno; Storti, Fabrizio

    2017-04-01

    In this work we describe the genetic processes and the microstructural evolution of phylossilicate deformation bands developed in poorly lithified, high porosity sandstones of the Rio do Peixe Basin, Northeast Brazil. The studied deformation bands occur in damage zones of NE-SW and NW-SE transtensional faults that exhibit well developed anastomosed clusters, with a thickness varying from tens of centimeters to 1 meter. The Host rocks are arkosic to lithic arkosic coarse sandstones to fine conglomerate and with less than 1% of clay content in the matrix. Based on (i) field observations, (ii) clay amount in deformation band cores and (iii) clay mineral arrangements in deformation bands cores, we identified two types of phyllosilicate deformation bands: (1) clay smearing deformation bands and (2) phyllosilicate deformation bands formed by clay authigenesis. The former occur only in fault zones that cut across clay-rich layers and are characterized by 45-50% of clay content. Single element chemical analysis indicates that the composition of clay minerals in clay smearing deformation bands is similar to that of clay-rich layers in the host rocks. The dominant deformation mechanism is particulate flow, which produces preferential alignments of grains and clay minerals. Only subordinate cataclasis occurs. Based on microstructural fabrics, three evolutionary stages can be identified for phyllosilicate deformation bands formed by clay authigenesis. The first one is characterized by preferentially cataclasis and weathering of feldspars. Clay concentration is relatively low, reaching 15-20%, with preferential concentration where crushed feldspar abundance is higher. The second stage is characterized by clay migration within deformation bands, to form continuous films with more than 20-25% of clay concentration. In the last stage clay mineral fabric re-organization occurs, forming well a developed S-C foliation. Clay concentration exceeds 35%. Single element chemical analysis indicates that the only external element present in phyllosilicate deformation bands formed by clay authigenesis is iron oxide. This feature suggests formation at very shallow depth, in the vadose zone where fluid flow preferentially occurs by capillarity in deformation band cores. Petrophysical analysis shows that both types of phyllosilicate deformation bands have high sealing potential. Clay smearing deformation bands reduce rock permeability by three orders of magnitude whereas phyllosilicate deformation bands formed by authigenesis causes permeability reduction of about two orders of magnitude with respect to the corresponding host rock.

  3. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  4. On the elastic–plastic decomposition of crystal deformation at the atomic scale

    DOE PAGES

    Stukowski, Alexander; Arsenlis, A.

    2012-03-02

    Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = F eF p, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a materialmore » due to crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, F p, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, F e, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.« less

  5. Nonlinear Phase Field Theory for Fracture and Twinning with Analysis of Simple Shear

    DTIC Science & Technology

    2015-09-01

    elasticity; crystal; shear deformation 1. Introduction Cleavage fracture and deformation twinning are two fundamental inelastic deformation mechanisms that...stress [2,3]. Both of these anisotropic mechanisms involve deformation on specific planes (the cleavage plane for fracture or the habit plane for...be the first phase field theory accounting for both fracture and deformation twinning wherein each mechanism is repre- sented by a distinct-order

  6. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on the case study of a coal mining region in SW Poland where it has been applied to study characteristics and map mining induced ground deformations in a city in the last two decades of underground coal extraction and in the first decade after the end of mining. The mining subsidence area and its deformation parameters (tilt and curvature) have been calculated and the latter classified and mapped according to the Polish regulations. In addition possible areas of ground deformation have been indicated based on multivariate spatial data analysis of geological and mining operation characteristics with the geographically weighted regression method.

  7. Rheological model analysis on depth of toppling deformation in the anti-dip rock slope

    NASA Astrophysics Data System (ADS)

    Zheng, Da

    2017-04-01

    The failure of the toppling deformation occurred in the layered rock mass, it is a kind of mode of deformation and failure, which is bent towards free direction and gradually develops into the slope under the combined forces of in-situ stress, gravity, and groundwater dynamic (hydrostatic) pressure and so on. The most common toppling deformation is the toppling of ductile bending. Obtaining the developmental depth of bending deformation is of great significance for judging the development scale of the plasmodium and the stability of the slope. At present, the developmental depth of toppling deformation mainly depends on the survey and statistic of the exploration adit, or the simulation of the deformation and failure process through the numerical simulation method, there is little research on the developmental depth of toppling deformation from mechanics point of view. In this paper, with the consideration of the time-sensitive characteristics of developmental process of the toppling deformation, the anti-dip layered slope can be considered as a multi-layer superposition cantilever with fixed end and free end, bending under self-weight and inter-layer stress. Under the premise of the initial stage of rheology of the rock slopes, which is considered to be the limit position of the toppling deformation and development, the Kelvin rheological model, which is usually used to describe the decay creep, is chosen to describe the time-sensitive process of rock slopes. The stress-strain analysis calculation is used to obtain the time-varying expression of a certain point on the rock beam. Furthermore, taking the time to infinity, the depth of the layered rock slopes is calculated as x=4Ccosβ/[2γcosαcosβ - γ2(cos (α + β)+2sin(α + β)tanφ)*((1+n) /2+(1-n) cos2α/ 2)] , which is obtained by using the strain reaches zero as the criterion of the depth at toppling deformation development limit position, combining the time-varying expression of a certain point on the beam. we obtain the mathematic analysis conditions by using the constant positive characteristic of depth of the toppling deformation, The result shows that the depth of the slope toppling deformation is influenced by the rock mass, strata inclination, rock thickness, interfacial friction coefficient, interlayer internal friction angle, slope angel and Poisson 's ratio of rock slopes. The toppling deformation only occurs when 2cosαcosβ-[cos(α + β)+2sin(α + β)tanφ][(1+n)/2+(1-n) cos2α/2]≥0. This study is an exploration to explain the time-sensitive characteristics of toppling deformation by using rheological theory. The conclusion is of great significance for the study of the location of the bending zone, the size of the toppling deformation, the stability analysis and the early identification of the toppling deformation based on the deformation characteristics.

  8. Description Of Scoliotic Deformity Pattern By Harmonic Functions

    NASA Astrophysics Data System (ADS)

    Drerup, Burkhard; Hierholzer, Eberhard

    1989-04-01

    Frontal radiographs of scoliotic deformity of the spine reveal a characteristic pattern of lateral deviation, lateral tilt and axial rotation of vertebrae. In order to study interrelations between deformation parameters 478 radiographs of idiopathic scolioses, 23 of scolioses after Wilms-tumor treatment and 18 of scolioses following poliomyelitis were digitized. From these the curves of lateral deviation, tilt and rotation are calculated and fitted by Fourier series. By restriction to the first harmonic, analysis reduces to the analysis of a single phase and amplitude for each curve. Justification of this simplification will be discussed. Results provide a general geometric description of scoliotic deformity.

  9. An algorithmic approach to crustal deformation analysis

    NASA Technical Reports Server (NTRS)

    Iz, Huseyin Baki

    1987-01-01

    In recent years the analysis of crustal deformation measurements has become important as a result of current improvements in geodetic methods and an increasing amount of theoretical and observational data provided by several earth sciences. A first-generation data analysis algorithm which combines a priori information with current geodetic measurements was proposed. Relevant methods which can be used in the algorithm were discussed. Prior information is the unifying feature of this algorithm. Some of the problems which may arise through the use of a priori information in the analysis were indicated and preventive measures were demonstrated. The first step in the algorithm is the optimal design of deformation networks. The second step in the algorithm identifies the descriptive model of the deformation field. The final step in the algorithm is the improved estimation of deformation parameters. Although deformation parameters are estimated in the process of model discrimination, they can further be improved by the use of a priori information about them. According to the proposed algorithm this information must first be tested against the estimates calculated using the sample data only. Null-hypothesis testing procedures were developed for this purpose. Six different estimators which employ a priori information were examined. Emphasis was put on the case when the prior information is wrong and analytical expressions for possible improvements under incompatible prior information were derived.

  10. Isogeometric analysis of free-form Timoshenko curved beams including the nonlinear effects of large deformations

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Farhad; Hashemian, Ali; Moetakef-Imani, Behnam; Hadidimoud, Saied

    2018-03-01

    In the present paper, the isogeometric analysis (IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables (displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline (NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.

  11. Buckling analysis of planar compression micro-springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jing; Sui, Li; Shi, Gengchen

    2015-04-15

    Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software undermore » two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.« less

  12. DD 21A-A Capable, Affordable, Modular 21st Century Destroyer

    DTIC Science & Technology

    1993-12-01

    1 1.000 2 0.OOOOE+00 3 0.OOOOE+00 4 1.000 5 1.000 ARRANGEMENT OPERATION SEP SS GEN OP ARRAY = ( 2X 1) 1 2.000 2 2.000 ARRANGEMENT CG MACHY KG IND... GEN SIZE IND = GIVEN SEP SS GEN KW = 2000.00 KW SS ENGINES SS ENG SELECT IND = GIVEN SS ENG MODEL IND = DDA-501-K17 SS ENG TYPE IND = GT SS ENG SIZE...1733.6 PROPELLERS: 2 - CP - 17.0 FT DIA AREA SUMMARY - FT2 SEP GEN : 3 CT 0 2000.0 KW HULL AREA - 55529.2 SUPERSTRUCTURE AREA - 21232.1 24 HR LOAD 1858.1

  13. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  14. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    NASA Technical Reports Server (NTRS)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  15. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    PubMed Central

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856

  16. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    PubMed

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  17. An analysis of optical effects caused by thermally induced mirror deformations.

    PubMed

    Ogrodnik, R F

    1970-09-01

    This paper analyzes thermally induced mirror deformations and their resulting wavefront distortions which occur under the conditions of radially nonuniform mirror heating. The analysis is adaptable to heating produced by any radially nonuniform incident radiation. Specific examples of radiation distributions which are considered are the cosine squared and the gaussian and TEM(0, 1) laser distributions. Deformation effects are examined from two aspects, the first of which is the reflected wavefront radial phase distortion profile caused by the thermally induced surface irregularities at the mirror face. These phase distortion effects appear as aberrations in noncoherent optical applications and as the loss of spatial coherence in coherent applications. The second aspect is the gross wavefront bending due to mirror curvature effects. The analysis considers substrate material, geometry, and cooling in order to determine potential deformation controlling factors. Substrate materials are compared, and performance indicators are suggested to aid in selecting an optimum material for a given heating condition. Deformation examples are given for materials of interest and specific absorbed power levels.

  18. 3-D Deformation analysis via invariant geodetic obsevations.

    NASA Astrophysics Data System (ADS)

    Ardalan, A.; Esmaeili, R.

    2003-04-01

    In this paper a new method for 3-D deformation analysis based on invariant observations like distances and spatial angles is presented. Displacement field that is used in the classical deformation analysis is not reliable because the stability of the coordinate systems between successive epochs of observations cannot be guaranteed. On the contrary distances and spatial angles, i.e. measurements that are related to geometry between the constituent points of an object is independent of the definition of coordinate system. In this paper we have devised a new approach for the calculation of elements of the strain tensor directly from the geometrical observations such as angels and distances. This new method besides enjoys 3-D nature and as such guarantees the complete deformation study in 3-D space.

  19. Improvements in analysis techniques for segmented mirror arrays

    NASA Astrophysics Data System (ADS)

    Michels, Gregory J.; Genberg, Victor L.; Bisson, Gary R.

    2016-08-01

    The employment of actively controlled segmented mirror architectures has become increasingly common in the development of current astronomical telescopes. Optomechanical analysis of such hardware presents unique issues compared to that of monolithic mirror designs. The work presented here is a review of current capabilities and improvements in the methodology of the analysis of mechanically induced surface deformation of such systems. The recent improvements include capability to differentiate surface deformation at the array and segment level. This differentiation allowing surface deformation analysis at each individual segment level offers useful insight into the mechanical behavior of the segments that is unavailable by analysis solely at the parent array level. In addition, capability to characterize the full displacement vector deformation of collections of points allows analysis of mechanical disturbance predictions of assembly interfaces relative to other assembly interfaces. This capability, called racking analysis, allows engineers to develop designs for segment-to-segment phasing performance in assembly integration, 0g release, and thermal stability of operation. The performance predicted by racking has the advantage of being comparable to the measurements used in assembly of hardware. Approaches to all of the above issues are presented and demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  20. The post-buckling behavior of a beam constrained by springy walls

    NASA Astrophysics Data System (ADS)

    Katz, Shmuel; Givli, Sefi

    2015-05-01

    The post-buckling behavior of a beam subjected to lateral constraints is of practical importance in a variety of applications, such as stent procedures, filopodia growth in living cells, endoscopic examination of internal organs, and deep drilling. Even though in reality the constraining surfaces are often deformable, the literature has focused mainly on rigid and fixed constraints. In this paper, we make a first step to bridge this gap through a theoretical and experimental examination of the post-buckling behavior of a beam constrained by a fixed wall and a springy wall, i.e. one that moves laterally against a spring. The response exhibited by the proposed system is much richer compared to that of the fixed-wall system, and can be tuned by choosing the spring stiffness. Based on small-deformation analysis, we obtained closed-form analytical solutions and quantitative insights. The accuracy of these results was examined by comparison to large-deformation analysis. We concluded that the closed-form solution of the small-deformation analysis provides an excellent approximation, except in the highest attainable mode. There, the system exhibits non-intuitive behavior and non-monotonous force-displacement relations that can only be captured by large-deformation theories. Although closed-form solutions cannot be derived for the large-deformation analysis, we were able to reveal general properties of the solution. In the last part of the paper, we present experimental results that demonstrate various features obtained from the theoretical analysis.

  1. The effects of tunnel horizontal distance on the vertical deformations of an adjacent building

    NASA Astrophysics Data System (ADS)

    Balkaya, Müge

    2015-12-01

    Due to the rapid development of urbanization and the need for effective transportation, it became a common application to construct subway tunnels in modern cities. However, these construction activities may lead to undesirable deformations on the adjacent buildings. In this study, the effect of tunnel horizontal distance on the deformations of an adjacent building is investigated using 2D finite element analysis. The results of the finite element analysis showed that, although high settlement values were not observed for the cases investigated in this study, the vertical deformations of the building decreased as the tunnel moved away from the building.

  2. Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Sarti, Pierguido; Abbondanza, Claudio; Petrov, Leonid; Negusini, Monia

    2011-01-01

    The impact of signal path variations (SPVs) caused by antenna gravitational deformations on geodetic very long baseline interferometry (VLBI) results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models in geodetic VLBI data analysis, estimates of the antenna reference point positions are shifted upward by 8.9 and 6.7 mm, respectively. The impact on other parameters is negligible. To simulate the impact of antenna gravitational deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects of the simulations are changes in VLBI heights in the range [-3, 73] mm and a net scale increase of 0.3-0.8 ppb. The height bias is larger than random errors of VLBI position estimates, implying the possibility of significant scale distortions related to antenna gravitational deformations. This demonstrates the need to precisely measure gravitational deformations of other VLBI telescopes, to derive their precise SPV models and to apply them in routine geodetic data analysis.

  3. Deformation measurement for a rotating deformable lap based on inverse fringe projection

    NASA Astrophysics Data System (ADS)

    Liao, Min; Zhang, Qican

    2015-03-01

    The active deformable lap (also namely stressed lap) is an efficient polishing tool in optical manufacturing. To measure the dynamic deformation caused by outside force on a deformable lap is important and helpful to the opticians to ensure the performance of a deformable lap as expected. In this paper, a manual deformable lap was designed to simulate the dynamic deformation of an active stressed lap, and a measurement system was developed based on inverse projected fringe technique to restore the 3D shape. A redesigned inverse fringe has been projected onto the surface of the measured lap, and the deformations of the tested lap become much obvious and can be easily and quickly evaluated by Fourier fringe analysis. Compared with the conventional projection, this technique is more obvious, and it should be a promising one in the deformation measurement of the active stressed lap in optical manufacturing.

  4. Quantitative assessment of soft tissue deformation using digital speckle pattern interferometry: studies on phantom breast models.

    PubMed

    Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R

    2017-01-01

    Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)-based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed.

  5. Force required for correcting the deformity of pectus carinatum and related multivariate analysis.

    PubMed

    Chen, Chenghao; Zeng, Qi; Li, Zhongzhi; Zhang, Na; Yu, Jie

    2017-12-24

    To measure the force required for correcting pectus carinatum to the desired position and investigate the correlations of the required force with patients' gender, age, deformity type, severity and body mass index (BMI). A total of 125 patients with pectus carinatum were enrolled in the study from August 2013 to August 2016. Their gender, age, deformity type, severity and BMI were recorded. A chest wall compressor was used to measure the force required for correcting the chest wall deformity. Multivariate linear regression was used for data analysis. Among the 125 patients, 112 were males and 13 were females. Their mean age was 13.7±1.5 years old, mean Haller index was 2.1±0.2, and mean BMI was 17.4±1.8 kg/m 2 . Multivariate linear regression analysis showed that the desirable force for correcting chest wall deformity was not correlated with gender and deformity type, but positively correlated with age and BMI and negatively correlated with Haller index. The desirable force measured for correcting chest wall deformities of patients with pectus carinatum positively correlates with age and BMI and negatively correlates with Haller index. The study provides valuable information for future improvement of implanted bar, bar fixation technique, and personalized surgery. Retrospective study. Level 3-4. Copyright © 2018. Published by Elsevier Inc.

  6. Analysis and Modeling of Process of Residual Deformations Accumulation in Soils and Granular Materials

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. S.; Dolgih, G. V.; Kalinin, A. L.

    2017-11-01

    It is established that under the influence of repeated loads the process of plastic deformation in soils and discrete materials is hereditary. To perform the mathematical modeling of plastic deformation, the authors applied the integral equation by solution of which they manage to obtain the power and logarithmic dependencies connecting plastic deformation with the number of repeated loads, the parameters of the material and components of the stress tensor in the principal axes. It is shown that these dependences generalize a number of models proposed earlier in Russia and abroad. Based on the analysis of the experimental data obtained during material testing in the dynamic devices of triaxial compression at different values of the stress deviator, the coefficients in the proposed models of deformation are determined. The authors determined the application domain for logarithmic and degree dependences.

  7. Analysis of Layered Composite Plates Accounting for Large Deflections and Transverse Shear Strains.

    DTIC Science & Technology

    1981-05-01

    composite plates than isotropic plates. The classical thin- plate theory (CPT) assumes that normals to the midsurface before deformation remain straight...and normal to the midsurface after deformation, implying that thickness shear deformation effects are negligible. As a result, the natural

  8. Geometrically Nonlinear Transient Analysis of Laminated Composite Plates.

    DTIC Science & Technology

    1982-03-01

    theory (CPT), in which normals to the midsurface before deformation are assumed to remain straight and normal to the midsurface after deformation (i.e...the plate are negligible when compared to the inplane stresses, and normals to the plate midsurface before deformation remain straight but not...necessarily normal to the midsurface after deformation. $ Equations of motion The plate under consideration is composed of a finite number of orthotropic

  9. Finite element simulation of the T-shaped ECAP processing of round samples

    NASA Astrophysics Data System (ADS)

    Shaban Ghazani, Mehdi; Fardi-Ilkhchy, Ali; Binesh, Behzad

    2018-05-01

    Grain refinement is the only mechanism that increases the yield strength and toughness of the materials simultaneously. Severe plastic deformation is one of the promising methods to refine the microstructure of materials. Among different severe plastic deformation processes, the T-shaped equal channel angular pressing (T-ECAP) is a relatively new technique. In the present study, finite element analysis was conducted to evaluate the deformation behavior of metals during T-ECAP process. The study was focused mainly on flow characteristics, plastic strain distribution and its homogeneity, damage development, and pressing force which are among the most important factors governing the sound and successful processing of nanostructured materials by severe plastic deformation techniques. The results showed that plastic strain is localized in the bottom side of sample and uniform deformation cannot be possible using T-ECAP processing. Friction coefficient between sample and die channel wall has a little effect on strain distributions in mirror plane and transverse plane of deformed sample. Also, damage analysis showed that superficial cracks may be initiated from bottom side of sample and their propagation will be limited due to the compressive state of stress. It was demonstrated that the V shaped deformation zone are existed in T-ECAP process and the pressing load needed for execution of deformation process is increased with friction.

  10. Texture and phase analysis of deformed SUS304 by using HIPPO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takajo, Shigehiro; Vogel, Sven C.

    2016-11-15

    These slides represent the author's research activity at Los Alamos National Laboratory (LANL), which is about texture and phase analysis of deformed SUS304 by using HIPPO. The following topics are covered: diffraction histogram at each sample position, diffraction histogram (all bank data averaged), possiblity of ε-phase, MAUD analysis with including ε-phase.

  11. Finite Element Analysis of Magnetoelastic Plate Problems.

    DTIC Science & Technology

    1981-08-01

    deformation and in the incremental large deformation analysis, respectively. The classical Kirchhoff assumption of the undeformable normal to the midsurface is...current density , is constant across the thickness of the plate and is parallel to the midsurface of the plate; (2) the normal component of the

  12. State fusion entropy for continuous and site-specific analysis of landslide stability changing regularities

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Qin, Zhimeng; Hu, Baodan; Feng, Shuai

    2018-04-01

    Stability analysis is of great significance to landslide hazard prevention, especially the dynamic stability. However, many existing stability analysis methods are difficult to analyse the continuous landslide stability and its changing regularities in a uniform criterion due to the unique landslide geological conditions. Based on the relationship between displacement monitoring data, deformation states and landslide stability, a state fusion entropy method is herein proposed to derive landslide instability through a comprehensive multi-attribute entropy analysis of deformation states, which are defined by a proposed joint clustering method combining K-means and a cloud model. Taking Xintan landslide as the detailed case study, cumulative state fusion entropy presents an obvious increasing trend after the landslide entered accelerative deformation stage and historical maxima match highly with landslide macroscopic deformation behaviours in key time nodes. Reasonable results are also obtained in its application to several other landslides in the Three Gorges Reservoir in China. Combined with field survey, state fusion entropy may serve for assessing landslide stability and judging landslide evolutionary stages.

  13. Integral finite element analysis of turntable bearing with flexible rings

    NASA Astrophysics Data System (ADS)

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  14. One-dimensional analysis of thin-walled beams with diaphragms and its application to optimization for stiffness reinforcement

    NASA Astrophysics Data System (ADS)

    Jung, Joon Hee; Jang, Gang-Won; Shin, Dongil; Kim, Yoon Young

    2018-03-01

    This paper presents a method to analyze thin-walled beams with quadrilateral cross sections reinforced with diaphragms using a one-dimensional higher-order beam theory. The effect of a diaphragm is reflected focusing on the increase of static stiffness. The deformations on the beam-interfacing boundary of a thin diaphragm are described by using deformation modes of the beam cross section while the deformations inside the diaphragm are approximated in the form of complete cubic polynomials. By using the principle of minimum potential energy, its stiffness that significantly affects distortional deformation of a thin-walled beam can be considered in the one-dimensional beam analysis. It is shown that the accuracy of the resulting one-dimensional analysis is comparable with that by a shell element based analysis. As a means to demonstrate the usefulness of the present approach for design, position optimization problems of diaphragms for stiffness reinforcement of an automotive side frame are solved.

  15. Scaling Properties of Arctic Sea Ice Deformation in a High‐Resolution Viscous‐Plastic Sea Ice Model and in Satellite Observations

    PubMed Central

    Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Abstract Sea ice models with the traditional viscous‐plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan‐Arctic sea ice‐ocean simulation, the small‐scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data. PMID:29576996

  16. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  17. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations.

    PubMed

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  18. Force and Strength Analysis of the Reel with Jaw of Torsion-bar Spring

    NASA Astrophysics Data System (ADS)

    Ma, Ke; Liu, Weiqi; Wang, Jiawei; Gu, Le

    2017-06-01

    Structure characteristics and working principle of the reel with jaw of torsion-bar spring are introduced. The reel can not only eliminate the leakage risks of hydraulic jaw, but also reduce the investment cost of enterprises and improve the surface quality of the products. The static analysis of mandrel, sector plate and oblique wedge were conducted, and the main data of stress distribution and deformation were obtained, which provide a reliable theoretical basis for the design and optimization of the reel. The research results show that the external support has a great effect on the stress and deformation of the mandrel. With the increase of the weight of steel stress increases, the drum deformation increases, but the analysis of the position of maximum stress, can be obtained to drum stress and deformation is the main reason of excessive bending moment caused by heavy steel rolls. The bending moment and deformation can be reduced significantly at the end of the steel coil, which can effectively improve the service life of the drum.

  19. Regional flux analysis for discovering and quantifying anatomical changes: An application to the brain morphometry in Alzheimer's disease.

    PubMed

    Lorenzi, M; Ayache, N; Pennec, X

    2015-07-15

    In this study we introduce the regional flux analysis, a novel approach to deformation based morphometry based on the Helmholtz decomposition of deformations parameterized by stationary velocity fields. We use the scalar pressure map associated to the irrotational component of the deformation to discover the critical regions of volume change. These regions are used to consistently quantify the associated measure of volume change by the probabilistic integration of the flux of the longitudinal deformations across the boundaries. The presented framework unifies voxel-based and regional approaches, and robustly describes the volume changes at both group-wise and subject-specific level as a spatial process governed by consistently defined regions. Our experiments on the large cohorts of the ADNI dataset show that the regional flux analysis is a powerful and flexible instrument for the study of Alzheimer's disease in a wide range of scenarios: cross-sectional deformation based morphometry, longitudinal discovery and quantification of group-wise volume changes, and statistically powered and robust quantification of hippocampal and ventricular atrophy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The role of strain hardening in the transition from dislocation-mediated to frictional deformation of marbles within the Karakoram Fault Zone, NW India

    NASA Astrophysics Data System (ADS)

    Wallis, David; Lloyd, Geoffrey E.; Hansen, Lars N.

    2018-02-01

    The onset of frictional failure and potentially seismogenic deformation in carbonate rocks undergoing exhumation within fault zones depends on hardening processes that reduce the efficiency of aseismic dislocation-mediated deformation as temperature decreases. However, few techniques are available for quantitative analysis of dislocation slip system activity and hardening in natural tectonites. Electron backscatter diffraction maps of crystal orientations offer one such approach via determination of Schmid factors, if the palaeostress conditions can be inferred and the critical resolved shear stresses of slip systems are constrained. We analyse calcite marbles deformed in simple shear within the Karakoram Fault Zone, NW India, to quantify changes in slip system activity as the rocks cooled during exhumation. Microstructural evidence demonstrates that between ∼300 °C and 200-250 °C the dominant deformation mechanisms transitioned from dislocation-mediated flow to twinning and frictional failure. However, Schmid factor analysis, considering critical resolved shear stresses for yield of undeformed single crystals, indicates that the fraction of grains with sufficient resolved shear stress for glide apparently increased with decreasing temperature. Misorientation analysis and previous experimental data indicate that strain-dependent work hardening is responsible for this apparent inconsistency and promoted the transition from dislocation-mediated flow to frictional, and potentially seismogenic, deformation.

  1. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    NASA Astrophysics Data System (ADS)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa; Burrows, Andrew; Alimadadi, Hossein

    2017-08-01

    A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of 900 MPa and elongation to fracture of 94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}<110> texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation. The predominance of these components is logically related to the strain-induced martensite and/or twin formation.

  2. Microstructural change in electroformed copper liners of shaped charges upon plastic deformation at ultra-high strain rate

    NASA Astrophysics Data System (ADS)

    Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.

    2002-01-01

    Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.

  3. Izhevskiy Petroleum Equipment Plant.

    DTIC Science & Technology

    1979-04-03

    DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED RI DISTRIBUTION STAMP 9- 12 27 DATE RECEIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2 D FORM...release; distribution unlimited. FTD-ID(RS)T-0338-79 EDITED TRANSLATION FTD-ID(RS)T-0338-79 3 April 1979 MICROFICHE NR : l’- I C-Cr056 IZhEVSKIY PETROLEUM...III .1e’ llofwm~ww 4+utR.mw I"Te’Wnw~~A INC-eI1 l’T1 IilHw n1. 4’ 12.17 12 17 - I.’, I’ ’ I ’ ’I I? II ’ 2 n., 17 + I7 2’ 24 II - II -- - Key: 1 - No

  4. Applications of Ko Displacement Theory to the Deformed Shape Predictions of the Doubly-Tapered Ikhana Wing

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Richards, W. Lance; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.

  5. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    PubMed

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  6. Microprobe monazite geochronology: new techniques for dating deformation and metamorphism

    NASA Astrophysics Data System (ADS)

    Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.

    2003-04-01

    High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic dating techniques. They allow geochronology to be incorporated into the microstructural analytical process, resulting in a new level of integration of time (t) into P-T-D histories.

  7. Multi-temporal InSAR analysis to reduce uncertainties and assess time-dependence of deformation in the northern Chilean forearc

    NASA Astrophysics Data System (ADS)

    Manjunath, D.; Gomez, F.; Loveless, J.

    2005-12-01

    Interferometric Synthetic Aperture Radar (InSAR) provides unprecedented spatial imaging of crustal deformation. However, for small deformations, such as those due to interseismic strain accumulation, potentially significant uncertainty may result from other sources of interferometric phase, such as atmospheric effects, errors in satellite baseline, and height errors in the reference digital elevation model (DEM). We aim to constrain spatial and temporal variations in crustal deformation of the northern Chilean forearc region of the Andean subduction zone (19° - 22°S) using multiple interferograms spanning 1995 - 2000. The study area includes the region of the 1995 Mw 8.1 Antofagasta earthquake and the region to the north. In contrast to previous InSAR-based studies of the Chilean forearc, we seek to distinguish interferometric phase contributions from linear and nonlinear deformation, height errors in the DEM, and atmospheric effects. Understanding these phase contributions reduces the uncertainties on the deformation rates and provides a view of the time-dependence of deformation. The inteferograms cover a 150 km-wide swath spanning two adjacent orbital tracks. Our study involves the analysis of more than 28 inteferograms along each track. Coherent interferograms in the hyper-arid Atacama Desert permit spatial phase unwrapping. Initial estimates of topographic phase were determined using 3'' DEM data from the SRTM mission. We perform a pixel-by-pixel analysis of the unwrapped phase to identify time- and baseline-dependent phase contributions, using the Gamma Remote Sensing radar software. Atmospheric phase, non-linear deformation, and phase noise were further distinguished using a combination of spatial and temporal filters. Non-linear deformation is evident for up to 2.5 years following the 1995 earthquake, followed by a return to time-linear, interseismic strain accumulation. The regional trend of linear deformation, characterized by coastal subsidence and relative uplift inland, is consistent with the displacement field expected for a locked subduction zone. Our improved determination of deformation rates is used to formulate a new elastic model of interseismic strain in the Chilean forearc.

  8. Combustion: Structural interaction in a viscoelastic material

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Chang, J. P.; Kumar, M.; Kuo, K. K.

    1980-01-01

    The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code.

  9. Comparative Analysis of Volcanic Inflation—Deflation Cycles

    NASA Astrophysics Data System (ADS)

    Walwer, D.; Ghil, M.; Calais, E.

    2016-12-01

    GPS geodetic data together with INSAR images are often used to formulate kinematic models of the sources of volcanic deformations. The increasing amount of data now available allows one to produce time series that are several years long and thus capture continuously the history of volcanic deformations, in particular their nonlinear behavior. This information is highly valuable in helping understand the dynamics of volcanic systems.Nonlinear deformation signals are, however, difficult to extract from the background noise inherent in the GPS time series. It is also arduous to unravel the signal of interest from other nonlinear signals, such as the seasonal oscillations associated with mass variations in the atmosphere, the ocean, and the hydrological reservoirs. Here we use Multichannel Singular Spectrum Analysis (M-SSA) — an advanced, data-adaptive method for time series analysis that exploits simultaneously the temporal and spatial correlations of geophysical fields — to extract such deformation signals.We apply M-SSA to GPS data sets from four volcanoes: Akutan, Alaska; Okmok, Alaska; Westdahl, Alaska; and Piton de la Fournaise, La Reunion. Our analyses show that all four volcanoes share similar features in their deformation history, suggesting similarities in the dynamics that generate the inflation-deflation cycles. In particular, all four volcanic systems exhibit sawtooth-shaped oscillations with slow inflations followed by slower deflations, with time scales that vary from 6 months to 4 years. This relation of dynamical similarity is further highlighted by the phase portrait reconstruction of the four systems in the plane of deformation vs. rate-of-deformation, as obtained from the deformation signals extracted from the GPS time series using M-SSA.The inflating phase of these oscillations is followed by eruptions at Okmok volcano and at Piton de la Fournaise. These analysis results suggest that these volcanic inflation—deflation cycles are associated with the destabilization of a volcanic system and may lead to the identification of premonitory signals for an eruptive regime.

  10. Quantitative assessment of soft tissue deformation using digital speckle pattern interferometry: studies on phantom breast models

    PubMed Central

    Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R.

    2017-01-01

    Abstract. Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)–based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed. PMID:28180134

  11. Localisation of deformations of the midfacial complex in subjects with class III malocclusions employing thin-plate spline analysis

    PubMed Central

    SINGH, G. D.; McNAMARA JR, J. A.; LOZANOFF, S.

    1997-01-01

    This study determines deformations of the midface that contribute to a class III appearance, employing thin-plate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P<0.05) between the averaged class I and class III morphologies. Thin-plate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. Large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile. PMID:9449078

  12. Localisation of deformations of the midfacial complex in subjects with class III malocclusions employing thin-plate spline analysis.

    PubMed

    Singh, G D; McNamara, J A; Lozanoff, S

    1997-11-01

    This study determines deformations of the midface that contribute to a class III appearance, employing thinplate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P < 0.05) between the averaged class I and class III morphologies. Thinplate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile.

  13. Intrafraction Variability and Deformation Quantification in the Breast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glide-Hurst, Carri K., E-mail: churst2@hfhs.org; Shah, Mira M.; Price, Ryan G.

    2015-03-01

    Purpose: To evaluate intrafraction variability and deformation of the lumpectomy cavity (LC), breast, and nearby organs. Methods and Materials: Sixteen left-sided postlumpectomy and 1 bilateral breast cancer cases underwent free-breathing CT (FBCT) and 10-phase 4-dimensional CT (4DCT). Deformable image registration was used for deformation analysis and contour propagation of breast, heart, lungs, and LC between end-exhale and end-inhale 4DCT phases. Respiration-induced motion was calculated via centroid analysis. Two planning target volumes (PTVs) were compared: PTV{sub FBCT} from the FBCT volume with an isotropic 10 mm expansion (5 mm excursion and 5 mm setup error) and PTV{sub 4DCT} generated from themore » union of 4DCT contours with isotropic 5 mm margin for setup error. Volume and geometry were evaluated via percent difference and bounding box analysis, respectively. Deformation correlations between breast/cavity, breast/lung, and breast/heart were evaluated. Associations were tested between cavity deformation and proximity to chest wall and breast surface. Results: Population-based 3-dimensional vector excursions were 2.5 ± 1.0 mm (range, 0.8-3.8 mm) for the cavity and 2.0 ± 0.8 mm (range, 0.7-3.0 mm) for the ipsilateral breast. Cavity excursion was predominantly in the anterior and superior directions (1.0 ± 0.8 mm and −1.8 ± 1.2 mm, respectively). Similarly, for all cases, LCs and ipsilateral breasts yielded median deformation values in the superior direction. For 14 of 17 patients, the LCs and breast interquartile ranges tended toward the anterior direction. The PTV{sub FBCT} was 51.5% ± 10.8% larger (P<.01) than PTV{sub 4DCT}. Bounding box analysis revealed that PTV{sub FBCT} was 9.8 ± 1.2 (lateral), 9.0 ± 2.2 (anterior–posterior), and 3.9 ± 1.8 (superior–inferior) mm larger than PTV{sub 4DCT}. Significant associations between breast and cavity deformation were found for 6 of 9 axes. No dependency was found between cavity deformation and proximity to chest wall or breast surface. Conclusions: Lumpectomy cavity and breast deformation and motion demonstrated large variability. A PTV{sub 4DCT} approach showed value in patient-specific margins, particularly if robust interfraction setup analysis can be performed.« less

  14. High prevalence of morphometric vertebral deformities in patients with inflammatory bowel disease.

    PubMed

    Heijckmann, Anna Caroline; Huijberts, Maya S P; Schoon, Erik J; Geusens, Piet; de Vries, Jolanda; Menheere, Paul P C A; van der Veer, Eveline; Wolffenbuttel, Bruce H R; Stockbrugger, Reinhold W; Dumitrescu, Bianca; Nieuwenhuijzen Kruseman, Arie C

    2008-08-01

    Earlier studies have documented that the prevalence of decreased bone mineral density (BMD) is elevated in patients with inflammatory bowel disease. The objective of this study was to investigate the prevalence of vertebral deformities in inflammatory bowel disease patients and their relation with BMD and bone turnover. One hundred and nine patients with Crohn's disease (CD) and 72 with ulcerative colitis (UC) (age 44.5+/-14.2 years) were studied. BMD of the hip (by dual X-ray absorptiometry) was measured and a lateral single energy densitometry of the spine for assessment of vertebral deformities was performed. Serum markers of bone resorption (carboxy-terminal cross-linked telopeptide of type I collagen) and formation (procollagen type I amino-terminal propeptide) were measured, and determinants of prevalent vertebral deformities were assessed using logistic regression analysis. Vertebral deformities were found in 25% of both CD and UC patients. Comparing patients with and without vertebral deformities, no significant difference was found between Z-scores and T-scores of BMD, or levels of serum carboxy-terminal cross-linked telopeptide of type I collagen and serum procollagen type I amino-terminal propeptide. Using logistic regression analysis the only determinant of any morphometric vertebral deformity was sex. The presence of multiple vertebral deformities was associated with older age and glucocorticoid use. The prevalence of morphometric vertebral deformities is high in CD and UC. Male sex, but neither disease activity, bone turnover markers, clinical risk factors, nor BMD predicted their presence. The determinants for having more than one vertebral deformity were age and glucocorticoid use. This implies that in addition to screening for low BMD, morphometric assessment of vertebral deformities is warranted in CD and UC.

  15. The Correlation between Insertion Depth of Prodisc-C Artificial Disc and Postoperative Kyphotic Deformity: Clinical Importance of Insertion Depth of Artificial Disc.

    PubMed

    Lee, Do-Youl; Kim, Se-Hoon; Suh, Jung-Keun; Cho, Tai-Hyoung; Chung, Yong-Gu

    2012-09-01

    This study was designed to investigate the correlation between insertion depth of artificial disc and postoperative kyphotic deformity after Prodisc-C total disc replacement surgery, and the range of artificial disc insertion depth which is effective in preventing postoperative whole cervical or segmental kyphotic deformity. A retrospective radiological analysis was performed in 50 patients who had undergone single level total disc replacement surgery. Records were reviewed to obtain demographic data. Preoperative and postoperative radiographs were assessed to determine C2-7 Cobb's angle and segmental angle and to investigate postoperative kyphotic deformity. A formula was introduced to calculate insertion depth of Prodisc-C artificial disc. Statistical analysis was performed to search the correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity, and to estimate insertion depth of Prodisc-C artificial disc to prevent postoperative kyphotic deformity. In this study no significant statistical correlation was observed between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity regarding C2-7 Cobb's angle. Statistical correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity was observed regarding segmental angle (p<0.05). It failed to estimate proper insertion depth of Prodisc-C artificial disc effective in preventing postoperative kyphotic deformity. Postoperative segmental kyphotic deformity is associated with insertion depth of Prodisc-C artificial disc. Anterior located artificial disc leads to lordotic segmental angle and posterior located artificial disc leads to kyphotic segmental angle postoperatively. But C2-7 Cobb's angle is not affected by artificial disc location after the surgery.

  16. Multifit / Polydefix : a framework for the analysis of polycrystal deformation using X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, Sébastien; Hilairet, Nadège

    2015-06-27

    Multifit/Polydefixis an open source IDL software package for the efficient processing of diffraction data obtained in deformation apparatuses at synchrotron beamlines.Multifitallows users to decompose two-dimensional diffraction images into azimuthal slices, fit peak positions, shapes and intensities, and propagate the results to other azimuths and images.Polydefixis for analysis of deformation experiments. Starting from output files created inMultifitor other packages, it will extract elastic lattice strains, evaluate sample pressure and differential stress, and prepare input files for further texture analysis. TheMultifit/Polydefixpackage is designed to make the tedious data analysis of synchrotron-based plasticity, rheology or other time-dependent experiments very straightforward and accessible tomore » a wider community.« less

  17. Emplacement history of a thrust sheet based on analysis of pressure solution cleavage and deformed fossils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protzman, G.M.; Mitra, G.

    The emplacement history of a thrust sheet is recorded by the strain accumulated in its hanging wall and footwall. Detailed studies of second order structures and analysis of strain due to pressure solution and plastic deformation allow the authors to determine the deformation history of the Meade thrust in the Idaho - Wyoming thrust belt. Emplacement of the Meade thrust was accompanied by the formation of a series of second order in echelon folds in the footwall. Temporal relations based on detailed structural studies show that these folds, which are confined to the Jurassic Twin Creek Formation, formed progressively inmore » front of the advancing Meade thrust and were successively truncated and overridden by footwall imbricates of the Meade thrust. The Twin Creek Formation in both the hanging wall and footwall of the Meade thrust is penetratively deformed, with a well developed pressure solution cleavage. In addition, plastic strain is recorded by deformed Pentacrinus within fossil hash layers in the Twin Creek. Much of this penetrative deformation took place early in the history of the thrust sheet as layer parallel shortening, and the cleavage and deformed fossils behaved passively during subsequent folding and faulting. The later stages of deformation may be sequentially removed through balancing techniques to track successive steps in the deformation. This strain history, which is typical of an internal thrust sheet, is partly controlled by the lithologies involved, timing between successive thrusts, and the amount of interaction between major faults.« less

  18. Quantitative trait loci for a neurocranium deformity, lack of operculum, in gilthead seabream (Sparus aurata L.).

    PubMed

    Negrín-Báez, D; Navarro, A; Afonso, J M; Toro, M A; Zamorano, M J

    2016-04-01

    Lack of operculum, a neurocranial deformity, is the most common external abnormality to be found among industrially produced gilthead seabream (Sparus aurata L.), and this entails significant financial losses. This study conducts, for the first time in this species, a quantitative trait loci (QTL) analysis of the lack of operculum. A total of 142 individuals from a paternal half-sibling family (six full-sibling families) were selected for QTL mapping. They had previously shown a highly significant association with the prevalence of lack of operculum in a segregation analysis. All the fish were genotyped for 106 microsatellite markers using a set of multiplex PCRs (ReMsa1-ReMsa13). A linear regression methodology was used for the QTL analysis. Four QTL were detected for this deformity, two of which (QTLOP1 and QTLOP2) were significant. They were located at LG (linkage group) nine and LG10 respectively. Both QTL showed a large effect (about 27%), and furthermore, the association between lack of operculum and sire allelic segregation observed was statistically significant in the QTLOP1 analysis. These results represent a significant step towards including marker-assisted selection for this deformity in genetic breeding programmes to reduce the incidence of the deformity in the species. © 2016 Stichting International Foundation for Animal Genetics.

  19. Precursory Slope Deformation around Landslide Area Detected by Insar Throughout Japan

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Wada, K.; Yamanaka, M.; Kamiya, I.; Nakajima, H.

    2016-06-01

    Interferometric Synthetic Aperture Radar (InSAR) technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014). Geospatial Information Authority (GSI) of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.

  20. Dealing with systematic laser scanner errors due to misalignment at area-based deformation analyses

    NASA Astrophysics Data System (ADS)

    Holst, Christoph; Medić, Tomislav; Kuhlmann, Heiner

    2018-04-01

    The ability to acquire rapid, dense and high quality 3D data has made terrestrial laser scanners (TLS) a desirable instrument for tasks demanding a high geometrical accuracy, such as geodetic deformation analyses. However, TLS measurements are influenced by systematic errors due to internal misalignments of the instrument. The resulting errors in the point cloud might exceed the magnitude of random errors. Hence, it is important to assure that the deformation analysis is not biased by these influences. In this study, we propose and evaluate several strategies for reducing the effect of TLS misalignments on deformation analyses. The strategies are based on the bundled in-situ self-calibration and on the exploitation of two-face measurements. The strategies are verified analyzing the deformation of the Onsala Space Observatory's radio telescope's main reflector. It is demonstrated that either two-face measurements as well as the in-situ calibration of the laser scanner in a bundle adjustment improve the results of deformation analysis. The best solution is gained by a combination of both strategies.

  1. Structural Transformations in Metallic Materials During Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-03-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  2. A Method for Assessing the Quality of Model-Based Estimates of Ground Temperature and Atmospheric Moisture Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (delta)T(sub g) to approx. 20% for the lower tropospheric moisture between 500 hPa and surface. The regression relationships developed from the synthetic flux data, together with CLR and RadWn observed with the Clouds and Earth Radiant Energy System instrument, ire used to assess the quality of the GEOS2 T(sub g) and pw. Results showed that the GEOS2 T(sub g) is too cold over land, and pw in upper layers is too high over the tropical oceans and too low in the lower atmosphere.

  3. Inelastic and Dynamic Fracture and Stress Analyses

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1984-01-01

    Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.

  4. Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections

    NASA Technical Reports Server (NTRS)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.

  5. Measuring pair-wise molecular interactions in a complex mixture

    NASA Astrophysics Data System (ADS)

    Chakraborty, Krishnendu; Varma, Manoj M.; Venkatapathi, Murugesan

    2016-03-01

    Complex biological samples such as serum contain thousands of proteins and other molecules spanning up to 13 orders of magnitude in concentration. Present measurement techniques do not permit the analysis of all pair-wise interactions between the components of such a complex mixture to a given target molecule. In this work we explore the use of nanoparticle tags which encode the identity of the molecule to obtain the statistical distribution of pair-wise interactions using their Localized Surface Plasmon Resonance (LSPR) signals. The nanoparticle tags are chosen such that the binding between two molecules conjugated to the respective nanoparticle tags can be recognized by the coupling of their LSPR signals. This numerical simulation is done by DDA to investigate this approach using a reduced system consisting of three nanoparticles (a gold ellipsoid with aspect ratio 2.5 and short axis 16 nm, and two silver ellipsoids with aspect ratios 3 and 2 and short axes 8 nm and 10 nm respectively) and the set of all possible dimers formed between them. Incident light was circularly polarized and all possible particle and dimer orientations were considered. We observed that minimum peak separation between two spectra is 5 nm while maximum is 184nm.

  6. An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier.

    PubMed

    Vasiljevic, Dragana; Parojcic, Jelena; Primorac, Marija; Vuleta, Gordana

    2006-02-17

    Multiple W/O/W emulsions with high content of inner phase (Phi1=Phi2=0.8) were prepared using relatively low concentrations of lipophilic polymeric primary emulsifier, PEG 30-dipolyhydroxystearate, and diclofenac diethylamine (DDA) as a model drug. The investigated formulations were characterized and their stability over the time was evaluated by dynamic and oscillatory rheological measurements, microscopic analysis and in vitro drug release study. In vitro release profiles of the selected model drug were evaluated in terms of the effective diffusion coefficients and flux of the released drug. The multiple emulsion samples exhibited good stability during the ageing time. Concentration of the lipophilic primary emulsifier markedly affected rheological behaviour as well as the droplet size and in vitro drug release kinetics of the investigated systems. The multiple emulsion systems with highest concentration (2.4%, w/w) of the primary emulsifier had the lowest droplet size and the highest apparent viscosity and highest elastic characteristics. Drug release data indicated predominately diffusional drug release mechanism with sustained and prolonged drug release accomplished with 2.4% (w/w) of lipophilic emulsifier employed.

  7. Uptake of C14-atrazine by prairie grasses in a phytoremediation setting.

    PubMed

    Khrunyk, Yuliya; Schiewer, Silke; Carstens, Keri L; Hu, Dingfei; Coats, Joel R

    2017-02-01

    Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. 14 C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [ 14 C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [ 14 C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [ 14 C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.

  8. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM‐DIA, and Untargeted DIA

    PubMed Central

    Ho, Jenny T. C.; Smit, August B.; Li, Ka Wan

    2018-01-01

    Abstract Data‐independent acquisition (DIA) is an emerging technology for quantitative proteomics. Current DIA focusses on the identification and quantitation of fragment ions that are generated from multiple peptides contained in the same selection window of several to tens of m/z. An alternative approach is WiSIM‐DIA, which combines conventional DIA with wide‐SIM (wide selected‐ion monitoring) windows to partition the precursor m/z space to produce high‐quality precursor ion chromatograms. However, WiSIM‐DIA has been underexplored; it remains unclear if it is a viable alternative to DIA. We demonstrate that WiSIM‐DIA quantified more than 24 000 unique peptides over five orders of magnitude in a single 2 h analysis of a neuronal synapse‐enriched fraction, compared to 31 000 in DIA. There is a strong correlation between abundance values of peptides quantified in both the DIA and WiSIM‐DIA datasets. Interestingly, the S/N ratio of these peptides is not correlated. We further show that peptide identification directly from DIA spectra identified >2000 proteins, which included unique peptides not found in spectral libraries generated by DDA. PMID:29134766

  9. A new approach for modeling composite materials

    NASA Astrophysics Data System (ADS)

    Alcaraz de la Osa, R.; Moreno, F.; Saiz, J. M.

    2013-03-01

    The increasing use of composite materials is due to their ability to tailor materials for special purposes, with applications evolving day by day. This is why predicting the properties of these systems from their constituents, or phases, has become so important. However, assigning macroscopical optical properties for these materials from the bulk properties of their constituents is not a straightforward task. In this research, we present a spectral analysis of three-dimensional random composite typical nanostructures using an Extension of the Discrete Dipole Approximation (E-DDA code), comparing different approaches and emphasizing the influences of optical properties of constituents and their concentration. In particular, we hypothesize a new approach that preserves the individual nature of the constituents introducing at the same time a variation in the optical properties of each discrete element that is driven by the surrounding medium. The results obtained with this new approach compare more favorably with the experiment than previous ones. We have also applied it to a non-conventional material composed of a metamaterial embedded in a dielectric matrix. Our version of the Discrete Dipole Approximation code, the EDDA code, has been formulated specifically to tackle this kind of problem, including materials with either magnetic and tensor properties.

  10. Early Cretaceous Ductile Deformation of Marbles from the Western Hills of Beijing, North China Craton

    NASA Astrophysics Data System (ADS)

    Feng, H.; Liu, J.

    2017-12-01

    During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional metamorphism, early ductile deformation and weak superimposition by subsequent deformation, which caused the development of the strain localization. It is also shown that the intensity of progressive superimposition deformation contributed to the thinning and thickening of the marble layers.

  11. Sleep Deprivation During Early-Adult Development Results in Long-Lasting Learning Deficits in Adult Drosophila

    PubMed Central

    Seugnet, Laurent; Suzuki, Yasuko; Donlea, Jeff M.; Gottschalk, Laura; Shaw, Paul J.

    2011-01-01

    Study Objectives: Multiple lines of evidence indicate that sleep is important for the developing brain, although little is known about which cellular and molecular pathways are affected. Thus, the aim of this study was to determine whether the early adult life of Drosophila, which is associated with high amounts of sleep and critical periods of brain plasticity, could be used as a model to identify developmental processes that require sleep. Subjects: Wild type Canton-S Drosophila melanogaster. Design; Intervention: Flies were sleep deprived on their first full day of adult life and allowed to recover undisturbed for at least 3 days. The animals were then tested for short-term memory and response-inhibition using aversive phototaxis suppression (APS). Components of dopamine signaling were further evaluated using mRNA profiling, immunohistochemistry, and pharmacological treatments. Measurements and Results: Flies exposed to acute sleep deprivation on their first day of life showed impairments in short-term memory and response inhibition that persisted for at least 6 days. These impairments in adult performance were reversed by dopamine agonists, suggesting that the deficits were a consequence of reduced dopamine signaling. However, sleep deprivation did not impact dopaminergic neurons as measured by their number or by the levels of dopamine, pale (tyrosine hydroxylase), dopadecarboxylase, and the Dopamine transporter. However, dopamine pathways were impacted as measured by increased transcript levels of the dopamine receptors D2R and dDA1. Importantly, blocking signaling through the dDA1 receptor in animals that were sleep deprived during their critical developmental window prevented subsequent adult learning impairments. Conclusions: These data indicate that sleep plays an important and phylogenetically conserved role in the developing brain. Citation: Seugnet L; Suzuki Y; Donlea JM; Gottschalk L; Shaw PJ. Sleep deprivation during early-adult development results in long-lasting learning deficits in adult drosophila. SLEEP 2011;34(2):137-146. PMID:21286249

  12. A database of microwave and sub-millimetre ice particle single scattering properties

    NASA Astrophysics Data System (ADS)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric Radiative Transfer Simulator) project.

  13. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk.

  14. On the radiative properties of soot aggregates - Part 2: Effects of coating

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Yon, Jérôme; Bescond, Alexandre

    2016-03-01

    The effects of weakly absorbing material coating on soot have attracted considerable research attention in recent years due to the significant influence of such coating on soot radiative properties and the large differences predicted by different numerical models. Soot aggregates were first numerically generated using the diffusion limited cluster aggregation algorithm to produce fractal aggregates formed by log-normally distributed polydisperse spherical primary particles in point-touch. These aggregates were then processed by adding a certain amount of primary particle overlapping and necking to simulate the soot morphology observed from transmission electron microscopy images. After this process, a layer of WAM coating of different thicknesses was added to these more realistic soot aggregates. The radiative properties of these coated soot aggregates over the spectral range of 266-1064 nm were calculated by the discrete dipole approximation (DDA) using the spectrally dependent refractive index of soot for four aggregates containing Np=1, 20, 51 and 96 primary particles. The considered coating thicknesses range from 0% (no coating) up to 100% coating in terms of the primary particle diameter. Coating enhances both the particle absorption and scattering cross sections, with much stronger enhancement to the scattering one, as well as the asymmetry factor and the single scattering albedo. The absorption enhancement is stronger in the UV than in the visible and the near infrared. The simple corrections to the Rayleigh-Debye-Gans fractal aggregates theory for uncoated soot aggregates are found not working for coated soot aggregates. The core-shell model significantly overestimates the absorption enhancement by coating in the visible and the near infrared compared to the DDA results of the coated soot particle. Treating an externally coated soot aggregate as an aggregate formed by individually coated primary particles significantly underestimates the absorption enhancement by coating in the visible and the near infrared.

  15. Discrete Dipole Approximation Models of Crystalline Forsterite: Applications to Cometary Crystalline Silicates

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean; Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Murphy, J. R.

    2012-10-01

    In cometary comae, the crystalline silicate forsterite (Mg2SiO4) is the dominant crystalline component. Within the 8 - 40 micron spectral range, the crystal shape has been demonstrated to have a measurable effect on the crystalline features’ shape and peak wavelength locations. We present discrete dipole approximation (DDA) absorption efficiencies for a variety of forsterite grain shapes to demonstrate: a) that the 10, 11, 19, 23, and 33.5 micron resonances are sensitive to grain shape; b) spectral trends are associated with variations in crystallographic axial ratios; and c) that groups of similar grain shapes (shape classes) have distinct spectral features. These computations are performed using DDSCAT v7.0 run on the NASA Advanced Supercomputing (NAS) facility Pleiades. We generate synthetic spectral energy distribution (SED) fits to the Infrared Space Observatory (ISO) SWS spectra for the coma of comet C/1995 O1 (Hale-Bopp) at a heliocentric distance of 2.8 AU. Hale-Bopp is best fit by equant grain shapes whereas rounded grain shapes fit significantly poorer than crystals with sharp edges with well-defined faces. Moreover, crystals that are not significantly elongated along a crystallographic axis fit better. By comparison with Kobatake et al. (2008) condensation experiments and Takigawa et al. (2009) evaporation experiments, our analyses suggest that the forsterite crystals in the coma of Hale-Bopp predominantly are high temperature condensates. The laboratory experiments show that grain shape and grain formation temperature, and hence disk environment, are causally linked. Specifically, the Kobatake et al. (2008) condensation experiment reveals three shape classes associated with temperature: 1) ‘Bulky’ grains (1300 K < T < 1700 K), 2) ‘Platy’ grains (1000 K < T < 1300 K), and 3) columnar/needle grains (T < 1000 K). We construct DDA grain shape analogs to these shape classes to connect grain shapes to distinguishable spectral signatures and crystal formation environments.

  16. Optimization of deformation monitoring networks using finite element strain analysis

    NASA Astrophysics Data System (ADS)

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  17. Modeling and Analysis of Deformation for Spiral Bevel Gear in Die Quenching Based on the Hardenability Variation

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Wang, Gang; Shi, Wankai; Yang, Lin; Li, Zhichao

    2017-07-01

    Spiral bevel gears are widely used to transmit energy between intersecting axes. The strength and fatigue life of the gears are improved by carburizing and quenching. A die quenching process is used to control the deformation of the gear. The deformation is determined by the variations in the hardenability for a certain die quenching process. The relationship between hardenability, phase transformation and deformation needs to be studied to minimize deformation during the adjustment of the die quenching process parameters. In this paper, material properties for 22CrMoH steel are determined by the results of Jominy tests, dilatometry experiments and static mechanical property tests. The material models were built based on testing results under the consideration of hardenability variation. An finite element analysis model was developed to couple the phase transformation and deformation history of the complete carburizing and die quenching process for the spiral bevel gears. The final microstructures in the gear were bainite for low hardenability steel and a mixture of bainite and ferrite for high hardenability steel. The largest buckling deformation at the gear bottom surface is 0.375 mm at the outer circle for the low hardenability gear and 0.091 mm at the inner circle for the high hardenability gear.

  18. Elastic strain and twist analysis of protein structural data and allostery of the transmembrane channel KcsA

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael R.; Leibler, Stanislas

    2018-05-01

    The abundance of available static protein structural data makes the more effective analysis and interpretation of this data a valuable tool to supplement the experimental study of protein mechanics. Structural displacements can be difficult to analyze and interpret. Previously, we showed that strains provide a more natural and interpretable representation of protein deformations, revealing mechanical coupling between spatially distinct sites of allosteric proteins. Here, we demonstrate that other transformations of displacements yield additional insights. We calculate the divergence and curl of deformations of the transmembrane channel KcsA. Additionally, we introduce quantities analogous to bend, splay, and twist deformation energies of nematic liquid crystals. These transformations enable the decomposition of displacements into different modes of deformation, helping to characterize the type of deformation a protein undergoes. We apply these calculations to study the filter and gating regions of KcsA. We observe a continuous path of rotational deformations physically coupling these two regions, and, we propose, underlying the allosteric interaction between these regions. Bend, splay, and twist distinguish KcsA gate opening, filter opening, and filter-gate coupling, respectively. In general, physically meaningful representations of deformations (like strain, curl, bend, splay, and twist) can make testable predictions and yield insights into protein mechanics, augmenting experimental methods and more fully exploiting available structural data.

  19. Migmatites to mylonites - Crustal deformation mechanisms in the Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Lee, A. L.; Torvela, T.; Lloyd, G. E.; Walker, A.

    2016-12-01

    Strain and fluids localise into shear zones while crustal blocks remain comparatively dry, rigid and deform less. However when H2O is present in the crustal blocks they start to melt, deformation becomes more distributed and is no longer strongly localised into the weak shear zones. Using examples from the Western Gneiss Region (WGR), Norway, we show the deformation characteristics when mylonitic shear zones and migmatites coexist. The WGR is the lowest structural level of the Caledonian Orogeny, exposing Silurian to Devonian metamorphism and deformation of the Precambrian crust. WGR is predominantly composed of amphibolite-facies quartzofeldspathic gneiss that has undergone partial melting. This study focuses on the southwestern peninsula of the island of Gurskøy. Over a 1.2 kilometre section there is a diverse deformation sequence of migmatized gneiss, mylonitic shear zones, sillimanite bearing garnet-mica schists, augen gneiss and boudinaged amphibolite dykes resulting in a large competence differences between the lithologies over the area. The strongly deformed mylonitic shear zones extend from 5 to over 100 meters in width, but deformation is also high in the migmatitic layers as shown from S-C fabrics and isoclinal folding of leucratic and restitic layers. Microstructural evidence of dynamic recrystallization, symplectite textures and magmatic flow show deformation is widespread over the peninsula. Strain localisation, melting, and their interactions are shown by a combination of outcrop and quantitative modelling that uses field data, microstructural analysis, crystallographic preferred orientations and numerical Eshelby modelling. Detailed field mapping and microstructural analysis of samples from across the peninsula allows melt quantification and thus an understanding of strain mechanisms when melt is present. This area is important as it shows the heterogeneity of deformation within the partially melted lower crust on the sub-seismic scale.

  20. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  1. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.

    PubMed

    Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo

    2018-01-20

    The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Finite stretching of a circular plate of neo-Hookean material.

    NASA Technical Reports Server (NTRS)

    Biricikoglu, V.

    1971-01-01

    The analytical solution presented is based on the assumption that the deformed thickness of the plate is approximately constant. The nonlinear equations governing finite axisymmetric deformations of a circular plate made of neo-Hookean material are used in the analysis. The variation of circumferential extension ratio and the variation of deformed thickness are shown in graphs.

  3. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  4. Deformation structure analysis of material at fatigue on the basis of the vector field

    NASA Astrophysics Data System (ADS)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2017-12-01

    In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.

  5. Opto-mechanical design of ShaneAO: the adaptive optics system for the 3-meter Shane Telescope

    NASA Astrophysics Data System (ADS)

    Ratliff, C.; Cabak, J.; Gavel, D.; Kupke, R.; Dillon, D.; Gates, E.; Deich, W.; Ward, J.; Cowley, D.; Pfister, T.; Saylor, M.

    2014-07-01

    A Cassegrain mounted adaptive optics instrument presents unique challenges for opto-mechanical design. The flexure and temperature tolerances for stability are tighter than those of seeing limited instruments. This criteria requires particular attention to material properties and mounting techniques. This paper addresses the mechanical designs developed to meet the optical functional requirements. One of the key considerations was to have gravitational deformations, which vary with telescope orientation, stay within the optical error budget, or ensure that we can compensate with a steering mirror by maintaining predictable elastic behavior. Here we look at several cases where deformation is predicted with finite element analysis and Hertzian deformation analysis and also tested. Techniques used to address thermal deformation compensation without the use of low CTE materials will also be discussed.

  6. Using tensor-based morphometry to detect structural brain abnormalities in rats with adolescent intermittent alcohol exposure

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek

    2011-03-01

    Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.

  7. Evaluation of mechanical deformation and distributive magnetic loads with different mechanical constraints in two parallel conducting bars

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Lee, Se-Hee

    2017-08-01

    Mechanical deformation, bending deformation, and distributive magnetic loads were evaluated numerically and experimentally for conducting materials excited with high current. Until now, many research works have extensively studied the area of magnetic force and mechanical deformation by using coupled approaches such as multiphysics solvers. In coupled analysis for magnetoelastic problems, some articles and commercial software have presented the resultant mechanical deformation and stress on the body. To evaluate the mechanical deformation, the Lorentz force density method (LZ) and the Maxwell stress tensor method (MX) have been widely used for conducting materials. However, it is difficult to find any experimental verification regarding mechanical deformation or bending deformation due to magnetic force density. Therefore, we compared our numerical results to those from experiments with two parallel conducting bars to verify our numerical setup for bending deformation. Before showing this, the basic and interesting coupled simulation was conducted to test the mechanical deformations by the LZ (body force density) and the MX (surface force density) methods. This resulted in MX gave the same total force as LZ, but the local force distribution in MX introduced an incorrect mechanical deformation in the simulation of a solid conductor.

  8. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    DOE PAGES

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less

  9. Analysis of properties laser welded RAK 40/70 steel sheets

    NASA Astrophysics Data System (ADS)

    Evin, E.; Tomáš, M.; Fujda, M.

    2017-11-01

    Both, the ecological production and operation of vehicles demand using such materials for deformation zones’ structural parts, which show some specific properties and use innovative technologies to process them. Specific requirements for functionality (strength, stiffness, deformation work, fatigue properties) are closely linked to processability (formability). In the paper are presented results for multiphase TRIP steel RAK40/70 when welded by pulse solid-state fiber laser YLS-5000. Based on microstructure analysis in the fusion zone and heat affected zone the welding parameters were optimised. The influence of laser welding on the strength and deformation properties was verified by characteristics of strength, stiffness and deformation work, as they were calculated from mechanical properties measured by tensile test and three-point bending test. The knowledge gathered in the field of laser welding influence on the strength and deformation properties of multiphase TRIP steel RAK40/70 should help designers when design the lightweight structural parts of the car body.

  10. Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud

    NASA Astrophysics Data System (ADS)

    Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.

    2018-04-01

    In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.

  11. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Huang, H.; Hartle, M.

    1992-01-01

    Accomplishments are described for the third years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) structural analysis capability specialized for graded composite structures including large deformation and deformation position eigenanalysis technologies; (2) a thermal analyzer specialized for graded composite structures; (3) absorption of electromagnetic waves by graded composite structures; and (4) coupled structural thermal/electromagnetic analysis of graded composite structures.

  12. Swinging motion of active deformable particles in Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-08-01

    Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.

  13. Determining the Best Treatment for Coronal Angular Deformity of the Knee Joint in Growing Children: A Decision Analysis

    PubMed Central

    Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Park, Moon Seok

    2014-01-01

    This study aimed to determine the best treatment modality for coronal angular deformity of the knee joint in growing children using decision analysis. A decision tree was created to evaluate 3 treatment modalities for coronal angular deformity in growing children: temporary hemiepiphysiodesis using staples, percutaneous screws, or a tension band plate. A decision analysis model was constructed containing the final outcome score, probability of metal failure, and incomplete correction of deformity. The final outcome was defined as health-related quality of life and was used as a utility in the decision tree. The probabilities associated with each case were obtained by literature review, and health-related quality of life was evaluated by a questionnaire completed by 25 pediatric orthopedic experts. Our decision analysis model favored temporary hemiepiphysiodesis using a tension band plate over temporary hemiepiphysiodesis using percutaneous screws or stapling, with utilities of 0.969, 0.957, and 0.962, respectively. One-way sensitivity analysis showed that hemiepiphysiodesis using a tension band plate was better than temporary hemiepiphysiodesis using percutaneous screws, when the overall complication rate of hemiepiphysiodesis using a tension band plate was lower than 15.7%. Two-way sensitivity analysis showed that hemiepiphysiodesis using a tension band plate was more beneficial than temporary hemiepiphysiodesis using percutaneous screws. PMID:25276801

  14. Impact analysis of side door of a car and bullet proof vest with material ‘SAM2X5-630’ using finite element analysis

    NASA Astrophysics Data System (ADS)

    Dhode, Trushant; Patil, Girish; Rajkumar, E.

    2017-11-01

    The components which are bound to impact are subjected to deformation even though it may be for a small scale. The efforts are always on for finding the best material to take impact that has no failure or moreover, less plastic deformation. A newly found material which is glass matrix steel named as ‘SAM2X5-630’ has astounding high elastic limit of 12.5GPa. Thus it can take powerful impact & regain its original shape avoiding the deformation of component under impact. The paper is focused on performing the Finite element analysis to assess the behaviour of ‘SAM2X5-630’ steel under impact loading of side door of car as well as impact of bullet on bulletproof jacket on which the material is assigned. The displacement or deformation occurred during impact is found to be lesser than known materials like Kevlar in bulletproof vest and Aluminium alloy in car door.

  15. An analysis of rotor blade twist variables associated with different Euler sequences and pretwist treatments

    NASA Technical Reports Server (NTRS)

    Alkire, K.

    1984-01-01

    A nonlinear analysis which is necessary to adequately model elastic helicopter rotor blades experiencing moderately large deformations was examined. The analysis must be based on an appropriate description of the blade's deformation geometry including elastic bending and twist. Built-in pretwist angles complicate the deformation process ant its definition. Relationships between the twist variables associated with different rotation sequences and corresponding forms of the transformation matrix are lasted. Relationships between the twist variables associated with first, the pretwist combined with the deformation twist are included. Many of the corresponding forms of the transformation matrix for the two cases are listed. It is shown that twist variables connected with the combined twist treatment are related to those where the pretwist is applied initially. A method to determine the relationships and some results are outlined. A procedure to evaluate the transformation matrix that eliminates the Eulerlike sequence altogether is demonstrated. The resulting form of the transformation matrix is unaffected by rotation sequence or pretwist treatment.

  16. Nonlinear thermal dynamic analysis of graphit/aluminum composite plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenneti, R.; Chandrashekhara, K.

    1994-09-01

    Because of the increased application of composite materials in high-temperature environments, the thermoelastic analysis of laminated composite structures is important. Many researchers have applied the classical lamination theory to analyze laminated plates under thermomechanical loading, which neglects shear deformation effects. The transverse shear deformation effects are not negligible as the ratios of inplane elastic modulus to transverse shear modulus are relatively large for fiber-reinforced composite laminates. The application of first-order shear deformation theory for the thermoelastic analysis of laminated plates has been reported by only a few investigators. Reddy and Hsu have considered the thermal bending of laminated plates. Themore » analytical and finite element solutions for the thermal bucking of laminated plates have been reported by Tauchert and Chandrashekara, respectively. However, the first-order shear deformation theory, based on the assumption of constant distribution of transverse shear through the thickness, requires a shear correction factor to account for the parabolic shear strain distribution. Higher order theories have been proposed which eliminate the need for a shear correction factor. In the present work, nonlinear dynamic analysis of laminated plates subjected to rapid heating is investigated using a higher order shear deformation theory. A C(sup 0) finite element model with seven degrees of freedom per node is implmented and numerical results are presented for laminated graphite/aluminum plates.« less

  17. The influence of a local wall deformation on the development of natural instabilities in a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Burnel, S.; Gougat, P.; Martin, F.

    1981-01-01

    The natural instabilities which propagate in the laminar boundary layer of a flat plate composed of intermittent wave trains are described. A spectral analysis determines the frequency range and gives a frequency and the harmonic 2 only if there is a wall deformation. This analysis provides the amplitude modulation spectrum of the instabilities. Plots of the evolution of power spectral density are compared with the numerical results obtained from the resolve of the Orr-Sommerfeld equation, while the harmonic is related to a micro-recirculating flow near the wall deformation.

  18. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    NASA Technical Reports Server (NTRS)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  19. Mechanical biocompatibility of highly deformable biomedical materials.

    PubMed

    Mazza, Edoardo; Ehret, Alexander E

    2015-08-01

    Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. In situ-measurement of ice deformation from repeated borehole logging of the EPICA Dronning Maud Land (EDML) ice core, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Weikusat, Ilka; Kleiner, Thomas; Wilhelms, Frank; Dahl-Jensen, Dorthe; Frenzel, Andreas; Binder, Tobias; Eichler, Jan; Faria, Sergio H.; Sheldon, Simon; Panton, Christian; Kipfstuhl, Sepp; Miller, Heinrich

    2017-04-01

    The European Project for Ice Coring in Antarctica (EPICA) ice core was drilled between 2001 and 2006 at the Kohnen Station, Antarctica. During the drilling process the borehole was logged repeatedly. Repeated logging of the borehole shape is a means of directly measuring the deformation of the ice sheet not only on the surface but also with depth, and to derive shear strain rates for the lower part, which control the volume of ice transported from the inner continent towards the ocean. The logging system continuously recorded the tilt of the borehole with respect to the vertical (inclination) as well as the heading of the borehole with respect to magnetic north (azimuth) by means of a compass. This dataset provides the basis for a 3-D reconstruction of the borehole shape, which is changing over time according to the predominant deformation modes with depth. The information gained from this analysis can then be evaluated in combination with lattice preferred orientation, grain size and grain shape derived by microstructural analysis of samples from the deep ice core. Additionally, the diameter of the borehole, which was originally circular with a diameter of 10 cm, was measured. As the ice flow velocity at the position of the EDML core is relatively slow (about 0.75 m/a), the changes of borehole shape between the logs during the drilling period were very small and thus difficult to interpret. Thus, the site has been revisited in the Antarctic summer season 2016 and logged again using the same measurement system. The change of the borehole inclination during the time period of 10 years clearly reveals the transition from a pure shear dominated deformation in the upper part of the ice sheet to shear deformation at the base. We will present a detailed analysis of the borehole parameters and the deduced shear strain rates in the lower part of the ice sheet. The results are discussed with respect to ice microstructural data derived from the EDML ice core. Microstructural data directly reflect the deformation conditions, as the ice polycrystal performs the deformation which leads e.g. to characteristic lattice orientation distributions and grain size and shape appearance. Though overprinted by recrystallization (due to the hot environment for the ice) and the slow deformation, analysis of statistically significant grain numbers reveals indications typical for the changing deformation regimes with depth. Additionally we compare our results with strain rates derived from a simulation with a model for large scale ice deformation, the Parallel Ice Sheet Model (PISM).

  1. Analysis of a bubble deformation process in a microcapsule by shock waves for developing DDS

    NASA Astrophysics Data System (ADS)

    Tamagawa, Masaaki; Morimoto, Kenshi

    2012-09-01

    This paper describes development of DDS (drug delivery systems) microcapsule using underwater shock waves, especially (1) making polymer microcapsules including a bubble and analysis of a bubble deformation process in a polymer capsule by pressure wave, (2) making liposome microcapsules with different elastic membrane and disintegration tests by ultrasonic waves.

  2. Calculating the mounting parameters for Taylor Spatial Frame correction using computed tomography.

    PubMed

    Kucukkaya, Metin; Karakoyun, Ozgur; Armagan, Raffi; Kuzgun, Unal

    2011-07-01

    The Taylor Spatial Frame uses a computer program-based six-axis deformity analysis. However, there is often a residual deformity after the initial correction, especially in deformities with a rotational component. This problem can be resolved by recalculating the parameters and inputting all new deformity and mounting parameters. However, this may necessitate repeated x-rays and delay treatment. We believe that error in the mounting parameters is the main reason for most residual deformities. To prevent these problems, we describe a new calculation technique for determining the mounting parameters that uses computed tomography. This technique is especially advantageous for deformities with a rotational component. Using this technique, exact calculation of the mounting parameters is possible and the residual deformity and number of repeated x-rays can be minimized. This new technique is an alternative method to accurately calculating the mounting parameters.

  3. Computer-assisted quantification of the skull deformity for craniosynostosis from 3D head CT images using morphological descriptor and hierarchical classification

    NASA Astrophysics Data System (ADS)

    Lee, Min Jin; Hong, Helen; Shim, Kyu Won; Kim, Yong Oock

    2017-03-01

    This paper proposes morphological descriptors representing the degree of skull deformity for craniosynostosis in head CT images and a hierarchical classifier model distinguishing among normal and different types of craniosynostosis. First, to compare deformity surface model with mean normal surface model, mean normal surface models are generated for each age range and the mean normal surface model is deformed to the deformity surface model via multi-level threestage registration. Second, four shape features including local distance and area ratio indices are extracted in each five cranial bone. Finally, hierarchical SVM classifier is proposed to distinguish between the normal and deformity. As a result, the proposed method showed improved classification results compared to traditional cranial index. Our method can be used for the early diagnosis, surgical planning and postsurgical assessment of craniosynostosis as well as quantitative analysis of skull deformity.

  4. The notion of a plastic material spin in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  5. Flow characteristics around a deformable stenosis under pulsatile flow condition

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon

    2018-01-01

    A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.

  6. Determination of accuracy of winding deformation method using kNN based classifier used for 3 MVA transformer

    NASA Astrophysics Data System (ADS)

    Ahmed, Mustafa Wasir; Baishya, Manash Jyoti; Sharma, Sasanka Sekhor; Hazarika, Manash

    2018-04-01

    This paper presents a detecting system on power transformer in transformer winding, core and on load tap changer (OLTC). Accuracy of winding deformation is determined using kNN based classifier. Winding deformation in power transformer can be measured using sweep frequency response analysis (SFRA), which can enhance the diagnosis accuracy to a large degree. It is suggested that in the results minor deformation faults can be detected at frequency range of 1 mHz to 2 MHz. The values of RCL parameters are changed when faults occur and hence frequency response of the winding will change accordingly. The SFRA data of tested transformer is compared with reference trace. The difference between two graphs indicate faults in the transformer. The deformation between 1 mHz to 1kHz gives winding deformation, 1 kHz to 100 kHz gives core deformation and 100 kHz to 2 MHz gives OLTC deformation.

  7. Deformation Invariant Attribute Vector for Deformable Registration of Longitudinal Brain MR Images

    PubMed Central

    Li, Gang; Guo, Lei; Liu, Tianming

    2009-01-01

    This paper presents a novel approach to define deformation invariant attribute vector (DIAV) for each voxel in 3D brain image for the purpose of anatomic correspondence detection. The DIAV method is validated by using synthesized deformation in 3D brain MRI images. Both theoretic analysis and experimental studies demonstrate that the proposed DIAV is invariant to general nonlinear deformation. Moreover, our experimental results show that the DIAV is able to capture rich anatomic information around the voxels and exhibit strong discriminative ability. The DIAV has been integrated into a deformable registration algorithm for longitudinal brain MR images, and the results on both simulated and real brain images are provided to demonstrate the good performance of the proposed registration algorithm based on matching of DIAVs. PMID:19369031

  8. Cluster Analysis of Velocity Field Derived from Dense GNSS Network of Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Hashimoto, M.

    2015-12-01

    Dense GNSS networks have been widely used to observe crustal deformation. Simpson et al. (2012) and Savage and Simpson (2013) have conducted cluster analyses of GNSS velocity field in the San Francisco Bay Area and Mojave Desert, respectively. They have successfully found velocity discontinuities. They also showed an advantage of cluster analysis for classifying GNSS velocity field. Since in western United States, strike-slip events are dominant, geometry is simple. However, the Japanese Islands are tectonically complicated due to subduction of oceanic plates. There are many types of crustal deformation such as slow slip event and large postseismic deformation. We propose a modified clustering method of GNSS velocity field in Japan to separate time variant and static crustal deformation. Our modification is performing cluster analysis every several months or years, then qualifying cluster member similarity. If a GNSS station moved differently from its neighboring GNSS stations, the station will not belong to in the cluster which includes its surrounding stations. With this method, time variant phenomena were distinguished. We applied our method to GNSS data of Japan from 1996 to 2015. According to the analyses, following conclusions were derived. The first is the clusters boundaries are consistent with known active faults. For examples, the Arima-Takatsuki-Hanaore fault system and the Shimane-Tottori segment proposed by Nishimura (2015) are recognized, though without using prior information. The second is improving detectability of time variable phenomena, such as a slow slip event in northern part of Hokkaido region detected by Ohzono et al. (2015). The last one is the classification of postseismic deformation caused by large earthquakes. The result suggested velocity discontinuities in postseismic deformation of the Tohoku-oki earthquake. This result implies that postseismic deformation is not continuously decaying proportional to distance from its epicenter.

  9. Shear behavior of thermoformed woven-textile thermoplastic prepregs: An analysis combining bias-extension test and X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.

    2017-10-01

    Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.

  10. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  11. Fully Coupled Micro/Macro Deformation, Damage, and Failure Prediction for SiC/Ti-15-3 Laminates

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.; Lerch, Brad A.

    2001-01-01

    The deformation, failure, and low cycle fatigue life of SCS-6/Ti-15-3 composites are predicted using a coupled deformation and damage approach in the context of the analytical generalized method of cells (GMC) micromechanics model. The local effects of inelastic deformation, fiber breakage, fiber-matrix interfacial debonding, and fatigue damage are included as sub-models that operate on the micro scale for the individual composite phases. For the laminate analysis, lamination theory is employed as the global or structural scale model, while GMC is embedded to operate on the meso scale to simulate the behavior of the composite material within each laminate layer. While the analysis approach is quite complex and multifaceted, it is shown, through comparison with experimental data, to be quite accurate and realistic while remaining extremely efficient.

  12. The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure.

    PubMed

    Herbert, R C; Young, P G; Smith, C W; Wootton, R J; Evans, K E

    2000-10-01

    Finite element analysis is used to model the automatic cambering of the locust hind wing during promotion: the umbrella effect. It was found that the model required a high degree of sophistication before replicating the deformations found in vivo. The model has been validated using experimental data and the deformations recorded both in vivo and ex vivo. It predicts that even slight modifications to the geometrical description used can lead to significant changes in the deformations observed in the anal fan. The model agrees with experimental data and produces deformations very close to those seen in free-flying locusts. The validated model may be used to investigate the varying geometries found in orthopteran anal fans and the stresses found throughout the wing when loaded.

  13. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  14. Procedures for experimental measurement and theoretical analysis of large plastic deformations

    NASA Technical Reports Server (NTRS)

    Morris, R. E.

    1974-01-01

    Theoretical equations are derived and analytical procedures are presented for the interpretation of experimental measurements of large plastic strains in the surface of a plate. Orthogonal gage lengths established on the metal surface are measured before and after deformation. The change in orthogonality after deformation is also measured. Equations yield the principal strains, deviatoric stresses in the absence of surface friction forces, true stresses if the stress normal to the surface is known, and the orientation angle between the deformed gage line and the principal stress-strain axes. Errors in the measurement of nominal strains greater than 3 percent are within engineering accuracy. Applications suggested for this strain measurement system include the large-strain-stress analysis of impact test models, burst tests of spherical or cylindrical pressure vessels, and to augment small-strain instrumentation tests where large strains are anticipated.

  15. Microtexture Analysis and Modeling of Ambient Fatigue and Creep-Fatigue Damages in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, Jalaj; Singh, A. K.; Raman, S. Ganesh Sundara; Kumar, Vikas

    2017-02-01

    In the present investigation, microtexture analysis using electron back-scattered diffraction technique has been performed to study fatigue- and creep-fatigue damages and associated deformation structures in Ti-6Al-4V alloy. Special emphasis has been given to low-angle grain boundary configuration and its possible application as a damage indicator. Damage is mostly present in the form of voids as investigated through scanning electron microscopy. Stored deformation energies have been evaluated for the strain-controlled fatigue-, the stress-controlled fatigue-, and the creep-fatigue-tested samples. Stored deformation energies have also been analyzed vis-à-vis total damage energies to quantify the contribution of damages to various samples. A relation between the stored deformation energy and the applied strain amplitude has been proposed in this study.

  16. Analysis investigation of supporting and restraint conditions on the surface deformation of a collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; You, Zhen-Ting; Huang, Bo-Kai; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-09-01

    For meeting the requirements of the high-precision telescopes, the design of collimator is essential. The diameter of the collimator should be larger than that of the target for the using of alignment. Special supporting structures are demanded to reduce the deformation of gravity and to control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors. By using finite element analysis, a ZERODUR® mirror of a diameter of 620 mm will be analyzed to obtain the deformation induced by the supporting structures. Zernike polynomials will also be adopted to fit the optical surface and separate corresponding aberrations. Through the studies under different boundary conditions and supporting positions of the inner ring, it is concluded that the optical performance will be excellent under a strong enough supporter.

  17. Analysis of the Los Angeles Basin ground subsidence with InSAR data by independent component analysis approach

    NASA Astrophysics Data System (ADS)

    Xu, B.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) has the advantages of high spatial resolution which enable measure line of sight (LOS) surface displacements with nearly complete spatial continuity and a satellite's perspective that permits large areas view of Earth's surface quickly and efficiently. However, using InSAR to observe long wavelength and small magnitude deformation signals is still significantly limited by various unmodeled errors sources i.e. atmospheric delays, orbit induced errors, Digital Elevation Model (DEM) errors. Independent component analysis (ICA) is a probabilistic method for separating linear mixed signals generated by different underlying physical processes.The signal sources which form the interferograms are statistically independent both in space and in time, thus, they can be separated by ICA approach.The seismic behavior in the Los Angeles Basin is active and the basin has experienced numerous moderate to large earthquakes since the early Pliocene. Hence, understanding the seismotectonic deformation in the Los Angeles Basin is important for analyzing seismic behavior. Compare with the tectonic deformations, nontectonic deformations due to groundwater and oil extraction may be mainly responsible for the surface deformation in the Los Angeles basin. Using the small baseline subset (SBAS) InSAR method, we extracted the surface deformation time series in the Los Angeles basin with a time span of 7 years (September 27, 2003-September 25,2010). Then, we successfully separate the atmospheric noise from InSAR time series and detect different processes caused by different mechanisms.

  18. Simultaneous Assessment of Myocardial Perfusion, Wall Motion, and Deformation during Myocardial Contrast Echocardiography: A Feasibility Study.

    PubMed

    Zoppellaro, Giacomo; Venneri, Lucia; Khattar, Rajdeep S; Li, Wei; Senior, Roxy

    2016-06-01

    Ultrasound contrast agents may be used for the assessment of regional wall motion and myocardial perfusion, but are generally considered not suitable for deformation analysis. The aim of our study was to assess the feasibility of deformation imaging on contrast-enhanced images using a novel methodology. We prospectively enrolled 40 patients who underwent stress echocardiography with continuous intravenous infusion of SonoVue for the assessment of myocardial perfusion imaging with flash replenishment technique. We compared longitudinal strain (Lε) values, assessed with a vendor-independent software (2D CPA), on 68 resting contrast-enhanced and 68 resting noncontrast recordings. Strain analysis on contrast recordings was evaluated in the first cardiac cycles after the flash. Tracking of contrast images was deemed feasible in all subjects and in all views. Contrast administration improved image quality and increased the number of segments used for deformation analysis. Lε of noncontrast and contrast-enhanced images were statistically different (-18.8 ± 4.5% and -22.8 ± 5.4%, respectively; P < 0.001), but their correlation was good (ICC 0.65, 95%CI 0.42-0.78). Patients with resting wall-motion abnormalities showed lower Lε values on contrast recordings (-18.6 ± 6.0% vs. -24.2 ± 5.5%, respectively; P < 0.01). Intra-operator and inter-operator reproducibility was good for both noncontrast and contrast images with no statistical differences. Our study shows that deformation analysis on postflash contrast-enhanced images is feasible and reproducible. Therefore, it would be possible to perform a simultaneous evaluation of wall-motion abnormalities, volumes, ejection fraction, perfusion defects, and cardiac deformation on the same contrast recording. © 2016, Wiley Periodicals, Inc.

  19. Manufacturing Distortions of Curved Composite Panels

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr. (Technical Monitor); Ochinero, T. T.; Hyer, M. W.

    2002-01-01

    This papa briefly discusses the influences of through-thickness thermal expansion, a misaligned ply, and a resin-rich slightly thicker ply on the deformations of a curved composite laminate during cool down from tbc cure temperature. Both two-dimensional and three-dimensional level finite-element analyses are used. The deformations are categorized as to radial and tangential deformations and twist, and for each of the three influences, these deformations are quantified. An additional outcome of the study is an indication of the level of analysis needed to study each of these three influences.

  20. Longitudinal changes in ventral and dorsal neck muscle layers during loading against gravity in healthy volunteers using speckle tracking.

    PubMed

    Peolsson, Anneli; Peolsson, Michael

    2014-05-01

    This study aimed to describe and compare the longitudinal mechanical activity, deformation, and deformation rate of the different layers of dorsal and ventral neck muscles in healthy volunteers during head lifts against gravity. The cross-sectional study included 19 healthy volunteers (mean age, 28 years; SD, 7 years). Ultrasound with speckle-tracking analysis was used to investigate longitudinal mechanical activation, deformation, and deformation rate of dorsal and ventral neck muscles in real time during a head lift. Significance levels were set as P = .025 or P = .0125, depending on the number of comparisons. The dorsal neck muscles did not significantly differ in deformation (P > .04); however, the multifidus had a higher deformation rate than all other dorsal muscles (P < .003). The sternocleidomastoid had significantly higher deformation than the longus capitis (P = .005) and colli (P = .001) but a lower deformation rate than the longus colli (P = .02). The sternocleidomastoid deformed more than the deeper muscles, but it did significantly slower than the longus colli. Among the dorsal muscles, the deepest (the multifidus) had the highest deformation rate. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  1. A novel method to quantify and compare anatomical shape: application in cervix cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Oh, Seungjong; Jaffray, David; Cho, Young-Bin

    2014-06-01

    Adaptive radiation therapy (ART) had been proposed to restore dosimetric deficiencies during treatment delivery. In this paper, we developed a technique of Geometric reLocation for analyzing anatomical OBjects' Evolution (GLOBE) for a numerical model of tumor evolution under radiation therapy and characterized geometric changes of the target using GLOBE. A total of 174 clinical target volumes (CTVs) obtained from 32 cervical cancer patients were analyzed. GLOBE consists of three main steps; step (1) deforming a 3D surface object to a sphere by parametric active contour (PAC), step (2) sampling a deformed PAC on 642 nodes of icosahedron geodesic dome for reference frame, and step (3) unfolding 3D data to 2D plane for convenient visualization and analysis. The performance was evaluated with respect to (1) convergence of deformation (iteration number and computation time) and (2) accuracy of deformation (residual deformation). Based on deformation vectors from planning CTV to weekly CTVs, target specific (TS) margins were calculated on each sampled node of GLOBE and the systematic (Σ) and random (σ) variations of the vectors were calculated. Population based anisotropic (PBA) margins were generated using van Herk's margin recipe. GLOBE successfully modeled 152 CTVs from 28 patients. Fast convergence was observed for most cases (137/152) with the iteration number of 65 ± 74 (average ± STD) and the computation time of 13.7 ± 18.6 min. Residual deformation of PAC was 0.9 ± 0.7 mm and more than 97% was less than 3 mm. Margin analysis showed random nature of TS-margin. As a consequence, PBA-margins perform similarly to ISO-margins. For example, PBA-margins for 90% patients' coverage with 95% dose level is close to 13 mm ISO-margins in the aspect of target coverage and OAR sparing. GLOBE demonstrates a systematic analysis of tumor motion and deformation of patients with cervix cancer during radiation therapy and numerical modeling of PBA-margin on 642 locations of CTV surface.

  2. Influence of interfacial slip on the suspension rheology of a dilute emulsion of surfactant-laden deformable drops in linear flows

    NASA Astrophysics Data System (ADS)

    Das, Sayan; Bhattacharjee, Anirban; Chakraborty, Suman

    2018-03-01

    The present study deals with the effect of interfacial slip on the deformation and emulsion rheology of a dilute suspension of droplets in a linear flow. The droplets are laden with surfactants that are bulk-insoluble and get transported only along the interface. An asymptotic approach is adopted for the present analysis in order to tackle the nonlinearity present due to deformation of droplets. The analysis is carried out for two different limiting scenarios, namely, surface diffusion-dominated-surfactant transport and surface convection-dominated surfactant transport. For either of the limiting cases, we look into the droplet dynamics for two commonly encountered bulk flows—uniaxial extensional and simple shear flow. Under the assumption of negligible fluid inertia in either phase, it is shown that slip at the droplet interface significantly affects the surfactant-induced Marangoni stress and hence droplet deformation and emulsion rheology. The presence of interfacial slip not only brings about a decrease in the droplet deformation but also reduces the effective viscosity of the emulsion. The fall in both droplet deformation and effective viscosity is found to be more severe for the limiting case of surface convection-dominated surfactant transport. For the case of an imposed simple shear flow, the normal stress differences generated due to droplet deformation are affected as well due to the presence of interfacial slip.

  3. Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2009-12-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  4. Deformation microstructures and magnetite texture development in synthetic shear zones

    NASA Astrophysics Data System (ADS)

    Till, Jessica L.; Moskowitz, Bruce M.

    2014-08-01

    We present observations of deformation features in magnetite from synthetic magnetite-bearing silicate aggregates deformed between 1000 °C and 1200 °C in transpressional shear experiments with strains of up to 300%. Anisotropy of magnetic susceptibility and shape preferred orientation (SPO) analysis were combined with electron backscatter diffraction (EBSD) to characterize the magnetite deformation fabrics and intragrain microstructures. Crystallographic preferred orientation (CPO) in magnetite is very weak in all deformed samples and does not vary as a function of either temperature or shear strain. Magnetic anisotropy and SPO increase strongly with both strain and deformation temperature and indicate that strain partitioning between magnetite and the plagioclase matrix decreases at higher temperatures. EBSD orientation mapping of individual magnetite particles revealed substantial dispersions in intragrain orientation, analogous to undulose extinction, after deformation at 1000 and 1100 °C, indicating that dislocation creep processes were active in magnetite despite the lack of a well-developed CPO. Geometrical analysis of crystallographic orientation dispersions from grain map data indicates that low-angle grain boundary formation in magnetite could have been accommodated by slip on {110} or {100} planes, but no evidence for dominant slip on the expected {111} planes was found. Evidence for activation of multiple slip systems was seen in some magnetite grains and could be partially responsible for the lack of CPO in magnetite. These results suggest that, at least in polyphase rocks, crystallographic textures in magnetite may be inherently weak or slow to develop and CPO alone is not an adequate indicator of magnetite deformation mechanisms. These results may aid in the interpretation of deformation textures in other spinel-structured phases such as chromite and ringwoodite.

  5. Analytical and Experimental Characterization of Gravity Induced Deformations In Subscale Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Blandino, Joseph R.; McEvoy, Kiley C.

    2004-01-01

    The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.

  6. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    PubMed

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Monitoring urban subsidence based on SAR lnterferometric point target analysis

    USGS Publications Warehouse

    Zhang, Y.; Zhang, Jiahua; Gong, W.; Lu, Z.

    2009-01-01

    lnterferometric point target analysis (IPTA) is one of the latest developments in radar interferometric processing. It is achieved by analysis of the interferometric phases of some individual point targets, which are discrete and present temporarily stable backscattering characteristics, in long temporal series of interferometric SAR images. This paper analyzes the interferometric phase model of point targets, and then addresses two key issues within IPTA process. Firstly, a spatial searching method is proposed to unwrap the interferometric phase difference between two neighboring point targets. The height residual error and linear deformation rate of each point target can then be calculated, when a global reference point with known height correction and deformation history is chosen. Secondly, a spatial-temporal filtering scheme is proposed to further separate the atmosphere phase and nonlinear deformation phase from the residual interferometric phase. Finally, an experiment of the developed IPTA methodology is conducted over Suzhou urban area. Totally 38 ERS-1/2 SAR scenes are analyzed, and the deformation information over 3 546 point targets in the time span of 1992-2002 are generated. The IPTA-derived deformation shows very good agreement with the published result, which demonstrates that the IPTA technique can be developed into an operational tool to map the ground subsidence over urban area.

  8. Influence of transverse-shear and large-deformation effects on the low-speed impact response of laminated composite plates

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Starnes, James H., Jr.; Prasad, Chunchu B.

    1993-01-01

    An analytical procedure is presented for determining the transient response of simply supported, rectangular laminated composite plates subjected to impact loads from airgun-propelled or dropped-weight impactors. A first-order shear-deformation theory is included in the analysis to represent properly any local short-wave-length transient bending response. The impact force is modeled as a locally distributed load with a cosine-cosine distribution. A double Fourier series expansion and the Timoshenko small-increment method are used to determine the contact force, out-of-plane deflections, and in-plane strains and stresses at any plate location due to an impact force at any plate location. The results of experimental and analytical studies are compared for quasi-isotropic laminates. The results indicate that using the appropriate local force distribution for the locally loaded area and including transverse-shear-deformation effects in the laminated plate response analysis are important. The applicability of the present analytical procedure based on small deformation theory is investigated by comparing analytical and experimental results for combinations of quasi-isotropic laminate thicknesses and impact energy levels. The results of this study indicate that large-deformation effects influence the response of both 24- and 32-ply laminated plates, and that a geometrically nonlinear analysis is required for predicting the response accurately.

  9. Using NASTRAN to solve symmetric structures with nonsymmetric loads

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1982-01-01

    A method for computation of reflective dihedral symmetry in symmetrical structures under nonsymmetric loads is described. The method makes it possible to confine the analysis to a half, a quarter, or an octagonal segment. The symmetry of elastic deformation is discussed, and antisymmetrical deformation is distinguished from nonsymmetrical deformation. Modes of deformation considered are axial, bending, membrane, and torsional deformation. Examples of one and two dimensional elements are presented and extended to three dimensional elements. The method of setting up a problem within NASTRAN is discussed. The technique is applied to a thick structure having quarter symmetry which was modeled with polyhedra and subjected to five distinct loads having varying degrees of symmetry.

  10. Development of Viscoelastic Multi-Body Simulation and Impact Response Analysis of a Ballasted Railway Track under Cyclic Loading

    PubMed Central

    Nishiura, Daisuke; Sakaguchi, Hide; Aikawa, Akira

    2017-01-01

    Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM) and a finite element method (FEM). In this study, a quadruple discrete element method (QDEM) was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies. PMID:28772974

  11. Advanced interferometric synthetic aperture radar (InSAR) time series analysis using interferograms of multiple-orbit tracks: A case study on Miyake-jima

    NASA Astrophysics Data System (ADS)

    Ozawa, Taku; Ueda, Hideki

    2011-12-01

    InSAR time series analysis is an effective tool for detecting spatially and temporally complicated volcanic deformation. To obtain details of such deformation, we developed an advanced InSAR time series analysis using interferograms of multiple-orbit tracks. Considering only right- (or only left-) looking SAR observations, incidence directions for different orbit tracks are mostly included in a common plane. Therefore, slant-range changes in their interferograms can be expressed by two components in the plane. This approach estimates the time series of their components from interferograms of multiple-orbit tracks by the least squares analysis, and higher accuracy is obtained if many interferograms of different orbit tracks are available. Additionally, this analysis can combine interferograms for different incidence angles. In a case study on Miyake-jima, we obtained a deformation time series corresponding to GPS observations from PALSAR interferograms of six orbit tracks. The obtained accuracy was better than that with the SBAS approach, demonstrating its effectiveness. Furthermore, it is expected that higher accuracy would be obtained if SAR observations were carried out more frequently in all orbit tracks. The deformation obtained in the case study indicates uplift along the west coast and subsidence with contraction around the caldera. The speed of the uplift was almost constant, but the subsidence around the caldera decelerated from 2009. A flat deformation source was estimated near sea level under the caldera, implying that deceleration of subsidence was related to interaction between volcanic thermal activity and the aquifer.

  12. Development of Viscoelastic Multi-Body Simulation and Impact Response Analysis of a Ballasted Railway Track under Cyclic Loading.

    PubMed

    Nishiura, Daisuke; Sakaguchi, Hide; Aikawa, Akira

    2017-06-03

    Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM) and a finite element method (FEM). In this study, a quadruple discrete element method (QDEM) was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies.

  13. Analysis of Unbound Aggregate Layer Deformation Behavior from Full Scale Aircraft Gear Loading with Wander

    ERIC Educational Resources Information Center

    Donovan, Phillip Raymond

    2009-01-01

    This study focuses on the analysis of the behavior of unbound aggregates to offset wheel loads. Test data from full-scale aircraft gear loading conducted at the National Airport Pavement Test Facility (NAPTF) by the Federal Aviation Administration (FAA) are used to investigate the effects of wander (offset loads) on the deformation behavior of…

  14. Stresses and deformations in angle-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Rousseau, Carl Q.; Hyer, Michael W.; Tompkins, Stephen S.

    1987-01-01

    The stress and deformations in angle-ply composite tubes subjected to axisymmetric thermal loading were investigated both experimentally and analytically. For the theoretical portion a generalized plane strain elasticity analysis was developed. The analysis included mechanical and thermal loading, and temperature-dependent material properties. The elasticity analysis was also used to study the effect of including a thin metallic coating on a graphite-epoxy tube. The stresses in the coatings were found to be quite high, exceeding the yield stress of aluminum. An important finding in the analytical studies was the fact that even tubes with a balanced-symmetric lamination sequence exhibit shear deformation, or twist. For the experimental portion an apparatus was developed to measure torsional and axial response in the temperature range of 140 to 360 K. Eighteen specimens were tested, combining three material systems, eight lamination sequences, and three off-axis ply orientation angles. For the twist response, agreement between analysis and experiment was found to be good. The axial response of the tubes tested was found to be greater than predicted by a factor of three. As a result, it is recommended that the thermally induced axial deformations be investigated, both experimentally and analytically.

  15. Some aspects of the analysis of geodetic strain observations in kinematic models

    NASA Astrophysics Data System (ADS)

    Welsch, W. M.

    1986-11-01

    Frequently, deformation processes are analyzed in static models. In many cases, this procedure is justified, in particular if the deformation occurring is a singular event. If. however, the deformation is a continuous process, as is the case, for instance, with recent crustal movements, the analysis in kinematic models is more commensurate with the problem because the factor "time" is considered an essential part of the model. Some specialities have to be considered when analyzing geodetic strain observations in kinematic models. They are dealt with in this paper. After a brief derivation of the basic kinematic model and the kinematic strain model, the following subjects are treated: the adjustment of the pointwise velocity field and the derivation of strain-rate parameters; the fixing of the kinematic reference system as part of the geodetic datum; statistical tests of models by testing linear hypotheses; the invariance of kinematic strain-rate parameters with respect to transformations of the coordinate-system and the geodetic datum; the interpolation of strain rates by finite-element methods. After the representation of some advanced models for the description of secular and episodic kinematic processes, the data analysis in dynamic models is regarded as a further generalization of deformation analysis.

  16. Change in Stiffness of Pavement Layers in the Linear Discontinuous Deformation Area

    NASA Astrophysics Data System (ADS)

    Grygierek, Marcin

    2017-10-01

    The underground mining exploitation causes deformations on the surface of the area which are classified as continuous or discontinuous. Mining deformations cause loosening or compression of the subsoil. Loosening has an impact on the reduction of the subsoil stiffness. As a result the reduction of subsoil stiffness causes loosening of construction layers built in that subsoil. Pavement is a specific case. If there happens to be loosening then the fatigue life of pavement is reduced and premature damages can be observed such as fatigue cracks or/and structural deformation. Discontinuous deformations are an especially interesting case. They not only cause the reduction of the stiffness of the subsoil and pavement layers but also cause rapid deterioration in roughness. Change of roughness is very dangerous especially on fast roads such as a highway. Lately there can be observed the so called linear discontinuous surface deformations in the lanes in the mining area. Unfortunately, the ‘in situ’ research, presenting experiments on the effect of linear discontinuous deformations on the pavement, is in short supply. It is especially crucial with regard to the design of pavement reinforcement and the specification of optimal length of the reinforced part of the road. The article presents the results of ‘in situ’ tests carried out on the chosen pavements where the so called linear discontinuous surface deformation has appeared. The genesis of the damage is connected with the underground mining exploitation. Falling Weight Deflectometer (FWD) has been used in researches. Measuring points were carried out with high frequency which helped to acquire a very interesting distribution of deflections. The distribution of deflections well shows the impact of linear discontinuous deformation on the changes in stiffness pavement layers. In the analysis of data from FWD there has been used back calculation which worked modulus of layers out. The results of researches and analysis have allowed to specify the scale of stiffness reduction of subsoil and pavement layers and, above all, to specify a minimal area of reinforcement. Therefore, the results of the analysis can be very helpful in determining the range of reinforcement as well as designing reinforcement. Of course, researches should be continued for better knowledge about the impact of discontinuous deformations on pavement.

  17. SU-F-BRF-10: Deformable MRI to CT Validation Employing Same Day Planning MRI for Surrogate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; Stoyanova, R; Johnson, P

    Purpose: To compare rigid and deformable registrations of the prostate in the multi-modality setting (diagnostic-MRI to planning-CT) by utilizing a planning-MRI as a surrogate. The surrogate allows for the direct quantitative analysis which can be difficult in the multi-modality domain where intensity mapping differs. Methods: For ten subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day in which the planning CT was collected (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets.more » The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. The deformed MRI was then rigidly aligned to the planning MRI which was used as the surrogate for the planning-CT. Agreement between the two MRI datasets was scored using intensity based metrics including Pearson correlation and normalized mutual information, NMI. A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb and combined areas. A similar method was used to assess a rigid registration between the diagnostic-MRI and planning-CT. Results: Utilizing the NMI, the deformable registrations were superior to the rigid registrations in 9 of 10 cases demonstrating a 15.94% improvement (p-value < 0.001) within the combined area. The Pearson correlation showed similar results with the deformable registration superior in the same number of cases and demonstrating a 6.97% improvement (p-value <0.011). Conclusion: Validating deformable multi-modality registrations using spatial intensity based metrics is difficult due to the inherent differences in intensity mapping. This population provides an ideal testing ground for MRI to CT deformable registrations by obviating the need for multi-modality comparisons which are inherently more challenging. Deformable registrations generated in this work significantly outperformed rigid alignments. Research reported in this abstract was supported by the NIH National Cancer Institute R21CA153826 “MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer” and Bankhead-Coley Cancer Research Program 10BT-03 “MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer”.« less

  18. Dynamic deformation measurement and analysis of active stressed lap using optical method

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Liu, Yuankun; Xiang, Liqun

    2007-12-01

    The active stressed lap is the heart of polishing process. A novel non-contact optical method of dynamic deformation measurement and analysis of an active stressed lap is put forward. This method, based on structured illumination, is able to record full-field information of the bending and rotating stressed lap dynamically and continuously, while its profile is changed under computer control, and restore the whole process of lap deformation varied with time at different position and rotating angle. It has been verified by experiments that this proposed method will be helpful to the opticians to ensure the stressed lap as expected.

  19. Use of first derivative of displacement vs. force profiles to determine deformation behavior of compressed powders.

    PubMed

    Gharaibeh, Shadi F; Aburub, Aktham

    2013-03-01

    Displacement (D) vs. force (F) profiles obtained during compaction of powders have been reported by several researchers. These profiles are usually used to obtain mechanical energies associated with the compaction of powders. In this work, we obtained displacement-force data associated with the compression of six powders; Avicel PH101, Avicel PH301, pregelatinized corn starch, anhydrous lactose, dicalcium phosphate, and mannitol. The first three powders are known to deform predominantly by plastic behavior while the later ones are known to deform predominantly by brittle fracture. Displacement-force data was utilized to perform in-die Heckel analysis and to calculate the first derivative (dD/dF) of displacement-force plots. First derivative results were then plotted against mean force (F') at each point and against 1/F' at compression forces between 1 and 20 kN. Results of the in-die Heckle analysis are in very good agreement with the known deformation behavior of the compressed materials. First derivative plots show that materials that deform predominantly by plastic behavior have first derivative values (0.0006-0.0016 mm/ N) larger than those of brittle materials (0.0004 mm/N). Moreover, when dD/dF is plotted against 1/F' for each powder, a linear correlation can be obtained (R2=>0.98). The slopes of the dD/dF vs. 1/F' plots for plastically deforming materials are relatively larger than those for materials that deform by brittle behavior. It is concluded that first derivative plots of displacement-force profiles can be used to determine deformation behavior of powders.

  20. Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation

    NASA Astrophysics Data System (ADS)

    Riller, U.; Clark, M. D.; Daxberger, H.; Doman, D.; Lenauer, I.; Plath, S.; Santimano, T.

    2017-08-01

    Heterogeneous deformation is intrinsic in natural deformation, but often underestimated in the analysis and interpretation of mesoscopic brittle shear faults. Based on the analysis of 11,222 faults from two distinct tectonic settings, the Central Andes in Argentina and the Sudbury area in Canada, interpolation of principal strain directions and scaled analogue modelling, we revisit controversial issues of fault-slip inversions, collectively adhering to heterogeneous deformation. These issues include the significance of inversion solutions in terms of (1) strain or paleo-stress; (2) displacement, notably plate convergence; (3) local versus far-field deformation; (4) strain perturbations and (5) spacing between stations of fault-slip data acquisition. Furthermore, we highlight the value of inversions for identifying the kinematics of master fault zones in the absence of displaced geological markers. A key result of our assessment is that fault-slip inversions relate to local strain, not paleo-stress, and thus can aid in inferring, the kinematics of master faults. Moreover, strain perturbations caused by mechanical anomalies of the deforming upper crust significantly influence local principal strain directions. Thus, differently oriented principal strain axes inferred from fault-slip inversions in a given region may not point to regional deformation caused by successive and distinct deformation regimes. This outcome calls into question the common practice of separating heterogeneous fault-slip data sets into apparently homogeneous subsets. Finally, the fact that displacement vectors and principal strains are rarely co-linear defies the use of brittle fault data as proxy for estimating directions of plate-scale motions.

  1. Study on optical 3D angular deformations measurement

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Wang, Xingshu; Huang, Zongsheng; Yang, Jinliang

    2013-12-01

    3D angular deformations will be inevitable when ships are sailing, due to the changes of the environmental temperature and external stresses. The measurement of 3D angular deformations is one of the most critical and difficult issues in navy and shipbuilding industry around the world. In this paper, we propose an optical method to measure 3D ship angular deformations and discuss the measurement errors in detail. Theoretical analysis shows that the measured errors of the pitching and yawing deformations are induced by the installation errors of the image aperture, and the measured error of the rolling deformation depends on the subpixel location algorithm in image processing. It indicates that the measured errors of the optical measurement proposed in this paper are at the magnitude of angular seconds, when the elaborated installation and precise image processing technology are both performed.

  2. A New CT Reconstruction Technique Using Adaptive Deformation Recovery and Intensity Correction (ADRIC)

    PubMed Central

    Zhang, You; Ma, Jianhua; Iyengar, Puneeth; Zhong, Yuncheng; Wang, Jing

    2017-01-01

    Purpose Sequential same-patient CT images may involve deformation-induced and non-deformation-induced voxel intensity changes. An adaptive deformation recovery and intensity correction (ADRIC) technique was developed to improve the CT reconstruction accuracy, and to separate deformation from non-deformation-induced voxel intensity changes between sequential CT images. Materials and Methods ADRIC views the new CT volume as a deformation of a prior high-quality CT volume, but with additional non-deformation-induced voxel intensity changes. ADRIC first applies the 2D-3D deformation technique to recover the deformation field between the prior CT volume and the new, to-be-reconstructed CT volume. Using the deformation-recovered new CT volume, ADRIC further corrects the non-deformation-induced voxel intensity changes with an updated algebraic reconstruction technique (‘ART-dTV’). The resulting intensity-corrected new CT volume is subsequently fed back into the 2D-3D deformation process to further correct the residual deformation errors, which forms an iterative loop. By ADRIC, the deformation field and the non-deformation voxel intensity corrections are optimized separately and alternately to reconstruct the final CT. CT myocardial perfusion imaging scenarios were employed to evaluate the efficacy of ADRIC, using both simulated data of the extended-cardiac-torso (XCAT) digital phantom and experimentally acquired porcine data. The reconstruction accuracy of the ADRIC technique was compared to the technique using ART-dTV alone, and to the technique using 2D-3D deformation alone. The relative error metric and the universal quality index metric are calculated between the images for quantitative analysis. The relative error is defined as the square root of the sum of squared voxel intensity differences between the reconstructed volume and the ‘ground-truth’ volume, normalized by the square root of the sum of squared ‘ground-truth’ voxel intensities. In addition to the XCAT and porcine studies, a physical lung phantom measurement study was also conducted. Water-filled balloons with various shapes/volumes and concentrations of iodinated contrasts were put inside the phantom to simulate both deformations and non-deformation-induced intensity changes for ADRIC reconstruction. The ADRIC-solved deformations and intensity changes from limited-view projections were compared to those of the ‘gold-standard’ volumes reconstructed from fully-sampled projections. Results For the XCAT simulation study, the relative errors of the reconstructed CT volume by the 2D-3D deformation technique, the ART-dTV technique and the ADRIC technique were 14.64%, 19.21% and 11.90% respectively, by using 20 projections for reconstruction. Using 60 projections for reconstruction reduced the relative errors to 12.33%, 11.04% and 7.92% for the three techniques, respectively. For the porcine study, the corresponding results were 13.61%, 8.78%, 6.80% by using 20 projections; and 12.14%, 6.91% and 5.29% by using 60 projections. The ADRIC technique also demonstrated robustness to varying projection exposure levels. For the physical phantom study, the average DICE coefficient between the initial prior balloon volume and the new ‘gold-standard’ balloon volumes was 0.460. ADRIC reconstruction by 21 projections increased the average DICE coefficient to 0.954. Conclusion The ADRIC technique outperformed both the 2D-3D deformation technique and the ART-dTV technique in reconstruction accuracy. The alternately solved deformation field and non-deformation voxel intensity corrections can benefit multiple clinical applications, including tumor tracking, radiotherapy dose accumulation and treatment outcome analysis. PMID:28380247

  3. Using cluster analysis to organize and explore regional GPS velocities

    USGS Publications Warehouse

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  4. Application of the variational-asymptotical method to composite plates

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Lee, Bok W.; Atilgan, Ali R.

    1992-01-01

    A method is developed for the 3D analysis of laminated plate deformation which is an extension of a variational-asymptotical method by Atilgan and Hodges (1991). Both methods are based on the treatment of plate deformation by splitting the 3D analysis into linear through-the-thickness analysis and 2D plate analysis. Whereas the first technique tackles transverse shear deformation in the second asymptotical approximation, the present method simplifies its treatment and restricts it to the first approximation. Both analytical techniques are applied to the linear cylindrical bending problem, and the strain and stress distributions are derived and compared with those of the exact solution. The present theory provides more accurate results than those of the classical laminated-plate theory for the transverse displacement of 2-, 3-, and 4-layer cross-ply laminated plates. The method can give reliable estimates of the in-plane strain and displacement distributions.

  5. Advanced Modeling Strategies for the Analysis of Tile-Reinforced Composite Armor

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Chen, Tzi-Kang

    1999-01-01

    A detailed investigation of the deformation mechanisms in tile-reinforced armored components was conducted to develop the most efficient modeling strategies for the structural analysis of large components of the Composite Armored Vehicle. The limitations of conventional finite elements with respect to the analysis of tile-reinforced structures were examined, and two complementary optimal modeling strategies were developed. These strategies are element layering and the use of a tile-adhesive superelement. Element layering is a technique that uses stacks of shear deformable shell elements to obtain the proper transverse shear distributions through the thickness of the laminate. The tile-adhesive superelement consists of a statically condensed substructure model designed to take advantage of periodicity in tile placement patterns to eliminate numerical redundancies in the analysis. Both approaches can be used simultaneously to create unusually efficient models that accurately predict the global response by incorporating the correct local deformation mechanisms.

  6. Simultaneous shape and deformation measurements in a blood vessel model by two wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Andrés, Nieves; Pinto, Cristina; Lobera, Julia; Palero, Virginia; Arroyo, M. Pilar

    2017-06-01

    Holographic techniques have been used to measure the shape and the radial deformation of a blood vessel model and a real sheep aorta. Measurements are obtained from several holograms recorded for different object states. For each object state, two holograms with two different wavelengths are multiplexed in the same digital recording. Thus both holograms are simultaneously recorded but the information from each of them is separately obtained. The shape analysis gives a wrapped phase map whose fringes are related to a synthetic wavelength. After a filtering and unwrapping process, the 3D shape can be obtained. The shape data for each line are fitted to a circumference in order to determine the local vessel radius and center. The deformation analysis also results in a wrapped phase map, but the fringes are related to the laser wavelength used in the corresponding hologram. After the filtering and unwrapping process, a 2D map of the deformation in an out-of-plane direction is reconstructed. The radial deformation is then calculated by using the shape information.

  7. Strain analysis in the Sanandaj-Sirjan HP-LT Metamorphic Belt, SW Iran: Insights from small-scale faults and associated drag folds

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Keshavarz, Saeede; Faghih, Ali

    2015-05-01

    This study is aimed at quantifying the kinematics of deformation using a population of drag fold structures associated with small-scale faults in deformed quartzites from Seh-Ghalatoun area within the HP-LT Sanandaj-Sirjan Metamorphic Belt, SW Iran. A total 30 small-scale faults in the quartzite layers were examined to determine the deformation characteristics. Obtained data revealed α0 (initial fault angle) and ω (angle between flow apophyses) are equal to 83° and 32°, respectively. These data yield mean kinematic vorticity number (Wm) equal to 0.79 and mean finite strain (Rs) of 2.32. These results confirm the relative contribution of ∼43% pure shear and ∼57% simple shear components, respectively. The strain partitioning inferred from this quantitative analysis is consistent with a sub-simple or general shear deformation pattern associated with a transpressional flow regime in the study area as a part of the Zagros Orogen. This type of deformation resulted from oblique convergence between the Afro-Arabian and Central-Iranian plates.

  8. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  9. Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: Implications for paleoseismological studies

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Igel, Jan; Loewer, Markus; Tanner, David C.; Lang, Jörg; Müller, Katharina; Winsemann, Jutta

    2018-05-01

    Deformation bands in unconsolidated sediments are of great value for paleoseismological studies in sedimentary archives. Using ground-penetrating radar (GPR), we investigated an array of shear-deformation bands that developed in unconsolidated Pleistocene glacifluvial Gilbert-type delta sediments. A dense grid (spacing 0.6 m) of GPR profiles was measured on top of a 20 m-long outcrop that exposes shear-deformation bands. Features in the radargrams could be directly tied to the exposure. The shear-deformation bands are partly represented by inclined reflectors and partly by the offset of reflections at delta clinoforms. 3-D interpretation of the 2-D radar sections shows that the bands have near-planar geometries that can be traced throughout the entire sediment volume. Thin sections of sediment samples show that the analysed shear-deformation bands have a denser grain packing than the host sediment. Thus they have a lower porosity and smaller pore sizes and therefore, in the vadose zone, the deformation bands have a higher water content due to enhanced capillary forces. This, together with the partially-developed weak calcite cementation and the distinct offset along the bands, are likely the main reasons for the clear and unambiguous expression of the shear-deformation bands in the radar survey. The study shows that deformation-band arrays can clearly be detected using GPR and quickly mapped over larger sediment volumes. With the 3-D analysis, it is further possible to derive the orientation and geometry of the bands. This allows correlation of the bands with the regional fault trend. Studying deformation bands in unconsolidated sediments with GPR is therefore a powerful approach in paleoseismological studies. Based on our data, we postulate that the outcrop is part of a dextral strike-slip zone that was reactivated by glacial isostatic adjustment.

  10. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  11. Comparison of deformation mechanics for two different carbonates: oolitic limestone and laminites

    NASA Astrophysics Data System (ADS)

    Zihms, Stephanie; Lewis, Helen; Couples, Gary; Hall, Stephen; Somerville, Jim

    2016-04-01

    Carbonate rocks form under a range of conditions which leads to a diverse rock group. Even though carbonates are overall mineralogically simple, the solid-space distribution ranges from simple compositions such as oolitic limestones to highly complex networks of pores and solids as seen in coquinas. Their fundamental mechanical behaviour has been identified to be like clastic rocks (Vajdova 2004, Brantut, Heap et al. 2014). However it is very likely that this observation is not true for more complex carbonates. Triaxial tests were performed on cylindrical samples of two different carbonates; a) oolitic limestone (Bicqueley quarry, France) and b) laminite (Ariripe basin, Brazil). The samples were deformed under confining pressures of 8, 12 and 20MPa, and 20, 30 and 40MPa, respectively. All tests were stopped as soon as peak load was observed to preserve as many deformation characteristics as possible. Photographs of the samples were taken before and after deformation to allow surface analysis of deformation features. Additionally, samples were analysed post-deformation with X-ray tomography (XRT) (using the Zeiss XRadia XRM 520 at the 4D Imaging Lab at Lund University). The 3D tomography images represent the post-deformation samples' density distribution, allowing detailed, non-destructive, 3D analysis of the deformation features that developed in the triaxial testing, including the complex geometries and interactions of fractures, deformation bands and sedimentary layering. They also provide an insight into the complexity of deformation features produced due to the carbonate response. Initial results show that the oolitic limestone forms single shear bands almost the length of the sample, exhibiting similar characteristics to sandstones deformed under similar conditions. These features are observed for all three applied loads. The laminate sample deformed at the lowest confining pressure exhibits compactive features. However, the laminite samples deformed at the two higher confining pressures both show highly complex fracture networks comprising open fractures and fracture propagation. This suggests that the laminate changes from compactive to dilational responses over the selected confining conditions. The XRT analysis indicates that a more complex fracture distribution could be linked to rock component properties e.g. grain size and composition. For the laminite these are variable with the layers. This is in agreement with field observations of laminite microfabrics (Calvo, Rodriguez-Pascua et al. 1998). Additionally, the typical grain size of the laminate (μm) is much smaller than the oolitic limestone (mm), which suggests that fracture network complexity can also be linked to bulk system complexity i.e. pore & grain network. These deformation experiments show that, as previously observed, oolitic limestones seem to behave similarly to sandstones. However this observation is not true for laminites and it is very likely that more complex carbonates will develop even more complicated deformation behaviour. It is therefore necessary to systematically test different carbonate rocks to understand the impact of geometry and composition, as well as the interplay with the pore network. Brantut, N., et al. (2014). Journal of Geophysical Research: Solid Earth 119(7): 5444-5463. Calvo, J. P., et al. (1998). Sedimentology 45: 279-292. Vajdova, V. (2004). Journal of Geophysical Research 109(B5).

  12. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  13. Geometric constraints on the space of N = 2 SCFTs. Part I: physical constraints on relevant deformations

    NASA Astrophysics Data System (ADS)

    Argyres, Philip; Lotito, Matteo; Lü, Yongchao; Martone, Mario

    2018-02-01

    We initiate a systematic study of four dimensional N = 2 superconformal field theories (SCFTs) based on the analysis of their Coulomb branch geometries. Because these SCFTs are not uniquely characterized by their scale-invariant Coulomb branch geometries we also need information on their deformations. We construct all inequivalent such deformations preserving N = 2 supersymmetry and additional physical consistency conditions in the rank 1 case. These not only include all the ones previously predicted by S-duality, but also 16 additional deformations satisfying all the known N = 2 low energy consistency conditions. All but two of these additonal deformations have recently been identified with new rank 1 SCFTs; these identifications are briefly reviewed. Some novel ingredients which are important for this study include: a discussion of RG-flows in the presence of a moduli space of vacua; a classification of local N = 2 supersymmetry-preserving deformations of unitary N = 2 SCFTs; and an analysis of charge normalizations and the Dirac quantization condition on Coulomb branches. This paper is the first in a series of three. The second paper [1] gives the details of the explicit construction of the Coulomb branch geometries discussed here, while the third [2] discusses the computation of central charges of the associated SCFTs.

  14. Analysis of Facial Asymmetry in Deformational Plagiocephaly Using Three-Dimensional Computed Tomographic Review

    PubMed Central

    Moon, Il Yung; Oh, Kap Sung

    2014-01-01

    Background Infants with deformational plagiocephaly (DP) usually present with cranial vault deformities as well as facial asymmetry. The purpose of this study was to use three-dimensional anthropometric data to evaluate the influence of cranial deformities on facial asymmetry. Methods We analyzed three-dimensional computed tomography data for infants with DP (n=48) and without DP (n=30, control). Using 16 landmarks and 3 reference planes, 22 distance parameters and 2 angular parameters were compared. This cephalometric assessment focused on asymmetry of the orbits, nose, ears, maxilla, and mandible. We then assessed the correlation between 23 of the measurements and cranial vault asymmetry (CVA) for statistical significance using relative differences and correlation analysis. Results With the exception of few orbital asymmetry variables, most measurements indicated that the facial asymmetry was greater in infants with DP. Mandibular and nasal asymmetry was correlated highly with severity of CVA. Shortening of the ipsilateral mandibular body was particularly significant. There was no significant deformity in the maxilla or ear. Conclusion This study demonstrated that the cranial vault deformity in DP is associated with facial asymmetry. Compared with the control group, the infants with DP were found to have prominent asymmetry of the nose and mandible. PMID:28913202

  15. Sensitivity Analysis of Mechanical Parameters of Different Rock Layers to the Stability of Coal Roadway in Soft Rock Strata

    PubMed Central

    Zhao, Zeng-hui; Wang, Wei-ming; Gao, Xin; Yan, Ji-xing

    2013-01-01

    According to the geological characteristics of Xinjiang Ili mine in western area of China, a physical model of interstratified strata composed of soft rock and hard coal seam was established. Selecting the tunnel position, deformation modulus, and strength parameters of each layer as influencing factors, the sensitivity coefficient of roadway deformation to each parameter was firstly analyzed based on a Mohr-Columb strain softening model and nonlinear elastic-plastic finite element analysis. Then the effect laws of influencing factors which showed high sensitivity were further discussed. Finally, a regression model for the relationship between roadway displacements and multifactors was obtained by equivalent linear regression under multiple factors. The results show that the roadway deformation is highly sensitive to the depth of coal seam under the floor which should be considered in the layout of coal roadway; deformation modulus and strength of coal seam and floor have a great influence on the global stability of tunnel; on the contrary, roadway deformation is not sensitive to the mechanical parameters of soft roof; roadway deformation under random combinations of multi-factors can be deduced by the regression model. These conclusions provide theoretical significance to the arrangement and stability maintenance of coal roadway. PMID:24459447

  16. Soft sediment deformation structures in the Maastrichtian Ajali Formation Western Flank of Anambra Basin, Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Olabode, Solomon Ojo

    2014-01-01

    Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.

  17. Numerical evaluation of the surface deformation of elastic solids subjected to a hertzian contact stress

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1974-01-01

    The elastic deformation of two ellipsoidal solids in contact and subjected to Hertzian stress distribution was evaluated numerically as part of a general study of the elastic deformation of such solids in elastohydrodynamic contacts. In the analysis the contact zone was divided into equal rectangular areas, and it was assumed that a uniform pressure is applied over each rectangular area. The influence of the size of the rectangular area upon accuracy was also studied. The results indicate the distance from the center of the contact at which elastic deformation becomes insignificant.

  18. Analysis of recent surface deformation at Ischia Island Volcano (South Italy) via multi-platform monitoring systems

    NASA Astrophysics Data System (ADS)

    Manzo, Mariarosaria; De Martino, Prospero; Castaldo, Raffaele; De Luca, Claudio; Dolce, Mario; Scarpato, Giovanni; Tizzani, Pietro; Zinno, Ivana; Lanari, Riccardo

    2017-04-01

    Ischia Island is a densely populated volcanic area located in the North-Western sector of the Gulf of Napoli (South Italy), whose activity is characterized by eruptions (the last one occurred in 1302 A.D.), earthquakes (the most disastrous ones occurred in 1881 and in 1883), fumarolic-hydrothermal manifestations and ground deformation. In this work we carry out the surface deformation time-series analysis occurring at the Island by jointly exploiting data collected via two different monitoring systems. In particular, we take advantage from the large amount of periodic and continuous geodetic measurements collected by the GPS (campaign and permanent) stations deployed on the Island and belonging to the INGV-OV monitoring network. Moreover, we benefit from the large, free and open archive of C-band SAR data acquired over the Island by the Sentinel-1 constellation of the Copernicus Program, and processed via the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm [Berardino et al., 2002]. We focus on the 2014-2017 time period to analyze the recent surface deformation phenomena occurring on the Island, thus extending a previous study, aimed at investigating the temporal evolution of the ground displacements affecting the Island and limited to the 1992-2003 time interval [Manzo et al., 2006]. The performed integrated analysis provides relevant spatial and temporal information on the Island surface deformation pattern. In particular, it reveals a rather complex deformative scenario, where localized phenomena overlap/interact with a spatially extended deformation pattern that involves many Island sectors, with no evidence of significant uplift phenomena. Moreover, it shows a good agreement and consistency between the different kinds of data, thus providing a clear picture of the recent dynamics at Ischia Island that can be profitably exploited to deeply investigate the physical processes behind the observed deformation phenomena. Acknowledgments This work is partially supported by the IREA-CNR/Italian Department of Civil Protection agreement and the I-AMICA project (Infrastructure of High Technology for Environmental and Climate Monitoring-PONa3_00363). References Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375-2383, doi:10.1109/TGRS.2002.803792. Manzo, M., G. P. Ricciardi, F. Casu, G. Ventura, G. Zeni, S. Borgström, P. Berardino, C. Del Gaudio, and R. Lanari (2006), Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry, Journal of Volcanology and Geothermal Research, 151, 399-416, doi:10.1016/j.jvolgeores.2005.09.010.

  19. Methods for assessing the stability of slopes during earthquakes-A retrospective

    USGS Publications Warehouse

    Jibson, R.W.

    2011-01-01

    During the twentieth century, several methods to assess the stability of slopes during earthquakes were developed. Pseudostatic analysis was the earliest method; it involved simply adding a permanent body force representing the earthquake shaking to a static limit-equilibrium analysis. Stress-deformation analysis, a later development, involved much more complex modeling of slopes using a mesh in which the internal stresses and strains within elements are computed based on the applied external loads, including gravity and seismic loads. Stress-deformation analysis provided the most realistic model of slope behavior, but it is very complex and requires a high density of high-quality soil-property data as well as an accurate model of soil behavior. In 1965, Newmark developed a method that effectively bridges the gap between these two types of analysis. His sliding-block model is easy to apply and provides a useful index of co-seismic slope performance. Subsequent modifications to sliding-block analysis have made it applicable to a wider range of landslide types. Sliding-block analysis provides perhaps the greatest utility of all the types of analysis. It is far easier to apply than stress-deformation analysis, and it yields much more useful information than does pseudostatic analysis. ?? 2010.

  20. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the period from 2010 to 2014 was initially performed. Moreover, the deformation monitoring is continuing with monthly updates of the PSP analysis with new COSMO-SkyMed acquisitions both in ascending and descending geometry. The first results of the preliminary analysis over the archaeological site of Pompeii did not show large areas affected by deformations. However, the COSMO-SkyMed PSP SAR interferometry analysis proved to be very efficient due to its capability of providing a large number of deformation measurements over the archaeological site and structures with relatively small impact and cost. Moreover, in areas affected by collapses in the recent past, deformations were detected. Recent instability processes, both for the unexcavated slopes and for the archaeological structures, have promoted this low-impact analysis, aimed at identifying deformation paths and to prevent sudden collapses. Finally, the results obtained from the satellite techniques, will be also used to implement and improve the ground based geotechnical monitoring and warning system recently installed in selected case studies. Cross analysis between interferometric results, meteorological data and historical data of the site (e.g. collapses, works, etc.) are in progress in order to define provisional model aiming at an early identification of areas subjected to potential instability.

  1. A morphing-based scheme for large deformation analysis with stereo-DIC

    NASA Astrophysics Data System (ADS)

    Genovese, Katia; Sorgente, Donato

    2018-05-01

    A key step in the DIC-based image registration process is the definition of the initial guess for the non-linear optimization routine aimed at finding the parameters describing the pixel subset transformation. This initialization may result very challenging and possibly fail when dealing with pairs of largely deformed images such those obtained from two angled-views of not-flat objects or from the temporal undersampling of rapidly evolving phenomena. To address this problem, we developed a procedure that generates a sequence of intermediate synthetic images for gradually tracking the pixel subset transformation between the two extreme configurations. To this scope, a proper image warping function is defined over the entire image domain through the adoption of a robust feature-based algorithm followed by a NURBS-based interpolation scheme. This allows a fast and reliable estimation of the initial guess of the deformation parameters for the subsequent refinement stage of the DIC analysis. The proposed method is described step-by-step by illustrating the measurement of the large and heterogeneous deformation of a circular silicone membrane undergoing axisymmetric indentation. A comparative analysis of the results is carried out by taking as a benchmark a standard reference-updating approach. Finally, the morphing scheme is extended to the most general case of the correspondence search between two largely deformed textured 3D geometries. The feasibility of this latter approach is demonstrated on a very challenging case: the full-surface measurement of the severe deformation (> 150% strain) suffered by an aluminum sheet blank subjected to a pneumatic bulge test.

  2. Inversion Analysis of Postseismic Deformation in Poroelastic Material Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kawamoto, S.; Ito, T.; Hirahara, K.

    2005-12-01

    Following a large earthquake, postseismic deformations in the focal source region have been observed by several geodetic measurements. To explain the postseismic deformations, researchers have proposed some physical mechanisms known as afterslip, viscoelastic relaxation and poroelastic rebound. There are a number of studies about postseismic deformations but for poroelastic rebound. So, we calculated the postseismic deformations caused by afterslip and poroelastic rebound using modified FEM code _eCAMBIOT3D_f originally developed by Geotech. Lab. Gunma University, Japan (2003). The postseismic deformations caused by both afterslip and poroelastic rebound are characteristically different from those caused only by afterslip. This suggests that the slip distributions on the fault estimated from geodetic measurements also change. Because of this, we developed the inversion method that accounts for both afterslip and poroelastic rebound using FEM to estimate the difference of slip distributions on the fault quantitatively. The inversion analysis takes following steps. First, we calculate the coseismic and postseismic response functions on each fault segment induced by the unit slip. Where postseismic response function indicate the poroelastic rebound. Next, we make the observation equations at each time step using the response functions and estimate the spatiotemporal distribution of slip on the fault. In solving this inverse problem, we assume the slip distributions on the fault are smooth in space and time except for rapid change (coseismic change). Because the hyperparameters that control the smoothness of spatial and temporal distributions of slip are needed, we determine the best hyperparameters using ABIC. In this presentation, we introduce the example of analysis results using this method.

  3. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  4. Effect of initial grain size on inhomogeneous plastic deformation and twinning behavior in high manganese austenitic steel with a polycrystalline microstructure

    NASA Astrophysics Data System (ADS)

    Ueji, R.; Tsuchida, N.; Harada, K.; Takaki, K.; Fujii, H.

    2015-08-01

    The grain size effect on the deformation twinning in a high manganese austenitic steel which is so-called TWIP (twining induced plastic deformation) steel was studied in order to understand how to control deformation twinning. The 31wt%Mn-3%Al-3% Si steel was cold rolled and annealed at various temperatures to obtain fully recrystallized structures with different mean grain sizes. These annealed sheets were examined by room temperature tensile tests at a strain rate of 10-4/s. The coarse grained sample (grain size: 49.6μm) showed many deformation twins and the deformation twinning was preferentially found in the grains in which the tensile axis is parallel near to [111]. On the other hand, the sample with finer grains (1.8 μm) had few grains with twinning even after the tensile deformation. The electron back scattering diffraction (EB SD) measurements clarified the relationship between the anisotropy of deformation twinning and that of inhomogeneous plastic deformation. Based on the EBSD analysis, the mechanism of the suppression of deformation twinning by grain refinement was discussed with the concept of the slip pattern competition between the slip system governed by a grain boundary and that activated by the macroscopic load.

  5. Development and characterization of nanopore system for nano-vesicle analysis

    NASA Astrophysics Data System (ADS)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations < 50 mM. When using low electrolyte strength, surface effects become predominant and resulted in unconventional current signatures in our experiments. It prompted us to explore the effects of different experimental parameters using Multiphysics simulations, in order to optimize our system for nano-vesicle detection and analysis. Chapter 3, discusses translocation of ~85 nm DOPC liposomes through the nanopore and their co-translocational deformation due to high field strength and confinement/ flow induced strain inside the nanopore. The behavior of liposomes was compared to the rigid polystyrene particles which maintained their shape and did not exhibit any deformation. Chapter 4 extends the vesicle deformation analysis to exosomes derived from human breast cancer cell line. Exosomes also exhibit co-translocational deformation behavior; however, they appear to be less affected by the deforming force inside the nanopore compared to the DOPC liposomes. We believe, the results of this research will bring about a novel nano-bioanalytical platform that can be used to capture comprehensive size and deformability data on nano-vesicles with high temporal resolution.

  6. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  7. Some aspects of forecasting the post-mining substratum deformation for evaluation of its influence on constructions

    NASA Astrophysics Data System (ADS)

    Strzałkowski, Piotr; Ścigała, Roman; Szafulera, Katarzyna

    2018-04-01

    Some problems have been discussed, connected with performing predictions of post-mining terrain deformations. Especially problems occur with the summation of horizontal strain over long time intervals as well as predictions of linear discontinuous deformations. Of great importance in recent years is the problem of taking into account transient values of deformations associated with the development of extraction field. The exemplary analysis has been presented of planned extraction influences on two characteristic locations of building structure. The proposal has been shown of calculations with using transient deformation model allowing to describe the influence of extraction advance influence on the value of coefficient of extraction rate c (time factor), according to own original empirical formula.

  8. Nonaxial hexadecapole deformation effects on the fission barrier

    NASA Astrophysics Data System (ADS)

    Kardan, A.; Nejati, S.

    2016-06-01

    Fission barrier of the heavy nucleus 250Cf is analyzed in a multi-dimensional deformation space. This space includes two quadrupole (ɛ2,γ) and three hexadecapole deformation (ɛ40,ɛ42,ɛ44) parameters. The analysis is performed within an unpaired macroscopic-microscopic approach. Special attention is given to the effects of the axial and non-axial hexadecapole deformation shapes. It is found that the inclusion of the nonaxial hexadecapole shapes does not change the fission barrier heights, so it should be sufficient to minimize the energy in only one degree of freedom in the hexadecapole space ɛ4. The role of hexadecapole deformation parameters is also discussed on the Lublin-Strasbourg drop (LSD) macroscopic and the Strutinsky shell energies.

  9. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, S., E-mail: wronski@ftj.agh.edu.pl; Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl; Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distributionmore » and misorientation characteristics are examined using EBSD.« less

  10. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.

    PubMed

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-11-17

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment

    PubMed Central

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-01-01

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. PMID:26588562

  12. Global link between deformation and volcanic eruption quantified by satellite imagery

    PubMed Central

    Biggs, J.; Ebmeier, S. K.; Aspinall, W. P.; Lu, Z.; Pritchard, M. E.; Sparks, R. S. J.; Mather, T. A.

    2014-01-01

    A key challenge for volcanological science and hazard management is that few of the world’s volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with ‘strong’ evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption–deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development. PMID:24699342

  13. Global link between deformation and volcanic eruption quantified by satellite imagery.

    PubMed

    Biggs, J; Ebmeier, S K; Aspinall, W P; Lu, Z; Pritchard, M E; Sparks, R S J; Mather, T A

    2014-04-03

    A key challenge for volcanological science and hazard management is that few of the world's volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with 'strong' evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption-deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development.

  14. Monitoring of Deformation in Ground Before and After Tunnel Excavation

    NASA Astrophysics Data System (ADS)

    Eren, Mehmet; Hilmi Erkoç, Muharrem

    2017-04-01

    As population increase in metropolitan city, we need transportation and transmission tunnel. In this context, the engineers and administors attach impotance to building and planning underground-tunnel. Moreover, we must at regular intervals monitoring to deformation in underground-tunnel for quality and safety. Firstly, a deformation monitoring network is designed as perpendicular to the tunnel main axis. Secondly, the prescribed number of deformation measurements must be made. Finally, the deformation analysis is evaluated and its results is interpreted. This study investigates how deformation in monitoring network during and after tunnel excavate change.For this purpose, a deformation monitoring network of 18 object point and 4 reference point was established. Object points networks was designed steeply to the tunnel main axis as 3 cross section. Each cross section consisted of 3 point left, 2 point right and 1 point at the flowing line. Initial conditional measurement was made before tunnel excavation. Then the deformation measurement was made 5 period (1 period measured after tunnel excavate). All data sets were adjusted according to free adjustment method. The results from the investigation considering the tunnel line, a symmetrical subsidence was observed. The following day of tunnel excavation, we were observed %68 per of the total deformation. At the end of the last period measurements, %99 per of the total deformation was detected. Keywords: Tunnel, Deformation, Subsidence, Excavation

  15. Measurement of Dam Deformations: Case Study of Obruk Dam (Turkey)

    NASA Astrophysics Data System (ADS)

    Gulal, V. Engin; Alkan, R. Metin; Alkan, M. Nurullah; İlci, Veli; Ozulu, I. Murat; Tombus, F. Engin; Kose, Zafer; Aladogan, Kayhan; Sahin, Murat; Yavasoglu, Hakan; Oku, Guldane

    2016-04-01

    In the literature, there is information regarding the first deformation and displacement measurements in dams that were conducted in 1920s Switzerland. Todays, deformation measurements in the dams have gained very different functions with improvements in both measurement equipment and evaluation of measurements. Deformation measurements and analysis are among the main topics studied by scientists who take interest in the engineering measurement sciences. The Working group of Deformation Measurements and Analysis, which was established under the International Federation of Surveyors (FIG), carries out its studies and activities with regard to this subject. At the end of the 1970s, the subject of the determination of fixed points in the deformation monitoring network was one of the main subjects extensively studied. Many theories arose from this inquiry, as different institutes came to differing conclusions. In 1978, a special commission with representatives of universities has been established within the FIG 6.1 working group; this commission worked on the issue of determining a general approach to geometric deformation analysis. The results gleaned from the commission were discussed at symposiums organized by the FIG. In accordance with these studies, scientists interested in the subject have begun to work on models that investigate cause and effect relations between the effects that cause deformation and deformation. As of the scientist who interest with the issue focused on different deformation methods, another special commission was established within the FIG engineering measurements commission in order to classify deformation models and study terminology. After studying this material for a long time, the official commission report was published in 2001. In this prepared report, studies have been carried out by considering the FIG Engineering Surveying Commission's report entitled, 'MODELS AND TERMINOLOGY FOR THE ANALYSIS OF GEODETIC MONITORING OBSERVATIONS'. In October of 2015, geodetic deformation measurements were conducted by considering FIG reports related to deformation measurements and German DIN 18710 Engineering Measurements norms in the Çorum province of Turkey. The main purpose of the study is to determine optimum measurement and evaluation methods that will be used to specify movements in the horizontal and vertical directions for the fill dam. For this purpose; • In reference networks consisting of 8 points, measurements were performed by using long-term dual-frequency GNSS receivers for duration of 8 hours. • GNSS measurements were conducted in varying times between 30 minutes and 120 minutes at the 44 units object points on the body of the dam. • Two repetitive measurements of real time kinematic (RTK) GNSS were conducted at the object points on dam. • Geometric leveling measurements were performed between reference and object points. • Trigonometric leveling measurements were performed between reference and object points. • Polar measurements were performed between references and object points. GNSS measurements performed at reference points of the monitoring network for 8 hours have been evaluated by using GAMIT software in accordance with the IGS points in the region. In this manner, regional and local movements in the network can be determined. It is aimed to determine measurement period which will provide 1-2mm accuracy that expected in local GNSS network by evaluating GNSS measurements performed on body of dam. Results will be compared by offsetting GNSS and terrestrial measurements. This study will investigate whether or not there is increased accuracy provided by GNSS measurements carried out among reference points without the possibility of vision.

  16. Estimating Tunnel Strain in the Weak and Schistose Rock Mass Influenced by Stress Anisotropy: An Evaluation Based on Three Tunnel Cases from Nepal

    NASA Astrophysics Data System (ADS)

    Panthi, Krishna Kanta; Shrestha, Pawan Kumar

    2018-06-01

    Total plastic deformation in tunnels passing through weak and schistose rock mass consists of both time-independent and time-dependent deformations. The extent of this total deformation is heavily influenced by the rock mass deformability properties and in situ stress condition prevailing in the area. If in situ stress is not isotropic, the deformation magnitude is not only different along the longitudinal alignment but also along the periphery of the tunnel wall. This manuscript first evaluates the long-term plastic deformation records of three tunnel projects from the Nepal Himalaya and identifies interlink between the time-independent and time-dependent deformations using the convergence law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech 24(3):145-154, 1987a, Int J Rock Mech Min Sci Geomech 24(3):155-164, 1987b). Secondly, the manuscript attempts to establish a correlation between plastic deformations (tunnel strain) and rock mass deformable properties, support pressure and in situ stress conditions. Finally, patterns of time-independent and time-dependent plastic deformations are also evaluated and discussed. The long-term plastic deformation records of 24 tunnel sections representing four different rock types of three different headrace tunnel cases from Nepal Himalaya are extensively used in this endeavor. The authors believe that the proposed findings will be a step further in analysis of plastic deformations in tunnels passing through weak and schistose rock mass and along the anisotropic stress conditions.

  17. Visualizing along-strike change in deformation style using analog modeling and digital visualization software

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.

    2012-12-01

    It is a well-known phenomenon that deformation style varies in space; both along the strike of a deformed belt and along the strike of individual structures within that belt. This variation in deformation style is traditionally visualized with a series of closely spaced 2D cross-sections. However, the use of 2D section lines implies plane strain along those lines, and the true 3D nature of the deformation is not necessarily captured. By using a combination of remotely sensed data, analog modeling of field datasets and this remote data, and numerical and digital visualization of the finished model, a 3D understanding and restoration of the deformation style within the region can be achieved. The workflow used for this study begins by considering the variation in deformation style which can be observed from satellite images and combining this data with traditional field data, in order to understand the deformation in the region under consideration. The conceptual model developed at this stage is then modeled using a sand and silicone modeling system, where the kinematics and dynamics of the deformation processes can be examined. A series of closely-spaced cross-sections, as well as 3D images of the deformation, are created from the analog model, and input into a digital visualization and modeling system for restoration. In this fashion, a valid 3D model is created where the internal structure of the deformed system can be visualized and mined for information. The region used in the study is the Sawtooth Range, Montana. The region forms part of the Montana Disturbed Belt in the Front Ranges of the Rocky Mountains, along strike from the Alberta Syncline in the Canadian Rocky Mountains. Interpretation of satellite data indicates that the deformation front structures include both folds and thrust structures. The thrust structures vary from hinterland-verging triangle zones to foreland-verging imbricate thrusts along strike, and the folds also vary in geometry along strike. The analog models, constrained by data from exploration wells, indicate that this change in geometry is related to a change in mechanical stratigraphy along the strike of the belt. Results from the kinematic and dynamic analysis of the digital model will also be presented. Additional implications of such a workflow and visualization system include the possibility of creating and viewing multiple cross-sections, including sections created at oblique angles to the original model. This allows the analysis of the non-plane strain component of the models and thus a more complete analysis, understanding and visualization of the deformed region. This workflow and visualization system is applicable to any region where traditional field methods must be coupled with remote data, intensely processed depth data, or analog modeling systems in order to generate valid geologic or geophsyical models.

  18. Numerical simulation of deformation and figure quality of precise mirror

    NASA Astrophysics Data System (ADS)

    Vit, Tomáš; Melich, Radek; Sandri, Paolo

    2015-01-01

    The presented paper shows results and a comparison of FEM numerical simulations and optical tests of the assembly of a precise Zerodur mirror with a mounting structure for space applications. It also shows how the curing of adhesive film can impact the optical surface, especially as regards deformations. Finally, the paper shows the results of the figure quality analysis, which are based on data from FEM simulation of optical surface deformations.

  19. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg

    2016-04-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  20. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.

    2016-01-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  1. SU-F-T-680: Radiobiological Analysis of the Impact of Daily Patient Deformation and Setup Variations Through the Use of the Cone Beam CT and Deformable Image Registration in Lung Cancer IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurkovic, I; Stathakis, S; Markovic, M

    Purpose: To estimate the dose distributions delivered to the patient in each treatment fraction using deformable image registration (DIR) and assess the radiobiological impact of the inter-fraction variations due to patient deformation and setup. Methods: The work is based on the cone beam CT (CBCT) images and treatment plans of two lung cancer patients. Both patients were treated with intensity modulated radiation therapy (IMRT) to 66Gy in 2Gy/fraction. The treatment plans were exported from the treatment planning system (TPS) to the Velocity AI where DIR was performed and the same deformation matrix was used for the deformation of the plannedmore » dose distribution and organ contours to each CBCT dataset. A radiobiological analysis was performed based on the radiobiological parameters of the involved organs at risk (OARs) and planning target volume (PTV). Using the complication free tumor control probability (P+) index, differences in P+ were observed between each CBCT as well as between CBCT and planning dose distributions. Results: The optimal CBCT P? values ranged from 91.6 % to 94.8 % for patient #1 and from 88.8 % to 90.6 % for patient #2. At the dose level of the clinical prescription, the CBCT P+ values ranged from 80.3% to 80.7% for patient #1 and from 80.7% to 81.0% for the patient #2. The planning CT P+ values were 81.0% and 80.7% for the two patients, respectively. These differences emphasize the significance of using the radiobiological analysis when assessing changes in the dose distribution due to the tumor motion and lung deformations. Conclusion: Daily setup variations yield to differences in the actual dose delivered versus the planned one. The observed differences were rather small when only looking at the dosimetric comparison of the dose distributions, however the radiobiology analysis was able to detect clinically relevant differences among the studied dose distributions.« less

  2. Recent advances in analysis and prediction of Rock Falls, Rock Slides, and Rock Avalanches using 3D point clouds

    NASA Astrophysics Data System (ADS)

    Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.

    2014-12-01

    The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances, a great challenge still remains in the development of new algorithms for more accurate techniques for 3D point cloud treatment (e.g. filtering, segmentation, etc.) aiming to improve rock slope characterization and monitoring, a series of exciting research findings are expected in the forthcoming years.

  3. Contemporary overview of soil creep phenomenon

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Dobak, Paweł

    2017-06-01

    Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.

  4. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque.

    PubMed

    Magesh, Varadaraju; Harikrishnan, Pandurangan; Kingsly Jeba Singh, Devadhas

    2018-04-01

    Torque applied on anterior teeth is vital for root positioning and stability. The aim of this study was to evaluate the detailed slot wall deformation in stainless steel (SS) and titanium (Ti) edgewise brackets during palatal root torque using finite element analysis. A finite element model was developed from a maxillary central incisor SS bracket (0.022 in). The generated torque values from an SS rectangular archwire (0.019 × 0.025 in) while twisting from 5° to 40° were obtained experimentally by a spine tester, and the calculated torque force was applied in the bracket slot. The deformations of the slot walls in both SS and Ti brackets were measured at various locations. There were gradual increases in the deformations of both bracket slot walls from the bottom to top locations. In the SS bracket slot for the 40° twist, the deformations were 9.28, 36.8, and 44.8 μm in the bottom, middle, and top slot wall locations, respectively. Similarly, in the Ti bracket slot for the 40° twist, the deformations were 39.2, 62.4, and 76.2 μm in the bottom, middle, and top slot wall locations, respectively. The elastic limits were reached at 28° for SS and at 37° for Ti. Both SS and Ti bracket slots underwent deformation during torque application. There are variations in the deformations at different locations in the slot walls and between the materials. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. A Basic Approach to the Use of Canonical Variables and Von Zeipel’s Method in Perturbation Theory

    DTIC Science & Technology

    1964-05-01

    derivatives of ~. 1lcnr the part of’ the .olutioD periodic ill L is obtaiDed t.o firat order (i.e., o(t) troa . lqa . (!’f)). H ~(So + ~) I tL𔃼 l L...detent1n1ng S2 •. At thia poi.Dt, the HamiltoDian n* is rrea lqa . (31.) a4 (]6) *< I * * H L ) • H 0 + ~ + ••• , 3 ef2 •kL + + ••• 8k 19 * H2 ~ be...oouic1eriz18 tbe el.aMnta or CODataDtl ot the l1Dear .olaUoa to be tiM variablea. ’Dda vaa expreaae4 l:v lqa . (22) wtlich are repeated below u. ex ( It

  6. Mesoporous Akaganeite of Adjustable Pore Size Synthesized using Mixed Templates

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ge, D. L.; Ren, H. P.; Fan, Y. J.; Wu, L. M.; Sun, Z. X.

    2017-12-01

    Mesoporous akaganeite with large and adjustable pore size was synthesized through a co-template method, which was achieved by the combined interaction between PEG2000 and alkyl amines with different lengths of the straight carbon chain. The characterized results indicate that the synthesized samples show comparatively narrow BJH pore size distributions and centered at 14.3 nm when PEG and HEPA was used, and it could be enlarged to 16.8 and 19.4 nm respectively through changing the alkyl amines to DDA and HDA. Meanwhile, all the synthesized akaganeite possess relativity high specific surface area ranging from 183 to 281 m2/g and high total pore volume of 0.98 to 1.5 cm3/g. A possible mechanism leading to the pore size changing was also proposed.

  7. The Impact of Microstructure on an Accurate Snow Scattering Parameterization at Microwave Wavelengths

    NASA Astrophysics Data System (ADS)

    Honeyager, Ryan

    High frequency microwave instruments are increasingly used to observe ice clouds and snow. These instruments are significantly more sensitive than conventional precipitation radar. This is ideal for analyzing ice-bearing clouds, for ice particles are tenuously distributed and have effective densities that are far less than liquid water. However, at shorter wavelengths, the electromagnetic response of ice particles is no longer solely dependent on particle mass. The shape of the ice particles also plays a significant role. Thus, in order to understand the observations of high frequency microwave radars and radiometers, it is essential to model the scattering properties of snowflakes correctly. Several research groups have proposed detailed models of snow aggregation. These particle models are coupled with computer codes that determine the particles' electromagnetic properties. However, there is a discrepancy between the particle model outputs and the requirements of the electromagnetic models. Snowflakes have countless variations in structure, but we also know that physically similar snowflakes scatter light in much the same manner. Structurally exact electromagnetic models, such as the discrete dipole approximation (DDA), require a high degree of structural resolution. Such methods are slow, spending considerable time processing redundant (i.e. useless) information. Conversely, when using techniques that incorporate too little structural information, the resultant radiative properties are not physically realistic. Then, we ask the question, what features are most important in determining scattering? This dissertation develops a general technique that can quickly parameterize the important structural aspects that determine the scattering of many diverse snowflake morphologies. A Voronoi bounding neighbor algorithm is first employed to decompose aggregates into well-defined interior and surface regions. The sensitivity of scattering to interior randomization is then examined. The loss of interior structure is found to have a negligible impact on scattering cross sections, and backscatter is lowered by approximately five percent. This establishes that detailed knowledge of interior structure is not necessary when modeling scattering behavior, and it also provides support for using an effective medium approximation to describe the interiors of snow aggregates. The Voronoi diagram-based technique enables the almost trivial determination of the effective density of this medium. A bounding neighbor algorithm is then used to establish a greatly improved approximation of scattering by equivalent spheroids. This algorithm is then used to posit a Voronoi diagram-based definition of effective density approach, which is used in concert with the T-matrix method to determine single-scattering cross sections. The resulting backscatters are found to reasonably match those of the DDA over frequencies from 10.65 to 183.31 GHz and particle sizes from a few hundred micrometers to nine millimeters in length. Integrated error in backscatter versus DDA is found to be within 25% at 94 GHz. Errors in scattering cross-sections and asymmetry parameters are likewise small. The observed cross-sectional errors are much smaller than the differences observed among different particle models. This represents a significant improvement over established techniques, and it demonstrates that the radiative properties of dense aggregate snowflakes may be adequately represented by equal-mass homogeneous spheroids. The present results can be used to supplement retrieval algorithms used by CloudSat, EarthCARE, Galileo, GPM and SWACR radars. The ability to predict the full range of scattering properties is potentially also useful for other particle regimes where a compact particle approximation is applicable.

  8. Deformation behavior of welded steel sandwich panels under quasi-static loading

    DOT National Transportation Integrated Search

    2011-03-16

    This paper summarizes basic research (i.e., testing and analysis) : conducted to examine the deformation behavior of flat-welded : steel sandwich panels under two types of quasi-static loading: : (1) uniaxial compression; and (2) bending through an i...

  9. Analysis of the Transition in Deformation Mechanisms in Superplastic 5083 Aluminum Alloys by Orientation Imaging Microscopy

    DTIC Science & Technology

    2001-09-01

    Analysis of the Transition in Deformation Mechanisms in Superplastic 5083 Aluminum Alloys by Orientation Imaging Microscopy 6. AUTHOR( S ) Harrell...James W. 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING...ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME( S ) AND ADDRESS(ES) General Motors Corp., Research and Development Center

  10. Deciphering the shape and deformation of secondary structures through local conformation analysis

    PubMed Central

    2011-01-01

    Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872

  11. Deciphering the shape and deformation of secondary structures through local conformation analysis.

    PubMed

    Baussand, Julie; Camproux, Anne-Claude

    2011-02-01

    Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  12. Morphological deformities in Chironomus spp. (Diptera: Chironomidae) larvae as a tool for impact assessment of anthropogenic and environmental stresses on three rivers in the Juru river system, Penang, Malaysia.

    PubMed

    Al-Shami, Salman; Rawi, Che Salmah M; Nor, Siti Azizah M; Ahmad, Abu Hassan; Ali, Arshad

    2010-02-01

    Morphological deformities in parts of the head capsule of Chironomus spp. larvae inhabiting three polluted rivers (Permatang Rawa [PRR], Pasir [PR], and Kilang Ubi [KUR]) in the Juru River Basin, northeastern peninsular Malaysia, were studied. Samples of the fourth-instar larvae at one location in each river were collected monthly from November 2007 to March 2008 and examined for deformities of the mentum, antenna, mandible, and epipharyngis. At each sample location, in situ measurements of water depth, river width, water pH, dissolved oxygen, and water temperature were made. Samples of river water and benthic sediments were also collected monthly from each larval sample location in each river and taken to the laboratory for appropriate analysis. Total suspended solids (TSSs), ammonium-N, nitrate-N, phosphate-P, chloride, sulfate, and aluminum content in water were analyzed. Total organic matter and nonresidual metals in the sediment samples were also analyzed. Among the three rivers, the highest mean deformity (47.17%) was recorded in larvae collected from KUR that received industrial discharges from surrounding garment and rubber factories, followed by PRR (33.71%) receiving primarily residues of fertilizers and pesticides from adjacent rice fields, and PR (30.34%) contaminated primarily by anthropogenic wastes from the surrounding residential areas. Among the various head capsule structures, deformity of the mentum was strongly reflective of environmental stress and amounted to 27.9, 20.87, and 30.19% in the PRR, PR, and KUR, respectively. Calculated Lenat's toxic score index satisfactorily explained the influence of prevailing environmental variables on the severity of mentum deformities. Redundancy analysis and forward selection selected TSSs, sediment Zn, Mn, Cu, and Ni, and water pH, dissolved oxygen, water temperature, total organic matter, nitrate-N, chloride, phosphate-P, ammonium-N, sulfate, and aluminum as parameters that significantly affected some proportion of deformities. The total deformities correlated closely with deformities of mentum but only weakly with deformities in other parts of head. The total deformity incidence was strongly correlated with high contents of sediment Mn and Ni. The mentum and epipharyngis deformities incidence was highly correlated with an increase of TSSs, total aluminum, and ammonium-N and a decrease in pH and dissolved oxygen.

  13. Contaminant Boundary at the Faultless Underground Nuclear Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greg Pohll; Karl Pohlmann; Jeff Daniels

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwatermore » contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision analysis (DDA) (Pohll and Mihevc, 2000). This new model includes the uncertainty in the three-dimensional spatial distribution of lithology and hydraulic conductivity from the 1999 model as well as the uncertainty in the other flow and transport parameters from the 2000 DDA model. Additionally, the new model focuses on a much smaller region than was included in the earlier models, that is, the subsurface within the UC-1 land withdrawal area where the 1999 model predicted radionuclide transport will occur over the next 1,000 years. The purpose of this unclassified document is to present the modifications to the CNTA groundwater flow and transport model, to present the methodology used to calculate contaminant boundaries, and to present the Safe Drinking Water Act and risk-derived contaminant boundaries for the Faultless underground nuclear test CAU.« less

  14. Development of deformation band clusters in porous quartz sandstones - Contribution from microstructural analysis and numerical modeling

    NASA Astrophysics Data System (ADS)

    Philit, S.; Soliva, R.; Chemenda, A. I.

    2017-12-01

    Because sandstones form good reservoirs for hydrocarbon, water or C02 storage, the understanding of the deformation processes in sandstones is major. The deformation band clusters result from the localization of the deformation in porous sandstones under the form of gathered low-permeability cataclastic deformation bands. It has recently been shown that this localization is favored in extensional tectonics. The clusters measure tens to hundreds of meters in extent and propagate vertically as long as the sandstone is clean. Because the clusters can form several kilometers long networks, they are likely to hamper fluid flow during reservoir exploitation. Yet, the processes of band accumulation linked to the evolution of the clusters to a potential faulting are poorly understood. An integrated study coupling a microscopic analysis of the deformed granular material in clusters from 7 sites in the world and distinct element numerical modeling permits to propose a model for cluster growth. Our microscopic analysis reveals that the clusters display varying degree of cataclasis, with the most important degrees in the bands. This cataclasis is accompanied by porosity reduction (more reduced in thrust Andersonian regime), and increased Particle Size Distribution. This testifies of an important packing and implies an increased number of particle coordination. During deformation, the grain shape is both smoothened and roughened; the averaged values of the roundness and circularity indicate a rapid roughening of the clasts at the first stages of deformation followed by a slight smoothening. The roughening of the clasts in densely packed material induces high friction and strengthens the material. High residual porosity at some band edges suggests a local dilatant behavior of sheared material. Our distinct element numerical models and other particle models in the literature confirm this observation. The development of force chains with low particle coordination at these locations would weaken the stress resistance at the contact points. Hence, the cluster growth would be promoted by the successive localization of bands the edges of preexisting bands. Faulting could occur at any stage of the cluster development, probably favored along interfaces of minimized strength with smooth geometry.

  15. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasankaran, S., E-mail: sivasankarangs1979@gmail.com; Sivaprasad, K., E-mail: ksp@nitt.edu; Narayanasamy, R., E-mail: narayan@nitt.edu

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrixmore » were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using various Williamson-Hall models were investigated for line profile analysis. {yields} Uniform energy density deformation model is observed to the best realistic model. {yields} The present analysis is used for understanding the stress and the strain present in the nanocomposites.« less

  16. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate.

    PubMed

    Zhang, Hongcai; Yun, Sanyue; Song, Lingling; Zhang, Yiwen; Zhao, Yanyun

    2017-03-01

    The crustacean shells of crabs and shrimps produces quantities of by-products, leading to seriously environmental pollution and human health problems during industrial processing, yet they turned into high-value useful products, such as chitin and chitosan. To prepare them under large-scale submerged fermentation level, shrimp shell powders (SSPs) was fermented by successive three-step fermentation of Serratia marcescens B742, Lactobacillus plantarum ATCC 8014 and Rhizopus japonicus M193 to extract chitin and chitosan based on previously optimal conditions. Moreover, the key parameters was investigated to monitor the changes of resulted products during fermentation process. The results showed that the yield of prepared chitin and chitosan reached 21.35 and 13.11% with the recovery rate of 74.67 and 63.42%, respectively. The degree of deacetylation (DDA) and molecular mass (MM) of produced chitosan were 81.23% and 512.06kDa, respectively. The obtained chitin and chitosan was characterized using Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD) analysis. The established microbial fermentation method can be applied for the industrial large-scale production of chitin and chitosan, while the use of chemical reagents was significantly reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    PubMed Central

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  18. Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation

    NASA Astrophysics Data System (ADS)

    Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.

    2018-02-01

    Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  19. Fundamental frequency perturbation indicates perceived health and age in male and female speakers

    NASA Astrophysics Data System (ADS)

    Feinberg, David R.

    2004-05-01

    There is strong support for the idea that healthy vocal chords are able to produce fundamental frequencies (F0) with minimal perturbation. Measures of F0 perturbation have been shown to discriminate pathological versus healthy populations. In addition to measuring vocal chord health, F0 perturbation is a correlate of real and perceived age. Here, the role of jitter (periodic variation in F0) and shimmer (periodic variation in amplitude of F0) in perceived health and age in a young adult (males aged 18-33, females aged 18-26), nondysphonic population was investigated. Voices were assessed for health and age by peer aged, opposite-sex raters. Jitter and shimmer were measured with Praat software (www.praat.org) using various algorithms (jitter: DDP, local, local absolute, PPQ5, and RAP; shimmer: DDA, local, local absolute, APQ3, APQ5, APQ11) to reduce measurement error, and to ascertain the robustness of the findings. Male and female voices were analyzed separately. In both sexes, ratings of health and age were significantly correlated. Measures of jitter and shimmer correlated negatively with perceived health, and positively with perceived age. Further analysis revealed that these effects were independent in male voices. Implications of this finding are that attributions of vocal health and age may reflect actual underlying condition.

  20. Structures, microfabrics, fractal analysis and temperature-pressure estimation of the Mesozoic Xingcheng-Taili ductile shear zone in the North China craton

    NASA Astrophysics Data System (ADS)

    Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Jin, Wei; Zeng, Zuoxun; Bernroider, Manfred; Li, Weimin; Wen, Quanbo; Han, Guoqing; Zhao, Yingli

    2014-05-01

    The ductile shear zone in Xingcheng-Taili area (western Liaoning Province in China) is tectonically located in the eastern section of the northern margin of the North China craton, and dominantly comprises deformed granitic rocks of Neoarchean and Triassic to Late Jurassic age, which were affected by shearing within middle- to low-grade metamorphic conditions. Because a high-temperature metamorphic overprint is lacking, microstructures attesting to low-temperature ductile deformation are well preserved. However, the rocks and its structures have not been previously analyzed in detail except by U-Pb zircon dating and some geochemistry. Here, we describe the deformation characteristics and tectonic evolution of the Xingcheng-Taili ductile shear zone, in order to understand the mode of lithosphericscale reactivation, extension and thinning of the North China craton. The ductile deformation history comprises four successive deformation phases: (1) In the Neoarchean granitic rocks, a steep gneissosity and banded structures trend nearly E-W (D1). (2) A NE-striking sinistral structure of Upper Triassic rocks may indicate a deformation event (D2) in Late Triassic times, which ductile deformation structures superimposed on Neoarchean granitic rocks. (3) A gneissose structure with S-C fabrics as well as an ENE-trending sinistral strike-slip characteristic (D3) developed in Upper Jurassic biotite adamellite and show the deformation characteristics of a shallow crustal level and generated mylonitic fabrics superimposed on previous structures. (4) Late granitic dykes show different deformational behavior, and shortening with D4 folds. The attitude of the foliation S and mineral stretching lineation of three main types of rocks shows remarkable differences in orientation. The shapes of recrystallized quartz grains from three main types of granitic rocks with their jagged and indented boundaries were natural records of deformation conditions (D1to D3). Crystal preferred orientation of quartz determined by electron back scatter diffraction (EBSD) suggest sinistral strike-slip displacement within a temperature at about 400 to 500° C. Quartz mainly shows low-temperature fabrics with dominant {0001}-slip system. As the deformed rocks show obvious deformation overprint, we have estimated flow stresses from dynamically recrystallized grain sizes of quartz separately. But coincident fractal analysis showed that the boundaries of recrystallized grains had statistically self similarities with the numbers of fractal dimension from 1.153 to 1.196 with the range of deformation temperatures from 500 to 600° C, which is corresponding to upper greenschist to lower amphibolite facies conditions. Together with published flow laws to estimated deformation rates between the region of 10-11 - 10-13 S-1depending on the temperature 500 ° C, and the paleo-stress was calculated with grain size of recrystallized quartz to be at 5.0 to 32.3 MPa. Even though the deformation history and kinematics are different, progressive microstructures and texture analysis indicate an overprint by the low-temperature deformation (D3). Typical regional-dynamic metamorphic conditions ere deduced by mineral pair hornblende-plagioclase and phengite barometry identified within the ductile shear zone. The hornblende-plagioclase pair of porphyritic granitic gneiss gives metamorphic conditions of T =450-500 ° C and p=0.39 GPa, which indicate a metamorphic grade of lower-amphibolite facies conditions and a depth of around 13 km estimated following a normal lithostatic pressure. All of the structural characteristics indicate that the Xingcheng-Taili ductile shear zone represents a mainly ENE-striking sinistral ductile strike-slip zone, which formed after intrusion of the Upper Jurassic biotite adamellite and transformed and superimposed previous deformation structures. This deformation event might have occurred in Early Cretaceous times and was related to the lithospheric thinning and extension, due to roll-back of the Pacific plate beneath the eastern North China craton.

  1. Texture- and deformability-based surface recognition by tactile image analysis.

    PubMed

    Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal

    2016-08-01

    Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.

  2. Application of the Deformation Information System for automated analysis and mapping of mining terrain deformations - case study from SW Poland

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Grzempowski, Piotr; Milczarek, Wojciech; Nowacka, Anna

    2015-04-01

    Monitoring, mapping and modelling of mining induced terrain deformations are important tasks for quantifying and minimising threats that arise from underground extraction of useful minerals and affect surface infrastructure, human safety, the environment and security of the mining operation itself. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and expanding with the progress in geographical information technologies. These include for example: terrestrial geodetic measurements, Global Navigation Satellite Systems, remote sensing, GIS based modelling and spatial statistics, finite element method modelling, geological modelling, empirical modelling using e.g. the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The presentation shows the results of numerical modelling and mapping of mining terrain deformations for two cases of underground mining sites in SW Poland, hard coal one (abandoned) and copper ore (active) using the functionalities of the Deformation Information System (DIS) (Blachowski et al, 2014 @ http://meetingorganizer.copernicus.org/EGU2014/EGU2014-7949.pdf). The functionalities of the spatial data modelling module of DIS have been presented and its applications in modelling, mapping and visualising mining terrain deformations based on processing of measurement data (geodetic and GNSS) for these two cases have been characterised and compared. These include, self-developed and implemented in DIS, automation procedures for calculating mining terrain subsidence with different interpolation techniques, calculation of other mining deformation parameters (i.e. tilt, horizontal displacement, horizontal strain and curvature), as well as mapping mining terrain categories based on classification of the values of these parameters as used in Poland. Acknowledgments. This work has been financed from the National Science Centre Project "Development of a numerical method of mining ground deformation modelling in complex geological and mining conditions" UMO-2012/07/B/ST10/04297 executed at the Faculty of Geoengineering, Mining and Geology of the Wroclaw University of Technology (Poland).

  3. Mapping and analysis of microplasticity in tensile-deformed double-notched silicon crystals by computer-aided X-ray rocking curve analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.Y.; Mayo, W.E.; Weissmann, S.

    A computer-aided X-ray rocking curve analyzer (CARCA) was developed to map and analyze rapidly the distribution of plastic and elastic strains in deformed single crystals. Double-notched silicon crystal, tensile deformed at 800 C, was selected as a model material. For small stresses the interaction effects of the strained plastic zones were negligible. With increased deformation interaction of microplasticity caused modifications of the characteristics of the plastic zones at the notch tips. The microplastic trajectory of the internotch zone outlined the future fracture path at an early stage of deformation. The observed decrease of micrplasticity with depth from the surface ismore » explained both from the micro and macromechanics viewpoint.« less

  4. Mapping the ductile-brittle transition of magma

    NASA Astrophysics Data System (ADS)

    Kendrick, J. E.; Lavallee, Y.; Dingwell, D. B.

    2010-12-01

    During volcanic unrest, eruptive activity can switch rapidly from effusive to explosive. Explosive eruptions require the fragmentation of magma, in which, if deformation rate is too fast to be relaxed, magma undergoes a transition in deformation mechanism from viscous and/or ductile to brittle. Our knowledge of the deformation mechanisms of magma ascent and eruption remains, to date, poor. Many studies have constrained the glass transition (Tg) of the interstitial melt phase; yet the effect of crystals and bubbles are unresolved. During ascent, magma undergoes P-T changes which induce crystallization, thereby inducing a transition from viscous to ductile and, in some cases, to brittle deformation. Here, we explore the deformation mechanisms of magma involved in the dome-building eruptions and explosions that occurred at Volcán de Colima (Mexico) since 1998. For this purpose, we investigated the rheology of dome lavas, containing 10-45 vol.% rhyolitic interstitial melt, 55-90 vol.% crystals and 5-20 vol.% bubbles. The interstitial glass is characterized by electron microprobe and Tg is characterized using a differential scanning calorimeter and a dilatometer. The population of crystals (fraction, shape and size distribution) is described optically and quantified using ImageJ and AMOCADO. The rheological effects of crystals on the deformation of magmas are constrained via acoustic emission (AE) and uniaxial deformation experiments at temperature above Tg (900-980 °C) and at varied applied stresses (and strain rates: 10-6 to 10-2 s-1). The ratio of ductile to brittle deformation across the ductile-brittle transition is quantified using the output AE energy and optical and SEM analysis. We find that individual dome lava sample types have different mechanical responses, yielding a significant range of measured strain rates under a given temperature and applied stress. Optical analysis suggests that at low strain rates, ductile deformation is mainly controlled by the groundmass, whereas fractures initiate sporadically in phenocrysts. At high strain rates continuous fracture initiate in the phenocrysts and propagate through the groundmass. AE analysis suggests the ductile-brittle transition to approximate two orders of magnitude of strain rate and that it is temperature dependent. Within the transition, the different ratio of ductile to brittle deformation processes controls the strain to failure. This study shows that the presence of crystals widens the range of strain rates of the ductile-brittle transition and the failure of magma becomes dependent on total strain. Our findings will be discussed in the context of different eruptive scenarios.

  5. Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis

    NASA Astrophysics Data System (ADS)

    Trégouët, Corentin; Salez, Thomas; Monteux, Cécile; Reyssat, Mathilde

    2018-05-01

    We report on experiments that consist of deforming a collection of monodisperse droplets produced by a microfluidic chip through a flow-focusing device. We show that a proper numerical modeling of the flow is necessary to access the stress applied by the latter on the droplet along its trajectory through the chip. This crucial step enables the full integration of the differential equation governing the dynamical deformation, and consequently the robust measurement of the interfacial tension by fitting the experiments with the calculated deformation. Our study thus demonstrates the feasibility of quantitative in situ rheology in microfluidic flows involving, e.g., droplets, capsules, or cells.

  6. Automatic deformable diffusion tensor registration for fiber population analysis.

    PubMed

    Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V

    2008-01-01

    In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.

  7. Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market.

  8. Nonlinear Geometric Effects in Mechanical Bistable Morphing Structures

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Majidi, Carmel; Chen, Wenzhe; Srolovitz, David J.; Haataja, Mikko P.

    2012-09-01

    Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous efforts in modeling such large deformation behavior of shells, the roles of mechanical and nonlinear geometric effects on bistability remain elusive. We demonstrate, through both theoretical analysis and tabletop experiments, that two dimensionless parameters control bistability. Our work classifies the conditions for bistability, and extends the large deformation theory of plates and shells.

  9. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. CASL has endeavored to improve upon this approach by incorporating a microstructurally-based, atomistically-informed, zirconium alloy mechanical deformation analysis capability into the BISON-CASL engineering scale fuel performance code. Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed bymore » Lebensohn and Tome´ [2], has been coupled with BISON-CASL to represent the mechanistic material processes controlling the deformation behavior of the cladding. A critical component of VPSC is the representation of the crystallographic orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON-CASL and provides initial results utilizing the coupled functionality.« less

  10. Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts.

    PubMed

    Yildirim, Baran; Yang, Hankang; Gouldstone, Andrew; Müftü, Sinan

    2017-08-01

    The impact mechanics of micrometre-scale metal particles with flat metal surfaces is investigated for high-velocity impacts ranging from 50 m s -1 to more than 1 km s -1 , where impact causes predominantly plastic deformation. A material model that includes high strain rate and temperature effects on the yield stress, heat generation due to plasticity, material damage due to excessive plastic strain and heat transfer is used in the numerical analysis. The coefficient of restitution e is predicted by the classical work using elastic-plastic deformation analysis with quasi-static impact mechanics to be proportional to [Formula: see text] and [Formula: see text] for the low and moderate impact velocities that span the ranges of 0-10 and 10-100 m s -1 , respectively. In the elastic-plastic and fully plastic deformation regimes the particle rebound is attributed to the elastic spring-back that initiates at the particle-substrate interface. At higher impact velocities (0.1-1 km s -1 ) e is shown to be proportional to approximately [Formula: see text]. In this deeply plastic deformation regime various deformation modes that depend on plastic flow of the material including the time lag between the rebound instances of the top and bottom points of particle and the lateral spreading of the particle are identified. In this deformation regime, the elastic spring-back initiates subsurface, in the substrate.

  11. Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations

    PubMed Central

    Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi

    2016-01-01

    The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418

  12. Analysis of surface deformation during the eruptive process of El Hierro Island (Canary Islands, Spain): Detection, Evolution and Forecasting.

    NASA Astrophysics Data System (ADS)

    Berrocoso, M.; Fernandez-Ros, A.; Prates, G.; Martin, M.; Hurtado, R.; Pereda, J.; Garcia, M. J.; Garcia-Cañada, L.; Ortiz, R.; Garcia, A.

    2012-04-01

    The surface deformation has been an essential parameter for the onset and evolution of the eruptive process of the island of El Hierro (October 2011) as well as for forecasting changes in seismic and volcanic activity during the crisis period. From GNSS-GPS observations the reactivation is early detected by analizing the change in the deformation of the El Hierro Island regional geodynamics. It is found that the surface deformation changes are detected before the occurrence of seismic activity using the station FRON (GRAFCAN). The evolution of the process has been studied by the analysis of time series of topocentric coordinates and the variation of the distance between stations on the island of El Hierro (GRAFCAN station;IGN network; and UCA-CSIC points) and LPAL-IGS station on the island of La Palma. In this work the main methodologies and their results are shown: •The location (and its changes) of the litospheric pressure source obtained by applying the Mogi model. •Kalman filtering technique for high frequency time series, used to make the forecasts issued for volcanic emergency management. •Correlations between deformation of the different GPS stations and their relationship with seismovolcanic settings.

  13. A method of increasing the depth of the plastically deformed layer in the roller burnishing process

    NASA Astrophysics Data System (ADS)

    Kowalik, Marek; Trzepiecinski, Tomasz

    2018-05-01

    The subject of this paper is an analysis of the determination of the depth of the plastically deformed layer in the process of roller burnishing a shaft using a newly developed method in which a braking moment is applied to the roller. It is possible to increase the depth of the plastically deformed layer by applying the braking moment to the roller during the burnishing process. The theoretical considerations presented are based on the Hertz-Bielayev and Huber-Mises theories and permit the calculation of the depth of plastic deformation of the top layer of the burnished shaft. The theoretical analysis has been verified experimentally and using numerical calculations based on the finite element method using the Msc.MARC program. Experimental tests were carried out on ring-shaped samples made of C45 carbon steel. The samples were burnished at different values of roller force and different values of braking moment. A significant increase was found in the depth of the plastically deformed surface layer of roller burnished shafts. Usage of the phenomenon of strain hardening of steel allows the technology presented here to increase the fatigue life of the shafts.

  14. Deformation of nickel-titanium closed coil springs: an in vitro study.

    PubMed

    Vieira, Camilla Ivini Viana; Reis, José Maurício Dos Santos Nunes; Vaz, Luiz Geraldo; Martins, Lídia Parsekian; Martins, Renato Parsekian

    2017-02-01

    The aim of this paper was to determine the amount of deformation in four commercial brands of nickel-titanium closed springs. A total of 130 springs were divided into 13 subgroups, according to their features and manufacturers (Morelli, Orthometric, Ormco and GAC) and activated from 100% to 1000% of the effective length of the nickel-titanium portion present at the spring, at 37 °C. Deactivation data were plotted and deformation was found graphically. The values were compared by analysis of variance and Tukey's post-hoc test. Springs manufactured by Morelli had the same amount of deformation when they were activated up to 700% of Y activation; springs by Orthometric had the same amount of deformation up to 600-700% of Y; springs by Ormco had the same amount of deformation up to 700-800% of Y; and finally, the majority of springs by GAC had similar deformation up to 800%-1000% of activation. All springs tested could be activated up to 700% without rupture. Most subgroups were similarly deformed up to 700% of activation, without rupture of springs. Subgroups 4B, 4C, 4D and 4E showed the same amount of deformation up to 1000% of activation without any rupture at all.

  15. Deformation of nickel-titanium closed coil springs: an in vitro study

    PubMed Central

    Vieira, Camilla Ivini Viana; Reis, José Maurício dos Santos Nunes; Vaz, Luiz Geraldo; Martins, Lídia Parsekian; Martins, Renato Parsekian

    2017-01-01

    ABSTRACT Objective: The aim of this paper was to determine the amount of deformation in four commercial brands of nickel-titanium closed springs. Methods: A total of 130 springs were divided into 13 subgroups, according to their features and manufacturers (Morelli, Orthometric, Ormco and GAC) and activated from 100% to 1000% of the effective length of the nickel-titanium portion present at the spring, at 37 °C. Deactivation data were plotted and deformation was found graphically. The values were compared by analysis of variance and Tukey's post-hoc test. Results: Springs manufactured by Morelli had the same amount of deformation when they were activated up to 700% of Y activation; springs by Orthometric had the same amount of deformation up to 600-700% of Y; springs by Ormco had the same amount of deformation up to 700-800% of Y; and finally, the majority of springs by GAC had similar deformation up to 800%-1000% of activation. All springs tested could be activated up to 700% without rupture. Conclusions: Most subgroups were similarly deformed up to 700% of activation, without rupture of springs. Subgroups 4B, 4C, 4D and 4E showed the same amount of deformation up to 1000% of activation without any rupture at all. PMID:28444020

  16. Development of cataclastic foliation in deformation bands in feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil

    NASA Astrophysics Data System (ADS)

    Nicchio, Matheus A.; Nogueira, Francisco C. C.; Balsamo, Fabrizio; Souza, Jorge A. B.; Carvalho, Bruno R. B. M.; Bezerra, Francisco H. R.

    2018-02-01

    In this work we describe the deformation mechanisms and processes that occurred during the evolution of cataclastic deformation bands developed in the feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil. We studied bands with different deformation intensities, ranging from single cm-thick tabular bands to more evolved clustering zones. The chemical identification of cataclastic material within deformation bands was performed using compositional mapping in SEM images, EDX and XRD analyses. Deformation processes were identified by microstructural analysis and by the quantification of comminution intensity, performed using digital image processing. The deformation bands are internally non homogeneous and developed during five evolutionary stages: (1) moderate grain size reduction, grain rotation and grain border comminution; (2) intense grain size reduction with preferential feldspar fragmentation; (3) formation of subparallel C-type slip zones; (4) formation of S-type structures, generating S-C-like fabric; and (5) formation of C‧-type slip zones, generating well-developed foliation that resembles S-C-C‧-type structures in a ductile environment. Such deformation fabric is mostly imparted by the preferential alignment of intensely comminuted feldspar fragments along thin slip zones developed within deformation bands. These processes were purely mechanical (i.e., grain crushing and reorientation). No clays or fluids were involved in such processes.

  17. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): seismo-tectonic implications

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-08-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr-1) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.

  18. Effect of deformation path on microstructure, microhardness and texture evolution of interstitial free steel fabricated by differential speed rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamad, Kotiba; Chung, Bong Kwon; Ko, Young Gun, E-mail: younggun@ynu.ac.kr

    2014-08-15

    This paper reports the effect of the deformation path on the microstructure, microhardness, and texture evolution of interstitial free (IF) steel processed by differential speed rolling (DSR) method. For this purpose, total height reductions of 50% and 75% were imposed on the samples by a series of differential speed rolling operations with various height reductions per pass (deformation levels) ranging from 10 to 50% under a fixed roll speed ratio of 1:4 for the upper and lower rolls, respectively. Microstructural observations using transmission electron microscopy and electron backscattered diffraction measurements showed that the samples rolled at deformation level of 50%more » had the finest mean grain size (∼ 0.5 μm) compared to the other counterparts; also the samples rolled at deformation level of 50% showed a more uniform microstructure. Based on the microhardness measurements along the thickness direction of the deformed samples, gradual evolution of the microhardness value and its homogeneity was observed with the increase of the deformation level per pass. Texture analysis showed that, as the deformation level per pass increased, the fraction of alpha fiber and gamma fiber in the deformed samples increased. The textures obtained by the differential speed rolling process under the lubricated condition would be equivalent to those obtained by the conventional rolling. - Highlights: • Effect of DSR deformation path on microstructure of IF steel is significant. • IF steel rolled at deformation level of 50% has the ultrafine grains of ∼ 0.5 μm. • Rolling texture components are pronounced with increasing deformation level.« less

  19. From micron to mountain-scale, using accessory phase petrochronology to quantify the rates of deformation in the Himalaya and beyond

    NASA Astrophysics Data System (ADS)

    Mottram, C. M.

    2016-12-01

    Mountains form where the Earth's plates collide; during this upheaval rocks are deformed by massive forces. The rates and timescales over which these deformational processes occur are determined from tiny accessory minerals that record geological time through radioactive decay. However, there remain major unresolved challenges in using chemical and microstructural markers to link the dates yielded from these accessory phases to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Here, the chemical signatures and deformation textures from micron-scale accessory phases are used to decode the record of mountain belt-scale deformational processes encrypted in the rocks. The Himalayan orogen is used as an ideal natural laboratory to understand the chemical processes that have modified the Earth's crust during orogenesis. Combined laser ablation split-stream U-Th-Pb and REE analysis of deformed monazite and titanite, along with Electron BackScatter Diffraction (EBSD) imaging and Pressure-Temperature (P-T) phase equilibria modelling are used to: (1) link accessory phase `age' to `metamorphic stage'; (2) to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains; and (3) understand how deformation is accommodated through different chemical and structural processes that operate at varying scales through time. This study highlights the importance of fully integrating the pressure-temperature-time-deformation history of multiple accessory phases to better interpret the deformational history of the cores of evolving mountain belts.

  20. Dose coverage calculation using a statistical shape model—applied to cervical cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Tilly, David; van de Schoot, Agustinus J. A. J.; Grusell, Erik; Bel, Arjan; Ahnesjö, Anders

    2017-05-01

    A comprehensive methodology for treatment simulation and evaluation of dose coverage probabilities is presented where a population based statistical shape model (SSM) provide samples of fraction specific patient geometry deformations. The learning data consists of vector fields from deformable image registration of repeated imaging giving intra-patient deformations which are mapped to an average patient serving as a common frame of reference. The SSM is created by extracting the most dominating eigenmodes through principal component analysis of the deformations from all patients. The sampling of a deformation is thus reduced to sampling weights for enough of the most dominating eigenmodes that describe the deformations. For the cervical cancer patient datasets in this work, we found seven eigenmodes to be sufficient to capture 90% of the variance in the deformations of the, and only three eigenmodes for stability in the simulated dose coverage probabilities. The normality assumption of the eigenmode weights was tested and found relevant for the 20 most dominating eigenmodes except for the first. Individualization of the SSM is demonstrated to be improved using two deformation samples from a new patient. The probabilistic evaluation provided additional information about the trade-offs compared to the conventional single dataset treatment planning.

  1. A Deformable Atlas of the Laboratory Mouse

    PubMed Central

    Wang, Hongkai; Stout, David B.; Chatziioannou, Arion F.

    2015-01-01

    Purpose This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. Procedures A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. Results The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. Conclusions With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis. PMID:25049072

  2. Whole-field macro- and micro-deformation characteristic of unbound water-loss in dentin hard tissue.

    PubMed

    Chen, Zhenning; Nadeau, Bobby; Yu, Kevin; Shao, Xinxing; He, Xiaoyuan; Goh, M Cynthia; Kishen, Anil

    2018-04-06

    High-resolution deformation measurements in a functionally graded hard tissue such as human dentin are essential to understand the unbound water-loss mediated changes and their role in its mechanical integrity. Yet a whole-field, 3-dimensional (3D) measurement and characterization of fully hydrated dentin in both macro- and micro-scales remain to be a challenge. This study was conducted in 2 stages. In stage-1, a stereo-digital image correlation approach was utilized to determine the water-loss and load-induced 3D deformations of teeth in a sagittal section over consecutively acquired frames, from a fully hydrated state to nonhydrated conditions for a period up to 2 hours. The macroscale analysis revealed concentrated residual deformations at the dentin-enamel-junction and the apical regions of root in the direction perpendicular to the dentinal tubules. Significant difference in the localized deformation characteristics was observed between the inner and outer aspects of the root dentin. During quasi-static loadings, further increase in the residual deformation was observed in the dentin. In stage-2, dentin microstructural variations induced by dynamic water-loss were assessed with environmental scanning electron microscopy and atomic force microscopy (AFM), showing that the dynamic water-loss induced distention of dentinal tubules with concave tubular edges, and concurrent contraction of intertubular dentin with convex profile. The findings from the current macro- and micro-scale analysis provided insight on the free-water-loss induced regional deformations and ultrastructural changes in human dentin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Properties of axially loaded implant-abutment assemblies using digital holographic interferometry analysis.

    PubMed

    Brozović, Juraj; Demoli, Nazif; Farkaš, Nina; Sušić, Mato; Alar, Zeljko; Gabrić Pandurić, Dragana

    2014-03-01

    The aim of this study was to (i) obtain the force-related interferometric patterns of loaded dental implant-abutment assemblies differing in diameter and brand using digital holographic interferometry (DHI) and (ii) determine the influence of implant diameter on the extent of load-induced implant deformation by quantifying and comparing the obtained interferometric data. Experiments included five implant brands (Ankylos, Astra Tech, blueSKY, MIS and Straumann), each represented by a narrow and a wide diameter implant connected to a corresponding abutment. A quasi-Fourier setup with a 25mW helium-neon laser was used for interferometric measurements in the cervical 5mm of the implants. Holograms were recorded in two conditions per measurement: a 10N preloaded and a measuring-force loaded assembly, resulting with an interferogram. This procedure was repeated throughout the whole process of incremental axial loading, from 20N to 120N. Each measurement series was repeated three times for each assembly, with complete dismantling of the implant-loading device in between. Additional software analyses calculated deformation data. Deformations were presented as mean values±standard deviations. Statistical analysis was performed using linear mixed effects modeling in R's lme4 package. Implants exhibited linear deformation patterns. The wide diameter group had lower mean deformation values than the narrow diameter group. The diameter significantly affected the deformation throughout loading sessions. This study gained in vitro implant performance data, compared the deformations in implant bodies and numerically stated the biomechanical benefits of wider diameter implants. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Deformation of an elastic capsule in a uniform electric field

    NASA Astrophysics Data System (ADS)

    Karyappa, Rahul B.; Deshmukh, Shivraj. D.; Thaokar, Rochish. M.

    2014-12-01

    The deformation of a thin elastic capsule subjected to a uniform electric field is investigated in the Stokes flow regime. The electrohydrodynamic flow is analyzed using a perfect conductor and a perfect dielectric model for the capsule and the fluid phase, respectively. A theoretical analysis is carried out using an asymptotic expansion in the electric capillary number (Ca) (a ratio of the electric stress to the elastic tension) in the small deformation limit using the finite deformation Hooke's law. The analysis is used to determine the elasticity of polysiloxane capsules suspended in oil, the deformation of which is obtained using videography. The boundary element method is implemented to seek numerical solutions to the hydrodynamic, elastic, and electrostatics equations. The finite deformation Hooke's law, the Mooney-Rivlin, and Skalak's model for elasticity are employed. The effect of electric capillary number, unstressed geometry, and the type of membrane material on the deformation of a capsule is presented in the high Ca number limit using numerical simulation. Capsules synthesized with higher monomer concentration displayed electric stress induced wrinkling process at high electric field strengths. Burst of a capsule is characterized by poration of the polymer membrane, which could be symmetric or asymmetric at the two poles, depending upon the value of the capillary number. The results should be useful in understanding the response of elastic capsules such as red blood cells and polymerized membranes, to an electric field, in applications such as electrodeformation and electroporation. It also provides a theoretical framework for a possible way of determining the elastic parameters of a capsule.

  5. Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation

    NASA Astrophysics Data System (ADS)

    Othman, Abdullah; Sultan, Mohamed; Becker, Richard; Alsefry, Saleh; Alharbi, Talal; Gebremichael, Esayas; Alharbi, Hassan; Abdelmohsen, Karem

    2018-01-01

    An integrated approach [field, Interferometric Synthetic Aperture Radar (InSAR), hydrogeology, geodesy, and spatial analysis] was adopted to identify the nature, intensity, and spatial distribution of deformational features (sinkholes, fissures, differential settling) reported over fossil aquifers in arid lands, their controlling factors, and possible remedies. The Lower Mega Aquifer System (area 2 × 106 km2) in central and northern Arabia was used as a test site. Findings suggest that excessive groundwater extraction from the fossil aquifer is the main cause of deformation: (1) deformational features correlated spatially and/or temporally with increased agricultural development and groundwater extraction, and with a decline in water levels and groundwater storage (- 3.7 ± 0.6 km3/year); (2) earthquake events (years 1985-2016; magnitude 1-5) are largely (65% of reported earthquakes) shallow (1-5 km) and increased from 1 event/year in the early 1980s (extraction 1 km3/year), up to 13 events/year in the 1990s (average annual extraction > 6.4 km3). Results indicate that faults played a role in localizing deformation given that deformational sites and InSAR-based high subsidence rates (- 4 to - 15 mm/year) were largely found within, but not outside of, NW-SE-trending grabens bound by the Kahf fault system. Findings from the analysis of Gravity Recovery and Climate Experiment solutions indicate that sustainable extraction could be attained if groundwater extraction was reduced by 3.5-4 km3/year. This study provides replicable and cost-effective methodologies for optimum utilization of fossil aquifers and for minimizing deformation associated with their use.

  6. Symmetric functions and wavefunctions of XXZ-type six-vertex models and elliptic Felderhof models by Izergin-Korepin analysis

    NASA Astrophysics Data System (ADS)

    Motegi, Kohei

    2018-05-01

    We present a method to analyze the wavefunctions of six-vertex models by extending the Izergin-Korepin analysis originally developed for domain wall boundary partition functions. First, we apply the method to the case of the basic wavefunctions of the XXZ-type six-vertex model. By giving the Izergin-Korepin characterization of the wavefunctions, we show that these wavefunctions can be expressed as multiparameter deformations of the quantum group deformed Grothendieck polynomials. As a second example, we show that the Izergin-Korepin analysis is effective for analysis of the wavefunctions for a triangular boundary and present the explicit forms of the symmetric functions representing these wavefunctions. As a third example, we apply the method to the elliptic Felderhof model which is a face-type version and an elliptic extension of the trigonometric Felderhof model. We show that the wavefunctions can be expressed as one-parameter deformations of an elliptic analog of the Vandermonde determinant and elliptic symmetric functions.

  7. A Simplified Mesh Deformation Method Using Commercial Structural Analysis Software

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan; Samareh, Jamshid

    2004-01-01

    Mesh deformation in response to redefined or moving aerodynamic surface geometries is a frequently encountered task in many applications. Most existing methods are either mathematically too complex or computationally too expensive for usage in practical design and optimization. We propose a simplified mesh deformation method based on linear elastic finite element analyses that can be easily implemented by using commercially available structural analysis software. Using a prescribed displacement at the mesh boundaries, a simple structural analysis is constructed based on a spatially varying Young s modulus to move the entire mesh in accordance with the surface geometry redefinitions. A variety of surface movements, such as translation, rotation, or incremental surface reshaping that often takes place in an optimization procedure, may be handled by the present method. We describe the numerical formulation and implementation using the NASTRAN software in this paper. The use of commercial software bypasses tedious reimplementation and takes advantage of the computational efficiency offered by the vendor. A two-dimensional airfoil mesh and a three-dimensional aircraft mesh were used as test cases to demonstrate the effectiveness of the proposed method. Euler and Navier-Stokes calculations were performed for the deformed two-dimensional meshes.

  8. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  9. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  10. Gait patterns in hemiplegic patients with equinus foot deformity.

    PubMed

    Manca, M; Ferraresi, G; Cosma, M; Cavazzuti, L; Morelli, M; Benedetti, M G

    2014-01-01

    Equinus deformity of the foot is a common feature of hemiplegia, which impairs the gait pattern of patients. The aim of the present study was to explore the role of ankle-foot deformity in gait impairment. A hierarchical cluster analysis was used to classify the gait patterns of 49 chronic hemiplegic patients with equinus deformity of the foot, based on temporal-distance parameters and joint kinematic measures obtained by an innovative protocol for motion assessment in the sagittal, frontal, and transverse planes, synthesized by parametrical analysis. Cluster analysis identified five subgroups of patients with homogenous levels of dysfunction during gait. Specific joint kinematic abnormalities were found, according to the speed of progression in each cluster. Patients with faster walking were those with less ankle-foot complex impairment or with reduced range of motion of ankle-foot complex, that is with a stiff ankle-foot complex. Slow walking was typical of patients with ankle-foot complex instability (i.e., larger motion in all the planes), severe equinus and hip internal rotation pattern, and patients with hip external rotation pattern. Clustering of gait patterns in these patients is helpful for a better understanding of dysfunction during gait and delivering more targeted treatment.

  11. Geomechanical Modeling of Deformation Banding in the Navajo Sandstone, San Rafael Monocline, Utah

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Sundal, A.; Petrie, E. S.

    2017-12-01

    Deformation bands are ubiquitous geological features in many types of rocks. Depending on their micro-structure, they can act either as conduits or barriers to fluid flow. Given the significant roles deformation bands play in fluid flow and chemical transport in rocks, it is important to develop fundamental understanding of their origin, and their characteristics as they relate with the host rock properties and their depositional and structural-geological history. We present a forward-modeling technique based on the geomechanical Bifurcation Theory (BT) to predict the formation of deformation bands in sandstone. According to BT, the formation of deformation bands is a result of strain location, which in turn stems from instability in the stress-strain response of materials during loading. Due to bifurcation, a material which undergoes homogeneous deformation can reach a point at which the material experiences instability and deformation starts to become non-homogenous. We implemented BT in the commercially-available geomechanical code FLAC (Fast Langragian Analysis of Continua) and applied it in the field-scale modeling of deformation banding in the Navajo Sandstone in the San Rafael Monocline in Utah induced by fault propagation folding. The results show that geomechanical modeling using BT has a powerful potential to simulate the physical processes in the formation of deformation banding in rocks. Predicted deformation bands, specifically the pervasive bedding-parallel bands in the Navajo sandstone formation, normal faulting in the upper limb and reverse faulting in the lower limb, are generally in agreement with field observations. Predictions indicate that the pervasive bedding-parallel bands in the Navajo Sandstone are transitional compaction-shear bands with alternating zones of volumetric compaction and dilation. These predictions are consistent with petrographic analysis of thin sections of rock samples from the Navajo Sandstone. The most important parameter in the geomechanical modeling is the dilation angle in relation to the friction angle of the host rock. These parameters, as well the elastic properties, should evolve during the geologic history of a site, thus, the main challenge in the modeling is how to calibrate these parameters to yield consistent results.

  12. Conceptual Model for Basement and Surface Structure Relationships in an Oblique Collision, Sawtooth Range, MT

    NASA Astrophysics Data System (ADS)

    Palu, J. M.; Burberry, C. M.

    2014-12-01

    The reactivation potential of pre-existing basement structures affects the geometry of subsequent deformation structures. A conceptual model depicting the results of these interactions can be applied to multiple fold-thrust systems and lead to valuable deformation predictions. These predictions include the potential for hydrocarbon traps or seismic risk in an actively deforming area. The Sawtooth Range, Montana, has been used as a study area. A model for the development of structures close to the Augusta Syncline in the Sawtooth Range is being developed using: 1) an ArcGIS map of the basement structures of the belt based on analysis of geophysical data indicating gravity anomalies and aeromagnetic lineations, seismic data indicating deformation structures, and well logs for establishing lithologies, previously collected by others and 2) an ArcGIS map of the surface deformation structures of the belt based on interpretation of remote sensing images and verification through the collection of surface field data indicating stress directions and age relationships, resulting in a conceptual model based on the understanding of the interaction of the two previous maps including statistical correlations of data and development of balanced cross-sections using Midland Valley's 2D/3D Move software. An analysis of the model will then indicate viable deformation paths where prominent basement structures influenced subsequently developed deformation structures and reactivated faults. Preliminary results indicate that the change in orientation of thrust faults observed in the Sawtooth Range, from a NNW-SSE orientation near the Gibson Reservoir to a WNW-ESE trend near Haystack Butte correlates with pre-existing deformation structures lying within the Great Falls Tectonic Zone. The Scapegoat-Bannatyne trend appears to be responsible for this orientation change and rather than being a single feature, may be composed of up to 4 NE-SW oriented basement strike-slip faults. This indicates that the pre-existing basement features have a profound effect on the geometry of the later deformation. This conceptual model can also be applied to other deformed belts to provide a prediction for the potential hydrocarbon trap locations of the belt as well as their seismic risk.

  13. Geodetic deformation monitoring at Pendidikan Diponegoro Dam

    NASA Astrophysics Data System (ADS)

    Yuwono, Bambang Darmo; Awaluddin, Moehammad; Yusuf, M. A.; Fadillah, Rizki

    2017-07-01

    Deformation monitoring is one indicator to assess the feasibility of Dam. In order to get the correct result of the deformation, it is necessary to determine appropriate deformation monitoring network and the observation data should be analyse and evaluated carefully. Measurement and analysis of deformation requires relatively accurate data and the precision is high enough, one of the observation method that used is GPS (Global Positioning System). The research was conducted at Pendidikan Undip Dams is Dam which is located in Tembang. Diponegoro Dam was built in 2013 and a volume of 50.86 m3 of water, inundation normal width of up to 13,500 m2. The main purpose of these building is not only for drainage but also for education and micro hydro power plant etc. The main goal of this reasearch was to monitor and analyze the deformation at Pendidikan Undip Dam and to determaine whether GPS measurement could meet accuracy requirement for dam deformation measurements. Measurements were made 2 times over 2 years, 2015 and 2016 using dual frequency GPS receivers with static methods and processed by Scientific Software GAMIT 10.6

  14. A Microstructure Study on an AZ31 Magnesium Alloy Tube after Hot Metal Gas Forming Process

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wu, Xin

    2007-06-01

    An AZ31 magnesium alloy tube has been deformed by the hot metal gas forming (HMGF) technique. Microstructures before and after deformation have been investigated by using Electron Backscattered Diffraction (EBSD) and Electron Microscopy. Due to the inhomogeneous distribution by induction heating, there is a temperature gradient distribution along the tube axis. Accordingly, the deformation mechanism is also different. In the middle area of deformation zone where the temperature is ˜410 °C, almost no twinning has been found, whereas at the edge areas of deformation zone where the temperature is ˜200 °C, a high density of twins has been found. EBSD experiments show a weak (0001) fiber texture along the radial direction of the tube before and after deformation in the high-temperature zone. EBSD experiments on the low temperature deformation region were not successful due to the high stored energy. Schmid factor analysis on the EBSD data shows that, despite the (0001) fiber texture, there are still many grains favoring basal slip along both the axis direction and hoop direction.

  15. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  16. Stress and deformation analysis of double curvature arc dams using finite element method (FEM): A case of budhi gandaki hydropower project

    NASA Astrophysics Data System (ADS)

    Mishra, Aanand Kumar; Singh, Ajay; Bahadur Singh, Akal

    2018-06-01

    High rise arc dams are widely used in the development of storage type hydropower project because of the economic advantage. Among different phases considered during the lifetime of dam, control of dam’s safety and performance becomes more concerned during the lifetime. This paper proposed the 3 – D finite element method (FEM) for stress and deformation analysis of double curvature arc dam considering the non – linearity of foundation rock following the Hoek – Brown Criterion. The proposed methodology is implemented through MATLAB scripting language and studied the double curvature arc dam proposed for Budhi Gandaki hydropower project. The stress developed in the foundation rock, compressive and tensile stress acting on the dam are investigated and analysed for the reservoir level variation. Deformation at the top of the dam and in the foundation rock is also investigated. In addition to that, stress and deformation variation in the foundation rock is analysed for various rock properties.

  17. Rotation and strain rate of Sulawesi from geometrical velocity field

    NASA Astrophysics Data System (ADS)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.

  18. Deformation Characteristics and Recrystallization Response of a 9310 Steel Alloy

    NASA Astrophysics Data System (ADS)

    Snyder, David; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2013-01-01

    The flow behavior and recrystallization response of a 9310 steel alloy deformed in the ferrite temperature range were studied in this work. Samples were compressed under various conditions of strain (0.6, 0.8 and multi-axial), strain rate (10-4 seconds-1 to 10-1 seconds-1) and temperature [811 K to 1033 K (538 °C to 760 °C)] using a Gleeble thermo-mechanical simulator. Deformation was characterized by both qualitative and quantitative means, using standard microscopy, electron backscatter diffraction (EBSD) analysis and flow stress modeling. The results indicate that deformation is primarily accommodated through dynamic recovery in sub-grain formation. EBSD analysis shows a continuous increase in sub-grain boundary misorientation with increasing strain, ultimately producing recrystallized grains from the sub-grains at high strains. This suggests that a sub-grain rotation recrystallization mechanism predominates in this temperature range. Analyses of the results reveal a decreasing mean dynamically recrystallized grain size with increasing Zener-Hollomon parameter, and an increasing recrystallized fraction with increasing strain.

  19. A statistical motion model based on biomechanical simulations for data fusion during image-guided prostate interventions.

    PubMed

    Hu, Yipeng; Morgan, Dominic; Ahmed, Hashim Uddin; Pendsé, Doug; Sahu, Mahua; Allen, Clare; Emberton, Mark; Hawkes, David; Barratt, Dean

    2008-01-01

    A method is described for generating a patient-specific, statistical motion model (SMM) of the prostate gland. Finite element analysis (FEA) is used to simulate the motion of the gland using an ultrasound-based 3D FE model over a range of plausible boundary conditions and soft-tissue properties. By applying principal component analysis to the displacements of the FE mesh node points inside the gland, the simulated deformations are then used as training data to construct the SMM. The SMM is used to both predict the displacement field over the whole gland and constrain a deformable surface registration algorithm, given only a small number of target points on the surface of the deformed gland. Using 3D transrectal ultrasound images of the prostates of five patients, acquired before and after imposing a physical deformation, to evaluate the accuracy of predicted landmark displacements, the mean target registration error was found to be less than 1.9 mm.

  20. Parameter determination of hereditary models of deformation of composite materials based on identification method

    NASA Astrophysics Data System (ADS)

    Kayumov, R. A.; Muhamedova, I. Z.; Tazyukov, B. F.; Shakirzjanov, F. R.

    2018-03-01

    In this paper, based on the analysis of some experimental data, a study and selection of hereditary models of deformation of reinforced polymeric composite materials, such as organic plastic, carbon plastic and a matrix of film-fabric composite, was pursued. On the basis of an analysis of a series of experiments it has been established that organo-plastic samples behave like viscoelastic bodies. It is shown that for sufficiently large load levels, the behavior of the material in question should be described by the relations of the nonlinear theory of heredity. An attempt to describe the process of deformation by means of linear relations of the theory of heredity leads to large discrepancies between the experimental and calculated deformation values. The use of the theory of accumulation of micro-damages leads to much better description of the experimental results. With the help of the hierarchical approach, a good approximation of the experimental values was successful only in the first three sections of loading.

  1. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  2. Structural Design and Monitoring Analysis of Foundation Pit Support in Yiwu Huishang Tiandi

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsu

    2017-08-01

    Huishang Tiandi deep foundation pit in Yiwu is a two-story basement,which is located in the downtown area and adjacent to the city center main traffic trunk. The surrounding environment is too com-plex to slope. The excavation depth is large, the formation is weak and complex, and the groundwater level is high.In order to ensure the safety of the foundation wall and the surrounding environment, the deformation of the foundation pit support is strictly controlled, and the deformation and internal force of the foundation supporting structure and the surrounding building are monitored.The deformation law of the foundation pit is obtained through the analysis of the horizontal displacement, the deformation rate of the supporting struc-ture, the surrounding environment of the foundation pit and the internal force of the anchor cable. The relia-bility and rationality of the design of foundation pit support are verified. It is of reference value for the de-sign and construction of other deep foundation pit engineering in Yiwu area.

  3. Deformation analysis of MEMS structures by modified digital moiré methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin

    2010-11-01

    Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.

  4. Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape Discrimination in Dementia of the Alzheimer type

    PubMed Central

    Wang, Lei; Beg, Faisal; Ratnanather, Tilak; Ceritoglu, Can; Younes, Laurent; Morris, John C.; Csernansky, John G.; Miller, Michael I.

    2010-01-01

    In large-deformation diffeomorphic metric mapping (LDDMM), the diffeomorphic matching of images are modeled as evolution in time, or a flow, of an associated smooth velocity vector field v controlling the evolution. The initial momentum parameterizes the whole geodesic and encodes the shape and form of the target image. Thus, methods such as principal component analysis (PCA) of the initial momentum leads to analysis of anatomical shape and form in target images without being restricted to small-deformation assumption in the analysis of linear displacements. We apply this approach to a study of dementia of the Alzheimer type (DAT). The left hippocampus in the DAT group shows significant shape abnormality while the right hippocampus shows similar pattern of abnormality. Further, PCA of the initial momentum leads to correct classification of 12 out of 18 DAT subjects and 22 out of 26 control subjects. PMID:17427733

  5. A Physical Model to Estimate Snowfall over Land using AMSU-B Observations

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.

    2008-01-01

    In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram matching technique. All of these Z(sub e)-R relationships fall in the range of previously established Z(sub e)-R relationships for snowfall. This suggests that the current physical model developed in this study can reliably estimate the snowfall rate over land using the AMSU-B measured brightness temperatures.

  6. DDT-related compounds as non-extractable residues in submarine sediments of the Palos Verdes Shelf, California, USA.

    PubMed

    Kucher, S; Schwarzbauer, J

    2017-10-01

    The Palos Verdes Shelf (PVS) and the continental slope off the Palos Verdes Peninsula are highly contaminated by degradation products of the pesticide DDT (1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene). Sediment samples from two box cores were analyzed to obtain further information about the fate of DDT and its degradation products within the environment. After solvent extraction, an alkaline hydrolysis procedure was applied. A comprehensive screening for 26 DDT compounds revealed that DDT and its degradates contaminate not only the extractable fraction but also the fraction released by alkaline hydrolysis. A comparison of the quantitative distribution of DDT degradation products in the extractable fraction and released by alkaline hydrolysis showed a distinct difference. DDE (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene), DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene), DDMS (1-chloro-4-[2-chloro-1-(4-chlorophenyl)ethyl]benzene), and DDMU (1-chloro-4-[2-chloro-1-(4-chlorophenyl)ethenyl]benzene) were predominant in the sediment extracts but minor components of the hydrolyzable fraction. The most abundant compounds released by the alkaline hydrolysis were DBP (bis(4-chlorophenyl)methanone), DDNU (1-chloro-4-[1-(4-chlorophenyl)ethenyl]benzene), DDM (1-chloro-4-[(4-chlorophenyl)methyl]benzene) and the water-soluble DDA (2,2-bis(4-chlorophenyl)acetic acid). The release of DDA may point to the presence of an important degradation pathway in marine environments. Concentration levels of DDT-related compounds showed corresponding vertical profiles in both fractions, but were significantly lower in the fraction released by alkaline hydrolysis. In contrast to fluvial sediments contaminated by DDT and its degradates the alkaline hydrolysis products represented a minor portion of the total sedimentary burden in the analyzed marine sediments. These findings show the necessity of a comprehensive screening for all DDT isomers and breakdown products in the extractable and non-extractable fraction to assess the total contamination abundance and potential environmental risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. How to constrain snow particle scattering models? A novel approach using triple-frequency radar Doppler spectra.

    NASA Astrophysics Data System (ADS)

    Kneifel, S.; Battaglia, A.; Kollias, P.; Leinonen, J. S.; Maahn, M.; Kalesse, H.; Tridon, F.; Crewell, S.

    2016-12-01

    During the last years, an increasing number of microwave (MW) scattering databases and novel approximations for single particles, complex aggregates and even rimed and melting aggregates became available. While these developments are in general a great step forward, their evaluation with observations is a very necessary but also challenging task. Recently available multi-frequency radar observations which cover the Rayleigh up to the Mie scattering regime revealed characteristic signatures of rimed and unrimed aggregated particles. However, the observed signatures are still affected by both, the particle size distribution (PSD) and the single scattering properties of the particles which makes a clear evaluation of one or the other challenging. In this contribution we present a new approach which uses the radar Doppler spectra at three frequencies (X, Ka, and W-band) collected during a recent winter field campaign in Finland. We analyzed a snowfall event which includes rimed and unrimed snow aggregates. A large selection of spectra obtained from low-turbulence regions within the cloud reveals distinctly different signatures of the derived Doppler spectral ratios. Due to the third frequency, a characteristic curve can be derived which is almost independent of the underlying particle size distribution and velocity-size relation. The characteristics of the curves obtained for rimed and unrimed are distinctly different. The observed signatures were compared with scattering calculations obtained with discrete dipole approximation (DDA), self-similar Rayleigh-Gans approximation (SSRG), and with the classical soft spheroid (T-Matrix) method. While the DDA calculations of unrimed and rimed aggregates fit the observed signatures well, the T-Matrix results lie far outside the observed range. The SSRG approximations was found to be principally able to recover the main features but a better matching would need an adjustment of the published coefficients. Future campaigns, like the new German Collaborative Research Center Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)³, will provide combined airborne in-situ and remote sensing observations of mixed-phase clouds to further validate the results of the triple-frequency Doppler spectra approach.

  8. Wavelet signatures of K-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p‧) scattering off 146, 148, 150Nd

    NASA Astrophysics Data System (ADS)

    Kureba, C. O.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Jingo, M.; Kleinig, W.; Krugmann, A.; Krumbolz, A. M.; Kvasil, J.; Mabiala, J.; Mira, J. P.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Papka, P.; Reinhard, P.-G.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.; Usman, I. T.

    2018-04-01

    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146, 148, 150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0 , 1 and K = 2 components.

  9. Implementation of Free-Formulation-Based Flat Shell Elements into NASA Comet Code and Development of Nonlinear Shallow Shell Element

    NASA Technical Reports Server (NTRS)

    Barut, A.; Madenci, Erdogan; Tessler, A.

    1997-01-01

    This study presents a transient nonlinear finite element analysis within the realm of a multi-body dynamics formulation for determining the dynamic response of a moderately thick laminated shell undergoing a rapid and large rotational motion and nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as 'the transverse shear deformation, are explicitly included in the formulation in order to capture the proper motion-induced stiffness of the laminate. The equations of motion are derived from the virtual work principle. The analysis utilizes a shear deformable shallow shell element along with the co-rotational form of the updated Lagrangian formulation. The shallow shell element formulation is based on the Reissner-Mindlin and Marguerre theory.

  10. Analysis for Material Behavior of Sabot/Rods During Launch by Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kim, Jin Bong; Kim, Man Geun

    This study has been investigated to predict the deformation and states of stress and strain by axial and lateral acceleration during launch. Because a gun tube is not perfectly straight at its initial state while under gravity loading, the projectile deforms due to the change of contacts points with the flexible gun tube. Numerical simulations were used for gravity loading and the other type is initial shape and gravity loading. The ANSYS engineering analysis code was used to generate a parametric model of the projectile and conduct finite element analyses. Four types of nonlinear material and contact elements were incorporated into the model to account for the plastic deformation and contact between the penetrator, sabot, and tube.

  11. Components of soft tissue deformations in subjects with untreated angle's Class III malocclusions: thin-plate spline analysis.

    PubMed

    Singh, G D; McNamara, J A; Lozanoff, S

    1998-01-01

    While the dynamics of maxillo-mandibular allometry associated with treatment modalities available for the management of Class III malocclusions currently are under investigation, developmental aberration of the soft tissues in untreated Class III malocclusions requires specification. In this study, lateral cephalographs of 124 prepubertal European-American children (71 with untreated Class III malocclusion; 53 with Class I occlusion) were traced, and 12 soft-tissue landmarks digitized. Resultant geometries were scaled to an equivalent size and mean Class III and Class I configurations compared. Procrustes analysis established statistical difference (P < 0.001) between the mean configurations. Comparing the overall untreated Class III and Class I configurations, thin-plate spline (TPS) analysis indicated that both affine and non-affine transformations contribute towards the deformation (total spline) of the averaged Class III soft tissue configuration. For non-affine transformations, partial warp 8 had the highest magnitude, indicating large-scale deformations visualized as a combination of columellar retrusion and lower labial protrusion. In addition, partial warp 5 also had a high magnitude, demonstrating upper labial vertical compression with antero-inferior elongation of the lower labio-mental soft tissue complex. Thus, children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the maxillary soft tissue complex in combination with antero-inferior mandibular soft tissue elongation. This pattern of deformations may represent gene-environment interactions, resulting in Class III malocclusions with characteristic phenotypes, that are amenable to orthodontic and dentofacial orthopedic manipulations.

  12. Cyclic hardening behavior of extruded ZK60 magnesium alloy with different grain sizes

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Wang, Wenke

    2018-04-01

    Montonic and fully reversed strain-controlled cyclic deformation experiments were conducted on extruded ZK60 magnesium alloy with two different grain sizes in ambient air. Results revealed that the hardening rates of the ZK60 magnesium alloy rods with fine grain and coarse grain in the monotonic deformation and the fully reversed strain-controlled cyclic deformation were opposite along the extrusion direction. Electron Backscatter Diffration analysis revealed that fine grains were more easily rotated than coarse grains under the cyclic deformation. Under the twinning and detwinning process of the cyclic deformation at a large strain amplitude, the coarse grained ZK60 magnesium alloys were more prone to tension twinning {10-12}<10-11> and more residual twins were observed. Texture hardening of coarse grained magnesium alloy was more obvious in cyclic defromation than fine-grained magnesium alloy.

  13. A Variational Principle for Reconstruction of Elastic Deformations in Shear Deformable Plates and Shells

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Spangler, Jan L.

    2003-01-01

    A variational principle is formulated for the inverse problem of full-field reconstruction of three-dimensional plate/shell deformations from experimentally measured surface strains. The formulation is based upon the minimization of a least squares functional that uses the complete set of strain measures consistent with linear, first-order shear-deformation theory. The formulation, which accommodates for transverse shear deformation, is applicable for the analysis of thin and moderately thick plate and shell structures. The main benefit of the variational principle is that it is well suited for C(sup 0)-continuous displacement finite element discretizations, thus enabling the development of robust algorithms for application to complex civil and aeronautical structures. The methodology is especially aimed at the next generation of aerospace vehicles for use in real-time structural health monitoring systems.

  14. Deformation and failure mechanism of secondary cell wall in Spruce late wood

    NASA Astrophysics Data System (ADS)

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Ghisleni, Rudy; Zimmermann, Tanja; Michler, Johann

    2010-08-01

    The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

  15. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  16. Interfacial diffusion aided deformation during nanoindentation

    DOE PAGES

    Samanta, Amit; E., Weinan

    2015-07-06

    Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less

  17. Nonlinear image registration with bidirectional metric and reciprocal regularization

    PubMed Central

    Ying, Shihui; Li, Dan; Xiao, Bin; Peng, Yaxin; Du, Shaoyi; Xu, Meifeng

    2017-01-01

    Nonlinear registration is an important technique to align two different images and widely applied in medical image analysis. In this paper, we develop a novel nonlinear registration framework based on the diffeomorphic demons, where a reciprocal regularizer is introduced to assume that the deformation between two images is an exact diffeomorphism. In detail, first, we adopt a bidirectional metric to improve the symmetry of the energy functional, whose variables are two reciprocal deformations. Secondly, we slack these two deformations into two independent variables and introduce a reciprocal regularizer to assure the deformations being the exact diffeomorphism. Then, we utilize an alternating iterative strategy to decouple the model into two minimizing subproblems, where a new closed form for the approximate velocity of deformation is calculated. Finally, we compare our proposed algorithm on two data sets of real brain MR images with two relative and conventional methods. The results validate that our proposed method improves accuracy and robustness of registration, as well as the gained bidirectional deformations are actually reciprocal. PMID:28231342

  18. Theory for plasticity of face-centered cubic metals.

    PubMed

    Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun

    2014-05-06

    The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control.

  19. Theory for plasticity of face-centered cubic metals

    PubMed Central

    Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun

    2014-01-01

    The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control. PMID:24753563

  20. Spatiotemporal Patterns of Precipitation-Modulated Landslide Deformation From Independent Component Analysis of InSAR Time Series

    NASA Astrophysics Data System (ADS)

    Cohen-Waeber, J.; Bürgmann, R.; Chaussard, E.; Giannico, C.; Ferretti, A.

    2018-02-01

    Long-term landslide deformation is disruptive and costly in urbanized environments. We rely on TerraSAR-X satellite images (2009-2014) and an improved data processing algorithm (SqueeSAR™) to produce an exceptionally dense Interferometric Synthetic Aperture Radar ground deformation time series for the San Francisco East Bay Hills. Independent and principal component analyses of the time series reveal four distinct spatial and temporal surface deformation patterns in the area around Blakemont landslide, which we relate to different geomechanical processes. Two components of time-dependent landslide deformation isolate continuous motion and motion driven by precipitation-modulated pore pressure changes controlled by annual seasonal cycles and multiyear drought conditions. Two components capturing more widespread seasonal deformation separate precipitation-modulated soil swelling from annual cycles that may be related to groundwater level changes and thermal expansion of buildings. High-resolution characterization of landslide response to precipitation is a first step toward improved hazard forecasting.

Top