NASA Astrophysics Data System (ADS)
Ru, Jie; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Bian, Changsheng; Luo, Bin; Li, Dichen
2018-02-01
Ionic polymer-metal composite (IPMC) actuator can generate large and rapid deformation based on ion migration under a relatively low driving voltage. Under full hydrated conditions, the deformation is always prone to relaxation. At room humidity conditions, the deformation increases substantially at the early stage of actuation, and then decreases gradually. Generally, most researchers considered that the change of water content or relative humidity mainly leads to the deformation instabilities, which severely limits the practical applications of IPMC. In this Letter, a novel actuation mode is proposed to control the deformation behavior of IPMC by employing moisture as an independent or collaborative incentive source together with the electric field. The deformation response is continuously measured under electric field, electric field-moisture coupling stimulus and moisture stimulus. The result shows that moisture can be a favorable driving factor for IPMC actuation. Such an electric field-moisture coupling stimulus can avoid the occurrence of deformation instabilities and guarantee a superior controllable deformation in IPMC actuation. This research provides a new method to obtain stable and large deformation of IPMC, which is of great significance for the guidance of material design and application for IPMC and IPMC-type iEAP materials.
NASA Astrophysics Data System (ADS)
Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen
2016-08-01
Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.
The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deta, U. A., E-mail: utamaalan@yahoo.co.id, E-mail: utamadeta@unesa.ac.id; Suparmi
2015-09-30
Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.
Double metric, generalized metric, and α' -deformed double field theory
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2016-03-01
We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.
Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol
2010-12-01
Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.
Deformed Calogero-Sutherland model and fractional quantum Hall effect
NASA Astrophysics Data System (ADS)
Atai, Farrokh; Langmann, Edwin
2017-01-01
The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.
Analytic regularization of uniform cubic B-spline deformation fields.
Shackleford, James A; Yang, Qi; Lourenço, Ana M; Shusharina, Nadya; Kandasamy, Nagarajan; Sharp, Gregory C
2012-01-01
Image registration is inherently ill-posed, and lacks a unique solution. In the context of medical applications, it is desirable to avoid solutions that describe physically unsound deformations within the patient anatomy. Among the accepted methods of regularizing non-rigid image registration to provide solutions applicable to medical practice is the penalty of thin-plate bending energy. In this paper, we develop an exact, analytic method for computing the bending energy of a three-dimensional B-spline deformation field as a quadratic matrix operation on the spline coefficient values. Results presented on ten thoracic case studies indicate the analytic solution is between 61-1371x faster than a numerical central differencing solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borra, E. F., E-mail: borra@phy.ulaval.ca
2012-08-01
Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror usesmore » a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.« less
Electric field induced sheeting and breakup of dielectric liquid jets
NASA Astrophysics Data System (ADS)
Khoshnevis, Ahmad; Tsai, Scott S. H.; Esmaeilzadeh, Esmaeil
2014-01-01
We report experimental observations of the controlled deformation of a dielectric liquid jet subjected to a local high-voltage electrostatic field in the direction normal to the jet. The jet deforms to the shape of an elliptic cylinder upon application of a normal electrostatic field. As the applied electric field strength is increased, the elliptic cylindrical jet deforms permanently into a flat sheet, and eventually breaks-up into droplets. We interpret this observation—the stretch of the jet is in the normal direction to the applied electric field—qualitatively using the Taylor-Melcher leaky dielectric theory, and develop a simple scaling model that predicts the critical electric field strength for the jet-to-sheet transition. Our model shows a good agreement with experimental results, and has a form that is consistent with the classical drop deformation criterion in the Taylor-Melcher theory. Finally, we statistically analyze the resultant droplets from sheet breakup, and find that increasing the applied electric field strength improves droplet uniformity and reduces droplet size.
Diverse Geological Applications For Basil: A 2d Finite-deformation Computational Algorithm
NASA Astrophysics Data System (ADS)
Houseman, Gregory A.; Barr, Terence D.; Evans, Lynn
Geological processes are often characterised by large finite-deformation continuum strains, on the order of 100% or greater. Microstructural processes cause deformation that may be represented by a viscous constitutive mechanism, with viscosity that may depend on temperature, pressure, or strain-rate. We have developed an effective com- putational algorithm for the evaluation of 2D deformation fields produced by Newto- nian or non-Newtonian viscous flow. With the implementation of this algorithm as a computer program, Basil, we have applied it to a range of diverse applications in Earth Sciences. Viscous flow fields in 2D may be defined for the thin-sheet case or, using a velocity-pressure formulation, for the plane-strain case. Flow fields are represented using 2D triangular elements with quadratic interpolation for velocity components and linear for pressure. The main matrix equation is solved by an efficient and compact conjugate gradient algorithm with iteration for non-Newtonian viscosity. Regular grids may be used, or grids based on a random distribution of points. Definition of the prob- lem requires that velocities, tractions, or some combination of the two, are specified on all external boundary nodes. Compliant boundaries may also be defined, based on the idea that traction is opposed to and proportional to boundary displacement rate. In- ternal boundary segments, allowing fault-like displacements within a viscous medium have also been developed, and we find that the computed displacement field around the fault tip is accurately represented for Newtonian and non-Newtonian viscosities, in spite of the stress singularity at the fault tip. Basil has been applied by us and colleagues to problems that include: thin sheet calculations of continental collision, Rayleigh-Taylor instability of the continental mantle lithosphere, deformation fields around fault terminations at the outcrop scale, stress and deformation fields in and around porphyroblasts, and deformation of the subducted oceanic slab. Application of Basil to a diverse range of topics is facilitated by the use of command syntax input files that allow most aspects of the calculation to be controlled easily, together with a post-processing package, Sybil, for display and interpretation of the results. Sybil uses a menu-driven graphical interface to access a powerful combination of commands, to- gether with log files that allow repetitive tasks to be more automated
Deformation of red blood cells using acoustic radiation forces
Mishra, Puja; Hill, Martyn; Glynne-Jones, Peter
2014-01-01
Acoustic radiation forces have been used to manipulate cells and bacteria in a number of recent microfluidic applications. The net force on a cell has been subject to careful investigation over a number of decades. We demonstrate that the radiation forces also act to deform cells. An ultrasonic standing wave field is created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically swollen red-blood cells, we show observable deformations up to an aspect ratio of 1.35, comparable to deformations created by optical tweezing. In contrast to optical technologies, ultrasonic devices are potentially capable of deforming thousands of cells simultaneously. We create a finite element model that includes both the acoustic environment of the cell, and a model of the cell membrane subject to forces resulting from the non-linear aspects of the acoustic field. The model is found to give reasonable agreement with the experimental results, and shows that the deformation is the result of variation in an acoustic force that is directed outwards at all points on the cell membrane. We foresee applications in diagnostic devices, and in the possibility of mechanically stimulating cells to promote differentiation and physiological effects. PMID:25379070
NASA Astrophysics Data System (ADS)
Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek
2011-03-01
Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.
NASA Astrophysics Data System (ADS)
Huang, Shiquan; Yi, Youping; Li, Pengchuan
2011-05-01
In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.
Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P
2014-09-20
The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.
Design method of redundancy of brace-anchor sharing supporting based on cooperative deformation
NASA Astrophysics Data System (ADS)
Liu, Jun-yan; Li, Bing; Liu, Yan; Cai, Shan-bing
2017-11-01
Because of the complicated environment requirement, the support form of foundation pit is diversified, and the brace-anchor sharing support is widely used. However, the research on the force deformation characteristics and the related aspects of the cooperative response of the brace-anchor sharing support is insufficient. The application of redundancy theory in structural engineering has been more mature, but there is little theoretical research on redundancy theory in underground engineering. Based on the idea of collaborative deformation, the paper calculates the ratio of the redundancy degree of the cooperative deformation by using the local reinforcement design method and the structural component redundancy parameter calculation formula based on Frangopol. Combined with the engineering case, through the calculation of the ratio of cooperative deformation redundancy in the joint of brace-anchor sharing support. This paper explores the optimal anchor distribution form under the condition of cooperative deformation, and through the analysis and research of displacement field and stress field, the results of the collaborative deformation are validated by comparing the field monitoring data. It provides theoretical basis for the design of this kind of foundation pit in the future.
Volumetric measurement of rock movement using photogrammetry
Benton, Donovan J.; Iverson, Stephen R.; Martin, Lewis A.; Johnson, Jeffrey C.; Raffaldi, Michael J.
2016-01-01
NIOSH ground control safety research program at Spokane, Washington, is exploring applications of photogrammetry to rock mass and support monitoring. This paper describes two ways photogrammetric techniques are being used. First, photogrammetric data of laboratory testing is being used to correlate energy input and support deformation. This information can be used to infer remaining support toughness after ground deformation events. This technique is also demonstrated in a field application. Second, field photogrammetric data is compared to crackmeter data from a deep underground mine. Accuracies were found to average 8 mm, but have produced results within 0.2 mm of true displacement, as measured by crackmeters. Application of these techniques consists of monitoring overall fault activity by monitoring multiple points around the crackmeter. A case study is provided in which a crackmeter is clearly shown to have provided insufficient information regarding overall fault ground deformation. Photogrammetry is proving to be a useful ground monitoring tool due to its unobtrusiveness and ease of use. PMID:27110429
NASA Astrophysics Data System (ADS)
Liu, Zhanwei; Huang, Xianfu; Xie, Huimin
2013-02-01
Deformed liquid surface directly involves the surface tension, which can always be used to account for the kinematics of aquatic insects in gas-liquid interface and the light metal floating on the water surface. In this paper a novel method based upon deformed transmission-virtual grating is proposed for determination of deformed liquid surface. By addressing an orthogonal grating (1-5 line/mm) under the transparent water groove and then capturing images from upset of the deformed water surface, a displacement vector of full-field which directly associates the 3-D deformed liquid surface then can be evaluated by processing the recorded deformed fringe pattern in the two directions (x- and y-direction). Theories and equations for the method are thoroughly delivered. Validation test to measure the deformed water surface caused by a Chinese 1-cent coin has been conducted to demonstrate the ability of the developed method. The obtained results show that the method is robust in determination of micro 3-D surface of deformed liquid with a submicron scale resolution and with a wide range application scope.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Spangler, Jan L.
2003-01-01
A variational principle is formulated for the inverse problem of full-field reconstruction of three-dimensional plate/shell deformations from experimentally measured surface strains. The formulation is based upon the minimization of a least squares functional that uses the complete set of strain measures consistent with linear, first-order shear-deformation theory. The formulation, which accommodates for transverse shear deformation, is applicable for the analysis of thin and moderately thick plate and shell structures. The main benefit of the variational principle is that it is well suited for C(sup 0)-continuous displacement finite element discretizations, thus enabling the development of robust algorithms for application to complex civil and aeronautical structures. The methodology is especially aimed at the next generation of aerospace vehicles for use in real-time structural health monitoring systems.
MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery
Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.
2016-01-01
Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation. PMID:27330239
MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.
2016-03-01
Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.
MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery.
Reaungamornrat, S; De Silva, T; Uneri, A; Wolinsky, J-P; Khanna, A J; Kleinszig, G; Vogt, S; Prince, J L; Siewerdsen, J H
2016-02-27
Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.
Brain shift computation using a fully nonlinear biomechanical model.
Wittek, Adam; Kikinis, Ron; Warfield, Simon K; Miller, Karol
2005-01-01
In the present study, fully nonlinear (i.e. accounting for both geometric and material nonlinearities) patient specific finite element brain model was applied to predict deformation field within the brain during the craniotomy-induced brain shift. Deformation of brain surface was used as displacement boundary conditions. Application of the computed deformation field to align (i.e. register) the preoperative images with the intraoperative ones indicated that the model very accurately predicts the displacements of gravity centers of the lateral ventricles and tumor even for very limited information about the brain surface deformation. These results are sufficient to suggest that nonlinear biomechanical models can be regarded as one possible way of complementing medical image processing techniques when conducting nonrigid registration. Important advantage of such models over the linear ones is that they do not require unrealistic assumptions that brain deformations are infinitesimally small and brain tissue stress-strain relationship is linear.
Deformable Organic Nanowire Field-Effect Transistors.
Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan
2018-02-01
Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pseudo Landau levels and quantum oscillations in strained Weyl semimetals
NASA Astrophysics Data System (ADS)
Alisultanov, Z. Z.
2018-05-01
The crystal lattice deformation in Weyl materials where the two chiralities are separated in momentum space leads to the appearance of gauge pseudo-fields. We investigated the pseudo-magnetic field induced quantum oscillations in strained Weyl semimetal (WSM). In contrast to all previous works on this problem, we use here a more general tilted Hamiltonian. Such Hamiltonian, seems to be is more suitable for a strained WSMs. We have shown that a pseudo-magnetic field induced magnetization of strained WSM is nonzero due to the fact that electric field (gradient of the deformation potential) is induced simultaneously with the pseudo-magnetic field. This related with fact that the pseudo Landau levels (LLs) in strained WSM are differ in vicinities of different WPs due to the presence of tilt in spectrum. Such violation of the equivalence between Weyl points (WPs) leads to modulation of quantum oscillations. We also showed that magnetization magnitude can be changed by application of an external electric field. In particular, it can be reduced to zero. The possibility of controlling of the magnetization by an electric field is interesting both from a fundamental point of view (a new type of magneto-electric effect) and application point of view (additional possibility to control diamagnetism of deformed WSMs). Finally, a coexistence of type-I and type-II Weyl fermions is possible in the system under investigation. Such phase is absolutely new for physics of topological systems.
NASA Astrophysics Data System (ADS)
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.
Relative scale and the strength and deformability of rock masses
NASA Astrophysics Data System (ADS)
Schultz, Richard A.
1996-09-01
The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.
NASA Astrophysics Data System (ADS)
Wang, Hanxiong; Liu, Liping; Liu, Dong
2017-03-01
The equilibrium shape of a bubble/droplet in an electric field is important for electrowetting over dielectrics (EWOD), electrohydrodynamic (EHD) enhancement for heat transfer and electro-deformation of a single biological cell among others. In this work, we develop a general variational formulation in account of electro-mechanical couplings. In the context of EHD, we identify the free energy functional and the associated energy minimization problem that determines the equilibrium shape of a bubble in an electric field. Based on this variational formulation, we implement a fixed mesh level-set gradient method for computing the equilibrium shapes. This numerical scheme is efficient and validated by comparing with analytical solutions at the absence of electric field and experimental results at the presence of electric field. We also present simulation results for zero gravity which will be useful for space applications. The variational formulation and numerical scheme are anticipated to have broad applications in areas of EWOD, EHD and electro-deformation in biomechanics.
Application of ESPI techniques for the study of dynamic vibrations
NASA Astrophysics Data System (ADS)
Krupka, Rene
2004-06-01
Full field optical measurement techniques have already entered into various fields of industrial applications covering static as well as dynamic phenomena. The electronic speckle pattern interferometry (ESPI) allows the non contact, sensitive and three dimensional measurement of displacements in the sub micron range of objects with dimensions from mm2 to m2. For dynamic and transient phenomena, the use of pulsed laser have already been reported for various applications and successfully proven for the determination of the structural response of different components. In this paper we would like to present recent developments in the field of pulsed ESPI applications where emphasis is put onto the full field measurement result. The use of a completely computer controlled system allows easy access to mode shape characterization, deformation measurements and the characterization of transient events like shock wave propagation. Recent developments of the 3D-PulseESPI technique led to a very compact and complete system with improved characteristics regarding robustness and operation. The integrated design of the illumination laser and sensors for image acquisition allows easy aiming and adjustments with respect to the object of inspection. The laser is completely computer controlled which is advantageously used in a completely automatic brake squeal inspection system, which captures the squealing signal, automatically fires the laser and provides the complete deformation map of the component under test. Examples of recent applications in the field of dynamic structure response, with an emphasis in the field of automotive applications are given.
Cooperative deformations of periodically patterned hydrogels.
Wang, Zhi Jian; Zhu, Chao Nan; Hong, Wei; Wu, Zi Liang; Zheng, Qiang
2017-09-01
Nature has shown elegant paradigms of smart deformation, which inspired biomimetic systems with controllable bending, folding, and twisting that are significant for the development of soft electronics and actuators. Complex deformations are usually realized by additively incorporating typical structures in selective domains with little interaction. We demonstrate the cooperative deformations of periodically patterned hydrogel sheets, in which neighboring domains mutually interact and cooperatively deform. Nonswelling disc gels are periodically positioned in a high-swelling gel. During the swelling process, the compartmentalized high-swelling gel alternately bends upward or downward to relieve the in-plane compression, but the overall integrated structure remains flat. The synergy between the elastic mismatch and the geometric periodicity selects the outcome pattern. Both experiment and modeling show that various types of cooperative deformation can be achieved by tuning the pattern geometry and gel properties. Different responsive polymers can also be patterned in one composite gel. Under stimulation, reversible transformations between different cooperative deformations are realized. The principle of cooperative deformation should be applicable to other materials, and the patterns can be miniaturized to the micrometer- or nanometer-scale level, providing the morphing materials with advanced functionalities for applications in various fields.
Application of motion analysis in the study of the effect of botulinum toxin to rat vocal folds
NASA Astrophysics Data System (ADS)
Saadah, Abdul K.; Galatsanos, Nikolas P.; Inagi, K.; Bless, D.
1997-05-01
In the past we have proposed a system that measures the deformations of the vocal folds from videostroboscopic images of the larynx, in that system: (1) we extract the boundaries of the vocal folds, (2) we register elastically the vocal fold boundaries in successive frames. This yields the displacement vector field (DVF) between adjacent frames, and (3) we fit using a least-squares approach an affine transformation model to succinctly describe the deformations between adjacent frames. In this paper, we present as an example of the capabilities of this system, an initial study of the deformation changes in rat vocal folds pre and post injection with Botulinum toxin. For this application the generated DVF was segmented into right DVF and left DVF and the deformation of each segment is studied separately.
3D deformable image matching: a hierarchical approach over nested subspaces
NASA Astrophysics Data System (ADS)
Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul
2000-06-01
This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.
Deformation of an elastic capsule in a uniform electric field
NASA Astrophysics Data System (ADS)
Karyappa, Rahul B.; Deshmukh, Shivraj. D.; Thaokar, Rochish. M.
2014-12-01
The deformation of a thin elastic capsule subjected to a uniform electric field is investigated in the Stokes flow regime. The electrohydrodynamic flow is analyzed using a perfect conductor and a perfect dielectric model for the capsule and the fluid phase, respectively. A theoretical analysis is carried out using an asymptotic expansion in the electric capillary number (Ca) (a ratio of the electric stress to the elastic tension) in the small deformation limit using the finite deformation Hooke's law. The analysis is used to determine the elasticity of polysiloxane capsules suspended in oil, the deformation of which is obtained using videography. The boundary element method is implemented to seek numerical solutions to the hydrodynamic, elastic, and electrostatics equations. The finite deformation Hooke's law, the Mooney-Rivlin, and Skalak's model for elasticity are employed. The effect of electric capillary number, unstressed geometry, and the type of membrane material on the deformation of a capsule is presented in the high Ca number limit using numerical simulation. Capsules synthesized with higher monomer concentration displayed electric stress induced wrinkling process at high electric field strengths. Burst of a capsule is characterized by poration of the polymer membrane, which could be symmetric or asymmetric at the two poles, depending upon the value of the capillary number. The results should be useful in understanding the response of elastic capsules such as red blood cells and polymerized membranes, to an electric field, in applications such as electrodeformation and electroporation. It also provides a theoretical framework for a possible way of determining the elastic parameters of a capsule.
NASA Technical Reports Server (NTRS)
Avis, L. M.
1976-01-01
Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.
NASA Astrophysics Data System (ADS)
Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz
2018-02-01
Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem, even though the visual alignment seems to be better than for the Demons algorithm. However, no algorithm could recover the deformation field with sufficient accuracy in terms of vector length and rotation angle differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barham, M; White, D; Steigmann, D
2009-04-08
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles (magnetoelastomer) was developed at Lawrence Livermore National Laboratory. This new material was formed as a thin film using spin casting. The deformation of this material using a magnetic field has many possible applications to microfluidics. Two methods will be used to calculate the deformation of a circular magneto-elastomeric film subjected to a magnetic field. The first method is an arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) and the second is based on nonlinear continuum electromagnetism and continuum elasticity in the membrane limit. The comparison of these twomore » methods is used to test/validate the finite element method.« less
q-Derivatives, quantization methods and q-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twarock, Reidun
1998-12-15
Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less
Quantum field theory and coalgebraic logic in theoretical computer science.
Basti, Gianfranco; Capolupo, Antonio; Vitiello, Giuseppe
2017-11-01
We suggest that in the framework of the Category Theory it is possible to demonstrate the mathematical and logical dual equivalence between the category of the q-deformed Hopf Coalgebras and the category of the q-deformed Hopf Algebras in quantum field theory (QFT), interpreted as a thermal field theory. Each pair algebra-coalgebra characterizes a QFT system and its mirroring thermal bath, respectively, so to model dissipative quantum systems in far-from-equilibrium conditions, with an evident significance also for biological sciences. Our study is in fact inspired by applications to neuroscience where the brain memory capacity, for instance, has been modeled by using the QFT unitarily inequivalent representations. The q-deformed Hopf Coalgebras and the q-deformed Hopf Algebras constitute two dual categories because characterized by the same functor T, related with the Bogoliubov transform, and by its contravariant application T op , respectively. The q-deformation parameter is related to the Bogoliubov angle, and it is effectively a thermal parameter. Therefore, the different values of q identify univocally, and label the vacua appearing in the foliation process of the quantum vacuum. This means that, in the framework of Universal Coalgebra, as general theory of dynamic and computing systems ("labelled state-transition systems"), the so labelled infinitely many quantum vacua can be interpreted as the Final Coalgebra of an "Infinite State Black-Box Machine". All this opens the way to the possibility of designing a new class of universal quantum computing architectures based on this coalgebraic QFT formulation, as its ability of naturally generating a Fibonacci progression demonstrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Guorong; Yap, Pew-Thian; Kim, Minjeong; Shen, Dinggang
2010-02-01
We present an improved MR brain image registration algorithm, called TPS-HAMMER, which is based on the concepts of attribute vectors and hierarchical landmark selection scheme proposed in the highly successful HAMMER registration algorithm. We demonstrate that TPS-HAMMER algorithm yields better registration accuracy, robustness, and speed over HAMMER owing to (1) the employment of soft correspondence matching and (2) the utilization of thin-plate splines (TPS) for sparse-to-dense deformation field generation. These two aspects can be integrated into a unified framework to refine the registration iteratively by alternating between soft correspondence matching and dense deformation field estimation. Compared with HAMMER, TPS-HAMMER affords several advantages: (1) unlike the Gaussian propagation mechanism employed in HAMMER, which can be slow and often leaves unreached blotches in the deformation field, the deformation interpolation in the non-landmark points can be obtained immediately with TPS in our algorithm; (2) the smoothness of deformation field is preserved due to the nice properties of TPS; (3) possible misalignments can be alleviated by allowing the matching of the landmarks with a number of possible candidate points and enforcing more exact matches in the final stages of the registration. Extensive experiments have been conducted, using the original HAMMER as a comparison baseline, to validate the merits of TPS-HAMMER. The results show that TPS-HAMMER yields significant improvement in both accuracy and speed, indicating high applicability for the clinical scenario. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Deformable mirrors development program at ESO
NASA Astrophysics Data System (ADS)
Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus
2016-07-01
Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.
Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud
NASA Astrophysics Data System (ADS)
Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.
2018-04-01
In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.
Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.
2008-01-01
The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.
Cayol, V.; Cornet, F.H.
1998-01-01
We have investigated the effects of topography on the surface-deformation field of volcanoes. Our study provides limits to the use of classical half-space models. Considering axisymmetrical volcanoes, we show that interpreting ground-surface displacements with half-space models can lead to erroneous estimations of the shape of the deformation source. When the average slope of the flanks of a volcano exceeds 20??, tilting in the summit area is reversed to that expected for a flat surface. Thus, neglecting topography may lead to misinterpreting an inflation of the source as a deflation. Comparisons of Mogi's model with a three-dimensional model shows that ignoring topography may lead to an overestimate of the source-volume change by as much as 50% for a slope of 30??. This comparison also shows that the depths calculated by using Mogi's solution for prominent volcanoes should be considered as depths from the summit of the edifices. Finally, we illustrate these topographic effects by analyzing the deformation field measured by radar interferometry at Mount Etna during its 1991-1993 eruption. A three-dimensional modeling calculation shows that the flattening of the deflation field near the volcano's summit is probably a topographic effect.
3D full field strain analysis of polymerization shrinkage in a dental composite.
Martinsen, Michael; El-Hajjar, Rani F; Berzins, David W
2013-08-01
The objective of this research was to study the polymerization shrinkage in a dental composite using 3D digital image correlation (DIC). Using 2 coupled cameras, digital images were taken of bar-shaped composite (Premise Universal Composite; Kerr) specimens before light curing and after for 10 min. Three-dimensional DIC was used to assess in-plane and out-of-plane deformations associated with polymerization shrinkage. The results show the polymerization shrinkage to be highly variable with the peak values occurring 0.6-0.8mm away from the surface. Volumetric shrinkage began to significantly decrease at 3.2mm from the specimen surface and reached a minimum at 4mm within the composite. Approximately 25-30% of the strain registered at 5 min occurred after light-activation. Application of 3D DIC dental applications can be performed without the need for assumptions on the deformation field. Understanding the local deformations and strain fields from the initial polymerization shrinkage can lead to a better understanding of the composite material and interaction with surrounding tooth structure, aiding in their further development and clinical prognosis. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass
Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua
2016-01-01
The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Effective field theory for triaxially deformed nuclei
NASA Astrophysics Data System (ADS)
Chen, Q. B.; Kaiser, N.; Meißner, Ulf-G.; Meng, J.
2017-10-01
Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation.
Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter
NASA Astrophysics Data System (ADS)
Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing
2018-03-01
Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.
Magma reservoir subsidence mechanics: Theoretical summary and application to Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Ryan, Michael P.; Blevins, James Y. K.; Okamura, Arnold T.; Koyanagi, Robert Y.
1983-05-01
An analytic model has been developed for the prediction of the three-dimensional deformation field generated by the withdrawal of magma from a sill-like storage compartment during an intrusion or eruption cycle. The model is based on the work of Berry and Sales (1961, 1962) and predicts the vertical displacement components over the areal plane. Model parameters are the depth of burial h, the intrusion half width a, the intrusion half length b, the thickness of the magmatic interior at the moment of melt withdrawal tm, and the planform aspect ratio ξ = a/b. The products of the model include areal deformation maps. Systematic variation in model parameters within the context of Kilauea Volcano, Hawaii, have revealed that circular and elliptical deformation patterns result from the collapse of draining rectilinear intrusions at depth. Moreover, the geometric parameters of a storage compartment may interact in complex ways to produce similar deformation patterns. The model has been applied to Kilauea Volcano for three periods of pronounced summit subsidence: (1) 1921-1927 (bracketing the steamblast eruptive phases of 1924); (2) June 1972 to December 1972, and (3) December 1972 to May 1973. Application of the model requires the simultaneous optimization of five predicted deformation features with respect to field measurements and the derivative deformation maps: (1) the vertical displacement maxima; (2) the vertical displacement gradients over the areal plane, (3) the lateral extent of the deformation field, (4) the aspect ratio of the subsidence pattern, and (5) the strike of the major axis of the deformation field. The constrained geometries and volumes of the inferred collapsed storage cavities for each period are (1) 1921-1927: depth ≅ 3 km, a ≅ 1500 m, b ≅ 4500 m, tm ≅ 20 m, V 540×106 m3, (2) June 1972 to December 1972: depth ≅ 3.3 km, a ≅ 600 m, b ≅ 2000 m, tm ≅ 1 m, V ≅ 4.8×106 m3, and (3) December 1972 to May 1973: depth ≅ 2.2 km, a ≅ 500 m, b ≅ 1612 m, tm ≅ 1 m, V ≅ 3.2×106 m3. For 2 and 3, calculated magmatic thicknesses tm happen to be in the range (3.48-0.15 m) of measurements for sill-like bodies in deeply dissected Hawaiian shield volcanoes. The fits obtained between calculated and observed deformation patterns allow quantification of the location, overall dimensions, orientation, and volume of the discrete, still molten, interior of sill-like compartments from which magma is tapped during eruption or intrusion.
Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Reh, Douglas D; Gallia, Gary L; Siewerdsen, Jeffrey H
2012-09-01
A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to "tissue" in the moving image and "air" in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed "extra-dimensional" Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate "ejection" of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate "ejection" of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance.
Extra-dimensional Demons: A method for incorporating missing tissue in deformable image registration
Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Reh, Douglas D.; Gallia, Gary L.; Siewerdsen, Jeffrey H.
2012-01-01
Purpose: A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. Methods: A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to “tissue” in the moving image and “air” in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed “extra-dimensional” Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Results: Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate “ejection” of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Conclusions: Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate “ejection” of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance. PMID:22957637
Deformation field correction for spatial normalization of PET images
Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.
2015-01-01
Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272
NASA Astrophysics Data System (ADS)
Renner, A.; Furtado, H.; Seppenwoolde, Y.; Birkfellner, W.; Georg, D.
2016-03-01
A radiotherapy (RT) treatment can last for several weeks. In that time organ motion and shape changes introduce uncertainty in dose application. Monitoring and quantifying the change can yield a more precise irradiation margin definition and thereby reduce dose delivery to healthy tissue and adjust tumor targeting. Deformable image registration (DIR) has the potential to fulfill this task by calculating a deformation field (DF) between a planning CT and a repeated CT of the altered anatomy. Application of the DF on the original contours yields new contours that can be used for an adapted treatment plan. DIR is a challenging method and therefore needs careful user interaction. Without a proper graphical user interface (GUI) a misregistration cannot be easily detected by visual inspection and the results cannot be fine-tuned by changing registration parameters. To provide a DIR algorithm with such a GUI available for everyone, we created the extension Featurelet-Registration for the open source software platform 3D Slicer. The registration logic is an upgrade of an in-house-developed DIR method, which is a featurelet-based piecewise rigid registration. The so called "featurelets" are equally sized rectangular subvolumes of the moving image which are rigidly registered to rectangular search regions on the fixed image. The output is a deformed image and a deformation field. Both can be visualized directly in 3D Slicer facilitating the interpretation and quantification of the results. For validation of the registration accuracy two deformable phantoms were used. The performance was benchmarked against a demons algorithm with comparable results.
Sliding inclusions and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mura, T.
It is found that when an ellipsoidal inclusion undergoes a shear eigenstrain and the inclusion is free to slip along the interface, the stress field vanishes everywhere in the inclusion and the matrix. It is assumed in the analysis that the inclusion interface cannot sustain any shear traction. There exists a shear deformation which transforms an ellipsoid into the identical ellipsoid without changing its orientation (ellipsoid invariant transformation). Therefore, no resistance for shear deformation is expected. This may be a characteristic of deformation seen in superplasticity alloys and granular materials. The theory is valid even for large deformations when incrementalmore » strains (or strain rates) are considered instead of strains themselves.« less
Peroni, M; Golland, P; Sharp, G C; Baroni, G
2011-01-01
Deformable Image Registration is a complex optimization algorithm with the goal of modeling a non-rigid transformation between two images. A crucial issue in this field is guaranteeing the user a robust but computationally reasonable algorithm. We rank the performances of four stopping criteria and six stopping value computation strategies for a log domain deformable registration. The stopping criteria we test are: (a) velocity field update magnitude, (b) vector field Jacobian, (c) mean squared error, and (d) harmonic energy. Experiments demonstrate that comparing the metric value over the last three iterations with the metric minimum of between four and six previous iterations is a robust and appropriate strategy. The harmonic energy and vector field update magnitude metrics give the best results in terms of robustness and speed of convergence.
NASA Astrophysics Data System (ADS)
Schnitzer, Ory; Frankel, Itzchak; Yariv, Ehud
2013-11-01
In Taylor's theory of electrohydrodynamic drop deformation (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159-166), inertia is neglected at the outset, resulting in fluid velocity that scales as the square of the applied-field magnitude. For large drops, with increasing field strength the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number investigation. Balancing viscous stresses and electrical shear forces in this limit reveals a different velocity scaling, with the 4/3-power of the applied-field magnitude. We focus here on the flow over a gas bubble. It is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. At leading order in the Capillary number, the bubble deforms due to (i) Maxwell stresses; (ii) the hydrodynamic boundary-layer pressure associated with centripetal acceleration; and (iii) the intense pressure distribution acting over the narrow equatorial deflection zone, appearing as a concentrated load. Remarkably, the unique flow topology and associated scalings allow to obtain a closed-form expression for this deformation through application of integral mass and momentum balances. On the bubble scale, the concentrated pressure load is manifested in the appearance of a non-smooth equatorial dimple.
Modeling and simulation of deformation of hydrogels responding to electric stimulus.
Li, Hua; Luo, Rongmo; Lam, K Y
2007-01-01
A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels.
The impact of shape memory test on degradation profile of a bioresorbable polymer.
Musioł, Marta; Jurczyk, Sebastian; Kwiecień, Michał; Smola-Dmochowska, Anna; Domański, Marian; Janeczek, Henryk; Włodarczyk, Jakub; Klim, Magdalena; Rydz, Joanna; Kawalec, Michał; Sobota, Michał
2018-05-01
The semicrystalline poly(L-lactide) (PLLA) belongs to the materials with shape memory effect (SME) and as a bioresorbable and biocompatible polymer it have found many applications in medical and pharmaceutical field. Assessment of the SME impact on the polymer degradation profile plays crucial role in applications such as drug release systems or in regenerative medicine. Herein, the results of in vitro degradation studies of PLLA samples after SME full test cycle are presented. The samples were loaded and deformed in two manners: progressive and non-progressive. The performed experiments illustrate also influence of the material mechanical damages, caused e.g. during incorrect implantation of PLLA product, on hydrolytic degradation profile. Apparently, degradation profiles are significantly different for the material which was not subjected to the deformation and the deformed ones. The materials after deformation of 50% (in SME cycle) was characterized by non-reversible morphology changes. The effect was observed in deformed samples during the SME test which were carried out ten times. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ridl, Romy; Bell, David; Villeneuve, Marlene
2017-04-01
Toe buckling deformation is a temporal product of induced stresses concentrated at the base of a slope. Prolonged induced stresses may lead to yielding of an anisotropic rock mass, either through rheological creep deformation (flexural toe buckling) or brittle failure (hinge buckling). Progressive deformation can lead to the breakout at the buckled toe and ultimately result in deep seated displacements on a mountain range scale, referred to as deep seated gravitational slope deformation (DSGSD). DSGSD can have a considerable impact on civil infrastructure and should be well understood for hazard identification, to inform civil engineering design and for resource management purposes. Toe buckling deformation was identified beneath the basal sliding zone of three large (≥50 Mm3) landslides in the Cromwell Gorge, New Zealand. This area was subjected to extensive geotechnical investigations for the Clyde Hydropower Scheme. During these investigations seventeen major landslides were identified in the Cromwell Gorge and subsequently stabilised. The data from the landslide stabilisation project, including 26.7 km of boreholes and 9 km of tunnels, for the three landslides exhibiting toe buckling was made available for this study. This comprehensive database has enabled comparison and validation of numerical simulations carried out for the Cromwell Gorge. The application of numerical modelling has demonstrated that toe buckling within the Cromwell Gorge is a result of the combination of induced stresses acting on an anisotropic schistose rock mass. The induced stresses comprise: i) topographically-induced gravitational stresses parallel to the slope, associated with the evolution of the Cromwell Gorge from a relatively low relief surface to present day topography (1400 m deep valley), and ii) active far-field tectonic stresses associated with the obliquely convergent stress regime of the Australian-Pacific continent plate boundary. Finite Element Method (FEM) numerical models were used to model the anisotropic nature of the schist rock mass, and a sequential unloading method was adopted to simulate valley evolution. Far-field tectonics were incorporated into the model by comparing topographically induced gravitational stresses with in situ field stress measurements. The results of sensitivity analyses demonstrate that the dominant parameters governing toe buckling deformation in the Cromwell Gorge are a function of the anisotropy of the schist (foliation orientation and stiffness), and the intersection of the two induced stress fields near the base of the slopes.
Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L; Siewerdsen, Jeffrey H
2016-11-01
Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine.
Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L.
2016-01-01
Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. PMID:27295656
Shape dependence of entanglement entropy in conformal field theories
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar
2016-04-14
Here, we study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on R 1,d--1. We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We also show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, andmore » proportional to the coefficient C T appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient σ/CT=π 2/24 in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.« less
Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds
Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; ...
2017-02-21
Here, the unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply themore » recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.« less
Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.
2017-01-01
The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recentlymore » developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.« less
Deformation Measurements of Smart Aerodynamic Surfaces
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Burner, Alpheus
2005-01-01
Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.
Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culp, David; Miller, Nathan; Schweizer, Laura
Phase-field techniques provide an alternative approach to fracture problems which mitigate some of the computational expense associated with tracking the crack interface and the coalescence of individual fractures. The technique is extended to apply to hydraulically driven fracture such as would occur during fracking or CO 2 sequestration. Additionally, the technique is applied to a stainless steel specimen used in the Sandia Fracture Challenge. It was found that the phase-field model performs very well, at least qualitatively, in both deformation-induced fracture and hydraulically-induced fracture, though spurious hourglassing modes were observed during coupled hydralically-induced fracture. Future work would include performing additionalmore » quantitative benchmark tests and updating the model as needed.« less
The Afar rift zone deformation dynamics retrieved through phase and amplitude SAR data
NASA Astrophysics Data System (ADS)
Casu, F.; Pagli, C.; Paglia, L.; Wang, H.; Wright, T. J.; Lanari, R.
2011-12-01
The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. Since 2003, the Afar depression has been repeatedly imaged by the ENVISAT satellite, generating a large SAR archive which allow us to study the ongoing deformation processes and the dynamics of magma movements. We combine sets of small baseline interferograms through the advanced DInSAR algorithm referred to as Small BAseline Subset (SBAS), and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS), with accuracies on the order of 5 mm. The main limitation of DInSAR applications is that large and rapid deformations, such as those caused by dyke intrusions and eruptions in Afar, cannot be fully measured. The phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field of a given SAR image pair, for both range and azimuth directions. Moreover, after computing the POs for each image pair, it is possible to combine them, following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30cm and 15 cm for the range and azimuth, respectively. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. In particular, we use the phase information to construct dense and accurate deformation maps and time series in areas not affected by large displacements. While in areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. This approach allows us to obtain a spatially detailed deformation map of the study area. In addition, by combining ascending and descending data we reconstruct the vertical and East-West components of deformation field. Furthermore, in areas affected by large deformations, we can also retrieve the full 3D deformation field, by using the North-South displacement component obtained from the azimuth PO information. Distinct sources of deformations interact in Afar. Fault movements and magma chamber deflation have accompanied dyke intrusions but quantifying each contribution to the total deformation has been challenging, also due to loss of coherence in the central part of the rift. Here we combined the phase and amplitude information in order to retrieve the full deformation field of repeated intrusions. This allows us to better constrain the fault movements that occur as the dyke propagates as well as the magma movements from individual magma chambers.
Zhou, Lu; Zhen, Xin; Lu, Wenting; Dou, Jianhong; Zhou, Linghong
2012-01-01
To validate the efficiency of an improved Demons deformable registration algorithm and evaluate its application in registration of the treatment image and the planning image in image-guided radiotherapy (IGRT). Based on Brox's gradient constancy assumption and Malis's efficient second-order minimization algorithm, a grey value gradient similarity term was added into the original energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function for automatic determination of the iteration number. The proposed algorithm was validated using mathematically deformed images, physically deformed phantom images and clinical tumor images. Compared with the original Additive Demons algorithm, the improved Demons algorithm achieved a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. The improved Demons algorithm can achieve faster and more accurate radiotherapy.
Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian
2018-04-03
Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.
Soft tissue strain measurement using an optical method
NASA Astrophysics Data System (ADS)
Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James
2008-11-01
Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar
Here, we study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on R 1,d--1. We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We also show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, andmore » proportional to the coefficient C T appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient σ/CT=π 2/24 in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.« less
Toward the classification of differential calculi on κ-Minkowski space and related field theories
NASA Astrophysics Data System (ADS)
Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel; Štrajn, Rina
2015-07-01
Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashitkov, Sergei I; Komarov, P S; Ovchinnikov, A V
An interferometric method is developed and realised using a frequency-modulated pulse for diagnosing a dynamics of fast deformations with a spatial and temporal resolution under the action of a single laser pulse. The dynamics of a free surface of a submicron-thick aluminium film is studied under an action of the ultrashort compression pulse with the amplitude of up to 14 GPa, excited by a femtosecond laser heating of the target surface layer. The spallation strength of aluminium was determined at a record high deformation rate of 3 Multiplication-Sign 10{sup 9} s{sup -1}. (extreme light fields and their applications)
Finite element analysis of a micromechanical deformable mirror device
NASA Technical Reports Server (NTRS)
Sheerer, T. J.; Nelson, W. E.; Hornbeck, L. J.
1989-01-01
A monolithic spatial light modulator chip was developed consisting of a large number of micrometer-scale mirror cells which can be rotated through an angle by application of an electrostatic field. The field is generated by electronics integral to the chip. The chip has application in photoreceptor based non-impact printing technologies. Chips containing over 16000 cells were fabricated, and were tested to several billions of cycles. Finite Element Analysis (FEA) of the device was used to model both the electrical and mechanical characteristics.
Sparling, D.W.
1998-01-01
During the summer of 1997 we repeatedly sprayed Altosid, a formulation of 4% methoprene used for mosquito control, on six constructed macrocosms. Six additional macrocosms were sprayed with Abate4E, containing the organophosphate pesticide temephos, and six were sprayed with water (controls). The wetlands were created on an impermeable foundation for research purposes and averaged 215 m2 in area and 0.5 m deep. Application rates and frequency of Abate4E and Altosid followed label directions and mimicked procedures for mosquito control in National Wildlife Refuges. In early September juvenile frogs and metamorphing tadpoles were collected with dip nets from each pond and examined for deformities. In all, 91 juveniles and metamorph southern leopard frogs (Rana utricularia) were collected from Altosid sprayed wetlands with 14 (15%) demonstrating deformities. Seventyseven juveniles and metamorphs were collected from control wetlands with three (4%) showing deformities. Only six juveniles and metamorphs were collected from Abate4E wetlands and none showed deformities. Deformities included missing or deformed hind limbs (9 of 10 involving only the right hind limb), missing eyes, and abnormal color. The differences in rate of deformities was dependent on treatment (X2=6.44, p< 0.02). The number of leopard frogs caught per unit effort (tadpoles and juveniles) differed among treatments (p=0.032) with Abate4E wetlands producing fewer individuals per capture effort than either Altosid or control wetlands.
NASA Astrophysics Data System (ADS)
Tudisco, E.; Hall, S. A.; Charalampidou, E. M.; Kardjilov, N.; Hilger, A.; Sone, H.
Recent studies have demonstrated that the combination of x-ray tomography during triaxial tests (;in-situ; tests) and 3D- volumetric Digital Image Correlation (3D-DIC) can provide important insight into the mechanical behaviour and deformation processes of granular materials such as sand. The application of these tools to investigate the mechanisms of failure in rocks is also of obvious interest. However, the relevant applied confining pressures for triaxial testing on rocks are higher than those on sands and therefore stronger pressure containment vessels, i.e., made of thick metal walls, are required. This makes in-situ x-ray imaging of rock deformation during triaxial tests a challenge. One possible solution to overcome this problem is to use neutrons, which should better penetrate the metal-walls of the pressure vessels. In this perspective, this work assesses the capability of neutron tomography with 3D-DIC to measure deformation fields in rock samples. Results from pre- and post-deformation neutron tomography of a Bentheim sandstone sample deformed ex-situ at 40 MPa show that clear images of the internal structure can be achieved and utilised for 3D-DIC analysis to reveal the details of the 3D strain field. From these results the character of the localised deformation in the study sample can thus be described. Furthermore, comparison with analyses based on equivalent x-ray tomography imaging of the same sample confirms the effectiveness of the method in relation to the more established x-ray based approach.
High-resolution stress measurements for microsystem and semiconductor applications
NASA Astrophysics Data System (ADS)
Vogel, Dietmar; Keller, Juergen; Michel, Bernd
2006-04-01
Research results obtained for local stress determination on micro and nanotechnology components are summarized. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.
Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.
Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-02-11
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.
Marginal shape deep learning: applications to pediatric lung field segmentation
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovany; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-02-01
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, local- ization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0:927 using only the four highest modes of variation (compared to 0:888 with classical ASM1 (p-value=0:01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.
Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation
Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George
2017-01-01
Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects. PMID:28592911
A ferrofluidic deformable mirror for ophthalmology
NASA Astrophysics Data System (ADS)
Macpherson, J. B.; Thibault, S.; Borra, E. F.; Ritcey, A. M.; Carufel, N.; Asselin, D.; Jerominek, H.; Campbell, M. C. W.
2005-09-01
Optical aberrations reduce the imaging quality of the human eye. In addition to degrading vision, this limits our ability to illuminate small points of the retina for therapeutic, surgical or diagnostic purposes. When viewing the rear of the eye, aberrations cause structures in the fundus to appear blurred, limiting the resolution of ophthalmoscopes (diagnostic instruments used to image the eye). Adaptive optics, such as deformable mirrors may be used to compensate for aberrations, allowing the eye to work as a diffraction-limited optical element. Unfortunately, this type of correction has not been widely available for ophthalmic applications because of the expense and technical limitations of current deformable mirrors. We present preliminary design and characterisation of a deformable mirror suitable for ophthalmology. In this ferrofluidic mirror, wavefronts are reflected from a fluid whose surface shape is controlled by a magnetic field. Challenges in design are outlined, as are advantages over traditional deformable mirrors.
Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2002-01-01
NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Rickert, Wilhelm; Müller, Wolfgang H.
2018-03-01
This study investigates the implications of various electromagnetic force models in macroscopic situations. There is an ongoing academic discussion which model is "correct," i.e., generally applicable. Often, gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work, three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing with experimental data, insight is gained regarding the applicability of the models. First, the total force between two cylindrical magnets is computed. Then a spherical magnetostriction problem is considered to show different deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are drawn and further work is motivated.
NASA Astrophysics Data System (ADS)
Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.
2017-02-01
Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.
Finite element solutions for crack-tip behavior in small-scale yielding
NASA Technical Reports Server (NTRS)
Tracey, D. M.
1976-01-01
The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.
Bialgebra deformations and algebras of trees
NASA Technical Reports Server (NTRS)
Grossman, Robert; Radford, David
1991-01-01
Let A denote a bialgebra over a field k and let A sub t = A((t)) denote the ring of formal power series with coefficients in A. Assume that A is also isomorphic to a free, associative algebra over k. A simple construction is given which makes A sub t a bialgebra deformation of A. In typical applications, A sub t is neither commutative nor cocommutative. In the terminology of Drinfeld, (1987), A sub t is a quantum group. This construction yields quantum groups associated with families of trees.
NASA Astrophysics Data System (ADS)
Shirzaei, Manoochehr; Walter, Thomas
2010-05-01
Volcanic unrest and eruptions are one of the major natural hazards next to earthquakes, floods, and storms. It has been shown that many of volcanic and tectonic unrests are triggered by changes in the stress field induced by nearby seismic and magmatic activities. In this study, as part of a mobile volcano fast response system so-called "Exupery" (www.exupery-vfrs.de) we present an arrangement for semi real time assessing the stress field excited by volcanic activity. This system includes; (1) an approach called "WabInSAR" dedicated for advanced processing of the satellite data and providing an accurate time series of the surface deformation [1, 2], (2) a time dependent inverse source modeling method to investigate the source of volcanic unrest using observed surface deformation data [3, 4], (3) the assessment of the changes in stress field induced by magmatic activity at the nearby volcanic and tectonic systems. This system is implemented in a recursive manner that allows handling large 3D data sets in an efficient and robust way which is requirement of an early warning system. We have applied and validated this arrangement on Mauna Loa volcano, Hawaii Island, to assess the influence of the time dependent activities of Mauna Loa on earthquake occurrence at the Kaoiki seismic zone. References [1] M. Shirzaei and T. R. Walter, "Wavelet based InSAR (WabInSAR): a new advanced time series approach for accurate spatiotemporal surface deformation monitoring," IEEE, pp. submitted, 2010. [2] M. Shirzaei and R. T. Walter, "Deformation interplay at Hawaii Island through InSAR time series and modeling," J. Geophys Res., vol. submited, 2009. [3] M. Shirzaei and T. R. Walter, "Randomly Iterated Search and Statistical Competency (RISC) as powerful inversion tools for deformation source modeling: application to volcano InSAR data," J. Geophys. Res., vol. 114, B10401, doi:10.1029/2008JB006071, 2009. [4] M. Shirzaei and T. R. Walter, "Genetic algorithm combined with Kalman filter as powerful tool for nonlinear time dependent inverse modelling: Application to volcanic deformation time series," J. Geophys. Res., pp. submitted, 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio
2008-05-01
Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we canmore » infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.« less
NASA Astrophysics Data System (ADS)
Liu, Liping; Sharma, Pradeep
2018-03-01
Soft robotics, energy harvesting, large-deformation sensing and actuation, are just some of the applications that can be enabled by soft dielectrics that demonstrate substantive electromechanical coupling. Most soft dielectrics including elastomers, however, are not piezoelectric and rely on the universally present electrostriction and the Maxwell stress effect to enable the aforementioned applications. Electrostriction is a one-way electromechanical coupling and the induced elastic strain scales as (∝E2) upon the application of an electric field, E. The quadratic dependence of electrostriction on the electric field and the one-way coupling imply that, (i) A rather high voltage is required to induce appreciable strain, (ii) reversal of an applied bias will not reverse the sign of the deformation, and (iii) since it is a one-way coupling i.e. electrical stimuli may cause mechanical deformation but electricity cannot be generated by mechanical deformation, prospects for energy harvesting are rather difficult. An interesting approach for realizing an apparent piezoelectric-like behavior is to dope soft dielectrics with immobile charges and dipoles. Such materials, called electrets, are rather unique composites where a secondary material (in principle) is not necessary. Both experiments and supporting theoretical work have shown that soft electrets can exhibit a very large electromechanical coupling including a piezoelectric-like response. In this work, we present a homogenization theory for electret materials and provide, in addition to several general results, variational bounds and closed-form expressions for specific microstructures such as laminates and ellipsoidal inclusions. While we consider the nonlinear coupled problem, to make analytical progress, we work within the small-deformation setting. The specific conditions necessary to obtain a piezoelectric-like response and enhanced electrostriction are highlighted. There are very few universal, microstructure-independent exact results in the theory of composites. We succeed in establishing several such relations in the context of electrets.
Three-dimensional effects in nonlinear fracture explored with interferometry
NASA Astrophysics Data System (ADS)
Pfaff, Richard D.
The prospects for understanding fracture mechanics in terms of a general material constitutive description are explored. The effort consists of three distinct components.First, optical interferometry, in its various forms (Twyman-Green, diffraction moire, etc.), can potentially be used under a wide range of conditions to very accurately measure the displacement and strain fields associated with the deformation surrounding a cracktip. To broaden the range of fracture problems to which interferometry may be applied, certain of the necessary experimental improvements have been developed:1. High speed camera designs capable of extremely high (> 10(9) frames/second) framing rates with large array sizes, (> 4000 x 4000 pixels per frame) so that the application of optical techniques to solid mechanics may be considered without limitation on the rate of deformation.2. An accurate and adaptable device for dynamic loading of fracture specimens to high load levels utilizing electromagnetic (Lorentz force) loading with ultrahigh (> 2,000,000 Amp/cm(2)) current flux densities.3. Implementation of high sensitivity (2 nm), large range (2 nm x 3,200,000) interferometry achieved with wide field array sizes of 50,000 x 50,000 and 8 bit gray scale (error restricted to 1 bit) for surface deformation measurements on fracture specimens.Second, functional descriptions for certain aspects of the displacement fields associated with fracture specimens are developed. It is found that the fully three-dimensional crack tip field surrounding a through-thickness crack in a plate of elastic-plastic material shows a hierarchical structure of organization and that the primary aspects of the deformation field would seem to have a relatively simple form of expression if the deformation is viewed in a properly normalized form.Third, a comparison is made between interferometrically measured surface displacements for a notched 3-point-bend speciemn of a ductile heat treatment of 4340 steel and a numerical simulation of the specimen based on a material constitutive description determined from uniaxial tests performed on the same material. The small but finite notch tip radius (0.15 mm) fabricated by a wire-cutting electrical discharge machine allows one to explore the limits of applicability of standard continuum plasticity theories without involving a process zone model for the very near tip region extent in a cracked specimen geometry.
Tracking Cloud Motion and Deformation for Short-Term Photovoltaic Power Forecasting
NASA Astrophysics Data System (ADS)
Good, Garrett; Siefert, Malte; Fritz, Rafael; Saint-Drenan, Yves-Marie; Dobschinski, Jan
2016-04-01
With the increasing role of photovoltaic power production, the need to accurately forecast and anticipate weather-driven elements like cloud cover has become ever more important. Of particular concern is forecasting on the short-term (up to several hours), for which the most recent full weather simulation may no longer provide the most accurate information in light of real-time satellite measurements. We discuss the application of the image correlation velocimetry technique described by Tokumaru & Dimotakis (1995) (for calculating flow fields from images) to measure deformations of various orders based on recent satellite imagery, with the goal of not only more accurately forecasting the advection of cloud structures, but their continued deformation as well.
NASA Astrophysics Data System (ADS)
Yang, Zhichun; Zhou, Jian; Gu, Yingsong
2014-10-01
A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.
Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando
2017-07-01
The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.
Geodesic active fields--a geometric framework for image registration.
Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe
2011-05-01
In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.
Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems
NASA Astrophysics Data System (ADS)
Shen, Benlan; Chang, Jun; Niu, Yajun; Chen, Weilin; Ji, Zhongye
2018-07-01
This paper presents a dynamic local athermalisation method for longwave infrared (LWIR) optical systems; the proposed design uses a deformable mirror and is based on active optics theory. A local athermal LWIR optical system is designed as an example. The deformable mirror is tilted by 45° near the exit pupil of the system. The thermal aberrations are corrected by the deformable mirror for the local athermal field of view (FOV) that ranges from -40 °C to 80 °C. The types of thermal aberrations are analysed. Simulated results show that the local athermal LWIR optical system can effectively detect targets in the region of interest within a large FOV and correct thermal aberrations in actual working environments in real time. The system has numerous potential applications in infrared detection and tracking, surveillance and remote sensing.
Characterization of microcracks by application of digital image correlation to SPM images
NASA Astrophysics Data System (ADS)
Keller, Juergen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd
2004-07-01
With the development of micro- and nanotechnological products such as sensors, MEMS/NEMS and their broad application in a variety of market segments new reliability issues will arise. The increasing interface-to-volume ratio in highly integrated systems and nanoparticle filled materials and unsolved questions of size effect of nanomaterials are challenges for experimental reliability evaluation. To fulfill this needs the authors developed the nanoDAC method (nano Deformation Analysis by Correlation), which allows the determination and evaluation of 2D displacement fields based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object are carried out at different thermo-mechanical load states. The obtained topography-, phase- or error-images are compared utilizing grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results of the nanoDAC method are full-field displacement and strain fields. Due to the application of SPM equipment deformations in the micro-, nanometer range can be easily detected. The method can be performed on bulk materials, thin films and on devices i.e microelectronic components, sensors or MEMS/NEMS. Furthermore, the characterization and evaluation of micro- and nanocracks or defects in bulk materials, thin layers and at material interfaces can be carried out.
Design considerations for studies of the biomechanical environment of the femoropopliteal arteries.
Ansari, Farzana; Pack, Lindsay K; Brooks, Steven S; Morrison, Tina M
2013-09-01
The purpose of this study was to review the available literature regarding the biomechanics of the superficial femoral artery (SFA) and popliteal artery (PA) in patients with peripheral arterial disease (PAD). Stents are one of many available therapies used to treat patients with PAD. Because stents are permanent implants, they undergo a variety of deformations as patients go about their daily activities such as walking, sitting in a chair, or climbing stairs. As a part of the marketing application for United States Food and Drug Administration approval, stents need to be evaluated for long-term durability under a variety of loading modes. The information available in the literature provides direction for such evaluation. We performed a literature search of the PubMed database looking for "key vessel" and "mechanics" (all fields) or "deformation" (all fields) or "flexion" (all fields) or "mechanical environment" (all fields) or "tortuosity" (all fields) or "dynamics" (all fields) or "forces" (all fields), where the "key vessel" was "Femoral Artery," "Superficial Femoral Artery," "Popliteal Artery," and "Femoropopliteal." Using a decision tree, we found 12 relevant articles that focused solely on the nonradial cyclic deformations associated with musculoskeletal motion. Despite the many limitations associated with combining these studies, we learned that under walking conditions, the proximal and mid-SFA deforms, on average, by shortening in the axial direction 4.0%, by twisting 2.1°/cm, and by bending 72.1 mm; the distal SFA and proximal PA deform by shortening in the axial direction 13.9%, by twisting 3.5°/cm, and by being pinched such that the aspect ratio of the lumen changes 4.6%. The distal PA deforms by shortening in the axial direction 12.3%, by twisting 3.5°/cm, by bending 22.1 mm, and by being pinched such that the aspect ratio of the lumen changes 12.5%. A review of the current literature reveals heterogeneous study designs that confound interpretation. Studies included different physiologic settings from young to mature participants, participants with and without disease, and cadavers. Investigators used a range of imaging modalities and definitions of arterial segments, which affected our ability to compile the data as we learned that deformations vary according to the specific anatomic location within the SFA/PA. As a result of this analysis, we identified design considerations for future studies, because although this work has been valuable and significant, there are many limitations with the currently available data such that all we know about the SFA/PA environment is that we don't know. Published by Mosby, Inc.
Quantum κ-deformed differential geometry and field theory
NASA Astrophysics Data System (ADS)
Mercati, Flavio
2016-03-01
I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.
NASA Astrophysics Data System (ADS)
Jahedi, Mohammad; Ardeljan, Milan; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Knezevic, Marko
2015-06-01
We use a multi-scale, polycrystal plasticity micromechanics model to study the development of orientation gradients within crystals deforming by slip. At the largest scale, the model is a full-field crystal plasticity finite element model with explicit 3D grain structures created by DREAM.3D, and at the finest scale, at each integration point, slip is governed by a dislocation density based hardening law. For deformed polycrystals, the model predicts intra-granular misorientation distributions that follow well the scaling law seen experimentally by Hughes et al., Acta Mater. 45(1), 105-112 (1997), independent of strain level and deformation mode. We reveal that the application of a simple compression step prior to simple shearing significantly enhances the development of intra-granular misorientations compared to simple shearing alone for the same amount of total strain. We rationalize that the changes in crystallographic orientation and shape evolution when going from simple compression to simple shearing increase the local heterogeneity in slip, leading to the boost in intra-granular misorientation development. In addition, the analysis finds that simple compression introduces additional crystal orientations that are prone to developing intra-granular misorientations, which also help to increase intra-granular misorientations. Many metal working techniques for refining grain sizes involve a preliminary or concurrent application of compression with severe simple shearing. Our finding reveals that a pre-compression deformation step can, in fact, serve as another processing variable for improving the rate of grain refinement during the simple shearing of polycrystalline metals.
3D displacement time series in the Afar rift zone computed from SAR phase and amplitude information
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manconi, Andrea
2013-04-01
Large and rapid deformations, such as those caused by earthquakes, eruptions, and landslides cannot be fully measured by using standard DInSAR applications. Indeed, the phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field SAR image pairs, for both range and azimuth directions. Moreover, it is possible to combine the PO results by following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30 cm and 15 cm for the range and azimuth, respectively [1]. Moreover, the combination of SBAS and PO-SBAS time series can help to better study and model deformation phenomena characterized by spatial and temporal heterogeneities [2]. The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. The ENVISAT satellite has repeatedly imaged the Afar depression since 2003, generating a large SAR archive. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. We combined sets of small baseline interferograms through the SBAS algorithm, and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS). In areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. Furthermore, we could also retrieve the full 3D deformation field, by considering the North-South displacement component obtained from the azimuth PO information. The combination of SBAS and PO-SBAS information permits to better retrieve and constrain the full deformation field due to repeated intrusions, fault movements, as well as the magma movements from individual magma chambers. [1] Casu, F., A. Manconi, A. Pepe and R. Lanari, 2011. Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude Pixel-Offset SBAS technique, IEEE Transaction on Geosciences and Remote Sensing. [2] Manconi, A. and F. Casu, 2012. Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters, Geophysical Research Letters, doi:10.1029/2012GL052202.
NASA Astrophysics Data System (ADS)
Kaboli, S.; Burnley, P. C.
2017-12-01
Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This new approach in microstructure characterization of deformed geologic materials in FE-SEM, without the use of etching or decoration techniques, has valuable applications to both experimentally deformed and naturally deformed specimens.
Dynamics of Solid-Liquid Composite Beams
NASA Astrophysics Data System (ADS)
Matia, Yoav; Gat, Amir
2017-11-01
Solid-liquid composite structures received considerable attention in recent years in various fields such as smart materials, sensors, actuators and soft-robotics. We examine a beam-like appendage embedded with a set of a fluid-filled bladders, interconnected via elastic slender channels; a common arrangement in the abovementioned fields. Viscous flow within such structures is coupled with the elastic deformation of the solid. Beam deformation both creates, and is induced by, a fluidic pressure gradient and viscous flow which deforms the bladders and thus the surrounding solid. Applying concepts from poroelastic analysis, we obtain a set of three interdependent equations relating the fluidic pressure within the channel to the transverse and longitudinal displacements of the beam. Exact and approximate solutions are presented for various configurations. The results are validated and supplemented by a transient three-dimensional numerical study of the fluid-structure-interaction. The two-way coupled fluid-structure-interaction model allows the analysis and design of soft smart-metamaterials with unique mechanical properties, to applications such as touch-sensing surfaces, energy harvesting and protective gear.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion
NASA Astrophysics Data System (ADS)
Söhn, M.; Sobotta, B.; Alber, M.
2012-06-01
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.
Reconstruction of early phase deformations by integrated magnetic and mesotectonic data evaluation
NASA Astrophysics Data System (ADS)
Sipos, András A.; Márton, Emő; Fodor, László
2018-02-01
Markers of brittle faulting are widely used for recovering past deformation phases. Rocks often have oriented magnetic fabrics, which can be interpreted as connected to ductile deformation before cementation of the sediment. This paper reports a novel statistical procedure for simultaneous evaluation of AMS (Anisotropy of Magnetic Susceptibility) and fault-slip data. The new method analyzes the AMS data, without linearization techniques, so that weak AMS lineation and rotational AMS can be assessed that are beyond the scope of classical methods. This idea is extended to the evaluation of fault-slip data. While the traditional assumptions of stress inversion are not rejected, the method recovers the stress field via statistical hypothesis testing. In addition it provides statistical information needed for the combined evaluation of the AMS and the mesotectonic (0.1 to 10 m) data. In the combined evaluation a statistical test is carried out that helps to decide if the AMS lineation and the mesotectonic markers (in case of repeated deformation of the oldest set of markers) were formed in the same or different deformation phases. If this condition is met, the combined evaluation can improve the precision of the reconstruction. When the two data sets do not have a common solution for the direction of the extension, the deformational origin of the AMS is questionable. In this case the orientation of the stress field responsible for the AMS lineation might be different from that which caused the brittle deformation. Although most of the examples demonstrate the reconstruction of weak deformations in sediments, the new method is readily applicable to investigate the ductile-brittle transition of any rock formation as long as AMS and fault-slip data are available.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion.
Söhn, M; Sobotta, B; Alber, M
2012-06-21
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.
Membrane Mirrors With Bimorph Shape Actuators
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok
2003-01-01
Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.
Analyses of Deformation and Stress of Oil-free Scroll Compressor Scroll
NASA Astrophysics Data System (ADS)
Peng, Bin; Li, Yaohong; Zhao, Shenxian
2017-12-01
The solid model of orbiting and fixed scroll is created by the Solidworks The deformation and stress of scrolls under gas force, temperature field, inertia force and the coupling field are analyzed using the Ansys software. The deformation for different thickness and height scroll tooth is investigated. The laws of deformation and stress for scrolls are gotten. The research results indicate that the stress and deformation of orbiting scroll are mainly affected by the temperature field. The maximum deformation occurs in the tooth head of scroll wrap because of the largest gas forces and the highest temperature in the tooth head of scroll wrap. The maximum stress is located in the end of the tooth, and the maximum stress of the coupling field is not the sum of loads. The scroll tooth is higher, and the deformation is bigger. The scroll tooth is thicker, and the deformation is smaller.
Impact of large field angles on the requirements for deformable mirror in imaging satellites
NASA Astrophysics Data System (ADS)
Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij
2018-04-01
For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.
Update to the conventional model for rotational deformation
NASA Astrophysics Data System (ADS)
Ries, J. C.; Desai, S.
2017-12-01
Rotational deformation (also called the "pole tide") is the deformation resulting from the centrifugal effect of polar motion on the solid earth and ocean, which manifests itself as variations in ocean heights, in the gravity field and in surface displacements. The model for rotational deformation assumes a primarily elastic response of the Earth to the centrifugal potential at the annual and Chandler periods and applies body tide Love numbers to the polar motion after removing the mean pole. The original model was conceived when the mean pole was moving (more or less) linearly, largely in response to glacial isostatic adjustment. In light of the significant variations in the mean pole due to present-day ice mass losses, an `appropriately' filtered mean pole was adopted for the conventional model, so that the longer period variations in the mean pole were not included in the rotational deformation model. However, the elastic Love numbers should be applicable to longer period variations as well, and only the secular (i.e. linear) mean pole should be removed. A model for the linear mean pole is recommended based on a linear fit to the IERS C01 time series spanning 1900 to 2015: in milliarcsec, Xp = 55.0+1.677*dt and Yp = 320.5+3.460*dt where dt=(t-t0), t0=2000.0 and assuming a year=365.25 days. The consequences of an updated model for rotational deformation for site motion and the gravity field are illustrated.
Rapid prototyping-assisted maxillofacial reconstruction.
Peng, Qian; Tang, Zhangui; Liu, Ousheng; Peng, Zhiwei
2015-05-01
Rapid prototyping (RP) technologies have found many uses in dentistry, and especially oral and maxillofacial surgery, due to its ability to promote product development while at the same time reducing cost and depositing a part of any degree of complexity theoretically. This paper provides an overview of RP technologies for maxillofacial reconstruction covering both fundamentals and applications of the technologies. Key fundamentals of RP technologies involving the history, characteristics, and principles are reviewed. A number of RP applications to the main fields of oral and maxillofacial surgery, including restoration of maxillofacial deformities and defects, reduction of functional bone tissues, correction of dento-maxillofacial deformities, and fabrication of maxillofacial prostheses, are discussed. The most remarkable challenges for development of RP-assisted maxillofacial surgery and promising solutions are also elaborated.
NASA Astrophysics Data System (ADS)
Alekseev, D. A.; Gokhberg, M. B.
2018-05-01
A 2-D boundary problem formulation in terms of pore pressure in Biot poroelasticity model is discussed, with application to a vertical contact model mechanically excited by a lunar-solar tidal deformation wave, representing a fault zone structure. A problem parametrization in terms of permeability and Biot's modulus contrasts is proposed and its numerical solution is obtained for a series of models differing in the values of the above parameters. The behavior of pore pressure and its gradient is analyzed. From those, the electric field of the electrokinetic nature is calculated. The possibilities of estimation of the elastic properties and permeability of geological formations from the observations of the horizontal and vertical electric field measured inside the medium and at the earth's surface near the block boundary are discussed.
NASA Technical Reports Server (NTRS)
Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.
1994-01-01
Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.
Integrability of the Ad{{S}_{5}}\\times {{S}^{5}} superstring and its deformations
NASA Astrophysics Data System (ADS)
van Tongeren, Stijn J.
2014-10-01
This article reviews the application of integrability to the spectral problem of strings on Ad{{S}5}× {{S}5} and its deformations. We begin with a pedagogical introduction to integrable field theories culminating in the description of their finite-volume spectra through the thermodynamic Bethe ansatz (TBA). Next, we apply these ideas to the Ad{{S}5}× {{S}5} string and in later sections discuss how to account for particular integrable deformations. Through the AdS/CFT correspondence this gives an exact description of anomalous scaling dimensions of single trace operators in planar N=4 supersymmetry Yang-Mills theory, its ‘orbifolds’, and β and γ-deformed supersymmetric Yang-Mills theory. We also touch upon some subtleties arising in these deformed theories. Furthermore, we consider complex excited states (bound states) in the su(2) sector and give their TBA description. Finally we discuss the TBA for a quantum deformation of the Ad{{S}5}× {{S}5} superstring S-matrix, with close relations to among others Pohlmeyer reduced string theory, and briefly indicate more recent developments in this area.
Design and Implementation of a Modern Automatic Deformation Monitoring System
NASA Astrophysics Data System (ADS)
Engel, Philipp; Schweimler, Björn
2016-03-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...
2015-08-05
Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less
Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...
2015-09-10
We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less
NASA Astrophysics Data System (ADS)
Zhao, Jiaye; Wen, Huihui; Liu, Zhanwei; Rong, Jili; Xie, Huimin
2018-05-01
Three-dimensional (3D) deformation measurements are a key issue in experimental mechanics. In this paper, a displacement field correlation (DFC) method to measure centrosymmetric 3D dynamic deformation using a single camera is proposed for the first time. When 3D deformation information is collected by a camera at a tilted angle, the measured displacement fields are coupling fields of both the in-plane and out-of-plane displacements. The features of the coupling field are analysed in detail, and a decoupling algorithm based on DFC is proposed. The 3D deformation to be measured can be inverted and reconstructed using only one coupling field. The accuracy of this method was validated by a high-speed impact experiment that simulated an underwater explosion. The experimental results show that the approach proposed in this paper can be used in 3D deformation measurements with higher sensitivity and accuracy, and is especially suitable for high-speed centrosymmetric deformation. In addition, this method avoids the non-synchronisation problem associated with using a pair of high-speed cameras, as is common in 3D dynamic measurements.
Geology Field Camp at Southern Illinois University: Six weeks exploring four tectonic regimes
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Conder, J. A.; Ferre, E. C.; Heij, G.
2013-12-01
Field Geology is typically the capstone course for an undergraduate Bachelor of Science degree in Geology. This type of course brings together the varied sub-disciplines and course topics students encounter in their undergraduate experience, and puts these in context of active Earth processes. At the same time, a significant fraction of Geology departments have dropped field geology from their offerings and students must choose from those programs still offering the course. Southern Illinois University has offered field geology for over 40 years, stationed in and around southwestern Montana. This field camp offers experiences with four distinct tectonic settings: thick-skin contractional, thin-skin contractional, extensional, and anorogenic. The most challenging projects of the course involve mapping and interpreting Laramide and Sevier compressionally deformed areas. The major difference between the two types of deformation is that Laramide ('thick-skinned') tectonics encompasses the mid-crust in deformation while Sevier ('thin-skinned') deformation is limited to the uppermost portion of the crust. This difference results in markedly different fold styles and other deformational structures encountered, requiring different approaches to understanding and constructing the deformational histories of the regions. Extensional tectonics are explored with a paleoseismology project at Hebgen Lake, in Grand Teton National Park where the students typically spend two days, and at the Bitterroot Shear Zone - the edge of a metamorphic core complex along the eastern boundary of the Idaho batholith. While recent work from EarthScope and elsewhere casts doubt on Yellowstone as a mantle plume, Yellowstone remains the classic example of a continental hotspot. During visits through the park, students distinguish between the recent volcanics and hydrothermal activity of Yellowstone and the nearby Eocene Absaroka volcanics. Expanding on the story of the Yellowstone hotspot, a visit is made to Craters of the Moon National Monument in the Snake River Plain to examine some of the youngest volcanics in North America. Not only does field camp give students an occasion to put their knowledge-base developed during their undergraduate years into action, but it is also an ideal opportunity to expose students to the varied approaches applicable to distinct tectonic problems and situations. At SIU, we are proud to offer a wide range of experiences drawing from several important tectonic provinces giving students a strong foundation for their future geological careers and continuing scientific development.
NASA Astrophysics Data System (ADS)
Tanaka, H.; Shiomi, Y.; Ma, K.-F.
2017-11-01
To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.
Low frequency mechanical actuation accelerates reperfusion in-vitro
2013-01-01
Background Rapid restoration of vessel patency after acute myocardial infarction is key to reducing myocardial muscle death and increases survival rates. Standard therapies include thrombolysis and direct PTCA. Alternative or adjunctive emergency therapies that could be initiated by minimally trained personnel in the field are of potential clinical benefit. This paper evaluates a method of accelerating reperfusion through application of low frequency mechanical stimulus to the blood carrying vessels. Materials and method We consider a stenosed, heparinized flow system with aortic-like pressure variations subject to direct vessel vibration at the occlusion site or vessel deformation proximal and distal to the occlusion site, versus a reference system lacking any form of mechanical stimulus on the vessels. Results The experimental results show limited effectiveness of the direct mechanical vibration method and a drastic increase in the patency rate when vessel deformation is induced. For vessel deformation at occlusion site 95% of clots perfused within 11 minutes of application of mechanical stimulus, for vessel deformation 60 centimeters from the occlusion site 95% percent of clots perfused within 16 minutes of stimulus application, while only 2.3% of clots perfused within 20 minutes in the reference system. Conclusion The presented in-vitro results suggest that low frequency mechanical actuation applied during the pre-hospitalization phase in patients with acute myocardial infarction have potential of being a simple and efficient adjunct therapy. PMID:24257116
Nuclear Deformation at Finite Temperature
NASA Astrophysics Data System (ADS)
Alhassid, Y.; Gilbreth, C. N.; Bertsch, G. F.
2014-12-01
Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.
Zhang, You; Ma, Jianhua; Iyengar, Puneeth; Zhong, Yuncheng; Wang, Jing
2017-01-01
Purpose Sequential same-patient CT images may involve deformation-induced and non-deformation-induced voxel intensity changes. An adaptive deformation recovery and intensity correction (ADRIC) technique was developed to improve the CT reconstruction accuracy, and to separate deformation from non-deformation-induced voxel intensity changes between sequential CT images. Materials and Methods ADRIC views the new CT volume as a deformation of a prior high-quality CT volume, but with additional non-deformation-induced voxel intensity changes. ADRIC first applies the 2D-3D deformation technique to recover the deformation field between the prior CT volume and the new, to-be-reconstructed CT volume. Using the deformation-recovered new CT volume, ADRIC further corrects the non-deformation-induced voxel intensity changes with an updated algebraic reconstruction technique (‘ART-dTV’). The resulting intensity-corrected new CT volume is subsequently fed back into the 2D-3D deformation process to further correct the residual deformation errors, which forms an iterative loop. By ADRIC, the deformation field and the non-deformation voxel intensity corrections are optimized separately and alternately to reconstruct the final CT. CT myocardial perfusion imaging scenarios were employed to evaluate the efficacy of ADRIC, using both simulated data of the extended-cardiac-torso (XCAT) digital phantom and experimentally acquired porcine data. The reconstruction accuracy of the ADRIC technique was compared to the technique using ART-dTV alone, and to the technique using 2D-3D deformation alone. The relative error metric and the universal quality index metric are calculated between the images for quantitative analysis. The relative error is defined as the square root of the sum of squared voxel intensity differences between the reconstructed volume and the ‘ground-truth’ volume, normalized by the square root of the sum of squared ‘ground-truth’ voxel intensities. In addition to the XCAT and porcine studies, a physical lung phantom measurement study was also conducted. Water-filled balloons with various shapes/volumes and concentrations of iodinated contrasts were put inside the phantom to simulate both deformations and non-deformation-induced intensity changes for ADRIC reconstruction. The ADRIC-solved deformations and intensity changes from limited-view projections were compared to those of the ‘gold-standard’ volumes reconstructed from fully-sampled projections. Results For the XCAT simulation study, the relative errors of the reconstructed CT volume by the 2D-3D deformation technique, the ART-dTV technique and the ADRIC technique were 14.64%, 19.21% and 11.90% respectively, by using 20 projections for reconstruction. Using 60 projections for reconstruction reduced the relative errors to 12.33%, 11.04% and 7.92% for the three techniques, respectively. For the porcine study, the corresponding results were 13.61%, 8.78%, 6.80% by using 20 projections; and 12.14%, 6.91% and 5.29% by using 60 projections. The ADRIC technique also demonstrated robustness to varying projection exposure levels. For the physical phantom study, the average DICE coefficient between the initial prior balloon volume and the new ‘gold-standard’ balloon volumes was 0.460. ADRIC reconstruction by 21 projections increased the average DICE coefficient to 0.954. Conclusion The ADRIC technique outperformed both the 2D-3D deformation technique and the ART-dTV technique in reconstruction accuracy. The alternately solved deformation field and non-deformation voxel intensity corrections can benefit multiple clinical applications, including tumor tracking, radiotherapy dose accumulation and treatment outcome analysis. PMID:28380247
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Michael; Ramos, Juan; Lao, Kang
Horizontal wells combined with multi-stage hydraulic fracturing have been applied to significantly increase production from low permeability formations, contributing to expanded total US production of oil and gas. Not all applications are successful, however. Field observations indicate that poorly designed or placed fracture stages in horizontal wells can result in significant well casing deformation and damage. In some instances, early fracture stages have deformed the casing enough so that it is not possible to drill out plugs in order to complete subsequent fracture stages. Improved fracture characterization techniques are required to identify potential problems early in the development of themore » field. Over the past decade, several new technologies have been presented as alternatives to characterize the fracture geometry for unconventional reservoirs. Monitoring dynamic casing strain and deformation during hydraulic fracturing represents one of these new techniques. The objective of this research is to evaluate dynamic and static strains imposed on a well casing by single and multiple stage fractures, and to use that information in combination with numerical inversion techniques to estimate fracture characteristics such as length, orientation and post treatment opening. GeoMechanics Technologies, working in cooperation with the Department of Energy, Small Business Innovation Research through DOE SBIR Grant No: DE-SC-0017746, is conducting a research project to complete an advanced analysis of dynamic and static casing strain monitoring to characterize the orientation and dimensions of hydraulic fractures. This report describes our literature review and technical approach. The following conclusions summarize our review and simulation results to date: A literature review was performed related to the fundamental theoretical and analytical developments of stress and strain imposed by hydraulic fracturing along casing completions and deformation monitoring techniques. Analytical solutions have been developed to understand the mechanisms responsible for casing deformation induced by hydraulic fracturing operations. After reviewing a range of casing deformation techniques, including fiber optic sensors, borehole ultrasonic tools and electromagnetic tools, we can state that challenges in deployment, data acquisition and interpretation must still be overcome to ensure successful application of strain measurement and inversion techniques to characterize hydraulic fractures in the field. Numerical models were developed to analyze induced strain along casing, cement and formation interfaces. The location of the monitoring sensor around the completion, mechanical properties of the cement and its condition in the annular space can impact the strain measurement. Field data from fiber optic sensors were evaluated to compare against numerical models. A reasonable match for the fracture height characterization was obtained. Discrepancies in the strain magnitude between the field data and the numerical model was observed and can be caused by temperature effects, the cement condition in the well and the perturbation at the surface during injection. To avoid damage in the fiber optic cable during the perforation (e.g. when setting up multi stage HF scenarios), oriented perforation technologies are suggested. This issue was evidenced in the analyzed field data, where it was not possible to obtain strain measurement below the top of the perforation. This presented a limitation to characterize the entire fracture geometry. The comparison results from numerical modeling and field data for fracture characterization shows that the proposed methodology should be validated with alternative field demonstration techniques using measurements in an offset observation well to monitor and measure the induced strain. We propose to expand on this research in Phase II with a further study of multi-fracture characterization and field demonstration for horizontal wells.« less
Close-range photogrammetry in underground mining ground control
NASA Astrophysics Data System (ADS)
Benton, Donovan J.; Chambers, Amy J.; Raffaldi, Michael J.; Finley, Seth A.; Powers, Mark J.
2016-09-01
Monitoring underground mine deformation and support conditions has traditionally involved visual inspection and geotechnical instrumentation. Monitoring displacements with conventional instrumentation can be expensive and time-consuming, and the number of locations that can be effectively monitored is generally limited. Moreover, conventional methods typically produce vector rather than tensor descriptions of geometry changes. Tensor descriptions can provide greater insight into hazardous ground movements, particularly in recently excavated openings and in older workings that have been negatively impacted by high stress concentrations, time-dependent deformation, or corrosion of ground support elements. To address these issues, researchers with the National Institute for Occupational Safety and Health, Spokane Mining Research Division are developing and evaluating photogrammetric systems for ground control monitoring applications in underground mines. This research has demonstrated that photogrammetric systems can produce millimeter-level measurements that are comparable to conventional displacement-measuring instruments. This paper provides an overview of the beneficial use of close-range photogrammetry for the following three ground control applications in underground mines: monitoring the deformation of surface support, monitoring rock mass movement, and monitoring the corrosion of surface support. Preliminary field analyses, case studies, limitations, and best practices for these applications are also discussed.
Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake
NASA Astrophysics Data System (ADS)
Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois; Sammis, Charles G.
2015-05-01
Coseismic surface deformation in large earthquakes is typically measured using field mapping and with a range of geodetic methods (e.g., InSAR, lidar differencing, and GPS). Current methods, however, either fail to capture patterns of near-field coseismic surface deformation or lack preevent data. Consequently, the characteristics of off-fault deformation and the parameters that control it remain poorly understood. We develop a standardized method to fully measure the surface, near-field, coseismic deformation patterns at high resolution using the COSI-Corr program by correlating pairs of aerial photographs taken before and after the 1992 Mw 7.3 Landers earthquake. COSI-Corr offers the advantage of measuring displacement across the entire zone of surface deformation and over a wider aperture than that available to field geologists. For the Landers earthquake, our measured displacements are systematically larger than the field measurements, indicating the presence of off-fault deformation. We show that 46% of the total surface displacement occurred as off-fault deformation, over a mean deformation width of 154 m. The magnitude and width of off-fault deformation along the rupture is primarily controlled by the macroscopic structural complexity of the fault system, with a weak correlation with the type of near-surface materials through which the rupture propagated. Both the magnitude and width of distributed deformation are largest in stepovers, bends, and at the southern termination of the surface rupture. We find that slip along the surface rupture exhibits a consistent degree of variability at all observable length scales and that the slip distribution is self-affine fractal with dimension of 1.56.
Local Structure Fixation in the Composite Manufacturing Chain
NASA Astrophysics Data System (ADS)
Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene
2010-12-01
Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.
The finite element method in the deformation and consolidation of porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, R.W.; Schrefler, B.A.
1987-01-01
The authors start with an introduction to the concepts involved in physics giving the equations of flow through porous media and the deformation characteristics of soils and rocks. Succeeding chapters deal with the practical implications of these phenomena and explain the application of theory in both experimental and field work. Details are given of actual incidents, such as the subsidence experienced in Venice and Ravenna. The authors have also formulated a consolidation code, which is detailed at the end of the book, and provide instructions on how to modify the given program.
NASA Astrophysics Data System (ADS)
Konkol, Jakub; Bałachowski, Lech
2017-03-01
In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.
Ghaisas, N. S.; Subramaniam, A.; Lele, S. K.; ...
2017-12-31
We report high energy-density solids undergoing elastic-plastic deformations coupled to compressible fluids are a common occurrence in engineering applications. Examples include problems involving high-velocity impact and penetration, cavitation, and several manufacturing processes, such as cold forming. Numerical simulations of such phenomena require the ability to handle the interaction of shock waves with multi-material interfaces that can undergo large deformations and severe distortions. As opposed to Lagrangian (Benson 1992) and arbitrary Lagrangian-Eulerian (ALE) methods (Donea et al. 2004), fully Eulerian methods use grids that do not change in time. Consequently, Eulerian methods do not suffer from difficulties on account of meshmore » entanglement, and do not require periodic, expensive, remap operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaisas, N. S.; Subramaniam, A.; Lele, S. K.
We report high energy-density solids undergoing elastic-plastic deformations coupled to compressible fluids are a common occurrence in engineering applications. Examples include problems involving high-velocity impact and penetration, cavitation, and several manufacturing processes, such as cold forming. Numerical simulations of such phenomena require the ability to handle the interaction of shock waves with multi-material interfaces that can undergo large deformations and severe distortions. As opposed to Lagrangian (Benson 1992) and arbitrary Lagrangian-Eulerian (ALE) methods (Donea et al. 2004), fully Eulerian methods use grids that do not change in time. Consequently, Eulerian methods do not suffer from difficulties on account of meshmore » entanglement, and do not require periodic, expensive, remap operations.« less
Inverse problems biomechanical imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Oberai, Assad A.
2016-03-01
It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.
Fracture and healing of elastomers: A phase-transition theory and numerical implementation
NASA Astrophysics Data System (ADS)
Kumar, Aditya; Francfort, Gilles A.; Lopez-Pamies, Oscar
2018-03-01
A macroscopic theory is proposed to describe, explain, and predict the nucleation and propagation of fracture and healing in elastomers undergoing arbitrarily large quasistatic deformations. The theory, which can be viewed as a natural generalization of the phase-field approximation of the variational theory of brittle fracture of Francfort and Marigo (1998) to account for physical attributes innate to elastomers that have been recently unveiled by experiments at high spatio-temporal resolution, rests on two central ideas. The first one is to view elastomers as solids capable to undergo finite elastic deformations and capable also to phase transition to another solid of vanishingly small stiffness: the forward phase transition serves to model the nucleation and propagation of fracture while the reverse phase transition models the possible healing. The second central idea is to take the phase transition to be driven by the competition between a combination of strain energy and hydrostatic stress concentration in the bulk and surface energy on the created/healed new surfaces in the elastomer. From an applications point of view, the proposed theory amounts to solving a system of two coupled and nonlinear PDEs for the deformation field and an order parameter, or phase field. A numerical scheme is presented to generate solutions for these PDEs in N = 2 and 3 space dimensions. This is based on an efficient non-conforming finite-element discretization, which remains stable for large deformations and elastomers of any compressibility, together with an implicit gradient flow solver, which is able to deal with the large changes in the deformation field that can ensue locally in space and time from the nucleation of fracture. The last part of this paper is devoted to presenting sample simulations of the so-called Gent-Park experiment. Those are confronted with recent experimental results for various types of silicone elastomers.
NASA Astrophysics Data System (ADS)
Yu, D.; Wang, M.; Liu, Q.
2015-09-01
A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.
Energy conversion in polyelectrolyte hydrogels
NASA Astrophysics Data System (ADS)
Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team
Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).
κ-deformed Dirac oscillator in an external magnetic field
NASA Astrophysics Data System (ADS)
Chargui, Y.; Dhahbi, A.; Cherif, B.
2018-04-01
We study the solutions of the (2 + 1)-dimensional κ-deformed Dirac oscillator in the presence of a constant transverse magnetic field. We demonstrate how the deformation parameter affects the energy eigenvalues of the system and the corresponding eigenfunctions. Our findings suggest that this system could be used to detect experimentally the effect of the deformation. We also show that the hidden supersymmetry of the non-deformed system reduces to a hidden pseudo-supersymmetry having the same algebraic structure as a result of the κ-deformation.
On the elastic–plastic decomposition of crystal deformation at the atomic scale
Stukowski, Alexander; Arsenlis, A.
2012-03-02
Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = F eF p, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a materialmore » due to crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, F p, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, F e, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.« less
Massless conformal fields, AdS (d+1)/CFT d higher spin algebras and their deformations
Fernando, Sudarshan; Gunaydin, Murat
2016-02-04
Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less
Nonlinear Phase Field Theory for Fracture and Twinning with Analysis of Simple Shear
2015-09-01
elasticity; crystal; shear deformation 1. Introduction Cleavage fracture and deformation twinning are two fundamental inelastic deformation mechanisms that...stress [2,3]. Both of these anisotropic mechanisms involve deformation on specific planes (the cleavage plane for fracture or the habit plane for...be the first phase field theory accounting for both fracture and deformation twinning wherein each mechanism is repre- sented by a distinct-order
DeLorenzo, Christine; Papademetris, Xenophon; Staib, Lawrence H.; Vives, Kenneth P.; Spencer, Dennis D.; Duncan, James S.
2010-01-01
During neurosurgery, nonrigid brain deformation prevents preoperatively-acquired images from accurately depicting the intraoperative brain. Stereo vision systems can be used to track intraoperative cortical surface deformation and update preoperative brain images in conjunction with a biomechanical model. However, these stereo systems are often plagued with calibration error, which can corrupt the deformation estimation. In order to decouple the effects of camera calibration from the surface deformation estimation, a framework that can solve for disparate and often competing variables is needed. Game theory, which was developed to handle decision making in this type of competitive environment, has been applied to various fields from economics to biology. In this paper, game theory is applied to cortical surface tracking during neocortical epilepsy surgery and used to infer information about the physical processes of brain surface deformation and image acquisition. The method is successfully applied to eight in vivo cases, resulting in an 81% decrease in mean surface displacement error. This includes a case in which some of the initial camera calibration parameters had errors of 70%. Additionally, the advantages of using a game theoretic approach in neocortical epilepsy surgery are clearly demonstrated in its robustness to initial conditions. PMID:20129844
Effects of Deformation on Drag and Lift Forces Acting on a Droplet in a Shear Flow
NASA Astrophysics Data System (ADS)
Suh, Youngho; Lee, Changhoon
2010-11-01
The droplet behavior in a linear shear flow is studied numerically to investigate the effect of deformation on the drag and lift acting on droplet. The droplet shape is calculated by a level set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid- gas interface. By adopting the feedback forces which can maintain the droplet at a fixed position, we determine the acting force on a droplet in shear flow field with efficient handling of deformation. Based on the numerical results, drag and lift forces acting on a droplet are observed to depend strongly on the deformation. Droplet shapes are observed to be spherical, deformed, and oscillating depending on the Reynolds number. Also, the present method is proven to be applicable to a three- dimensional deformation of droplet in the shear flow, which cannot be properly analyzed by the previous studies. Comparisons of the calculated results by the current method with those obtained from body-fitted methods [Dandy and Leal, J. Fluid Mech. 208, 161 (1989)] and empirical models [Feng and Beard, J. Atmos. Sci. 48, 1856 (1991)] show good agreement.
NASA Astrophysics Data System (ADS)
Bato, Mary Grace; Pinel, Virginie; Yan, Yajing
2016-04-01
The recent advances in Interferometric Synthetic Aperture Radar (InSAR) imaging and the increasing number of continuous Global Positioning System (GPS) networks recorded on volcanoes provide continuous and spatially extensive evolution of surface displacements during inter-eruptive periods. For basaltic volcanoes, these measurements combined with simple dynamical models (Lengliné et al. 2008 [1], Pinel et al, 2010 [2], Reverso et al, 2014 [3]) can be exploited to characterise and constrain parameters of one or several magmatic reservoirs using inversion methods. On the other hand, data assimilation-a time-stepping process that best combines models and observations, sometimes a priori information based on error statistics to predict the state of a dynamical system-has gained popularity in various fields of geoscience (e.g. ocean-weather forecasting, geomagnetism and natural resources exploration). In this work, we aim to first test the applicability and benefit of data assimilation, in particular the Ensemble Kalman Filter [4], in the field of volcanology. We predict the temporal behaviors of the overpressures and deformations by applying the two-magma chamber model of Reverso et. al., 2014 [3] and by using synthetic deformation data in order to establish our forecasting strategy. GPS time-series data of the recent eruptions at Grimsvötn volcano is used for the real case applicability of the method. [1] Lengliné, O., D Marsan, J Got, V. Pinel, V. Ferrazzini, P. Obuko, Seismicity and deformation induced by magma accumulation at three basaltic volcanoes, J. Geophys. Res., 113, B12305, 2008. [2] V. Pinel, C. Jaupart and F. Albino, On the relationship between cycles of eruptive activity and volcanic edifice growth, J. Volc. Geotherm. Res, 194, 150-164, 2010 [3] T. Reverso, J. Vandemeulebrouck, F. Jouanne, V. Pinel, T. Villemin, E. Sturkell, A two-magma chamber as a source of deformation at Grimsvötn volcano, Iceland, JGR, 2014 [4] Evensen, G., The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343-367, 2003
Lorenzi, M; Ayache, N; Pennec, X
2015-07-15
In this study we introduce the regional flux analysis, a novel approach to deformation based morphometry based on the Helmholtz decomposition of deformations parameterized by stationary velocity fields. We use the scalar pressure map associated to the irrotational component of the deformation to discover the critical regions of volume change. These regions are used to consistently quantify the associated measure of volume change by the probabilistic integration of the flux of the longitudinal deformations across the boundaries. The presented framework unifies voxel-based and regional approaches, and robustly describes the volume changes at both group-wise and subject-specific level as a spatial process governed by consistently defined regions. Our experiments on the large cohorts of the ADNI dataset show that the regional flux analysis is a powerful and flexible instrument for the study of Alzheimer's disease in a wide range of scenarios: cross-sectional deformation based morphometry, longitudinal discovery and quantification of group-wise volume changes, and statistically powered and robust quantification of hippocampal and ventricular atrophy. Copyright © 2015 Elsevier Inc. All rights reserved.
Panta Rhei - the changing face of rocks (Stephan Mueller Medal Lecture)
NASA Astrophysics Data System (ADS)
Passchier, Cees W.
2017-04-01
The Earth's lithosphere changes shape continuously by plate tectonics and other processes but, unfortunately, we cannot directly access the deeper parts of our planet to study this evolution and the active deformation processes involved. Indirect, geophysical observations allow us to reconstruct processes on a larger scale, but the details on a smaller scale must be studied from samples of metamorphic rocks that have travelled to the surface by complex paths, being modified along the way. Structural analysis of metamorphic rocks has helped to unravel deformation mechanisms and the associated geometric, mineralogical and geochemical changes, but even so there remains a lot to be learned: For example, we know little about the formation of porphyroblasts and their relation with the surrounding fabric, or of porphyroclasts, mineral fish, foliations, lineations, flanking structures, strain fringes and other vorticity gauges; likewise, on a larger scale, the development of gneiss domes, and complex ductile shear zones is poorly understood. This may seem a problem for specialists only, but it actually concerns all large-scale tectonic studies, since the geometry of deformation structures is the "tool-box" of tectonic reconstructions. Recent tectonic processes and large-scale changes in the arrangement of lithospheric fragments are relatively well understood, because we can rely on direct observations of current processes. However, the further we go back in time, down to the Archean, the more we rely on incomplete data obtained from metamorphic rocks that have been preserved. In many cases, deformation geometries in rocks are the single witnesses available of ancient tectonic processes and history, and their correct interpretation is therefore of crucial importance. Without a reliable structural geology toolbox, it is not possible to correctly interpret early, especially Precambrian tectonic processes. This will be demonstrated with examples from Namibia and Australia. Clearly, our understanding of the way in which rocks flow and of the evolution of their final deformation geometries must be improved. One problem is that in tectonics, as in other studies, research is increasingly and briefly directed towards a few highly specialised isolated phenomena that are in the focus of attention, ignoring the huge gaps in our knowledge that separate these. This situation can be improved by the application of new and multidisciplinary research methods, by the identification of "natural experiments", and by more integrated, systematic studies of the connection between structures that at first glance may seem unrelated. These techniques, however, will mostly tell us what happens on the crystal-to-metre scale, while they reveal little on the scale of orogenic belts and continents. For the latter, we need field observations, although there are currently multiple developments that conspire against the progress of field-based studies. Field studies are time consuming in an age where results must be published rapidly, and are hampered by inclement weather and instable local political situations. In addition there is a lack of field-adapted information collection and long-term storage tools. Fortunately, this can now be improved dramatically with the application of drones, photogrammetry and field-adapted mapping software, which in combination can build and store a permanent database of deformation structures, to use in present and future studies. Hopefully, this combination of improved collection and processing of field-based data and a systematic improvement of our understanding of the development of deformation geometries will enhance our fundamental knowledge of flow in rocks. Then, finally, will we begin to understand how everything moves - panta rhei!
Numerical simulation of bubble deformation in magnetic fluids by finite volume method
NASA Astrophysics Data System (ADS)
Yamasaki, Haruhiko; Yamaguchi, Hiroshi
2017-06-01
Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field.
Derivation of stiffness matrix in constitutive modeling of magnetorheological elastomer
NASA Astrophysics Data System (ADS)
Leng, D.; Sun, L.; Sun, J.; Lin, Y.
2013-02-01
Magnetorheological elastomers (MREs) are a class of smart materials whose mechanical properties change instantly by the application of a magnetic field. Based on the specially orthotropic, transversely isotropic stress-strain relationships and effective permeability model, the stiffness matrix of constitutive equations for deformable chain-like MRE is considered. To valid the components of shear modulus in this stiffness matrix, the magnetic-structural simulations with finite element method (FEM) are presented. An acceptable agreement is illustrated between analytical equations and numerical simulations. For the specified magnetic field, sphere particle radius, distance between adjacent particles in chains and volume fractions of ferrous particles, this constitutive equation is effective to engineering application to estimate the elastic behaviour of chain-like MRE in an external magnetic field.
NASA Astrophysics Data System (ADS)
Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.
2012-03-01
The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.
NASA Astrophysics Data System (ADS)
Pan, Bing; Wang, Bo
2017-10-01
Digital volume correlation (DVC) is a powerful technique for quantifying interior deformation within solid opaque materials and biological tissues. In the last two decades, great efforts have been made to improve the accuracy and efficiency of the DVC algorithm. However, there is still a lack of a flexible, robust and accurate version that can be efficiently implemented in personal computers with limited RAM. This paper proposes an advanced DVC method that can realize accurate full-field internal deformation measurement applicable to high-resolution volume images with up to billions of voxels. Specifically, a novel layer-wise reliability-guided displacement tracking strategy combined with dynamic data management is presented to guide the DVC computation from slice to slice. The displacements at specified calculation points in each layer are computed using the advanced 3D inverse-compositional Gauss-Newton algorithm with the complete initial guess of the deformation vector accurately predicted from the computed calculation points. Since only limited slices of interest in the reference and deformed volume images rather than the whole volume images are required, the DVC calculation can thus be efficiently implemented on personal computers. The flexibility, accuracy and efficiency of the presented DVC approach are demonstrated by analyzing computer-simulated and experimentally obtained high-resolution volume images.
Supervoxels for graph cuts-based deformable image registration using guided image filtering
NASA Astrophysics Data System (ADS)
Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.
2017-11-01
We propose combining a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for three-dimensional (3-D) deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to two-dimensional (2-D) applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation combined with graph cuts-based optimization can be applied to 3-D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model "sliding motion." Applying this method to lung image registration results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available computed tomography lung image dataset leads to the observation that our approach compares very favorably with state of the art methods in continuous and discrete image registration, achieving target registration error of 1.16 mm on average per landmark.
Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering.
Szmul, Adam; Papież, Bartłomiej W; Hallack, Andre; Grau, Vicente; Schnabel, Julia A
2017-10-04
In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.
Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering
Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.
2017-01-01
In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model ‘sliding motion’. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark. PMID:29225433
Nonclassical Properties of Q-Deformed Superposition Light Field State
NASA Technical Reports Server (NTRS)
Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong
1996-01-01
In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.
A boundary element method for particle and droplet electrohydrodynamics in the Quincke regime
NASA Astrophysics Data System (ADS)
Das, Debasish; Saintillan, David
2014-11-01
Quincke electrorotation is the spontaneous rotation of dielectric particles suspended in a dielectric liquid of higher conductivity when placed in a sufficiently strong electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While spherical harmonics can be used to solve the governing equations for a spherical particle, they cannot be used to study the dynamics of particles of more complex shapes or deformable particles or droplets. Here, we develop a novel boundary element formulation to model the dynamics of a dielectric particle under Quincke rotation based on the Taylor-Melcher leaky dielectric model, and compare the numerical results to theoretical predictions. We then employ this boundary element method to analyze the dynamics of a two-dimensional drop under Quincke rotation, where we allow the drop to deform under the electric field. Extensions to three-dimensions and to the electrohydrodynamic interactions of multiple droplets are also discussed.
Continuum Thermodynamics - Part II: Applications and Examples
NASA Astrophysics Data System (ADS)
Albers, Bettina; Wilmanski, Krzysztof
The intention by writing Part II of the book on continuum thermodynamics was the deepening of some issues covered in Part I as well as a development of certain skills in dealing with practical problems of oscopic processes. However, the main motivation for this part is the presentation of main facets of thermodynamics which appear when interdisciplinary problems are considered. There are many monographs on the subjects of solid mechanics and thermomechanics, on fluid mechanics and on coupled fields but most of them cover only special problems in great details which are characteristic for the chosen field. It is rather seldom that relations between these fields are discussed. This concerns, for instance, large deformations of the skeleton of porous materials with diffusion (e.g. lungs), couplings of deformable particles with the fluid motion in suspensions, couplings of adsorption processes and chemical reactions in immiscible mixtures with diffusion, various multi-component aspects of the motion, e.g. of avalanches, such as segregation processes, etc...
Flexoelectricity in two-dimensional crystalline and biological membranes
NASA Astrophysics Data System (ADS)
Ahmadpoor, Fatemeh; Sharma, Pradeep
2015-10-01
The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes--whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others.
NASA Astrophysics Data System (ADS)
Engel, P.; Schweimler, B.
2016-04-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
Viscoelastic performance of dielectric elastomer subject to different voltage stimulation
NASA Astrophysics Data System (ADS)
Sheng, Junjie; Zhang, Yuqing; Liu, Lei; Li, Bo; Chen, Hualing
2017-04-01
Dielectric elastomer (DE) is capable of giant deformation subject to an electric field, and demonstrates significant advantages in the potentially application of soft machines with muscle-like characteristics. Due to an inherent property of all macromolecular materials, DE exhibits strong viscoelastic properties. Viscoelasticity could cause a time-dependent deformation and lower the response speed and energy conversion efficiency of DE based actuators, thus strongly affect its electromechanical performance and applications. Combining with the rheological model of viscoelastic relaxation, the viscoelastic performance of a VHB membrane in a circular actuator configuration undergoing separately constant, ramp and sinusoidal voltages are analyzed both theoretically and experimentally. The theoretical results indicated that DE could attain a big deformation under a small constant voltage with a longer time or under a big voltage with a shorter time. The model also showed that a higher critical stretch could be achieved by applying ramping voltage with a lower rate and the stretch magnitude under sinusoidal voltage is much larger at a relatively low frequency. Finally, experiments were designed to validate the simulation and show well consistent with the simulation results.
NASA Astrophysics Data System (ADS)
Kogut, Janusz P.; Tekieli, Marcin
2018-04-01
Non-contact video measurement methods are used to extend the capabilities of standard measurement systems, based on strain gauges or accelerometers. In most cases, they are able to provide more accurate information about the material or construction being tested than traditional sensors, while maintaining a high resolution and measurement stability. With the use of optical methods, it is possible to generate a full field of displacement on the surface of the test sample. The displacement value is the basic (primary) value determined using optical methods, and it is possible to determine the size of the derivative in the form of a sample deformation. This paper presents the application of a non-contact optical method to investigate the deformation of coarse soil material. For this type of soil, it is particularly difficult to obtain basic strength parameters. The use of a non-contact optical method, followed by a digital image correlation (DIC) study of the sample obtained during the tests, effectively completes the description of the behaviour of this type of material.
Turner, Todd J.; Shade, Paul A.; Bernier, Joel V.; ...
2016-11-18
High-Energy Diffraction Microscopy (HEDM) is a 3-d x-ray characterization method that is uniquely suited to measuring the evolving micromechanical state and microstructure of polycrystalline materials during in situ processing. The near-field and far-field configurations provide complementary information; orientation maps computed from the near-field measurements provide grain morphologies, while the high angular resolution of the far-field measurements provide intergranular strain tensors. The ability to measure these data during deformation in situ makes HEDM an ideal tool for validating micro-mechanical deformation models that make their predictions at the scale of individual grains. Crystal Plasticity Finite Element Models (CPFEM) are one such classmore » of micro-mechanical models. While there have been extensive studies validating homogenized CPFEM response at a macroscopic level, a lack of detailed data measured at the level of the microstructure has hindered more stringent model validation efforts. We utilize an HEDM dataset from an alphatitanium alloy (Ti-7Al), collected at the Advanced Photon Source, Argonne National Laboratory, under in situ tensile deformation. The initial microstructure of the central slab of the gage section, measured via near-field HEDM, is used to inform a CPFEM model. The predicted intergranular stresses for 39 internal grains are then directly compared to data from 4 far-field measurements taken between ~4% and ~80% of the macroscopic yield strength. In conclusion, the intergranular stresses from the CPFEM model and far-field HEDM measurements up to incipient yield are shown to be in good agreement, and implications for application of such an integrated computational/experimental approach to phenomena such as fatigue and crack propagation is discussed.« less
NASA Astrophysics Data System (ADS)
Liu, Yong; Qin, Zhimeng; Hu, Baodan; Feng, Shuai
2018-04-01
Stability analysis is of great significance to landslide hazard prevention, especially the dynamic stability. However, many existing stability analysis methods are difficult to analyse the continuous landslide stability and its changing regularities in a uniform criterion due to the unique landslide geological conditions. Based on the relationship between displacement monitoring data, deformation states and landslide stability, a state fusion entropy method is herein proposed to derive landslide instability through a comprehensive multi-attribute entropy analysis of deformation states, which are defined by a proposed joint clustering method combining K-means and a cloud model. Taking Xintan landslide as the detailed case study, cumulative state fusion entropy presents an obvious increasing trend after the landslide entered accelerative deformation stage and historical maxima match highly with landslide macroscopic deformation behaviours in key time nodes. Reasonable results are also obtained in its application to several other landslides in the Three Gorges Reservoir in China. Combined with field survey, state fusion entropy may serve for assessing landslide stability and judging landslide evolutionary stages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilnytskyi, Jaroslav M.; Neher, Dieter; Saphiannikova, Marina
Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modelingmore » and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.« less
Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.
Primal-mixed formulations for reaction-diffusion systems on deforming domains
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo
2015-10-01
We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model for the reaction-diffusion system written in the deformed domain, and a finite element method with piecewise linear approximations is employed for its spatial discretization. On the other hand, the strain is introduced as mixed variable in the equations of elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant pressure approximations. The application of the present framework in the study of several coupled biological systems on deforming geometries in two and three spatial dimensions is discussed, and some illustrative examples are provided and extensively analyzed.
Joint deformable liver registration and bias field correction for MR-guided HDR brachytherapy.
Rak, Marko; König, Tim; Tönnies, Klaus D; Walke, Mathias; Ricke, Jens; Wybranski, Christian
2017-12-01
In interstitial high-dose rate brachytherapy, liver cancer is treated by internal radiation, requiring percutaneous placement of applicators within or close to the tumor. To maximize utility, the optimal applicator configuration is pre-planned on magnetic resonance images. The pre-planned configuration is then implemented via a magnetic resonance-guided intervention. Mapping the pre-planning information onto interventional data would reduce the radiologist's cognitive load during the intervention and could possibly minimize discrepancies between optimally pre-planned and actually placed applicators. We propose a fast and robust two-step registration framework suitable for interventional settings: first, we utilize a multi-resolution rigid registration to correct for differences in patient positioning (rotation and translation). Second, we employ a novel iterative approach alternating between bias field correction and Markov random field deformable registration in a multi-resolution framework to compensate for non-rigid movements of the liver, the tumors and the organs at risk. In contrast to existing pre-correction methods, our multi-resolution scheme can recover bias field artifacts of different extents at marginal computational costs. We compared our approach to deformable registration via B-splines, demons and the SyN method on 22 registration tasks from eleven patients. Results showed that our approach is more accurate than the contenders for liver as well as for tumor tissues. We yield average liver volume overlaps of 94.0 ± 2.7% and average surface-to-surface distances of 2.02 ± 0.87 mm and 3.55 ± 2.19 mm for liver and tumor tissue, respectively. The reported distances are close to (or even below) the slice spacing (2.5 - 3.0 mm) of our data. Our approach is also the fastest, taking 35.8 ± 12.8 s per task. The presented approach is sufficiently accurate to map information available from brachytherapy pre-planning onto interventional data. It is also reasonably fast, providing a starting point for computer-aidance during intervention.
Small Crack Growth and Its Influence in Near Alpha-Titanium Alloys
1989-06-01
geometries via finite element and boundary-collocation analysis 8 , 9 . Elastic plastic fracture mechanics ( EPFM ) 1 0 , 1 1 and local crack tip field...correlation was found between experimental and predicted data, general application of the model is not possible as both 0 and rp are sensitive to changes in...cracks at low AK the load reduction schemes should be altered to remove the residual deformations, perhaps via machining or the application of large
High strain rate deformation of layered nanocomposites
NASA Astrophysics Data System (ADS)
Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.
2012-11-01
Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.
High strain rate deformation of layered nanocomposites.
Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L
2012-01-01
Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.
On space of integrable quantum field theories
Smirnov, F. A.; Zamolodchikov, A. B.
2016-12-21
Here, we study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields X s, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars X s are built from the components of the associated conserved currents in a universal way. The first of these scalars, X 1, coincides with the composite field View the MathMLmore » source(TT¯) built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X 1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations X s are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators X s in sine-Gordon theory. Lastly, we also make some remarks on the problem of UV completeness of such integrable deformations.« less
NASA Astrophysics Data System (ADS)
Toyota, T.; Kimura, N.
2017-12-01
Sea ice rheology which relates sea ice stress to the large-scale deformation of the ice cover has been a big issue to numerical sea ice modelling. At present the treatment of internal stress within sea ice area is based mostly on the rheology formulated by Hibler (1979), where the whole sea ice area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea ice area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial ice in the Arctic Ocean. As for its applicability to the seasonal ice zones (SIZ), where various types of sea ice are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk ice, typical of the SIZ, based on the AMSR-derived ice drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. Ice drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the ice areas. Since this result corresponds with the yield criterion by Tresca and Von Mises for a 2D plastic matter, it suggests the validity and applicability of this rheology to the SIZ to some extent. However, it was also noted that the variation of the deformation field in the Sea of Okhotsk is much larger than in the Beaufort Sea, which indicates the need for the careful treatment of grid size in the model.
NASA Astrophysics Data System (ADS)
McKnight, G. P.; Henry, C. P.
2008-03-01
Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas
More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, themore » other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)« less
Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming
NASA Astrophysics Data System (ADS)
Diller, Eric; Zhuang, Jiang; Zhan Lum, Guo; Edwards, Matthew R.; Sitti, Metin
2014-04-01
We have developed a millimeter-scale magnetically driven swimming robot for untethered motion at mid to low Reynolds numbers. The robot is propelled by continuous undulatory deformation, which is enabled by the distributed magnetization profile of a flexible sheet. We demonstrate control of a prototype device and measure deformation and speed as a function of magnetic field strength and frequency. Experimental results are compared with simple magnetoelastic and fluid propulsion models. The presented mechanism provides an efficient remote actuation method at the millimeter scale that may be suitable for further scaling down in size for micro-robotics applications in biotechnology and healthcare.
Simple metric for a magnetized, spinning, deformed mass
NASA Astrophysics Data System (ADS)
Manko, V. S.; Ruiz, E.
2018-05-01
We present and discuss a 4-parameter stationary axisymmetric solution of the Einstein-Maxwell equations, which is able to describe the exterior field of a rotating magnetized deformed mass. The solution arises as a system of two overlapping corotating magnetized nonequal black holes or hyperextreme disks, and we write it in a concise explicit form that is very suitable for concrete applications. An interesting peculiar feature of this electrovac solution is that it does not develop massless ring singularities outside the stationary limit surface, its first four electric multipole moments being equal to zero; it also has a nontrivial extreme limit, which we elaborate completely in terms of four polynomial factors.
Wicks, C.W.; Thatcher, W.; Monastero, F.C.; Hasting, M.A.
2001-01-01
Observations of deformation from 1992 to 1997 in the southern Coso Range using satellite radar interferometry show deformation rates of up to 35 mm yr-1 in an area ???10 km by 15 km. The deformation is most likely the result of subsidence in an area around the Coso geothermal field. The deformation signal has a short-wavelength component, related to production in the field, and a long-wavelength component, deforming at a constant rate, that may represent a source of deformation deeper than the geothermal reservoir. We have modeled the long-wavelength component of deformation and inferred a deformation source at ???4 km depth. The source depth is near the brittle-ductile transition depth (inferred from seismicity) and ???1.5 km above the top of the rhyolite magma body that was a source for the most recent volcanic eruption in the Coso volcanic field [Manley and Bacon, 2000]. From this evidence and results of other studies in the Coso Range, we interpret the source to be a leaking deep reservoir of magmatic fluids derived from a crystallizing rhyolite magma body.
NASA Astrophysics Data System (ADS)
Takagi, Y.; Okubo, S.
2016-12-01
Internal co- and post-seismic deformation fields such as strain and stress changes have been modelled in order to study their effects on the subsequent earthquake and/or volcanic activity around the epicentre. When modelling strain or stress changes caused by great earthquakes (M>9.0), we should use a realistic earth model including earth's curvature and stratification; according to Toda et al.'s (2011) result, the stress changes caused by the 2011 Tohoku-oki earthquake (Mw=9.0) exceed 0.1 bar (0.01 MPa) even at the epicentral distance over 400 km. Although many works have been carried out to compute co- and post-seismic surface deformation fields using a spherically stratified viscoelastic earth (e.g. Piersanti et al. 1995; Pollitz 1996, 1997; Tanaka et al. 2006), less attention has been paid to `internal' deformation fields. Tanaka et al. (2006) succeeded in computing post-seismic surface displacements in a continuously stratified compressible viscoelastic earth by evaluating the inverse Laplace integration numerically. To our regret, however, their method cannot calculate internal deformation because they use Okubo's (1993) reciprocity theorem. We found that Okubo's (1993) reciprocity theorem can be extended to computation of internal deformation fields. In this presentation, we show a method of computing internal co- and post-seismic deformation fields and discuss the effects of earth's curvature and stratification on them.
Development of Michelson interferometer based spatial phase-shift digital shearography
NASA Astrophysics Data System (ADS)
Xie, Xin
Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.
NASA Astrophysics Data System (ADS)
Burberry, C. M.
2012-12-01
It is a well-known phenomenon that deformation style varies in space; both along the strike of a deformed belt and along the strike of individual structures within that belt. This variation in deformation style is traditionally visualized with a series of closely spaced 2D cross-sections. However, the use of 2D section lines implies plane strain along those lines, and the true 3D nature of the deformation is not necessarily captured. By using a combination of remotely sensed data, analog modeling of field datasets and this remote data, and numerical and digital visualization of the finished model, a 3D understanding and restoration of the deformation style within the region can be achieved. The workflow used for this study begins by considering the variation in deformation style which can be observed from satellite images and combining this data with traditional field data, in order to understand the deformation in the region under consideration. The conceptual model developed at this stage is then modeled using a sand and silicone modeling system, where the kinematics and dynamics of the deformation processes can be examined. A series of closely-spaced cross-sections, as well as 3D images of the deformation, are created from the analog model, and input into a digital visualization and modeling system for restoration. In this fashion, a valid 3D model is created where the internal structure of the deformed system can be visualized and mined for information. The region used in the study is the Sawtooth Range, Montana. The region forms part of the Montana Disturbed Belt in the Front Ranges of the Rocky Mountains, along strike from the Alberta Syncline in the Canadian Rocky Mountains. Interpretation of satellite data indicates that the deformation front structures include both folds and thrust structures. The thrust structures vary from hinterland-verging triangle zones to foreland-verging imbricate thrusts along strike, and the folds also vary in geometry along strike. The analog models, constrained by data from exploration wells, indicate that this change in geometry is related to a change in mechanical stratigraphy along the strike of the belt. Results from the kinematic and dynamic analysis of the digital model will also be presented. Additional implications of such a workflow and visualization system include the possibility of creating and viewing multiple cross-sections, including sections created at oblique angles to the original model. This allows the analysis of the non-plane strain component of the models and thus a more complete analysis, understanding and visualization of the deformed region. This workflow and visualization system is applicable to any region where traditional field methods must be coupled with remote data, intensely processed depth data, or analog modeling systems in order to generate valid geologic or geophsyical models.
Topographic representation using DEMs and its applications to active tectonics research
NASA Astrophysics Data System (ADS)
Oguchi, T.; Lin, Z.; Hayakawa, Y. S.
2016-12-01
Identifying topographic deformations due to active tectonics has been a principal issue in tectonic geomorphology. It provides useful information such as whether a fault has been active during the recent past. Traditionally, field observations, conventional surveying, and visual interpretation of topographic maps, aerial photos, and satellite images were the main methods for such geomorphological investigations. However, recent studies have been utilizing digital elevation models (DEMs) to visualize and quantitatively analyze landforms. There are many advantages to the use of DEMs for research in active tectonics. For example, unlike aerial photos and satellite images, DEMs show ground conditions without vegetation and man-made objects such as buildings, permitting direct representation of tectonically deformed landforms. Recent developments and advances in airborne LiDAR also allow the fast creation of DEMs even in vegetated areas such as forested lands. In addition, DEMs enable flexible topographic visualization based on various digital cartographic and computer-graphic techniques, facilitating identification of particular landforms such as active faults. Further, recent progress in morphometric analyses using DEMs can be employed to quantitatively represent topographic characteristics, and objectively evaluate tectonic deformation and the properties of related landforms. This paper presents a review of DEM applications in tectonic geomorphology, with attention to historical development, recent advances, and future perspectives. Examples are taken mainly from Japan, a typical tectonically active country. The broader contributions of DEM-based active tectonics research to other fields, such as fluvial geomorphology and geochronology, will also be discussed.
Nondestructive optical testing of the materials surface structure based on liquid crystals
NASA Astrophysics Data System (ADS)
Tomilin, M. G.; Stafeev, S. K.
2011-08-01
Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.
Adaptive compliant structures for flow regulation
Brinkmeyer, Alex; Theunissen, Raf; M. Weaver, Paul; Pirrera, Alberto
2017-01-01
This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli—i.e. the aerodynamic loads imposed by different operating conditions—the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices. PMID:28878567
Adaptive compliant structures for flow regulation.
Arena, Gaetano; M J Groh, Rainer; Brinkmeyer, Alex; Theunissen, Raf; M Weaver, Paul; Pirrera, Alberto
2017-08-01
This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli-i.e. the aerodynamic loads imposed by different operating conditions-the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices.
NASA Astrophysics Data System (ADS)
Sinha, Kumari Priti; Thaokar, Rochish M.
2018-03-01
Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.
Particle-in-Cell Simulations of the Twisted Magnetospheres of Magnetars. I.
NASA Astrophysics Data System (ADS)
Chen, Alexander Y.; Beloborodov, Andrei M.
2017-08-01
The magnetospheres of magnetars are believed to be filled with electron-positron plasma generated by electric discharge. We present a first numerical experiment demonstrating this process in an axisymmetric magnetosphere with a simple threshold prescription for pair creation, which is applicable to the inner magnetosphere with an ultrastrong field. The {e}+/- discharge occurs in response to the twisting of the closed magnetic field lines by a shear deformation of the magnetar surface, which launches electric currents into the magnetosphere. The simulation shows the formation of an electric “gap” with an unscreened electric field ({\\boldsymbol{E}}\\cdot {\\boldsymbol{B}}\
A Biomechanical Modeling Guided CBCT Estimation Technique
Zhang, You; Tehrani, Joubin Nasehi; Wang, Jing
2017-01-01
Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks. PMID:27831866
van Eldijk, Mark B.; McGann, Christopher L.
2013-01-01
Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin – two elastomeric biopolymers – and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering. PMID:21826606
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-01-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945
Time-varying q-deformed dark energy interacts with dark matter
NASA Astrophysics Data System (ADS)
Dil, Emre; Kolay, Erdinç
We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.
Geophysical Monitoring of Geodynamic Processes of Central Armenia Earth Crust
NASA Astrophysics Data System (ADS)
Avetyan, R.; Pashayan, R.
2016-12-01
The method of geophysical monitoring of earth crust was introduced. It allows by continuous supervision to track modern geodynamic processes of Armenia. Methodological practices of monitoring come down to allocation of a signal which reflects deformation of rocks. The indicators of deformations are not only deviations of geophysical indicators from certain background values, but also parameters of variations of these indicators. Data on changes of parameters of barometric efficiency and saw tooth oscillations of underground water level before seismic events were received. Low-amplitude periodic fluctuations of water level are the reflection of geodynamic processes taking place in upper levels of earth crust. There were recorded fluctuations of underground water level resulting from luni-solar tides and enabling to control the systems of borehole-bed in changes of voluminous deformations. The slow lowering (raising) of underground water level in the form of trend reflects long-period changes of stress-deformative state of environment. Application of method promotes identification of medium-term precursors on anomalous events of variations of geomagnetic field, change of content of subsoil radon, dynamics of level of underground water, geochemistry and water temperature. Increase of activity of geodynamic processes in Central Armenian tectonic complex is observed to change macro component Na+, Ca2+, Mg2-, CL-, SO42-, HCO3-, H4SiO4, pH and gas - CO2 structure of mineral water. Modern geodynamic movements of earth crust of Armenia are the result of seismic processes and active geodynamics of deep faults of longitudinal and transversal stretching. Key Words: monitoring, hydrogeodynamics, geomagnetic field, seismicity, deformation, earth crust
Parity Deformed Jaynes-Cummings Model: “Robust Maximally Entangled States”
Dehghani, A.; Mojaveri, B.; Shirin, S.; Faseghandis, S. Amiri
2016-01-01
The parity-deformations of the quantum harmonic oscillator are used to describe the generalized Jaynes-Cummings model based on the λ-analog of the Heisenberg algebra. The behavior is interestingly that of a coupled system comprising a two-level atom and a cavity field assisted by a continuous external classical field. The dynamical characters of the system is explored under the influence of the external field. In particular, we analytically study the generation of robust and maximally entangled states formed by a two-level atom trapped in a lossy cavity interacting with an external centrifugal field. We investigate the influence of deformation and detuning parameters on the degree of the quantum entanglement and the atomic population inversion. Under the condition of a linear interaction controlled by an external field, the maximally entangled states may emerge periodically along with time evolution. In the dissipation regime, the entanglement of the parity deformed JCM are preserved more with the increase of the deformation parameter, i.e. the stronger external field induces better degree of entanglement. PMID:27917882
NASA Astrophysics Data System (ADS)
Athreya, C. N.; Mukilventhan, A.; Suwas, Satyam; Vedantam, Srikanth; Subramanya Sarma, V.
2018-04-01
The influence of the mode of deformation on recrystallisation behaviour of Ti was studied by experiments and modelling. Ti samples were deformed through torsion and rolling to the same equivalent strain of 0.5. The deformed samples were annealed at different temperatures for different time durations and the recrystallisation kinetics were compared. Recrystallisation is found to be faster in the rolled samples compared to the torsion deformed samples. This is attributed to the differences in stored energy and number of nuclei per unit area in the two modes of deformation. Considering decay in stored energy during recrystallisation, the grain boundary mobility was estimated through a mean field model. The activation energy for recrystallisation obtained from experiments matched with the activation energy for grain boundary migration obtained from mobility calculation. A multi-phase field model (with mobility estimated from the mean field model as a constitutive input) was used to simulate the kinetics, microstructure and texture evolution. The recrystallisation kinetics and grain size distributions obtained from experiments matched reasonably well with the phase field simulations. The recrystallisation texture predicted through phase field simulations compares well with experiments though few additional texture components are present in simulations. This is attributed to the anisotropy in grain boundary mobility, which is not accounted for in the present study.
The correlation of local deformation and stress-assisted local phase transformations in MMC foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de; Ballaschk, U.; Aneziris, C.G.
2015-09-15
Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they canmore » trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.« less
FIB-based measurement of local residual stresses on microsystems
NASA Astrophysics Data System (ADS)
Vogel, Dietmar; Sabate, Neus; Gollhardt, Astrid; Keller, Juergen; Auersperg, Juergen; Michel, Bernd
2006-03-01
The paper comprises research results obtained for stress determination on micro and nanotechnology components. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.
NASA Astrophysics Data System (ADS)
Barbe, Charlotte; Leroy, Yves; Ben Miloud, Camille
2017-04-01
A methodology is proposed to construct the stress history of a complex fault-related fold in which the deformation mechanisms are essentially frictional. To illustrate the approach, fours steps of the deformation of an initially horizontally layered sand/silicone laboratory experiment (Driehaus et al., J. of Struc. Geol., 65, 2014) are analysed with the kinematic approach of limit analysis (LA). The stress, conjugate to the virtual velocity gradient in the sense of mechanicam power, is a proxy for the true statically admmissible stress field which prevailed over the structure. The material properties, friction angles and cohesion, including their time evolution are selected such that the deformation pattern predicted by the LA is consistent with the two main thrusting events, the first forward and the second backward once the layers have sufficiently rotated. The fractures associated to the stress field determined at each step are convected on today configuration to define the complete pattern which should be observed. The end results are presented along virtual vertical wells and could be used within the oil industry at an early phase of exploration to prepare drealing operations.
A new combined surface and volume registration
NASA Astrophysics Data System (ADS)
Lepore, Natasha; Joshi, Anand A.; Leahy, Richard M.; Brun, Caroline; Chou, Yi-Yu; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; De Zubicaray, Greig I.; Wright, Margaret J.; McMahon, Katie L.; Toga, Arthur W.; Thompson, Paul M.
2010-03-01
3D registration of brain MRI data is vital for many medical imaging applications. However, purely intensitybased approaches for inter-subject matching of brain structure are generally inaccurate in cortical regions, due to the highly complex network of sulci and gyri, which vary widely across subjects. Here we combine a surfacebased cortical registration with a 3D fluid one for the first time, enabling precise matching of cortical folds, but allowing large deformations in the enclosed brain volume, which guarantee diffeomorphisms. This greatly improves the matching of anatomy in cortical areas. The cortices are segmented and registered with the software Freesurfer. The deformation field is initially extended to the full 3D brain volume using a 3D harmonic mapping that preserves the matching between cortical surfaces. Finally, these deformation fields are used to initialize a 3D Riemannian fluid registration algorithm, that improves the alignment of subcortical brain regions. We validate this method on an MRI dataset from 92 healthy adult twins. Results are compared to those based on volumetric registration without surface constraints; the resulting mean templates resolve consistent anatomical features both subcortically and at the cortex, suggesting that the approach is well-suited for cross-subject integration of functional and anatomic data.
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Farhad; Hashemian, Ali; Moetakef-Imani, Behnam; Hadidimoud, Saied
2018-03-01
In the present paper, the isogeometric analysis (IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables (displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline (NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, Sudarshan; Gunaydin, Murat
Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less
Field-scale and wellbore modeling of compaction-induced casing failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.
1999-06-01
Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucci, A.; Vasco, D.W.; Novali, F.
2010-04-01
Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production onlymore » results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.« less
NASA Astrophysics Data System (ADS)
Wang, Xiaoli; Yao, Youwei; Cao, Jian; Vaynman, Semyon; Graham, Michael E.; Liu, Tianchen; Ulmer, M. P.
2015-09-01
Our goal is to improve initially fabricated X-ray optics figures by applying a magnetic field to drive a magnetic smart material (MSM) coating on the non-reflecting side of the mirror. The consequent deformation of the surface should be three-dimensional. Here we will report on the results of working with a glass sample of 50x50x0.2 mm that has been coated with MSMs. The coated glass can be deformed in 3 dimensions and its surface profile was measured under our Zygo NewView white light interferometer (WLI). The driving magnetic field was produced via a pseudo-magnetic write head made up of two permanent magnet posts. The magnet posts were moved about the bottom of the glass sample with a 3-d computer controlled translation stage. The system allowed four degrees of freedom of motion, i.e., up and down, side to side, back and forth, and rotation of the posts (3.175 mm diameter) about the vertical axis to allow us to change the orientation of the magnetic field in the (horizontal) plane of the sample. We established a finite element analysis (FEA) model to predict deformations and compare with the observed results in order to guide the application of the magnetically controlled MSMs to improve the future X-ray optics figures.
NASA Astrophysics Data System (ADS)
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-01
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-07
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
Shock enhancement of cellular materials subjected to intensive pulse loading
NASA Astrophysics Data System (ADS)
Zhang, J.; Fan, J.; Wang, Z.; Zhao, L.; Li, Z.
2018-03-01
Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.
NASA Astrophysics Data System (ADS)
Teja, Akkineni Surya; Rajkumar, R.; Gokula Krishnan, B.; Aravindh, R.
2018-02-01
Buried pipes are used mainly for water supply and drainage besides many other applications such as oil, liquefied natural gas, coal slurries and mine tailings. The pipes used may be rigid (reinforced concrete, vitrified clay and ductile iron) or flexible (Steel, UPVC, aluminium, Fiber glass and High-density polyethylene) although the distinction between them is blurring. Flexible pipe design is governed by deflection or buckling. UPVC pipes are preferred due to light weight, long term chemical stability and cost efficiency. This project aims to study the load deformation behaviour of the buried pipe and stress variation across the cross section of the pipe under static loading along with the influence of depth of embedment, density of backfill on the deformation and stresses in pipe and the deformation behaviour of buried pipe when soil is reinforced with geogrid reinforcement and evaluate the structural performance of the pipe.
Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers
NASA Astrophysics Data System (ADS)
Yu, Zhibin; Niu, Xiaofan; Brochu, Paul; Yuan, Wei; Li, Huafeng; Chen, Bin; Pei, Qibing
2010-04-01
Reversible, large-strain, bistable actuation has been a lasting puzzle in the pursuit of smart materials and structures. Conducting polymers are bistable, but the achievable strain is small. Large deformations have been achieved in dielectric elastomers at the expense of mechanical strength. The gel or gel-like soft polymers generally have elastic moduli around or less than 10 MPa. The deformed polymer relaxes to its original shape once the applied electric field is removed. We report new, bistable electroactive polymers (BSEP) that are capable of electrically actuated strains as high as 335% area strain. The BSEP could be useful for constructing rigid structures. The structures can support high mechanical loads, and be actuated to large-strain deformations. We will present one unique application of the BSEP for Braille displays that can be quickly refreshed and maintain the displayed contents without a bias voltage.
Performance through Deformation and Instability
NASA Astrophysics Data System (ADS)
Bertoldi, Katia
2015-03-01
Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.
Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing
NASA Astrophysics Data System (ADS)
Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin
2016-03-01
New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.
Sensitivity-based virtual fields for the non-linear virtual fields method
NASA Astrophysics Data System (ADS)
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2017-09-01
The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.
Duez, J; Holleran, J P; Ndour, P A; Pionneau, C; Diakité, S; Roussel, C; Dussiot, M; Amireault, P; Avery, V M; Buffet, P A
2015-08-01
During their lifespan, circulating RBC are frequently checked for their deformability. This mechanical quality control operates essentially in the human spleen. RBC unable to squeeze though narrow splenic slits are retained and cleared from the blood circulation. Under physiological conditions this prevents microvessels from being clogged by senescent, rigid RBC. Retention of poorly deformable RBC is an important determinant of pathogenesis in malaria and may also impact the clinical benefit of transfusion. Modulating the splenic retention of RBC has already been proposed to support therapeutic approaches in these research fields. To this aim, the development of microplates for high throughput filtration of RBC through microsphere layers (microplate-based microsphiltration) has been undertaken. This review focuses on potential therapeutic applications provided by this technology in malaria chemotherapy and transfusion. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Wallis, D.; Parsons, A. J.; Hansen, L. N.
2017-12-01
Chessboard subgrains in quartz, with boundaries composed of {m}[c] edge dislocations, are widely used as evidence for high-temperature deformation and have been suggested to form only in β-quartz. However, the origins and dislocation structure of chessboard subgrains remain poorly constrained and, without precise constraints on axes of misorientations across subgrain boundaries, other subgrain types formed at lower temperatures can be misidentified as chessboard subgrains. The technique most commonly employed to investigate subgrain structures, electron backscatter diffraction, can only resolve misorientation angles and axes for a portion of the substructure. This limitation hinders detailed interpretation of the dislocation types, densities, and processes that generate characteristic subgrain structures. We overcome these limitations by employing high-angular resolution electron backscatter diffraction (HR-EBSD), which employs cross-correlation of diffraction patterns to achieve angular resolution on the order of 0.01° with well-constrained misorientation axes. We analyse chessboard subgrains in samples from the Greater Himalayan Sequence, Nepal, which were deformed along well constrained pressure-temperature paths confined to the stability field of α-quartz. HR-EBSD analysis demonstrates that the subgrain boundaries consist of two sets. One set consists primarily of {m}[c] edge dislocations and the other consists of dislocations primarily with Burgers vectors. Apparent densities of geometrically necessary dislocations vary from > 1013 m-2 within some subgrain boundaries to < 1012 m-2 within subgrain interiors. This analysis provides new insight into the structure of chessboard subgrain boundaries, and a new tool to distinguish them from superficially similar deformation microstructures formed by other dislocation types at lower temperatures. Application of HR-EBSD to quartz from the Greater Himalayan Sequence confirms the activity of {m}[c] slip in the α-quartz stability field and demonstrates that formation of chessboard subgrains is not restricted to the stability field of β-quartz. Most importantly, this study demonstrates the potential of HR-EBSD as an improved method for analysis of quartz microstructures used as indicators of deformation conditions.
Dynamics of Deformable Active Particles under External Flow Field
NASA Astrophysics Data System (ADS)
Tarama, Mitsusuke
2017-10-01
In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.
Core Characteristics Deterioration due to Plastic Deformation
NASA Astrophysics Data System (ADS)
Kaido, Chikara; Arai, Satoshi
This paper discusses the effect of plastic deformation at core manufacturing on the characteristics of cores where non-oriented electrical steel sheets are used as core material. Exciting field and iron loss increase proportionally to plastic deformation in the case of rP<10, where rP is a ratio of plastic deformation to that at yield point. In this region, anomalous eddy currents increase because plastic deformations of crystalline grains are distributed and then the flux distribution is induced. In the case of rP>20, the deterioration tend to saturate, and the increases in magnetic field and iron loss are 1000 to 1500A/m and 2 to 4W/kg. They are related to grain size, and high grade with larger grain may have lager field increase and smaller iron loss increase. Anomalous eddy current losses scarcely increase in this region. In actual motors, the plastic deformation affects iron loss increase although exciting current increases a little.
Double field theory at order α'
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2014-11-01
We investigate α' corrections of bosonic strings in the framework of double field theory. The previously introduced "doubled α'-geometry" gives α'-deformed gauge transformations arising in the Green-Schwarz anomaly cancellation mechanism but does not apply to bosonic strings. These require a different deformation of the duality-covariantized Courant bracket which governs the gauge structure. This is revealed by examining the α' corrections in the gauge algebra of closed string field theory. We construct a four-derivative cubic double field theory action invariant under the deformed gauge transformations, giving a first glimpse of the gauge principle underlying bosonic string α' corrections. The usual metric and b-field are related to the duality covariant fields by non-covariant field redefinitions.
Towards a Millennial Time-scale Vertical Deformation Field in Taiwan
NASA Astrophysics Data System (ADS)
Bordovaos, P. A.; Johnson, K. M.
2015-12-01
Pete Bordovalos and Kaj M. Johnson To better understand the feedbacks between erosion and deformation in Taiwan, we need constraints on the millennial time-scale vertical field. Dense GPS and leveling data sets in Taiwan provide measurements of the present-day vertical deformation field over the entire Taiwan island. However, it is unclear how much of this vertical field is transient (varies over earthquake cycle) or steady (over millennial time scale). A deformation model is required to decouple transient from steady deformation. This study takes a look at how the 82 mm/yr of convergence motion between the Eurasian plate and the Philippine Sea plate is distributed across the faults on Taiwan. We build a plate flexure model that consists of all known active faults and subduction zones cutting through an elastic plate supported by buoyancy. We use horizontal and vertical GPS data, leveling data, and geologic surface uplift rates with a Monte Carlo probabilistic inversion method to infer fault slip rates and locking depths on all faults. Using our model we examine how different fault geometries influence the estimates of distribution of slip along faults and deformation patterns.
Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy
NASA Astrophysics Data System (ADS)
Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc
2014-12-01
Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse rawdata and provides more stable results than volume-to-volume approaches. By applying the proposed registration approach to low dose tomographic fluoroscopy it is possible to improve the temporal resolution and thus to increase the robustness of low dose tomographic fluoroscopy.
Terahertz adaptive optics with a deformable mirror.
Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel
2018-04-01
We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.
A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography.
Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji
2016-11-16
In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point.
A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography
Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji
2016-01-01
In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point. PMID:27854325
Creep deformation at crack tips in elastic-viscoplastic solids
NASA Astrophysics Data System (ADS)
Riedel, H.
1981-02-01
THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.
NASA Astrophysics Data System (ADS)
Leprince, S.; Ayoub, F.; Avouac, J.
2011-12-01
We have developed a suite of algorithms for precise Co-registration of Optically Sensed Images and Correlation (COSI-Corr) which were implemented in a software package first released to the academic community in 2007. Its capability for accurate surface deformation measurement has proved useful for a wide variety of applications. We present the fundamental principles of COSI-Corr, which are the key ingredients to achieve sub-pixel registration and sub-pixel measurement accuracy, and we show how they can be applied to various types of images to extract 2D, 3D, or even 4D deformation fields of a given surface. Examples are drawn from recent collaborative studies and include: (1) The study of the Icelandic Krafla rifting crisis that occurred from 1975 to 1984 where we used a combination of archived airborne photographs, declassified spy satellite imagery, and modern satellite acquisitions to propose a detailed 2D displacement field of the ground; (2) The estimation of glacial velocities from fast New Zealand glaciers using successive ASTER acquisitions; (3) The derivation of sand dunes migration rates; (4) The estimation of ocean swell velocity taking advantage of the short time delay between the acquisition of different spectral bands on the SPOT 5 satellite; (5) The derivation of the full 3D ground displacement field induced by the 2010 Mw 7.2 El Mayor-Cucapah Earthquake, as recorded from pre- and post-event lidar acquisitions; (6) And, the estimation of 2D in plane deformation of mechanical samples under stress in the lab. Finally, we conclude by highlighting the potential future and implication of applying such correlation techniques on a large scale to provide global monitoring of our environment.
Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans
2017-08-01
To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope.
Mercatelli, Raffaella; Ratto, Fulvio; Centi, Sonia; Soria, Silvia; Romano, Giovanni; Matteini, Paolo; Quercioli, Franco; Pini, Roberto; Fusi, Franco
2013-10-21
In this paper we report on a new use for dark-field microscopy in order to retrieve two-dimensional maps of optical parameters of a thin sample such as a cryptograph, a histological section, or a cell monolayer. In particular, we discuss the construction of quantitative charts of light absorbance and scattering coefficients of a polyvinyl alcohol film that was embedded with gold nanorods and then etched using a focused mode-locked Ti:Sapphire oscillator. Individual pulses from this laser excite plasmonic oscillations of the gold nanorods, thus triggering plastic deformations of the particles and their environment, which are confined within a few hundred nm of the light focus. In turn, these deformations modify the light absorbance and scattering landscape, which can be measured with optical resolution in a dark-field microscope equipped with an objective of tuneable numerical aperture. This technique may prove to be valuable for various applications, such as the fast readout of optically encoded data or to model functional interactions between light and biological tissue at the level of cellular organelles, including the photothermolysis of cancer.
Interseismic Deformation across the Eastern Altyn Tagh Fault from Insar Measurements
NASA Astrophysics Data System (ADS)
Liu, C. J.; Zhao, C. Y.; Ji, L. Y.; Zhang, Z. R.; Sun, H.
2018-04-01
As a new type of earth observation technique, InSAR has a lot of advantages, such as all-weather, all-time, high precision, high density, wide coverage and low cost. It has been widely used in deformation monitoring. Taking the eastern segment of Altyn Tagh fault (ATF) as the object of the research, this paper discussed the application of multi-temporal InSAR technology in the field of interseismic deformation monitoring. We measured the interseismic deformation along the eastern section of ATF using three neighboring descending tracks SAR data from the ERS and Envisat missions. The results show that, first, the validation of InSAR results is better than 2.5 mm/yr, the calibration of InSAR results is about 1.06 mm/yr. Second, the fault slip rate in this segment is about 4-7 mm/yr, and is in the locked condition. Third, The InSAR velocity profile across the fault is the clear asymmetry with respect to ATF, it may be the combined effect of northern (NATF) and southern (SATF) branches of ATF.
Leveraging Internal Viscous Flow to Extend the Capabilities of Beam-Shaped Soft Robotic Actuators.
Matia, Yoav; Elimelech, Tsah; Gat, Amir D
2017-06-01
Elastic deformation of beam-shaped structures due to embedded fluidic networks (EFNs) is mainly studied in the context of soft actuators and soft robotic applications. Currently, the effects of viscosity are not examined in such configurations. In this work, we introduce an internal viscous flow and present the extended range of actuation modes enabled by viscosity. We analyze the interaction between elastic deflection of a slender beam and viscous flow in a long serpentine channel embedded within the beam. The embedded network is positioned asymmetrically with regard to the neutral plane and thus pressure within the channel creates a local moment deforming the beam. Under assumptions of creeping flow and small deflections, we obtain a fourth-order integro-differential equation governing the time-dependent deflection field. This relation enables the design of complex time-varying deformation patterns of beams with EFNs. Leveraging viscosity allows to extend the capabilities of beam-shaped actuators such as creation of inertia-like standing and moving wave solutions in configurations with negligible inertia and limiting deformation to a small section of the actuator. The results are illustrated experimentally.
Precision topographic inspection of MOEMS by moiré interferometry
NASA Astrophysics Data System (ADS)
Meguellati, S.
2016-04-01
The manufacturing of micro components is useful and necessary for eventual use in the field of MOEMS micro technologies, but, micro fabrication process inspection quality is required. The accuracy of components geometry is parameter which influences the precision of the function. Moiré topography is full-field optical technique in which the contour and shape of object surfaces is measured by means of geometric interference between two identical line gratings. The technique has found various applications in diverse fields, from biomedical to industrial, scientific applications, and miniaturized instrumentation for space applications. This method of optical scanning presented in this paper is used for precision measurement deformation or absolute forms in comparison with a reference component form, of optical or mechanical micro components, on surfaces that are of the order of mm2 and more. The optical device used allows high magnification dimensional surface inspected which allows easy processing and reaches an exceptional nanometric imprecision of measurements. This measurement technique can be used advantageously to measure the deformations generated by constraints on functional parts and the influence of these variations on the function. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard, which saves time, money and accuracy. This method of control and measurement allows real time control; speed control and the detection resolution may vary depending on the importance of defects to be measured.
Kinematics, partitioning and the relationship between velocity and strain in shear zones
NASA Astrophysics Data System (ADS)
Murphy, Justin James
Granite Point, southeast Washington State, captures older distributed deformation deflected by younger localized deformation. This history agrees with mathematical modeling completed by Watkinson and Patton (2005; 2007 in prep). This model suggests that distributed strain occurs at a lower energy threshold than localized strain and predicts deformation histories similar to Granite Point. Ductile shear zones at Granite Point define a zone of deformation where strain is partitioned and localized into at least ten sub parallel shear zones with sinistral, west side down shear sense. Can the relative movement of the boundaries of this partitioned system be reconstructed? Can partitioning be resolved from a distributed style of deformation? The state of strain and kinematics of actively deforming zones was studied by relating the velocity field to strain. The Aleutian Arc, Alaska and central Walker Lane, Nevada were chosen because they have a wealth of geologic data and are recognized examples of obliquely deforming zones. The graphical construction developed by Declan De Paor is ideally suited for this application because it provides a spatially referenced visualization of the relationship between velocity and strain. The construction of De Paor reproduces the observed orientation of strain in the Aleutian Arc, however, the spatial distribution of GPS stations suggest a component of partitioning. Partitioning does not provide a unique solution and cannot be differentiated from a combination of partitioning and distributed strain. In the central Walker Lane, strain trajectories can be reproduced at the domain scale. Furthermore, the effect of anisotropy from Paleozoic through Cenozoic crustal structure, which breaks the regional strain field into pure shear and simple shear dominated transtension can be detected. Without GPS velocities to document strictly coaxial strain, the strain orientation should not be taken as the velocity orientation. The strain recorded at Granite Point should not be used to reconstruct the relative movement of the boundaries because the strain direction may not be parallel to the velocity orientation. Kinematic reconstructions of obliquely deforming zones that assume a palaeo-velocity orientation equal to the measured orientation of finite strain may not accurately reflect the deviation between velocity and strain.
Yang, Yang; Tan, Yun; Wang, Xionglei; An, Wenli; Xu, Shimei; Liao, Wang; Wang, Yuzhong
2018-03-07
Recent research of hydrogel actuators is still not sophisticated enough to meet the requirement of fast, reversible, complex, and robust reconfiguration. Here, we present a new kind of poly( N-isopropylacrylamide)/graphene oxide gradient hydrogel by utilizing direct current electric field to induce gradient and oriented distribution of graphene oxide into poly( N-isopropylacrylamide) hydrogel. Upon near-infrared light irradiation, the hydrogel exhibited excellent comprehensive actuation performance as a result of directional bending deformation, promising great potential in the application of soft actuators and optomechanical system.
Scalar field propagation in the ϕ 4 κ-Minkowski model
NASA Astrophysics Data System (ADS)
Meljanac, S.; Samsarov, A.; Trampetić, J.; Wohlgenannt, M.
2011-12-01
In this article we use the noncommutative (NC) κ-Minkowski ϕ 4 model based on the κ-deformed star product, (★ h ). The action is modified by expanding up to linear order in the κ-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the κ-Minkowski is specifically κ-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the κ-deformed Minkowski spacetime, resulting in a κ-effective model. The propagation is analyzed in the framework of the two-point Green's function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the κ-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planck-ian energies we obtain the direction dependent κ-modified dispersion relations. Thus our κ-effective model for the massive scalar field shows a birefringence effect.
NASA Astrophysics Data System (ADS)
Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.
2017-06-01
A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.
Malinauskas, Karolis; Palevicius, Paulius; Ragulskis, Minvydas; Ostasevicius, Vytautas; Dauksevicius, Rolanas
2013-01-01
Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner′s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation. PMID:23609803
Malinauskas, Karolis; Palevicius, Paulius; Ragulskis, Minvydas; Ostasevicius, Vytautas; Dauksevicius, Rolanas
2013-04-22
Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner's subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.
Elastic constants of stressed and unstressed materials in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong
2018-04-01
A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.
Accelerated gradient-based free form deformable registration for online adaptive radiotherapy
NASA Astrophysics Data System (ADS)
Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang
2015-04-01
The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-12-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time-consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2D models and computing single organ deformations. In this study, 3D comprehensive patient-specific nonlinear biomechanical models implemented using meshless Total Lagrangian explicit dynamics algorithms are applied to predict a 3D deformation field for whole-body image registration. Unlike a conventional approach that requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the fuzzy c-means algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Pan, Bing; Wu, Dafang; Xia, Yong
2010-09-01
To determine the full-field high-temperature thermal deformation of the structural materials used in high-speed aerospace flight vehicles, a novel non-contact high-temperature deformation measurement system is established by combining transient aerodynamic heating simulation device with the reliability-guided digital image correlation (RG-DIC). The test planar sample with size varying from several mm 2 to several hundreds mm 2 can be heated from room temperature to 1100 °C rapidly and accurately using the infrared radiator of the transient aerodynamic heating simulation system. The digital images of the test sample surface at various temperatures are recorded using an ordinary optical imaging system. To cope with the possible local decorrelated regions caused by black-body radiation within the deformed images at the temperatures over 450 °C, the RG-DIC technique is used to extract full-field in-plane thermal deformation from the recorded images. In validation test, the thermal deformation fields and the values of coefficient of thermal expansion (CTEs) of a chromiumnickel austenite stainless steel sample from room temperature to 550 °C is measured and compared with the well-established handbook value, confirming the effectiveness and accuracy of the proposed technique. The experimental results reveal that the present system using an ordinary optical imaging system, is able to accurately measure full-field thermal deformation of metals and alloys at temperatures not exceeding 600 °C.
NASA Astrophysics Data System (ADS)
Le Pichon, Xavier; Mazzotti, Stéphane; Henry, Pierre; Hashimoto, Manabu
1998-08-01
The entire area of the Japanese Islands has been covered by the permanent GPS observation network of the Geographical Survey Institute since 1994. In this paper we use a solution for the vectors of motion during 1995 for a selection of 116 stations to discuss the origin of the observed deformation field. We refer the displacement field to Eurasia using the VLBI-determined motion of Kashima and demonstrate that other choices such as the Okhotsk or North American plates for north Japan are not compatible with the data. 1 yr GPS velocities are much higher than geological constraints would allow because these short-term measurements include transient elastic deformation. However, the good qualitative agreement between the observed geodetic deformation tensors and those inferred from active faults and earthquakes suggests that the Quaternary permanent deformation is essentially the result of the transfer of part of the subduction-induced elastic deformation into permanent plastic deformation. We then compute the elastic deformation of the Japanese Islands caused by interseismic loading of the Pacific and Philippine subduction planes. The geometry of the coupled zone and its downward extension are determined from the distribution of earthquakes for the Pacific slab. For the Philippine slab we use the geometry proposed by Hyndman et al. (1995). These elastic models account for most of the observed velocity field if the subduction movement of the Philippine Sea Plate is 100 per cent locked and if that of the Pacific Plate is 75-85 per cent locked. We note that the boundaries of the areas where significant elastic deformation is predicted (more than 10 mm yr-1 of motion with respect to Eurasia) coincide with the main zones of permanent deformation: the Eastern Japan Sea deformation zone for the Pacific subduction elastic deformation field and the Setouchi/MTL deformation zone for the Nankai field. Each zone probably accommodates 10-15 mm yr-1 of motion in the long term (convergence in the Eastern Japan Sea; strike-slip in the Setouchi/MTL zone). To account for this deformation, the effect of elastic loading from the trench must be combined with 5-10 mm yr-1 of motion of the Amur Plate with respect to Eurasia. Because loading during the subduction earthquake cycle causes an increase in stress in the Eastern Japan Sea and Setouchi/MTL deformation zones, the probability of earthquake occurrence in these zones may be higher near the end of the cycle.
Strategies for assessing the implications of malformed frogs for environmental health.
Burkhart, J G; Ankley, G; Bell, H; Carpenter, H; Fort, D; Gardiner, D; Gardner, H; Hale, R; Helgen, J C; Jepson, P; Johnson, D; Lannoo, M; Lee, D; Lary, J; Levey, R; Magner, J; Meteyer, C; Shelby, M D; Lucier, G
2000-01-01
The recent increase in the incidence of deformities among natural frog populations has raised concern about the state of the environment and the possible impact of unidentified causative agents on the health of wildlife and human populations. An open workshop on Strategies for Assessing the Implications of Malformed Frogs for Environmental Health was convened on 4-5 December 1997 at the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina. The purpose of the workshop was to share information among a multidisciplinary group with scientific interest and responsibility for human and environmental health at the federal and state level. Discussions highlighted possible causes and recent findings directly related to frog deformities and provided insight into problems and strategies applicable to continuing investigation in several areas. Possible causes of the deformities were evaluated in terms of diagnostics performed on field amphibians, biologic mechanisms that can lead to the types of malformations observed, and parallel laboratory and field studies. Hydrogeochemistry must be more integrated into environmental toxicology because of the pivotal role of the aquatic environment and the importance of fates and transport relative to any potential exposure. There is no indication of whether there may be a human health factor associated with the deformities. However, the possibility that causal agents may be waterborne indicates a need to identify the relevant factors and establish the relationship between environmental and human health in terms of hazard assessment. PMID:10620528
Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound
NASA Astrophysics Data System (ADS)
Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei
2014-03-01
The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.
Applications of Geodesy to Geodynamics, an International Symposium
NASA Technical Reports Server (NTRS)
Mueller, I. I. (Editor)
1978-01-01
Geodetic techniques in detecting and monitoring geodynamic phenomena are reviewed. Specific areas covered include: rotation of the earth and polar motion; tectonic plate movements and crustal deformations (space techniques); horizontal crustal movements (terrestrial techniques); vertical crustal movements (terrestrial techniques); gravity field, geoid, and ocean surface by space techniques; surface gravity and new techniques for the geophysical interpretation of gravity and geoid undulation; and earth tides and geodesy.
Conformal field theories from deformations of theories with Wn symmetry
NASA Astrophysics Data System (ADS)
Babaro, Juan Pablo; Giribet, Gaston; Ranjbar, Arash
2016-10-01
We construct a set of nonrational conformal field theories that consist of deformations of Toda field theory for s l (n ). In addition to preserving conformal invariance, the theories may still exhibit a remnant infinite-dimensional affine symmetry. The case n =3 is used to illustrate this phenomenon, together with further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute N -point correlation functions on the Riemann sphere and show that these can be expressed in terms of s l (n ) Toda field theory ((N -2 )n +2 ) -point correlation functions.
NASA Astrophysics Data System (ADS)
Hillers, Gregor; Husen, Stephan; Obermann, Anne; Planes, Thomas; Campillo, Michel; Larose, Eric
2014-05-01
We explore the applicability of noise-based monitoring and imaging techniques in the context of the 2006 Basel stimulation experiment using data from five borehole velocimeters and five surface accelerometers located around the injection site. We observe a significant perturbation of medium properties associated with the reservoir stimulation. The transient perturbation, with a duration of 20-30 days, reaches its maximum about 15 days after shut in, when microseismic activity has ceased; it is thus associated with aseismic deformation. Inverting relative velocity change and decorrelation observations using techniques developed and applied on laboratory and local to regional seismological scales, we can image the associated deformation pattern. We discuss limits of the the frequency- and lapse-time dependent resolution and suggestions for improvements considering the 3-D network geometry together with wave propagation models. The depth sensitivity of the analyzed wave field indicates resolution of perturbation in the shallow parts of the sedimentary layer above the stimulated deep volume located in the crystalline base layer. The deformation pattern is similar to InSAR/satellite observations associated with CO2 sequestration experiments, and indicates the transfer of deformation beyond scales associated with the instantaneously stimulated volume. Our detection and localization of delayed induced shallow aseismic transient deformation indicates that monitoring the evolution of reservoir properties using the ambient seismic field provides observables that complement information obtained with standard microseismic approaches. The results constitute a significant advance for the resolution of reservoir dynamics; the technology has the potential to provide critical constraints in related geotechnical situations associated with fluid injection, fracking, (nuclear) waste management, and carbon capture and storage.
NASA Astrophysics Data System (ADS)
Goren, L.; Castelltort, S.; Klinger, Y.
2014-12-01
The Dead Sea Fault System changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh Fault (YF), is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates and strain partitioning in Lebanon still prevail. Here, we use morphometric analysis together with analytical and numerical models to constrain rates and modes of distributed and localized deformation along the Lebanese restraining bend.The rivers that drain the western flank of Mount Lebanon show a consistent counterclockwise rotation with respect to an expected orogen perpendicular orientation. Moreover, a pattern of divide disequilibrium in between these rivers emerges from an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. These geometrical patterns are compatible with simulation results using a landscape evolution model, which imposes a distributed velocity field along a domain that represents the western flank of Mount Lebanon. We further develop an analytical model that relates the river orientation to a set of kinematic parameters that represents a combined pure and simple shear strain field, and we find the parameters that best explain the present orientation of the western Lebanon rivers. Our results indicate that distributed deformation to the west of the YF takes as much as 30% of the relative Arabia-Sinai plate velocity since the late Miocene, and that the average slip rate along the YF during the same time interval has been 3.8-4.4 mm/yr. The theoretical model can further explain the inferred rotation from Paleomagnetic measurements.
NASA Astrophysics Data System (ADS)
Gold, Ryan; Reitman, Nadine; Briggs, Richard; Barnhart, William; Hayes, Gavin
2015-04-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the 60° ± 15° northwest-dipping Hoshab fault in southern Pakistan. The earthquake is notable because it produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. Surface displacements and geodetic and teleseismic inversions indicate that peak slip occurred within the upper 0-3 km of the crust. To explore along-strike and fault-perpendicular surface deformation patterns, we remotely mapped the surface trace of the rupture and measured its surface deformation using high-resolution (0.5 m) pre- and post-event satellite imagery. Post-event images were collected 7-114 days following the earthquake, so our analysis captures the sum of both the coseismic and post-seismic (e.g., after slip) deformation. We document peak left-lateral offset of ~15 m using 289 near-field (±10 m from fault) laterally offset piercing points, such as streams, terrace risers, and roads. We characterize off-fault deformation by measuring the medium- (±200 m from fault) and far-field (±10 km from fault) displacement using manual (242 measurements) and automated image cross-correlation methods. Off-fault peak lateral displacement values (medium- and far-field) are ~16 m and commonly exceed the on-fault displacement magnitudes. Our observations suggest that coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, the majority of surface displacement is within 100 m of the primary fault trace and is most localized on sections of the rupture exhibiting narrow (<5 m) zones of observable surface deformation. Furthermore, the near-field displacement measurements account for, on average, only 73% of the total coseismic displacement field and the pattern is highly heterogeneous. This analysis highlights the importance of identifying paleoseismic field study sites (e.g. trenches) that span fault sections with narrow deformation zones in order to capture the full deformation field. Our results imply that hazard analyses based on geologically-determined fault slip rates (e.g., near-field) should consider the significant and heterogeneous mismatch we document between on- and off-fault coseismic deformation.
NASA Astrophysics Data System (ADS)
Baumgartner, Richard; Keplinger, Christoph; Kaltseis, Rainer; Schwödiauer, Reinhard; Bauer, Siegfried
2011-04-01
Electrically deformable materials have a long history, with first quotations in a letter from Alessandro Volta. The topic turned out to be hot at the end of the 19th century, with a landmark paper of Röntgen anticipating the dielectric elastomer principle. In 2000, Pelrine and co-workers generated huge interest in such soft actuators, by demonstrating voltage induced huge area expansion rates of more than 300%. Since then, the field became mature, with first commercial applications appearing on the market. New frontiers also emerged recently, for example by using dielectric transducers in a reverse mode for scavenging mechanical energy. In the present survey we briefly discuss the latest developments in the field.
Deformation field heterogeneity in punch indentation
Murthy, Tejas G.; Saldana, Christopher; Hudspeth, Matthew; M'Saoubi, Rachid
2014-01-01
Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described. PMID:24910521
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; OBrien, R; Shieh, C
2014-06-15
Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less
NASA Astrophysics Data System (ADS)
Denneulin, T.; Wollschläger, N.; Everhardt, A. S.; Farokhipoor, S.; Noheda, B.; Snoeck, E.; Hÿtch, M.
2018-05-01
Lead zirconate titanate samples are used for their piezoelectric and ferroelectric properties in various types of micro-devices. Epitaxial layers of tetragonal perovskites have a tendency to relax by forming ferroelastic domains. The accommodation of the a/c/a/c polydomain structure on a flat substrate leads to nanoscale deformation gradients which locally influence the polarization by flexoelectric effect. Here, we investigated the deformation fields in epitaxial layers of Pb(Zr0.2Ti0.8)O3 grown on SrTiO3 substrates using transmission electron microscopy (TEM). We found that the deformation gradients depend on the domain walls inclination ( or to the substrate interface) of the successive domains and we describe three different a/c/a domain configurations: one configuration with parallel a-domains and two configurations with perpendicular a-domains (V-shaped and hat--shaped). In the parallel configuration, the c-domains contain horizontal and vertical gradients of out-of-plane deformation. In the V-shaped and hat--shaped configurations, the c-domains exhibit a bending deformation field with vertical gradients of in-plane deformation. Each of these configurations is expected to have a different influence on the polarization and so the local properties of the film. The deformation gradients were measured using dark-field electron holography, a TEM technique, which offers a good sensitivity (0.1%) and a large field-of-view (hundreds of nanometers). The measurements are compared with finite element simulations.
A computer-based simulation of obstetric forceps placement.
Lapeer, Rudy; Audinis, Vilius; Gerikhanov, Zelimkhan; Dupuis, Olivier
2014-01-01
Obstetric forceps are commonly used when the expulsion of the baby during childbirth fails to progress. When the two forceps blades are applied correctly, i.e. symmetrically, the inner surface of each blade maximises the area in contact with the fetal head. On the contrary, when the blades are applied asymmetrically, the contact areas between the inner surface of the blades and the fetal head are minimal and at distinct locations at the left and right sides of the fetal head. It is therefore assumed in the field of obstetrics that asymmetric application is bound to cause intra-cranial damage due to significantly higher shear forces and significant deformation of the fetal cranial bones as compared to symmetric application. In this paper we present the first of a series of studies to analyse the mechanical contact between head and forceps under different conditions using finite element analysis. We used high fidelity mesh models of a fetal skull and obstetric forceps. The fetal cranial material properties are known from previous studies. We observed significantly higher deformations and stresses for the asymmetric application of the blades as compared to symmetric placement.
A review on shape memory alloys with applications to morphing aircraft
NASA Astrophysics Data System (ADS)
Barbarino, S.; Saavedra Flores, E. I.; Ajaj, R. M.; Dayyani, I.; Friswell, M. I.
2014-06-01
Shape memory alloys (SMAs) are a unique class of metallic materials with the ability to recover their original shape at certain characteristic temperatures (shape memory effect), even under high applied loads and large inelastic deformations, or to undergo large strains without plastic deformation or failure (super-elasticity). In this review, we describe the main features of SMAs, their constitutive models and their properties. We also review the fatigue behavior of SMAs and some methods adopted to remove or reduce its undesirable effects. SMAs have been used in a wide variety of applications in different fields. In this review, we focus on the use of shape memory alloys in the context of morphing aircraft, with particular emphasis on variable twist and camber, and also on actuation bandwidth and reduction of power consumption. These applications prove particularly challenging because novel configurations are adopted to maximize integration and effectiveness of SMAs, which play the role of an actuator (using the shape memory effect), often combined with structural, load-carrying capabilities. Iterative and multi-disciplinary modeling is therefore necessary due to the fluid-structure interaction combined with the nonlinear behavior of SMAs.
Color tunable photonic textiles for wearable display applications
NASA Astrophysics Data System (ADS)
Sayed, I.; Berzowska, J.; Skorobogatiy, M.
2010-04-01
Integration of optical functionalities such as light emission, processing and collection into flexible woven matrices of fabric have grabbed a lot of attention in the last few years. Photonic textiles frequently involve optical fibers as they can be easily processed together with supporting fabric fibers. This technology finds uses in various fields of application such as interactive clothing, signage, wearable health monitoring sensors and mechanical strain and deformation detectors. Recent development in the field of Photonic Band Gap optical fibers (PBG) could potentially lead to novel photonic textiles applications and techniques. Particularly, plastic PBG Bragg fibers fabricated in our group have strong potential in the field of photonic textiles as they offer many advantages over standard silica fibers at the same low cost. Among many unusual properties of PBG textiles we mention that they are highly reflective, PBG textiles are colored without using any colorants, PBG textiles can change their color by controlling the relative intensities of guided and reflected light, and finally, PBG textiles can change their colors when stretched. Some of the many experimental realization of photonic bandgap fiber textiles and their potential applications in wearable displays are discussed.
Evaluation of deformable image registration and a motion model in CT images with limited features.
Liu, F; Hu, Y; Zhang, Q; Kincaid, R; Goodman, K A; Mageras, G S
2012-05-07
Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.
Superposed ruptile deformational events revealed by field and VOM structural analysis
NASA Astrophysics Data System (ADS)
Kumaira, Sissa; Guadagnin, Felipe; Keller Lautert, Maiara
2017-04-01
Virtual outcrop models (VOM) is becoming an important application in the analysis of geological structures due to the possibility of obtaining the geometry and in some cases kinematic aspects of analyzed structures in a tridimensional photorealistic space. These data are used to gain quantitative information on the deformational features which coupled with numeric models can assist in understands deformational processes. Old basement units commonly register superposed deformational events either ductile or ruptile along its evolution. The Porongos Belt, located at southern Brazil, have a complex deformational history registering at least five ductile and ruptile deformational events. In this study, we presents a structural analysis of a quarry in the Porongos Belt, coupling field and VOM structural information to understand process involved in the last two deformational events. Field information was acquired using traditional structural methods for analysis of ruptile structures, such as the descriptions, drawings, acquisition of orientation vectors and kinematic analysis. VOM was created from the image-based modeling method through photogrammetric data acquisition and orthorectification. Photogrammetric data acquisition was acquired using Sony a3500 camera and a total of 128 photographs were taken from ca. 10-20 m from the outcrop in different orientations. Thirty two control point coordinates were acquired using a combination of RTK dGPS surveying and total station work, providing a precision of few millimeters for x, y and z. Photographs were imported into the Photo Scan software to create a 3D dense point cloud from structure from-motion algorithm, which were triangulated and textured to generate the VOM. VOM was georreferenced (oriented and scaled) using the ground control points, and later analyzed in OpenPlot software to extract structural information. Data was imported in Wintensor software to obtain tensor orientations, and Move software to process and interpret geometrical and kinematic data. Planar and linear structural orientations and kinematic indicators revealed superposition of three deformational events: i) compressive, ii) transtensional, and iii) extensional paleostress regimes. The compressive regime was related to a radial to pure compression with N-S horizontal maximum compression vector. This stress regime corresponds mainly to the development of dextral tension fractures and NE-SW reverse faults. The transtensional regime has NW-SE sub-horizontal extension, NE-SW horizontal compressional, and sub-vertical intermediate tensors, generating mainly shear fractures by reactivation of the metamorphic foliation (anisotropy), NE-SW reverse faults and NE-vertical veins and gashes. The extensional regime of strike-slip type presents a NE-SW sub-horizontal extension and NW-SE trending sub-vertical maximum compression vector. Structures related to this regime are sub-vertical tension gashes, conjugate fractures and NW-SE normal faults. Cross-cutting relations show that compression was followed by transtension, which reactivate the ductile foliation, and in the last stage, extension dominated. Most important findings show that: i) local stress fields can modify expected geometry and ii) anisotropy developed by previous structures control the nucleation of new fractures and reactivations. Use of field data integrated in a VOM has great potential as analogues for structured reservoirs.
de Solla, Shane Raymond; Palonen, Kimberley Elizabeth; Martin, Pamela Anne
2014-01-01
Turtles frequently oviposit in soils associated with agriculture and, thus, may be exposed to pesticides or fertilizers. The toxicity of a pesticide regime that is used for potato production in Ontario on the survivorship of snapping turtle (Chelydra serpentina) eggs was evaluated. The following treatments were applied to clean soil: 1) a mixture of the pesticides chlorothalonil, S-metolachlor, metribuzin, and chlorpyrifos, and 2) the soil fumigant metam sodium. Turtle eggs were incubated in soil in outdoor plots in which these mixtures were applied at typical and higher field application rates, where the eggs were subject to ambient temperature and weather conditions. The pesticide mixture consisting of chlorothalonil, S-metolachlor, metribuzin, and chlorpyrifos did not affect survivorship, deformities, or body size at applications up to 10 times the typical field application rates. Hatching success ranged between 87% and 100% for these treatments. Metam sodium was applied at 0.1¯ times, 0.3¯ times, 1 times, and 3 times field application rates. Eggs exposed to any application of metam sodium had 100% mortality. At typical field application rates, the chemical regime associated with potato production does not appear to have any detrimental impacts on turtle egg development, except for the use of the soil fumigant metam sodium, which is highly toxic to turtle eggs at the lowest recommended application rate. © 2013 SETAC.
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.
Recent results and persisting problems in modeling flow induced coalescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortelný, I., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz; Jza, J., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz
2014-05-15
The contribution summarizes recent results of description of the flow induced coalescence in immiscible polymer blends and addresses problems that call for which solving. The theory of coalescence based on the switch between equations for matrix drainage between spherical or deformed droplets provides a good agreement with more complicated modeling and available experimental data for probability, P{sub c}, that the collision of droplets will be followed by their fusion. A new equation for description of the matrix drainage between deformed droplets, applicable to the whole range of viscosity ratios, p, of the droplets and matrixes, is proposed. The theory facilitatesmore » to consider the effect of the matrix elasticity on coalescence. P{sub c} decreases with the matrix relaxation time but this decrease is not pronounced for relaxation times typical of most commercial polymers. Modeling of the flow induced coalescence in concentrated systems is needed for prediction of the dependence of coalescence rate on volume fraction of droplets. The effect of the droplet anisometry on P{sub c} should be studied for better understanding the coalescence in flow field with high and moderate deformation rates. A reliable description of coalescence in mixing and processing devices requires proper modeling of complex flow fields.« less
Stochastic seismic inversion based on an improved local gradual deformation method
NASA Astrophysics Data System (ADS)
Yang, Xiuwei; Zhu, Peimin
2017-12-01
A new stochastic seismic inversion method based on the local gradual deformation method is proposed, which can incorporate seismic data, well data, geology and their spatial correlations into the inversion process. Geological information, such as sedimentary facies and structures, could provide significant a priori information to constrain an inversion and arrive at reasonable solutions. The local a priori conditional cumulative distributions at each node of model to be inverted are first established by indicator cokriging, which integrates well data as hard data and geological information as soft data. Probability field simulation is used to simulate different realizations consistent with the spatial correlations and local conditional cumulative distributions. The corresponding probability field is generated by the fast Fourier transform moving average method. Then, optimization is performed to match the seismic data via an improved local gradual deformation method. Two improved strategies are proposed to be suitable for seismic inversion. The first strategy is that we select and update local areas of bad fitting between synthetic seismic data and real seismic data. The second one is that we divide each seismic trace into several parts and obtain the optimal parameters for each part individually. The applications to a synthetic example and a real case study demonstrate that our approach can effectively find fine-scale acoustic impedance models and provide uncertainty estimations.
Davatzikos, Christos
2016-10-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sorokin, Vladislav V.; Stepanov, Gennady V.; Shamonin, Mikhail; Monkman, Gareth J.; Kramarenko, Elena Yu
2017-03-01
Magnetoactive elastomers (MAE) based on soft silicone matrices, filled with various proportions of large diameter (approximately 50 μm) iron and small diameter (approximately 0.5 μm) magnetite particles are synthesized. Their rheological behavior in homogeneous magnetic fields up to 600 mT is studied in detail. The addition of small magnetite particles facilitates fabrication of uniformly distributed magnetic elastomer composites by preventing aggregation and sedimentation of large particles during curing. It is shown that using the proposed bimodal filler particles it is possible to tailor various magnetorheological (MR) properties which can be useful for different target applications. In particular, either absolute or relative magnetorheological effects can be tuned. The value of the damping factor as well as the range of deformation amplitudes for the linear viscoelastic regime can be chosen. The interdependencies between different MR properties of bimodal MAEs are considered. The results are discussed in the model framework of particle network formation under the simultaneous influence of external magnetic fields and mechanical deformation.
Davatzikos, Christos
2017-01-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582
Bai, Penggang; Du, Min; Ni, Xiaolei; Ke, Dongzhong; Tong, Tong
2017-01-01
The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg), which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency. PMID:28388623
Explicitly broken supersymmetry with exactly massless moduli
NASA Astrophysics Data System (ADS)
Dong, Xi; Freedman, Daniel Z.; Zhao, Yue
2016-06-01
The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a super-gravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.
Magnetic Flattening of Stem-Cell Spheroids Indicates a Size-Dependent Elastocapillary Transition
NASA Astrophysics Data System (ADS)
Mazuel, Francois; Reffay, Myriam; Du, Vicard; Bacri, Jean-Claude; Rieu, Jean-Paul; Wilhelm, Claire
2015-03-01
Cellular aggregates (spheroids) are widely used in biophysics and tissue engineering as model systems for biological tissues. In this Letter we propose novel methods for molding stem-cell spheroids, deforming them, and measuring their interfacial and elastic properties with a single method based on cell tagging with magnetic nanoparticles and application of a magnetic field gradient. Magnetic molding yields spheroids of unprecedented sizes (up to a few mm in diameter) and preserves tissue integrity. On subjecting these spheroids to magnetic flattening (over 150 g ), we observed a size-dependent elastocapillary transition with two modes of deformation: liquid-drop-like behavior for small spheroids, and elastic-sphere-like behavior for larger spheroids, followed by relaxation to a liquidlike drop.
Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Kaplar, Robert J.
2017-02-01
Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.
NASA Astrophysics Data System (ADS)
Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.
2016-08-01
The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.
2014-12-01
Coseismic surface deformation is typically measured in the field by geologists and with a range of geophysical methods such as InSAR, LiDAR and GPS. Current methods, however, either fail to capture the near-field coseismic surface deformation pattern where vital information is needed, or lack pre-event data. We develop a standardized and reproducible methodology to fully constrain the surface, near-field, coseismic deformation pattern in high resolution using aerial photography. We apply our methodology using the program COSI-corr to successfully cross-correlate pairs of aerial, optical imagery before and after the 1992, Mw 7.3 Landers and 1999, Mw 7.1 Hector Mine earthquakes. This technique allows measurement of the coseismic slip distribution and magnitude and width of off-fault deformation with sub-pixel precision. This technique can be applied in a cost effective manner for recent and historic earthquakes using archive aerial imagery. We also use synthetic tests to constrain and correct for the bias imposed on the result due to use of a sliding window during correlation. Correcting for artificial smearing of the tectonic signal allows us to robustly measure the fault zone width along a surface rupture. Furthermore, the synthetic tests have constrained for the first time the measurement precision and accuracy of estimated fault displacements and fault-zone width. Our methodology provides the unique ability to robustly understand the kinematics of surface faulting while at the same time accounting for both off-fault deformation and measurement biases that typically complicates such data. For both earthquakes we find that our displacement measurements derived from cross-correlation are systematically larger than the field displacement measurements, indicating the presence of off-fault deformation. We show that the Landers and Hector Mine earthquake accommodated 46% and 38% of displacement away from the main primary rupture as off-fault deformation, over a mean deformation width of 183 m and 133 m, respectively. We envisage that correlation results derived from our methodology will provide vital data for near-field deformation patterns and will be of significant use for constraining inversion solutions for fault slip at depth.
NASA Astrophysics Data System (ADS)
Gonzalez, Javier
A full field method for visualizing deformation around the crack tip in a fracture process with large strains is developed. A digital image correlation program (DIC) is used to incrementally compute strains and displacements between two consecutive images of a deformation process. Values of strain and displacements for consecutive deformations are added, this way solving convergence problems in the DIC algorithm when large deformations are investigated. The method developed is used to investigate the strain distribution within 1 mm of the crack tip in a particulate composite solid (propellant) using microscopic visualization of the deformation process.
Granular flows in constrained geometries
NASA Astrophysics Data System (ADS)
Murthy, Tejas; Viswanathan, Koushik
Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.
Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system
NASA Astrophysics Data System (ADS)
Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen
2018-02-01
In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.
NASA Astrophysics Data System (ADS)
Procháska, F.; Vít, T.; Matoušek, O.; Melich, R.
2016-11-01
High demands on the final surfaces micro-roughness as well as great shape accuracy have to be achieved under the manufacturing process of the precise mirrors for Metis orbital coronagraph. It is challenging engineering task with respect to lightweight design of the mirrors and resulting objectionable optical surface shape stability. Manufacturing of such optical elements is usually affected by number of various effects. Most of them are caused by instability of temperature field. It is necessary to explore, comprehend and consequently minimize all thermo - mechanical processes which take place during mirror cementing, grinding and polishing processes to minimize the optical surface deformation. Application of FEM simulation was proved as a useful tool to help to solve this task. FEM simulations were used to develop and virtually compare different mirror holders to minimize the residual stress generated by temperature changes and to suppress the shape deformation of the optical surface below the critical limit of about 100 nm.
Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress-strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages like a typically higher deformability and enhanced biocompatibility combined with high tunability.
Denneulin, T; Wollschläger, N; Everhardt, A S; Farokhipoor, S; Noheda, B; Snoeck, E; Hÿtch, M
2018-05-31
Lead zirconate titanate samples are used for their piezoelectric and ferroelectric properties in various types of micro-devices. Epitaxial layers of tetragonal perovskites have a tendency to relax by forming [Formula: see text] ferroelastic domains. The accommodation of the a/c/a/c polydomain structure on a flat substrate leads to nanoscale deformation gradients which locally influence the polarization by flexoelectric effect. Here, we investigated the deformation fields in epitaxial layers of Pb(Zr 0.2 Ti 0.8 )O 3 grown on SrTiO 3 substrates using transmission electron microscopy (TEM). We found that the deformation gradients depend on the domain walls inclination ([Formula: see text] or [Formula: see text] to the substrate interface) of the successive [Formula: see text] domains and we describe three different a/c/a domain configurations: one configuration with parallel a-domains and two configurations with perpendicular a-domains (V-shaped and hat-[Formula: see text]-shaped). In the parallel configuration, the c-domains contain horizontal and vertical gradients of out-of-plane deformation. In the V-shaped and hat-[Formula: see text]-shaped configurations, the c-domains exhibit a bending deformation field with vertical gradients of in-plane deformation. Each of these configurations is expected to have a different influence on the polarization and so the local properties of the film. The deformation gradients were measured using dark-field electron holography, a TEM technique, which offers a good sensitivity (0.1%) and a large field-of-view (hundreds of nanometers). The measurements are compared with finite element simulations.
Applications of FRP-OFBG sensors on bridge cables
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Zhang, Zhichun; Deng, Nianchun; Zhao, Xuefeng; Li, Dongsheng; Wang, Chuang; Ou, Jinping
2005-05-01
It is still a practical problem how to effectively install FBG sensors on bridge cabes. In this paper, a simple and effective solution is introduced to develop smart bridge cables using FRP-OFBG bars developed in HIT (Harbin Institute of Technology). Here, the FRP-OFBG bar acts as one component of the cable and shows force resistance and well-protected sensors in service. The installation techniques and the sensing properties of FBGs in three kinds of cables, FRP cables, common steel-wire cable and extruded-anchor cable, are introduced and tested under dead load. Moreover, the preliminary introduction of a practical field application based on this solution has been also given. The experimental results show that the deformability of FRP-OFBG bars in the smart cables can reach the terminal and show wonderful accuracy, which shows that such kind of smart cable is practical in field application.
Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces
NASA Astrophysics Data System (ADS)
Hedayati, R.; Mirzaali, M. J.; Vergani, L.; Zadpoor, A. A.
2018-03-01
Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of "action-at-a-distance" metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson's ratios as a way of making "action-at-a-distance" metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.
NASA Astrophysics Data System (ADS)
Gold, R. D.; Reitman, N. G.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.
2014-12-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the Hoshab fault in southern Pakistan. We remotely measured the coseismic surface deformation field using high-resolution (0.5 m) pre- and post-event satellite imagery. We measured ~300 near-field (0-10 m from fault) laterally offset piercing points (streams, terrace risers, roads, etc.) and find peak left-lateral offsets of ~12-15 m. We characterized the far-field (0-10 km from fault) displacement field using manual (~250 measurements) and automated image cross-correlation methods (e.g., pixel tracking) and find peak displacement values of ~16 m, which commonly exceed the on-fault displacement magnitudes. Our preliminary observations suggest the following: (1) coseismic surface displacement typically increases with distance away from the surface trace of the fault (e.g., highest displacement values in the far field), (2) for certain locations along the fault rupture, as little as 50% of the coseismic displacement field occurred in the near-field; and (3) the magnitudes of individual displacements are inversely correlated to the width of the surface rupture zone (e.g., largest displacements where the fault zone is narrowest). This analysis highlights the importance of identifying field study sites spanning fault sections with narrow deformation zones in order to capture the entire deformation field. For regions of distributed deformation, these results would predict that geologic slip rate studies underestimate a fault's complete slip rate.
Zhao, Jian; Yang, Ping; Zhao, Yue
2017-06-01
Speckle pattern-based characteristics of digital image correlation (DIC) restrict its application in engineering fields and nonlaboratory environments, since serious decorrelation effect occurs due to localized sudden illumination variation. A simple and efficient speckle pattern adjusting and optimizing approach presented in this paper is aimed at providing a novel speckle pattern robust enough to resist local illumination variation. The new speckle pattern, called neighborhood binary speckle pattern, derived from original speckle pattern, is obtained by means of thresholding the pixels of a neighborhood at its central pixel value and considering the result as a binary number. The efficiency of the proposed speckle pattern is evaluated in six experimental scenarios. Experiment results indicate that the DIC measurements based on neighborhood binary speckle pattern are able to provide reliable and accurate results, even though local brightness and contrast of the deformed images have been seriously changed. It is expected that the new speckle pattern will have more potential value in engineering applications.
Dynamical Energy Gap Engineering in Graphene via Oscillating Out-of-Plane Deformations
NASA Astrophysics Data System (ADS)
Sandler, Nancy; Zhai, Dawei
The close relation between electronic properties and mechanical deformations in graphene has been the topic of active research in recent years. Interestingly, the effect of deformations on electronic properties can be understood in terms of pseudo-magnetic fields, whose spatial distribution and intensity are controllable via the deformation geometry. Previous results showed that electromagnetic fields (light) have the potential to induce dynamical gaps in graphene's energy bands, transforming graphene from a semimetal to a semiconductor. However, laser frequencies required to achieve these regimes are in the THz regime, which imposes challenges for practical purposes. In this talk we report a novel method to create dynamical gaps using oscillating mechanical deformations, i.e., via time-dependent pseudo-magnetic fields. Using the Floquet formalism we show the existence of a dynamical gap in the band structure at energies set by the frequency of the oscillation, and with a magnitude tuned by the geometry of the deformation. This dynamical-mechanical manipulation strategy appears as a promising venue to engineer electronic properties of suspended graphene devices. Work supported by NSF-DMR 1508325.
Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids
NASA Astrophysics Data System (ADS)
Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk
2018-03-01
The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Printz, Adam D.; Lipomi, Darren J., E-mail: dlipomi@ucsd.edu
The primary goal of the field concerned with organic semiconductors is to produce devices with performance approaching that of silicon electronics, but with the deformability—flexibility and stretchability—of conventional plastics. However, an inherent competition between deformability and charge transport has long been observed in these materials, and achieving the extreme (or even moderate) deformability implied by the word “plastic” concurrently with high charge transport may be elusive. This competition arises because the properties needed for high carrier mobilities—e.g., rigid chains in π-conjugated polymers and high degrees of crystallinity in the solid state—are antithetical to deformability. On the device scale, this competitionmore » can lead to low-performance yet mechanically robust devices, or high-performance devices that fail catastrophically (e.g., cracking, cohesive failure, and delamination) under strain. There are, however, some observations that contradict the notion of the mutual exclusivity of electronic and mechanical performances. These observations suggest that this problem may not be a fundamental trade-off, but rather an inconvenience that may be negotiated by a logical selection of materials and processing conditions. For example, the selection of the poly(3-alkylthiophene) with a critical side-chain length—poly(3-heptylthiophene) (n = 7)—marries the high deformability of poly(3-octylthiophene) (n = 8) with the high electronic performance (as manifested in photovoltaic efficiency) of poly(3-hexylthiophene) (n = 6). This review explores the relationship between deformability and charge transport in organic semiconductors. The principal conclusions are that reducing the competition between these two parameters is in fact possible, with two demonstrated routes being: (1) incorporation of softer, insulating material into a stiffer, semiconducting material and (2) increasing disorder in a highly ordered film, but not enough to disrupt charge transport pathways. The aim of this review is to provide a bridge between the fields interested in electronic properties and mechanical properties of conjugated polymers. We provide a high-level introduction to some of the important electronic and mechanical properties and measurement techniques for organic electronic devices, demonstrate an apparent competition between good electronic performance and mechanical deformability, and highlight potential strategies for overcoming this undesirable competition. A marriage of these two fields would allow for rational design of materials for applications requiring large-area, low-cost, printable devices that are ultra-flexible or stretchable, such as organic photovoltaic devices and wearable, conformable, or implantable sensors.« less
NASA Astrophysics Data System (ADS)
Sultan, M.; Becker, R.; Gebremichael, E.; Othman, A.; Emil, M.; Ahmed, M.; Elkadiri, R.; Pankratz, H. G.; Chouinard, K.
2015-12-01
Radar interferometric techniques including Persistent Scatterer (PS), Small BAseline Subset (SBAS), and two and three pass (differential interferometry) methods were applied to Synthetic Aperture Radar (SAR) datasets. These include the European Space Agency (ESA) ERS-1, ERS-2, Environmental satellite (Envisat), and Phased Array type L-band Synthetic Aperture Radar (PALSAR) to conduct the following: (1) map the spatial distribution of land deformation associated with a wide range of geologic settings, (2) quantify the rates of the observed land deformation, and (3) identify the factors controlling the observed deformation. The research topics/areas include: (1) subsidence associated with sediment compaction in a Delta setting (Nile Delta, Egypt), (2) deformation in a rifting setting (Red Sea rifting along the Red Sea coastal zone and proximal basement outcrops in Egypt and Saudi Arabia), (3) deformation associated with salt dome intrusion and the dissolution of sabkha deposits (Jazan area in Saudi Arabia), (4) mass transport associated with debris flows (Jazan area in Saudi Arabia), and (5) deformation preceding, contemporaneous with, or following large earthquakes (in Nepal; magnitude: 7.8; date: April, 25, 2015) and medium earthquakes (in Harrat Lunayyir volcanic field, central Saudi Arabia; magnitude: 5.7; date: May 19, 2009). The identification of the factor(s) controlling the observed deformation was attained through spatial correlation of extracted radar velocities with relevant temporal and static ground based and remotely sensed geological and cultural data sets (e.g., lithology, structure, precipitation, land use, and earthquake location, magnitude, and focal mechanism) in a Geographical Information System (GIS) environment.
In-situ measurement of texture development rate in CaIrO 3 post-perovskite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, Simon A.; Walker, Andrew M.; Mariani, Elisabetta
The rate of crystallographic preferred orientation (CPO) development during deformation of post-perovskite is crucial in interpreting seismic anisotropy in the lowermost mantle but the stability field of MgSiO 3 post-perovskite prevents high-strain deformation experiments being performed on it. Therefore, to constrain the rate of CPO development in post-perovskite, we deformed CaIrO 3, a low-pressure analogue of MgSiO 3 post-perovskite, in simple shear at 3.2 GPa and 400 °C to a shear strain (γ) of 0.81. From X-ray diffraction patterns acquired during deformation, we invert for CPO as a function of strain. By comparing the CPO that develops with visco-plastic self-consistentmore » (VPSC) models we constrain the critical resolved shear stresses (CRSS) of the non-primary slip-systems in CaIrO 3 to be of order 6 times stronger than the primary [100] (010) slip system. This value is significantly less than has been assumed by previous studies and if applicable to MgSiO 3 implies that seismic anisotropy in the D" layer develops slower than has previously been assumed.« less
Microscale and nanoscale strain mapping techniques applied to creep of rocks
NASA Astrophysics Data System (ADS)
Quintanilla-Terminel, Alejandra; Zimmerman, Mark E.; Evans, Brian; Kohlstedt, David L.
2017-07-01
Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, T/Tm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications.
Cell-assisted lipotransfer in the clinical treatment of facial soft tissue deformity
Ma, Li; Wen, Huicai; Jian, Xueping; Liao, Huaiwei; Sui, Yunpeng; Liu, Yanping; Xu, Guizhen
2015-01-01
Cosmetic surgeons have experimented with a variety of substances to improve soft tissue deformities of the face. Autologous fat grafting provides significant advantages over other modalities because it leaves no scar, is easy to use and is well tolerated by most patients. Autologous fat grafting has become one of the most popular techniques in the field of facial plastic surgery. Unfortunately, there are still two major problems affecting survival rate and development: revascularization after transplantion; and cell reservation proliferation and survival. Since Zuk and Yosra developed a technology based on adipose-derived stem cells and cell-assisted lipotrophy, researchers have hoped that this technology would promote the survival and reduce the absorption of grafted fat cells. Autologous adipose-derived stem cells may have great potential in skin repair applications, aged skin rejuvenation and other aging-related skin lesion treatments. Recently, the study of adipose-derived stem cells has gained increased attention. More researchers have started to adopt this technology in the clinical treatment of facial soft tissue deformity. The present article reviews the history of facial soft tissue augmentation and the advent of adipose-derived stem cells in the area of the clinical treatment of facial soft tissue deformity. PMID:26361629
NASA Astrophysics Data System (ADS)
Araszkiewicz, Andrzej; Figurski, Mariusz
2015-04-01
The potential that lies in the use of GNSS measurements for crustal deformation studies have already noticed in the beginning of the first of such a system (GPS). Today thanks to the development of satellite positioning techniques it is possible to detect displacement on the Earth surface with an accuracy less than 1 cm. With long-term observations we can determine the velocities even more accurately. Growing demand in the last years for GNSS applications, both for scientific and civil use, meant that new networks of the reference stations were created. Such a dense GNSS networks allow to conduct research in the field of crust deformation at a higher spatial resolution than before. In Europe most of the research focuses on Mediterranean regions, where we can monitor events resulting from the tectonic plates collision. But even in Central Europe we can see effect of Africa push. In our research we focused on Polish territory, where in the past 5 years a nearly 300 reference stations were established. With minimal movements that have been observed in Poland, a key issue in this type of research is to determine the geodynamic reliability of the estimated stations velocities. While the long-term observations enable us to determine the very accurate velocities, it hard to indicate how reliably they reflect actual tectonic movements is. In this paper we proposed a method for testing the reliability of stations velocities based on the strain rate field analysis. The method is based on the analysis of the distribution of the rate of deformation tensor components obtained for triangular elements built on the basis of assessed station. The paper presents the results of numerical simulations and initial use of the method for the Polish network of reference stations: ASG-EUPOS
NASA Astrophysics Data System (ADS)
Reinoso, J.; Paggi, M.; Linder, C.
2017-06-01
Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.
NASA Astrophysics Data System (ADS)
Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.
2017-12-01
We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional shear zone formed at or near the brittle-ductile transition under relatively high stress conditions. Moreover, we demonstrate the utility of combined crystallographic and rigid grain methods of vorticity analysis for deducing deformation geometries, kinematics, and tectonic histories in polyphase shear zones.
The Topology of Symmetric Tensor Fields
NASA Technical Reports Server (NTRS)
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
Quantification of abdominal aortic deformation after EVAR
NASA Astrophysics Data System (ADS)
Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir
2009-02-01
Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.
Integrated optical design for highly dynamic laser beam shaping with membrane deformable mirrors
NASA Astrophysics Data System (ADS)
Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter
2017-02-01
The utilization of membrane deformable mirrors has raised its importance in laser materials processing since they enable the generation of highly spatial and temporal dynamic intensity distributions for a wide field of applications. To take full advantage of these devices for beam shaping, the huge amount of degrees of freedom has to be considered and optimized already within the early stage of the optical design. Since the functionality of commercial available ray-tracing software has been mainly specialized on geometric dependencies and their optimization within constraints, the complex system characteristics of deformable mirrors cannot be sufficiently taken into account yet. The main reasons are the electromechanical interdependencies of electrostatic membrane deformable mirrors, namely saturation and mechanical clamping, that result in non-linear deformation. This motivates the development of an integrative design methodology. The functionality of the ray-tracing program ZEMAX is extended with a model of an electrostatic membrane mirror. This model is based on experimentally determined influence functions. Furthermore, software routines are derived and integrated that allow for the compilation of optimization criteria for the most relevant analytically describable beam shaping problems. In this way, internal optimization routines can be applied for computing the appropriate membrane deflection of the deformable mirror as well as for the parametrization of static optical components. The experimental verification of simulated intensity distributions demonstrates that the beam shaping properties can be predicted with a high degree of reliability and precision.
Effects of Contaminated Fluids on Complex Moduli in Porous Rocks; Lab and Field.
NASA Astrophysics Data System (ADS)
Spetzler, H.; Snieder, R.; Zhang, J.
2006-12-01
The interaction between fluids and porous rocks has been measured in the laboratory and in a controlled field experiment. In the laboratory we measured the static and dynamic effect of various contaminated fluids on the wettability, capillary pressure and other flow properties on geometrically simple surfaces. The characteristics of the menisci were quantified by measuring the forces required to deform and move them. Rate dependent surface tension and contact angles describe the hysteresis of the contact line motion. Finally we used geometrically complex surfaces, i.e. real rocks, and observed similar behavior. Then we did a field experiment where we could controllably irrigate a test volume and observe changes in deformation. At low deformation rates, where viscous deformation of the fluid is negligible, the dynamic hystereses of menisci deformation become the dominant mechanism for changes in complex moduli of partially fluid saturated rocks. In the laboratory for contaminated samples we observe attenuation increasing from below 1 Hz to 1 mHz, the limit of our patience in making these measurements. In the field we used microseisms and solid Earth tides as low frequency deformation sources. In the case of the tides we compare changes in observed tilt with theoretical site specific tidal tilts. Preliminary theoretical modeling suggests that indeed small changes in the moduli should be observable in changes in tilt response. In this paper we present our laboratory results and the field data and analysis to date.
Gauge Field Localization on Deformed Branes
NASA Astrophysics Data System (ADS)
Tofighi, A.; Moazzen, M.; Farokhtabar, A.
2016-02-01
In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.
Deformation structure analysis of material at fatigue on the basis of the vector field
NASA Astrophysics Data System (ADS)
Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.
2017-12-01
In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.
Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube
NASA Astrophysics Data System (ADS)
Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian
2018-04-01
In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.
Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube
NASA Astrophysics Data System (ADS)
Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian
2018-05-01
In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.
Homogeneous Yang-Baxter deformations as generalized diffeomorphisms
NASA Astrophysics Data System (ADS)
Sakamoto, Jun-ichi; Sakatani, Yuho; Yoshida, Kentaroh
2017-10-01
Yang-Baxter (YB) deformations of string sigma model provide deformed target spaces. We propose that homogeneous YB deformations always lead to a certain class of β-twisted backgrounds and represent the bosonic part of the supergravity fields in terms of the classical r-matrix associated with the YB deformation. We then show that various β-twisted backgrounds can be realized by considering generalized diffeomorphisms in the undeformed background. Our result extends the notable relation between the YB deformations and (non-commuting) TsT transformations. We also discuss more general deformations beyond the YB deformations.
Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, U. J.; Supple, J. R.; Franich, R. D.
2013-10-15
Purpose: Deformable image registration (DIR) has become a key tool for adaptive radiotherapy to account for inter- and intrafraction organ deformation. Of contemporary interest, the application to deformable dose accumulation requires accurate deformation even in low contrast regions where dose gradients may exist within near-uniform tissues. One expects high-contrast features to generally be deformed more accurately by DIR algorithms. The authors systematically assess the accuracy of 12 DIR algorithms and quantitatively examine, in particular, low-contrast regions, where accuracy has not previously been established.Methods: This work investigates DIR algorithms in three dimensions using deformable gel (DEFGEL) [U. J. Yeo, M. L.more » Taylor, L. Dunn, R. L. Smith, T. Kron, and R. D. Franich, “A novel methodology for 3D deformable dosimetry,” Med. Phys. 39, 2203–2213 (2012)], for application to mass- and density-conserving deformations. CT images of DEFGEL phantoms with 16 fiducial markers (FMs) implanted were acquired in deformed and undeformed states for three different representative deformation geometries. Nonrigid image registration was performed using 12 common algorithms in the public domain. The optimum parameter setup was identified for each algorithm and each was tested for deformation accuracy in three scenarios: (I) original images of the DEFGEL with 16 FMs; (II) images with eight of the FMs mathematically erased; and (III) images with all FMs mathematically erased. The deformation vector fields obtained for scenarios II and III were then applied to the original images containing all 16 FMs. The locations of the FMs estimated by the algorithms were compared to actual locations determined by CT imaging. The accuracy of the algorithms was assessed by evaluation of three-dimensional vectors between true marker locations and predicted marker locations.Results: The mean magnitude of 16 error vectors per sample ranged from 0.3 to 3.7, 1.0 to 6.3, and 1.3 to 7.5 mm across algorithms for scenarios I to III, respectively. The greatest accuracy was exhibited by the original Horn and Schunck optical flow algorithm. In this case, for scenario III (erased FMs not contributing to driving the DIR calculation), the mean error was half that of the modified demons algorithm (which exhibited the greatest error), across all deformations. Some algorithms failed to reproduce the geometry at all, while others accurately deformed high contrast features but not low-contrast regions—indicating poor interpolation between landmarks.Conclusions: The accuracy of DIR algorithms was quantitatively evaluated using a tissue equivalent, mass, and density conserving DEFGEL phantom. For the model studied, optical flow algorithms performed better than demons algorithms, with the original Horn and Schunck performing best. The degree of error is influenced more by the magnitude of displacement than the geometric complexity of the deformation. As might be expected, deformation is estimated less accurately for low-contrast regions than for high-contrast features, and the method presented here allows quantitative analysis of the differences. The evaluation of registration accuracy through observation of the same high contrast features that drive the DIR calculation is shown to be circular and hence misleading.« less
Large Scale Deformation of the Western US Cordillera
NASA Technical Reports Server (NTRS)
Bennett, Richard A.
2001-01-01
Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zejun; Li, Faxin; Pei, Yongmao, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn
2014-06-15
For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0–1 MPa for elastic small deformation and 0–7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10 000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by amore » voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.« less
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
NASA Astrophysics Data System (ADS)
Kirshman, David
A numerical method for the solution of inviscid compressible flow using an array of embedded Cartesian meshes in conjunction with gridless surface boundary conditions is developed. The gridless boundary treatment is implemented by means of a least squares fitting of the conserved flux variables using a cloud of nodes in the vicinity of the surface geometry. The method allows for accurate treatment of the surface boundary conditions using a grid resolution an order of magnitude coarser than required of typical Cartesian approaches. Additionally, the method does not suffer from issues associated with thin body geometry or extremely fine cut cells near the body. Unlike some methods that consider a gridless (or "meshless") treatment throughout the entire domain, multi-grid acceleration can be effectively incorporated and issues associated with global conservation are alleviated. The "gridless" surface boundary condition provides for efficient and simple problem set up since definition of the body geometry is generated independently from the field mesh, and automatically incorporated into the field discretization of the domain. The applicability of the method is first demonstrated for steady flow of single and multi-element airfoil configurations. Using this method, comparisons with traditional body-fitted grid simulations reveal that steady flow solutions can be obtained accurately with minimal effort associated with grid generation. The method is then extended to unsteady flow predictions. In this application, flow field simulations for the prescribed oscillation of an airfoil indicate excellent agreement with experimental data. Furthermore, it is shown that the phase lag associated with shock oscillation is accurately predicted without the need for a deformable mesh. Lastly, the method is applied to the prediction of transonic flutter using a two-dimensional wing model, in which comparisons with moving mesh simulations yield nearly identical results. As a result, applicability of the method to transient and vibrating fluid-structure interaction problems is established in which the requirement for a deformable mesh is eliminated.
NASA Astrophysics Data System (ADS)
Yang, X. B.; Han, X. X.; Zhou, T. B.; Liu, E. L.
2017-04-01
Through the comparative analysis of the results of the triaxial compression experiments of sandstone and the numerical simulation results of particle flow code PFC2D under the same conditions, the typical simulation curve and the corresponding simulation process were selected to analyze the evolution characteristics of the surface deformation field, the evolution characteristics of the velocity field and displacement field of the deformation localization bands of sandstone under triaxial compression. Research results show that the changes of the velocities and displacements of deformation localization bands corresponds to the change of stress during compression; In the same deformation localization band, the dislocation velocities are always in the same direction, but in the direction vertical to the localization band, the localization band sometimes squeezes and sometimes stretches; At different positions of the same deformation localization band, the dislocation velocities and extrusion velocities are both different at the same time; In the post-peak stage of loading, along the same deformation localization band, the dislocation displacements close to both loaded ends are generally greater than the ones near to the middle position of the specimen, the stretching displacements close to both loaded ends are generally smaller than the ones near to the middle position of the specimen.
Constrained H1-regularization schemes for diffeomorphic image registration
Mang, Andreas; Biros, George
2017-01-01
We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361
Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.
Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon
2015-01-01
Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. Copyright © 2014. Published by Elsevier Inc.
Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI
Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon
2016-01-01
Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446
Revell, J D; Mirmehdi, M; McNally, D S
2004-04-01
We examine tissue deformations using non-invasive dynamic musculoskeletal ultrasonograhy, and quantify its performance on controlled in vitro gold standard (groundtruth) sequences followed by clinical in vivo data. The proposed approach employs a two-dimensional variable-sized block matching algorithm with a hierarchical full search. We extend this process by refining displacements to sub-pixel accuracy. We show by application that this technique yields quantitatively reliable results.
Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications
NASA Technical Reports Server (NTRS)
Barrows, Danny A.
2006-01-01
Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.
Tunnel profile measurement by vision metrology toward application to NATM
NASA Astrophysics Data System (ADS)
Hattori, Susumu; Akimoto, Keiichi; Ono, Tetsu; Miura, Satoru
2003-05-01
The NATM, a widely used tunnel excavation method, requires precise periodical monitoring of deformations especially at fault zones, which tends to hamper traffics with conventional measurement means. In this paper vision metrology was applied to tunnel profile measurement with a view to developing a new method. Two hundred of Retro-targets are placed on a one-meter spacing lattice at a tunnel site of 7m in diameter and 15m in longitude, and 66 images were taken to cover the target field. The object space coordinates of targets obtained by bundle adjustment were compared with ones obtained by high-precision total station observation. The root mean square (RMS) of differences of coordinates was 0.548mm, which is precise enough for monitoring deformations for the NATM.
3D digital image correlation investigation of PLC effect in a new Ni-Co base superalloy
NASA Astrophysics Data System (ADS)
Gao, Y.; Fu, S. H.; Cheng, T.; Huo, X.; Zhang, Q. C.
2013-06-01
Repeated plastic instability accompanying serrated yielding in stress-strain curves and localization of deformation is observed during plastic deformation of many metallic alloys when tensile specimens are deformed under certain experimental conditions of temperature, strain rate, and pre-deformation. This phenomenon is referred to as the Portevin- Le Chatelier (PLC) effect. TMW alloy, a newly developed Ni-Co base superalloy for aircraft engine application, also exhibit PLC effect during tensile test at temperatures ranging from 300 ° to 600 °, which are also the temperature range for engine working. In this paper, a 3D digital image correlation (3D DIC) measurement system was established to observe the localization of deformation (PLC band) in a tensile test performed on TMW alloy specimen at temperature of 400 °. The 3D DIC system, with displacement measurement accuracy up to 0.01 pixels and strain measurement accuracy up to 100 μɛ, has a high performance in displacement field calculation with more than 10000 points every second on a 3.1G Hz CPU computer. The test result shows that, the PLC bands are inclined at an angle of about 60° to the tensile axis. Unlike tensile test performed on aluminums alloy, the widths of PLC bands of TMW alloy specimen, ranging from 4 mm to 4.5 mm, are much greater than the specimen thickness (0.25 mm).
A novel method for visualising and quantifying through-plane skin layer deformations.
Gerhardt, L-C; Schmidt, J; Sanz-Herrera, J A; Baaijens, F P T; Ansari, T; Peters, G W M; Oomens, C W J
2012-10-01
Skin is a multilayer composite and exhibits highly non-linear, viscoelastic, anisotropic material properties. In many consumer product and medical applications (e.g. during shaving, needle insertion, patient re-positioning), large tissue displacements and deformations are involved; consequently large local strains in the skin tissue can occur. Here, we present a novel imaging-based method to study skin deformations and the mechanics of interacting skin layers of full-thickness skin. Shear experiments and real-time video recording were combined with digital image correlation and strain field analysis to visualise and quantify skin layer deformations during dynamic mechanical testing. A global shear strain of 10% was applied to airbrush-patterned porcine skin (thickness: 1.2-1.6mm) using a rotational rheometer. The recordings were analysed with ARAMIS image correlation software, and local skin displacement, strain and stiffness profiles through the skin layers determined. The results of this pilot study revealed inhomogeneous skin deformation, characterised by a gradual transition from a low (2.0-5.0%; epidermis) to high (10-22%; dermis) shear strain regime. Shear moduli ranged from 20 to 130kPa. The herein presented method will be used for more extended studies on viable human skin, and is considered a valuable foundation for further development of constitutive models which can be used in advanced finite element analyses of skin. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Özaksoy, Volkan
2017-12-01
This study reports on spectacular deformation structures, including arrays of striated thrusts, discovered by excavation work in Holocene deposits in vicinity of a major neotectonic strike-slip fault in one of the tectonically most active regions of Turkey. The deformation structures were initially considered an evidence of sub-recent tectonic activity, but their detailed multidisciplinary study surprisingly revealed that the deformation of the clay-rich soil and its strongly weathered Jurassic substrate was of nontectonic origin, caused by argilliturbation. This phenomenon of vertisol self-deformation is well-known to pedologists, but may easily be mistaken for tectonic deformation by geologists less familiar with pedogenic processes. The possibility of argilliturbation thus needs to be taken into consideration in palaeoseismological field research wherever the deformed substrate consists of clay-rich muddy deposits. The paper reviews a range of specific diagnostic features that can serve as field criteria for the recognition of nontectonic deformation structures induced by argilliturbation in mud-dominated geological settings.
Fletcher, E; Carmichael, O; Decarli, C
2012-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.
Fletcher, E.; Carmichael, O.; DeCarli, C.
2013-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843
NASA Astrophysics Data System (ADS)
Sun, Chen; Zhou, Yihao; Li, Yang; Chen, Jubing; Miao, Hong
2018-04-01
In this paper, a multiscale segmentation-aided digital image correlation method is proposed to characterize the strain concentration of a turbine blade fir-tree root during its contact with the disk groove. A multiscale approach is implemented to increase the local spatial resolution, as the strain concentration area undergoes highly non-uniform deformation and its size is much smaller than the contact elements. In this approach, a far-field view and several near-field views are selected, aiming to get the full-field deformation and local deformation simultaneously. To avoid the interference of different cameras, only the optical axis of the far-field camera is selected to be perpendicular to the specimen surface while the others are inclined. A homography transformation is optimized by matching the feature points, to rectify the artificial deformation caused by the inclination of the optical axis. The resultant genuine near-field strain is thus obtained after the transformation. A real-world experiment is carried out and the strain concentration is characterized. The strain concentration factor is defined accordingly to provide a quantitative analysis.
Comparison of molecular dynamics and superfamily spaces of protein domain deformation.
Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María
2009-02-17
It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding.
Comparison of molecular dynamics and superfamily spaces of protein domain deformation
Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María
2009-01-01
Background It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Results Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Conclusion Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding. PMID:19220918
NASA Astrophysics Data System (ADS)
Sunil, A. S.; Bagiya, Mala S.; Catherine, Joshi; Rolland, Lucie; Sharma, Nitin; Sunil, P. S.; Ramesh, D. S.
2017-03-01
Ionospheric response to the recent 25 April 2015 Gorkha, Nepal earthquake is studied in terms of Global Positioning System-Total Electron Content (GPS-TEC) from the viewpoints of source directivity, rupture propagation and associated surface deformations, over and near the fault plane. The azimuthal directivity of co-seismic ionospheric perturbations (CIP) amplitudes from near field exhibit excellent correlation with east-southeast propagation of earthquake rupture and associated surface deformations. In addition, the amplitude of CIP is observed to be very small in the opposite direction of the rupture movement. Conceptual explanations on the poleward directivity of CIP exist in literature, we show the observational evidences of additional equator ward directivity, interpreted in terms of rupture propagation direction. We also discuss the coupling between earthquake induced acoustic waves and local geomagnetic field and its effects on near field CIP amplitudes. We suggest that variability of near field CIP over and near the fault plane are the manifestations of the geomagnetic field-wave coupling in addition to crustal deformations that observed through GPS measurements and corroborated by Interferometric Synthetic Aperture Radar (InSAR) data sets.
Recent progress of particle migration in viscoelastic fluids.
Yuan, Dan; Zhao, Qianbin; Yan, Sheng; Tang, Shi-Yang; Alici, Gursel; Zhang, Jun; Li, Weihua
2018-02-13
Recently, research on particle migration in non-Newtonian viscoelastic fluids has gained considerable attention. In a viscoelastic fluid, three dimensional (3D) particle focusing can be easily realized in simple channels without the need for any external force fields or complex microchannel structures compared with that in a Newtonian fluid. Due to its promising properties for particle precise focusing and manipulation, this field has been developed rapidly, and research on the field has been shifted from fundamentals to applications. This review will elaborate the recent progress of particle migration in viscoelastic fluids, especially on the aspect of applications. The hydrodynamic forces on the micro/nano particles in viscoelastic fluids are discussed. Next, we elaborate the basic particle migration in viscoelasticity-dominant fluids and elasto-inertial fluids in straight channels. After that, a comprehensive review on the applications of viscoelasticity-induced particle migration (particle separation, cell deformability measurement and alignment, particle solution exchange, rheometry-on-a-chip and others) is presented; finally, we thrash out some perspectives on the future directions of particle migration in viscoelastic fluids.
Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field
NASA Astrophysics Data System (ADS)
Georgi, Alexander; Nemes-Incze, Peter; Carrillo-Bastos, Ramon; Faria, Daiara; Viola Kusminskiy, Silvia; Zhai, Dawei; Schneider, Martin; Subramaniam, Dinesh; Mashoff, Torge; Freitag, Nils M.; Liebmann, Marcus; Pratzer, Marco; Wirtz, Ludger; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Novoselov, Kostya S.; Sandler, Nancy; Morgenstern, Markus
2017-04-01
One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudo-magnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudo-magnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudo-magnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudo-magnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining graphene using the tip of a scanning tunneling microscope. The tip locally lifts the graphene membrane from a SiO$_2$ support, as visible by an increased slope of the $I(z)$ curves. The amount of lifting is consistent with molecular dynamics calculations, which reveal a deformed graphene area under the tip in the shape of a Gaussian. The pseudo-magnetic field induced by the deformation becomes visible as a sublattice symmetry breaking which scales with the lifting height of the strained deformation and therefore with the pseudo-magnetic field strength. Its magnitude is quantitatively reproduced by analytic and tight-binding models, revealing fields of 1000 T. These results might be the starting point for an effective THz valley filter, as a basic element of valleytronics.
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
NASA Astrophysics Data System (ADS)
Nganguia, H.; Young, Y.-N.
2013-11-01
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
A Cohomological Perspective on Algebraic Quantum Field Theory
NASA Astrophysics Data System (ADS)
Hawkins, Eli
2018-05-01
Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.
Automatic deformable diffusion tensor registration for fiber population analysis.
Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V
2008-01-01
In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Zolotov, A. E.; Zheltov, M. A.; Denisov, A. A.; Gasanov, M. F.; Kochegarov, S. S.
2016-05-01
The effect of an electric current on the band formation and the serrated deformation of planar specimens made of an aluminum-magnesium AlMg5 alloy and weakened by holes is experimentally studied. It is found that the concentration of elastic stress fields and the self-localized unstable plastic deformation field near a hole decreases the critical strain of appearance of the first stress drop and hinders the currentinduced suppression of band formation and the serrated Portevin-Le Chatelier deformation. These results are shown not to be related to the concentration of Joule heat near a hole.
Deformable Image Registration based on Similarity-Steered CNN Regression.
Cao, Xiaohuan; Yang, Jianhua; Zhang, Jun; Nie, Dong; Kim, Min-Jeong; Wang, Qian; Shen, Dinggang
2017-09-01
Existing deformable registration methods require exhaustively iterative optimization, along with careful parameter tuning, to estimate the deformation field between images. Although some learning-based methods have been proposed for initiating deformation estimation, they are often template-specific and not flexible in practical use. In this paper, we propose a convolutional neural network (CNN) based regression model to directly learn the complex mapping from the input image pair (i.e., a pair of template and subject) to their corresponding deformation field. Specifically, our CNN architecture is designed in a patch-based manner to learn the complex mapping from the input patch pairs to their respective deformation field. First, the equalized active-points guided sampling strategy is introduced to facilitate accurate CNN model learning upon a limited image dataset. Then, the similarity-steered CNN architecture is designed, where we propose to add the auxiliary contextual cue, i.e., the similarity between input patches, to more directly guide the learning process. Experiments on different brain image datasets demonstrate promising registration performance based on our CNN model. Furthermore, it is found that the trained CNN model from one dataset can be successfully transferred to another dataset, although brain appearances across datasets are quite variable.
Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan
2015-12-22
In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.
Deformation Theory and Physics Model Building
NASA Astrophysics Data System (ADS)
Sternheimer, Daniel
2006-08-01
The mathematical theory of deformations has proved to be a powerful tool in modeling physical reality. We start with a short historical and philosophical review of the context and concentrate this rapid presentation on a few interrelated directions where deformation theory is essential in bringing a new framework - which has then to be developed using adapted tools, some of which come from the deformation aspect. Minkowskian space-time can be deformed into Anti de Sitter, where massless particles become composite (also dynamically): this opens new perspectives in particle physics, at least at the electroweak level, including prediction of new mesons. Nonlinear group representations and covariant field equations, coming from interactions, can be viewed as some deformation of their linear (free) part: recognizing this fact can provide a good framework for treating problems in this area, in particular global solutions. Last but not least, (algebras associated with) classical mechanics (and field theory) on a Poisson phase space can be deformed to (algebras associated with) quantum mechanics (and quantum field theory). That is now a frontier domain in mathematics and theoretical physics called deformation quantization, with multiple ramifications, avatars and connections in both mathematics and physics. These include representation theory, quantum groups (when considering Hopf algebras instead of associative or Lie algebras), noncommutative geometry and manifolds, algebraic geometry, number theory, and of course what is regrouped under the name of M-theory. We shall here look at these from the unifying point of view of deformation theory and refer to a limited number of papers as a starting point for further study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Sun, T.; Fezzaa, K.
Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, whilemore » dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.« less
Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields
NASA Astrophysics Data System (ADS)
Wischnewski, Christian; Kierfeld, Jan
2018-04-01
We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid in external uniform magnetic fields at fixed volume by a combination of numerical and analytical approaches. We develop a numerical iterative solution strategy based on nonlinear elastic shape equations to calculate the stretched capsule shape numerically and a coupled finite element and boundary element method to solve the corresponding magnetostatic problem and employ analytical linear response theory, approximative energy minimization, and slender-body theory. The observed deformation behavior is qualitatively similar to the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to a conical shape takes place at a critical field strength. We investigate how capsule elasticity modifies this hysteretic shape transition. We show that conical capsule shapes are possible but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule materials. In a slender-body approximation we find that the critical susceptibility above which conical shapes occur for ferrofluid capsules is the same as for droplets. At small fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal capsule occurs during elongation in a magnetic field and how it modifies the stretching behavior. We find the nontrivial dependence between the extent of the wrinkled region and capsule elongation. Our results can be helpful in quantitatively determining capsule or ferrofluid material properties from magnetic deformation experiments. All results also apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.
Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis; ...
2017-11-06
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis; ...
2017-11-06
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
Rotational strain in Weyl semimetals: A continuum approach
NASA Astrophysics Data System (ADS)
Arjona, Vicente; Vozmediano, María A. H.
2018-05-01
We use a symmetry approach to derive the coupling of lattice deformations to electronic excitations in three-dimensional Dirac and Weyl semimetals in the continuum low-energy model. We focus on the effects of rotational strain and show that it can drive transitions from Dirac to Weyl semimetals, gives rise to elastic gauge fields, tilts the cones, and generates pseudo-Zeeman couplings. It also can generate a deformation potential in volume-preserving deformations. The associated pseudoelectric field contributes to the chiral anomaly.
Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field
NASA Astrophysics Data System (ADS)
Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.
2016-09-01
The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong ["Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," Int. J. Therm. Sci. 47, 221-228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.
Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Kumar, P.; Vanka, S. P., E-mail: spvanka@illinois.edu
2016-09-15
The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gasmore » bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.« less
Mesoscale modeling of strain induced solid state amorphization in crystalline materials
NASA Astrophysics Data System (ADS)
Lei, Lei
Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with experimental observation. Finally, we incorporate the effect of stress free surfaces to model the behavior of dislocations close to these surfaces and in the presence of voids.
Intra-field on-product overlay improvement by application of RegC and TWINSCAN corrections
NASA Astrophysics Data System (ADS)
Sharoni, Ofir; Dmitriev, Vladimir; Graitzer, Erez; Perets, Yuval; Gorhad, Kujan; van Haren, Richard; Cekli, Hakki E.; Mulkens, Jan
2015-03-01
The on product overlay specification and Advanced Process Control (APC) is getting extremely challenging particularly after the introduction of multi-patterning applications like Spacer Assisted Double Patterning (SADP) and multipatterning techniques like N-repetitive Litho-Etch steps (LEN, N >= 2). When the latter is considered, most of the intrafield overlay contributors drop out of the overlay budget. This is a direct consequence of the fact that the scanner settings (like dose, illumination settings, etc.) as well as the subsequent processing steps can be made very similar for two consecutive Litho-Etch layers. The major overlay contributor that may require additional attention is the Image Placement Error (IPE). When the inter-layer overlay is considered, controlling the intra-field overlay contribution gets more complicated. In addition to the IPE contribution, the TWINSCANTM lens fingerprint in combination with the exposure settings is going to play a role as well. Generally speaking, two subsequent functional layers have different exposure settings. This results in a (non-reticle) additional overlay contribution. In this paper, we have studied the wafer overlay correction capability by RegC® in addition to the TWINSCANTM intrafield corrections to improve the on product overlay performance. RegC® is a reticle intra-volume laser writing technique that causes a predictable deformation element (RegC® deformation element) inside the quartz (Qz) material of a reticle. This technique enables to post-process an existing reticle to correct for instance for IPE. Alternatively, a pre-determined intra-field fingerprint can be added to the reticle such that it results in a straight field after exposure. This second application might be very powerful to correct for instance for (cold) lens fingerprints that cannot be corrected by the scanner itself. Another possible application is the intra-field processing fingerprint. One should realize that a RegC® treatment of a reticle generally results in global distortion of the reticle. This is not a problem as long as these global distortions can be corrected by the TWINSCANTM system (currently up to the third order). It is anticipated that the combination of the RegC® and the TWINSCANTM corrections act as complementary solutions. These solutions perfectly fit into the ASML Litho InSight (LIS) product in which feedforward and feedback corrections based on YieldStar overlay measurements are used to improve the on product overlay.
Modeling respiratory motion for reducing motion artifacts in 4D CT images.
Zhang, Yongbin; Yang, Jinzhong; Zhang, Lifei; Court, Laurence E; Balter, Peter A; Dong, Lei
2013-04-01
Four-dimensional computed tomography (4D CT) images have been recently adopted in radiation treatment planning for thoracic and abdominal cancers to explicitly define respiratory motion and anatomy deformation. However, significant image distortions (artifacts) exist in 4D CT images that may affect accurate tumor delineation and the shape representation of normal anatomy. In this study, the authors present a patient-specific respiratory motion model, based on principal component analysis (PCA) of motion vectors obtained from deformable image registration, with the main goal of reducing image artifacts caused by irregular motion during 4D CT acquisition. For a 4D CT image set of a specific patient, the authors calculated displacement vector fields relative to a reference phase, using an in-house deformable image registration method. The authors then used PCA to decompose each of the displacement vector fields into linear combinations of principal motion bases. The authors have demonstrated that the regular respiratory motion of a patient can be accurately represented by a subspace spanned by three principal motion bases and their projections. These projections were parameterized using a spline model to allow the reconstruction of the displacement vector fields at any given phase in a respiratory cycle. Finally, the displacement vector fields were used to deform the reference CT image to synthesize CT images at the selected phase with much reduced image artifacts. The authors evaluated the performance of the in-house deformable image registration method using benchmark datasets consisting of ten 4D CT sets annotated with 300 landmark pairs that were approved by physicians. The initial large discrepancies across the landmark pairs were significantly reduced after deformable registration, and the accuracy was similar to or better than that reported by state-of-the-art methods. The proposed motion model was quantitatively validated on 4D CT images of a phantom and a lung cancer patient by comparing the synthesized images and the original images at different phases. The synthesized images matched well with the original images. The motion model was used to reduce irregular motion artifacts in the 4D CT images of three lung cancer patients. Visual assessment indicated that the proposed approach could reduce severe image artifacts. The shape distortions around the diaphragm and tumor regions were mitigated in the synthesized 4D CT images. The authors have derived a mathematical model to represent the regular respiratory motion from a patient-specific 4D CT set and have demonstrated its application in reducing irregular motion artifacts in 4D CT images. The authors' approach can mitigate shape distortions of anatomy caused by irregular breathing motion during 4D CT acquisition.
On the theory of hysteretic magnetostriction of soft ferrogels
NASA Astrophysics Data System (ADS)
Zubarev, Andrey; Chirikov, Dmitry; Stepanov, Gennady; Borin, Dmitry; Lopez-Lopez, M. T.
2018-05-01
The paper deals with theoretical study of hysteretic magnetostriction of soft ferrogels - composite materials, consisting of the micron-sized magnetizable particles embedded into gel matrices. It is supposed that initially, before application of an external magnetic field, the particles are homogeneously and isotropically distributed in an elastic matrix. The theoretical explanation of the hysteresis phenomena is based on the conception that, under the field action, the particles rearrange into the linear chain-like aggregates. The typical length of the chains is determined by the competition between the force of magnetic attraction of the particles and the force of elastic deformation of the matrix.
Afroze, J D; Abden, M J; Islam, M A
2018-05-01
Hydroxyapatite-functionalized multi-walled carbon nanotube (HA-fMWCNT) magnetic nanocomposite was successfully prepared using a novel slurry-compounding method. The prepared HA-fMWCNT nanocomposite with the addition of small amount (0.5 wt%) of fMWCNT exhibited much greater improvement in mechanical properties due to strong interfacial adhesion between acid-treated MWCNTs fillers and HA matrix, thus efficient stress transfer to nanotubes from the matrix. The nanocomposite exhibited excellent haemocompatibility. Fractographic analysis was performed in order to understand the fracture behavior and toughening mechanisms. The fracture mechanisms and micro-deformation were examined by studying the microstructure of arrested crack tips using field emission scanning electron microscopy (FESEM). The origination and formation of micro-cracks are the dominant fracture mechanisms and micro-deformation in the HA-fMWCNTs nanocomposite. The developed new method enables to the fabrication of magnetic HA-fMWCNTs nanocomposite with superior mechanical performance may be potential for application as high load-bearing bone implants in the biomedical field. Copyright © 2018 Elsevier B.V. All rights reserved.
ELECTROMAGNETICALLY INDUCED DISTORTION OF A FIBRIN MATRIX WITH EMBEDDED MICROPARTICLES
SCOGIN, TYLER; YESUDASAN, SUMITH; WALKER, MITCHELL L. R.
2018-01-01
Blood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions. In this study, a fibrin matrix embedded with magnetic micro particles (MMPs) was subjected to a magnetic field to determine the magnitude of the required force to create plastic deformation within the fibrin clot. Using finite element (FE) analysis, we estimated the magnetic force from an electromagnet at a sample space located approximately 3 cm away from the coil center. This electromagnetic force coupled with gravity was applied on a fibrin mechanical system with MMPs to calculate the stresses and displacements. Using appropriate coil parameters, it was determined that application of a magnetic field of 730 A/m on the fibrin surface was necessary to achieve an electromagnetic force of 36 nN (to engender plastic deformation). PMID:29628543
Damping Models for Shear-Deformable Beam with Applications to Spacecraft Wiring Harness
2014-10-28
AFRL-RV-PS- TR-2014-0189 AFRL-RV-PS- TR-2014-0189 DAMPING MODELS FOR SHEAR-DEFORMABLE BEAM WITH APPLICATIONS TO SPACECRAFT WIRING HARNESS ...Feb 2012 4. TITLE AND SUBTITLE Damping Models for Shear-Deformable Beam with Applications to Spacecraft Wiring Harness 5a. CONTRACT NUMBER FA9453-12...behavior of wiring harnesses . The emphasis in this project will be on the extension of the shear-beam damping model to the Timoshenko beam, a beam model
Foldover-free shape deformation for biomedicine.
Yu, Hongchuan; Zhang, Jian J; Lee, Tong-Yee
2014-04-01
Shape deformation as a fundamental geometric operation underpins a wide range of applications, from geometric modelling, medical imaging to biomechanics. In medical imaging, for example, to quantify the difference between two corresponding images, 2D or 3D, one needs to find the deformation between both images. However, such deformations, particularly deforming complex volume datasets, are prone to the problem of foldover, i.e. during deformation, the required property of one-to-one mapping no longer holds for some points. Despite numerous research efforts, the construction of a mathematically robust foldover-free solution subject to positional constraints remains open. In this paper, we address this challenge by developing a radial basis function-based deformation method. In particular we formulate an effective iterative mechanism which ensures the foldover-free property is satisfied all the time. The experimental results suggest that the resulting deformations meet the internal positional constraints. In addition to radial basis functions, this iterative mechanism can also be incorporated into other deformation approaches, e.g. B-spline based FFDs, to develop different deformable approaches for various applications. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
From Geodesy to Tectonics: Observing Earthquake Processes from Space (Augustus Love Medal Lecture)
NASA Astrophysics Data System (ADS)
Parsons, Barry
2017-04-01
A suite of powerful satellite-based techniques has been developed over the past two decades allowing us to measure and interpret variations in the deformation around active continental faults occurring in earthquakes, before the earthquakes as strain accumulates, and immediately following them. The techniques include radar interferometry and the measurement of vertical and horizontal surface displacements using very high-resolution (VHR) satellite imagery. They provide near-field measurements of earthquake deformation facilitating the association with the corresponding active faults and their topographic expression. The techniques also enable pre- and post-seismic deformation to be determined and hence allow the response of the fault and surrounding medium to changes in stress to be investigated. The talk illustrates both the techniques and the applications with examples from recent earthquakes. These include the 2013 Balochistan earthquake, a predominantly strike-slip event, that occurred on the arcuate Hoshab fault in the eastern Makran linking an area of mainly left-lateral shear in the east to one of shortening in the west. The difficulty of reconciling predominantly strike-slip motion with this shortening has led to a wide range of unconventional kinematic and dynamic models. Using pre-and post-seismic VHR satellite imagery, we are able to determine a 3-dimensional deformation field for the earthquake; Sentinel-1 interferometry shows an increase in the rate of creep on a creeping section bounding the northern end of the rupture in response to the earthquake. In addition, we will look at the 1978 Tabas earthquake for which no measurements of deformation were possible at the time. By combining pre-seismic 'spy' satellite images with modern imagery, and pre-seismic aerial stereo images with post-seismic satellite stereo images, we can determine vertical and horizontal displacements from the earthquake and subsequent post-seismic deformation. These observations suggest post-seismic slip concentrated on a thrust ramp at the end of the likely earthquake fault and, together with new radar measurements, can be modeled with slip rates declining approximately inversely with time from the earthquake. Measurements such as these examples provide the basis for investigating the dynamic response to the earthquakes to changes in stress occurring in them.
NASA Astrophysics Data System (ADS)
Liu, J. H.; Hu, J.; Li, Z. W.
2018-04-01
Three-dimensional (3-D) deformation fields with respect to the October 2016's Central Tottori earthquake are extracted in this paper from ALOS-2 conducted Interferometric Synthetic Aperture Radar (InSAR) observations with four different incline angles, i.e., ascending/descending and left-/right-looking. In particular, the Strain Model and Variance Component Estimation (SM-VCE) method is developed to integrate the heterogeneous InSAR observations without being affected by the coverage inconformity of SAR images associated with the earthquake focal area. Compare with classical weighted least squares (WLS) method, SM-VCE method is capable for the retrieval of more accurate and complete deformation field of Central Tottori earthquake, as indicated by the comparison with the GNSS observations. In addition, accuracies of heterogeneous InSAR observations and 3-D deformations on each point are quantitatively provided by the SM-VCE method.
Different Phases of Earthquake Cycle Reflected in GPS Measured Crustal Deformations along the Andes
NASA Astrophysics Data System (ADS)
Khazaradze, G.; Klotz, J.
2001-12-01
The South American Geodynamic Activities (SAGA) project was initiated in 1993 by the GeoForschungsZentrum together with host organizations in Argentina and Chile with the main objective of studying the kinematics and dynamics of present-day deformation processes along the central and southern Andes. Currently the SAGA network consists of 230 geodetic markers spanning more than 2000 km long distance from Peru/Chile border in the north to Cape Horn in the south. The majority of the observed crustal deformation field is relatively homogenous: roughly parallel to the plate convergence direction and decreasing in magnitude away from the deformation front. This pattern is characteristic for the \\textit{inter-seismic} phase of earthquake deformation cycle and can be explained by the elastic strain accumulation due to locking of the thrust interface between the subducting Nazca and the overriding South America plates. However, in addition to the dominant inter-seismic signal, close examination of the observed velocity field also reveals significant spatial and temporal variations, contrary to the commonly used assumption of constant deformation rates. This variation is especially pronounced for the measurements in the vicinity of the 1995 Mw8.0 Antofagasta earthquake (22{° }S-26{° }S). Here, after capturing up to 1 meters of \\textit{co-seismic} displacements associated with this event, the analysis of data obtained during the three following field campaigns (1996-1999), reveals highly time dependent deformation pattern. This can be explained by the decreasing importance of \\textit{post-seismic} effects of the Antofagasta event relative to the increasing dominance of the inter-seismic phase of subduction. Perhaps, even more interesting time dependent observations have been detected in the southern part the SAGA network (38{° }S-43{° }S).Here, after 35 years of the occurrence of the 1960 Mw9.5 Chile earthquake, we still see the continuing post-seismic effects of this largest ever recorded earthquake on the earth. To properly interpret given observations, we developed the fully \\textsc{3D} Andean Elastic Dislocation Model (AEDM), which is used to explain the dominant inter-seismic signal. The subtraction of the AEDM predicted deformation rates from the observations leads towards the "filtered" residual velocity field, that can be used to highlight, for example, the post-seismic deformation effects. Also, in the central section of the SAGA network, the residual velocity field indicates the existence of more long-term (i.e. geologic) deformations. In summary, the changing spatial-temporal pattern of GPS measured crustal deformation rates along the central and southern Andes is governed by the relative importance of different phases of earthquake deformation cycle.
Development of a miniaturized deformable mirror controller
NASA Astrophysics Data System (ADS)
Bendek, Eduardo; Lynch, Dana; Pluzhnik, Eugene; Belikov, Ruslan; Klamm, Benjamin; Hyde, Elizabeth; Mumm, Katherine
2016-07-01
High-Performance Adaptive Optics systems are rapidly spreading as useful applications in the fields of astronomy, ophthalmology, and telecommunications. This technology is critical to enable coronagraphic direct imaging of exoplanets utilized in ground-based telescopes and future space missions such as WFIRST, EXO-C, HabEx, and LUVOIR. We have developed a miniaturized Deformable Mirror controller to enable active optics on small space imaging mission. The system is based on the Boston Micromachines Corporation Kilo-DM, which is one of the most widespread DMs on the market. The system has three main components: The Deformable Mirror, the Driving Electronics, and the Mechanical and Heat management. The system is designed to be extremely compact and have lowpower consumption to enable its use not only on exoplanet missions, but also in a wide-range of applications that require precision optical systems, such as direct line-of-sight laser communications, and guidance systems. The controller is capable of handling 1,024 actuators with 220V maximum dynamic range, 16bit resolution, and 14bit accuracy, and operating at up to 1kHz frequency. The system fits in a 10x10x5cm volume, weighs less than 0.5kg, and consumes less than 8W. We have developed a turnkey solution reducing the risk for currently planned as well as future missions, lowering their cost by significantly reducing volume, weight and power consumption of the wavefront control hardware.
Nanoscale deformation measurements for reliability assessment of material interfaces
NASA Astrophysics Data System (ADS)
Keller, Jürgen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd
2006-03-01
With the development and application of micro/nano electronic mechanical systems (MEMS, NEMS) for a variety of market segments new reliability issues will arise. The understanding of material interfaces is the key for a successful design for reliability of MEMS/NEMS and sensor systems. Furthermore in the field of BIOMEMS newly developed advanced materials and well known engineering materials are combined despite of fully developed reliability concepts for such devices and components. In addition the increasing interface-to volume ratio in highly integrated systems and nanoparticle filled materials are challenges for experimental reliability evaluation. New strategies for reliability assessment on the submicron scale are essential to fulfil the needs of future devices. In this paper a nanoscale resolution experimental method for the measurement of thermo-mechanical deformation at material interfaces is introduced. The determination of displacement fields is based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object (i.e. material interface) are carried out at different thermo-mechanical load states. The obtained images are compared by grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results are full-field displacement fields with nanometer resolution. With the obtained data the mixed mode type of loading at material interfaces can be analyzed with highest resolution for future needs in micro system and nanotechnology.
Plastic deformation of FeSi at high pressures: implications for planetary cores
NASA Astrophysics Data System (ADS)
Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen
2017-04-01
The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.
Production, deformation and mechanical investigation of magnetic alginate capsules
NASA Astrophysics Data System (ADS)
Zwar, Elena; Kemna, Andre; Richter, Lena; Degen, Patrick; Rehage, Heinz
2018-02-01
In this article we investigated the deformation of alginate capsules in magnetic fields. The sensitivity to magnetic forces was realised by encapsulating an oil in water emulsion, where the oil droplets contained dispersed magnetic nanoparticles. We solved calcium ions in the aqueous emulsion phase, which act as crosslinking compounds for forming thin layers of alginate membranes. This encapsulating technique allows the production of flexible capsules with an emulsion as the capsule core. It is important to mention that the magnetic nanoparticles were stable and dispersed throughout the complete process, which is an important difference to most magnetic alginate-based materials. In a series of experiments, we used spinning drop techniques, capsule squeezing experiments and interfacial shear rheology in order to determine the surface Young moduli, the surface Poisson ratios and the surface shear moduli of the magnetically sensitive alginate capsules. In additional experiments, we analysed the capsule deformation in magnetic fields. In spinning drop and capsule squeezing experiments, water droplets were pressed out of the capsules at elevated values of the mechanical load. This phenomenon might be used for the mechanically triggered release of water-soluble ingredients. After drying the emulsion-filled capsules, we produced capsules, which only contained a homogeneous oil phase with stable suspended magnetic nanoparticles (organic ferrofluid). In the dried state, the thin alginate membranes of these particles were rather rigid. These dehydrated capsules could be stored at ambient conditions for several months without changing their properties. After exposure to water, the alginate membranes rehydrated and became flexible and deformable again. During this swelling process, water diffused back in the capsule. This long-term stability and rehydration offers a great spectrum of different applications as sensors, soft actuators, artificial muscles or drug delivery systems.
SU-E-J-101: Improved CT to CBCT Deformable Registration Accuracy by Incorporating Multiple CBCTs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godley, A; Stephans, K; Olsen, L Sheplan
2015-06-15
Purpose: Combining prior day CBCT contours with STAPLE was previously shown to improve automated prostate contouring. These accurate STAPLE contours are now used to guide the planning CT to pre-treatment CBCT deformable registration. Methods: Six IGRT prostate patients with daily kilovoltage CBCT had their original planning CT and 9 CBCTs contoured by the same physician. These physician contours for the planning CT and each prior CBCT are deformed to match the current CBCT anatomy, producing multiple contour sets. These sets are then combined using STAPLE into one optimal set (e.g. for day 3 CBCT, combine contours produced using the planmore » plus day 1 and 2 CBCTs). STAPLE computes a probabilistic estimate of the true contour from this collection of contours by maximizing sensitivity and specificity. The deformation field from planning CT to CBCT registration is then refined by matching its deformed contours to the STAPLE contours. ADMIRE (Elekta Inc.) was used for this. The refinement does not force perfect agreement of the contours, typically Dice’s Coefficient (DC) of > 0.9 is obtained, and the image difference metric remains in the optimization of the deformable registration. Results: The average DC between physician delineated CBCT contours and deformed planning CT contours for the bladder, rectum and prostate was 0.80, 0.79 and 0.75, respectively. The accuracy significantly improved to 0.89, 0.84 and 0.84 (P<0.001 for all) when using the refined deformation field. The average time to run STAPLE with five scans and refine the planning CT deformation was 66 seconds on a Telsa K20c GPU. Conclusion: Accurate contours generated from multiple CBCTs provided guidance for CT to CBCT deformable registration, significantly improving registration accuracy as measured by contour DC. A more accurate deformation field is now available for transferring dose or electron density to the CBCT for adaptive planning. Research grant from Elekta.« less
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.
2016-10-01
Subpixel correlation of preevent and postevent air photos reveal the complete near-field, horizontal surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine ruptures. Total surface displacement values for both earthquakes are systematically larger than "on-fault" displacements from geologic field surveys, indicating significant distributed, inelastic deformation occurred along these ruptures. Comparison of these two data sets shows that 46 ± 10% and 39 ± 22% of the total surface deformation were distributed over fault zones averaging 154 m and 121 m in width for the Landers and Hector Mine events, respectively. Spatial variations of distributed deformation along both ruptures show correlations with the type of near-surface lithology and degree of fault complexity; larger amounts of distributed shear occur where the rupture propagated through loose unconsolidated sediments and areas of more complex fault structure. These results have basic implications for geologic-geodetic rate comparisons and probabilistic seismic hazard analysis.
Study of wavefront error and polarization of a side mounted infrared window
NASA Astrophysics Data System (ADS)
Liu, Jiaguo; Li, Lin; Hu, Xinqi; Yu, Xin
2008-03-01
The wavefront error and polarization of a side mounted infrared window made of ZnS are studied. The Infrared windows suffer from temperature gradient and stress during their launch process. Generally, the gradient in temperature changes the refractive index of the material whereas stress produces deformation and birefringence. In this paper, a thermal finite element analysis (FEA) of an IR window is presented. For this purpose, we employed an FEA program Ansys to obtain the time-varying temperature field. The deformation and stress of the window are derived from a structural FEA with the aerodynamic force and the temperature field previously obtained as being the loads. The deformation, temperature field, stress field, ray tracing and Jones Calculus are used to calculate the wavefront error and the change of polarization state.
Oscillations of a deformed liquid drop in an acoustic field
NASA Astrophysics Data System (ADS)
Shi, Tao; Apfel, Robert E.
1995-07-01
The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, G; Souri, S; Rea, A
Purpose: The objective of this study is to verify and analyze the accuracy of a clinical deformable image registration (DIR) software. Methods: To test clinical DIR software qualitatively and quantitatively, we focused on lung radiotherapy and analyzed a single (Lung) patient CT scan. Artificial anatomical changes were applied to account for daily variations during the course of treatment including the planning target volume (PTV) and organs at risk (OAR). The primary CT (pCT) and the structure set (pST) was deformed with commercial tool (ImSimQA-Oncology Systems Limited) and after artificial deformation (dCT and dST) sent to another commercial tool (VelocityAI-Varian Medicalmore » Systems). In Velocity, the deformed CT and structures (dCT and dST) were inversely deformed back to original primary CT (dbpCT and dbpST). We compared the dbpST and pST structure sets using similarity metrics. Furthermore, a binary deformation field vector (BDF) was created and sent to ImSimQA software for comparison with known “ground truth” deformation vector fields (DVF). Results: An image similarity comparison was made by using “ground truth” DVF and “deformed output” BDF with an output of normalized “cross correlation (CC)” and “mutual information (MI)” in ImSimQA software. Results for the lung case were MI=0.66 and CC=0.99. The artificial structure deformation in both pST and dbpST was analyzed using DICE coefficient, mean distance to conformity (MDC) and deformation field error volume histogram (DFEVH) by comparing them before and after inverse deformation. We have noticed inadequate structure match for CTV, ITV and PTV due to close proximity of heart and overall affected by lung expansion. Conclusion: We have seen similarity between pCT and dbpCT but not so well between pST and dbpST, because of inadequate structure deformation in clinical DIR system. This system based quality assurance test will prepare us for adopting the guidelines of upcoming AAPM task group 132 protocol.« less
Introduction to Vector Field Visualization
NASA Technical Reports Server (NTRS)
Kao, David; Shen, Han-Wei
2010-01-01
Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.
Zhang, Q; Liu, Z; Xie, H; Ma, K; Wu, L
2016-12-01
Grating fabrication techniques are crucial to the success of grating-based deformation measurement methods because the quality of the grating will directly affect the measurement results. Deformation measurements at high temperatures entail heating and, perhaps, oxidize the grating. The contrast of the grating lines may change during the heating process. Thus, the thermal-resistant capability of the grating becomes a point of great concern before taking measurements. This study proposes a method that combines a laser-engraving technique with the processes of particle spraying and sintering for fabricating thermal-resistant gratings. The grating fabrication technique is introduced and discussed in detail. A numerical simulation with a geometric phase analysis (GPA) is performed for a homogeneous deformation case. Then, the selection scheme of the grating pitch is suggested. The validity of the proposed technique is verified by fabricating a thermal-resistant grating on a ZrO 2 specimen and measuring its thermal strain at high temperatures (up to 1300 °C). Images of the grating before and after deformation are used to obtain the thermal-strain field by GPA and to compare the results with well-established reference data. The experimental results indicate that this proposed technique is feasible and will offer good prospects for further applications.
Vasconcelos, Maria J M; Ventura, Sandra M R; Freitas, Diamantino R S; Tavares, João Manuel R S
2012-03-01
The morphological and dynamic characterisation of the vocal tract during speech production has been gaining greater attention due to the motivation of the latest improvements in magnetic resonance (MR) imaging; namely, with the use of higher magnetic fields, such as 3.0 Tesla. In this work, the automatic study of the vocal tract from 3.0 Tesla MR images was assessed through the application of statistical deformable models. Therefore, the primary goal focused on the analysis of the shape of the vocal tract during the articulation of European Portuguese sounds, followed by the evaluation of the results concerning the automatic segmentation, i.e. identification of the vocal tract in new MR images. In what concerns speech production, this is the first attempt to automatically characterise and reconstruct the vocal tract shape of 3.0 Tesla MR images by using deformable models; particularly, by using active and appearance shape models. The achieved results clearly evidence the adequacy and advantage of the automatic analysis of the 3.0 Tesla MR images of these deformable models in order to extract the vocal tract shape and assess the involved articulatory movements. These achievements are mostly required, for example, for a better knowledge of speech production, mainly of patients suffering from articulatory disorders, and to build enhanced speech synthesizer models.
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.
2016-02-01
Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.
NASA Astrophysics Data System (ADS)
Tizzani, P.; Castaldo, R.; Solaro, G.; Pepe, S.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Samsonov, S.; Lanari, R.; Sansosti, E.
2013-05-01
We provide new insights into the two main seismic events that occurred in 2012 in the Emilia region, Italy. We extend the results from previous studies based on analytical inversion modeling of GPS and RADARSAT-1 InSAR measurements by exploiting RADARSAT-2 data. Moreover, we benefit from the available large amount of geological and geophysical information through finite element method (FEM) modeling implemented in a structural-mechanical context to investigate the impact of known buried structures on the modulation of the ground deformation field. We find that the displacement pattern associated with the 20 May event is consistent with the activation of a single fault segment of the inner Ferrara thrust, in good agreement with the analytical solution. In contrast, the interpretation of the 29 May episode requires the activation of three different fault segments and a block roto-translation of the Mirandola anticline. The proposed FEM-based methodology is applicable to other seismic areas where the complexity of buried structures is known and plays a fundamental role in the modulation of the associated surface deformation pattern.
Nonlinear deformations of microcapsules in elongation flow
NASA Astrophysics Data System (ADS)
Deschamps, Julien; de Loubens, Clément; Boedec, Gwenn; Georgelin, Marc; Leonetti, Marc; Soft Matter; Biophysics Group Team
2014-11-01
Soft microcapsules are drops bounded by a thin elastic shell made of cross-linked proteins. They have numerous applications for drug delivery in bioengineering, pharmaceutics and medicine, where their mechanical stability and their dynamics under flow are crucial. They can also be used as red blood cells models. Here, we investigate the mechanical behaviour of microcapsules made of albumine in strong elongational flow, up to a stretching of 180% just before breaking. The set-up allows us to visualize the deformed shape in the two perpendicular main fields of view, to manage high capillary number and to manipulate soft microcapsules. The steady-state shape of a capsule in the planar elongational flow is non-axisymmetric. In each cross section, the shape is an ellipse but with different small axis which vary in opposite sense with the stretching. Whatever the degree of cross-linking and the size of the capsules, the deformations followed the same master-curve. Comparisons between numerical predictions and experimental results permit to conclude unambiguously that the more properly strain-energy model of membrane is the generalized Hooke model.
NASA Astrophysics Data System (ADS)
Cervelli, P.; Murray, M. H.; Segall, P.; Aoki, Y.; Kato, T.
2001-06-01
We have applied two Monte Carlo optimization techniques, simulated annealing and random cost, to the inversion of deformation data for fault and magma chamber geometry. These techniques involve an element of randomness that permits them to escape local minima and ultimately converge to the global minimum of misfit space. We have tested the Monte Carlo algorithms on two synthetic data sets. We have also compared them to one another in terms of their efficiency and reliability. We have applied the bootstrap method to estimate confidence intervals for the source parameters, including the correlations inherent in the data. Additionally, we present methods that use the information from the bootstrapping procedure to visualize the correlations between the different model parameters. We have applied these techniques to GPS, tilt, and leveling data from the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit the deformation data and the patterns of seismicity and that are consistent with the regional stress field.
de Solla, Shane Raymond; Martin, Pamela Anne; Mikoda, Paul
2011-09-15
Many reptiles oviposit in soils associated with agricultural landscapes. We evaluated the toxicity of a pesticide and fertilizer regime similar to those used in corn production in Ontario on the survivorship of exposed snapping turtle (Chelydra serpentina) eggs. The herbicides atrazine, dimethenamid, and glyphosate, the pyrethroid insecticide tefluthrin, and the fertilizer ammonia, were applied to clean soil, both as partial mixtures within chemical classes, as well as complete mixtures. Eggs were incubated in the soil in a garden plot in which these mixtures were applied at a typical field application rate, and higher rates. Otherwise, the eggs were unmanipulated and were subject to ambient temperature and weather conditions. Eggs were also exposed at male producing temperatures in the laboratory in covered bins in the same soil, where there was less opportunity for loss through volatilization or leaching. Egg mortality was 100% at 10× the typical field application rate of the complete mixture, both with and without tefluthrin. At typical field application rates, hatching success ranged between 91.7 and 95.8%. Eggs exposed only to herbicides were not negatively affected at any application rates. Although fertilizer treatments at typical field application rates did not affect eggs, mortality was remarkably higher at three times this rate, and 100% at higher rates. The frequency of deformities of hatchlings was elevated at the highest application rate of the insecticide tefluthrin. The majority of the toxicity of the mixture was not due to the herbicides or insecticide, but was due to the ammonia fertilizer. At typical field application rates, the chemical regime associated with corn production does not appear to have any detrimental impacts upon turtle egg development; however toxicity dramatically increases if this threshold is passed. Copyright © 2011. Published by Elsevier B.V.
Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington
Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.
2010-01-01
This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.
NASA Astrophysics Data System (ADS)
Reiterer, Alexander; Egly, Uwe; Vicovac, Tanja; Mai, Enrico; Moafipoor, Shahram; Grejner-Brzezinska, Dorota A.; Toth, Charles K.
2010-12-01
Artificial Intelligence (AI) is one of the key technologies in many of today's novel applications. It is used to add knowledge and reasoning to systems. This paper illustrates a review of AI methods including examples of their practical application in Geodesy like data analysis, deformation analysis, navigation, network adjustment, and optimization of complex measurement procedures. We focus on three examples, namely, a geo-risk assessment system supported by a knowledge-base, an intelligent dead reckoning personal navigator, and evolutionary strategies for the determination of Earth gravity field parameters. Some of the authors are members of IAG Sub-Commission 4.2 - Working Group 4.2.3, which has the main goal to study and report on the application of AI in Engineering Geodesy.
Hwuang, Eileen; Danish, Shabbar; Rusu, Mirabela; Sparks, Rachel; Toth, Robert; Madabhushi, Anant
2013-01-01
MRI-guided laser-induced interstitial thermal therapy (LITT) is a form of laser ablation and a potential alternative to craniotomy in treating glioblastoma multiforme (GBM) and epilepsy patients, but its effectiveness has yet to be fully evaluated. One way of assessing short-term treatment of LITT is by evaluating changes in post-treatment MRI as a measure of response. Alignment of pre- and post-LITT MRI in GBM and epilepsy patients via nonrigid registration is necessary to detect subtle localized treatment changes on imaging, which can then be correlated with patient outcome. A popular deformable registration scheme in the context of brain imaging is Thirion's Demons algorithm, but its flexibility often introduces artifacts without physical significance, which has conventionally been corrected by Gaussian smoothing of the deformation field. In order to prevent such artifacts, we instead present the Anisotropic smoothing regularizer (AnSR) which utilizes edge-detection and denoising within the Demons framework to regularize the deformation field at each iteration of the registration more aggressively in regions of homogeneously oriented displacements while simultaneously regularizing less aggressively in areas containing heterogeneous local deformation and tissue interfaces. In contrast, the conventional Gaussian smoothing regularizer (GaSR) uniformly averages over the entire deformation field, without carefully accounting for transitions across tissue boundaries and local displacements in the deformation field. In this work we employ AnSR within the Demons algorithm and perform pairwise registration on 2D synthetic brain MRI with and without noise after inducing a deformation that models shrinkage of the target region expected from LITT. We also applied Demons with AnSR for registering clinical T1-weighted MRI for one epilepsy and one GBM patient pre- and post-LITT. Our results demonstrate that by maintaining select displacements in the deformation field, AnSR outperforms both GaSR and no regularizer (NoR) in terms of normalized sum of squared differences (NSSD) with values such as 0.743, 0.807, and 1.000, respectively, for GBM.
Cluster Analysis of Velocity Field Derived from Dense GNSS Network of Japan
NASA Astrophysics Data System (ADS)
Takahashi, A.; Hashimoto, M.
2015-12-01
Dense GNSS networks have been widely used to observe crustal deformation. Simpson et al. (2012) and Savage and Simpson (2013) have conducted cluster analyses of GNSS velocity field in the San Francisco Bay Area and Mojave Desert, respectively. They have successfully found velocity discontinuities. They also showed an advantage of cluster analysis for classifying GNSS velocity field. Since in western United States, strike-slip events are dominant, geometry is simple. However, the Japanese Islands are tectonically complicated due to subduction of oceanic plates. There are many types of crustal deformation such as slow slip event and large postseismic deformation. We propose a modified clustering method of GNSS velocity field in Japan to separate time variant and static crustal deformation. Our modification is performing cluster analysis every several months or years, then qualifying cluster member similarity. If a GNSS station moved differently from its neighboring GNSS stations, the station will not belong to in the cluster which includes its surrounding stations. With this method, time variant phenomena were distinguished. We applied our method to GNSS data of Japan from 1996 to 2015. According to the analyses, following conclusions were derived. The first is the clusters boundaries are consistent with known active faults. For examples, the Arima-Takatsuki-Hanaore fault system and the Shimane-Tottori segment proposed by Nishimura (2015) are recognized, though without using prior information. The second is improving detectability of time variable phenomena, such as a slow slip event in northern part of Hokkaido region detected by Ohzono et al. (2015). The last one is the classification of postseismic deformation caused by large earthquakes. The result suggested velocity discontinuities in postseismic deformation of the Tohoku-oki earthquake. This result implies that postseismic deformation is not continuously decaying proportional to distance from its epicenter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yimeng; Zhang, Xinping, E-mail: Zhangxinping@bjut.edu.cn; Zhang, Jian
We investigate stretching-induced microscopic deformations spatially distributed in a flexible plate of polydimethylsiloxane (PDMS) and their applications in the broadening of the output spectrum of a femtosecond optical parametric oscillator. The hologram of the stretched PDMS plate was used to evaluate indirectly the microscopic deformations. The experimental results show that these deformations exhibit weak scattering and diffraction of light and induce negligible cavity loss, ensuring practical applications of the PDMS plate as an intracavity device for lasers. In combination with the thickness reduction of the PDMS plate through stretching, the distributed deformations enable smooth tuning of the output spectrum.
Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry
2005-02-01
Hensley, H. A. Zebker, F. H. Webb, and E. Fielding, 1996, "Surface deformation and coherence measurements of Kilauea Volcano , Hawaii from SIR-C radar...topography, tectonic surface deformation, bulging and subsidence (earthquakes, volcanoes , geo-thermal fields and artesian irrigation, ice fields), glacial...J.J. and Y-J. Kim, 2000, "The relationship between radar polarimetric and interferometric phase," Presented at IGARSS, Honolulu, Hawaii , July
A coupled deformation-diffusion theory for fluid-saturated porous solids
NASA Astrophysics Data System (ADS)
Henann, David; Kamrin, Ken; Anand, Lallit
2012-02-01
Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.
Xue, Qiao; Huang, Lei; Hu, Dongxia; Yan, Ping; Gong, Mali
2014-01-10
For thermal deformable mirrors (DMs), the thermal field control is important because it will decide aberration correction effects. In order to better manipulate the thermal fields, a simple water convection system is proposed. The water convection system, which can be applied in thermal field bimetal DMs, shows effective thermal fields and influence-function controlling abilities. This is verified by the simulations and the contrast experiments of two prototypes: one of which utilizes air convection, the other uses water convection. Controlling the thermal fields will greatly promote the influence-function adjustability and aberration correction ability of thermal DMs.
Radial deformation of the solar current sheet as a cause of geomagnetic storms
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1979-01-01
It is suggested that the solar current sheet, extending from a coronal streamer, develops a large-scale radial deformation, at times with a very steep gradient at the earth's distance. The associated magnetic field lines (namely, the interplanetary magnetic field (IMF) lines) are expected to have also a large gradient in the vicinity of the current sheet. It is also suggested that some of the major geomagnetic storms occur when the earth is located in the region where IMF field lines have a large dip angle with respect to the ecliptic plane for an extended period (6-48 h), as a result of a steep radial deformation of the current sheet.
Gravitational decoupled anisotropies in compact stars
NASA Astrophysics Data System (ADS)
Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos
2018-05-01
Simple generic extensions of isotropic Durgapal-Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied. Hence the anisotropic field equations are isolated resulting a more treatable set. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, observational effects of such anisotropies when measuring the surface redshift are discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations is shown. In this manner, different anisotropic sectors can be isolated of each other and modeled in a simple and systematic way.
Ingenious Snake: An Adaptive Multi-Class Contours Extraction
NASA Astrophysics Data System (ADS)
Li, Baolin; Zhou, Shoujun
2018-04-01
Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) have not been solved so far. Therefore, a novel ACM model named “Ingenious Snake” is proposed to adaptively extract these interesting contours. In the first place, the ridge-points are extracted based on the local phase measurement of gradient vector flow field; the consequential ridgelines initialization are automated with high speed. Secondly, the contours’ deformation and evolvement are implemented with the ingenious snake. In the experiments, the result from initialization, deformation and evolvement are compared with the existing methods. The quantitative evaluation of the structure extraction is satisfying with respect of effectiveness and accuracy.
Nonrigid 3D medical image registration and fusion based on deformable models.
Liu, Peng; Eberhardt, Benjamin; Wybranski, Christian; Ricke, Jens; Lüdemann, Lutz
2013-01-01
For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ (kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold standard for evaluating registration results for the elastic liver. Our registration method was compared with affine registration using mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of 4.32 mm. In contrast, affine registration of extracted livers yields a significantly (P = 0.000001) smaller dislocation of 3.26 mm. In conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has limitations in cases where internal displacement must also be taken into account.
Fundamentals of soft robot locomotion
2017-01-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. PMID:28539483
Fundamentals of soft robot locomotion.
Calisti, M; Picardi, G; Laschi, C
2017-05-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).
Extracting a Purely Non-rigid Deformation Field of a Single Structure
NASA Astrophysics Data System (ADS)
Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir
During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and the stent graft. The problem definition of deformable registration of images covering the entire abdominal region, however, is highly ill-posed. We present a new method for extracting the deformation of an aneurysmatic aorta. The outline of the procedure includes initial rigid alignment of two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. Our non-rigid registration procedure then only computes local non-rigid deformation and leaves out all remaining global rigid transformations. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.
Basha, Dudekula Althaf; Rosalie, Julian M; Somekawa, Hidetoshi; Miyawaki, Takashi; Singh, Alok; Tsuchiya, Koichi
2016-01-01
Microstructural investigation of extremely strained samples, such as severely plastically deformed (SPD) materials, by using conventional transmission electron microscopy techniques is very challenging due to strong image contrast resulting from the high defect density. In this study, low angle annular dark field (LAADF) imaging mode of scanning transmission electron microscope (STEM) has been applied to study the microstructure of a Mg-3Zn-0.5Y (at%) alloy processed by high pressure torsion (HPT). LAADF imaging advantages for observation of twinning, grain fragmentation, nucleation of recrystallized grains and precipitation on second phase particles in the alloy processed by HPT are highlighted. By using STEM-LAADF imaging with a range of incident angles, various microstructural features have been imaged, such as nanoscale subgrain structure and recrystallization nucleation even from the thicker region of the highly strained matrix. It is shown that nucleation of recrystallized grains starts at a strain level of revolution [Formula: see text] (earlier than detected by conventional bright field imaging). Occurrence of recrystallization of grains by nucleating heterogeneously on quasicrystalline particles is also confirmed. Minimizing all strain effects by LAADF imaging facilitated grain size measurement of [Formula: see text] nm in fully recrystallized HPT specimen after [Formula: see text].
Intelligent correction of laser beam propagation through turbulent media using adaptive optics
NASA Astrophysics Data System (ADS)
Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.
2014-10-01
Adaptive optics methods have long been used by researchers in the astronomy field to retrieve correct images of celestial bodies. The approach is to use a deformable mirror combined with Shack-Hartmann sensors to correct the slightly distorted image when it propagates through the earth's atmospheric boundary layer, which can be viewed as adding relatively weak distortion in the last stage of propagation. However, the same strategy can't be easily applied to correct images propagating along a horizontal deep turbulence path. In fact, when turbulence levels becomes very strong (Cn 2>10-13 m-2/3), limited improvements have been made in correcting the heavily distorted images. We propose a method that reconstructs the light field that reaches the camera, which then provides information for controlling a deformable mirror. An intelligent algorithm is applied that provides significant improvement in correcting images. In our work, the light field reconstruction has been achieved with a newly designed modified plenoptic camera. As a result, by actively intervening with the coherent illumination beam, or by giving it various specific pre-distortions, a better (less turbulence affected) image can be obtained. This strategy can also be expanded to much more general applications such as correcting laser propagation through random media and can also help to improve designs in free space optical communication systems.
Measuring the Cobb angle with the iPhone in kyphoses: a reliability study.
Jacquot, Frederic; Charpentier, Axelle; Khelifi, Sofiane; Gastambide, Daniel; Rigal, Regis; Sautet, Alain
2012-08-01
Smartphones have gained widespread use in the healthcare field to fulfill a variety of tasks. We developed a small iPhone application to take advantage of the built-in position sensor to measure angles in a variety of spinal deformities. We present a reliability study of this tool in measuring kyphotic angles. Radiographs taken from 20 different patients' charts were presented to a panel of six operators at two different times. Radiographs were measured with the protractor and the iPhone application and statistical analysis was applied to measure intraclass correlation coefficients between both measurement methods, and to measure intra- and interobserver reliability The intraclass correlation coefficient calculated between methods (i.e. CobbMeter application on the iPhone versus standard method with the protractor) was 0.963 for all measures, indicating excellent correlation was obtained between the CobbMeter application and the standard method. The interobserver correlation coefficient was 0.965. The intraobserver ICC was 0.977, indicating excellent reproductibility of measurements at different times for all operators. The interobserver ICC between fellowship trained senior surgeons and general orthopaedic residents was 0.989. Consistently, the ICC for intraobserver and interobserver correlations was higher with the CobbMeter application than with the regular protractor method. This difference was not statistically significant. Measuring kyphotic angles with the iPhone application appears to be a valid procedure and is in no way inferior to the standard way of measuring the Cobb angle in kyphotic deformities.
Gleeson, Fergus V.; Brady, Michael; Schnabel, Julia A.
2018-01-01
Abstract. Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset. PMID:29662918
Papież, Bartłomiej W; Franklin, James M; Heinrich, Mattias P; Gleeson, Fergus V; Brady, Michael; Schnabel, Julia A
2018-04-01
Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset.
NASA Astrophysics Data System (ADS)
Zhang, L.; Wu, J.; Shi, F.
2017-09-01
After the 2010, Mw7.1, Yushu earthquake, many researchers have conducted detail investigations of the surface rupture zone by optical image interpretation, field surveying and inversion of seismic waves. However, how larger of the crustal deformation area caused by the earthquake and the quantitative co-seismic displacements are still not available. In this paper, we first take advantage of D-InSAR, MAI, and optical image matching methods to determine the whole co-seismic displacement fields. Two PALSAR images and two SPOT5 images before and after the earthquake are processed and the co-seismic displacements at the surface rupture zone and far field are obtained. The results are consistent with the field investigations, which illustrates the rationality of the application of optical image matching technology in the earthquake.
Stress fields and energy of disclination-type defects in zones of localized elastic distortions
NASA Astrophysics Data System (ADS)
Sukhanov, Ivan I.; Tyumentsev, Alexander N.; Ditenberg, Ivan A.
2016-11-01
This paper studies theoretically the elastically deformed state and analyzes deformation mechanisms in nanocrystals in the zones of localized elastic distortions and related disclination-type defects, such as dipole, quadrupole and multipole of partial disclinations. Significant differences in the energies of quadrupole and multipole configurations in comparison with nanodipole are revealed. The mechanism of deformation localization in the field of elastic distortions is proposed, which is a quasi-periodic sequence of formation and relaxation of various disclination ensembles with a periodic change in the energy of the defect.
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Zubareva, O. V.
2017-06-01
The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.
NASA Astrophysics Data System (ADS)
Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei
2018-05-01
The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.
NASA Astrophysics Data System (ADS)
Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei
2018-04-01
The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.
New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation
NASA Astrophysics Data System (ADS)
Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.
2015-02-01
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.
NASA Astrophysics Data System (ADS)
Farge, G.; Delbridge, B. G.; Materna, K.; Johnson, C. W.; Chaussard, E.; Jones, C. E.; Burgmann, R.
2016-12-01
Understanding the role of the Hayward/Calaveras fault junction in major earthquake ruptures in the East San Francisco Bay Area is a major challenge in trying to assess the regional seismic hazard. We use updated GPS velocities, and surface geodetic measurements from both traditional space-based InSAR and the NASA JPL's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) system to quantify the deep long-term interseismic deformation and shallow temporally variable fault creep. Here, we present a large data set of interseismic deformation over the Hayward/Calaveras fault system, combining far-field deformation from 1992-2011 ERS and Envisat InSAR data, near-field deformation from 2009-2016 UAVSAR data and 1997-2016 regional GPS measurements from the Bay Area Velocity Unification model (BAVU4) in both near-field and far field. We perform a joint inversion of the data to obtain the long-term slip on deep through-going dislocations and the distribution of shallow creep on a 3D model of the Hayward and Calaveras faults. Spatially adaptative weights are given to each data set in order to account for its importance in constraining slip at different depths. The coherence and resolution of the UAVSAR data allow us to accurately resolve the near-field fault deformation, thus providing stronger constraints on the location of active strands of the southern Hayward and Calaveras faults and their shallow interseismic creep distribution.
POWTEX - A new High-Intensity Powder and Texture Diffractometer at FRM II, Garching Germany
NASA Astrophysics Data System (ADS)
Walter, J. M.; Brückel, T.; Dronskowski, R.; Hansen, B. T.; Houben, A.; Klein, H.; Leiss, B.; Vollbrecht, A.; Sowa, H.
2009-05-01
In recent years, neutron diffraction has become a routine tool in Geoscience for experimental high-field (HP/HT/HH) powder diffraction and for the quantitative analysis of the crystallographic preferred orientation (CPO). Quantitative texture analysis is e.g. involved in the research fields of fabric development in mono- and polyphase rocks, deformation histories and kinematics during mountain building processes and the characterization of flow kinematics in lava flows. Secondly the quantitative characterization of anisotropic physical properties of both rock and analogue materials is conducted by bulk texture measurements of sometimes larger sample volumes. This is easily achievable by neutron diffraction due to the high penetration capabilities of the neutrons. The resulting geoscientific need for increased measuring time at neutron diffraction facilities with the corresponding technical characteristics and equipment will in future be satisfied by this high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany. It will be built by a consortium of groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen, who will also operate the instrument. The diffractometer will be optimized to high intensities (flux) with an equivalent sufficient resolution for polyphase rocks. Furthermore a broad range of d-values (0.5 to 15 Å) will be measurable. The uniqueness of this instrument is the geoscientific focus on different sample environments for in situ-static and deformation experiments (stress, strain and annealing/recrystallisation) and (U)HP/(U)HT experiments. A LP/LT or atmospheric-P deformation rig for in situ-deformation experiments on ice, halite or rock analogue materials is planned, to allow in situ-measurements of the texture development during deformation and annealing. Additionally a uniaxial HT/MP deformation apparatus for salt deformation experiments and an adapted Griggs- type deformation rig are also designated. Furthermore an uniaxial stress frame for in situ stress investigations is planned to conduct simultaneous measurements of stress, elastic or plastic deformation and texture. Other sample environments for geoscientific application will be HP/HT furnaces and pressure cells for powder diffraction investigations. Furthermore the diffractometer will be built in combination with a high-pressure multi anvil up to 25 GPa and 2500 K built by the University of Bayreuth at the same beam line. The detector concept allows single shot texture measurements and therefore the measurement of larger geological sample series as necessary for the investigations of complete geological structures. This concept is complementary to the geoscience neutron texture diffractometer in Dubna, Russia and the stress diffractometer STRESS-SPEC located also at the Garching research reactor. For powder diffraction the diffractometer will be complementary to the existing high-resolution powder diffractometer SPODI at the FRM-II. It will offer the possibility of short, high-intensity parametric powder diffraction measurements in dependency of temperature, electrical, magnetic and stress fields due to the higher flux at the sample. The optimization to high-intensities and therefore short measuring times will also allow time-resolved measurements of kinetic reactions even of small sample volumes.
NASA Technical Reports Server (NTRS)
Gradl, Paul
2016-01-01
NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.
NASA Astrophysics Data System (ADS)
Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.
2017-11-01
The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully scalable configuration. The insertion of a Vase form Multimode Deformable Mirror on the design of an optical instrument will allow correcting the most common low spatial frequency aberrations. This concept could be applied in a space telescope. A Finite Element Analysis of the developed model has been conducted in order to characterize the system's behavior and to validate the concept.
SOURCES OF INFORMATION ON ROCK PHYSICS. CURRENT LITERATURE, FEBRUARY 28, 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgin, L.
1962-02-28
A literature review on the field of rock physics, rock mechanics, wave propagation and other related subjects is presented. The 206 references, wtth abstracts, are included under the following categories: physical properties, rock deformation, loading, engineering applications, seismology, wave propagation, and instruments and methods. In each section the articles are arranged alphabetically according to author. The titles are from material which was made available at the Colorado School of Mines, Arthur Lakes Library during February 1962. (M.C.G.)
1990-01-01
considerable microplasticity associated with cracking. applications, Some of this deformation may be involved in initiating the dealloying appli tan or...brittle fracture, but is Lea and Hondros 3 have defined susceptibility in terms of a fraglt accompanied by microplastic behavior in the crack-tip...stress admonished us to look for microplasticity in the SEM at 10,OOOX, field around a dislocation can be reduced by an atmosphere, the much as Lynch has
Improvement in hardness of soda-lime-silica glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Riya; De, Moumita; Roy, Sudakshina
2012-06-05
Hardness is a key design parameter for structural application of brittle solids like glass. Here we report for the first time the significant improvement of about 10% in Vicker's hardness of a soda-lime-silica glass with loading rate in the range of 0.1-10 N.s{sup -1}. Corroborative dark field optical and scanning electron microscopy provided clue to this improvement through evidence of variations in spatial density of shear deformation band formation as a function of loading rate.
Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens
NASA Technical Reports Server (NTRS)
Magnan, Shannon M.; Throckmorton, David (Technical Monitor)
2002-01-01
Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using finite element analysis without addressing microstructural deformation mechanisms that govern their activation. Out of three orientations tested, the specimen with a [110] load orientation and a [001] growth direction had the lowest maximum resolved shear stress; this specimen orientation appears to be the best design candidate for a tensile application.
NASA Astrophysics Data System (ADS)
Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.
2017-12-01
Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed self-consistent Multi-Order Power-Law Approach (MOPLA) to multi-scale field observations, we constrain likely paleo-tectonic controls of orogenic structural evolution rather than predicting a unique, but likely incorrect deformation history.
Universality hypothesis breakdown at one-loop order
NASA Astrophysics Data System (ADS)
Carvalho, P. R. S.
2018-05-01
We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.
Deformations of vector-scalar models
NASA Astrophysics Data System (ADS)
Barnich, Glenn; Boulanger, Nicolas; Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash
2018-02-01
Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations ("gaugings"), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.
Application of Quaternions for Mesh Deformation
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2002-01-01
A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.
Application of the Virtual Fields Method to a relaxation behaviour of rubbers
NASA Astrophysics Data System (ADS)
Yoon, Sung-ho; Siviour, Clive R.
2018-07-01
This paper presents the application of the Virtual Fields Method (VFM) for the characterization of viscoelastic behaviour of rubbers. The relaxation behaviour of the rubbers following a dynamic loading event is characterized using the dynamic VFM in which full-field (two dimensional) strain and acceleration data, obtained from high-speed imaging, are analysed by the principle of virtual work without traction force data, instead using the acceleration fields in the specimen to provide stress information. Two (silicone and nitrile) rubbers were tested in tension using a drop-weight apparatus. It is assumed that the dynamic behaviour is described by the combination of hyperelastic and Prony series models. A VFM based procedure is designed and used to produce the identification of the modulus term of a hyperelastic model and the Prony series parameters within a time scale determined by two experimental factors: imaging speed and loading duration. Then, the time range of the data is extended using experiments at different temperatures combined with the time-temperature superposition principle. Prior to these experimental analyses, finite element simulations were performed to validate the application of the proposed VFM analysis. Therefore, for the first time, it has been possible to identify relaxation behaviour of a material following dynamic loading, using a technique that can be applied to both small and large deformations.
Polymer-dispersed liquid crystal elastomers
NASA Astrophysics Data System (ADS)
Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan
2016-10-01
The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.
Reports on block rotations, fault domains and crustal deformation
NASA Technical Reports Server (NTRS)
Nur, Amos
1990-01-01
Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.
Producing smart sensing films by means of organic field effect transistors.
Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa
2006-01-01
We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.
Videogrammetric Model Deformation Measurement Technique
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tian-Shu
2001-01-01
The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.
Lepore, Natasha; Brun, Caroline A; Chiang, Ming-Chang; Chou, Yi-Yu; Dutton, Rebecca A; Hayashi, Kiralee M; Lopez, Oscar L; Aizenstein, Howard J; Toga, Arthur W; Becker, James T; Thompson, Paul M
2006-01-01
Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in anatomy. However, the differences are usually computed solely from the determinants of the Jacobian matrices that are associated with the deformation fields computed by the registration procedure. Thus, much of the information contained within those matrices gets thrown out in the process. Only the magnitude of the expansions or contractions is examined, while the anisotropy and directional components of the changes are ignored. Here we remedy this problem by computing multivariate shape change statistics using the strain matrices. As the latter do not form a vector space, means and covariances are computed on the manifold of positive-definite matrices to which they belong. We study the brain morphology of 26 HIV/AIDS patients and 14 matched healthy control subjects using our method. The images are registered using a high-dimensional 3D fluid registration algorithm, which optimizes the Jensen-Rényi divergence, an information-theoretic measure of image correspondence. The anisotropy of the deformation is then computed. We apply a manifold version of Hotelling's T2 test to the strain matrices. Our results complement those found from the determinants of the Jacobians alone and provide greater power in detecting group differences in brain structure.
Phase-field model for the two-phase lithiation of silicon
NASA Astrophysics Data System (ADS)
Gao, Fangliang; Hong, Wei
2016-09-01
As an ideal anode material, silicon has the highest lithium-ion capacity in theory, but the broader application is limited by the huge volumetric strain caused by lithium insertion and extraction. To better understand the physical process and to resolve the related reliability issue, enormous efforts have been made. Recent experiments observed sharp reaction fronts in both crystalline and amorphous silicon during the first lithiation half-cycle. Such a concentration profile indicates that the process is likely to be reaction limited. Based on this postulation, a phase-field model is developed and implemented into a finite-element code to simulate the coupled large inelastic deformation and motion of the reaction front in a silicon electrode. In contrast to most existing models, the model treats both volumetric and deviatoric inelastic deformation in silicon as a direct consequence of the lithiation at the reaction front. The amount of deviatoric deformation is determined by using the recently developed kinetic model of stress-induced anisotropic reaction. By considering the role of stress in the lithiation process, this model successfully recovers the self-limiting phenomenon of silicon electrodes, and relates it to the local geometry of electrodes. The model is also used to evaluate the energy-release rate of the surface crack on a spherical electrode, and the result suggests a critical size of silicon nanoparticles to avert fracture. As examples, the morphology evolution of a silicon disk and a Si nanowire during lithiation are also investigated.
Deformation of a helical filament by flow and electric or magnetic fields
NASA Astrophysics Data System (ADS)
Kim, Munju; Powers, Thomas R.
2005-02-01
Motivated by recent advances in the real-time imaging of fluorescent flagellar filaments in living bacteria [Turner, Ryu, and Berg, J. Bacteriol. 82, 2793 (2000)], we compute the deformation of a helical elastic filament due to flow and external magnetic or high-frequency electric fields. Two cases of deformation due to hydrodynamic drag are considered: the compression of a filament rotated by a stationary motor and the extension of a stationary filament due to flow along the helical axis. We use Kirchhoff rod theory for the filament, and work to linear order in the deflection. Hydrodynamic forces are described first by resistive-force theory, and then for comparison by the more accurate slender-body theory. For helices with a short pitch, the deflection in axial flow predicted by slender-body theory is significantly smaller than that computed with resistive-force theory. Therefore, our estimate of the bending stiffness of a flagellar filament is smaller than that of previous workers. In our calculation of the deformation of a polarizable helix in an external field, we show that the problem is equivalent to the classical case of a helix deformed by forces applied only at the ends.
NASA Astrophysics Data System (ADS)
Yomogita, Takahiro; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Sepehri-Amin, Hossein; Ohkubo, Tadakatsu; Hono, Kazuhiro; Akiya, Takahiro; Hioki, Keiko; Hattori, Atsushi
2018-02-01
First-order reversal curve (FORC) diagram has been previously adopted for the analyses of magnetization reversal process and/or quantitative evaluation of coercivity and interaction field dispersions in various magnetic samples. Although these kinds of information are valuable for permanent magnets, previously reported FORC diagrams of sintered Nd-Fe-B magnets exhibit very complicated patterns. In this paper, we have studied the FORC diagrams of hot-deformed Nd-Fe-B magnets under various conditions. Contrary to the previous reports on sintered Nd-Fe-B magnets, the FORC diagram of the hot-deformed Nd-Fe-B magnet exhibits a very simple pattern consisting of a strong spot and a weak line. From this FORC diagram pattern, it is revealed that the coercivity dispersion of the hot-deformed Nd-Fe-B magnets is surprisingly small. Moreover, this feature of the FORC diagram pattern is very robust and unaffected by changes in various conditions such as grain boundary diffusion process, temperature, and field direction, whereas these conditions significantly change the coercivity and the shape of magnetization curve. This fact indicates that the magnetization reversal process of the hot-deformed Nd-Fe-B magnets is almost unchanged against these conditions.
Experimental investigation of compliant wall surface deformation in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Zhang, Cao; Wang, Jin; Katz, Joseph
2016-11-01
The dynamic response of a compliant wall under a turbulent channel flow is investigated by simultaneously measuring the time-resolved, 3D flow field (using tomographic PIV) and the 2D surface deformation (using interferometry). The pressure distributions are calculated by spatially integrating the material acceleration field. The Reynolds number is Reτ = 2300, and the centerline velocity (U0) is 15% of the material shear speed. The wavenumber-frequency spectra of the wall deformation contain a non-advected low-frequency component and advected modes, some traveling downstream at U0 and others at 0.72U0. Trends in the wall dynamics are elucidated by correlating the deformation with flow variables. The spatial pressure-deformation correlations peak at y/ h 0.12 (h is half channel height), the elevation of Reynolds shear stress maximum in the log-layer. Streamwise lagging of the deformation behind the pressure is caused in part by phase-lag of the pressure with decreasing distance from the wall, and in part by material damping. Positive deformations (bumps) are preferentially associated with ejections, which involve spanwise vortices located downstream and quasi-streamwise vortices with spanwise offset, consistent with hairpin-like structures. The negative deformations (dents) are preferentially associated with pressure maxima at the transition between an upstream sweep to a downstream ejection. Sponsored by ONR.
Coseismic deformation observed with radar interferometry: Great earthquakes and atmospheric noise
NASA Astrophysics Data System (ADS)
Scott, Chelsea Phipps
Spatially dense maps of coseismic deformation derived from Interferometric Synthetic Aperture Radar (InSAR) datasets result in valuable constraints on earthquake processes. The recent increase in the quantity of observations of coseismic deformation facilitates the examination of signals in many tectonic environments associated with earthquakes of varying magnitude. Efforts to place robust constraints on the evolution of the crustal stress field following great earthquakes often rely on knowledge of the earthquake location, the fault geometry, and the distribution of slip along the fault plane. Well-characterized uncertainties and biases strengthen the quality of inferred earthquake source parameters, particularly when the associated ground displacement signals are near the detection limit. Well-preserved geomorphic records of earthquakes offer additional insight into the mechanical behavior of the shallow crust and the kinematics of plate boundary systems. Together, geodetic and geologic observations of crustal deformation offer insight into the processes that drive seismic cycle deformation over a range of timescales. In this thesis, I examine several challenges associated with the inversion of earthquake source parameters from SAR data. Variations in atmospheric humidity, temperature, and pressure at the timing of SAR acquisitions result in spatially correlated phase delays that are challenging to distinguish from signals of real ground deformation. I characterize the impact of atmospheric noise on inferred earthquake source parameters following elevation-dependent atmospheric corrections. I analyze the spatial and temporal variations in the statistics of atmospheric noise from both reanalysis weather models and InSAR data itself. Using statistics that reflect the spatial heterogeneity of atmospheric characteristics, I examine parameter errors for several synthetic cases of fault slip on a basin-bounding normal fault. I show a decrease in uncertainty in fault geometry and kinematics following the application of atmospheric corrections to an event spanned by real InSAR data, the 1992 M5.6 Little Skull Mountain, Nevada, earthquake. Finally, I discuss how the derived workflow could be applied to other tectonic problems, such as solving for interseismic strain accumulation rates in a subduction zone environment. I also study the evolution of the crustal stress field in the South American plate following two recent great earthquakes along the Nazca- South America subduction zone. I show that the 2010 Mw 8.8 Maule, Chile, earthquake very likely triggered several moderate magnitude earthquakes in the Andean volcanic arc and backarc. This suggests that great earthquakes modulate the crustal stress field outside of the immediate aftershock zone and that far-field faults may pose a heightened hazard following large subduction earthquakes. The 2014 Mw 8.1 Pisagua, Chile, earthquake reopened ancient surface cracks that have been preserved in the hyperarid forearc setting of northern Chile for thousands of earthquake cycles. The orientation of cracks reopened in this event reflects the static and likely dynamic stresses generated by the recent earthquake. Coseismic cracks serve as a reliable marker of permanent earthquake deformation and plate boundary behavior persistent over the million-year timescale. This work on great earthquakes suggests that InSAR observations can play a crucial role in furthering our understanding of the crustal mechanics that drive seismic cycle processes in subduction zones.
Wijeyaratne, W M D N; Pathiratne, Asoka
2006-10-01
The present study was aimed at applying condition factor (CF), brain acetylcholinesterase (AChE) and gill histology as biomarkers for detecting possible exposure/effect induced by pesticides in fish residing rice field associated waterbodies in Sri Lanka. Biomarkers of an indigenous fish, Rasbora caverii collected from five sampling sites including canals near rice fields, a river and a reservoir (the reference site) were evaluated at four sampling stages covering pesticide application periods during rice cultivation season in 2004. Results indicated that CF of the fish did not show significant alterations regardless of the sampling sites or sampling stages. Site specific differences in AChE activities of the fish were not evident either prior to application of pesticides or at 7 days after Paraquat application to the rice fields. Two days after the application of a mixture of Fenthion and Phenthoate to the rice fields, AChE activity of the fish collected from canals near rice fields was significantly depressed (65-75%) compared to the fish in the reference site. The activities remain depressed to 50-56% even at 65 days after the insecticides application. Laboratory studies showed that prior exposure of R. caverii to Paraquat (2 microg l(-1), 7 days) enhanced the extent of inhibition of brain AChE activity induced by Fenthion (3 microg l(-1)) or a mixture of Fenthion (3 microg l(-1)) and Phenthoate (5 microg l(-1)). Gills of fish collected from canals near rice fields exhibited abnormal multiple divisions at the tips of some secondary lamellae in addition to hyperplasia, hypertrophy and club shaped deformities. Results indicate that application of pesticides in rice culture could manifest a threat to native fish populations residing rice field associated waterbodies. The response of brain AChE and histological changes in the gills of R. caverii allowed differentiating sampling sites after insecticide applications to the rice fields. Hence, R. caverii may be considered as a surrogate species in ecotoxicological risk evaluation of agrochemicals in the region.
Deformations of a pre-stretched elastic membrane driven by non-uniform electroosmotic flow
NASA Astrophysics Data System (ADS)
Bercovici, Moran; Boyko, Evgeniy; Gat, Amir
2016-11-01
We study viscous-elastic dynamics of fluid confined between a rigid plate and a pre-stretched elastic membrane subjected to non-uniform electroosmotic flow, and focus on the case of a finite-size membrane clamped at its boundaries. Considering small deformations of a strongly pre-stretched membrane, and applying the lubrication approximation for the flow, we derive a linearized leading-order non-homogenous 4th order diffusion equation governing the deformation and pressure fields. We derive a time-dependent Green's function for a rectangular domain, and use it to obtain several basic solutions for the cases of constant and time varying electric fields. In addition, defining an asymptotic expansion where the small parameter is the ratio of the induced to prescribed tension, we obtain a set of four one-way coupled equations providing a first order correction for the deformation field. Funded by the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme, Grant agreement No. 678734 (MetamorphChip).
NASA Astrophysics Data System (ADS)
Chang, Lijun; Flesch, Lucy M.; Wang, Chun-Yung; Ding, Zhifeng
2015-07-01
We present 59 new SKS/SKKS and combine them with 69 previously published data to infer the mantle deformation field in SE Tibet. The dense set of anisotropy measurements in the eastern Himalayan syntaxis (EHS) are oriented along a NE-SW azimuth and rotate clockwise in the surround regions. We use GPS measurements and geologic data to determine a continuous surface deformation field that is then used to predict shear wave spitting directions at each station. Comparison of splitting observations with predictions yields an average misfit of 11.7° illustrating that deformation is vertically coherent, consistent with previous studies. Within the central EHS in areas directly surrounding the Namche-Barwa metamorphic massif, the average misfit of 11 stations increases to 60.8°, and vertical coherence is no longer present. The complexity of the mantle anisotropy and surface observations argues for local alteration of the strain fields here associated with recent rapid exhumation of the Indian crust.
Large deformation image classification using generalized locality-constrained linear coding.
Zhang, Pei; Wee, Chong-Yaw; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian
2013-01-01
Magnetic resonance (MR) imaging has been demonstrated to be very useful for clinical diagnosis of Alzheimer's disease (AD). A common approach to using MR images for AD detection is to spatially normalize the images by non-rigid image registration, and then perform statistical analysis on the resulting deformation fields. Due to the high nonlinearity of the deformation field, recent studies suggest to use initial momentum instead as it lies in a linear space and fully encodes the deformation field. In this paper we explore the use of initial momentum for image classification by focusing on the problem of AD detection. Experiments on the public ADNI dataset show that the initial momentum, together with a simple sparse coding technique-locality-constrained linear coding (LLC)--can achieve a classification accuracy that is comparable to or even better than the state of the art. We also show that the performance of LLC can be greatly improved by introducing proper weights to the codebook.
Electrohydrodynamics of a viscous drop with inertia.
Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F
2016-05-01
Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.
Background Independence and Duality Invariance in String Theory.
Hohm, Olaf
2017-03-31
Closed string theory exhibits an O(D,D) duality symmetry on tori, which in double field theory is manifest before compactification. I prove that to first order in α^{'} there is no manifestly background independent and duality invariant formulation of bosonic string theory in terms of a metric, b field, and dilaton. To this end I use O(D,D) invariant second order perturbation theory around flat space to show that the unique background independent candidate expression for the gauge algebra at order α^{'} is inconsistent with the Jacobi identity. A background independent formulation exists instead for frame variables subject to α^{'}-deformed frame transformations (generalized Green-Schwarz transformations). Potential applications for curved backgrounds, as in cosmology, are discussed.
Indentation tectonics in northern Taiwan: insights from field observations and analog models
NASA Astrophysics Data System (ADS)
Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques
2017-04-01
In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution
Supergravity backgrounds for deformations of AdS n × S n supercoset string models
Lunin, O.; Roiban, R.; Tseytlin, A. A.
2014-12-11
We considermore » type IIB supergravity backgrounds corresponding to the deformed AdS n × S n × T 10 - 2 n supercoset string models of the type constructed in arXiv:1309.5850[2] which depend on one deformation parameter κ. In AdS 2 × S 2 case we find that the deformed metric can be extended to a full supergravity solution with non-trivial dilaton, RR scalar and RR 5-form strength. The solution depends on a free parameter a that should be chosen as a particular function of κ to correspond to the deformed supercoset model. In AdS 3 × S 3 case the full solution supported by the dilaton, RR scalar and RR 3-form strength exists only in the two special cases, a = 0 and a = 1 . We conjecture that there may be a more general one-parameter solution supported by several RR fields that for particular a = a ( κ ) corresponds to the supercoset model. In the most complicated deformed AdS 5 × S 5 case we were able to find only the expressions for the dilaton and the RR scalar. The full solution is likely to be supported by a combination of the 5-form and 3-form field strengths. We comment on the singularity structure of the resulting metric and exact dilaton field.« less
Supergravity backgrounds for deformations of AdS n × S n supercoset string models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunin, O.; Roiban, R.; Tseytlin, A. A.
We considermore » type IIB supergravity backgrounds corresponding to the deformed AdS n × S n × T 10 - 2 n supercoset string models of the type constructed in arXiv:1309.5850[2] which depend on one deformation parameter κ. In AdS 2 × S 2 case we find that the deformed metric can be extended to a full supergravity solution with non-trivial dilaton, RR scalar and RR 5-form strength. The solution depends on a free parameter a that should be chosen as a particular function of κ to correspond to the deformed supercoset model. In AdS 3 × S 3 case the full solution supported by the dilaton, RR scalar and RR 3-form strength exists only in the two special cases, a = 0 and a = 1 . We conjecture that there may be a more general one-parameter solution supported by several RR fields that for particular a = a ( κ ) corresponds to the supercoset model. In the most complicated deformed AdS 5 × S 5 case we were able to find only the expressions for the dilaton and the RR scalar. The full solution is likely to be supported by a combination of the 5-form and 3-form field strengths. We comment on the singularity structure of the resulting metric and exact dilaton field.« less
Continuum-Scale Modeling of Shear Banding in Bulk Metallic Glass-Matrix Composites
NASA Astrophysics Data System (ADS)
Gibbons, Michael
Metallic glasses represent a relatively new class of materials that have demonstrated enormous potential for functional and structural applications due to the unique set of properties attributed to them as a result of the disordered isotropic structure with metallically bonded elements. Amorphous metals benefit from the strong nature of the metallic bonds, but lack the crystallographic structure and polycrystalline nature of traditional metals which unsurprisingly has huge implications on the material properties, as all deformation mechanisms associated with a lattice are suppressed. This results in excellent strength, a high elastic strain limit, exceptional hardness, and improved corrosion and wear resistance. "Bulk" metallic glasses (BMG) represent the amorphous metals which can be produced at the cm length-scale, thus greatly expanding their applicability for structural applications. However, due to the catastrophic nature of the failure produced upon yielding, monolithic metallic glasses are seldomly used for structural applications. Bulk metallic glass-matrix composites (BMGMCs), however, are able to combine the excellent strength, hardness, and elastic strain limit of amorphous metallic glass with a ductile crystalline phase to achieve extraordinary toughness with minimal degradation in strength. In order to explore the mechanical interactions between the amorphous and crystalline phases, a full-field micromechanical model which couples the free-volume based constitutive behavior for the matrix phase with standard rate-dependent crystal plasticity for the dendrites, and its implementation via an elastic-viscoplastic Fast-Fourier Transform (FFT) solver. The model is calibrated to macroscale stress-strain data for Ti-Zr-V-Cu-Be BMGMCs with varying composition and furthermore by comparing the deformation behavior associated with the shear bands predicted by the model, to the artifacts observed from characterization microscopy analysis on the same failed BMGMC tensile specimens in which the macroscopic composite behavior predicted by the model was validated with. The FFT-based deformation modeling is then exercised to study the nature and origin of shear bands in metallic glass composites. Synthetic 3D microstructures were produced using images of real BMGMCs, and then subjected to uniaxial tension deformation simulations. The findings indicate that in BMGMCs, local inhomogeneities in the glass phase are less influential on the mechanical performance than the contrast in individual phase properties and the spatial distribution of the microstructure. Due to the strong contrast in mechanical properties between the phases, highly heterogeneous stress fields develop, contributing to regionally confined free-volume generation, localized flow and softening in the glass. These softened regions can link and plastic flow then rapidly localizes into a thin shear band with planar like geometry. The availability of finely resolved (spatially and temporally) 3D deformation maps allow for the determination of the mechanism corresponding with these macroscopic stick-slip oscillations apparent in the stress-strain curves. In addition to shedding light on the nature of shear banding in bulk metallic glass-matrix composites, this work also demonstrates the feasibility of using a spectral-based continuum-scale model to efficiently predict the microstructure and individual phase properties that lead to new materials, superior to those found using only experimental techniques.
Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling
NASA Astrophysics Data System (ADS)
Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.
This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.
Electrohydrodynamic deformation and interaction of a pair of emulsion drops
NASA Technical Reports Server (NTRS)
Baygents, James C.
1994-01-01
The response of a pair of emulsion drops to the imposition of a uniform electric field is examined. The case studied is that of equal-sized drops whose line of centers is parallel to the axis of the applied field. A new boundary integral solution to the governing equations of the leaky dielectric model is developed; the formulation accounts for the electrostatic and hydrodynamic interactions between the drops, as well as their deformations. Numerical calculations show that, after an initial transient during which the drops primarily deform, the pair drift slowly together due to their electrostatic interactions.
Solution of Einsteins Equation for Deformation of a Magnetized Neutron Star
NASA Astrophysics Data System (ADS)
Rizaldy, R.; Sulaksono, A.
2018-04-01
We studied the effect of very large and non-uniform magnetic field existed in the neutron star on the deformation of the neutron star. We used in our analytical calculation, multipole expansion of the tensor metric and the momentum-energy tensor in Legendre polynomial expansion up to the quadrupole order. In this way we obtain the solutions of Einstein’s equation with the correction factors due to the magnetic field are taken into account. We obtain from our numerical calculation that the degree of deformation (ellipticity) is increased when the the mass is decreased.
NASA Astrophysics Data System (ADS)
Vlahovska, Petia
2015-11-01
Particle motion in a viscous fluid is a classic problem that continues to surprise researchers. In this talk, I will discuss some intriguing, experimentally-observed behaviors of droplets and giant vesicles (cell-size lipid membrane sacs) in electric or flow fields. In a uniform electric field, a droplet deforms into an ellipsoid that can either be steadily tilted relative to the applied field direction or undergo unsteady motions (periodic shape oscillations or irregular flipping); a spherical vesicle can adopt a transient square shape or reversibly porate. In a steady shear flow, a vesicle can tank-tread, tumble or swing. Theoretical models show that the nonlinear drop dynamics originates from the interplay of Quincke rotation and interface deformation, while the vesicle dynamics stems from the membrane inextensibility. The practical motivation for this research lies in an improved understanding of technologies that rely on the manipulation of drops and cells by flow or electric fields.
NASA Astrophysics Data System (ADS)
Valeri, Guillermo; Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.
2017-04-01
An experimental approach based on Digital Image Correlation (DIC) is successfully applied to predict the uniaxial stress-strain response of 304 stainless steel specimens subjected to nominally uniform temperatures ranging from room temperature to 900 °C. A portable induction heating device equipped with custom made water-cooled copper coils is used to heat the specimen. The induction heater is used in conjunction with a conventional tensile frame to enable high temperature tension experiments. A stereovision camera system equipped with appropriate band pass filters is employed to facilitate the study of full-field deformation response of the material at elevated temperatures. Using the temperature and load histories along with the full-field strain data, a Virtual Fields Method (VFM) based approach is implemented to identify constitutive parameters governing the plastic deformation of the material at high temperature conditions. Results from these experiments confirm that the proposed method can be used to measure the full field deformation of materials subjected to thermo-mechanical loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunal, K.; Aluru, N. R., E-mail: aluru@illinois.edu
We investigate the effect of size on intrinsic dissipation in nano-structures. We use molecular dynamics simulation and study dissipation under two different modes of deformation: stretching and bending mode. In the case of stretching deformation (with uniform strain field), dissipation takes place due to Akhiezer mechanism. For bending deformation, in addition to the Akhiezer mechanism, the spatial temperature gradient also plays a role in the process of entropy generation. Interestingly, we find that the bending modes have a higher Q factor in comparison with the stretching deformation (under the same frequency of operation). Furthermore, with the decrease in size, themore » difference in Q factor between the bending and stretching deformation becomes more pronounced. The lower dissipation for the case of bending deformation is explained to be due to the surface scattering of phonons. A simple model, for phonon dynamics under an oscillating strain field, is considered to explain the observed variation in dissipation rate. We also studied the scaling of Q factor with initial tension, in a beam under flexure. We develop a continuum theory to explain the observed results.« less
Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV)
Lamp, Benjamin; Url, Angelika; Seitz, Kerstin; Eichhorn, Jürgen; Riedel, Christiane; Sinn, Leonie Janina; Indik, Stanislav; Köglberger, Hemma; Rümenapf, Till
2016-01-01
European honey bees are highly important in crop pollination, increasing the value of global agricultural production by billions of dollars. Current knowledge about virulence and pathogenicity of Deformed wing virus (DWV), a major factor in honey bee colony mortality, is limited. With this study, we close the gap between field research and laboratory investigations by establishing a complete in vitro model for DWV pathogenesis. Infectious DWV was rescued from a molecular clone of a DWV-A genome that induces DWV symptoms such as crippled wings and discoloration. The expression of DWV proteins, production of infectious virus progeny, and DWV host cell tropism could be confirmed using newly generated anti-DWV monoclonal antibodies. The recombinant RNA fulfills Koch’s postulates circumventing the need of virus isolation and propagation of pure virus cultures. In conclusion, we describe the development and application of a reverse genetics system for the study of DWV pathogenesis. PMID:27828961
Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.
Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N
2016-07-01
In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field.
Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air
Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos
2013-01-01
The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104
Self-shaping of bioinspired chiral composites
NASA Astrophysics Data System (ADS)
Rong, Qing-Qing; Cui, Yu-Hong; Shimada, Takahiro; Wang, Jian-Shan; Kitamura, Takayuki
2014-08-01
Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of self-shaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.
Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry
NASA Astrophysics Data System (ADS)
Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer
2016-08-01
Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulshani, P., E-mail: matlap@bell.net
We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy,more » cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.« less
Hypersurface-deformation algebroids and effective spacetime models
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Büyükçam, Umut; Brahma, Suddhasattwa; D'Ambrosio, Fabio
2016-11-01
In canonical gravity, covariance is implemented by brackets of hypersurface-deformation generators forming a Lie algebroid. Lie-algebroid morphisms, therefore, allow one to relate different versions of the brackets that correspond to the same spacetime structure. An application to examples of modified brackets found mainly in models of loop quantum gravity can, in some cases, map the spacetime structure back to the classical Riemannian form after a field redefinition. For one type of quantum corrections (holonomies), signature change appears to be a generic feature of effective spacetime, and it is shown here to be a new quantum spacetime phenomenon which cannot be mapped to an equivalent classical structure. In low-curvature regimes, our constructions not only prove the existence of classical spacetime structures assumed elsewhere in models of loop quantum cosmology, they also show the existence of additional quantum corrections that have not always been included.
Muenzing, Sascha E A; van Ginneken, Bram; Viergever, Max A; Pluim, Josien P W
2014-04-01
We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5-34% depending on the dataset and the registration algorithm employed. Copyright © 2014 Elsevier B.V. All rights reserved.
Microfluidic converging/diverging channels optimised for homogeneous extensional deformation
Zografos, K.; Oliveira, M. S. N.
2016-01-01
In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523
Tactile sensor of hardness recognition based on magnetic anomaly detection
NASA Astrophysics Data System (ADS)
Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.
Tunable surface configuration of skyrmion lattices in cubic helimagnets
NASA Astrophysics Data System (ADS)
Wan, Xuejin; Hu, Yangfan; Wang, Biao
2018-06-01
In bulk helimagnets, the presence of magnetic skyrmion lattices is always accompanied by a periodic stress field due to the intrinsic magnetoelastic coupling. The release of this nontrivial stress field at the surface causes a periodic displacement field, which characterizes a novel particle-like property of skyrmion: its surface configuration. Here, we derive the analytical solution of this displacement field for semi-infinite cubic helimagnet with the skyrmion magnetization approximated by the triple-Q representation. For MnSi, we show that the skyrmion lattices have a bumpy surface configuration characterized by periodically arranged peaks with a characteristic height of about 10‑13 m. The pattern of the peaks can be controlled by varying the strength of the applied magnetic field. Moreover, we prove that the surface configuration varies together with the motion and deformation of the skyrmion lattices. As a result, the surface configuration can be tuned by application of electric current, mechanical loads, as well as any other effective external fields for skyrmion lattices.
Dynamics of levitated objects in acoustic vortex fields.
Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W
2017-08-02
Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.
Modification of the coil-stretch transition by confinement
NASA Astrophysics Data System (ADS)
Doyle, Patick; Tang, Jing; Jones, Jeremy
2010-03-01
Large double stranded DNA are both a powerful system to study polymer dynamics at the single molecule level and also important molecules for genomic applications. While homogenous electric fields are routinely used to separate DNA in gels, DNA deformation in more complex fields has been less widely studied. We will demonstrate how micro/nanofluidic devices allow for the generation of electric fields with well-defined kinematics for trapping, stretching and then watching DNA relax back to equilibrium. The dimensions of the devices highly confine DNA and subsequently change both their conformation and dynamics. We will show how these confinements effects change the coil-stretch transition of a DNA being electrophoretically stretched in a purely elongational electrical field. We experimentally show that a two-stage coil stretch transition occurs and develop a simple dumbbell model which captures most of the relevant physics. We trace the origin of this phenomena to the modification of the effective spring law due to confinement.
NASA Astrophysics Data System (ADS)
L'vov, Victor A.; Kosogor, Anna
2016-09-01
The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni-Mn-Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10-4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10-6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.
Large-Strain Transparent Magnetoactive Polymer Nanocomposites
NASA Technical Reports Server (NTRS)
Meador, Michael A.
2012-01-01
A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.
Interaction of acoustic levitation field with liquid reflecting surface
NASA Astrophysics Data System (ADS)
Hong, Z. Y.; Xie, W. J.; Wei, B.
2010-01-01
Single-axis acoustic levitation of substances, such as foam, water, polymer, and aluminum, is achieved by employing various liquids as the sound reflectors. The interaction of acoustic levitation field with liquid reflecting surface is investigated theoretically by considering the deformation of the liquid surface under acoustic radiation pressure. Numerical calculations indicate that the deformation degree of the reflecting surface shows a direct proportion to the acoustic radiation power. Appropriate deformation is beneficial whereas excessive deformation is unfavorable to enhance the levitation capability. Typically, the levitation capability with water reflector is smaller than that with the concave rigid reflector but slightly larger than that with the planar rigid reflector at low emitter vibration intensity. Liquid reflectors with larger surface tension and higher density behave more closely to the planar rigid reflector.
NASA Astrophysics Data System (ADS)
Polcari, Marco; Fernández, José; Albano, Matteo; Bignami, Christian; Palano, Mimmo; Stramondo, Salvatore
2017-12-01
In this work, we propose an improved algorithm to constrain the 3D ground displacement field induced by fast surface deformations due to earthquakes or landslides. Based on the integration of different data, we estimate the three displacement components by solving a function minimization problem from the Bayes theory. We exploit the outcomes from SAR Interferometry (InSAR), Global Positioning System (GNSS) and Multiple Aperture Interferometry (MAI) to retrieve the 3D surface displacement field. Any other source of information can be added to the processing chain in a simple way, being the algorithm computationally efficient. Furthermore, we use the intensity Pixel Offset Tracking (POT) to locate the discontinuity produced on the surface by a sudden deformation phenomenon and then improve the GNSS data interpolation. This approach allows to be independent from other information such as in-situ investigations, tectonic studies or knowledge of the data covariance matrix. We applied such a method to investigate the ground deformation field related to the 2014 Mw 6.0 Napa Valley earthquake, occurred few kilometers from the San Andreas fault system.
Development of Control Models and a Robust Multivariable Controller for Surface Shape Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winters, Scott Eric
2003-06-18
Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments havemore » the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H ∞ controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.« less
Self-adjointness of deformed unbounded operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Much, Albert
2015-09-15
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.
Registration of organs with sliding interfaces and changing topologies
NASA Astrophysics Data System (ADS)
Berendsen, Floris F.; Kotte, Alexis N. T. J.; Viergever, Max A.; Pluim, Josien P. W.
2014-03-01
Smoothness and continuity assumptions on the deformation field in deformable image registration do not hold for applications where the imaged objects have sliding interfaces. Recent extensions to deformable image registration that accommodate for sliding motion of organs are limited to sliding motion along approximately planar surfaces or cannot model sliding that changes the topological configuration in case of multiple organs. We propose a new extension to free-form image registration that is not limited in this way. Our method uses a transformation model that consists of uniform B-spline transformations for each organ region separately, which is based on segmentation of one image. Since this model can create overlapping regions or gaps between regions, we introduce a penalty term that minimizes this undesired effect. The penalty term acts on the surfaces of the organ regions and is optimized simultaneously with the image similarity. To evaluate our method registrations were performed on publicly available inhale-exhale CT scans for which performances of other methods are known. Target registration errors are computed on dense landmark sets that are available with these datasets. On these data our method outperforms the other methods in terms of target registration error and, where applicable, also in terms of overlap and gap volumes. The approximation of the other methods of sliding motion along planar surfaces is reasonably well suited for the motion present in the lung data. The ability of our method to handle sliding along curved boundaries and for changing region topology configurations was demonstrated on synthetic images.
Effects of Structural Deformation and Tube Chirality on Electronic Conductance of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
A combination of large scale classical force-field (UFF), density functional theory (DFT), and tight-binding Green's function transport calculations is used to study the electronic properties of carbon nanotubes under the twist, bending, and atomic force microscope (AFM)-tip deformation. We found that in agreement with experiment a significant change in electronic conductance can be induced by AFM-tip deformation of metallic zigzag tubes and by twist deformation of armchair tubes. The effect is explained in terms of bandstructure change under deformation.
Dynamic Magnetostriction of CoFe2 O4 and Its Role in Magnetoelectric Composites
NASA Astrophysics Data System (ADS)
Aubert, A.; Loyau, V.; Pascal, Y.; Mazaleyrat, F.; LoBue, M.
2018-04-01
Applications of magnetostrictive materials commonly involve the use of the dynamic deformation, i.e., the piezomagnetic effect. Usually, this effect is described by the strain derivative ∂λ /∂H , which is deduced from the quasistatic magnetostrictive curve. However, the strain derivative might not be accurate to describe dynamic deformation in semihard materials as cobalt ferrite (CFO). To highlight this issue, dynamic magnetostriction measurements of cobalt ferrite are performed and compared with the strain derivative. The experiment shows that measured piezomagnetic coefficients are much lower than the strain derivative. To point out the direct application of this effect, low-frequency magnetoelectric (ME) measurements are also conducted on bilayers CFO /Pb (Zr ,Ti )O3 . The experimental data are compared with calculated magnetoelectric coefficients which include a measured dynamic coefficient and result in very low relative error (<5 %), highlighting the relevance of using a piezomagnetic coefficient derived from dynamic magnetostriction instead of a strain derivative coefficient to model ME composites. The magnetoelectric effect is then measured for several amplitudes of the alternating field Hac, and a nonlinear response is revealed. Based on these results, a trilayer CFO/Pb (Zr ,Ti )O3 /CFO is made exhibiting a high magnetoelectric coefficient of 578 mV /A (approximately 460 mV /cm Oe ) in an ac field of 38.2 kA /m (about 48 mT) at low frequency, which is 3 times higher than the measured value at 0.8 kA /m (approximately 1 mT). We discuss the viability of using semihard materials like cobalt ferrite for dynamic magnetostrictive applications such as the magnetoelectric effect.
NASA Technical Reports Server (NTRS)
Endo, T.; Oden, J. T.; Becker, E. B.; Miller, T.
1984-01-01
Finite element methods for the analysis of bifurcations, limit-point behavior, and unilateral frictionless contact of elastic bodies undergoing finite deformation are presented. Particular attention is given to the development and application of Riks-type algorithms for the analysis of limit points and exterior penalty methods for handling the unilateral constraints. Applications focus on the problem of finite axisymmetric deformations, snap-through, and inflation of thick rubber spherical shells.
Anssari-Benam, Afshin; Tseng, Yuan-Tsan; Bucchi, Andrea
2018-05-26
This paper presents a continuum-based transverse isotropic model incorporating rate-dependency and fibre dispersion, applied to the planar biaxial deformation of aortic valve (AV) specimens under various stretch rates. The rate dependency of the mechanical behaviour of the AV tissue under biaxial deformation, the (pseudo-) invariants of the right Cauchy-Green deformation-rate tensor Ċ associated with fibre dispersion, and a new fibre orientation density function motivated by fibre kinematics are presented for the first time. It is shown that the model captures the experimentally observed deformation of the specimens, and characterises a shear-thinning behaviour associated with the dissipative (viscous) kinematics of the matrix and the fibres. The application of the model for predicting the deformation behaviour of the AV under physiological rates is illustrated and an example of the predicted σ-λ curves is presented. While the development of the model was principally motivated by the AV biomechanics requisites, the comprehensive theoretical approach employed in the study renders the model suitable for application to other fibrous soft tissues that possess similar rate-dependent and structural attributes. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Directly manipulated free-form deformation image registration.
Tustison, Nicholas J; Avants, Brian B; Gee, James C
2009-03-01
Previous contributions to both the research and open source software communities detailed a generalization of a fast scalar field fitting technique for cubic B-splines based on the work originally proposed by Lee . One advantage of our proposed generalized B-spline fitting approach is its immediate application to a class of nonrigid registration techniques frequently employed in medical image analysis. Specifically, these registration techniques fall under the rubric of free-form deformation (FFD) approaches in which the object to be registered is embedded within a B-spline object. The deformation of the B-spline object describes the transformation of the image registration solution. Representative of this class of techniques, and often cited within the relevant community, is the formulation of Rueckert who employed cubic splines with normalized mutual information to study breast deformation. Similar techniques from various groups provided incremental novelty in the form of disparate explicit regularization terms, as well as the employment of various image metrics and tailored optimization methods. For several algorithms, the underlying gradient-based optimization retained the essential characteristics of Rueckert's original contribution. The contribution which we provide in this paper is two-fold: 1) the observation that the generic FFD framework is intrinsically susceptible to problematic energy topographies and 2) that the standard gradient used in FFD image registration can be modified to a well-understood preconditioned form which substantially improves performance. This is demonstrated with theoretical discussion and comparative evaluation experimentation.
Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy
NASA Astrophysics Data System (ADS)
Feuerbacher, Michael
2016-07-01
High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility and low density. The mechanisms effecting these attractive mechanical properties are not understood. This study addresses the deformation mechanism of a Al28Co20Cr11Fe15Ni26 high-entropy alloy, which is a two-phase material, consisting of a B2-ordered matrix and disordered body-centred inclusions. We quantitatively analyse the microstructure and dislocations in deformed samples by transmission-electron-microscopic methods including weak-beam imaging and convergent-beam electron diffraction. We find that the deformation process in the B2 phase is dominated by heterogeneous slip of screw dislocations gliding on planes. The dislocations are perfect superdislocations of the B2 lattice and show no dissociation. This indicates that the antiphase-boundary energy in the structure is very high, inhibiting spread of the dislocation core. Along with the observation of a widely extending strain field associated to the dislocations, our results provide a possible explanation for the high strength of this high-entropy alloy as a direct consequence of its dislocation structure.
Double-β decay within a consistent deformed approach
NASA Astrophysics Data System (ADS)
Delion, D. S.; Suhonen, J.
2015-05-01
In this paper we present a timely application of the proton-neutron deformed quasiparticle random-phase approximation (p n -dQRPA), designed to describe in a consistent way the 1+ Gamow-Teller states in odd-odd deformed nuclei. For this purpose we apply a projection before variation procedure by using a single-particle basis with projected angular momentum, provided by the diagonalization of a spherical mean field plus quadrupole-quadrupole interaction. The residual Hamiltonian contains pairing plus proton-neutron dipole terms in particle-hole and particle-particle channels, with constant strengths. As an example we describe the two-neutrino double-beta (2 ν β β ) decay of
Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures
NASA Astrophysics Data System (ADS)
Bakaeva, A.; Terentyev, D.; De Temmerman, G.; Lambrinou, K.; Morgan, T. W.; Dubinko, A.; Grigorev, P.; Verbeken, K.; Noterdaeme, J. M.
2016-10-01
The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼1024 m-2 s-1, energy ∼50 eV and fluence up to 5 × 1025 D/m2) was studied experimentally in a wide temperature range (460-1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in "shallow" and "deep" traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from "trapping sites" to "diffusion channels" above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Soto, Hector L.; South, Bruce W.
2002-01-01
Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.
Yerganian, Simon Scott
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Yerganian, Simon Scott
2003-02-11
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Short distance modification of the quantum virial theorem
NASA Astrophysics Data System (ADS)
Zhao, Qin; Faizal, Mir; Zaz, Zaid
2017-07-01
In this letter, we will analyse the deformation of a semi-classical gravitational system from minimal measurable length scale. In the semi-classical approximation, the gravitational field will be analysed as a classical field, and the matter fields will be treated quantum mechanically. Thus, using this approximation, this system will be represented by a deformation of Schrödinger-Newton equation by the generalised uncertainty principle (GUP). We will analyse the effects of this GUP deformed Schrödinger-Newton equation on the behaviour of such a semi-classical gravitational system. As the quantum mechanical virial theorem can be obtained using the Schrödinger-Newton equation, a short distance modification of the Schrödinger-Newton equation will also result in a short distance modification of the quantum mechanical virial theorem.
Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories
NASA Astrophysics Data System (ADS)
Dong, Xi
2016-06-01
We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.
Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.
2016-01-01
The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479
Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T
2016-06-14
The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deformation of biological cells in the acoustic field of an oscillating bubble.
Zinin, Pavel V; Allen, John S
2009-02-01
In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1). For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).
Deformation of biological cells in the acoustic field of an oscillating bubble
Zinin, Pavel V.; Allen, John S.
2009-01-01
In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA, (c) the relative change in the area has a maximum at frequency fK∼12πKA/(ρa3), where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the area deformation has a strong peak near a resonance frequency fK; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781
Deformation of biological cells in the acoustic field of an oscillating bubble
NASA Astrophysics Data System (ADS)
Zinin, Pavel V.; Allen, John S., III
2009-02-01
In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin , Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA , (c) the relative change in the area has a maximum at frequency fK˜(1)/(2π)KA/(ρa3) , where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1) . For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency fK ; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).
Sipkin, S.A.; Silver, P.G.
2003-01-01
We present a method for summing moment tensors derived from first-motion focal mechanisms to study temporal dependence in features of the subsurface regional strain field. Time-dependent processes are inferred by comparing mechanisms summed over differing time periods. We apply this methodology to seismogenic zones in central and southern California using focal mechanisms produced by the Northern and Southern California Seismograph Networks for events during 1980-1999. We find a consistent pattern in both the style of deformation (strike-slip versus compressional) and seismicity rate across the entire region. If these temporal variations are causally related, it suggests a temporal change in the regional-scale stress field. One change consistent with the observations is a rotation in the regional maximum horizontal compressive stress direction, followed by a reversal to the original direction. Depending upon the dominant style of deformation locally, this change in orientation of the regional stress will tend to either enhance or hinder deformation. The mode of enhanced deformation can range from increased microseismicity and creep to major earthquakes. We hypothesize that these temporal changes in the regional stress field are the result of subtle changes in apparent relative plate motion between the Pacific and North American plates, perhaps due to long-range postseismic stress diffusion. Others have hypothesized that small changes in plate motion over thousands of years, and/or over decades, are responsible for changes in the style of deformation in southern California. We propose that such changes, over the course of just a few years, also affect the style of deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, W; Zhang, Y; Ren, L
2014-06-01
Purpose: To investigate the feasibility of using nanoparticle markers to validate liver tumor motion together with a deformation field map-based four dimensional (4D) cone-beam computed tomography (CBCT) reconstruction method. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In this method, each phase of the 4D-CBCT is considered as a deformation of a prior CT volume. The DFM is solved by a motion modeling and free-form deformation (MM-FD) technique, using a data fidelity constraint and the deformation energy minimization. For liver imaging, there is low contrast of a liver tumor inmore » on-board projections. A validation of liver tumor motion using implanted gold nanoparticles, along with the MM-FD deformation technique is implemented to reconstruct onboard 4D CBCT liver radiotherapy images. These nanoparticles were placed around the liver tumor to reflect the tumor positions in both CT simulation and on-board image acquisition. When reconstructing each phase of the 4D-CBCT, the migrations of the gold nanoparticles act as a constraint to regularize the deformation field, along with the data fidelity and the energy minimization constraints. In this study, multiple tumor diameters and positions were simulated within the liver for on-board 4D-CBCT imaging. The on-board 4D-CBCT reconstructed by the proposed method was compared with the “ground truth” image. Results: The preliminary data, which uses reconstruction for lung radiotherapy suggests that the advanced reconstruction algorithm including the gold nanoparticle constraint will Resultin volume percentage differences (VPD) between lesions in reconstructed images by MM-FD and “ground truth” on-board images of 11.5% (± 9.4%) and a center of mass shift of 1.3 mm (± 1.3 mm) for liver radiotherapy. Conclusion: The advanced MM-FD technique enforcing the additional constraints from gold nanoparticles, results in improved accuracy for reconstructing on-board 4D-CBCT of liver tumor. Varian medical systems research grant.« less
Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation
NASA Astrophysics Data System (ADS)
Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.
2016-12-01
Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better constrain fault zone rheology and physical properties, having implications for the overall understanding of earthquake physics, fault interactions, plate boundary deformation and earthquake hazard, preparedness and risk reduction.
A finite element head and neck model as a supportive tool for deformable image registration.
Kim, Jihun; Saitou, Kazuhiro; Matuszak, Martha M; Balter, James M
2016-07-01
A finite element (FE) head and neck model was developed as a tool to aid investigations and development of deformable image registration and patient modeling in radiation oncology. Useful aspects of a FE model for these purposes include ability to produce realistic deformations (similar to those seen in patients over the course of treatment) and a rational means of generating new configurations, e.g., via the application of force and/or displacement boundary conditions. The model was constructed based on a cone-beam computed tomography image of a head and neck cancer patient. The three-node triangular surface meshes created for the bony elements (skull, mandible, and cervical spine) and joint elements were integrated into a skeletal system and combined with the exterior surface. Nodes were additionally created inside the surface structures which were composed of the three-node triangular surface meshes, so that four-node tetrahedral FE elements were created over the whole region of the model. The bony elements were modeled as a homogeneous linear elastic material connected by intervertebral disks. The surrounding tissues were modeled as a homogeneous linear elastic material. Under force or displacement boundary conditions, FE analysis on the model calculates approximate solutions of the displacement vector field. A FE head and neck model was constructed that skull, mandible, and cervical vertebrae were mechanically connected by disks. The developed FE model is capable of generating realistic deformations that are strain-free for the bony elements and of creating new configurations of the skeletal system with the surrounding tissues reasonably deformed. The FE model can generate realistic deformations for skeletal elements. In addition, the model provides a way of evaluating the accuracy of image alignment methods by producing a ground truth deformation and correspondingly simulated images. The ability to combine force and displacement conditions provides flexibility for simulating realistic anatomic configurations.
Complex deformation associated with anhydrite layers in the Tromsø Basin, SW Barents Sea.
NASA Astrophysics Data System (ADS)
Marfo, George; Olakunle Omosanya, Kamaldeen; Johansen, Ståle Emil; Zervas, Ioannis
2017-04-01
Internal and external deformation associated with salt structures is of prime interest due to their economic importance as hydrocarbon seals, reservoirs, repositories for chemical waste and their implication on drilling. Salt structures are often associated with anhydrites, which may 'cap' or are enclosed within the allochthonous salt structures. Despite their economic importance, the internal and external structures of evaporites remain poorly studied from field and seismic data due to the sparse outcrops of evaporites and poor seismic imaging. The zero-phased, normal polarity, high resolution multiple 2D seismic data, in combination with detailed interpretation of wireline logs provide an excellent study into the salt structures, and offers a good opportunity to investigate the dynamics, geometries and mechanisms driving deformation of internal and external salt layers associated with the Late Carboniferous to Early Permian Salt structures in the Tromsø Basin. The methods include seismic interpretation and the application of multiple seismic attributes to map stratigraphic units and discontinuities. Our results show that the anhydrite layers are marked by high amplitude reflections at the crests and flanks or fully enclosed within the salt diapirs. Crestal and lateral anhydrite caprocks represent external salt structures whilst the entrained anhydrites or stringers are intrasalt structures. Anhydrite caprocks generally show structural styles such as faults and large-scale folds which are harmonic to the top salt structure. In contrast, anhydrite stringers show folds of varying scale, which are harmonic to disharmonic to the top salt structure. Boudins and steeply dipping stringer fragments are also interpreted within the stringers. Caprock deformation is attributed to salt upwelling. Folding and boudinaging of originally horizontal and continuous stringer layers formed from a multiphase superimposed sequence of ductile and brittle deformation in response to complex multi-dimensional salt flow. Internal salt flow involves radial and tangential compression, which leads to dominant fold structures near the margins. Boudins on the lower flanks of the diapir formed due radial extension. Our study further demonstrates that differential geometries exhibited by the different anhydrite groups imply that the mechanisms deforming internal and external salt structures are different. The results from this study are comparable to observations from salt mines, field exposures, scaled physical and numerical models.
A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals
Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...
2015-05-18
The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less
Measurement of rock mass deformation with grouted coaxial antenna cables
NASA Astrophysics Data System (ADS)
Dowding, C. H.; Su, M. B.; O'Connor, K.
1989-01-01
Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.
Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile
Xia, Kang; Zhan, Haifei; Hu, De’an; Gu, Yuantong
2016-01-01
The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989
A discrete element model for the investigation of the geometrically nonlinear behaviour of solids
NASA Astrophysics Data System (ADS)
Ockelmann, Felix; Dinkler, Dieter
2018-07-01
A three-dimensional discrete element model for elastic solids with large deformations is presented. Therefore, an discontinuum approach is made for solids. The properties of elastic material are transferred analytically into the parameters of a discrete element model. A new and improved octahedron gap-filled face-centred cubic close packing of spheres is split into unit cells, to determine the parameters of the discrete element model. The symmetrical unit cells allow a model with equal shear components in each contact plane and fully isotropic behaviour for Poisson's ratio above 0. To validate and show the broad field of applications of the new model, the pin-pin Euler elastica is presented and investigated. The thin and sensitive structure tends to undergo large deformations and rotations with a highly geometrically nonlinear behaviour. This behaviour of the elastica can be modelled and is compared to reference solutions. Afterwards, an improved more realistic simulation of the elastica is presented which softens secondary buckling phenomena. The model is capable of simulating solids with small strains but large deformations and a strongly geometrically nonlinear behaviour, taking the shear stiffness of the material into account correctly.
NASA Astrophysics Data System (ADS)
Choi, Chulmin; Hong, Soonkook; Chen, Li-Han; Liu, Chin-Hung; Choi, Duyoung; Kuru, Cihan; Jin, Sungho
2014-05-01
Vertically anisotropically conductive composites with aligned chain-of-spheres of 20-75 mm Ni particles in an elastomer matrix have been prepared by curing the mixture at 100°C-150°C under an applied magnetic field of ˜300-1000 Oe. The particles are coated with a ˜120 nm thick Au layer for enhanced electrical conductivity. The resultant vertically aligned but laterally isolated columns of conductive particles extend through the whole composite thickness and the end of the Ni columns protrude from the surface, contributing to enhanced electrical contact on the composite surface. The stress-strain curve on compressive deformation exhibits a nonlinear behavior with a rapidly increasing Young's modulus with stress (or pressure). The electrical contact resistance Rc decreases rapidly when the applied pressure is small and then more gradually after the applied pressure reaches 500 psi (˜3.4 MPa), corresponding to a 30% deformation. The directionally conductive elastomer composite material with metal pads and conductive electrodes on the substrate surface can be used as a convenient tactile shear sensor for applications involving artificial limbs, robotic devices, and other visual communication devices such as touch sensitive screens.
Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile
NASA Astrophysics Data System (ADS)
Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong
2016-09-01
The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.
Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.
Liu, Xiaolin; Chen, Huawei; Zhao, Zehui; Wang, Yamei; Liu, Hong; Zhang, Deyuan
2017-11-07
Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced movements (namely, in-situ shaking, rotating, rolling, and self-jumping). The self-jumping performance of the melting frost is extremely fascinating and worth studying due to its capability of evidently shortening the defrosting process and reducing (even avoiding) residual droplets after defrosting. The study on the melting frost self-jumping phenomena demonstrates that the kinetic energy transformed from instantaneous superficial area change in self-triggered deforming step is the intrinsic reason for various melting frost self-propelled movements, and when the transformed energy reaches a certain amount, the self-jumping phenomena occur. And some facilitating conditions for melting frost self-jumping phenomena are also discussed. This work will provide an efficient way for defrosting or an inspiration for further research on defrosting.
Block rotations, fault domains and crustal deformation in the western US
NASA Technical Reports Server (NTRS)
Nur, Amos
1990-01-01
The aim of the project was to develop a 3D model of crustal deformation by distributed fault sets and to test the model results in the field. In the first part of the project, Nur's 2D model (1986) was generalized to 3D. In Nur's model the frictional strength of rocks and faults of a domain provides a tight constraint on the amount of rotation that a fault set can undergo during block rotation. Domains of fault sets are commonly found in regions where the deformation is distributed across a region. The interaction of each fault set causes the fault bounded blocks to rotate. The work that has been done towards quantifying the rotation of fault sets in a 3D stress field is briefly summarized. In the second part of the project, field studies were carried out in Israel, Nevada and China. These studies combined both paleomagnetic and structural information necessary to test the block rotation model results. In accordance with the model, field studies demonstrate that faults and attending fault bounded blocks slip and rotate away from the direction of maximum compression when deformation is distributed across fault sets. Slip and rotation of fault sets may continue as long as the earth's crustal strength is not exceeded. More optimally oriented faults must form, for subsequent deformation to occur. Eventually the block rotation mechanism may create a complex pattern of intersecting generations of faults.
NASA Astrophysics Data System (ADS)
Ni, C.; Huang, Y.; Lu, C.
2012-12-01
The pumping-induced land subsidence events are typically founded in coastal aquifers in Taiwan especially in the areas of lower alluvial fans. Previous investigations have recognized the irreversible situation for an aquifer deformation even if the pumped water is significantly reduced or stopped. Long-term monitoring projects on land subsidence in Choshui alluvial fan in central Taiwan have improved the understanding of the deformations in the aquifer system. To characterization the detailed land subsidence mechanism, this study develops an inverse numerical model to estimate the deformation parameters such as the specific storage (Ss) and vertical hydraulic conductivity (Kv) for interbeds. Similar to the concept of Hydraulic tomography survey (HTS), the developed model employs the iterative cokriging estimator to improve the accuracy of estimating deformation parameters. A one-dimensional numerical example is employed to assess the accuracy of the developed inverse model. The developed model is then applied to field-scale data from compaction monitoring wells (CMW) installed in the lower Choshui River fan. Results of the synthetic example show that the developed inverse model can reproduce well the predefined geologic features of the synthetic aquifer. The model provides better estimations of Kv patterns and magnitudes. Slightly less detail of the Ss was obtained due to the insensitivity of transient stresses for specified sampling times. Without prior information from field measurements, the developed model associated with deformation measurements form CMW can estimate Kv and Ss fields with great spatial resolution.
Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation. Premature failure in regions of the unit cell near the edge of the straight-sided specimens was observed for transverse tensile tests in which the braid axial fibers were perpendicular to the specimen axis and the bias fibers terminated on the cut edges in the specimen gage section. This edge effect is one factor that could contribute to a measured strength that is lower than the actual material strength in a structure without edge effects.
Residual Stress Analysis Based on Acoustic and Optical Methods.
Yoshida, Sanichiro; Sasaki, Tomohiro; Usui, Masaru; Sakamoto, Shuichi; Gurney, David; Park, Ik-Keun
2016-02-16
Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.
Use of digital image correlation to study the local deformation field of paper and paperboard
J.M. Considine; C.T. Scott; R. Gleisner; J.Y. Zhu
2005-01-01
Digital image correlation was used to measure the full-field deformation of paperboard and handsheet tensile specimens. The correlation technique was able to accurately measure strain in regions 0.6 by 0.6 mm. Results showed the variation of strain to be much larger than has been previously reported. For machine made paperboard tested in the cross-direction, the...
Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals
NASA Astrophysics Data System (ADS)
Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.; Karbovnyk, I.
2018-03-01
It is shown that at a deformation rate of 0.41 kg/min, the characteristic feature of the dependence of the surface resistance of the p-Si sample on the magnitude of its elastic deformation (R(σ)) is the reduction of the resistance during compression and unclamping. With the increase in the number of "compression-unclamping" cycles, the difference between the positions of the compression and unclamping curves decreases. The transformation of two types of magnetically sensitive defects occurs under the impact of a magnetic field on p-Si crystals. The defects are interrelated with two factors that cause the mutually opposite influence on the conductivity of the crystal. The first factor is that the action of the magnetic field decreases the activation energy of the dislocation holders, which leads to an increase in the electrical conductivity of the sample. The second factor is that due to the decay of molecules of oxygen-containing impurities in the magnetic field, the stable chemisorption bonds appear in the crystal that leads to a decrease in its conductivity. If the sample stays in the magnetic field for a long time, the one or the other mechanism predominates, causing a slow growth or decrease in resistance around a certain (averaged) value. Moreover, the frequency of such changes is greater in the deformed sample. The value of the surface resistance of p-Si samples does not change for a long time without the influence of the magnetic field.
Pukšič, Nuša; Jenko, Monika; Godec, Matjaž; McGuiness, Paul J.
2017-01-01
While a lot is known about the deformation of metallic surfaces from experiments, elasticity theory and simulations, this investigation represents the first molecular-dynamics-based simulation of uniaxial deformation for the vicinal surfaces in a comparison of copper and nickel. These vicinal surfaces are composed of terraces divided by equidistant, mono-atomic steps. The periodicity of vicinals makes them good candidates for the study of the surface steps’ influences on surface dynamics. The simulations of tensile and compressive uniaxial deformations were performed for the (1 1 19) vicinal surfaces. Since the steps on the surfaces serve as stress concentrators, the first defects were expected to nucleate here. In the case of copper, this was found to be the case. In the case of nickel, however, dislocations nucleated beneath the near-surface layer affected by the displacement field generated by the steps. Slip was hindered at the surface step by the vortex in the displacement field. The differences in the deformation mechanisms for the Ni(1 1 19) and Cu(1 1 19) surfaces can be linked to the differences in their displacement fields. This could lead to novel bottom-up approaches to the nanostructuring of surfaces using strain. PMID:28169377
Type IIB supergravity solution for the T-dual of the η-deformed AdS 5 × S 5 superstring
NASA Astrophysics Data System (ADS)
Hoare, B.; Tseytlin, A. A.
2015-10-01
We find an exact type IIB supergravity solution that represents a one-parameter deformation of the T-dual of the AdS 5 × S 5 background (with T-duality applied in all 6 abelian bosonic isometric directions). The non-trivial fields are the metric, dilaton and RR 5-form only. The latter has remarkably simple "undeformed" form when written in terms of a "deformation-rotated" vielbein basis. An unusual feature of this solution is that the dilaton contains a linear dependence on the isometric coordinates of the metric precluding a straightforward reversal of T-duality. If we still formally dualize back, we find exactly the metric, B-field and product of dilaton with RR field strengths as recently extracted from the η-deformed AdS 5 × S 5 superstring action in arXiv:1507.04239. We also discuss similar solutions for deformed AdS n × S n backgrounds with n = 2 , 3. In the η → i limit we demonstrate that all these backgrounds can be interpreted as special limits of gauged WZW models and are also related to (a limit of) the Pohlmeyer-reduced models of the AdS n × S n superstrings.
NASA Astrophysics Data System (ADS)
Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.
2018-01-01
We discuss the q-deformed algebra and study the Schrödinger equation in commutative and noncommutative spaces, under an external magnetic field. In this work, we obtain the energy spectrum by an analytical method and the thermodynamic properties of the system by using the q-deformed superstatistics are calculated. Actually, we derive a generalized version of the ordinary superstatistic for the non-equilibrium systems. Also, different effective Boltzmann factor descriptions are derived. In addition, we discuss about the results for various values of θ in commutative and noncommutative spaces and, to illustrate the results, some figures are plotted.
Accelerated horizons and Planck-scale kinematics
NASA Astrophysics Data System (ADS)
Arzano, Michele; Laudonio, Matteo
2018-04-01
We extend the concept of accelerated horizons to the framework of deformed relativistic kinematics at the Planck scale. We show that the nontrivial effects due to symmetry deformation manifest in a finite blueshift for field modes as measured by a Rindler observer approaching the horizon. We investigate whether, at a field theoretic level, this effect could manifest in the possibility of a finite horizon contribution to the entropy, a sort of covariant brick wall. In the specific model of symmetry deformation considered, it will turn out that a nondiverging density of modes close to the horizon can be achieved only by introducing a momentum space measure which violates Lorentz invariance.
Large Scale Deformation of the Western U.S. Cordillera
NASA Technical Reports Server (NTRS)
Bennett, Richard A.
2002-01-01
Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Western U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.
Large Scale Deformation of the Western U.S. Cordillera
NASA Technical Reports Server (NTRS)
Bennett, Richard A.
2002-01-01
Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Westem U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.
Gravity from entanglement and RG flow in a top-down approach
NASA Astrophysics Data System (ADS)
Kwon, O.-Kab; Jang, Dongmin; Kim, Yoonbai; Tolla, D. D.
2018-05-01
The duality between a d-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS d+1 geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS4 gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS4 metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.
NASA Astrophysics Data System (ADS)
Melnikov, Andrey; Ogden, Ray W.
2018-06-01
This paper is concerned with the bifurcation analysis of a pressurized electroelastic circular cylindrical tube with closed ends and compliant electrodes on its curved boundaries. The theory of small incremental electroelastic deformations superimposed on a finitely deformed electroelastic tube is used to determine those underlying configurations for which the superimposed deformations do not maintain the perfect cylindrical shape of the tube. First, prismatic bifurcations are examined and solutions are obtained which show that for a neo-Hookean electroelastic material prismatic modes of bifurcation become possible under inflation. This result contrasts with that for the purely elastic case for which prismatic bifurcation modes were found only for an externally pressurized tube. Second, axisymmetric bifurcations are analyzed, and results for both neo-Hookean and Mooney-Rivlin electroelastic energy functions are obtained. The solutions show that in the presence of a moderate electric field the electroelastic tube becomes more susceptible to bifurcation, i.e., for fixed values of the axial stretch axisymmetric bifurcations become possible at lower values of the circumferential stretches than in the corresponding problems in the absence of an electric field. As the magnitude of the electric field increases, however, the possibility of bifurcation under internal pressure becomes restricted to a limited range of values of the axial stretch and is phased out completely for sufficiently large electric fields. Then, axisymmetric bifurcation is only possible under external pressure.
Dislocation models of interseismic deformation in the western United States
Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.
2008-01-01
The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.
NASA Astrophysics Data System (ADS)
Xie, Yun; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao
2015-01-01
Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without worrying protein deformation, which may be helpful in the applications of protein separation and controlled drug delivery.
NASA Astrophysics Data System (ADS)
Vieira, Gonçalo; Catalão, João; Prates, Gonçalo; Correia, António
2014-05-01
Rockglaciers have been described by various authors in the South Shetlands archipelago (Antarctic Peninsula region), with the main contribution being that of Serrano and Lopez-Martínez (2000), who have described 9 rockglaciers and 11 protalus lobes. However, little is known about the deformation rates of rockglaciers in the region nor about possible changes associated with climate warming. Since the Western Antarctic Peninsula region is one of the areas on Earth which has been warming at a faster rate, monitoring rockglacier deformation should provide insight into the influence of climate change on geomorphodynamics. Hurd rockglacier is located in the south part of Hurd Peninsula, in a glacial cirque with a ridge varying from 227 to 301 m asl that connects directly to False Bay through a series of raised-beach terraces. The bedrock is composed of sandstones, shales and greywackes with a flysch facies, of the Myers Bluff formation. The valley shows steep rockwalls with extensive scree slopes and a small retreating valley glacier with a prominent frontal moraine, from where the rockglacier develops. The rockglacier body is ci 630 m long and 290 m wide and the surface shows frequent pressure ridges and furrows, especially in the lower sector. The rockglacier front is 15-20 m high and shows a slope of 45º (Serrano and López-Martínez 2000). In this poster we present the first data from surface deformation monitoring using stakes and D-GPS measurements conducted annually since 2011. Preliminary results show deformation values of 8 to 15 cm/year. Since 2011 we are also conducting DInSAR analysis using TerraSAR-X imagery and despite problems related mostly to snow cover, we have obtained image pairs allowing to identify deformation in the same order of magnitude of field observations. We expect to be able to present new results from the summer of 2013-14 campaign, which include a more intensive image acquisition plan. Results from a Vertical Electrical Sounding fro 2013 confirming the presence of permafrost, as indicated by Serrano et al (2004) are presented. The preliminary results from the monitoring of Hurd rockglacier and especially the application of DInSAR monitoring techinques indicate that such an approach is valid for monitoring surface deformation in the Maritime Antarctic and that it can be used to identify areas of high deformation rates, without a priori field knowledge. The main limitation is the short snow free period and the irregularity of snow fall events that occur also during the summer. This work was done in the framework of the PTDC/AAG-GLO/3908/2012 program, financed by FCT which the author acknowledge gratefully.
Improved Automatic Detection of New T2 Lesions in Multiple Sclerosis Using Deformation Fields.
Cabezas, M; Corral, J F; Oliver, A; Díez, Y; Tintoré, M; Auger, C; Montalban, X; Lladó, M; Pareto, D; Rovira, À
2016-06-09
Detection of disease activity, defined as new/enlarging T2 lesions on brain MR imaging, has been proposed as a biomarker in MS. However, detection of new/enlarging T2 lesions can be hindered by several factors that can be overcome with image subtraction. The purpose of this study was to improve automated detection of new T2 lesions and reduce user interaction to eliminate inter- and intraobserver variability. Multiparametric brain MR imaging was performed at 2 time points in 36 patients with new T2 lesions. Images were registered by using an affine transformation and the Demons algorithm to obtain a deformation field. After affine registration, images were subtracted and a threshold was applied to obtain a lesion mask, which was then refined by using the deformation field, intensity, and local information. This pipeline was compared with only applying a threshold, and with a state-of-the-art approach relying only on image intensities. To assess improvements, we compared the results of the different pipelines with the expert visual detection. The multichannel pipeline based on the deformation field obtained a detection Dice similarity coefficient close to 0.70, with a false-positive detection of 17.8% and a true-positive detection of 70.9%. A statistically significant correlation (r = 0.81, P value = 2.2688e-09) was found between visual detection and automated detection by using our approach. The deformation field-based approach proposed in this study for detecting new/enlarging T2 lesions resulted in significantly fewer false-positives while maintaining most true-positives and showed a good correlation with visual detection annotations. This approach could reduce user interaction and inter- and intraobserver variability. © 2016 American Society of Neuroradiology.
The computer-aided parallel external fixator for complex lower limb deformity correction.
Wei, Mengting; Chen, Jianwen; Guo, Yue; Sun, Hao
2017-12-01
Since parameters of the parallel external fixator are difficult to measure and calculate in real applications, this study developed computer software that can help the doctor measure parameters using digital technology and generate an electronic prescription for deformity correction. According to Paley's deformity measurement method, we provided digital measurement techniques. In addition, we proposed an deformity correction algorithm to calculate the elongations of the six struts and developed a electronic prescription software. At the same time, a three-dimensional simulation of the parallel external fixator and deformed fragment was made using virtual reality modeling language technology. From 2013 to 2015, fifteen patients with complex lower limb deformity were treated with parallel external fixators and the self-developed computer software. All of the cases had unilateral limb deformity. The deformities were caused by old osteomyelitis in nine cases and traumatic sequelae in six cases. A doctor measured the related angulation, displacement and rotation on postoperative radiographs using the digital measurement techniques. Measurement data were input into the electronic prescription software to calculate the daily adjustment elongations of the struts. Daily strut adjustments were conducted according to the data calculated. The frame was removed when expected results were achieved. Patients lived independently during the adjustment. The mean follow-up was 15 months (range 10-22 months). The duration of frame fixation from the time of application to the time of removal averaged 8.4 months (range 2.5-13.1 months). All patients were satisfied with the corrected limb alignment. No cases of wound infections or complications occurred. Using the computer-aided parallel external fixator for the correction of lower limb deformities can achieve satisfactory outcomes. The correction process can be simplified and is precise and digitized, which will greatly improve the treatment in a clinical application.
Stability of marginally outer trapped surfaces and symmetries
NASA Astrophysics Data System (ADS)
Carrasco, Alberto; Mars, Marc
2009-09-01
We study the properties of stable, strictly stable and locally outermost marginally outer trapped surfaces in spacelike hypersurfaces of spacetimes possessing certain symmetries such as isometries, homotheties and conformal Killings. We first obtain results for general diffeomorphisms in terms of the so-called metric deformation tensor and then particularize to different types of symmetries. In particular, we find restrictions at the surfaces on the vector field generating the symmetry. Some consequences are discussed. As an application, we present a result on non-existence of stable marginally outer trapped surfaces in slices of FLRW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Frank; Popp, Till; Wieczorek, Klaus
The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.
NASA Technical Reports Server (NTRS)
Yuan, F. G.
1998-01-01
Determination of all the coefficients in the crack tip field expansion for monoclinic materials under two-dimensional deformation is presented in this report. For monoclinic materials with a plane of material symmetry at x(sub 3) = 0, the in-plane deformation is decoupled from the anti-plane deformation. In the case of in-plane deformation, utilizing conservation laws of elasticity and Betti's reciprocal theorem, together with selected auxiliary fields, T-stress and third-order stress coefficients near the crack tip are evaluated first from path-independent line integrals. To determine the T-stress terms using the J-integral and Betti's reciprocal work theorem, auxiliary fields under a concentrated force and moment acting at the crack tip are used respectively. Through the use of Stroh formalism in anisotropic elasticity, analytical expressions for all the coefficients including the stress intensity factors are derived in a compact form that has surprisingly simple structure in terms of the Barnett-Lothe tensors, L. The solution forms for degenerated materials, orthotropic, and isotropic materials are presented.
Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels
NASA Astrophysics Data System (ADS)
Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.
2015-04-01
Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.
Pressure-volume characteristics of dielectric elastomer diaphragms
NASA Astrophysics Data System (ADS)
Tews, Alyson M.; Pope, Kimberly L.; Snyder, Alan J.
2003-07-01
With the ultimate goal of constructing diaphragm-type pumps, we have measured pressure-volume characteristics of single-layer dielectric elastomers diaphragms. Circular dielectric elastomer diaphragms were prepared by biaxial stretching of 3M VHB 4905 polyacrylate, or spin casting and modest or no biaxial stretching of silicone rubber films, followed by mounting to a sealed chamber having a 3.8 cm diameter opening. Pressure-volume characteristics were measured at voltages that provided field strengths up to 80 MV/m in un-deformed VHB films and 50-75 MV/m in silicone films. The most highly pre-strained VHB diaphragms were found to have linear pressure-volume characteristics whose slopes (diaphragm compliance) depended sensitively upon applied field at higher field strengths. Compliance of unstretched silicone diaphragms was nearly independent of field strength at the fields tested, but pressure-volume characteristics shifted markedly. For both kinds of dielectric elastomers, pressure-volume work loops of significant size can be obtained for certain operating pressures. Each type of diaphragm may have advantages in certain applications.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters
NASA Astrophysics Data System (ADS)
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-01
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-Guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-08
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
Design-based modeling of magnetically actuated soft diaphragm materials
NASA Astrophysics Data System (ADS)
Jayaneththi, V. R.; Aw, K. C.; McDaid, A. J.
2018-04-01
Magnetic polymer composites (MPC) have shown promise for emerging biomedical applications such as lab-on-a-chip and implantable drug delivery. These soft material actuators are capable of fast response, large deformation and wireless actuation. Existing MPC modeling approaches are computationally expensive and unsuitable for rapid design prototyping and real-time control applications. This paper proposes a macro-scale 1-DOF model capable of predicting force and displacement of an MPC diaphragm actuator. Model validation confirmed both blocked force and displacement can be accurately predicted in a variety of working conditions i.e. different magnetic field strengths, static/dynamic fields, and gap distances. The contribution of this work includes a comprehensive experimental investigation of a macro-scale diaphragm actuator; the derivation and validation of a new phenomenological model to describe MPC actuation; and insights into the proposed model’s design-based functionality i.e. scalability and generalizability in terms of magnetic filler concentration and diaphragm diameter. Due to the lumped element modeling approach, the proposed model can also be adapted to alternative actuator configurations, and thus presents a useful tool for design, control and simulation of novel MPC applications.