Science.gov

Sample records for deformation induced dislocation

  1. Fractal analysis of deformation-induced dislocation patterns

    SciTech Connect

    Zaiser, M. ); Bay, K. . Inst. fuer Theoretische und Angewandte Physik); Haehner, P. . Joint Research Centre TU Braunschweig . Inst. fuer Metallphysik und Nukleare Festkoerperphysik)

    1999-06-22

    The paper reports extensive analyses of the fractal geometry of cellular dislocation structures observed in Cu deformed in multiple-slip orientation. Several methods presented for the determination of fractal dimensions are shown to give consistent results. Criteria are formulated which allow the distinguishing of fractal from non-fractal patterns, and implications of fractal dislocation patterning for quantitative metallography are discussed in detail. For an interpretation of the findings a theoretical model is outlined according to which dislocation cell formation is associated to a noise-induced structural transition far from equilibrium. This allows relating the observed fractal dimensions to the stochastic properties of deformation by collective dislocation glide.

  2. Bertram Hopkinson's pioneering work and the dislocation mechanics of high rate deformations and mechanically induced detonations.

    PubMed

    Armstrong, Ronald W

    2014-05-13

    Bertram Hopkinson was prescient in writing of the importance of better measuring, albeit better understanding, the nature of high rate deformation of materials in general and, in particular, of the importance of heat in initiating detonation of explosives. This report deals with these subjects in terms of post-Hopkinson crystal dislocation mechanics applied to high rate deformations, including impact tests, Hopkinson pressure bar results, Zerilli-Armstrong-type constitutive relations, shock-induced deformations, isentropic compression experiments, mechanical initiation of explosive crystals and shear banding in metals.

  3. Striped iron zoning of olivine induced by dislocation creep in deformed peridotites.

    PubMed

    Ando, J; Shibata, Y; Okajima, Y; Kanagawa, K; Furusho, M; Tomioka, N

    Deformation of solid materials affects not only their microstructures, but also their microchemistries. Although chemical unmixing of initially homogeneous multicomponent solids is known to occur during deformation by diffusion creep, there has been no report on their chemical zoning due to deformation by dislocation creep, in either natural samples or laboratory experiments. Here we report striped iron zoning of olivine ((Mg,Fe)2SiO4) in deformed peridotites, where the iron concentration increases at subgrain boundaries composed of edge dislocations. We infer that this zoning is probably formed by alignment of edge dislocations dragging a so-called Cottrell 'atmosphere' of solute atoms (iron in this case) into subgrain boundaries during deformation of the olivine by dislocation creep. We have found that the iron zoning does not develop in laboratory experiments of high strain rates where dislocations move too fast to drag the Cottrell atmosphere. This phenomenon might have important implications for the generation of deep-focus earthquakes, as transformation of olivine to high-pressure phases preferentially occurs in high-iron regions, and therefore along subgrain boundaries which would be preferentially aligned in plastically deformed mantle peridotites.

  4. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    SciTech Connect

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocation reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.

  5. Dislocations: 75 years of Deformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2009-01-01

    The selection of papers presented in this section reflect on themes to be explored at the "Dislocations: 75 years of Deformation Mechanisms" Symposium to be held at the Annual 2009 TMS meeting. The symposium was sponsored by the Mechanical Behavior of Materials Committee to give tribute to the evolution of a concept that has formed the basis of our mechanistic understanding of how crystalline solids plastically deform and how they fail.

  6. Effect of dislocations on helium retention in deformed pure iron

    NASA Astrophysics Data System (ADS)

    Gong, Y. H.; Cao, X. Z.; Jin, S. X.; Lu, E. Y.; Hu, Y. C.; Zhu, T.; Kuang, P.; Xu, Q.; Wang, B. Y.

    2016-12-01

    The effects of dislocations created by deformation on helium retention in pure iron, including the helium atoms diffusion along the dislocation line and desorption from dislocation trapping sites, were investigated. The dislocation defect was introduced in specimens by cold-rolling, and then 5 keV helium ions were implanted into the deformed specimens. Slow positron beam technology and thermal desorption spectroscopy were used to investigate the evolution of dislocation defects and the desorption behavior of helium atoms under influence of dislocation. The behaviors of S-E, W-E and S-W plots indicate clearly that lots of helium atoms remain in the deformed specimen and helium atoms combining with dislocation change the distribution of electron density. The helium desorption plot indicates that dislocation accelerates helium desorption at 293 K-600 K and facilitates helium dissociation from HenVm (n/m = 1.8) cluster.

  7. Surface dislocation nucleation controlled deformation of Au nanowires

    SciTech Connect

    Roos, B.; Kapelle, B.; Volkert, C. A.; Richter, G.

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of the deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.

  8. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation

    NASA Astrophysics Data System (ADS)

    Lilleodden, E. T.; Zimmerman, J. A.; Foiles, S. M.; Nix, W. D.

    2003-05-01

    Nanoindentation experiments have shown that microstructural inhomogeneities across the surface of gold thin films lead to position-dependent nanoindentation behavior [Phys. Rev. B (2002), to be submitted]. The rationale for such behavior was based on the availability of dislocation sources at the grain boundary for initiating plasticity. In order to verify or refute this theory, a computational approach has been pursued. Here, a simulation study of the initial stages of indentation using the embedded atom method (EAM) is presented. First, the principles of the EAM are given, and a comparison is made between atomistic simulations and continuum models for elastic deformation. Then, the mechanism of dislocation nucleation in single crystalline gold is analyzed, and the effects of elastic anisotropy are considered. Finally, a systematic study of the indentation response in the proximity of a high angle, high sigma (low symmetry) grain boundary is presented; indentation behavior is simulated for varying indenter positions relative to the boundary. The results indicate that high angle grain boundaries are a ready source of dislocations in indentation-induced deformation.

  9. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    DOE PAGES

    Geist, D.; Gammer, C.; Rentenberger, C.; ...

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocationmore » reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.« less

  10. Distribution of distances between dislocations in different types of dislocation substructures in deformed Cu-Al alloys

    SciTech Connect

    Trishkina, L. Zboykova, N.; Koneva, N. Kozlov, E.; Cherkasova, T.

    2016-01-15

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocation chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.

  11. Deformations of the spin currents by topological screw dislocation and cosmic dispiration

    SciTech Connect

    Wang, Jianhua; Ma, Kai; Li, Kang; Fan, Huawei

    2015-11-15

    We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.

  12. Inelastic deformation and dislocation structure of a nickel alloy - Effects of deformation and thermal histories

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Page, R. A.

    1988-01-01

    Inelastic deformation behavior of the cast Ni-base alloy, B1900 + Hf, was investigated using data from step-temperature tensile tests and thermomechanical cyclic tests in the temperature ranges 538-760 C and 760-982 C. The deformation results were correlated with the dislocation structures of deformed specimens, identified by TEM. It was found that, in the 760-982 C temperature range, there are no thermal history effects in the inelastic deformation behavior of B1900 + Hf. In the 538-760 range, anomalous cyclic hardening and, possibly, thermal history effects were observed in thermomechanically deformed alloy, caused by sessile (010) dislocations in the gamma-prime phase.

  13. Plastic deformation of tubular crystals by dislocation glide

    NASA Astrophysics Data System (ADS)

    Beller, Daniel A.; Nelson, David R.

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  14. Stochastically forced dislocation density distribution in plastic deformation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Amit K.; Aifantis, Elias C.

    2016-08-01

    The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such types of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution, but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem, but all nonlinear processes, both the Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ . The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.

  15. Compound dislocation models (CDMs) for volcano deformation analyses

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.; Lundgren, Paul R.; Prats-Iraola, Pau

    2017-02-01

    Volcanic crises are often preceded and accompanied by volcano deformation caused by magmatic and hydrothermal processes. Fast and efficient model identification and parameter estimation techniques for various sources of deformation are crucial for process understanding, volcano hazard assessment and early warning purposes. As a simple model that can be a basis for rapid inversion techniques, we present a compound dislocation model (CDM) that is composed of three mutually orthogonal rectangular dislocations (RDs). We present new RD solutions, which are free of artefact singularities and that also possess full rotational degrees of freedom. The CDM can represent both planar intrusions in the near field and volumetric sources of inflation and deflation in the far field. Therefore, this source model can be applied to shallow dikes and sills, as well as to deep planar and equidimensional sources of any geometry, including oblate, prolate and other triaxial ellipsoidal shapes. In either case the sources may possess any arbitrary orientation in space. After systematically evaluating the CDM, we apply it to the co-eruptive displacements of the 2015 Calbuco eruption observed by the Sentinel-1A satellite in both ascending and descending orbits. The results show that the deformation source is a deflating vertical lens-shaped source at an approximate depth of 8 km centred beneath Calbuco volcano. The parameters of the optimal source model clearly show that it is significantly different from an isotropic point source or a single dislocation model. The Calbuco example reflects the convenience of using the CDM for a rapid interpretation of deformation data.

  16. Dislocation structure and deformation hardening alloy fcc single crystals at the mesolevel

    NASA Astrophysics Data System (ADS)

    Teplyakova, L. A.; Kunitsyna, T. S.; Koneva, N. A.; Kozlov, E. V.; Kondratyuk, A. A.; Zboikova, N. A.; Kakushkin, Yu A.; Iakhin, A. A.

    2016-11-01

    The article presents the evaluation results of impacts of various strengthening mechanisms to flow stress. Such evaluations were made on the basis of the measured parameters of the dislocation substructure formed in monocrystals of [001]-Ni3Fe alloy deformed by compression within the stage II. It was found that the main impact to deformation resistance in the alloys with net substructure is made by the mechanism of dislocation impediment, which is caused by contact interaction between moving dislocations and forest dislocations.

  17. Local decomposition induced by dislocation motions inside precipitates in an Al-alloy

    PubMed Central

    Yang, B.; Zhou, Y. T.; Chen, D.; Ma, X. L.

    2013-01-01

    Dislocations in crystals are linear crystallographic defects, which move in lattice when crystals are plastically deformed. Motion of a partial dislocation may remove or create stacking fault characterized with a partial of a lattice translation vector. Here we report that motion of partial dislocations inside an intermetallic compound result in a local composition deviation from its stoichiometric ratio, which cannot be depicted with any vectors of the primary crystal. Along dislocation slip bands inside the deformed Al2Cu particles, redistribution of Cu and Al atoms leads to a local decomposition and collapse of the original crystal structure. This finding demonstrates that dislocation slip may induce destabilization in complex compounds, which is fundamentally different from that in monometallic crystals. This phenomenon of chemical unmixing of initially homogeneous multicomponent solids induced by dislocation motion might also have important implications for understanding the geologic evolvement of deep-focus peridotites in the Earth. PMID:23301160

  18. Dislocation models of interseismic deformation in the western United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.

    2008-01-01

    The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.

  19. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less

  20. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    SciTech Connect

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; El-Awady, Jaafar A.

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mg stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.

  1. Interfacial diffusion in high-temperature deformation of composites: A discrete dislocation plasticity investigation

    NASA Astrophysics Data System (ADS)

    Shishvan, Siamak S.; Pollock, Tresa M.; McMeeking, Robert M.; Deshpande, Vikram S.

    2017-01-01

    We present a discrete dislocation plasticity (DDP) framework to analyse the high temperature deformation of multi-phase materials (composites) comprising a matrix and inclusions. Deformation of the phases is by climb-assisted glide of the dislocations while the particles can also deform due to stress-driven interfacial diffusion. The general framework is used to analyse the uniaxial tensile deformation of a composite comprising elastic particles with dislocation plasticity only present in the matrix phase. When dislocation motion is restricted to only glide within the matrix a strong size effect of the composite strength is predicted with the strength increasing with decreasing unit cell size due to dislocations forming pile-ups against the matrix/particle interface. Interfacial diffusion decreases the composite strength as it enhances the elongation of the elastic particles along the loading direction. When dislocation motion occurs by climb-assisted glide within the matrix the size effect of the strength is reduced as dislocations no longer arrange high energy pile-up structures but rather form lower energy dislocation cell networks. While interfacial diffusion again reduces the composite strength, in contrast to continuum plasticity predictions, the elongation of the particles is almost independent of the interfacial diffusion constant. Rather, in DDP the reduction in composite strength due to interfacial diffusion is a result of changes in the dislocation structures within the matrix and the associated enhanced dislocation climb rates in the matrix.

  2. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  3. Dislocation dynamics during plastic deformations of complex plasma crystals

    NASA Astrophysics Data System (ADS)

    Durniak, C.; Samsonov, D.; Ralph, J. F.; Zhdanov, S.; Morfill, G.

    2013-11-01

    The internal structures of most periodic crystalline solids contain defects. This affects various important mechanical and thermal properties of crystals. Since it is very difficult and expensive to track the motion of individual atoms in real solids, macroscopic model systems, such as complex plasmas, are often used. Complex plasmas consist of micrometer-sized grains immersed into an ion-electron plasma. They exist in solidlike, liquidlike, and gaseouslike states and exhibit a range of nonlinear and dynamic effects, most of which have direct analogies in solids and liquids. Slabs of a monolayer hexagonal complex plasma were subjected to a cycle of uniaxial compression and decompression of large amplitudes to achieve plastic deformations, both in experiments and simulations. During the cycle, the internal structure of the lattice exhibited significant rearrangements. Dislocations (point defects) were generated and displaced in the stressed lattice. They tended to glide parallel to their Burgers vectors under load. It was found that the deformation cycle was macroscopically reversible but irreversible at the particle scale.

  4. Microstructural evidence for the transition from dislocation creep to dislocation-accommodated grain boundary sliding in naturally deformed plagioclase

    NASA Astrophysics Data System (ADS)

    Miranda, Elena A.; Hirth, Greg; John, Barbara E.

    2016-11-01

    We use quantitative microstructural analysis including misorientation analysis based on electron backscatter diffraction (EBSD) data to investigate deformation mechanisms of naturally deformed plagioclase in an amphibolite gabbro mylonite. The sample is from lower oceanic crust exposed near the Southwest Indian Ridge, and it has a high ratio of recrystallized matrix grains to porphyroclasts. Microstructures preserved in porphyroclasts suggest that early deformation was achieved principally by dislocation creep with subgrain rotation recrystallization; recrystallized grain (average diameter ∼8 μm) microstructures indicate that subsequent grain boundary sliding (GBS) was active in the continued deformation of the recrystallized matrix. The recrystallized matrix shows four-grain junctions, randomized misorientation axes, and a shift towards higher angles for neighbor-pair misorientations, all indicative of GBS. The matrix grains also exhibit a shape preferred orientation, a weak lattice preferred orientation consistent with slip on multiple slip systems, and intragrain microstructures indicative of dislocation movement. The combination of these microstructures suggest deformation by dislocation-accommodated GBS (DisGBS). Strain localization within the recrystallized matrix was promoted by a transition from grain size insensitive dislocation creep to grain size sensitive GBS, and sustained by the maintenance of a small grain size during superplasticity.

  5. High dislocation density of tin induced by electric current

    SciTech Connect

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  6. A dislocation density based constitutive model for cyclic deformation

    SciTech Connect

    Estrin, Y.; Braasch, H.; Brechet, Y.

    1996-10-01

    A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.

  7. Dislocation

    MedlinePlus

    Joint dislocation ... It may be hard to tell a dislocated joint from a broken bone . Both are emergencies that ... to repair a ligament that tears when the joint is dislocated is needed. Injuries to nerves and ...

  8. Effect of dislocation hardening on monotonic and cyclic strength of severely deformed copper

    NASA Astrophysics Data System (ADS)

    Vinogradov, A.; Maruyama, M.; Kaneko, Y.; Hashimoto, S.

    2012-02-01

    The present study aims at clarifying the role of dislocation strengthening in fatigue of materials manufactured by severe plastic deformation (SPD) techniques. Employment of single crystals hardened via equal channel angular pressing (ECAP) helps to minimise or completely eliminate the effect of high angle boundaries on strengthening and fatigue behaviour. Both monotonic strength and high cycle fatigue (HCF) resistance were improved significantly after the first ECAP pressing, when low-angle dislocation configurations dominate in the microstructure. The essential role of dislocation accumulation during severe plastic deformation is highlighted for both tensile and fatigue strength (SPD). Dilute alloying of copper by silver stabilises the deformation microstructure and further improves the fatigue properties considerably.

  9. Modeling of ultrasonic nonlinearities for dislocation evolution in plastically deformed materials: Simulation and experimental validation.

    PubMed

    Zhu, Wujun; Deng, Mingxi; Xiang, Yanxun; Xuan, Fu-Zhen; Liu, Changjun; Wang, Yi-Ning

    2016-05-01

    A nonlinear constitutive relationship was established to investigate nonlinear behaviors of ultrasonic wave propagation in plastically damaged media based on analyses of mixed dislocation evolution. Finite element simulations of longitudinal wave propagation in plastically deformed martensite stainless steel were performed based on the proposed nonlinear constitutive relationship, in which the contribution of mixed dislocation to acoustic nonlinearity was considered. The simulated results were validated by experimental measurements of plastically deformed 30Cr2Ni4MoV martensite stainless steels. Simulated and experimental results both reveal a monotonically increasing tendency of the normalized acoustic nonlinearity parameter as a function of plastic strain. Microscopic studies revealed that the changes of the acoustic nonlinearity are mainly attributed to dislocation evolutions, such as dislocation density, dislocation length, and the type and fraction of dislocations during plastic loading.

  10. Surface Rebound of Relativistic Dislocations Directly and Efficiently Initiates Deformation Twinning

    NASA Astrophysics Data System (ADS)

    Li, Qing-Jie; Li, Ju; Shan, Zhi-Wei; Ma, Evan

    2016-10-01

    Under ultrahigh stresses (e.g., under high strain rates or in small-volume metals) deformation twinning (DT) initiates on a very short time scale, indicating strong spatial-temporal correlations in dislocation dynamics. Using atomistic simulations, here we demonstrate that surface rebound of relativistic dislocations directly and efficiently triggers DT under a wide range of laboratory experimental conditions. Because of its stronger temporal correlation, surface rebound sustained relay of partial dislocations is shown to be dominant over the conventional mechanism of thermally activated nucleation of twinning dislocations.

  11. X-Ray Diffraction Study on the Strain Anisotropy and Dislocation Structure of Deformed Lath Martensite

    NASA Astrophysics Data System (ADS)

    Hossein Nedjad, S.; Hosseini Nasab, F.; Movaghar Garabagh, M. R.; Damadi, S. R.; Nili Ahmadabadi, M.

    2011-08-01

    18Ni (300) maraging steel possessing lath martensite structure was deformed by four passes of equal-channel angular pressing (ECAP) at ambient temperature. Line profile analysis (LPA) of X-ray diffraction (XRD) patterns identified strong strain anisotropy and remarkable increases in the relative fraction of screw dislocations after ECAP. The strain anisotropy was reasonably accounted for by the anisotropy of elastic constants. Domination of screw dislocations in the deformed structure was attributed to the preferred annihilation of edge dislocations in the early stages of deformation along with the difficulties for annihilation of screw dislocations by cross slipping. Cobalt addition was mainly assumed to make cross slipping difficult by reducing stacking-fault energy and favoring short-range ordering.

  12. Multiscale dislocation dynamics simulations of shock-induced plasticity in small volumes

    NASA Astrophysics Data System (ADS)

    Shehadeh, Mutasem A.

    2012-04-01

    Multiscale dislocation dynamics plasticity (MDDP) was used to investigate shock-induced deformation in monocrystalline copper. In order to enhance the numerical simulations, a periodic boundary condition was implemented in the continuum finite element (FE) scale so that the uniaxial compression of shocks could be attained. Additionally, lattice rotation was accounted for by modifying the dislocation dynamics (DD) code to update the dislocations' slip systems. The dislocation microstructures were examined in detail and a mechanism of microband formation is proposed for single- and multiple-slip deformation. The simulation results show that lattice rotation enhances microband formation in single slip by locally reorienting the slip plane. It is also illustrated that both confined and periodic boundary conditions can be used to achieve uniaxial compression; however, a periodic boundary condition yields a disturbed wave profile due to edge effects. Moreover, the boundary conditions and the loading rise time show no significant effects on shock-dislocations interaction and the resulting microstructures. MDDP results of high strain rate calculations are also compared with the predictions of the Armstrong-Zerilli model of dislocation generation and movement. This work confirms that the effect of resident dislocations on the strain rate can be neglected when a homogeneous nucleation mechanism is included.

  13. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    SciTech Connect

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; El-Azab, Anter

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  14. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    DOE PAGES

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less

  15. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; El-Azab, Anter

    2015-09-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  16. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals

    SciTech Connect

    Lee, T.C.; Robertson, I.M.; Birnbaum, H.K. )

    1990-01-01

    The passage of dislocations across grain boundaries in metals has been studied by using the in situ TEM deformation technique. A detailed analysis of the interaction of glissile matrix dislocations with grain-boundary dislocations has been performed. The results show that the dislocations piled-up at the grain boundary can: (1) be transferred directly through the grain boundary into the adjoining grain; (2) be absorbed and transformed into extrinsic grain-boundary dislocations; (3) be accommodated in the grain boundary, followed by the emission from the grain boundary of a matrix dislocation; and (4) be ejected back into their original grain. To predict which slip system is favorable for slip transfer, three criteria have been considered, namely: (1) the angle between the lines of intersection of the incoming and outgoing slip lanes with the grain boundary, this should be as small as possible; (2) the resolved shear stress acting on the possible slip systems in the adjoining grain, this should be large and (3) the magnitude of the Burgers vector of the extrinsic dislocations left at the grain boundary following emission of dislocations, this should be a minimum. The Burgers vector of the generated dislocation is dictated primarily by condition (3).

  17. Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites

    DOE PAGES

    Kwon, J.; Bowers, M. L.; Brandes, M. C.; ...

    2015-02-26

    In this paper, directionally solidified (DS) NiAl–Mo eutectic composites were strained to plastic strain values ranging from 0% to 12% to investigate the origin of the previously observed stochastic versus deterministic mechanical behaviors of Mo-alloy micropillars in terms of the development of dislocation structures at different pre-strain levels. The DS composites consist of long, [1 0 0] single-crystal Mo-alloy fibers with approximately square cross-sections embedded in a [1 0 0] single-crystal NiAl matrix. Scanning transmission electron microscopy (STEM) and computational stress state analysis were conducted for the current study. STEM of the as-grown samples (without pre-straining) reveal no dislocations inmore » the investigated Mo-alloy fibers. In the NiAl matrix, on the other hand, a(1 0 0)-type dislocations exist in two orthogonal orientations: along the [1 0 0] Mo fiber axis, and wrapped around the fiber axis. They presumably form to accommodate the different thermal contractions of the two phases during cool down after eutectic solidification. At intermediate pre-strain levels (4–8%), a/2(1 1 1)-type dislocations are present in the Mo-alloy fibers and the pre-existing dislocations in the NiAl matrix seem to be swept toward the interphase boundary. Some of the dislocations in the Mo-alloy fibers appear to be transformed from a(1 0 0)-type dislocations present in the NiAl matrix. Subsequently, the transformed dislocations in the fibers propagate through the NiAl matrix as a(1 1 1) dislocations and aid in initiating additional slip bands in adjacent fibers. Thereafter, co-deformation presumably occurs by (1 1 1) slip in both phases. With a further increase in the pre-strain level (>10%), multiple a/2(1 1 1)-type dislocations are observed in many locations in the Mo-alloy fibers. Interactions between these systems upon subsequent deformation could lead to stable junctions and persistent dislocation sources. Finally, the transition from stochastic to

  18. Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites

    SciTech Connect

    Kwon, J.; Bowers, M. L.; Brandes, M. C.; McCreary, V.; Robertson, Ian M.; Phani, P. Sudaharshan; Bei, H.; Gao, Y. F.; Pharr, George M.; George, Easo P.; Mills, M. J.

    2015-02-26

    In this paper, directionally solidified (DS) NiAl–Mo eutectic composites were strained to plastic strain values ranging from 0% to 12% to investigate the origin of the previously observed stochastic versus deterministic mechanical behaviors of Mo-alloy micropillars in terms of the development of dislocation structures at different pre-strain levels. The DS composites consist of long, [1 0 0] single-crystal Mo-alloy fibers with approximately square cross-sections embedded in a [1 0 0] single-crystal NiAl matrix. Scanning transmission electron microscopy (STEM) and computational stress state analysis were conducted for the current study. STEM of the as-grown samples (without pre-straining) reveal no dislocations in the investigated Mo-alloy fibers. In the NiAl matrix, on the other hand, a(1 0 0)-type dislocations exist in two orthogonal orientations: along the [1 0 0] Mo fiber axis, and wrapped around the fiber axis. They presumably form to accommodate the different thermal contractions of the two phases during cool down after eutectic solidification. At intermediate pre-strain levels (4–8%), a/2(1 1 1)-type dislocations are present in the Mo-alloy fibers and the pre-existing dislocations in the NiAl matrix seem to be swept toward the interphase boundary. Some of the dislocations in the Mo-alloy fibers appear to be transformed from a(1 0 0)-type dislocations present in the NiAl matrix. Subsequently, the transformed dislocations in the fibers propagate through the NiAl matrix as a(1 1 1) dislocations and aid in initiating additional slip bands in adjacent fibers. Thereafter, co-deformation presumably occurs by (1 1 1) slip in both phases. With a further increase in the pre-strain level (>10%), multiple a/2(1 1 1)-type dislocations are observed in many locations in the Mo-alloy fibers. Interactions between these systems upon subsequent deformation could lead to stable junctions and persistent dislocation sources. Finally, the transition from stochastic to

  19. Internal deformation caused by a point dislocation in a uniform elastic sphere

    NASA Astrophysics Data System (ADS)

    Takagi, Y.; Okubo, S.

    2016-11-01

    This paper presents a new method of computing internal displacement, stress, strain, and gravitational changes caused by a point dislocation in a spherical Earth model. Specifically, the asymptotic solutions of the radial functions are introduced. The conventional method expresses the deformation field as an infinite series of spherical harmonics, and it cannot avoid the problem of the series not converging near the dislocation. The proposed method using asymptotic solutions can overcome this problem and compute the deformation field even near the dislocation. This paper focuses on deformations in a homogeneous sphere to elucidate the problem and solve it with simplicity. The proposed method is used to compute the volumetric strains caused by four independent dislocation types: vertical strike-slip, vertical dip-slip, horizontal tensile fracturing, and vertical tensile fracturing. The effect of sphericity on the deformation field is also investigated by comparing the computational results with those for a homogeneous semi-infinite medium. The discrepancy between the results of the homogeneous sphere and those of the half-space reached up to 15-20% at an epicentral distance of 2-5°. In particular, large differences were observed in the following cases: (i) the dislocation type is tensile fracturing, (ii) the depth of the source is large, and (iii) the strain is measured at a large depth (for any source depth).

  20. Internal deformation caused by a point dislocation in a uniform elastic sphere

    NASA Astrophysics Data System (ADS)

    Takagi, Yu; Okubo, Shuhei

    2017-02-01

    This paper presents a new method of computing internal displacement, stress, strain, and gravitational changes caused by a point dislocation in a spherical Earth model. Specifically, the asymptotic solutions of the radial functions are introduced. The conventional method expresses the deformation field as an infinite series of spherical harmonics, and it cannot avoid the problem of the series not converging near the dislocation. The proposed method using asymptotic solutions can overcome this problem and compute the deformation field even near the dislocation. This paper focuses on deformations in a homogeneous sphere to elucidate the problem and solve it with simplicity. The proposed method is used to compute the volumetric strains caused by four independent dislocation types: vertical strike-slip, vertical dip-slip, horizontal tensile fracturing and vertical tensile fracturing. The effect of sphericity on the deformation field is also investigated by comparing the computational results with those for a homogeneous semi-infinite medium. The discrepancy between the results of the homogeneous sphere and those of the half-space reached up to 15-20 per cent at an epicentral distance of 2°-5°. In particular, large differences were observed in the following cases: (i) the dislocation type is tensile fracturing, (ii) the depth of the source is large and (iii) the strain is measured at a large depth (for any source depth).

  1. Dislocation model for continuous recrystallization during initial stage of superplastic deformation

    SciTech Connect

    Zhang, X.; Tan, M.J.

    1998-02-03

    According to dislocation models, grain boundary sliding (GBS) causes stress concentrations when the sliding is impeded. Relaxation of the stress concentrations can be done by the emission of dislocations from one grain boundary to another. This process could be limited by the rate at which the dislocations are emitted (source control), or traverses the grains (glide or lattice climb control), or are absorbed into the boundaries (grain boundary climb control). The rate at which the grains slide past each other can be controlled by (1) the removal of a pile-up of lattice, the emission of lattice dislocations from grain boundary ledges and by the removal of pile-ups of grain boundary dislocations. These models require the grains to have high angle mobile boundaries such that grain boundary sliding processes can occur and are then accommodated by dislocation movements. For some quasi-single phase aluminum alloys, at the initial stage of superplastic deformation most of grain boundaries have low angles. Since movement of these subgrain boundaries needs very high energy, grain boundary sliding becomes difficult. It is widely reported that continuous recrystallization mechanism dominates the initial stage of superplastic deformation in quasi-single phase aluminum alloys.

  2. Dislocations

    MedlinePlus

    ... Attempting to move or jam a dislocated bone back in can damage blood vessels, muscles, ligaments, and nerves. Apply an ice pack. Ice can ease swelling and pain in and around the joint. Use ibuprofen or ...

  3. Dislocation core reconstruction induced by carbon segregation in bcc iron

    NASA Astrophysics Data System (ADS)

    Ventelon, Lisa; Lüthi, B.; Clouet, E.; Proville, L.; Legrand, B.; Rodney, D.; Willaime, F.

    2015-06-01

    The relative stability of dislocation core configurations in body-centered-cubic metals is profoundly modified by the presence of solutes. Considering the Fe(C) system, we demonstrate by using density functional theory that carbon atoms destabilize the usual easy core to the benefit of the hard core configuration of the screw dislocation, which is unstable in pure metals. The carbon atom is at the center of a regular prism in a cementitelike local environment. The same dislocation core reconstruction is also found with other solutes (B, N, O) and in W(C). This unexpected low-energy configuration induces a strong solute-dislocation attraction, leading to dislocation core saturation by solute atoms, even for very low bulk solute concentrations. This core reconstruction will constitute an essential factor to account for in solute-segregation related phenomena, such as strain aging.

  4. Dislocation-induced superfluidity in a model supersolid

    NASA Astrophysics Data System (ADS)

    Dasbiswas, Kinjal; Goswami, Debajit; Yoo, Chi-Deuk; Dorsey, Alan

    2010-03-01

    The effect of an edge dislocation in inducing superfluidity is explored by coupling the elastic strain field of the dislocation to the superfluid density, and solving the corresponding Ginzburg-Landau theory. It is shown that superfluid density is induced along a single dislocation below a critical temperature determined by the ground state solution of a 2D Schr"odinger equation with a dipolar potential. This superfluid behavior can be described by a 1D Ginzburg-Landau equation obtained through a weakly nonlinear analysis. We then extend our analysis to a network of dislocation lines considered before by Shevchenko and Toner, which could serve as a model for superflow through solid ^4He. The effect of fluctuations and dynamics are included through a full time dependent Ginzburg-Landau theory.

  5. X-ray diffraction investigations of deformations and dislocation configuration in calcium hydroxide crystallites of concrete

    NASA Astrophysics Data System (ADS)

    Harutyunyan, V. S.; Abovyan, E. S.; Monteiro, P. J. M.

    2003-12-01

    On the bases of proposed theoretical approach for analysis of X-ray diffraction spectra the peculiarities of morphology, deformations, stresses and dislocation configuration of calcium hydroxide crystallites of interfacial transition zone in high-strength concrete (the water-cement ratio is about 0.35) are investigated. It is determined that the (0001) dislocation slip planes dividing the calcium hydroxide crystallites into coherent domains are arranged in them quasi-periodically along c-crystallographic axis. For dislocation configuration in crystallites the so-called multilayer dislocation multipole configuration is proposed. From the reconstructed strain distribution function of coherent domains it was concluded that the most part of them are subjected to compressive strain caused most probably due to drying shrinkage phenomenon. The intrinsic stresses of crystallites are estimated for uniaxial compressive, hydrostatic compressive, and shear types of deformation. A possibility for dislocation pile-ups formation in (0001) atomic planes (domain boundaries) is considered theoretically as well. From comparative analyses of intrinsic stresses of crystallites with their ultimate stresses it is assumed that the main mechanism leading to failure of calcium hydroxide both in interfacial transition zone and cement paste of concrete are dislocation pile-ups which form against phase inclusions because of action of external shear stresses. The results are obtained and compared for two samples with granite and smoky quartz aggregates. It is assumed that the proposed theoretical approach for analysis of X-ray diffraction spectra could be perspective especially for investigations of nanostructured polycrystalline materials with a columnar structure. (

  6. THA following deformities due to congenital dislocation of the hip joint.

    PubMed

    Macheras, George A; Koutsostathis, Stefanos D; Lepetsos, Panagiotis; Anastasopoulos, Panagiotis P; Galanakos, Spyridon; Papadakis, Stamatios A

    2014-10-02

    Total hip replacement is the treatment of choice for the patient suffering from end-stage hip osteoarthritis. Excellent long-term results have been published. In the presence of deformities due to congenital hip dislocation, total hip replacement is, in most of the cases, a difficult task, since the technique of performing such an operation is demanding and the results could vary. This paper presents our experience and preferred strategies focusing on challenges and surgical techniques associated with reconstructing the dysplastic hip.

  7. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.

  8. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE PAGES

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  9. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    PubMed

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  10. Electronic-structure study of an edge dislocation in Aluminum and the role of macroscopic deformations on its energetics

    NASA Astrophysics Data System (ADS)

    Iyer, Mrinal; Radhakrishnan, Balachandran; Gavini, Vikram

    2015-03-01

    We employed a real-space formulation of orbital-free density functional theory using finite-element basis to study the defect-core and energetics of an edge dislocation in Aluminum. Our study shows that the core-size of a perfect edge dislocation is around ten times the magnitude of the Burgers vector. This finding is contrary to the widely accepted notion that continuum descriptions of dislocation energetics are accurate beyond ∼1-3 Burgers vector from the dislocation line. Consistent with prior electronic-structure studies, we find that the perfect edge dislocation dissociates into two Shockley partials with a partial separation distance of 12.8 Å. Interestingly, our study revealed a significant influence of macroscopic deformations on the core-energy of Shockley partials. We show that this dependence of the core-energy on macroscopic deformations results in an additional force on dislocations, beyond the Peach-Koehler force, that is proportional to strain gradients. Further, we demonstrate that this force from core-effects can be significant and can play an important role in governing the dislocation behavior in regions of inhomogeneous deformations.

  11. A quantitative study of the effect of surface texture on plasticity induced surface roughness and dislocation density of crystalline materials

    NASA Astrophysics Data System (ADS)

    Zamiri, Amir R.; Pourboghrat, Farhang; Bieler, Thomas R.

    2008-10-01

    Microscale simulations are used to study the effects of the surface texture and plastic deformation on surface roughness and dislocation density, which are important parameters controlling some surface physical properties such as electron work function (EWF) and phonon emission of crystalline materials. The results of the simulations on superconducting niobium show that the intensity and the components of the surface texture have significant effects on the plasticity induced surface roughness and dislocation density. A weak surface texture develops a rough surface after plastic deformation, which is due to the different plastic "shear rates and directions" behavior in the grains with different orientations. Some grains with specific orientation experience more plastic deformation, and therefore develop an intragrain surface roughness due to the development of microtexture and inhomogeneous plastic deformation inside the grain. Due to an inhomogeneous plastic deformation, the dislocation density not only is different in the grains with different orientations but also is inhomogeneous within a grain. Therefore, it may be possible to design surface texture to obtain optimal EWF and minimal electron emission and control surface roughness and dislocation density in polycrystalline materials.

  12. Early stages of irradiation induced dislocations in urania

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Onofri, C.; Van Brutzel, L.; Sabathier, C.; Dorosh, O.; Jagielski, J.

    2016-10-01

    The early stages of nucleation and growth of dislocations by irradiation in urania is clarified based on the combination of experiments and atomistic calculations. It is established that irradiation induced dislocations follow a five stage process: (i) point defects are first created by irradiation, (ii) they aggregate into clusters, (iii) from which nucleate Frank loops, (iv) which transform into unfaulted loops via Shockley that in turn grow, and (v) finally reorganize into forest dislocations. Stages (i)-(iii) participate in the lattice expansion while the onset of lattice contraction starts with stage (iv), i.e., when unfaulted loops nucleate. Irradiation induced dislocations operate in the spontaneous recombination regime, to be opposed to the thermal diffusion regime. Body of arguments collaborates to this statement, the main one is the comparison between characteristic distances estimated from the dose rate (Vat/(K0×τ ) ) 1/3 and from the diffusion coefficient (D×τ ) 1/2 . Such a comparison identifies materials under irradiation as belonging either into the recombination regime or not.

  13. Glide Dislocations Dissociation in Inversion Domain Boundaries of Plastically Deformed Aluminium Nitride

    NASA Astrophysics Data System (ADS)

    Feregotto, Virginia; Michel, Jean-Pierre

    1996-09-01

    A ten per cent plastic deformation of polycrystalline aluminium nitride, at a temperature ranging from 1500 to 1650 ^{circ}C creates a new kind of intragranular defect. Observed by transmission electron microscopy, the look like torsion subboundaries created by dislocations with 1/3<~ngle11bar{2}0rangle Burgers vectors and so nodes are dissociated into Shockley partials. They are located in the basal plane. In fact, these defects appear only in the plane areas of grown-in defects, the inversion domain boundaries. The formation of these faulted networks is interpreted as being the ultimate stage of the interactions between inversion domain boundaries and glide dislocations. Une déformation plastique de 10 % de nitrure d'aluminium polycristallin, entre 1500 et 1650 ^{circ}C introduit un nouveau type de défauts intragranulaires. Au microscope électronique par transmission, ils apparaissent comme des sous-joints de torsion créés par des dislocations de vecteurs de Burgers 1/3<~ngle11bar{2}0rangle dont les nœuds triples sont dissociés en partielles de Shockley ; ils sont situés dans le plan de base. En fait, ces défauts ne se produisent que sur les parties planes de défauts originels, les parois de domaines d'inversion. La formation de ces réseaux fautés est analysée comme l'ultime stade des interactions entre parois de domaines d'inversion et dislocations de glissement.

  14. Effect of plastic deformation on the magnetic properties and dislocation luminescence of isotopically enriched silicon {sup 29}Si:B

    SciTech Connect

    Koplak, O. V.; Shteynman, E. A.; Tereschenko, A. N.; Morgunov, R. B.

    2015-09-15

    A correlation between the temperature dependences of the D1-line intensity of dislocation luminescence and the magnetic moment of plastically deformed isotopically enriched crystals {sup 29}Si:B is found. It is established that the magnetic susceptibility of the deformed crystals obtained by integration of the spectra of electron spin resonance and the D1-line intensity undergo similar nonmonotonic variations with temperature varying in the range of 20–32 K.

  15. Dislocation creep accommodated Grain Boundary Sliding: A high strain rate/low temperature deformation mechanism in calcite ultramylonites

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard

    2014-05-01

    Grain boundary sliding (GBS) is an important grain size sensitive deformation mechanism that is often associated with extreme strain localization and superplasticity. Another mechanism has to operate simultaneously to GBS in order to prevent overlaps and voids between sliding grains. One of the most common accommodating mechanisms is diffusional creep but, recently, dislocation creep has been reported to operate simultaneous to GBS. Due to the formation of a flanking structure in nearly pure calcite marble on Syros (Cyclades, Greece) at lower greenschist facies conditions, an extremely fine grained ultramylonite developed. The microstructure of the layer is characterized by (1) calcite grains with an average grain size of 3.6 µm (developed by low temperature/high strain rate grain boundary migration recrystallization, BLG), (2) grain boundary triple junctions with nearly 120° angles and (3) small cavities preferentially located at triple junctions and at grain boundaries in extension. These features suggest that the dominant deformation mechanism was GBS. In order to get more information on the accommodation mechanism detailed microstructural and textural analyses have been performed on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. The misorientation distribution curves for correlated and uncorrelated grains follow almost perfect the calculated theoretical curve for a random distribution, which is typical for polycrystalline material deformed by GBS. However, the crystallographic preferred orientation indicates that dislocation creep might have operated simultaneously. We also report Zener-Stroh cracks resulting from dislocation pile up, indicating that dislocation movement was active. We, therefore, conclude that the dominant deformation mechanism was dislocation creep accommodated grain boundary sliding. This is consistent with the observed grain size range that plots at the field boundary between grain size insensitive and grain

  16. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    SciTech Connect

    Vinogradov, A.; Yasnikov, I. S.; Estrin, Y.

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

  17. Divergent elbow dislocation with radial shaft fracture, distal ulnar deformation, and distal radioulnar joint instability: an unclassifiable Monteggia variant.

    PubMed

    Laratta, Joseph L; Yoon, Richard S; Frank, Matthew A; Koury, Kenneth; Donegan, Derek J; Liporace, Frank A

    2014-03-01

    Originally described by Monteggia and later classified by Bado, elbow dislocations with concurrent radial and ulnar shaft fractures with distal radioulnar joint (DRUJ) disruption are considered operative cases with high-energy injurious etiologies. Here, we present an unclassifiable Monteggia variant fracture suffered through a high axial load mechanism in a 47-year-old female. The fracture pattern initially exhibited included a divergent elbow dislocation, a radial shaft fracture, plastic deformation of the distal ulna, and DRUJ instability. Here we describe the pattern in detail, along with definitive treatment and clinical outcome at 1 year follow-up.

  18. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Monnet, Ghiath; Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae; Devincre, Benoit

    2009-11-01

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  19. A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Bardella, Lorenzo

    2006-01-01

    We propose a deformation theory of strain gradient crystal plasticity that accounts for the density of geometrically necessary dislocations by including, as an independent kinematic variable, Nye's dislocation density tensor [1953. Acta Metallurgica 1, 153-162]. This is accomplished in the same fashion as proposed by Gurtin and co-workers (see, for instance, Gurtin and Needleman [2005. J. Mech. Phys. Solids 53, 1-31]) in the context of a flow theory of crystal plasticity, by introducing the so-called defect energy. Moreover, in order to better describe the strengthening accompanied by diminishing size, we propose that the classical part of the plastic potential may be dependent on both the plastic slip vector and its gradient; for single crystals, this also makes it easier to deal with the "higher-order" boundary conditions. We develop both the kinematic formulation and its static dual and apply the theory to the simple shear of a constrained strip (example already exploited in Shu et al. [2001. J. Mech. Phys. Solids 49, 1361-1395], Bittencourt et al. [2003. J. Mech. Phys. Solids 51, 281-310], Niordson and Hutchinson [2003. Euro J. Mech. Phys. Solids 22, 771-778], Evers et al. [2004. J. Mech. Phys. Solids 52, 2379-2401], and Anand et al. [2005. J. Mech. Phys. Solids 53, 1789-1826]) to investigate what sort of behaviour the new model predicts. The availability of the total potential energy functional and its static dual allows us to easily solve this simple boundary value problem by resorting to the Ritz method.

  20. Dislocation structure in AlN films induced by in situ transmission electron microscope nanoindentation

    NASA Astrophysics Data System (ADS)

    Tokumoto, Yuki; Kutsukake, Kentaro; Ohno, Yutaka; Yonenaga, Ichiro

    2012-11-01

    To elucidate dislocation generation and propagation processes in AlN films containing a high density of grown-in threading dislocations (TDs), in situ nanoindentation (NI) was performed in a transmission electron microscope at room temperature. Dislocations with the Burgers vector b = 1/3<12¯10> were introduced not only on the primary slip plane, i.e., the (0001) basal planes, but also on the {101¯1} and {101¯2} pyramidal planes. The results are explained by considering the distribution of the resolved shear stress. It was found that the dislocations induced by NI interact with grown-in TDs: (1) for the NI-induced dislocations on pyramidal planes, edge grown-in TDs induce cross slip to basal planes, and (2) for the NI-induced dislocations on basal planes, screw grown-in TDs prevent their propagation, while edge grown-in TDs do not.

  1. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle.

    PubMed

    Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-Ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo

    2015-10-01

    Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.

  2. Spatial organization of plastic deformation in single crystals with different structure of slip dislocation

    SciTech Connect

    Kunitsyna, T. S.; Teplyakova, L. A. Koneva, N. A.; Poltaranin, M. A.

    2015-10-27

    It is established that different structure of slip dislocation at the end of the linear hardening stage results in different distribution of dislocation charges in the volume of a single crystal. In the alloy with a near atomic order the slip of single dislocations leads to formation of planar structures—layers with the excess density of dislocations. In the alloy with long-range atomic order the slip of superdislocations brings the formation of the system of parallel rod-like charged dislocation linking.

  3. Ion irradiation induced disappearance of dislocations in a nickel-based alloy

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Li, D. H.; Lui, R. D.; Huang, H. F.; Li, J. J.; Lei, G. H.; Huang, Q.; Bao, L. M.; Yan, L.; Zhou, X. T.; Zhu, Z. Y.

    2016-06-01

    Under Xe ion irradiation, the microstructural evolution of a nickel based alloy, Hastelloy N (US N10003), was studied. The intrinsic dislocations are decorated with irradiation induced interstitial loops and/or clusters. Moreover, the intrinsic dislocations density reduces as the irradiation damage increases. The disappearance of the intrinsic dislocations is ascribed to the dislocations climb to the free surface by the absorption of interstitials under the ion irradiation. Moreover, the in situ annealing experiment reveals that the small interstitial loops and/or clusters induced by the ion irradiation are stable below 600 °C.

  4. Microtwins and their effect on accumulation of excess dislocation density in grains with different types of crystal lattice bending in deformed austenitic steel

    SciTech Connect

    Gibert, Ivan; Kiseleva, Svetlana Popova, Natalya Koneva, Nina Kozlov, Eduard

    2016-01-15

    The investigation of excess dislocation density accumulation in the deformed polycrystalline austenitic steel was carried out using transmission electron microscopy (TEM). The distributions of the excess dislocation density in the grains of the deformed austenitic steel with different bending types were obtained and plotted. It was established that in the austenitic polycrystalline steel at the deformation degrees ε = 14 and 25 % the distributions of the excess dislocation density are multimodal. In both cases the grain with compound bending is more stressed. The values of the average excess dislocation density in the grains with the compound and simple bending are less at ε = 25 % than that at ε = 14 %. This is explained by a significant relaxation of the internal stresses in steel with the increase of the deformation degree from 14 % to 25 %. The increase of the number of twinning systems and the material volume fraction covered by twinning leads to the internal stress relaxation and consequently to the increase of the excess dislocation density. The presence of microtwins in the deformed material has an influence on the distribution of the excess dislocation density. In the deformed polycrystalline austenitic steel the number of grains with compound bending is increased with the increase of the plastic deformation degree.

  5. An Alternative Three-Term Decomposition for Single Crystal Deformation Motivated by Non-Linear Elastic Dislocation Solutions

    DTIC Science & Technology

    2014-04-01

    irreversible deformation, the three-term model allows for residual elastic strains— including dilatation observed in experiments and atomic simulations...residual elastic strains—including dilatation observed in experiments and atomic simulations—not addressed by conventional two-term crystal plasticity...gradient for an element of crystalline material. For simplicity, thermal effects are omitted, gliding dislocations are the only kind of defect considered

  6. Spatially resolved characterization of electromigration-induced plastic deformation in al (0.5wt percent cu) interconnect

    SciTech Connect

    Barabash, R.I.; Ice, G.E.; Tamura, N.; Patel, J.R.; Valek, B.C.; Bravman, J.C.; Spolenak, R.

    2003-05-06

    Electromigration during accelerated testing can induce large scale plastic deformation in Al interconnect lines as recently revealed by the white beam scanning X-ray microdiffraction. In the present paper, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in-situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking after electric current flow. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined.

  7. Oscillations of kinks on dislocation lines in crystals and low-temperature transport anomalies as a ``passport'' of newly-induced defects

    NASA Astrophysics Data System (ADS)

    Mezhov-Deglin, L. P.; Mukhin, S. I.

    2011-10-01

    The possible interpretation of experimental data on low-temperature anomalies in weakly deformed metallic crystals prepared form ultra-pure lead, copper, and silver, as well as in crystals of 4He is discussed within the previously proposed theoretical picture of dislocations with dynamical kinks. In the case of pure metals the theoretical predictions give a general picture of interaction of conduction electrons in a sample with newly-introduced dislocations, containing dynamic kinks in the Peierls potential relief. In the field of random stresses appearing due to plastic deformation of a sample, kinks on the dislocation line form a set of one-dimensional oscillators in potential wells of different shapes. In the low temperature region at low enough density of defects pinning kinks the inelastic scattering of electrons on kinks should lead to deviations from the Wiedemann-Franz law. In particular, the inelastic scattering on kinks should result in a quadratic temperature dependence of the thermal conductivity in a metallic sample along preferential directions of dislocation axes. In the plane normal to the dislocation axis the elastic large-angle scattering of electrons is prevalent. The kink pinning by a point defect or by additional dislocations as well as the sample annealing leading to the disappearance of kinks should induce suppression of transport anomalies. Thus, the energy interval for the spectrum of kink oscillations restricted by characteristic amplitude of the Peierls relief is a "passport of deformation history" for each specific sample. For instance, in copper the temperature/energy region of the order of 1 K corresponds to it. It is also planned to discuss in the other publication applicability of mechanism of phonon scattering on mobile dislocation kinks and pinning of kinks by impurities in order to explain anomalies of phonon thermal conductivity of 4He crystals and deformed crystals of pure lead in a superconducting state.

  8. Femtosecond laser-driven shock-induced dislocation structures in iron

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomoki; Sano, Tomokazu; Arakawa, Kazuto; Sakata, Osami; Tajiri, Hiroo; Hirose, Akio

    2014-12-01

    We found that a femtosecond laser-driven shock wave induces marked changes in dislocation structure in iron over a fluence range from 1.3 to 8.3 J/cm2. Transmission electron microscopy observations showed a change in dislocation structure from lath structures with twist boundaries to only laths, and an increase in depth where laths begin to appear, with increasing fluence. X-ray diffraction results showed the distribution of crystallite sizes corresponding to the change in dislocation structure. We proposed that the dislocation structure is determined by the laser fluence, through the change in the duration of the shock wave.

  9. Observations of Glide and Decomposition of a<101> Dislocations at High Temperatures in Ni-Al Single Crystals Deformed along the Hard Orientation

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Daw, M. S.; Noebe, R. D.; Mills, M. J.

    2003-01-01

    Ni-44at.% Al and Ni-50at.% single crystals were tested in compression in the hard (001) orientations. The dislocation processes and deformation behavior were studied as a function of temperature, strain and strain rate. A slip transition in NiAl occurs from alpha(111) slip to non-alphaaaaaaaaaaa9111) slip at intermediate temperatures. In Ni-50at.% Al single crystal, only alpha(010) dislocations are observed above the slip transition temperature. In contrast, alpha(101)(101) glide has been observed to control deformation beyond the slip transition temperature in Ni-44at.%Al. alpha(101) dislocations are observed primarily along both (111) directions in the glide plane. High-resolution transmission electron microscopy observations show that the core of the alpha(101) dislocations along these directions is decomposed into two alpha(010) dislocations, separated by a distance of approximately 2nm. The temperature window of stability for these alpha(101) dislocations depends upon the strain rate. At a strain rate of 1.4 x 10(exp -4)/s, lpha(101) dislocations are observed between 800 and 1000K. Complete decomposition of a alpha(101) dislocations into alpha(010) dislocations occurs beyond 1000K, leading to alpha(010) climb as the deformation mode at higher temperature. At lower strain rates, decomposition of a alpha(101) dislocations has been observed to occur along the edge orientation at temperatures below 1000K. Embedded-atom method calculations and experimental results indicate that alpha(101) dislocation have a large Peieris stress at low temperature. Based on the present microstructural observations and a survey of the literature with respect to vacancy content and diffusion in NiAl, a model is proposed for alpha(101)(101) glide in Ni-44at.%Al, and for the observed yield strength versus temperature behavior of Ni-Al alloys at intermediate and high temperatures.

  10. Heavy ion irradiation induced dislocation loops in AREVA's M5® alloy

    NASA Astrophysics Data System (ADS)

    Hengstler-Eger, R. M.; Baldo, P.; Beck, L.; Dorner, J.; Ertl, K.; Hoffmann, P. B.; Hugenschmidt, C.; Kirk, M. A.; Petry, W.; Pikart, P.; Rempel, A.

    2012-04-01

    Pressurized water reactor (PWR) Zr-based alloy structural materials show creep and growth under neutron irradiation as a consequence of the irradiation induced microstructural changes in the alloy. A better scientific understanding of these microstructural processes can improve simulation programs for structural component deformation and simplify the development of advanced deformation resistant alloys. As in-pile irradiation leads to high material activation and requires long irradiation times, the objective of this work was to study whether ion irradiation is an applicable method to simulate typical PWR neutron damage in Zr-based alloys, with AREVA's M5® alloy as reference material. The irradiated specimens were studied by electron backscatter diffraction (EBSD), positron Doppler broadening spectroscopy (DBS) and in situ transmission electron microscopy (TEM) at different dose levels and temperatures. The irradiation induced microstructure consisted of - and -type dislocation loops with their characteristics corresponding to typical neutron damage in Zr-based alloys; it can thus be concluded that heavy ion irradiation under the chosen conditions is an excellent method to simulate PWR neutron damage.

  11. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth’s upper mantle

    PubMed Central

    Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo

    2015-01-01

    Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth’s upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 1019.6 to 1020.7 Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size–sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle. PMID:26601281

  12. Fields induced by three-dimensional dislocation loops in anisotropic magneto-electro-elastic bimaterials

    NASA Astrophysics Data System (ADS)

    Han, Xueli; Pan, Ernie; Sangghaleh, Ali

    2013-08-01

    The coupled elastic, electric and magnetic fields produced by an arbitrarily shaped three-dimensional dislocation loop in general anisotropic magneto-electro-elastic (MEE) bimaterials are derived. First, we develop line-integral expressions for the fields induced by a general dislocation loop. Then, we obtain analytical solutions for the fields, including the extended Peach-Koehler force, due to some useful dislocation segments such as straight line and elliptic arc. The present solutions contain the piezoelectric, piezomagnetic and purely elastic solutions as special cases. As numerical examples, the fields induced by a square and an elliptic dislocation loop in MEE bimaterials are studied. Our numerical results show the coupling effects among different fields, along with various interesting features associated with the dislocation and interface.

  13. The breakdown of superlubricity by driving-induced commensurate dislocations

    NASA Astrophysics Data System (ADS)

    Benassi, A.; Ma, Ming; Urbakh, M.; Vanossi, A.

    2015-11-01

    In the framework of a Frenkel-Kontorova-like model, we address the robustness of the superlubricity phenomenon in an edge-driven system at large scales, highlighting the dynamical mechanisms leading to its failure due to the slider elasticity. The results of the numerical simulations perfectly match the length critical size derived from a parameter-free analytical model. By considering different driving and commensurability interface configurations, we explore the distinctive nature of the transition from superlubric to high-friction sliding states which occurs above the critical size, discovering the occurrence of previously undetected multiple dissipative jumps in the friction force as a function of the slider length. These driving-induced commensurate dislocations in the slider are then characterized in relation to their spatial localization and width, depending on the system parameters. Setting the ground to scale superlubricity up, this investigation provides a novel perspective on friction and nanomanipulation experiments and can serve as a theoretical basis for designing high-tech devices with specific superlow frictional features.

  14. The breakdown of superlubricity by driving-induced commensurate dislocations.

    PubMed

    Benassi, A; Ma, Ming; Urbakh, M; Vanossi, A

    2015-11-10

    In the framework of a Frenkel-Kontorova-like model, we address the robustness of the superlubricity phenomenon in an edge-driven system at large scales, highlighting the dynamical mechanisms leading to its failure due to the slider elasticity. The results of the numerical simulations perfectly match the length critical size derived from a parameter-free analytical model. By considering different driving and commensurability interface configurations, we explore the distinctive nature of the transition from superlubric to high-friction sliding states which occurs above the critical size, discovering the occurrence of previously undetected multiple dissipative jumps in the friction force as a function of the slider length. These driving-induced commensurate dislocations in the slider are then characterized in relation to their spatial localization and width, depending on the system parameters. Setting the ground to scale superlubricity up, this investigation provides a novel perspective on friction and nanomanipulation experiments and can serve as a theoretical basis for designing high-tech devices with specific superlow frictional features.

  15. The breakdown of superlubricity by driving-induced commensurate dislocations

    PubMed Central

    Benassi, A.; Ma, Ming; Urbakh, M.; Vanossi, A.

    2015-01-01

    In the framework of a Frenkel-Kontorova-like model, we address the robustness of the superlubricity phenomenon in an edge-driven system at large scales, highlighting the dynamical mechanisms leading to its failure due to the slider elasticity. The results of the numerical simulations perfectly match the length critical size derived from a parameter-free analytical model. By considering different driving and commensurability interface configurations, we explore the distinctive nature of the transition from superlubric to high-friction sliding states which occurs above the critical size, discovering the occurrence of previously undetected multiple dissipative jumps in the friction force as a function of the slider length. These driving-induced commensurate dislocations in the slider are then characterized in relation to their spatial localization and width, depending on the system parameters. Setting the ground to scale superlubricity up, this investigation provides a novel perspective on friction and nanomanipulation experiments and can serve as a theoretical basis for designing high-tech devices with specific superlow frictional features. PMID:26553308

  16. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal-metal composites

    SciTech Connect

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. In this article, a dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with the experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts the strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.

  17. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    DOE PAGES

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less

  18. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    SciTech Connect

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts the strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.

  19. Determination of the activation enthalpy for migration of dislocations in plastically deformed 8006 Al-alloy by positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    Salah, Mohammed; Abdel-Rahman, M.; Badawi, Emad A.; Abdel-Rahman, M. A.

    2016-06-01

    The activation enthalpy for migration of dislocations of plastically deformed 8006 Al-alloy was investigated by positron annihilation lifetime technique. Plastic deformation using a hydraulic press produces mainly dislocations and may produce point defects. The type of defect was studied by isochronal annealing which determines the temperature range of recovery of each type. Only one type of defect (dislocations) was observed for the investigated sample and was found to be recovered within the range 455-700 K. Isothermal annealing by slow cooling was performed through this range and used in determination of the activation enthalpy of migration of dislocations which was found to be 0.26 ± 0.01 eV.

  20. Evolution of dislocation structures in cyclically deformed NiAl-Fe

    SciTech Connect

    Kallingal, C.G.; Matsugi, K.; Stoloff, N.S.; Rajan, K.

    1995-08-01

    The microstructures of NiAl-Fe (Ni, 50.3at % Al, 0.28 at% Fe) polycrystals tested in HCF (high cycle fatigue) below and above the DBTT (ductile to brittle transition temperature) viz., 673 K, 823 K, 873 K and 928 K at different stress amplitudes were observed by transmission electron microscopy. The microstructure consisted of low energy dislocation networks and dislocation cells. The fundamental features of the dislocation structures are described. Misorientation angles between cells were measured from Kikuchi patterns obtained from cells through microdiffraction. The misorientations across the cell walls were found to increase with increase in the stress amplitude to which the material was subjected during cycling. The mechanisms for the formation and evolution of these structures are discussed on the basis of existing theoretical models. The implications of these substructures on the mechanical properties are also discussed.

  1. Elastoplastic behavior of copper upon high-strain-rate deformation

    NASA Astrophysics Data System (ADS)

    Chembarisova, R. G.

    2015-06-01

    The deformation behavior of copper under conditions of high-strain-rate deformation has been investigated based on the model of elastoplastic medium with allowance for the kinetics of plastic deformation. Data have been obtained on the evolution of the dislocation subsystem, namely, on the average dislocation density, density of mobile dislocations, velocity of dislocation slip, concentration of deformation-induced vacancies, and density of twins. The coefficient of the annihilation of screw dislocations has been estimated depending on pressure and temperature. It has been shown that severe shear stresses that arise upon high-strain-rate deformation can lead to a significant increase in the concentration of vacancies. The time of the dislocation annihilation upon their nonconservative motion has been estimated. It has been shown that this time is much greater than the time of the deformation process in the samples, which makes it possible to exclude the annihilation of dislocations upon their nonconservative motion from the active mechanisms of deformation.

  2. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy.

    PubMed

    Feuerbacher, Michael

    2016-07-19

    High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility and low density. The mechanisms effecting these attractive mechanical properties are not understood. This study addresses the deformation mechanism of a Al28Co20Cr11Fe15Ni26 high-entropy alloy, which is a two-phase material, consisting of a B2-ordered matrix and disordered body-centred inclusions. We quantitatively analyse the microstructure and dislocations in deformed samples by transmission-electron-microscopic methods including weak-beam imaging and convergent-beam electron diffraction. We find that the deformation process in the B2 phase is dominated by heterogeneous slip of screw dislocations gliding on planes. The dislocations are perfect superdislocations of the B2 lattice and show no dissociation. This indicates that the antiphase-boundary energy in the structure is very high, inhibiting spread of the dislocation core. Along with the observation of a widely extending strain field associated to the dislocations, our results provide a possible explanation for the high strength of this high-entropy alloy as a direct consequence of its dislocation structure.

  3. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy

    PubMed Central

    Feuerbacher, Michael

    2016-01-01

    High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility and low density. The mechanisms effecting these attractive mechanical properties are not understood. This study addresses the deformation mechanism of a Al28Co20Cr11Fe15Ni26 high-entropy alloy, which is a two-phase material, consisting of a B2-ordered matrix and disordered body-centred inclusions. We quantitatively analyse the microstructure and dislocations in deformed samples by transmission-electron-microscopic methods including weak-beam imaging and convergent-beam electron diffraction. We find that the deformation process in the B2 phase is dominated by heterogeneous slip of screw dislocations gliding on planes. The dislocations are perfect superdislocations of the B2 lattice and show no dissociation. This indicates that the antiphase-boundary energy in the structure is very high, inhibiting spread of the dislocation core. Along with the observation of a widely extending strain field associated to the dislocations, our results provide a possible explanation for the high strength of this high-entropy alloy as a direct consequence of its dislocation structure. PMID:27430993

  4. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Feuerbacher, Michael

    2016-07-01

    High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility and low density. The mechanisms effecting these attractive mechanical properties are not understood. This study addresses the deformation mechanism of a Al28Co20Cr11Fe15Ni26 high-entropy alloy, which is a two-phase material, consisting of a B2-ordered matrix and disordered body-centred inclusions. We quantitatively analyse the microstructure and dislocations in deformed samples by transmission-electron-microscopic methods including weak-beam imaging and convergent-beam electron diffraction. We find that the deformation process in the B2 phase is dominated by heterogeneous slip of screw dislocations gliding on planes. The dislocations are perfect superdislocations of the B2 lattice and show no dissociation. This indicates that the antiphase-boundary energy in the structure is very high, inhibiting spread of the dislocation core. Along with the observation of a widely extending strain field associated to the dislocations, our results provide a possible explanation for the high strength of this high-entropy alloy as a direct consequence of its dislocation structure.

  5. The Variation of the Dislocation Density in Aluminum Deformed to Large Steady-State Creep Strains

    DTIC Science & Technology

    1986-03-01

    axis of the specimen) using a South Bay Technology Model 650 Low Speed Diamond Wheel Saw and a high concentration Buehler (.006") wafering blade...primary creep where the material experiences hardening. However, another explanation might be a high initial moble dislocation density associated with

  6. Spiderweb deformation induced by electrostatically charged insects

    NASA Astrophysics Data System (ADS)

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-07-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture.

  7. Gravitational effects of process-induced dislocations in silicon. [during thermal cycling

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1974-01-01

    Matters pertaining to semiconductor device fabrication were studied in terms of the influence of gravity on the production of dislocations in silicon wafers during thermal cycling in a controlled ambient where no impurities are present and oxidation is minimal. Both n-type and p-type silicon wafers having a diameter of 1.25 in to 1.5 in, with fixed orientation and resistivity values, were used. The surface dislocation densities were measured quantitatively by the Sirtl etch technique. The results show two significant features of the plastic flow phenomenon as it is related to gravitational stress: (1) the density of dislocations generated during a given thermal cycle is directly related to the duration of the cycle; and (2) the duration of the thermal cycle required to produce a given dislocation density is inversely related to the equilibrium temperature. Analysis of the results indicates that gravitational stress is instrumental in process-induced defect generation.

  8. Observations on the deformation-induced beta internal friction peak in bcc metals

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1974-01-01

    During a study of the effects of electron irradiation on the tungsten alpha mechanism, internal friction data were obtained. The data indicate that the mechanism underlying the beta peak does not possess the relaxation parameters generally associated with a simple dislocation process. The significance of the experimental results in the light of beta observations in other metals is discussed. It is suggested that the beta peaks in deformed bcc metals are the anelastic result of the thermally-activated relaxation of deformation-induced imperfections.

  9. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains

    SciTech Connect

    Long, Fei; Daymond, Mark R. Yao, Zhongwen

    2015-03-07

    Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in the sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.

  10. Modeling of friction-induced deformation and microstructures.

    SciTech Connect

    Michael, Joseph Richard; Prasad, Somuri V.; Jungk, John Michael; Cordill, Megan J.; Bammann, Douglas J.; Battaile, Corbett Chandler; Moody, Neville Reid; Majumdar, Bhaskar Sinha (New Mexico Institure of Mining and Technology)

    2006-12-01

    Frictional contact results in surface and subsurface damage that could influence the performance, aging, and reliability of moving mechanical assemblies. Changes in surface roughness, hardness, grain size and texture often occur during the initial run-in period, resulting in the evolution of subsurface layers with characteristic microstructural features that are different from those of the bulk. The objective of this LDRD funded research was to model friction-induced microstructures. In order to accomplish this objective, novel experimental techniques were developed to make friction measurements on single crystal surfaces along specific crystallographic surfaces. Focused ion beam techniques were used to prepare cross-sections of wear scars, and electron backscattered diffraction (EBSD) and TEM to understand the deformation, orientation changes, and recrystallization that are associated with sliding wear. The extent of subsurface deformation and the coefficient of friction were strongly dependent on the crystal orientation. These experimental observations and insights were used to develop and validate phenomenological models. A phenomenological model was developed to elucidate the relationships between deformation, microstructure formation, and friction during wear. The contact mechanics problem was described by well-known mathematical solutions for the stresses during sliding friction. Crystal plasticity theory was used to describe the evolution of dislocation content in the worn material, which in turn provided an estimate of the characteristic microstructural feature size as a function of the imposed strain. An analysis of grain boundary sliding in ultra-fine-grained material provided a mechanism for lubrication, and model predictions of the contribution of grain boundary sliding (relative to plastic deformation) to lubrication were in good qualitative agreement with experimental evidence. A nanomechanics-based approach has been developed for characterizing the

  11. Investigation of dislocations in Nb-doped SrTiO3 by electron-beam-induced current and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Sekiguchi, Takashi; Li, Jianyong; Ito, Shun; Yi, Wei; Ogura, Atsushi

    2015-03-01

    This paper aims to clarify the electrical activities of dislocations in Nb-doped SrTiO3 substrates and the role of dislocations in the resistance switching phenomenon in Pt/SrTiO3 Schottky contacts. The electrical activities of dislocations have been studied by electron-beam-induced current (EBIC) technique. EBIC has found that dislocations can exhibit dark or bright contrast depending on their character and band bending condition. The character of dislocations has been analysed based on chemical etching and transmission electron microscopy. These data suggested that not all the dislocations contribute to the switching phenomenon. The active dislocations for resistance switching were discussed.

  12. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    SciTech Connect

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  13. Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2017-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Interestingly, CDT shows striking analogies to other branches of continuum mechanics. The present contribution demonstrates this on two essential kinematical quantities which reflect tensorial dislocation properties: the (resultant) Burgers vector and the dislocation density tensor. First, the limiting process for the (resultant) Burgers vector from an integral to a local quantity is performed analogously to the limiting process from the force vector to the traction vector. By evaluating the balance of forces on a tetrahedral volume element, Cauchy found his famous formula relating traction vector and stress tensor. It is shown how this procedure may be adopted to a continuously dislocated tetrahedron. Here, the conservation of Burger’s vector implicates the introduction of the dislocation density tensor. Second, analogies between the plastic flow of a continuously dislocated solid and the liquid flow of a fluid are highlighted: the resultant Burgers vector of a dislocation ensemble plays a similar role as the (resultant) circulation of a vortex tube. Moreover, both vortices within flowing fluids and dislocations within deforming solids induce discontinuities in the velocity field and the plastic distortion field, respectively. Beyond the analogies, some peculiar properties of the dislocation density tensor are presented as well.

  14. Interaction of irradiation-induced prismatic dislocation loops with free surfaces in tungsten

    NASA Astrophysics Data System (ADS)

    Fikar, Jan; Gröger, Roman; Schäublin, Robin

    2017-02-01

    The prismatic dislocation loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, size and depth of the loop in the foil, they can escape to the free surface, thus invalidating TEM observations and conclusions. In this article small prismatic hexagonal and circular dislocation loops in tungsten with the Burgers vectors 1/2 < 1 1 1 > and < 1 0 0 > are studied by molecular statics simulations using three embedded atom method (EAM) potentials. The calculated image forces are compared to known elastic solutions. A particular attention is paid to the critical stress to move edge dislocations. The escape of the loop to the free surface is quantified by a combination of atomistic simulations and elastic calculations. For example, for the 1/2 < 1 1 1 > loop with diameter 7.4 nm in a 55 nm thick foil we calculated that about one half of the loops will escape to the free surface. This implies that TEM observations detect only approx. 50% of the loops that were originally present in the foil.

  15. Mind the subgrain boundaries: Low-T fluid-induced dislocation pipe diffusion in olivine

    NASA Astrophysics Data System (ADS)

    Pluemper, O.; Ramasse, Q.; Austrheim, H.

    2010-12-01

    Low-angle subgrain boundaries are a common microstructure in olivine that are a result of dislocation alignment into planar arrays due to crystal-plastic deformation. These dislocation arrays can act as fast pathways for diffusing atoms and dissociated water molecules. This phenomenon, known as pipe diffusion, is thought to originate from the disordered core region that lowers the activation energy for diffusion. Here we present new observations supporting dislocation pipe diffusion in olivine from the hydrated upper mantle section of the Leka Ophiolite Complex, Nord-Trøndelag, Norway. Intragranular striped chemical zoning was observed in olivine grains using optical microscopy and back-scattered electron imaging. The zoning is parallel to the typical optical undulose extinction that is caused by intragranular misorientation. Two types of chemical zoning were found; (1) Fe-enriched and (2) Fe-depleted zoning. Both types of zoning had distinct, parallel spacing across the olivine grains. The most pronounced zoning was found to spread out from serpentine needles that transect into the olivine. Focused ion beam sample preparation technique combined with transmission electron microscopy revealed that the observed striped zoning is in direct spatial relationship with low-angle (100) subgrain boundaries composed of (010)[100] edge dislocations. The edge dislocations cores in the (010)[100] system are parallel to the c (i.e. [001]) direction. Scanning TEM (STEM), utilizing chemically sensitive high-angle annular dark-field imaging coupled with energy-dispersive X-ray spectrum profiling, revealed that the striped chemical zoning (Fe-enriched & Fe-depleted) is located at the subgrain boundary on the nanometer scale. Preliminary work using electron energy loss spectroscopy profiling in a dedicated aberration-corrected STEM reveals changes in the fine structure of the Fe L2,3-edge in the direct vicinity of the subgrain boundaries, which might be indicative of a valence

  16. Deformation-induced magma degassing (Invited)

    NASA Astrophysics Data System (ADS)

    Caricchi, L.; Pommier, A.; Pistone, M.; Castro, J. M.; Burgisser, A.

    2009-12-01

    solely controlled by pressure-dependent solubility of water in the magma. We propose that once a continuous bubble network is established, connecting regions at different confining pressure, the gas may start to escape from the bubbles towards lower pressure. The resulting sudden decrease of gas pressure in the bubbles creates a substantial difference in water fugacity between the bubble and the surrounding melt. It is likely that this fugacity contrast is responsible for the extraction of water from the melt. Deformation-induced degassing is probably very efficient at conduit walls and could promote degassing at depths greater than those predicted by water solubility laws.

  17. Dislocation motion and instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit

    2013-08-01

    The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.

  18. Dislocation density evolution during high pressure torsion of a nanocrystalline Ni-Fe alloy

    SciTech Connect

    Li, Hongqi; Wang, Y B; Ho, J C; Cao, Y; Liao, X Z; Ringer, S P; Zhu, Y T; Zhao, Y H; Lavernia, E J

    2009-01-01

    High-pressure torsion (HPT) induced dislocation density evolution in a nanocrystalline Ni-20wt.%Fe alloy was investigated using X-ray diffraction and transmission electron microscopy. Results suggest that the dislocation density evolution is different from that in coarse-grained materials. An HPT process first reduces the dislocation density within nanocrystalline grains and produces a large number of dislocations located at small-angle sub grain boundaries that are formed via grain rotation and coalescence. Continuing the deformation process eliminates the sub grain boundaries but significantly increases the dislocation density in grains. This phenomenon provides an explanation of the mechanical behavior of some nanostructured materials.

  19. Parallel Dislocation Simulator

    SciTech Connect

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  20. Modern induced skull deformity in adults.

    PubMed

    Gump, William

    2010-12-01

    The practice of induced skull deformity has long existed in numerous disparate cultures, but for the first time in history it can be applied to adults. While extremely limited in application, some ideas have persisted in the far fringes of modern Western culture with remarkable tenacity. Practitioners of extreme body modification undergo procedures, outside the sphere of traditional medical practice, to make striking, permanent, nontraditional esthetic tissue distortions with the goal of transgressing societal norms. The International Trepanation Advocacy Group represents another example of a fringe cultural movement, whose goal, rather than being purely aesthetic in nature, is to promote elective trepanation as a method for achieving a heightened level of consciousness. Both movements have relatively short and well-defined histories. Despite their tiny numbers of adherents, neurosurgeons may be called on to address relevant patient concerns preprocedurally, or complications postprocedurally, and would benefit from awareness of these peculiar subcultures.

  1. Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Beier, M.; Reimann, C.; Roßhirth, K.; Friedrich, J.; Löbel, C.; Sylla, L.; Richter, T.

    2016-11-01

    In this work the dislocation formation in the seed crystal induced by feedstock indentation during the growth of quasimono (QM) silicon ingots for photovoltaic application was investigated. It could be shown by special laboratory indentation experiments that the formed dislocations propagate up to several millimeters deep into the volume of the seed crystal in dependence on the applied pressure of the feedstock particles on the surface of the seed crystal. Further, it was demonstrated that these dislocations if they were not back-melted during the seeding process grow further into the silicon ingot and drastically reduce its material quality. An estimation of the apparent pressure values in a G5 industrial crucible/feedstock setup reveals that the indentation phenomenon is a critical issue for the industrial production of QM silicon ingots. Therefore, some approaches to avoid/reduce the indentation events were tested with the result, that the most promising solution should be the usage of suitable feedstock particles as coverage of the seed.

  2. Ion induced deformation of soft tissue.

    PubMed

    Myers, T G; Aldis, G K; Naili, S

    1995-01-01

    In this paper the effects of changing the ion concentration in and around a sample of soft tissue are investigated. The triphasic theory developed by Lai et al. (1990, Biomechanics of Diarthrodial Joints, Vol. 1, Berlin, Springer-Verlag) is reduced to two coupled partial differential equations involving fluid ion concentration and tissue solid deformation. These equations are given in general form for Cartesian, cylindrical and spherical geometries. After solving the two equations quantities such as fluid velocity, fluid pressure, chemical potentials and chemical expansion stress may be easily calculated. In the Cartesian geometry comparison is made with the experimental and theoretical work of Myers et al. (1984, ASME J. biomech. Engng, 106, 151-158). This dealt with changing the ion concentration of a salt shower on a strip of bovine articular cartilage. Results were obtained in both free swelling and isometric tension states, using an empirical formula to account for ion induced deformation. The present theory predicts lower ion concentrations inside the tissue than this earlier work. A spherical sample of tissue subjected to a change in salt bath ion concentration is also considered. Numerical results are obtained for both hypertonic and hypotonic bathing solutions. Of particular interest is the finding that tissue may contract internally before reaching a final swollen equilibrium state or swell internally before finally contracting. By considering the relative magnitude, and also variation throughout the time course of terms in the governing equations, an even simpler system is deduced. As well as being linear the concentration equation in the new system is uncoupled. Results obtained from the linear system compare well with those from the spherical section. Thus, biological swelling situations may be modelled by a simple system of equations with the possibility of approximate analytic solutions in certain cases.

  3. In-situ TEM observation of dynamic interaction between dislocation and cavity in BCC metals in tensile deformation

    NASA Astrophysics Data System (ADS)

    Tougou, Kouichi; Shikata, Akihito; Kawase, Uchu; Onitsuka, Takashi; Fukumoto, Ken-ichi

    2015-10-01

    To investigate the effect of irradiation hardening of structural materials due to cavity formation in BCC metals for nuclear applications, an in-situ transmission electron microscopy (TEM) observation in tensile test was performed for the helium ion-irradiated specimens of pure molybdenum and pure iron. The obstacle barrier strength, α was calculated from the bow-out dislocation based on line tension model, and the obstacle barrier strengths of cavity in pure molybdenum and pure iron were about 0.5-0.7. The fractions of cross-slip generation of dislocation of screw type due to interaction with the cavities were about 16-18 % for pure molybdenum.

  4. Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions

    USGS Publications Warehouse

    Masterlark, Timothy

    2003-01-01

    Dislocation models can simulate static deformation caused by slip along a fault. These models usually take the form of a dislocation embedded in a homogeneous, isotropic, Poisson-solid half-space (HIPSHS). However, the widely accepted HIPSHS assumptions poorly approximate subduction zone systems of converging oceanic and continental crust. This study uses three-dimensional finite element models (FEMs) that allow for any combination (including none) of the HIPSHS assumptions to compute synthetic Green's functions for displacement. Using the 1995 Mw = 8.0 Jalisco-Colima, Mexico, subduction zone earthquake and associated measurements from a nearby GPS array as an example, FEM-generated synthetic Green's functions are combined with standard linear inverse methods to estimate dislocation distributions along the subduction interface. Loading a forward HIPSHS model with dislocation distributions, estimated from FEMs that sequentially relax the HIPSHS assumptions, yields the sensitivity of predicted displacements to each of the HIPSHS assumptions. For the subduction zone models tested and the specific field situation considered, sensitivities to the individual Poisson-solid, isotropy, and homogeneity assumptions can be substantially greater than GPS. measurement uncertainties. Forward modeling quantifies stress coupling between the Mw = 8.0 earthquake and a nearby Mw = 6.3 earthquake that occurred 63 days later. Coulomb stress changes predicted from static HIPSHS models cannot account for the 63-day lag time between events. Alternatively, an FEM that includes a poroelastic oceanic crust, which allows for postseismic pore fluid pressure recovery, can account for the lag time. The pore fluid pressure recovery rate puts an upper limit of 10-17 m2 on the bulk permeability of the oceanic crust. Copyright 2003 by the American Geophysical Union.

  5. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  6. Dislocation Processes and Frictional Stability of Faults

    NASA Astrophysics Data System (ADS)

    Toy, V. G.; Mitchell, T. M.; Druiventak, A.

    2011-12-01

    The rate dependence of frictional processes in faults in quartzofeldspathic crust is proposed to change at c. 300°C, because above this temperature asperity deformation can be accommodated by crystal plastic processes. As a consequence, the real fault contact area increases and the fault velocity strengthens. Conversely, faults at lower temperatures are velocity weakening and therefore prone to earthquake slip. We have investigated whether dislocation processes are important around faults in quartzites on seismic timescales, by inducing fault slip on a saw cut surface in novaculite blocks. Deformation was carried out at 450°C and 600°C in a Griggs apparatus. Slip rates of 8.3 x 10-7s-1 allowed total slip, u, of 0.5mm to be achieved in c. 10 minutes. Failure occurred at peak differential stresses of ~1.7 GPa and 1.4 GPa respectively, followed by significant weakening. Structures of the novaculite within and surrounding the fault surface were examined using EBSD, FIB-SEM and TEM to elucidate changes to their dislocation substructure. In the sample deformed at 450°C, a ~50μm thick layer of amorphous / non-crystalline silica was developed on the saw-cut surface during deformation. Rare clasts of the wall rock are preserved within this material. The surrounding sample is mostly composed of equant quartz grains of 5-10μm diameter that lack a preferred orientation, contain very few intercrystalline dislocations, and are divided by organised high angle grain boundaries. After deformation, most quartz grains within the sample retain their starting microstructure. However, within ~10μm of the sliding surface, dislocations are more common, and these are arranged into elongated, tangled zones (subgrain boundaries?). Microfractures are also observed. These microstructures are characteristic of deformation accommodated by low temperature plasticity. Our preliminary observations suggest that dislocation processes may be able to accommodate some deformation around fault

  7. [Elbow dislocation].

    PubMed

    de Pablo Márquez, B; Castillón Bernal, P; Bernaus Johnson, M C; Ibañez Aparicio, N M

    2017-03-09

    Elbow dislocation is the most frequent dislocation in the upper limb after shoulder dislocation. Closed reduction is feasible in outpatient care when there is no associated fracture. A review is presented of the different reduction procedures.

  8. Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Bertin, Nicolas; Capolungo, Laurent

    2015-08-01

    Irradiation hardening in -iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops.

  9. Stress heterogeneities in anisotropic materials - their effect on dislocation fields and post-deformational recrystallization: Insights from combined experiments and numerical simulations of polycrystalline ice

    NASA Astrophysics Data System (ADS)

    Piazolo, S.; Montagnat, M.; Borthwick, V.; Evans, L.; Griera, A.; Grennerat, F.; Moulinec, H.; Wheeler, J.

    2014-12-01

    We present a coupled experimental and modeling approach to better understand the role of stress field heterogeneities on deformation and post-deformational behavior in material with a high viscoplastic anisotropy e.g. polycrystalline ice. We investigate: (1) Effect of stress heterogeneities on deformation behavior and microstructural development and, (2) effect of such microstructures on post-deformational recrystallization. (1) Full-field elasto-viscoplastic modelling (CraFT) is used to predict the local stress and strain field during transient creep in a polycrystalline ice sample. Modeling input includes the experimental starting microstructure and a validated slip system dependent flow law. EBSD measurements on selected areas are used to estimate the local dislocation field utilizing the Weighted Burgers Vector (WBV) analysis. Areas of local stress concentration correlate with triple junctions and grain boundaries, originating from strain incompatibilities between differently oriented grains. In these areas, the WBV analysis shows a non-negligible c-axis component that must be related to resolved shear stress in a prismatic plane, coherent with the predicted elevated stress levels. The resultant defect structure is necessary for the formation of the observed kink bands which have a well-defined crystallographic character, lattice distortions and subgrain development. (2) The microstructures arising from (1) significantly affect post-deformational behavior. Combined post-deformational annealing experiments and numerical simulations using the microdynamic modeling platform ELLE, allow prediction of the local microstructural evolution taking recovery within grains, grain boundary migration and nucleation into account. Results from this study, can explain several of the observed features in natural ice, and help to refine large scale models.

  10. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 104 sec-1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 1012 cm-2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energy cellular dislocation structure becomemore » largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  11. The Role of Twinning Deformation on the Hardening Response of Polycrystalline Magnesium from Discrete Dislocation Dynamics Simulations

    DTIC Science & Technology

    2015-01-01

    to the basal plane leading to predominant basal slip, as shown in Fig. 4(a), since the Schmid factor on these planes is maxi - mum. The low yield...slip is the hardest slip mode. It is also observed from Fig. 3 that regardless of the loading directions, all single crystals results exhibit weak ...In Section 3.1, the dislocation forest hardening effect for single crystals was observed to be weak (see Fig. 3). Furthermore, GBs do produce

  12. Supersonic Dislocation Bursts in Silicon

    DOE PAGES

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  13. Supersonic Dislocation Bursts in Silicon

    SciTech Connect

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  14. Interaction of a screw dislocation with a nano-sized, arbitrarily shaped inhomogeneity with interface stresses under anti-plane deformations.

    PubMed

    Wang, Xu; Schiavone, Peter

    2014-10-08

    We propose an elegant and concise general method for the solution of a problem involving the interaction of a screw dislocation and a nano-sized, arbitrarily shaped, elastic inhomogeneity in which the contribution of interface/surface elasticity is incorporated using a version of the Gurtin-Murdoch model. The analytic function inside the arbitrarily shaped inhomogeneity is represented in the form of a Faber series. The real periodic function arising from the contribution of the surface mechanics is then expanded as a Fourier series. The resulting system of linear algebraic equations is solved through the use of simple matrix algebra. When the elastic inhomogeneity represents a hole, our solution method simplifies considerably. Furthermore, we undertake an analytical investigation of the challenging problem of a screw dislocation interacting with two closely spaced nano-sized holes of arbitrary shape in the presence of surface stresses. Our solutions quite clearly demonstrate that the induced elastic fields and image force acting on the dislocation are indeed size-dependent.

  15. Hall Conductivity in the Cosmic Defect and Dislocation Spacetime

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Wang, Jian-Hua; Yang, Huan-Xiong; Fan, Hua-Wei

    2016-10-01

    Influences of topological defect and dislocation on conductivity behavior of charge carries in external electromagnetic fields are studied. Particularly the quantum Hall effect is investigated in detail. It is found that the nontrivial deformations of spacetime due to topological defect and dislocation produce an electric current at the leading order of perturbation theory. This current then induces a deformation on the Hall conductivity. The corrections on the Hall conductivity depend on the external electric fields, the size of the sample and the momentum of the particle.

  16. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  17. [Congenital knee dislocation: case report].

    PubMed

    Arvinius, C; Luque, R; Díaz-Ceacero, C; Marco, F

    2016-01-01

    Congenital knee dislocation is an infrequent condition with unknown etiology. In some cases it occurs as an isolated condition, while in others it coexists with associated conditions or syndromes. The treatment of congenital knee dislocation is driven by the severity and flexibility of the deformity. The literature includes from serial casting or the Pavlik harness to quadriceps tendon plasty or femoral osteotomies. We report herein the case of a congenital dislocation treated with serial casting with a good outcome.

  18. Photo-induced deformation of azobenzene polymers: theory and simulations

    NASA Astrophysics Data System (ADS)

    Saphiannikova, Marina; Toshchevikov, Vladimir; Ilnytskyi, Jaroslav; Heinrich, Gert

    2011-11-01

    A microscopic theory is developed to describe light-induced deformation of azobenzene polymers of different chemical structures: uncross-linked low-molecular-weight azobenzene polymers and cross-linked azobenzene polymers (azobenzene elastomers) bearing azobenzene chromophores in their strands. According to the microscopic theory the light-induced deformation is caused by reorientation of azobenzene chromophores with respect to the electric vector of the linearly polarized light, E. Theoretical calculations of the order parameter of short azobenzene molecules (oligomers) affected by the light show that the sign of the light-induced deformation (expansion / contraction along the vector E) depends strongly on the chemical structure of the oligomers. The conclusion of the theory about different signs of the light-induced deformation of low-molecular-weight azobenzene polymers is in an agreement with performed series of molecular dynamics simulations. Using the microscopic theory it is shown that cross-linked azobenzene polymers demonstrate the same light-induced deformation (expansion / contraction) as their low-molecular-weight analogues, i.e. polymers consisting of short azobenzene molecules whose chemical structure is the same as chain fragments of the elastomers.

  19. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper.

    PubMed

    Lu, N; Du, K; Lu, L; Ye, H Q

    2015-07-16

    Metals with a high density of nanometre-scale twins have demonstrated simultaneous high strength and good ductility, attributed to the interaction between lattice dislocations and twin boundaries. Maximum strength was observed at a critical twin lamella spacing (∼15 nm) by mechanical testing; hence, an explanation of how twin lamella spacing influences dislocation behaviours is desired. Here, we report a transition of dislocation nucleation from steps on the twin boundaries to twin boundary/grain boundary junctions at a critical twin lamella spacing (12-37 nm), observed with in situ transmission electron microscopy. The local stress concentrations vary significantly with twin lamella spacing, thus resulting in a critical twin lamella spacing (∼18 nm) for the transition of dislocation nucleation. This agrees quantitatively with the mechanical test. These results demonstrate that by quantitatively analysing local stress concentrations, a direct relationship can be resolved between the microscopic dislocation activities and macroscopic mechanical properties of nanotwinned metals.

  20. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    PubMed Central

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-01-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening. PMID:27435638

  1. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    NASA Astrophysics Data System (ADS)

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-07-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening.

  2. Role of plastic deformation in shock-induced phase transitions

    NASA Astrophysics Data System (ADS)

    Ghimire, Punam; Germann, T. C.; Ravelo, R.

    2015-06-01

    Non-equilibrium molecular dynamics (NEMD) simulations of shock-wave propagation in fcc single crystals exhibit high elastic limits and large anisotropies in the yield strength. They can be used to explore the role of plastic deformation in the morphology and kinetics of solid-solid phase transformations. We report on large-scale atomistic simulations of defect-mediated phase transformations under shock and quasi-isentropic compression (QIC). An analytical embedded atom method (EAM) description is used to model a fcc-bcc phase transition (PT) boundary fitted to occur below or above the elastic-plastic threshold in order to model systems undergoing a PT with and without plasticity. For cases where plastic deformation precedes the phase transformation, the defect-mediated PT proceeds at faster rates than the defect-free ones. The bcc fraction growth rate can be correlated with a sharp decrease in the dislocation densities originally present in the parent phase. This work was supported by the Air Force Office of Scientific Research under AFOSR Award FA9550-12-1-0476. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396.

  3. Defect-induced incompatability of elastic strains: dislocations within the Landau theory of martensitic phase transformations

    SciTech Connect

    Groger, Roman1; Lockman, Turab; Saxena, Avadh

    2008-01-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  4. Defect-induced incompatibility of elastic strains: Dislocations within the Landau theory of martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Gröger, R.; Lookman, T.; Saxena, A.

    2008-11-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  5. Dislocation-Based Si-Nanodevices

    NASA Astrophysics Data System (ADS)

    Reiche, Manfred; Kittler, Martin; Buca, Dan; Hähnel, Angelika; Zhao, Qing-Tai; Mantl, Siegfried; Gösele, Ulrich

    2010-04-01

    The realization of defined dislocation networks by hydrophobic wafer bonding allows the electrical characterization of individual dislocations. The present paper investigates the properties of such dislocations in samples containing high dislocations densities down to only six dislocations. The current induced by a single dislocation is determined by extrapolation of the current measured for various dislocation densities. Based on our present and previously reported analyses the electronic properties of individual dislocations can be inferred. The investigations show that dislocations in the channel of metal-oxide-semiconductor field-effect transistors (MOSFETs) result in increasing drain currents even at low drain and gate voltages. Because a maximum increase of the current is obtained if a single dislocation is present in the channel, arrays of MOSFETs each containing only one dislocation could be realized on the nanometer scale. The distance of the dislocations can be well controlled by wafer bonding techniques.

  6. Dislocation Decorrelation and Relationship to Deformation Microtwins during Creep of a Gamma’ Precipitate Strengthened Ni-based Superalloy

    DTIC Science & Technology

    2011-11-01

    Deformation is highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i...highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i matrix-type...phase at different thicknesses. 7328 R.R. Unocic et al. / Acta Materialia 59 (2011) 7325–7339 the image. A number of carbide and/or boride phases are

  7. Using surface deformation to infer reservoir dilation induced by injection

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Asanga Sanjeewee

    Reservoir dilations occur due to variety of subsurface injection operations including waste disposal, waterflooding, steam injection, CO 2 sequestration and aquifer storage recovery. These reservoir dilations propagate to the surrounding formations and extend up to the ground surface resulting in surface deformations. The surface deformations can be measured by using various technologies such as tiltmeters and interferometric synthetic aperture radar (InSAR) and they can be inverted to infer reservoir dilations by solving an ill-posed inverse problem. This concept forms the basis of the research work presented in this thesis. Initially, the characteristics of the surface and subsurface deformations (induced by the injection operations) and correlations between them were investigated in detail by applying both analytical (based on center of dilatation approach) and numerical methods (fully coupled finite element method). Then, a simple set of guidelines to obtain quick estimates for the surface heave characteristics were proposed. The guidelines are in the form of simple analytical equations or charts and thereby they could be very useful in obtaining preliminary assessment for the surface deformation characteristics induced by the subsurface injection operations. Next, the mathematical aspects of the inverse problem were discussed in detail and the factors affecting the accuracy of the inverse solution were investigated through an extensive parametric study including both two-dimensional and three-dimensional problems. Then, a method was developed to infer reservoir dilation (with high accuracy and high spatial resolution) using a limited number of surface deformation measurements. The proposed method was applied to infer the reservoir dilation induced by a waste disposal operation conducted at Frog Lake, Alberta and the practical issues pertaining to the proposed method were discussed. Finally, guidelines for tiltmeter array design were proposed and

  8. Elastic image registration via rigid object motion induced deformation

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaofen; Udupa, Jayaram K.; Hirsch, Bruce E.

    2011-03-01

    In this paper, we estimate the deformations induced on soft tissues by the rigid independent movements of hard objects and create an admixture of rigid and elastic adaptive image registration transformations. By automatically segmenting and independently estimating the movement of rigid objects in 3D images, we can maintain rigidity in bones and hard tissues while appropriately deforming soft tissues. We tested our algorithms on 20 pairs of 3D MRI datasets pertaining to a kinematic study of the flexibility of the ankle complex of normal feet as well as ankles affected by abnormalities in foot architecture and ligament injuries. The results show that elastic image registration via rigid object-induced deformation outperforms purely rigid and purely nonrigid approaches.

  9. Dislocation interactions with characteristic interfaces in AgCu eutectic

    NASA Astrophysics Data System (ADS)

    Eftink, Benjamin P.

    In the AgCu eutectic alloy, the observation of deformation twinning in Cu proposed to be induced by direct transmission of deformation twinning partial dislocations in Ag highlights the question of how interfaces in bi-phase materials respond to deformation. AgCu eutectic alloy was produced by both directional solidification and cast water-quenching. Control over processing variables enabled the synthesis of Ag/Cu eutectic with three predominant interface types: ones with a cube-on-cube orientation relationship with {111} Ag||{111}Cu interface habit planes, twin orientation relationship with {111}Ag||{111}Cu interface habit planes, and twin orientation relationship with near {313}Ag||{ 112}Cu interface habit planes. How dislocations interacted with each of the interfaces was determined using in situ and ex situ TEM straining experiments. It was determined that how strain transfers across Ag/Cu interfaces is consistent with criteria of strain transfer across grain boundaries in single phase materials. Specifically, the magnitude of the Burgers vector of the residual dislocation, |bres |, left in the interface should be small. This criterion was determining enough to drive Cu to twin under conditions where otherwise it would not. When transmission of a dislocation would result in a high |bres|, which is common for most slip systems encountering an incoherent twin interface, the interfaces were observed to block the dislocations. It was found that the increased effectiveness of the incoherent twin interfaces to block dislocations compared to the cube-on-cube interfaces resulted in an increased in the yield strength of the material. Interfaces with the cube-on-cube orientation relationship and mutual {111} interface plane between Ag and Cu results in transfer of twinning defects from Ag into Cu. This was found at length scales in the tens of nano-meters to the micron range. Twinning in both phases was observed after both split-Hopkinson pressure bar ex situ straining

  10. Freezing-induced deformation of biomaterials in cryomedicine

    NASA Astrophysics Data System (ADS)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water

  11. Balancing induced seismicity and permeability creation through aseismic deformation

    NASA Astrophysics Data System (ADS)

    Schoenball, M.; Kohl, T.

    2014-12-01

    The mitigation of induced seismicity is a challenge for a sustained production of unconventional hydrocarbons involving waste water disposal and of geothermal power production where large volumes of fluid are circulated in the subsurface. Large pore pressure perturbations localize where fluid flow is limited by the pre-existing joint set. It drives deformation that - if it occurs in brittle mode - manifests as seismicity leading to dilation of the reactivated fracture network. Therefore, induced seismicity is a process which is accompanied by permeability creation. In many geothermal systems, seismicity is deliberately induced to enhance the reservoir. Experience collected at the EGS at Soultz-sous-Forêts, France has revealed evidence for a large proportion of the induced deformation to be aseismic. Indicators are temporally resolved velocity changes, changes of the stress tensor resolved from inversion of focal mechanisms and direct observation of large slip at wellbores. Furthermore, seismic multiplets, i.e. repeated slippage of asperities with considerable slip accumulation, have been observed not only in Soultz-sous-Forêts but also at other similar systems like in Basel, Switzerland and Landau, Germany. Displacement in the order of up to 0.1 m has been inferred from these observations, which is about one order of magnitude larger than what was observed seismically. To explain this discrepancy we propose a conceptual model of creep-dominated aseismic deformation that is promoted through elevated pore pressures. While few asperities of the pre-existing fracture network experience repeated brittle deformation evidenced as multiple seismic events, the majority of the fault surface is in a subcritical creeping stage. Elevated pore pressure brings them closer to the failure criterion which can enhance the ductile deformation by several orders of magnitude. Relaxation leads to large-scale deformation accompanied by a strong reduction of differential stresses.

  12. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  13. Dislocation multi-junctions and strain hardening.

    PubMed

    Bulatov, Vasily V; Hsiung, Luke L; Tang, Meijie; Arsenlis, Athanasios; Bartelt, Maria C; Cai, Wei; Florando, Jeff N; Hiratani, Masato; Rhee, Moon; Hommes, Gregg; Pierce, Tim G; de la Rubia, Tomas Diaz

    2006-04-27

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.

  14. Deformation-induced dehydration structures in the Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Famin, V.; Byrne, T.; Lewis, J. C.; Kanagawa, K.; Behrmann, J.; Iodp 314/315/316 Scientists, E.

    2008-12-01

    This study investigates the chemical changes caused by deformation in the hanging wall of a major, probably seismogenic thrust fault in the Kumano forearc basin, Nankai Trough. In cores from IODP Expedition 315 (site C0001), the clay sediments display numerous deformation structures including tilted beddings, decimeter scale faults and shear zones with normal or thrust offsets, and clusters of parallel curviplanar veins interpreted as earthquake-induced dewatering structures. Curviplanar veins are often observed to merge into small oblique shear zones with millimeter offsets, or to branch on larger shear zones with a ~30° angle. This suggests that some shear zones may form by the coalescence of veins. Curviplanar veins and shear zones appear darker than the surrounding clay at the macroscopic observation scale, and brighter and therefore denser under CT-scan imaging. At the micro-scale, clay has a preferred crystallographic orientation in the deformation structures and no preferred orientation outside. Electron probe micro-analysis reveals that the dark material has a higher sum of major elements (65-80 wt%), i.e. a lower volatile content (assumed to be mostly water) than the host sediment (50-60 wt%). All the major elements are equally enriched in proportion to the volatile depletion. Mass balance calculation indicates that a 20-30 wt% water loss is required to account for chemical change in the deformation microstructures. The water loss may be due to clay dehydration or to pore collapse. Shear zones are equally dehydrated as the curviplanar veins from the mass balance standpoint. In 1 m3 of sediment, a deformed volume of 1 % should produce about 6.2 L of water. Given the low permeability of the sediment, dehydration may increase the pore pressure and enhance further deformation. Deformation localization would be self-sustained by fluid overpressure, suggesting that dewatering veins may evolve into larger deformation structures after an earthquake.

  15. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  16. RNGCHN: a program to calculate displacement components from dislocations in an elastic half-space with applications for modeling geodetic measurements of crustal deformation

    NASA Astrophysics Data System (ADS)

    Feigl, Kurt L.; Dupré, Emmeline

    1999-07-01

    The RNGCHN program calculates a single component of the displacement field due to a finite or point-source dislocation buried in an elastic half space. This formulation approximates the surface movements produced by earthquake faulting or volcanic intrusion. As such, it is appropriate for modeling crustal deformation measured by geodetic surveying techniques, such as spirit leveling, trilateration, Very Long Baseline Interferometry (VLBI), Global Positioning System (GPS), or especially interferometric analysis of synthetic aperture radar (SAR) images. Examples suggest that this model can fit simple coseismic earthquake signatures to within their measurement uncertainties. The program's input parameters include fault position, depth, length, width, strike, dip, and three components of slip. The output consists of displacement components in the form of an ASCII list or a rectangular array of binary integers. The same program also provides partial derivatives of the displacement component with respect to all 10 input parameters. The FORTRAN source code for the program is in the public domain and available as the compressed tar file rngchn.tar.Z in the directory/pub/GRGS via the Internet by anonymous ftp to spike.cst. cnes.fr. This distribution includes worked examples and a MATLAB interface.

  17. Theory of magnetoresistance due to lattice dislocations in face-centred cubic metals

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2016-06-01

    A theoretical model to describe the low temperature magneto-resistivity of high purity copper single and polycrystals containing different density and distribution of dislocations has been developed. In the model, magnetoresistivity tensor is evaluated numerically using the effective medium approximation. The anisotropy of dislocation-induced relaxation time is considered by incorporating two independent energy bands with different relaxation times and the spherical and cylindrical Fermi surfaces representing open, extended and closed electron orbits. The effect of dislocation microstructure is introduced by means of two adjustable parameters corresponding to the length and direction of electron orbits in the momentum space, which permits prediction of magnetoresistance of FCC metals containing different density and distribution of dislocations. The results reveal that dislocation microstructure influences the character of the field-dependent magnetoresistivity. In the orientation of the open orbits, the quadratic variation in magnetoresistivity changes to quasi-linear as the density of dislocations increases. In the closed orbit orientation, dislocations delay the onset of magnetoresistivity saturation. The results indicate that in the open orbit orientations of the crystals, the anisotropic relaxation time due to small-angle dislocation scattering induces the upward deviation from Kohler's rule. In the closed orbit orientations Kohler's rule holds, independent of the density of dislocations. The results obtained with the model show good agreement with the experimental measurements of transverse magnetoresistivity in deformed single and polycrystal samples of copper at 2 K.

  18. Adsorbate-induced lattice deformation in IRMOF-74 series

    NASA Astrophysics Data System (ADS)

    Jawahery, Sudi; Simon, Cory M.; Braun, Efrem; Witman, Matthew; Tiana, Davide; Vlaisavljevich, Bess; Smit, Berend

    2017-01-01

    IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar to the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.

  19. Understanding Gas-Induced Structural Deformation of ZIF-8.

    PubMed

    Ania, Conchi O; García-Pérez, E; Haro, M; Gutiérrez-Sevillano, J J; Valdés-Solís, T; Parra, J B; Calero, S

    2012-05-03

    ZIF-8 is a zeolitic imidazolate framework with very good thermal and chemical stability that opens up many applications that are not feasible by other metal-organic frameowrks (MOFs) and zeolites. Several works report the adsorption properties of ZIF-8 for strategic gases. However, despite the vast experimental corpus of data reported, there seems yet to be a dearth in the understanding of the gas adsorption properties. In this work we provide insights at a molecular level on the mechanisms governing the ZIF-8 structural deformation during molecular adsorption. We demonstrate that the ZIF-8 structural deformation during the adsorption of different molecules at cryogenic temperature goes beyond the gas-induced rotation of the imidazolate linkers. We combine experimental and simulation studies to demonstrate that this deformation is governed by the polarizability and molecular size and shape of the gases, and that the stepped adsorption behavior is defined by the packing arrangement of the guest inside the host.

  20. Strain-Induced Deformation in Magnesia-Alumina Layered Composites

    SciTech Connect

    Kim, Chang Soo; Lombardo, Stephen J; Winholtz, Robert A

    2008-06-18

    Ceramic beams are induced in situ to form complex shapes at elevated temperature without the application of an external stress. This process has been demonstrated for thin alumina substrates coated with a layer of magnesia. The internal strain causing the substrates to deform at elevated temperature arises as a consequence of strain mismatch accompanying the penetration of the coating into the substrate. The magnitude of the deformation depends on the amount of coating applied, on the thickness of the substrate, on the density of the substrate, and on the temperature. During exposure of the beams to elevated temperature, the magnesia coating reacts with the alumina substrate to form the spinel phase; the resulting volume change accompanying the phase transformation is likely the predominant driving force for deformation.

  1. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    NASA Astrophysics Data System (ADS)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  2. Adsorbate-induced lattice deformation in IRMOF-74 series.

    PubMed

    Jawahery, Sudi; Simon, Cory M; Braun, Efrem; Witman, Matthew; Tiana, Davide; Vlaisavljevich, Bess; Smit, Berend

    2017-01-09

    IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar to the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.

  3. Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; van Riessen, Arie; Saxey, David W.; Johnson, Tim E.; Rickard, William D. A.; Fougerouse, Denis; Fischer, Sebastian; Prosa, Ty J.; Rice, Katherine P.; Reinhard, David A.; Chen, Yimeng; Olson, David

    2016-12-01

    The widespread use of zircon in geochemical and geochronological studies of crustal rocks is underpinned by an understanding of the processes that may modify its composition. Deformation during tectonic and impact related strain is known to modify zircon trace element compositions, but the mechanisms by which this occurs remain unresolved. Here we combine electron backscatter diffraction, transmission Kikuchi diffraction and atom probe microscopy to investigate trace element migration associated with a ∼20 nm wide, 2° low-angle subgrain boundary formed in zircon during a single, high-strain rate, deformation associated with a bolide impact. The low-angle boundary shows elevated concentrations of both substitutional (Y) and interstitial (Al, Mg and Be) ions. The observed compositional variations reflect a dynamic process associated with the recovery of shock-induced vacancies and dislocations into lower energy low-angle boundaries. Y segregation is linked to the migration and localisation of oxygen vacancies, whilst the interstitial ions migrate in association with dislocations. These data represent the direct nanoscale observation of geologically-instantaneous, trace element migration associated with crystal plasticity of zircon and provide a framework for further understanding mass transfer processes in zircon.

  4. Adsorption-induced deformation of nanoporous materials—A review

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Huber, Patrick; Bernstein, Noam

    2017-03-01

    When a solid surface accommodates guest molecules, they induce noticeable stresses to the surface and cause its strain. Nanoporous materials have high surface area and, therefore, are very sensitive to this effect called adsorption-induced deformation. In recent years, there has been significant progress in both experimental and theoretical studies of this phenomenon, driven by the development of new materials as well as advanced experimental and modeling techniques. Also, adsorption-induced deformation has been found to manifest in numerous natural and engineering processes, e.g., drying of concrete, water-actuated movement of non-living plant tissues, change of permeation of zeolite membranes, swelling of coal and shale, etc. In this review, we summarize the most recent experimental and theoretical findings on adsorption-induced deformation and present the state-of-the-art picture of thermodynamic and mechanical aspects of this phenomenon. We also reflect on the existing challenges related both to the fundamental understanding of this phenomenon and to selected applications, e.g., in sensing and actuation, and in natural gas recovery and geological CO2 sequestration.

  5. Nonlinear resonance-assisted tunneling induced by microcavity deformation

    PubMed Central

    Kwak, Hojeong; Shin, Younghoon; Moon, Songky; Lee, Sang-Bum; Yang, Juhee; An, Kyungwon

    2015-01-01

    Noncircular two-dimensional microcavities support directional output and strong confinement of light, making them suitable for various photonics applications. It is now of primary interest to control the interactions among the cavity modes since novel functionality and enhanced light-matter coupling can be realized through intermode interactions. However, the interaction Hamiltonian induced by cavity deformation is basically unknown, limiting practical utilization of intermode interactions. Here we present the first experimental observation of resonance-assisted tunneling in a deformed two-dimensional microcavity. It is this tunneling mechanism that induces strong inter-mode interactions in mixed phase space as their strength can be directly obtained from a separatrix area in the phase space of intracavity ray dynamics. A selection rule for strong interactions is also found in terms of angular quantum numbers. Our findings, applicable to other physical systems in mixed phase space, make the interaction control more accessible. PMID:25759322

  6. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics

    DOE PAGES

    Chen, Zhiwei; Ge, Binghui; Li, Wen; ...

    2017-01-04

    To minimize the lattice thermal conductivity in thermoelectrics, strategies typically focus on the scattering of low-frequency phonons by interfaces and high-frequency phonons by point defects. In addition, scattering of mid-frequency phonons by dense dislocations, localized at the grain boundaries, has been shown to reduce the lattice thermal conductivity and improve the thermoelectric performance. Here we propose a vacancy engineering strategy to create dense dislocations in the grains. In Pb1$-$xSb2x/3Se solid solutions, cation vacancies are intentionally introduced, where after thermal annealing the vacancies can annihilate through a number of mechanisms creating the desired dislocations homogeneously distributed within the grains. This leadsmore » to a lattice thermal conductivity as low as 0.4Wm-1 K-1 and a high thermoelectric figure of merit, which can be explained by a dislocation scattering model. As a result, the vacancy engineering strategy used here should be equally applicable for solid solution thermoelectrics and provides a strategy for improving zT.« less

  7. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Ge, Binghui; Li, Wen; Lin, Siqi; Shen, Jiawen; Chang, Yunjie; Hanus, Riley; Snyder, G. Jeffrey; Pei, Yanzhong

    2017-01-01

    To minimize the lattice thermal conductivity in thermoelectrics, strategies typically focus on the scattering of low-frequency phonons by interfaces and high-frequency phonons by point defects. In addition, scattering of mid-frequency phonons by dense dislocations, localized at the grain boundaries, has been shown to reduce the lattice thermal conductivity and improve the thermoelectric performance. Here we propose a vacancy engineering strategy to create dense dislocations in the grains. In Pb1-xSb2x/3Se solid solutions, cation vacancies are intentionally introduced, where after thermal annealing the vacancies can annihilate through a number of mechanisms creating the desired dislocations homogeneously distributed within the grains. This leads to a lattice thermal conductivity as low as 0.4 Wm-1 K-1 and a high thermoelectric figure of merit, which can be explained by a dislocation scattering model. The vacancy engineering strategy used here should be equally applicable for solid solution thermoelectrics and provides a strategy for improving zT.

  8. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics

    PubMed Central

    Chen, Zhiwei; Ge, Binghui; Li, Wen; Lin, Siqi; Shen, Jiawen; Chang, Yunjie; Hanus, Riley; Snyder, G. Jeffrey; Pei, Yanzhong

    2017-01-01

    To minimize the lattice thermal conductivity in thermoelectrics, strategies typically focus on the scattering of low-frequency phonons by interfaces and high-frequency phonons by point defects. In addition, scattering of mid-frequency phonons by dense dislocations, localized at the grain boundaries, has been shown to reduce the lattice thermal conductivity and improve the thermoelectric performance. Here we propose a vacancy engineering strategy to create dense dislocations in the grains. In Pb1−xSb2x/3Se solid solutions, cation vacancies are intentionally introduced, where after thermal annealing the vacancies can annihilate through a number of mechanisms creating the desired dislocations homogeneously distributed within the grains. This leads to a lattice thermal conductivity as low as 0.4 Wm−1 K−1 and a high thermoelectric figure of merit, which can be explained by a dislocation scattering model. The vacancy engineering strategy used here should be equally applicable for solid solution thermoelectrics and provides a strategy for improving zT. PMID:28051063

  9. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics.

    PubMed

    Chen, Zhiwei; Ge, Binghui; Li, Wen; Lin, Siqi; Shen, Jiawen; Chang, Yunjie; Hanus, Riley; Snyder, G Jeffrey; Pei, Yanzhong

    2017-01-04

    To minimize the lattice thermal conductivity in thermoelectrics, strategies typically focus on the scattering of low-frequency phonons by interfaces and high-frequency phonons by point defects. In addition, scattering of mid-frequency phonons by dense dislocations, localized at the grain boundaries, has been shown to reduce the lattice thermal conductivity and improve the thermoelectric performance. Here we propose a vacancy engineering strategy to create dense dislocations in the grains. In Pb1-xSb2x/3Se solid solutions, cation vacancies are intentionally introduced, where after thermal annealing the vacancies can annihilate through a number of mechanisms creating the desired dislocations homogeneously distributed within the grains. This leads to a lattice thermal conductivity as low as 0.4 Wm(-1) K(-1) and a high thermoelectric figure of merit, which can be explained by a dislocation scattering model. The vacancy engineering strategy used here should be equally applicable for solid solution thermoelectrics and provides a strategy for improving zT.

  10. Atomic-scale configurations of synchroshear-induced deformation twins in the ionic MnS crystal

    PubMed Central

    Zhou, Y. T.; Xue, Y. B.; Chen, D.; Wang, Y. J.; Zhang, B.; Ma, X. L.

    2014-01-01

    Deformation twinning was thought as impossible in ionic compounds with rock-salt structure due to the charge effect on {111} planes. Here we report the presence and formation mechanism of deformation {111} twins in the rock-salt manganese sulphide (MnS) inclusions embedded in a hot-rolled stainless steel. Based on the atomic-scale mapping under aberration-corrected scanning transmission electron microscopy, a dislocation-based mechanism involved two synchronized shear on adjacent atomic layers is proposed to describe the dislocation glide and consequently twinning formation. First-principles calculations of the energy barriers for twinning formation in MnS and comparing with that of PbS and MgO indicate the distinct dislocation glide scheme and deformation behaviors for the rock-salt compounds with different ionicities. This study may improve our understanding of the deformation mechanisms of rock-salt crystals and other ionic compounds. PMID:24874022

  11. Atomic-scale configurations of synchroshear-induced deformation twins in the ionic MnS crystal.

    PubMed

    Zhou, Y T; Xue, Y B; Chen, D; Wang, Y J; Zhang, B; Ma, X L

    2014-05-30

    Deformation twinning was thought as impossible in ionic compounds with rock-salt structure due to the charge effect on {111} planes. Here we report the presence and formation mechanism of deformation {111} twins in the rock-salt manganese sulphide (MnS) inclusions embedded in a hot-rolled stainless steel. Based on the atomic-scale mapping under aberration-corrected scanning transmission electron microscopy, a dislocation-based mechanism involved two synchronized shear on adjacent atomic layers is proposed to describe the dislocation glide and consequently twinning formation. First-principles calculations of the energy barriers for twinning formation in MnS and comparing with that of PbS and MgO indicate the distinct dislocation glide scheme and deformation behaviors for the rock-salt compounds with different ionicities. This study may improve our understanding of the deformation mechanisms of rock-salt crystals and other ionic compounds.

  12. Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals.

    PubMed

    Sarkar, Rohit; Rentenberger, Christian; Rajagopalan, Jagannathan

    2015-11-10

    A critical assumption underlying in situ transmission electron microscopy studies is that the electron beam (e-beam) exposure does not fundamentally alter the intrinsic deformation behavior of the materials being probed. Here, we show that e-beam exposure causes increased dislocation activation and marked stress relaxation in aluminum and gold films spanning a range of thicknesses (80-400 nanometers) and grain sizes (50-220 nanometers). Furthermore, the e-beam induces anomalous sample necking, which unusually depends more on the e-beam diameter than intensity. Notably, the stress relaxation in both aluminum and gold occurs at beam energies well below their damage thresholds. More remarkably, the stress relaxation and/or sample necking is significantly more pronounced at lower accelerating voltages (120 kV versus 200 kV) in both the metals. These observations in aluminum and gold, two metals with highly dissimilar atomic weights and properties, indicate that e-beam exposure can cause anomalous behavior in a broad spectrum of nanostructured materials, and simultaneously suggest a strategy to minimize such artifacts.

  13. Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals

    PubMed Central

    Sarkar, Rohit; Rentenberger, Christian; Rajagopalan, Jagannathan

    2015-01-01

    A critical assumption underlying in situ transmission electron microscopy studies is that the electron beam (e-beam) exposure does not fundamentally alter the intrinsic deformation behavior of the materials being probed. Here, we show that e-beam exposure causes increased dislocation activation and marked stress relaxation in aluminum and gold films spanning a range of thicknesses (80–400 nanometers) and grain sizes (50–220 nanometers). Furthermore, the e-beam induces anomalous sample necking, which unusually depends more on the e-beam diameter than intensity. Notably, the stress relaxation in both aluminum and gold occurs at beam energies well below their damage thresholds. More remarkably, the stress relaxation and/or sample necking is significantly more pronounced at lower accelerating voltages (120 kV versus 200 kV) in both the metals. These observations in aluminum and gold, two metals with highly dissimilar atomic weights and properties, indicate that e-beam exposure can cause anomalous behavior in a broad spectrum of nanostructured materials, and simultaneously suggest a strategy to minimize such artifacts. PMID:26552934

  14. Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction

    SciTech Connect

    Dragomir, I.C. . E-mail: iuliana.cernatescu@mse.gatech.edu; Li, D.S.; Castello-Branco, G.A.; Garmestani, H.; Snyder, R.L.; Ribarik, G.; Ungar, T.

    2005-07-15

    X-ray Peak Profile Analysis was employed to determine the evolution dislocation density and dislocations type in hot rolled commercially pure titanium specimens. It was found that dislocation type is dominating the deformation mechanism at all rolling reduction levels studied here. A good agreement was found between the texture evolution and changes in dislocation slip system activity during the deformation process.

  15. The computation of induced drag with nonplanar and deformed wakes

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Smith, Stephen

    1991-01-01

    The classical calculation of inviscid drag, based on far field flow properties, is reexamined with particular attention to the nonlinear effects of wake roll-up. Based on a detailed look at nonlinear, inviscid flow theory, it is concluded that many of the classical, linear results are more general than might have been expected. Departures from the linear theory are identified and design implications are discussed. Results include the following: Wake deformation has little effect on the induced drag of a single element wing, but introduces first order corrections to the induced drag of a multi-element lifting system. Far field Trefftz-plane analysis may be used to estimate the induced drag of lifting systems, even when wake roll-up is considered, but numerical difficulties arise. The implications of several other approximations made in lifting line theory are evaluated by comparison with more refined analyses.

  16. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography

    PubMed Central

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M.

    2016-01-01

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal–plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials. PMID:26868040

  17. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography.

    PubMed

    Piazolo, Sandra; La Fontaine, Alexandre; Trimby, Patrick; Harley, Simon; Yang, Limei; Armstrong, Richard; Cairney, Julie M

    2016-02-12

    Trace elements diffuse negligible distances through the pristine crystal lattice in minerals: this is a fundamental assumption when using them to decipher geological processes. For example, the reliable use of the mineral zircon (ZrSiO4) as a U-Th-Pb geochronometer and trace element monitor requires minimal radiogenic isotope and trace element mobility. Here, using atom probe tomography, we document the effects of crystal-plastic deformation on atomic-scale elemental distributions in zircon revealing sub-micrometre-scale mechanisms of trace element mobility. Dislocations that move through the lattice accumulate U and other trace elements. Pipe diffusion along dislocation arrays connected to a chemical or structural sink results in continuous removal of selected elements (for example, Pb), even after deformation has ceased. However, in disconnected dislocations, trace elements remain locked. Our findings have important implications for the use of zircon as a geochronometer, and highlight the importance of deformation on trace element redistribution in minerals and engineering materials.

  18. Adsorbate-induced lattice deformation in IRMOF-74 series

    PubMed Central

    Jawahery, Sudi; Simon, Cory M.; Braun, Efrem; Witman, Matthew; Tiana, Davide; Vlaisavljevich, Bess; Smit, Berend

    2017-01-01

    IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar to the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series. PMID:28067222

  19. Thermally induced stresses and deformations in layered composite tubes

    NASA Technical Reports Server (NTRS)

    Cooper, D. E.; Cohen, D.; Rousseau, C. Q.; Hyer, M. W.; Tompkins, S. S.

    1985-01-01

    The thermally induced stresses and deformations in layered, orthotropic tubes are studied. The motivation for studying tubes is their likely application for use in space structures. Tubes are a strong candidate for this application because of their high structural efficiency, as measured by stiffness per unit weight, and their relative ease of fabrication. Also, tubes have no free edges to deteriorate or delaminate. An anticipated thermal condition for tubes in space is a circumferential temperature gradient. This type of gradient will introduce dimensional changes into the structure and may cause stresses large enough to cause damage to the material. There are potentially large differences in temperatures at different circumferential locations on the tube. Because of this, the effects of temperature dependent material properties on the stresses and deformations may be important. The study is composed of three parts: experiments to determine the functional form of the circumferential gradient and to measure tube deflections; an elasticity solution to compute the stresses and deformations; and an approximate approach to determine the effects of temperature dependent material properties.

  20. Deformation of Surface Nanobubbles Induced by Substrate Hydrophobicity.

    PubMed

    Wei, Jiachen; Zhang, Xianren; Song, Fan

    2016-12-13

    Recent experimental measurements have shown that there exists a population of nanobubbles with different curvature radii, whereas both computer simulations and theoretical analysis indicated that the curvature radii of different nanobubbles should be the same at a given supersaturation. To resolve such inconsistency, we perform molecular dynamics simulations on surface nanobubbles that are stabilized by heterogeneous substrates either in the geometrical heterogeneity model (GHM) or in the chemical heterogeneity model (CHM) and propose that the inconsistency could be ascribed to the substrate-induced nanobubble deformation. We find that, as expected from theory and computer simulation, for either the GHM or the CHM, there exists a universal upper limit of contact angle for the nanobubbles, which is determined by the degree of supersaturation alone. By analyzing the evolution of the shape of nanobubbles as a function of substrate hydrophobicity that is controlled here by the liquid-solid interaction, two different origins of nanobubble deformation are identified. For substrates in the GHM, where the contact line is pinned by surface roughness, variation in the liquid-solid interaction changes only the location of the contact line and the measured contact angle, without causing a change in the nanobubble curvature. For substrates in the CHM, however, the liquid-solid interaction exerted by the bottom substrate can deform the vapor-liquid interface, resulting in variations in both the curvature of the vapor-liquid interface and the contact angle.

  1. Adsorbate-induced lattice deformation in IRMOF-74 series

    DOE PAGES

    Jawahery, Sudi; Simon, Cory M.; Braun, Efrem; ...

    2017-01-09

    Here, IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar tomore » the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.« less

  2. Effect of pre-strain on mechanical properties and deformation induced transformation of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Zulfi, Fahri R.; Korda, Akhmad A.

    2016-08-01

    Effect of pre-strain on mechanical properties and deformation induced phase transformation of 304 stainless steel under tensile deformation has been studied. Pre-strain with the variation percentage of deformation was applied to the tensile test specimens. Tensile and hardness testing were carried out after pre-strain to study the mechanical properties change. Deformation induced phase transformation was investigated by using X-ray diffraction and optical microscope. XRD study indicates that metastable austenite transforms to martensite due to deformation. The martensite volume fraction increases with the increase in percentage of deformation. The increase in strength and hardness were associated with an increase in the volume fraction of martensite.

  3. Measurement of high viscosity with laser induced surface deformation technique

    SciTech Connect

    Yoshitake, Y.; Mitani, S.; Sakai, K.; Takagi, K.

    2005-01-15

    A technique for viscosity measurement was developed based on the principle of laser-induced surface deformation. Light incident into liquids increases its momentum due to the difference in refractive index and gives the surface an upward force as a reaction. The plane surface thus swells up and deforms, and the shape is determined so that the force is balanced with the surface tension and the gravity. On sudden laser irradiation, the deformation inevitably accompanies a viscous flow and exhibits a relaxational behavior with a delay time, which gives the viscosity. Theoretical prediction of the step-response function was given that takes surface tension waves excited by the laser into consideration. Nd-yttritium-aluminum-garnet laser with 0.6 W output was focused to {approx}200 {mu}m beam waist and used for the pumping. The deformation process was observed sensitively with another probe laser illuminating the activated area. This system was tested with the standard liquids for viscosity ranging from 1 to 10{sup 6} cSt. The results demonstrated the validity of this technique, though a correction for the inertia effect was needed in the range lower than 10 cSt. Further, effect of the thermal expansion by a slight optical absorption was discussed. This technique is especially useful at high viscosities since the measurement takes only a few seconds even in the specimen with 10{sup 6} cSt. Besides the rapidity, it has a great advantage of a noncontact feature and is appropriate for measuring the liquids that strongly dislike contamination. It has also potential applications in industries, measurement of liquids isolated in a production line, for instance.

  4. Transient luminescence induced by electrical refilling of charge carrier traps of dislocation network at hydrophilically bonded Si wafers interface

    SciTech Connect

    Bondarenko, Anton; Vyvenko, Oleg

    2014-02-21

    Dislocation network (DN) at hydrophilically bonded Si wafers interface is placed in space charge region (SCR) of a Schottky diode at a depth of about 150 nm from Schottky electrode for simultaneous investigation of its electrical and luminescent properties. Our recently proposed pulsed traps refilling enhanced luminescence (Pulsed-TREL) technique based on the effect of transient luminescence induced by refilling of charge carrier traps with electrical pulses is further developed and used as a tool to establish DN energy levels responsible for D1 band of dislocation-related luminescence in Si (DRL). In present work we do theoretical analysis and simulation of traps refilling kinetics dependence on refilling pulse magnitude (Vp) in two levels model: shallow and deep. The influence of initial charge state of deep level on shallow level occupation-Vp dependence is discussed. Characteristic features predicted by simulations are used for Pulsed-TREL experimental results interpretation. We conclude that only shallow (∼0.1 eV from conduction and valence band) energetic levels in the band gap participate in D1 DRL.

  5. Development of regional liquefaction-induced deformation hazard maps

    USGS Publications Warehouse

    Rosinski, A.; Knudsen, K.-L.; Wu, J.; Seed, R.B.; Real, C.R.; ,

    2004-01-01

    This paper describes part of a project to assess the feasibility of producing regional (1:24,000-scale) liquefaction hazard maps that are based-on potential liquefaction-induced deformation. The study area is the central Santa Clara Valley, at the south end of San Francisco Bay in Central California. The information collected and used includes: a) detailed Quaternary geological mapping, b) over 650 geotechnical borings, c) probabilistic earthquake shaking information, and d) ground-water levels. Predictions of strain can be made using either empirical formulations or numerical simulations. In this project lateral spread displacements are estimated and new empirical relations to estimate future volumetric and shear strain are used. Geotechnical boring data to are used to: (a) develop isopach maps showing the thickness of sediment thatis likely to liquefy and deform under earthquake shaking; and (b) assess the variability in engineering properties within and between geologic map units. Preliminary results reveal that late Holocene deposits are likely to experience the greatest liquefaction-induced strains, while Holocene and late Pleistocene deposits are likely to experience significantly less horizontal and vertical strain in future earthquakes. Development of maps based on these analyses is feasible.

  6. Hydrogen-induced change in core structures of {110}[111] edge and {110}[111] screw dislocations in iron

    PubMed Central

    Wang, Shuai; Hashimoto, Naoyuki; Ohnuki, Somei

    2013-01-01

    Employing the empirical embedded-atom method potentials, the evolution of edge and screw dislocation core structure is calculated at different hydrogen concentrations. With hydrogen, the core energy and Peierls potential are reduced for all dislocations. A broaden-core and a quasi-split core structure are observed for edge and screw dislocation respectively. The screw dislocation and hydrogen interaction in body-centred cubic iron is found to be not mainly due to the change of elastic modulus, but the variation of dislocation core structure. PMID:24067268

  7. Formation of Nanostructures in Severely Deformed High-Strength Steel Induced by High-Frequency Ultrasonic Impact Treatment

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Malet, L.; Gao, H.; Hermans, M. J. M.; Godet, S.; Richardson, I. M.

    2015-02-01

    Surface modification by the generation of a nanostructured surface layer induced via ultrasonic impact treatment was performed at the weld toe of a welded high-strength quenched and tempered structural steel, S690QL1 (Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt pct)). Such high-frequency peening techniques are known to improve the fatigue life of welded components. The nanocrystallized structure as a function of depth from the top-treated surface was characterized via a recently developed automated crystal orientation mapping in transmission electron microscopy. Based on the experimental observations, a grain refinement mechanism induced by plastic deformation during the ultrasonic impact treatment is proposed. It involves the formation of low-angle misoriented lamellae displaying a high density of dislocations followed by the subdivision of microbands into blocks and the resulting formation of polygonal submicronic grains. These submicronic grains further breakdown into nano grains. The results show the presence of retained austenite even after severe surface plastic deformation. The average grain size of the retained austenite and martensite is 17 and 35 nm, respectively. The in-grain deformation mechanisms are different in larger and smaller grains. Larger grains show long-range lattice rotations, while smaller grains show plastic deformation through grain rotation. Also the smaller nano grains exhibit the presence of short-range disorder. Surface nanocrystallization also leads to an increased fraction of low angle and low energy coincident site lattice boundaries especially in the smaller grains ( nm).

  8. Predicting High Temperature Dislocation Physics in HCP Crystal Structures

    SciTech Connect

    Hunter, Abigail; Carpenter, John S.; Martinez Saez, Enrique

    2016-05-09

    This report applies models and experiments to answer key questions about the way materials deform; specifics regarding phase field dislocations dynamics; as well as high temperature rolling experiments.

  9. Microdiffraction Analysis of Hierarchical Dislocation Organization

    SciTech Connect

    Barabash, R.I.; Ice, G.E.

    2007-12-19

    This article describes how x-ray microdiffraction is influenced by the number, kind, and organization of dislocations. Particular attention is placed on micro-Laue diffraction, where polychromatic x-rays are diffracted into characteristic Laue patterns that are sensitive to the dislocation content and arrangement. Diffraction is considered for various stages of plastic deformation. For early stages of plastic deformation with random dislocation spacing, the intensity in reciprocal space is redistributed about Laue spots with a length scale proportional to the number of dislocations within the sample volume and with a characteristic shape that depends on the kinds of dislocations and the momentum transfer vector. Unpaired dislocations that contribute to lattice rotations cause the largest redistribution of scattered intensity. In later stages of plastic deformation, strong interactions between individual dislocations cause them to organize into correlated arrangements. Here again, xray diffraction Laue spots are broadened in proportion to the number of excess (unpaired) dislocations inside the wall and to the total number of unpaired walls, but the broadening can be discontinuous. With microdiffraction it is possible to quantitatively test models of dislocation organization.

  10. Knee Dislocations

    PubMed Central

    Schenck, Robert C.; Richter, Dustin L.; Wascher, Daniel C.

    2014-01-01

    Background: Traumatic knee dislocation is becoming more prevalent because of improved recognition and increased exposure to high-energy trauma, but long-term results are lacking. Purpose: To present 2 cases with minimum 20-year follow-up and a review of the literature to illustrate some of the fundamental principles in the management of the dislocated knee. Study Design: Review and case reports. Methods: Two patients with knee dislocations who underwent multiligamentous knee reconstruction were reviewed, with a minimum 20-year follow-up. These patients were brought back for a clinical evaluation using both subjective and objective measures. Subjective measures include the following scales: Lysholm, Tegner activity, visual analog scale (VAS), Short Form–36 (SF-36), International Knee Documentation Committee (IKDC), and a psychosocial questionnaire. Objective measures included ligamentous examination, radiographic evaluation (including Telos stress radiographs), and physical therapy assessment of function and stability. Results: The mean follow-up was 22 years. One patient had a vascular injury requiring repair prior to ligament reconstruction. The average assessment scores were as follows: SF-36 physical health, 52; SF-36 mental health, 59; Lysholm, 92; IKDC, 86.5; VAS involved, 10.5 mm; and VAS uninvolved, 2.5 mm. Both patients had excellent stability and were functioning at high levels of activity for their age (eg, hiking, skydiving). Both patients had radiographic signs of arthritis, which lowered 1 subject’s IKDC score to “C.” Conclusion: Knee dislocations have rare long-term excellent results, and most intermediate-term studies show fair to good functional results. By following fundamental principles in the management of a dislocated knee, patients can be given the opportunity to function at high levels. Hopefully, continued advances in the evaluation and treatment of knee dislocations will improve the long-term outcomes for these patients in the

  11. Cyclic-loading-induced accumulation of geometrically necessary dislocations near grain boundaries in a an ni-based superalloy.

    SciTech Connect

    Huang, E. W.; Barabash, R. I.; Ice, G. I.; Liu, W.; Liu, Y. L.; Kai, J. J.; Liaw, P. K.; Univ.of Tennessee; ORNL; Tsing-Hua Univ.

    2009-01-01

    In this study, the fatigue-induced microstructure produced in a nickel-based polycrystalline superalloy that was subjected to cyclic loading was characterized by polychromatic x-ray microdiffraction (PXM) together with in-situ neutron diffraction and transmission-electron microscopy (TEM). In-situ neutron-diffraction measurements reveal two distinct stages of the fatigue damage: cyclic hardening followed by cyclic softening. Three-dimensional spatially resolved PXM micro-Laue measurements find an increase in the density of geometrically necessary dislocations near the grain boundaries, which is accompanied by lattice rotations and grain subdivisions. The PXM results are in agreement with the in-situ neutron-diffraction and TEM results.

  12. Dislocation mediated alignment during metal nanoparticle coalescence

    SciTech Connect

    Lange, A. P.; Samanta, A.; Majidi, H.; Mahajan, S.; Ging, J.; Olson, T. Y.; van Benthem, K.; Elhadj, S.

    2016-09-13

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (~315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leading to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. As a result, this constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results

  13. Dislocation mediated alignment during metal nanoparticle coalescence

    DOE PAGES

    Lange, A. P.; Samanta, A.; Majidi, H.; ...

    2016-09-13

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (~315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leadingmore » to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. As a result, this constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results

  14. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Recombination-induced motion of dislocations in III-V compounds

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Leipner, H. S.

    1988-11-01

    The methods of in situ cathodoluminescence and scanning electron microscopy were used in a study of stimulated dislocation glide. Dislocations generated by deliberate surface damage were found to be highly mobile when excited above a certain threshold. A study was made of the dependence of the glide velocity on the excitation rate and the first quantitative results on low-temperature dislocation motion are reported.

  15. Simple Elbow Dislocation.

    PubMed

    Armstrong, April

    2015-11-01

    Simple elbow dislocation refers to those elbow dislocations that do not involve an osseous injury. A complex elbow dislocation refers to an elbow that has dislocated with an osseous injury. Most simple elbow dislocations are treated nonoperatively. Understanding the importance of the soft tissue injury following a simple elbow dislocation is a key to being successful with treatment.

  16. Solute drag on perfect and extended dislocations

    NASA Astrophysics Data System (ADS)

    Sills, R. B.; Cai, W.

    2016-04-01

    The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.

  17. The inhibiting effect of dislocation helices on the stress-induced orientation of S' precipitates in Al–Cu–Mg alloy

    SciTech Connect

    Guo, Xiaobin; Deng, Yunlai; Zhang, Jin; Zhang, Xinming

    2015-09-15

    The phenomenon of restrained stress-induced preferential orientation of S′ precipitates is investigated using a single-crystal of Al–1.23Cu–0.43 Mg alloy. Al–1.23Cu–0.43 Mg single-crystal specimens are subjected to stress aging, and the microstructure is analyzed by transmission electron microscopy (TEM). It is found that the stress-induced preferential orientation of S′ precipitates is restrained owing to the dislocations produced by a higher stress. The effect of dislocations on the oriented precipitates depends on the total length of the intersection lines for precipitate habit planes and dislocation glide planes. This investigation not only provides important insight into solving the anisotropy problem attributed to precipitation strengthening, but also offers a benchmark for choosing the appropriate stress range in manufacturing of Al–Cu–Mg alloys. - Highlights: • Single crystals of an Al–Cu–Mg alloy were prepared for the investigations. • A phenomenon of restrained stress-induced preferential orientation of S′ precipitates was found. • The influence of dislocation helices on precipitation during stress-aging was studied. • Difference of orientation degree of S′ precipitates and θ′ precipitates was explained. • A basis for choosing the appropriate stress range in manufacturing of Al–Cu–Mg alloys is provided.

  18. Simulation and characterization of laser induced deformation processes

    NASA Astrophysics Data System (ADS)

    Fan, Yajun

    2006-04-01

    Laser induced deformation processes include laser forming (LF) and laser shock processing. LF is a recently developed and highly flexible thermal forming technique, and laser shock processing is an innovative mechanical process in which shock waves up to 10GPa are generated by a confined laser ablation process. The generated high pressure imparts beneficial residual stress into the surface layer of metal parts as well as shapes thin metal parts. In laser forming, it has been known that microstructural evolution has an important effect on the deformation process, and that the typical thermal cycles in laser forming are much steeper than those in other thermal mechanical processes like welding and hot rolling. In this study, microstructural evolution in laser forming has been investigated, and a thermal-microstructural-mechanical model is developed to predict microstructural changes (phase transformations and recrystallization) and their effects on flow behavior and deformation. Grain structure and phase transformation in heat affected zone (HAZ) is experimentally characterized, and measurement of bending curvature also helps to validate the proposed model. Based on the similar methodology, two different materials have been studied: AISI 1010 low carbon steel and Ti-6Al-4V alloy. In the case of Ti-6A1-4V alloy, the initial phase ratio of Ti-alpha and Ti-beta need to be measured by X-ray diffraction. In laser shock processing, under shock loading solid material behavior is fluidlike and shock-solid interactions play a key role in determining the induced residual stress distributions and the final deformed shape. In this work shock-solid interactions under high pressure and thus high strain rate in laser shock processing are studied and simulated based on conservation's law, equation of state and elastoplasticity of material. A series of carefully controlled experiments, including spatially resolved residual stress measurement by synchrotron X-ray diffraction and

  19. Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.; Grimes, H. H.; Romain, J. P.; Defouquet, J.

    1974-01-01

    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations.

  20. Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation

    NASA Technical Reports Server (NTRS)

    Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

    1986-01-01

    An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

  1. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.

    PubMed

    Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J

    2016-01-01

    The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.

  2. Dislocation conduction in Bi-Sb topological insulators

    NASA Astrophysics Data System (ADS)

    Hamasaki, Hiromu; Tokumoto, Yuki; Edagawa, Keiichi

    2017-02-01

    Previous theoretical works have predicted that when a specific condition is satisfied, dislocations in three-dimensional topological insulators form one-dimensional gapless states, which are topologically protected against disorder scattering. Here, the predicted dislocation conduction is experimentally investigated in Bi-Sb topological insulators. High-density dislocations with the Burgers vector satisfying the conductivity condition are introduced into Bi-Sb single crystals by plastic deformation. Conductivity measurements for deformed and undeformed samples and those for the deformed samples in different orientations show excess conductivity due to dislocation conduction.

  3. Shock induced deformation substructures in a copper bicrystal

    SciTech Connect

    Cao, Fang; Beyerlein, Irene J; Cerreta, Ellen K; Trujillo, Carl P; Gray Ill, George T; Sencer, Bulent H

    2008-01-01

    Controlled shock recovery experiments have been conducted to assess the role of shock pressure and orientation dependence on the substructure evolution of a [100]/[01{ovr 1}] copper bicrystal. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were utilized to characterize orientation variation and substructure evolution of the post-shock specimens. Well defined dislocation cell structures were displayed in both grains and the average cell size was observed to decrease with increasing shock pressure. Twinning was occasionally observed in the 5 GPa shocked [100] grain and became the dominant substructure at higher shock pressure. The stress and directional dependence of twinning in the bicrystal was analyzed with consideration of the energetically favorable dissociation of dislocations into Shockley partials and the stress-orientation effect on the partial width. Moreover, a critical 'tear apart' stress is proposed and a good agreement is obtained between the calculated value and the experimental observations.

  4. Irradiation induced dislocations and vacancy generation in single crystal yttria stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Johnsen, Jill Noel

    A determination of the most effective method of introducing defect clusters and forming nanocrystals in single crystal Yttria Stabilized Zirconia (YSZ) to increase its oxygen ion conductivity for use in solid oxide fuel cell has been investigated using several techniques. High-energy particle irradiation using 800 keV electrons and 20 MeV protons and Ar+ and Xe ++ ion implantation promote the introduction of defects. Thermal annealing and temperature cycling were performed both ex-situ and in-situ in a TEM to study the dynamic recovery behavior of the defects introduced by irradiation and the nucleation and growth of nanocrystals. This analysis found multiple outcomes to both light particle irradiation, with electrons and protons, and heavy charged particle irradiation, including Ar+ and Xe++. Electron irradiation produced very few vacancies, and therefore a very low dislocation density after high temperature annealing. The Xe++ and Ar+ irradiated samples show a high density of vacancy clusters. Evidence also shows nanocrystalline formation in Xe++ irradiated YSZ after a 20 minute anneal at 1040°C with grain sizes on the order of 10--50nm. Defect clusters formed in samples exposed to 20.4 MeV protons with a fluence of 1.00 x 1013 p/cm2 and thermally annealed at temperatures between 800°C and 1000°C. The samples became polycrystalline after a 75 minute anneal with a grain size of approximately 20nm and remained polycrystalline throughout the 120 minute anneal. Impedance spectroscopy measurements were conducted on proton irradiated samples with various annealing conditions. From the impedance results it is concluded that the minimum annealing conditions for a noticeable improvement in ionic conductivity are 1000°C for 2 hours and the 1200°C for 1 hour. These annealing conditions correspond to the conditions for nanocrystal formation as show by microstructural characterization. The proton irradiated YSZ ceramic samples annealed under these conditions were found

  5. Deformation behaviour and 6H-LPSO structure formation at nanoindentation in lamellar high Nb containing TiAl alloy

    NASA Astrophysics Data System (ADS)

    Song, L.; Xu, X. J.; Peng, C.; Wang, Y. L.; Liang, Y. F.; Shang, S. L.; Liu, Z. K.; Lin, J. P.

    2015-02-01

    Microstructure and deformation mechanisms at a nanoindentation in the lamellar colony of high Nb containing TiAl alloy have been studied using the focused ion beam and the transmission electron microscopy. Considerable deformation twins are observed around the nanoindentation, and a strain gradient is generated. A continuous change in the bending angle of the lamellar structure can be derived, and a strain-induced grain refinement process is observed as various active deformations split the γ grains into subgrains. In addition to all possible deformation mechanisms (ordinary dislocation, super-dislocation and deformation twining) activated due to the heavy plastic deformation, a 6-layer hexagonal (6H) long-period stacking ordered structure is identified for the first time near the contact zone and is thought to be closely related to the glide of partial dislocations.

  6. Effect of induced deformation on NDT pavement evaluation

    NASA Astrophysics Data System (ADS)

    Tawfiq, Kamal S.; Sobanjo, John O.; Ruiz, R.

    1999-02-01

    Three nondestructive testing techniques were used in this study to evaluate pavement layer properties. These techniques included deflection and seismic methods. In the deflection methods, measurable surface deformations were induced using falling weight deflectometer and Dynaflect tests. These two tests utilized different schemes of dynamic loading applications to produce deflection basins from which the pavement layer properties were back calculated. Pavement properties from seismic methods were obtained from the analysis of surface waves due to transient load applications. In this study the seismic pavement analyzer (SPA) was used to determine pavement moduli values. Although the same assumptions for linear elastic behavior of pavement properties are usually assumed in all the three methods, obtained moduli values from these techniques did not conform to each other. Commonly, pavement deflection from SPA is not considered when analyzing layer properties. To narrow the gap between the obtained results, however, time-history records and frequency response functions were used to determine surface deflections from the three methods. Deflection measurements correlated with the obtained moduli values. Using these correlations, moduli values at any pavement deflection levels could be evaluated, especially at levels produced by traffic loads.

  7. A novel experimental setup for simultaneous adsorption and induced deformation measurements in microporous materials

    NASA Astrophysics Data System (ADS)

    Perrier, L.; Plantier, F.; Grégoire, D.

    2017-03-01

    A new experimental setup is presented allowing the simultaneous measurement of adsorption isotherms and adsorption-induced deformations. It is composed of a manometric technique coupled with a digital image correlation setup for full-field displacement measurements. The manometric part is validated by comparing adsorption isotherms with those obtained by a gravimetric method. The principles and methods of both adsorption isotherm and induced deformation measurements are presented in detail. As a first application of this new apparatus, the coupling between adsorption and induced deformation is characterised for a microporous media (activated carbon) saturated by pure CO2 (318.15 K, [0-60] bars) and pure CH4 (303.15 K, [0-130] bars). For this very homogeneous porous material, the induced deformation is characteristic of a pure volumetric swelling but the full-field setup may allow the characterisation of the localised pattern of deformation for heterogenous or cracked microporous media.

  8. Structural anisotropy in metallic glasses induced by mechanical deformation

    SciTech Connect

    Dmowski, W.; Egami, T.

    2009-03-06

    We observed structural anisotropy in metallic glasses samples deformed by homogenous mechanical creep and by inhomogeneous compression using high energy X-ray diffraction. Pair distribution function analysis indicates bond anisotropy in the first atomic shell. This suggests that mechanical deformation involves rearrangements in a cluster of atoms by a bond reformation.

  9. Finite element modeling for dislocation generation in semiconductor crystals grown from the melt

    NASA Astrophysics Data System (ADS)

    Zhu, Xinai

    Dislocations in Gallium Arsenide (GaAs) and Indium Phosphide (InP) single crystals are generated by excessive stresses that are induced during the crystal growth process, and the fabrication and packaging of microelectronic devices/circuits. The presence of dislocations has adverse effects on the performance, lifetime and reliability of the GaAs and InP-based devices/circuits. It is well known that dislocation density can be significantly reduced by doping impurity atoms into the GaAs and InP crystal and/or decreasing the thermal stresses in these crystals during their growth process. In order to reduce the dislocation density generated in the GaAs and InP crystals, the influence of crystal growth parameters and doping impurity atoms on the dislocations reduction in GaAs and InP crystals has to be understood. Therefore, a transient finite element model was developed to simulate the dislocation generation in GaAs and InP crystals grown from the melt. A viscoplastic constitutive equation that couples a microscopic dislocation density with a macroscopic plastic deformation is employed to formulate this transient finite element model, where the dislocation density is considered as an internal state variable and the doping impurity is represented by a drag-stress in this constitutive model. GaAs and InP single crystals grown by the vertical gradient freeze (VGF) process were adopted as examples to study the influences of doping impurity and growth parameters on dislocations generated in these grown crystal. The calculated results show that doping impurity can significantly reduce dislocation generation and produces low-dislocation-density or dislocation free GaAs and InP single crystals. It also shows that the dislocations generated in GaAs and InP crystals increase as the crystal diameter and imposed temperature gradient increase, but do not change or increase slightly as the crystal growth rate increases. Therefore, this finite element model can be effectively used by

  10. Deformation and recrystallization mechanisms in naturally deformed sillimanites

    NASA Astrophysics Data System (ADS)

    Lambregts, P. J.; van Roermund, H. L. M.

    1990-07-01

    Prismatic sillimanite (Al 2SiO 5), with a length between 0.3 and 2.5 mm, was obtained from a garnet migmatite. The sillimanite, naturally deformed at a temperature of 750 ° C and a confining pressure of 6 kbar, has been studied using optical and transmission electron microscopy techniques. Optical and universal stage measurements reveal undulatory extinction, "sharp" deformation-induced subgrain boundaries (subparallel to (001) and (010)) and minor recrystallization. Transmission electron microscopy shows free dislocations, dislocation loops, (110) planar defects and tiltwalls parallel to (001). Dislocations have Burgers vectors of [001] and [100]. All isolated dislocations are dissociated. The dominant slip system is (100) [001] with subordinate (001) [100]. The microstructure of sillimanite indicates that recrystallization has occurred by a rotation mechanism (around [010]), where single crystals become polycrystals by the progressive development of numerous internal high-angle boundaries. The latter have been interpreted as originating from low-angle (001) tilt- and (010) twistwalls. Rotation recrystallization was followed by grain boundary migration.

  11. Deformation-induced accelerated dynamics in polymer glasses

    NASA Astrophysics Data System (ADS)

    Warren, Mya; Rottler, Jörg

    2010-10-01

    Molecular dynamics simulations are used to investigate the effects of deformation on the segmental dynamics in an aging polymer glass. Individual particle trajectories are decomposed into a series of discontinuous hops, from which we obtain the full distribution of relaxation times and displacements under three deformation protocols: step stress (creep), step strain, and constant strain rate deformation. As in experiments, the dynamics can be accelerated by several orders of magnitude during deformation, and the history dependence is entirely erased during yield (mechanical rejuvenation). Aging can be explained as a result of the long tails in the relaxation time distribution of the glass, and similarly, mechanical rejuvenation is understood through the observed narrowing of this distribution during yield. Although the relaxation time distributions under deformation are highly protocol specific, in each case they may be described by a universal acceleration factor that depends only on the strain.

  12. Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Shaofeng; Liu, Jiabin; Li, Xiaoyan; Wei, Yujie; Wang, Hongtao; Gao, Huajian; Yang, Wei

    2017-01-01

    The interest in promoting deformation twinning for plasticity is mounting for advanced materials. In contrast to disordered grain boundaries, highly organized twin boundaries are beneficial to promoting strength-ductility combination. Twinning deformation typically involves the kinetics of stacking faults, its interplay with dislocations, as well as the interactions between dislocations and twin boundaries. While the latter has been intensively studied, the dynamics of stacking faults has been rarely touched upon. In this work, we report new physical insights on the stacking fault dynamics in twin induced plasticity (TWIP) steels. The atomistic simulation is made possible by a newly introduced approach: meta-atom molecular dynamics simulation. The simulation suggests that the stacking fault interactions are dominated by dislocation reactions that take place spontaneously, different from the existing mechanisms. Whether to generate a single stacking fault, or a twinning partial and a trailing partial dislocation, depends upon a unique parameter, namely the stacking fault energy. The latter in turn determines the deformation twinning characteristics. The complex twin-slip and twin-dislocation interactions demonstrate the dual role of deformation twins as both the dislocation barrier and dislocation storage. This duality contributes to the high strength and high ductility of TWIP steels.

  13. Interfacial Dislocation Networks and Creep in Directional Coarsened Ru-Containing Nickel-Base Single-Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    Carroll, L. J.; Feng, Q.; Pollock, T. M.

    2008-06-01

    Mechanisms of creep deformation in nickel-base superalloy single crystals in the directional coarsening regime have been studied in alloys with large variations in γ- γ' lattice misfit and phase composition, achieved by Ru additions and variable levels of Cr and Co. Interfacial dislocation spacings established by long-term annealing experiments under no externally applied stress indicate that the experimental alloys have high-temperature lattice misfits ranging from near-zero to as large as -0.65 pct. Variation in misfit influences the stress-induced directional coarsening (rafting) behavior during creep deformation at 950 °C and 290 MPa. In postcreep deformed material, the density of excess dislocations (defined as the dislocations beyond those necessary to relieve the lattice misfit) at the γ- γ' interfaces varied with alloy composition, with the most creep-resistant alloy containing the highest excess interfacial dislocation density. In the directional coarsening creep regime, continued deformation requires shearing of the γ' rafts and is strongly influenced by the resistance of the precipitates to shearing as well as the interfacial dislocation structure. A preliminary model for creep in the rafting regime is developed.

  14. Active morphotectonics related to the upper crustal shortening in the back-arc of the Northeast Japan arc, based on geomorphic terrace deformation and elastic dislocation models for reverse faults

    NASA Astrophysics Data System (ADS)

    Soeda, Y.; Miyauchi, T.

    2009-04-01

    Knowledge of active morphotectonics, the relationship between active faults and morphological evolution, is important for understanding on-going active tectonic processes in the trench-arc system and evaluating the activity of faults. Especially in regions where the main active faults are concealed, such as in the back-arc of the Northeast Japan arc. The Dewa Hills in the back-arc of the Northeast Japan arc is a tectonic uplifted zone parallel to the main direction of the arc, bounded by Kitayuri thrust system (KTS) at western margin. The activity of reverse faults as a result of upper crustal shortening related to the subduction of the Pacific plate beneath the Eurasian plate has affected the morpho-tectonogenesis in the back-arc. This study examines the deep geometry and net slip rate of faults at seismogenic depth in the back-arc, and presents active morphotectonic models related to upper crustal shortening, by analyzing the deformation patterns of topography and geology, and through an examination of elastic dislocation models for reverse faults. The Pleistocene fluvial terraces, a practical geomorphic marker for quantifying crustal movement in the late Quaternary, are developed along some antecedent valleys that truncate the Dewa Hills. Through an investigation of the chronology and correlation of Pleistocene marine and fluvial terraces based on geomorphological and tephrochronological investigations, M terraces correlated with MIS 5 have been widely identified in the back-arc. The maximum uplift rates in the back-arc in the late Quaternary are estimated as 1.0 mm/yr in the Oga Peninsula (Imaizumi 1977; Miyauchi, 1988), and 1.4 mm/yr in the Dewa Hills. The height distribution of geomorphic terraces shows two types of surface deformation patterns in the late Quaternary, and these are produced by the activity of reverse faults: a major deformation unit with a half wavelength of 20-40 km or more, and a secondary deformation unit with a half wavelength of less

  15. Dislocation pile-ups as sites for formation of electromigration-induced transgranular slit-like voids in Al interconnects

    SciTech Connect

    Srikar, V.T.; Thompson, C.V.

    1999-12-17

    Electromigration-induced voiding in metal interconnects in Si integrated circuits is a serious reliability concern. The microstructure of narrow interconnects subject to post-pattern anneal is expected to be bamboo-like in character. These structures are best described as chains of single crystals, with grain boundaries perpendicular to the interconnect axis. In these microstructures, two distinct types of void morphologies have been reported in Al-alloy interconnects: large, wedge shaped erosion voids (E-voids), and narrow slit-like voids (S-voids). A summarized below, electromigration experiments conducted on single-crystal Al interconnects have clearly shown that the transition of erosion voids to slit-like voids is very strongly dependent on the crystallography of the interconnect, and also that there is some inhomogeneously distributed feature which triggers S-void formation, even in single-crystal interconnects. In summary, the authors feel that the strong crystallographic dependence of the S-voids, the possible effects of the enormous mechanical stresses (in excess of 1 GPa in some cases) which can exist in such interconnects, and the stochastic nature of the development of slit-like features, have not been adequately captured in the existing models. In what follows, the authors present a model for a role that dislocation pile-ups may play in reducing the energy of transition of E-voids to S-voids, and for controlling the location of this transition.

  16. Femtosecond laser induced surface deformation in multi-dimensional data storage

    NASA Astrophysics Data System (ADS)

    Hu, Yanlei; Chen, Yuhang; Li, Jiawen; Hu, Daqiao; Chu, Jiaru; Zhang, Qijin; Huang, Wenhao

    2012-12-01

    We investigate the surface deformation in two-photon induced multi-dimensional data storage. Both experimental evidence and theoretical analysis are presented to demonstrate the surface characteristics and formation mechanism in azo-containing material. The deformation reveals strong polarization dependence and has a topographic effect on multi-dimensional encoding. Different stages of data storage process are finally discussed taking into consideration the surface deformation formation.

  17. Theory of interacting dislocations on cylinders

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Paulose, Jayson; Nelson, David R.

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  18. Mesoscale modeling of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Koslowski, Marisol

    2011-02-01

    Understanding the inelastic deformation of molecular crystals is of fundamental importance to the modeling of the processing of drugs in the pharmaceutical industry as well as to the initiation of detonation in high energy density materials. In this work, we present dislocation dynamics simulations of the deformation of two molecular crystals of interest in the pharmaceutical industry, sucrose and paracetamol. The simulations calculate the yield stress of sucrose and paracetamol in good agreement with experimental observation and predict the anisotropy in the mechanical response observed in these materials. Our results show that dislocation dynamics is an effective tool to study plastic deformation in molecular crystals.

  19. Nuclear dynamical deformation induced hetero- and euchromatin positioning

    NASA Astrophysics Data System (ADS)

    Awazu, Akinori

    2015-09-01

    We studied the role of active deformation dynamics in cell nuclei in chromatin positioning. Model chains containing two types of regions, with high (euchromatic) or low (heterochromatic) mobility, were confined in a pulsating container simulating a nucleus showing dynamic deformations. Brownian dynamic simulations show that the positioning of low mobility regions changes from sites near the periphery to the center if the affinity between these regions and the container periphery disappears. The former and latter positionings are similar to the "conventional" and "inverted" chromatin positionings in nuclei of normal differentiated cells and cells lacking Lamin-related proteins. Additionally, nuclear dynamical deformation played essential roles in "inverted" chromatin positioning.

  20. Automated identification and indexing of dislocations in crystal interfaces

    DOE PAGES

    Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios

    2012-10-31

    Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal andmore » also identifies dislocation junctions.« less

  1. Automated identification and indexing of dislocations in crystal interfaces

    SciTech Connect

    Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios

    2012-10-31

    Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal and also identifies dislocation junctions.

  2. Atomic level simulations of interaction between edge dislocations and irradiation induced ellipsoidal voids in alpha-iron

    NASA Astrophysics Data System (ADS)

    Zhu, Bida; Huang, Minsheng; Li, Zhenhuan

    2017-04-01

    High concentrations of vacancies tend to be formed inside the metal materials under irradiation, and then accumulate and cluster together gradually to promote the formation of nanovoids. Generally, these voids act as obstacles for dislocation glide and thereby change/degrade the mechanical behavior of irradiated materials. In this work, the interaction between ellipsoidal nanovoids with edge dislocations in alpha-iron has been studied by atomic simulations. The results illuminate that the ellipsoidal void's semi-major axis on the slip plane and parallel to the dislocation line is the dominant factor controlling the obstacle strength of ellipsoidal nanovoids. Two other semi-major axes, which are perpendicular to the glide plane and parallel to the Burgers vector, respectively, can also influence the critical resolved shear stress (CRSS) for dislocation shearing the ellipsoidal void. The intrinsic atomic mechanisms controlling above phenomena, such as nanovoid-geometry spatial constraint and nanovoid-surface curvature on dislocation evolution, have been discussed carefully. The classical continuum model has been amended to describe the dislocation-ellipsoidal nanovoid interaction base on current results. In addition, the influence of temperature on the CRSS of ellipsoidal nanovoids has also been investigated.

  3. Thermal effects in dislocation theory

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2016-12-01

    The mechanical behaviors of polycrystalline solids are determined by the interplay between phenomena governed by two different thermodynamic temperatures: the configurational effective temperature that controls the density of dislocations, and the ordinary kinetic-vibrational temperature that controls activated depinning mechanisms and thus deformation rates. This paper contains a review of the effective-temperature theory and its relation to conventional dislocation theories. It includes a simple illustration of how these two thermal effects can combine to produce a predictive theory of spatial heterogeneities such as shear-banding instabilities. Its main message is a plea that conventional dislocation theories be reformulated in a thermodynamically consistent way so that the vast array of observed behaviors can be understood systematically.

  4. Multiscale Theory of Dislocation Climb.

    PubMed

    Geslin, Pierre-Antoine; Appolaire, Benoît; Finel, Alphonse

    2015-12-31

    Dislocation climb is a ubiquitous mechanism playing a major role in the plastic deformation of crystals at high temperature. We propose a multiscale approach to model quantitatively this mechanism at mesoscopic length and time scales. First, we analyze climb at a nanoscopic scale and derive an analytical expression of the climb rate of a jogged dislocation. Next, we deduce from this expression the activation energy of the process, bringing valuable insights to experimental studies. Finally, we show how to rigorously upscale the climb rate to a mesoscopic phase-field model of dislocation climb. This upscaling procedure opens the way to large scale simulations where climb processes are quantitatively reproduced even though the mesoscopic length scale of the simulation is orders of magnitude larger than the atomic one.

  5. Deformation temperature, strain rate, and irradiation microstructure effects on localized plasticity in 304L SS

    SciTech Connect

    Cole, J.I.; Brimhall, J.L.; Vetrano, J.S.; Bruemmer, S.M.

    1995-12-31

    The present study examines the deformation behavior of ion-irradiated, low-carbon 304L stainless steel to investigate the influence of irradiation microstructure, deformation temperature and strain rate on localized plasticity. Dislocation loop character, size and density are linked to changes in deformation character. Lower doses produce small faulted loops and stacking fault tetrahedra that impede dislocation mobility. Dislocations are pinned at defects and require higher stress to break free from the defects. Larger defects take the form of faulted Frank loops that can interact with glide dislocations to form microtwins at lower temperatures and faster strain rates. Deformation at higher temperatures and slower strain rates promotes interactions between glide dislocations and loops leading to loop annihilation. Dislocation free zones or ``channels`` form where further plastic deformation is highly localized. Results are compared to limited observations for neutron-irradiated materials. These irradiation-induced changes can be an important concern for light-water reactor (LWR) stainless steel (SS) structural components due to a reduced damage tolerance, and potential susceptibility to environmental cracking such as irradiation-assisted stress corrosion cracking (IASCC).

  6. Deformation-induced damage and recovery in model hydrogels - A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zidek, Jan; Milchev, Andrey; Jancar, Josef; Vilgis, Thomas A.

    2016-09-01

    Using molecular dynamics simulation of a model hybrid cross-link hydrogel, we investigate the network damage evolution and the related structure transformations. We model the hydrogel structure as a network-connected assembly of crosslinked clusters whereby deformation-induced damage is considered along with network recovery. The two principal mechanisms involved in hydrogel recovery from deformation include segment hops of the building structure units (segments) between clusters and cluster shape modification. These mechanisms act either instantaneously, or with a certain time delay after the onset of deformation. By elucidating the conditions under which one of the mechanisms prevails, one may design hydrogel materials with a desired response to deformation.

  7. Evolution of geometrically necessary dislocation density from computational dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    2009-07-01

    This paper presents a method for calculating GND densities in dislocation dynamics simulations. Evolution of suitably defined averages of GND density as well as maps showing the spatial nonuniform distribution of GNDs are analyzed under uniaxial loading. Focus is laid on the resolution dependence of the very notion of GND density, its dependence upon physical dimensions of plastically deformed specimens and its sensitivity to initial conditions. Acknowledgments Support from the National Science Foundation (CMMI-0748187) is gratefully acknowledged.

  8. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    NASA Astrophysics Data System (ADS)

    Rolly, Gaboriaud; Fabien, Paumier; Bertrand, Lacroix

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y2O3, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe2+ at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin2ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  9. Internal stresses, dislocation mobility and ductility

    NASA Astrophysics Data System (ADS)

    Saada, G.

    1991-06-01

    The description of plastic deformation must take into account individual mechanisms and heterogeneity of plastic strain. Influence of dislocation interaction with forest dislocations and of cross slip are connected with the organization of dipole walls. The latter are described and their development is explained as a consequence of edge effects. Applications are discussed. La description de la déformation plastique doit prendre en compte les interactions individuelles des dislocations et l'hétérogénéité à grande échelle de la déformation plastique. Les interactions des dislocations mobiles avec la forêt de dislocations, le glissement dévié, ont pour effet la création de parois dipolaires. Celles-ci sont décrites et leur développement est appliqué à partir des effets de bord.

  10. [Arthrography in congenital hip dislocation].

    PubMed

    Sipukhin, Ia M; Bazlova, E S; Cheberiak, N V

    1992-01-01

    The paper is concerned with the results of contrast arthrography in 73 children with hip joint dysplasia, among which true dislocations prevailed (70 patients). In addition to bone alterations, arthrography revealed various soft tissue changes like hypertrophy and deformity of limbus, soft tissue interposition, separation of the articular sac with the presence of an isthmus, disintegration of articular cartilages. These findings are used to define indications for surgical intervention as well as for planning the area of operation.

  11. Annealing of deformed olivine single-crystals under 'dry' conditions

    NASA Astrophysics Data System (ADS)

    Blaha, Stephan; Katsura, Tomoo

    2013-04-01

    -pressure assembly so that a particular slip system is activated. The assemblies were compressed to 3 GPa. The shear deformation was conducted at 1600 K. EBSD measurements indicate that the recovered crystals are single crystals and sub-grain formation did not occur in most cases. The second step is to anneal the samples under the same P-T conditions as those of the deformation experiments. Annealing experiments are also performed at ambient pressures at 1600 K. Dislocation density was measured by means of the oxidation decoration technique [3]. The samples were firstly polished and then oxidized at 1200 K for 50 min. The dislocations are preferably oxidized, so that presence of dislocation can be observed using SEM. First Results indicate that the dislocation density decreased by annealing by 1/4 with an annealing period of 10 h for dislocations with b = [001]. References [1] H. Jung and S. I. Karato. Water-induced fabric transitions in olivine. Science, 293(5534):1460-1463, 2001. [2] S. I. Karato, D. C. Rubie, and H. Yan. Dislocation recovery in olivine under deep upper mantle conditions: Implications for creep and diffusion. Journal of Geophysical Research, 98(B6):9761-9768, 1993. [3] D. L. Kohlstedt, C. Goetze, W. B. Durham, and J. V. Sande. New technique for decorating dislocations in olivine. Science, 191(4231):1045-1046, March 1976.

  12. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  13. [Conservative treatment of congenital patellar dislocation].

    PubMed

    Zajonz, D; Schumann, E; Wojan, M; Moche, M; Heyde, C-E

    2017-02-01

    This article presents the rare case of a boy who was born in our hospital with valgus deformity and external rotation of the right lower leg because of congenital patellar dislocation. In the case presented a stable repositioning of the patella could be achieved by redressment with a plaster cast and leg brace. During a 4-year follow-up there were no tendencies towards dislocation during the clinical examination and no dislocation events were documented. In selected cases an attempt at conservative repositioning and retention treatment appears to be worthwhile before surgical treatment is indicated.

  14. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    NASA Astrophysics Data System (ADS)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  15. Structural Anisotropy in Metallic Glasses Induced by Mechanical Deformation

    SciTech Connect

    Dmowski, Wojtek; Egami, Takeshi

    2008-01-01

    Metallic glasses have been studied vigorously since the first report on amorphous gold-silicon alloy back in 1960.[1] Initially soft magnetic properties were the most promising features for industrial applications. The recent development of bulk metallic glasses (BMGs)[2 5] initiated interests in engineering applications such as structural or biomedical materials because of attractive properties such as high strength,[6] high elasticity,[7,8] and good corrosion resistance,[9,10] among others. In addition, high temperature processing of BMGs allows for near-net-shape formability,[11 13] which could simplify and possibly reduce the cost of the final product. The glasses retain the disordered atomic structure of a liquid, and ideally are isotropic solids. Frequently because of processing conditions, such as directional heat flow, some structural anisotropy is produced during quenching, and has been observed by structural investigations. Usually, annealing at high temperatures results in an isotropic structure. Also, formation of uniaxial magnetic anisotropy[14] had been observed in studies of creep deformed ferromagnetic metallic glasses. Samples with a near-zero magnetostriction coefficient had been studied to establish the origin of the magnetic anisotropy. It was concluded that anisotropy resulted from the atomic level anisotropy[15] and not the heterogeneous internal stress distribution. Indeed X-ray diffraction study of the creep deformed metallic glass showed bond anisotropy.[ 16,17] Such structural studies had been cumbersome and lengthy because they required measurement of many orientations with high statistics. Recently we have shown that use of an area detector and high energy X-rays at a synchrotron source can speed up data collection without compromising statistics.[18] In this contribution, we present data showing structural anisotropy in glassy samples after homogenous (creep) and inhomogeneous (compression) mechanical deformation. The observation of the

  16. Dislocations: do you want them moving or in 3D ?

    NASA Astrophysics Data System (ADS)

    Cordier, Patrick; Boioli, Francesca; Bollinger, Caroline; Idrissi, Hosni; Mussi, Alexandre; Clitton Nzogang, Billy; Schryvers, Dominique

    2016-04-01

    Plastic deformation of minerals and rocks can be explained in most cases by the presence of crystal defects. Among those, dislocations represent the most efficient strain-producing actors of deformation. The physics of deformation by dislocations is complex since it is intrinsically multiscale. At the atomic scale, the dislocation core structure controls a fundamental property: their mobility. However, the plastic strain results from the collective behavior of dislocations which can be understood only at the mesoscopic scale. Multiscale numerical modeling has provided a lot of insights on these aspects in the recent years, also in mineral physics. These progress were calling for parallel developments in experiments and characterization. Here we present two studies on dislocations in olivine deformed under lithospheric conditions based in recent developments in transmission electron microscopy. We present plastic deformation experiments performed on olivine in situ, in the transmission electron microscope, at room temperature. The ductile behavior is made possible thanks to the very small size of the specimens (maximum dimension < 5μm) which are prepared by focused ion beam and strained in a special Micro-Electro-Mechanical-System (MEMS) device called push-to-pull (PI 95 TEM PicoIndenter from Hysitron). By performing experiments under constant load, the velocity of [001] screw dislocations has been measured as a function of stress. This mobility law has then been introduced in a Dislocation Dynamics model to determine the stress strain curves. We present also some recent developments on electron tomography of dislocations performed on olivine. The difficulty is here to keep diffraction conditions strictly constant over a wide range of tilt acquisitions. We present some examples obtained by imaging dislocations in weak-beam dark-field using precession electron diffraction. The analysis of dislocation microstructures in 3D is used to characterize dislocations glide

  17. Transient elastic deformation detection on the metal surface induced by nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Tong, Yanqun; Huang, Jianyu; Wu, Xiaoyi; Shi, Lin

    2016-10-01

    It is difficult to detect the elastic deformation on the metal surface induced by nanosecond laser pulse. Optical fiber sensor system is suitable for detecting the elastic deformation, which has many advantages such as the high sensitivity, fast speed (GHz), non-contact, non-loss and point-measurement. We set up the measuring system to analyze the deformation mechanism firstly. Then, the elastic deformation on the metal surface was investigated. The relation between the shock-wave and elastic deformation was analyzed. The result of the present work implicated that as the nanosecond laser pulse radiated to the metal surface, elastic deformation had a delay time which was around 320ns. And the deformation presented the damped oscillation law. The data of laser-induced plasma shock wave were fitted and the fitting degree was 97.696%.The variation law of laser-induced plasma shock-wave was obtained. These results helped to make the laser removal applied to the manufacturing technique better.

  18. Fast Fourier transform discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Graham, J. T.; Rollett, A. D.; LeSar, R.

    2016-12-01

    Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.

  19. A Unified Material Description for Light Induced Deformation in Azobenzene Polymers

    PubMed Central

    Bin, Jonghoon; Oates, William S.

    2015-01-01

    Complex light-matter interactions in azobenzene polymers have limited our understanding of how photoisomerization induces deformation as a function of the underlying polymer network and form of the light excitation. A unified modeling framework is formulated to advance the understanding of surface deformation and bulk deformation of polymer films that are controlled by linear or circularly polarized light or vortex beams. It is shown that dipole forces strongly respond to polarized light in contrast to higher order quadrupole forces that are often used to describe surface relief grating deformation through a field gradient constitutive law. The modeling results and comparisons with a broad range of photomechanical data in the literature suggest that the molecular structure of the azobenzene monomers dramatically influences the photostrictive behavior. The results provide important insight for designing azobenzene monomers within a polymer network to achieve enhanced photo-responsive deformation. PMID:26437598

  20. The relationship between strain geometry and geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Wallis, David

    2016-04-01

    The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed

  1. Sound Emission of Rotor Induced Deformations of Generator Casings

    NASA Technical Reports Server (NTRS)

    Polifke, W.; Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    The casing of large electrical generators can be deformed slightly by the rotor's magnetic field. The sound emission produced by these periodic deformations, which could possibly exceed guaranteed noise emission limits, is analysed analytically and numerically. From the deformation of the casing, the normal velocity of the generator's surface is computed. Taking into account the corresponding symmetry, an analytical solution for the acoustic pressure outside the generator is round in terms of the Hankel function of second order. The normal velocity or the generator surface provides the required boundary condition for the acoustic pressure and determines the magnitude of pressure oscillations. For the numerical simulation, the nonlinear 2D Euler equations are formulated In a perturbation form for low Mach number Computational Aeroacoustics (CAA). The spatial derivatives are discretized by the classical sixth-order central interior scheme and a third-order boundary scheme. Spurious high frequency oscillations are damped by a characteristic-based artificial compression method (ACM) filter. The time derivatives are approximated by the classical 4th-order Runge-Kutta method. The numerical results are In excellent agreement with the analytical solution.

  2. Dislocation generation during early stage sintering.

    NASA Technical Reports Server (NTRS)

    Sheehan, J. E.; Lenel, F. V.; Ansell, G. S.

    1973-01-01

    Discussion of the effects of capillarity-induced stresses on dislocations during early stage sintering. A special version of Hirth's (1963) theoretical calculation procedures modified to describe dislocation nucleation on planes meeting the sintering body's neck surface obliquely is shown to predict plastic flow at stress levels know to exist between micron size metal particles in the early stages of sintering.

  3. Dislocation-related plasticity of ceria-stabilized zirconia polycrystals

    SciTech Connect

    Zhe, X.; Hendry, A.; Wang, C.

    1996-06-01

    Much higher plastic strain of 4% in Ce-TZP ceramics was produced by a novel thermal-mechanical process below 450 C. Observation by TEM showed that there were abundant dislocation pile-ups associated with a few martensitic laths in the deformed samples. The density of dislocations increased with thermal-mechanical cycles. These suggested that dislocation multiplication was caused by the high local stress concentration in front of a martensitic lath during the thermal-mechanical deformation. The generation and movement of dislocations introduced extra plasticity beside the transformation plasticity caused by martensite. Meanwhile, movement of dislocations relaxes the interface stress at martensitic laths to prevent reverse martensitic transformation and early cracking of the specimens. The results are discussed in terms of thermal-mechanical action and dislocation multiplication.

  4. The equivalence between dislocation pile-ups and cracks

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Gao, Q.

    1990-01-01

    Cracks and dislocation pile-ups are equivalent to each other. In this paper, the physical equivalence between cracks and pile-ups is delineated, and the relationshps between crack-extension force, force on the leading dislocation, stress-intensity factor, and dislocation density are reviewed and summarized. These relations make it possible to extend quantitatively the recent advances in the concepts and practices of fracture mechanics to the studies of microfractures and microplastic deformations.

  5. Dislocation structure of the magnesium nanocrystal in uniaxial loading

    NASA Astrophysics Data System (ADS)

    Vlasova, A. M.; Nikonov, A. Yu.; Zhuravlev, A. K.; Kesarev, A. G.

    2016-11-01

    We report on molecular-dynamics (MD) simulations of compression loading of nanocrystalline magnesium modeled by the embedded-atom method (EAM) potential. It is shown that plastic deformation is by basal slip and (102) twinning. The formation of stable configurations of dislocation grids is observed. Some dislocation reactions are suggested to explain the occurrence of grids. The structure of the dislocation core is shown with the Burgers vector 1 /18 [0 4 ¯43 ] .

  6. Modeling of porous scaffold deformation induced by medium perfusion.

    PubMed

    Podichetty, Jagdeep T; Madihally, Sundararajan V

    2014-05-01

    In this study, we tested the possibility of calculating permeability of porous scaffolds utilized in soft tissue engineering using pore size and shape. We validated the results using experimental measured pressure drop and simulations with the inclusion of structural deformation. We prepared Polycaprolactone (PCL) and Chitosan-Gelatin (CG) scaffolds by salt leaching and freeze drying technique, respectively. Micrographs were assessed for pore characteristics and mechanical properties. Porosity for both scaffolds was nearly same but the permeability varied 10-fold. Elastic moduli were 600 and 9 kPa for PCL and CG scaffolds, respectively, while Poisson's ratio was 0.3 for PCL scaffolds and ∼1.0 for CG scaffolds. A flow-through bioreactor accommodating a 10 cm diameter and 0.2 cm thick scaffold was used to determine the pressure-drop at various flow rates. Additionally, computational fluid dynamic (CFD) simulations were performed by coupling fluid flow, described by Brinkman equation, with structural mechanics using a dynamic mesh. The experimentally obtained pressure drop matched the simulation results of PCL scaffolds. Simulations were extended to a broad range of permeabilities (10(-10) m(2) to 10(-14) m(2) ), elastic moduli (10-100,000 kPa) and Poisson's ratio (0.1-0.49). The results showed significant deviation in pressure drop due to scaffold deformation compared to rigid scaffold at permeabilities near healthy tissues. Also, considering the scaffold as a nonrigid structure altered the shear stress profile. In summary, scaffold permeability can be calculated using scaffold pore characteristics and deformation could be predicted using CFD simulation. These relationships could potentially be used in monitoring tissue regeneration noninvasively via pressure drop.

  7. Vibration-induced elastic deformation of Fabry-Perot cavities

    SciTech Connect

    Chen Lisheng; Hall, John L.; Ye Jun; Yang Tao; Zang Erjun; Li Tianchu

    2006-11-15

    We perform a detailed numerical analysis of Fabry-Perot cavities used for state-of-the-art laser stabilization. Elastic deformation of Fabry-Perot cavities with various shapes and mounting methods is quantitatively analyzed using finite-element analysis. We show that with a suitable choice of mounting schemes it is feasible to minimize the susceptibility of the resonator length to vibrational perturbations. This investigation offers detailed information on stable optical cavities that may benefit the development of ultrastable optical local oscillators in optical atomic clocks and precision measurements probing the fundamental laws of physics.

  8. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Mirkarimi, Paul B.; Montcalm, Claude

    2000-01-01

    A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.

  9. The influence of the dislocation distribution heterogeneity degree on the formation of a non-misoriented dislocation cell substructures in f.c.c. metals

    NASA Astrophysics Data System (ADS)

    Cherepanov, D. N.; Selivanikova, O. V.; Matveev, M. V.

    2016-06-01

    Dislocation loops emitted by Frank-Reed source during crossing dislocations of the non-coplanar slip systems are accumulates jogs on the own dislocation line, resulting in the deceleration of the segments of dislocation loops with high jog density. As a result, bending around of the slowed segments the formation of dynamic dipoles in the shear zone occurs. In the present paper we consider formation mechanism of non-misoriented dislocation cell substructure during plastic deformation of f.c.c. metals and conclude that the increase in the degree heterogeneity of dislocation distribution leads to an increase in the jog density and reduce the mean value of arm dynamic dipoles.

  10. Quantum dislocations in solid Helium-4

    NASA Astrophysics Data System (ADS)

    Aleinikava, Darya

    In this thesis the following problems on properties of solid 4He are considered: (i) the role of long-range interactions in suppression of dislocation roughening at T = 0; (ii) the combined effect of 3He impurities and Peierls potential on shear modulus softening; (iii) the dislocation superclimb and its connection to the phenomenon of "giant isochoric compressibility"; (iv) non-linear dislocation response to the applied stress and stress-induces dislocation roughening as a I-order phase transition in 1D at finite temperature. First we investigate the effect of long-range interactions on the state of edge dislocation at T = 0. Such interactions are induced by elastic forces of the solid. We found that quantum roughening transition of a dislocation at T = 0 is completely suppressed by arbitrarily small long-range interactions between kinks. A heuristic argument is presented and the result has been verified by numerical Monte-Carlo simulations using Worm Algorithm in J-current model. It was shown that the Peierls potential plays a crucial role in explaining the elastic properties of dislocations, namely shear modulus softening phenomenon. The crossover from T = 0 to finite temperatures leads to intrinsic softening of the shear modulus and is solely controlled by kink typical energy. It was demonstrated that the mechanism, involving only the binding of 3He impurities to the dislocations, requires an unrealistically high concentrations of defects (or impurities) in order to explain the shear modulus phenomenon and therefore an inclusion of Peierls potential in consideration is required. Superclimbing dislocations, that is the edge dislocations with the superfluidity along the core, were investigated. The theoretical prediction that superclimb is responsible for the phenomenon of "giant isochoric compressibility" was confirmed by Monte-Carlo simulations. It was demonstrated that the isochoric compressibility is suppressed at low temperatures. The dependence of

  11. Deformation-induced grain growth and twinning in nanocrystalline palladium thin films.

    PubMed

    Kobler, Aaron; Lohmiller, Jochen; Schäfer, Jonathan; Kerber, Michael; Castrup, Anna; Kashiwar, Ankush; Gruber, Patric A; Albe, Karsten; Hahn, Horst; Kübel, Christian

    2013-01-01

    The microstructure and mechanical properties of nanocrystalline Pd films prepared by magnetron sputtering have been investigated as a function of strain. The films were deposited onto polyimide substrates and tested in tensile mode. In order to follow the deformation processes in the material, several samples were strained to defined straining states, up to a maximum engineering strain of 10%, and prepared for post-mortem analysis. The nanocrystalline structure was investigated by quantitative automated crystal orientation mapping (ACOM) in a transmission electron microscope (TEM), identifying grain growth and twinning/detwinning resulting from dislocation activity as two of the mechanisms contributing to the macroscopic deformation. Depending on the initial twin density, the samples behaved differently. For low initial twin densities, an increasing twin density was found during straining. On the other hand, starting from a higher twin density, the twins were depleted with increasing strain. The findings from ACOM-TEM were confirmed by results from molecular dynamics (MD) simulations and from conventional and in-situ synchrotron X-ray diffraction (CXRD, SXRD) experiments.

  12. Deformation-induced changes in hydraulic head during ground-water withdrawal

    USGS Publications Warehouse

    Hsieh, Paul A.

    1996-01-01

    Ground-water withdrawal from a confined or semiconfined aquifer causes three-dimensional deformation in the pumped aquifer and in adjacent layers (overlying and underlying aquifers and aquitards). In response to the deformation, hydraulic head in the adjacent layers could rise or fall almost immediately after the start of pumping. This deformation-induced effect suggest that an adjacent layer undergoes horizontal compression and vertical extension when pumping begins. Hydraulic head initially drops in a region near the well and close to the pumped aquifer, but rises outside this region. Magnitude of head change varies from a few centimeters to more than 10 centimeters. Factors that influence the development of deformation-induced effects includes matrix rigidity (shear modulus), the arrangement of aquifer and aquitards, their thicknesses, and proximity to land surface. Induced rise in hydraulic head is prominent in an aquitard that extends from land surface to a shallow pumped aquifer. Induced drop in hydraulic head is likely observed close to the well in an aquifer that is separated from the pumped aquifer by a relatively thin aquitard. Induced effects might last for hours in an aquifer, but could persist for many days in an aquitard. Induced effects are eventually dissipated by fluid flow from regions of higher head to regions of lower head, and by propagation of drawdown from the pumped aquifer into adjacent layers.

  13. Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging

    SciTech Connect

    Volkov, Victor

    2014-10-21

    The paper addresses theory of Sum Frequency Generation imaging of an atomic force microscopy tip-induced deformation of a bilayer phospholipid membrane deposited over a pore: known as a nano-drum system. Image modeling employed nonlinearities of the normal modes specific to hydrocarbon terminal methyls, which are distributed about the deformed surfaces of inner and outer leaflets. The deformed profiles are according to the solutions of shape equation for Canham-Helfrich Hamiltonian accounting properties of four membranes, which differ in elasticity and adhesion. The results indicate that in continuous deformed surfaces, the difference in the curvature of the outer and inner leaflets dominates in the imaged nonlinearity. This is different comparing to the results for a perfect bilayer spherical cap system (the subject of previous study), where nonlinear image response is dominated by the mismatch of the inner and outer leaflets’ surface areas (as projected to the image plane) at the edge of perfectly spherical structure. The results of theoretical studies, here, demonstrate that Sum Frequency Generation imaging in continuous and deformed bilayer surfaces are helpful to address curvature locally and anticipate mechanical properties of membrane. The articles discuss applicability and practical limitations of the approach. Combination of Atomic Force Microscopy and Sum Frequency Generation imaging under controlled tip-induced deformation provides a good opportunity to probe and test membranes physical properties with rigor of adopted theory.

  14. Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging

    NASA Astrophysics Data System (ADS)

    Volkov, Victor

    2014-10-01

    The paper addresses theory of Sum Frequency Generation imaging of an atomic force microscopy tip-induced deformation of a bilayer phospholipid membrane deposited over a pore: known as a nano-drum system. Image modeling employed nonlinearities of the normal modes specific to hydrocarbon terminal methyls, which are distributed about the deformed surfaces of inner and outer leaflets. The deformed profiles are according to the solutions of shape equation for Canham-Helfrich Hamiltonian accounting properties of four membranes, which differ in elasticity and adhesion. The results indicate that in continuous deformed surfaces, the difference in the curvature of the outer and inner leaflets dominates in the imaged nonlinearity. This is different comparing to the results for a perfect bilayer spherical cap system (the subject of previous study), where nonlinear image response is dominated by the mismatch of the inner and outer leaflets' surface areas (as projected to the image plane) at the edge of perfectly spherical structure. The results of theoretical studies, here, demonstrate that Sum Frequency Generation imaging in continuous and deformed bilayer surfaces are helpful to address curvature locally and anticipate mechanical properties of membrane. The articles discuss applicability and practical limitations of the approach. Combination of Atomic Force Microscopy and Sum Frequency Generation imaging under controlled tip-induced deformation provides a good opportunity to probe and test membranes physical properties with rigor of adopted theory.

  15. Quenched pinning and collective dislocation dynamics

    PubMed Central

    Ovaska, Markus; Laurson, Lasse; Alava, Mikko J.

    2015-01-01

    Several experiments show that crystalline solids deform in a bursty and intermittent fashion. Power-law distributed strain bursts in compression experiments of micron-sized samples, and acoustic emission energies from larger-scale specimens, are the key signatures of the underlying critical-like collective dislocation dynamics - a phenomenon that has also been seen in discrete dislocation dynamics (DDD) simulations. Here we show, by performing large-scale two-dimensional DDD simulations, that the character of the dislocation avalanche dynamics changes upon addition of sufficiently strong randomly distributed quenched pinning centres, present e.g. in many alloys as immobile solute atoms. For intermediate pinning strength, our results adhere to the scaling picture of depinning transitions, in contrast to pure systems where dislocation jamming dominates the avalanche dynamics. Still stronger disorder quenches the critical behaviour entirely. PMID:26024505

  16. Thermodynamic forces in single crystals with dislocations

    NASA Astrophysics Data System (ADS)

    Van Goethem, Nicolas

    2014-06-01

    A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner's geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010-5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein-Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator "incompatibility," here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923-927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

  17. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    SciTech Connect

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; Mandadapu, Kranthi

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CP models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.

  18. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    DOE PAGES

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less

  19. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE PAGES

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; ...

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  20. Understanding of edge and screw dislocations in nanostructures by modeling and simulations

    NASA Astrophysics Data System (ADS)

    Dontsova, Evgeniya

    The role of the extended dislocation defects in nanostructures only recently began to be explored. In bulk materials, dislocations are modeled only away from their cores within the framework of the continuum mechanics. It is known that applying continuum modeling in the core region leads to divergences. In nanostructures, the core region dominates and new investigation methods are needed. This work contributes to the fundamental understanding of the role of dislocations in important carbon and zinc oxide nanostructures, by using atomistic investigation methods. In quasi-zero-dimensional structures, thesis describes the first attempt to rationalize dislocation processes in carbon nano-onions. Experiments show that carbon nano-onions exhibit an unusual dislocation dynamics with unexpected attraction of outer edge dislocation towards the core. Atomistic calculations combined with rigorous energy analysis attribute this behavior to an unusual inward driving force on the outer edge dislocation associated with a reduction in the number of dangling bonds. Moving on to quasi-one-dimensional nanostructures, we study the stability of screw-dislocated zinc oxide structures in the wurtzite phase with a symmetry-adapted molecular dynamics methodology, which introduces a significant simplification in the simulation domain size by accounting for the helical symmetry explicitly. The goal is to provide the theoretical support for a universal screw-dislocation-driven growth mechanism suggested by recent experiments. Moreover, the effects of axial screw dislocations on the electronic properties in helical zinc oxide nanowires and nanotubes are explored. We demonstrate significant screw-dislocation-induced band gap modifications that originate in the highly distorted cores. Finally, using the same objective technique, we investigate the stability against torsional deformations of quasi-one-dimensional graphene nanoribbons with bare, F-, and OH-saturated armchair edges. The prevalence

  1. Can Stress Relaxation Experiments be Used to Assess Deformation Induced Mobility in Glassy Polymers?

    NASA Astrophysics Data System (ADS)

    Kropka, Jamie; Long, Kevin

    The observance of an increase in glassy polymer relaxation rates under a mechanical deformation is often referred to as deformation induced mobility (DIM). It has been argued that stress relaxation experiments can provide indirect evidence of this phenomenon. Recently, stress relaxation experiments have been interpreted as demonstrating a mobility decrease with increased deformation when very slow strain rates, 1.2 x 10-5 s-1, are used to apply the deformation. This would suggest against generality of DIM and would have significant implications to constitutive models founded on this principle. Here, a mathematical exercise is performed to evaluate the implications of DIM on stress relaxation response. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. Laser shock peening effect on the dislocation transitions and grain refinement of Al–Mg–Si alloy

    SciTech Connect

    Trdan, U.; Skarba, M.; Grum, J.

    2014-11-15

    This paper systematically investigates the effect of laser shock peening without coating parameters on the microstructural evolution, and dislocation configurations induced by ultra-high plastic strains and strain rates. Based on an analysis of optical microscopy, polarized light microscopy, transmission electron microscopy observations and residual stress analysis, the significant influence of laser shock peening parameters due to the effect of plasma generation and shock wave propagation has been confirmed. Although the optical microscopy results revealed no significant microstructural changes after laser shock peening, i.e. no heat effect zone and differences in the distribution of second-phase particles, expressive influence of laser treatment parameters on the laser shock induced craters was confirmed. Moreover, polarized light microscopy results have confirmed the existence of well-defined longish grains up to 455 μm in length in the centre of the plate due to the rolling effect, and randomly oriented smaller grains (20 μm × 50 μm) in the surface due to the static recrystallization effect. Laser shock peening is reflected in an exceptional increase in dislocation density with various configurations, i.e. dislocation lines, dislocation cells, dislocation tangles, and the formation of dense dislocation walls. More importantly, the microstructure is considerably refined due to the effect of strain deformations induced by laser shock peening process. The results have confirmed that dense dislocation structures during ultra-high plastic deformation with the addition of shear bands producing ultra-fine (60–200 nm) and nano-grains (20–50 nm). Furthermore, dislocation density was increased by a factor of 2.5 compared to the untreated material (29 × 10{sup 13} m{sup −2} vs. 12 × 10{sup 13} m{sup −2}). - Highlights: • LSPwC imparts high compressive residual stresses up to − 362 ± 31 MPa. • After LSPwC the microstructure is considerably refined via

  3. [Anterior dislocation of the elbow joint without peri-articular fracture in an adult].

    PubMed

    Chbani, B; Lahrach, K; Amar, M-F; Ibnlkadi, K; Elmoubaker, S; Bennani, A; Marzouki, A; Boutayeb, F

    2012-12-01

    In view of the comparative frequency of posterior dislocations of the elbow, it is rather remarkable that anterior dislocations of that joint should be among the rarest of injuries [1]. Our case is one of the first cases of anterior dislocation of the elbow without any periarticular fracture or pre-existing deformities around the elbow [2].

  4. Tracking the deformation of a tissue phantom induced by ultrasound-driven bubble oscillations

    NASA Astrophysics Data System (ADS)

    Tinguely, M.; Matar, O. K.; Garbin, V.

    2015-12-01

    Microbubbles are used as contrast agents in ultrasound medical imaging. Once the microbubbles are injected into the body, they flow through the vascular system, confined by viscoelastic boundaries. The proximity of the boundaries affects the dynamics of the bubbles in ultrasound, in a manner that depends on the boundary's viscoelastic properties. Experiments on violently collapsing bubbles have revealed the dynamics of deformation of blood vessel walls. However, the deformation field induced by a bubble undergoing small-amplitude oscillations, relevant for ultrasound imaging, is difficult to access in experiment, and has not been reported yet. We present an experimental method to measure the deformation field induced by a bubble oscillating inside a microchannel within a tissue phantom. We use high-speed video microscopy to track the displacement of tracer particles embedded in the phantom, along with the dynamics of the bubble.

  5. Dislocation core radii near elastic stability limits

    NASA Astrophysics Data System (ADS)

    Sawyer, C. A.; Morris, J. W., Jr.; Chrzan, D. C.

    2013-04-01

    Recent studies of transition metal alloys with compositions that place them near their limits of elastic stability [e.g., near the body-centered-cubic (BCC) to hexagonal-close-packed (HCP) transition] suggest interesting behavior for the dislocation cores. Specifically, the dislocation core size is predicted to diverge as the stability limit is approached. Here a simple analysis rooted in elasticity theory and the computation of ideal strength is used to analyze this divergence. This analysis indicates that dislocation core radii should diverge as the elastic limits of stability are approached in the BCC, HCP, and face-centered-cubic (FCC) structures. Moreover, external stresses and dislocation-induced stresses also increase the core radii. Density functional theory based total-energy calculations are combined with anisotropic elasticity theory to compute numerical estimates of dislocation core radii.

  6. Protective effect of alpha-tocotrienol against free radical-induced impairment of erythrocyte deformability.

    PubMed

    Begum, Aynun Nahar; Terao, Junji

    2002-02-01

    Alpha-tocotrienol (alpha-T3) has been suggested to protect cellular membranes against free radical damage. This study was done to estimate the effect of alpha-T3 on free radical-induced impairment of erythrocyte deformability by comparing it to alpha-tocopherol (alpha-T). An erythrocyte suspension containing 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) was forced to flow through microchannels with an equivalent diameter of 7 microm for measuring erythrocyte deformability. A higher concentration of AAPH caused a marked decrease in erythrocyte deformability with concomitant increase of membranous lipid peroxidation. Treatment of erythrocytes with alpha-T or alpha-T3 suppressed the impairment of erythrocyte deformability as well as membranous lipid peroxidation and they also increased erythrocyte deformability even in the absence of AAPH. In these cases, the protecting effect of alpha-T3 was significantly higher than that of alpha-T. We emphasize that higher incorporating activity of alpha-T3 into erythrocyte membranes seems to be the most important reason for higher protection against erythrocyte oxidation and impairment its deformability.

  7. Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul lake (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.

    2016-10-01

    This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.

  8. Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate; Sethna, James P.

    2007-06-01

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stress fields vanish. We explain that a grain boundary (a dislocation wall satisfying Frank’s formula) has vanishing stress in the continuum limit. We show that the general stress-free state can be written explicitly as a (perhaps continuous) superposition of flat Frank walls. We show that the stress-free states are also naturally interpreted as configurations generated by a general spatially dependent rotational deformation. Finally, we propose a least-squares definition for the spatially dependent rotation field of a general (stressful) dislocation density field.

  9. Prediction of Dislocation Cores in Aluminum from Density Functional Theory (Postprint)

    DTIC Science & Technology

    2009-02-01

    demonstrates the need for quantum mechanical treatment of dislocation cores. 15. SUBJECT TERMS plastic deformation, dislocation, energy , fault...field that decreases as the inverse of the distance from the core. In fcc metals dislocations can reduce elastic energy by separating into Shockley...partial dislocations connected by a stacking fault [1]. For materi- als with large stacking fault energies (i.e., aluminum) this separation can be quite

  10. Intraoperative measurement of indenter-induced brain deformation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2014-03-01

    Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain in vivo. In this study, we investigated the feasibility of inducing and detecting cortical surface deformation intraoperatively for patients undergoing open skull neurosurgeries. A custom diskshaped indenter made of high-density tungsten (diameter of 15 mm with a thickness of 6 mm) was used to induce deformation on the brain cortical surface immediately after dural opening. Before and after placing the indenter, sequences (typically 250 frames at 15 frames-per-second, or ~17 seconds) of high-resolution stereo image pairs were acquired to capture the harmonic motion of the exposed cortical surface as due to blood pressure pulsation and respiration. For each sequence with the first left image serving as a baseline, an optical-flow motion-tracking algorithm was used to detect in-sequence cortical surface deformation. The resulting displacements of the exposed features within the craniotomy were spatially averaged to identify the temporal frames corresponding to motion peak magnitudes. Corresponding image pairs were then selected to reconstruct full-field three-dimensional (3D) cortical surfaces before and after indentation, respectively, from which full 3D displacement fields were obtained by registering their projection images. With one clinical patient case, we illustrate the feasibility of the technique in detecting indenter-induced cortical surface deformation in order to allow subsequent processing to determine material properties of the brain in vivo.

  11. Analytical and Experimental Characterization of Gravity Induced Deformations In Subscale Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Blandino, Joseph R.; McEvoy, Kiley C.

    2004-01-01

    The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.

  12. Tissue deformation induced by radiation force from Gaussian transducers.

    PubMed

    Myers, Matthew R

    2006-05-01

    Imaging techniques based upon the tissue mechanical response to an acoustic radiation force are being actively researched. In this paper a model for predicting steady-state tissue displacement induced by a radiation force arising from the absorption of Gaussian ultrasound beams is presented. A simple analytic expression is derived that agrees closely with the numerical quadrature of the displacement convolution integrals. The analytic result reveals the dependence of the steady-state axial displacement upon the operational parameters, e.g., an inverse proportional relationship to the tissue shear modulus. The derivation requires that the transducer radius be small compared to the focal length, but accurate results were obtained for transducer radii comparable to the focal length. Favorable comparisons with displacement predictions for non-Gaussian transducers indicate that the theory is also useful for a broader range of transducer intensity profiles.

  13. Thermophoretically induced large-scale deformations around microscopic heat centers

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.

    2016-05-01

    Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.

  14. Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions

    SciTech Connect

    Tsibidis, G. D.; Stratakis, E.; Aifantis, K. E.

    2012-03-01

    A hybrid theoretical model is presented to describe thermoplastic deformation effects on silicon surfaces induced by single and multiple ultrashort pulsed laser irradiation in submelting conditions. An approximation of the Boltzmann transport equation is adopted to describe the laser irradiation process. The evolution of the induced deformation field is described initially by adopting the differential equations of dynamic thermoelasticity while the onset of plastic yielding is described by the von Mises stress. Details of the resulting picometre sized crater, produced by irradiation with a single pulse, are discussed as a function of the imposed conditions and thresholds for the onset of plasticity are computed. Irradiation with multiple pulses leads to ripple formation of nanometre size that originates from the interference of the incident and a surface scattered wave. It is suggested that ultrafast laser induced surface modification in semiconductors is feasible in submelting conditions, and it may act as a precursor of the incubation effects observed at multiple pulse irradiation of materials surfaces.

  15. Wind induced surface deformation of the Nobeyama 45-m radio telescope

    NASA Astrophysics Data System (ADS)

    Ukita, N.

    2008-07-01

    Reflector surface deformation due to wind loading on the Nobeyama 45-m antenna has been measured with four LED lamps on the surface at r = 20 m and two CCD cameras on the central hub as it rotates in azimuth with elevation angles of 90 and 11 degrees. The side-wind loading of 8.4 m s-1 caused a tilt of 12 arcseconds and an astigmatic deformation of 0.8 mm. The front- and back-wind loading of 9.9 m s-1 induced a vertical displacement variation of 2.3 mm. These largescale surface deformation profiles have been compared with those of finite element calculations and coefficients of axial force and yaw moment predicted by a JPL wind tunnel data excerpt.

  16. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.

  17. Radiation enhanced basal plane dislocation glide in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Vergeles, Pavel S.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2016-05-01

    A movement of basal plane segments of dislocations in GaN films grown by epitaxial lateral overgrowth under low energy electron beam irradiation (LEEBI) was studied by the electron beam induced current (EBIC) method. Only a small fraction of the basal plane dislocation segments were susceptible to irradiation and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide (REDG) in the structure with strong pinning. A dislocation velocity under LEEBI with a beam current lower than 1 nA was estimated as about 10 nm/s. The results assuming the REDG for prismatic plane dislocations were presented.

  18. Dislocation pileup as a representation of strain accumulation on a strike-slip fault

    USGS Publications Warehouse

    Savage, J.C.

    2006-01-01

    The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.

  19. High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: Geometrically necessary dislocation densities

    NASA Astrophysics Data System (ADS)

    Kysar, Jeffrey W.; Gan, Yong X.; Morse, Timothy L.; Chen, Xi; Jones, Milton E.

    2007-07-01

    Experimental studies on indentation into face-centered cubic (FCC) single crystals such as copper and aluminum were performed to reveal the spatially resolved variation in crystal lattice rotation induced due to wedge indentation. The crystal lattice curvature tensors of the indented crystals were calculated from the in-plane lattice rotation results as measured by electron backscatter diffraction (EBSD). Nye's dislocation density tensors for plane strain deformation of both crystals were determined from the lattice curvature tensors. The least L2-norm solutions to the geometrically necessary dislocation densities for the case in which three effective in-plane slip systems were activated in the single crystals associated with the indentation were determined. Results show the formation of lattice rotation discontinuities along with a very high density of geometrically necessary dislocations.

  20. Unexpected sorption-induced deformation of nanoporous glass: evidence for spatial rearrangement of adsorbed argon.

    PubMed

    Schappert, Klaus; Pelster, Rolf

    2014-11-25

    Sorption of substances in pores generally results in a deformation of the porous matrix. The clarification of this effect is of particular importance for the recovery of methane and the geological storage of CO2. As a model system, we study the macroscopic deformation of nanoporous Vycor glass during the sorption of argon using capacitative measurements of the length change of the sample. Upon desorption we observe an unpredicted sharp contraction and re-expansion peak, which contains information on the draining mechanism of the porous sample. We have modified the theoretical model by Gor and Neimark1 to predict the sorption-induced deformation of (partly) filled porous samples. In this analysis, the contraction is attributed to a metastable or nonequilibrium configuration where a thin surface layer on the pore walls coexists with capillary bridges. Alternatively, pore blocking and cavitation during the draining of the polydisperse pore network can be at the origin of the deformation peak. The results are a substantial step toward a correlation between the spatial configuration of adsorbate, its interaction with the host material, and the resulting deformation.

  1. Hidden secrets of deformation: Impact-induced compaction within a CV chondrite

    NASA Astrophysics Data System (ADS)

    Forman, L. V.; Bland, P. A.; Timms, N. E.; Collins, G. S.; Davison, T. M.; Ciesla, F. J.; Benedix, G. K.; Daly, L.; Trimby, P. W.; Yang, L.; Ringer, S. P.

    2016-10-01

    The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1-essentially unshocked-using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample.

  2. Dislocation Damping and Anisotropic Attenuation in the Earth's Upper Mantle

    NASA Astrophysics Data System (ADS)

    Jackson, I.; Farla, R. J.; Fitz Gerald, J. D.; Faul, U.; Zimmerman, M. E.

    2011-12-01

    Seismic anisotropy, attributed to olivine lattice preferred orientation, suggests that tectonic deformation in the Earth's shallow upper mantle involves dislocation creep. Reversible glide of dislocations, generated by the prevailing/fossil tectonic stress, may result in anelastic relaxation that contributes to the reduction of seismic wave speeds and associated attenuation. To test this hypothesis, polycrystalline olivine specimens were synthesised from synthetic (sol-gel) precursors and hot-pressed at high temperature. The hot-pressed material is fully dense, fine-grained and essentially dry and melt-free olivine. Other, coarser-grained material was synthesised from San Carlos olivine powders. These contrasting materials provided the opportunity to distinguish between the influences of grain size and dislocation density. Selected specimens were deformed by dislocation creep either in compression or torsion and characterised for dislocation density via oxidation and backscattered electron imaging. Additionally, the dislocation recovery rate was determined for both olivines at different temperatures and time durations. The results established that a maximum temperature of 1100C should allow a relatively stable dislocation density to be maintained during prolonged mechanical testing (> 50 hours). The shear modulus and associated strain-energy dissipation in both hot-pressed and pre-deformed specimens were subsequently measured at seismic frequencies under conditions of simultaneous high pressure and temperature with torsional forced-oscillation methods. These experiments were carried out with strain amplitudes < 10-5 to permit direct comparison with seismological models. The high-temperature dissipation background, attributed in undeformed fine-grained materials to grain-boundary sliding, and the associated partial relaxation of the shear modulus, are systematically enhanced in the pre-deformed materials - suggesting a role for the dislocations introduced during the

  3. NANOSECOND INTERFEROMETRIC STUDIES OF SURFACE DEFORMATIONS OF DIELECTRICS INDUCED BY LASER IRRADIATION

    SciTech Connect

    S. GREENFIELD; ET AL

    2000-05-01

    Transient surface deformations in dielectric materials induced by laser irradiation were investigated with time-resolved interferometry. Deformation images were acquired at various delay times after exposure to single pulses (100 ps at 1.064 {micro}m) on fresh sample regions. Above the ablation threshold, we observe prompt ejection of material and the formation of a single unipolar compressional surface acoustic wave propagating away from the ablation crater. For calcite, no deformation--either transient or permanent--is discernable at laser fluences below the threshold for material ejection. Above and below-threshold behavior was investigated using a phosphate glass sample with substantial near infrared absorption (Schott filter KG3). Below threshold, KG3 exhibits the formation of a small bulge roughly the size of the laser spot that reaches its maximum amplitude by {approx}5 ns. By tens of nanoseconds, the deformations become quite complex and very sensitive to laser fluence. The above-threshold behavior of KG3 combines the ablation-induced surface acoustic wave seen in calcite with the bulge seen below threshold in KG3. A velocity of 2.97 {+-} 0.03 km/s is measured for the KG3 surface acoustic wave, very close to the Rayleigh wave velocity calculated from material elastic parameters. Details of the transient interferometry system will also be given.

  4. Irreducible posterolateral elbow dislocation.

    PubMed

    Atkinson, Cameron T; Pappas, Nick D; Lee, Donald H

    2014-02-01

    Elbow dislocations are a high-energy traumatic event resulting in loss of congruence of a stable joint. The majority of elbow dislocations can be reduced by closed means and treated conservatively. We present a case of an irreducible elbow dislocation with reduction blocked by the radial head buttonholed through the lateral ligamentous complex. We performed open reduction with release followed by repair of the lateral ligamentous complex. Clinicians need to understand this unique variant of an elbow dislocation to appropriately treat this operative injury.

  5. Discrete dislocations in graphene

    NASA Astrophysics Data System (ADS)

    Ariza, M. P.; Ortiz, M.

    2010-05-01

    In this work, we present an application of the theory of discrete dislocations of Ariza and Ortiz (2005) to the analysis of dislocations in graphene. Specifically, we discuss the specialization of the theory to graphene and its further specialization to the force-constant model of Aizawa et al. (1990). The ability of the discrete-dislocation theory to predict dislocation core structures and energies is critically assessed for periodic arrangements of dislocation dipoles and quadrupoles. We show that, with the aid of the discrete Fourier transform, those problems are amenable to exact solution within the discrete-dislocation theory, which confers the theory a distinct advantage over conventional atomistic models. The discrete dislocations exhibit 5-7 ring core structures that are consistent with observation and result in dislocation energies that fall within the range of prediction of other models. The asymptotic behavior of dilute distributions of dislocations is characterized analytically in terms of a discrete prelogarithmic energy tensor. Explicit expressions for this discrete prelogarithmic energy tensor are provided up to quadratures.

  6. Dislocated shoulder - aftercare

    MedlinePlus

    ... aftercare; Shoulder subluxation - aftercare; Shoulder reduction - aftercare; Glenohumeral joint dislocation ... that connect bone to bone) of the shoulder joint. All of these tissues help keep your arm ...

  7. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    NASA Astrophysics Data System (ADS)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  8. Effect of Friction-Induced Deformation on the Structure, Microhardness, and Wear Resistance of Austenitic Chromium—Nickel Stainless Steel Subjected to Subsequent Oxidation

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Chernenko, N. L.

    2016-03-01

    The effect of plastic deformation that occurs in the zone of the sliding friction contact on structural transformations in the 12Kh18N9T austenitic steel subjected to subsequent 1-h oxidation in air at temperatures of 300-800°C, as well as on its wear resistance, has been studied. It has been shown that severe deformation induced by dry sliding friction produces the two-phase nanocrystalline γ + α structure in the surface layer of the steel ~10 μm thick. This structure has the microhardness of 5.2 GPa. Subsequent oxidation of steel at temperatures of 300-500°C leads to an additional increase in the microhardness of its deformed surface layer to the value of 7.0 GPa. This is due to the active saturation of the austenite and the strain-assisted martensite (α') with the oxygen atoms, which diffuse deep into the metal over the boundaries of the γ and α' nanocrystals with an increased rate. The concentration of oxygen in the surface layer of the steel and in wear products reaches 8 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ and α' phases, which enhances the strength and wear resistance of the surface of the 12Kh18N9T steel. The oxidation of steel at temperatures of 550-800°C under a light normal load (98 N) results in the formation of a large number of Fe3O4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance during dry sliding friction in a pair with 40Kh13 steel. Under a heavy normal load (196 N), the toughness of 12Kh18N9T steel and, therefore, the wear resistance of its surface layer decrease due to the presence of the brittle oxide phase.

  9. The Correlation of Stir Zone Texture Development with Base Metal Texture and Tool-Induced Deformation in Friction Stir Processing of Severely Deformed Aluminum

    NASA Astrophysics Data System (ADS)

    Sarkari Khorrami, M.; Kazeminezhad, Mohsen; Miyashita, Y.; Kokabi, A. H.

    2017-01-01

    The texture development during friction stir processing (FSP) of 1050 aluminum severely deformed at the strain magnitude of 2.32 was comprehensively discussed. It was observed that the component bar{B} of the ideal shear texture along with the cube texture was developed in the severely deformed base metal. The effects of base metal texture on the texture development of stir zone, thermo-mechanically affected zone, and heat-affected zone during FSP were examined. Also, the developed texture components in the vicinity of the FSP tool and the stir zone were correlated to the deformation induced by the rotating tool which consisted of pin and shoulder. The observed texture components in the longitudinal section of the stir zone were found coincided with the ideal shear ones, but different from those observed in the severely deformed base metal. It could be responsible for the fact that the material beneath the FSP tool is predominantly deformed and stirred by the shoulder rather than the pin. The independency of texture development in the stir zone from pin-induced deformation was also consistent with the observation associated with the stir zone geometry which was independent of the pin geometry. Microstructural evolutions in the regions located ahead of the FSP tool manifested the incident of static recovery and recrystallization as a result of the stored strain in the severely deformed base metal. These led to the development of almost random texture and the deterioration of base metal texture in this region. This suggested the independency of texture development in the stir zone from the texture of severely deformed base metal.

  10. Screw dislocation-induced growth spirals as emissive exciton localization centers in Al-rich AlGaN/AlN quantum wells

    SciTech Connect

    Funato, Mitsuru Banal, Ryan G.; Kawakami, Yoichi

    2015-11-15

    Screw dislocations in Al-rich AlGaN/AlN quantum wells cause growth spirals with an enhanced Ga incorporation, which create potential minima. Although screw dislocations and their surrounding potential minima suggest non-radiative recombination processes within growth spirals, in reality, screw dislocations are not major non-radiative sinks for carriers. Consequently, carriers localized within growth spirals recombine radiatively without being captured by non-radiative recombination centers, resulting in intense emissions from growth spirals.

  11. Deformation-induced anisotropy of remanent and induced magnetization - implications for interpretation of rock-magnetic data

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Machek, M.; Roxerová, Z.; Siemes, H.

    2015-12-01

    Induced and remanent magnetization measurements, e.g. shape of hysteresis loops, FORC diagrams and decomposition of isothermal remanent magnetization (IRM) acquisition curves, became routine tools in rock-magnetic measurements, interpreted mostly in terms of composition and grain-size distribution of iron oxides. It is assumed that the substances investigate are with respect to these measurements isotropic and single measurement of one sample is sufficient for interpretation. This assumption is valid for powdered samples, but solid rock samples in general behave anisotropically. In our contribution we report on magnetic measurements of hematite ore samples deformed in torsion, which show significant anisotropy of shape of hysteresis loops and IRM acquisition curves; the degree of anisotropy reflecting the degree of deformation. Samples, measured in different directions, showed different shape of hysteresis loop, from regular, which may be interpreted either as randomly oriented multi-domain grains, or with different degree of distortion (wasp-waistedness), reflecting different distribution of contrasting coercivities. Also decomposition of IRM acquisition curves, measured in different direction, yielded different interpretation in terms of relative contributions of components with different coercivities. We interpret this anisotropy as result of deformation, causing preferred orientation of basal planes of hematite. Moreover, the anisotropy is asymmetric. Our results suggest that, at least in deformed rocks containing minerals with high shape and/or magnetocrystalline anisotropy, the effect of anisotropy should be considered and verified before induced and remanent magnetization measurements are interpreted.

  12. The strength and dislocation microstructure evolution in superalloy microcrystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.

    2017-02-01

    In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.

  13. Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition

    DTIC Science & Technology

    2010-01-01

    homepage: www.e lsev ier .com/ locate /msea Computational investigation of impact energy absorption capability of polyurea coatings via deformation-induced...Keywords: Polyurea Computational analysis Glass transition Blast/impact energy absorption coating a b s t r a c t A number of experimental investigations...reported in the open literature have indicated that the applica- tion of polyurea coatings can substantially improve blast and ballistic impact

  14. Extended Holography: Double-Trace Deformation and Brane-Induced Gravity Models

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.

    2017-03-01

    We put forward a conjecture that for a special class of models - models of the double-trace deformation and brane-induced gravity types - the principle of holographic dualitiy can be extended beyond conformal invariance and anti-de Sitter (AdS) isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on the boundary.

  15. Alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden: A new shock wave-induced deformation feature

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Reznik, B.; Alva-Valdivia, L. M.; Srivastava, D. C.

    2017-03-01

    This paper reports peculiar alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden. The combined microscopic and spectroscopic studies of the micro/nanoscale wedges reveal that these are deformation-induced features. First, samples showing wedges, 12 out of 18 studied, are distributed in the impact structure within a radius of up to 10 km from the crater center. Second, the margins between the augite and labradorite wedges are sharp and the {110} prismatic cleavage of augite develops into fractures and thereafter into wedges. The fractures are filled with molten labradorite pushed from the neighboring bulk labradorite grain. Third, compared to the bulk labradorite, the dislocation density and the residual strain in the labradorite wedges are significantly higher. A possible mechanism of genesis of the wedges is proposed. The mechanism explains that passing of the shock waves in the basement dolerite induced (i) formation of microfractures in augite and labradorite; (ii) development of the augite prismatic cleavages into the wedges, which overprint the microfracture in the labradorite wedges; and (iii) thereafter, infilling of microfractures in the augite wedges by labradorite.

  16. Shear stress-driven refreshing capability of plastic deformation in nanolayered metals.

    PubMed

    Yan, J W; Zhu, X F; Yang, B; Zhang, G P

    2013-04-12

    Severely localized deformation within shear bands can occur much more easily in a metal with nanoscale microstructures, such as nanograined and nanolayered materials. Based on atomic-scale observations, here we show that such locally large deformation (the continuous thinning of the layers) within the indentation-induced shear bands of the Cu/Au nanolayers is essentially attributed to the large shear stress component along the interface, which can refresh the capability of the interface to absorb incoming dislocations through unlocking the product of the dislocation-interface reaction. The results have implications for understanding the interface-mediated mechanisms of plastic deformation and for the engineering application of severe plastic deformation processing of metals at nanoscales.

  17. Bulk Dislocation Core Dissociation Probed by Coherent X Rays in Silicon

    SciTech Connect

    Jacques, V. L. R.; Pinsolle, E.; Ravy, S.; Sauvage-Simkin, M.; Le Bolloc'h, D.; Livet, F.

    2011-02-11

    We report on a new approach to probe bulk dislocations by using coherent x-ray diffraction. Coherent x rays are particularly suited for bulk dislocation studies because lattice phase shifts in condensed matter induce typical diffraction patterns which strongly depend on the fine structure of the dislocation cores. The strength of the method is demonstrated by performing coherent diffraction of a single dislocation loop in silicon. A dissociation of a bulk dislocation is measured and proves to be unusually large compared to surface dislocation dissociations. This work opens a route for the study of dislocation cores in the bulk in a static or dynamical regime, and under various external constraints.

  18. Anisotropy of remanent and induced magnetization in hematite ore deformed in torsion

    NASA Astrophysics Data System (ADS)

    Machek, Matěj; Petrovský, Eduard; Roxerová, Zuzana; Kusbach, Vladimír; Siemes, Heinrich

    2016-04-01

    Induced and remanent magnetization measurements, e.g. shape of hysteresis loops, FORC diagrams and decomposition of isothermal remanent magnetization (IRM) acquisition curves, became routine tools in rock-magnetic measurements, interpreted mostly in terms of composition and grain-size distribution of iron oxides. It is assumed that the substances investigate are with respect to these measurements isotropic and single measurement of one sample is sufficient for interpretation. This assumption is valid for powdered samples, but solid rock samples in general behave anisotropically. In our contribution we report on magnetic measurements of hematite ore samples deformed in torsion, which show significant anisotropy of shape of hysteresis loops and IRM acquisition curves; the degree of anisotropy reflecting the degree of deformation. Samples, measured in different directions, showed different shape of hysteresis loop, from regular, which may be interpreted either as randomly oriented multi-domain grains, or with different degree of distortion (wasp-waistedness), reflecting different distribution of contrasting coercivities. Also decomposition of IRM acquisition curves, measured in different direction, yielded different interpretation in terms of relative contributions of components with different coercivities. The increasing strain is reflected in the strength and orientation of microstructure and crystallographic preferred orientation (CPO). The AMS in deformed samples is not controlled by hematite CPO. It is rather dominated by occurrence of magnetite grains along samples edges parallel to shear plane, probably due to the diffusion of Fe ions from iron jacket, even though samples were shielded by a silver (70)/palladium (30) sleeve of 0.5 mm thickness. We interpret this anisotropy as result of deformation, causing preferred orientation of basal planes of hematite. Moreover, the anisotropy is asymmetric. Our results suggest that, at least in deformed rocks containing

  19. Theory of light-induced deformation of azobenzene elastomers: Influence of network structure

    NASA Astrophysics Data System (ADS)

    Toshchevikov, V. P.; Saphiannikova, M.; Heinrich, G.

    2012-07-01

    Azobenzene elastomers have been extensively explored in the last decade as photo-deformable smart materials which are able to transform light energy into mechanical stress. Presently, there is a great need for theoretical approaches to accurately predict the quantitative response of these materials based on their microscopic structure. Recently, we proposed a theory of light-induced deformation of azobenzene elastomers using a simple regular cubic network model [V. Toshchevikov, M. Saphiannikova, and G. Heinrich, J. Phys. Chem. B 116, 913 (2012), 10.1021/jp206323h]. In the present study, we extend the previous theory using more realistic network models which take into account the random orientation of end-to-end vectors of network strands as well as the molecular weight distribution of the strands. Interaction of the chromophores with the linearly polarized light is described by an effective orientation potential which orients the chromophores perpendicular to the polarization direction. We show that both monodisperse and polydisperse azobenzene elastomers can demonstrate either a uniaxial expansion or contraction along the polarization direction. The sign of deformation (expansion/contraction) depends on the orientation distribution of chromophores with respect to the main chains which is defined by the chemical structure and by the lengths of spacers. The degree of cross-linking and the polydispersity of network strands do not affect the sign of deformation but influence the magnitude of light-induced deformation. We demonstrate that photo-mechanical properties of mono- and poly-disperse azobenzene elastomers with random spatial distribution of network strands can be described in a very good approximation by a regular cubic network model with an appropriately chosen length of the strands.

  20. Metallurgy: Starting and stopping dislocations

    NASA Astrophysics Data System (ADS)

    Minor, Andrew M.

    2015-09-01

    A comparison of dislocation dynamics in two hexagonal close-packed metals has revealed that dislocation movement can vary substantially in materials with the same crystal structure, associated with how the dislocations relax when stationary.

  1. Continuous deformation versus episodic deformation at high stress - the microstructural record

    NASA Astrophysics Data System (ADS)

    Trepmann, C. A.; Stöckhert, B.

    2009-04-01

    The microstructural record of continuous high stress deformation is compared to that of episodic high stress deformation on two examples: 1. Folding of quartz veins in metagreywacke from Pacheco Pass, California, undergoing deformation by dissolution precipitation creep at temperatures of 300 ± 50°C. The microfabric of the folded quartz veins indicates deformation by dislocation creep accompanied by subgrain rotation. The small recrystallized grain size of ~8±6 µm in average implies relatively high differential stresses of a few hundred MPa. The stress concentration in the vein is due to a high contrast in effective viscosities between the single phase material and the polyphase fine-grained host metagreywacke deforming by dissolution precipitation creep. Smoothly curved, but generally not sutured, grain boundaries as well as the small size and a relatively high dislocation density of recrystallized grains suggest that strain-induced grain boundary migration was of minor importance. This is suspected to be a consequence of low strain gradients, which are due to the relative rates of dynamic recovery and continuous dislocation production during climb-controlled creep, at high stress and the given low temperature. Subgrain rotation recrystallization is thus proposed to be characteristic for continuous deformation at high differential stress. 2. Episodic deformation in the middle crust at the tip of a seismic active fault zone. The microfabric of mid-crustal rocks exhumed in tectonically active regions can record episodic high stress deformation at the base of the seismogenic layer. The quartz veins from St. Paul la Roche in the Massif Central, France, are very coarse grained. On the scale of a thin section they are basically single crystalline. However, they show a very heterogeneous microstructure with a system of healed microcracks that are decorated by subgrains and more rarely by small recrystallized grains. Undulating deformation lamellae that do not show a

  2. Interaction of dislocations with carbon-decorated dislocation loops in bcc Fe: an atomistic study.

    PubMed

    Terentyev, Dmitry; Anento, Napoleón; Serra, Anna

    2012-11-14

    Properties of ferritic Fe-based alloys are highly sensitive to the carbon content dissolved in the matrix because interstitial carbon is known to strongly interact with lattice point defects and dislocations. As a result, the accumulation of radiation defects and its impact on the change of mechanical properties is also affected by the presence of dissolved interstitial carbon. This work contributes to an understanding of how interstitial carbon atoms influence the properties of small dislocation loops, which form directly in collision cascades upon neutron or ion irradiation and are 'invisible' to (i.e. undetectable by) standard experimental techniques applied to reveal nano-structural damage in metals. We have carried out MD simulations to investigate how the trapping of 1/2 inner product 111 dislocation loops at thermally stable carbon-vacancy complexes, known to form under irradiation, affects the interaction of these dislocation loops with dislocations in bcc Fe. We have considered loops of size 1 and 3.5 nm, which represent experimentally invisible and visible defects, respectively. The obtained results point at the strong suppression of the drag of carbon-decorated loops by dislocations. In the case of direct interaction between dislocation and carbon-decorated loops, invisible loops are found to act as obstacles whose strength is at least twice as high compared to that of undecorated ones. Additional strengthening due to the carbon decoration on the visible loops was also regularly registered. The reasons for the additional strengthening have been rationalized and discussed. It is demonstrated that carbon decoration/segregation at dislocation loops affects not only accumulation of radiation damage under prolonged irradiation but also alters the post-irradiation plastic deformation mechanisms. For the first time, we provide evidence that undetectable dislocation loops decorated by carbon do contribute to the radiation hardening.

  3. Traumatic proximal tibiofibular dislocation.

    PubMed

    Burgos, J; Alvarez-Montero, R; Gonzalez-Herranz, P; Rapariz, J M

    1997-01-01

    Proximal tibiofibular dislocation is an exceptional lesion. Rarer still is its presentation in childhood. We describe the clinical case of a 6-year-old boy, the victim of a road accident. He had a tibiofibular dislocation associated with a metaphyseal fracture of the tibia.

  4. Formation of helical dislocations in ammonothermal GaN substrate by heat treatment

    NASA Astrophysics Data System (ADS)

    Horibuchi, Kayo; Yamaguchi, Satoshi; Kimoto, Yasuji; Nishikawa, Koichi; Kachi, Tetsu

    2016-03-01

    GaN substrate produced by the basic ammonothermal method and an epitaxial layer on the substrate was evaluated using synchrotron radiation x-ray topography and transmission electron microscopy. We revealed that the threading dislocations present in the GaN substrate are deformed into helical dislocations and the generation of the voids by heat treatment in the substrate for the first observation in the GaN crystal. These phenomena are formed by the interactions between the dislocations and vacancies. The helical dislocation was formed in the substrate region, and not in the epitaxial layer region. Furthermore, the evaluation of the influence of the dislocations on the leakage current of Schottky barrier diodes fabricated on the epitaxial layer is discussed. The dislocations did not affect the leakage current characteristics of the epitaxial layer. Our results suggest that the deformation of dislocations in the GaN substrate does not adversely affect the epitaxial layer.

  5. Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy

    NASA Astrophysics Data System (ADS)

    Jiang, F. D.; Feng, J. Y.

    2008-02-01

    Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.

  6. Radiation-induced craniofacial deformities: a new classification and management algorithm.

    PubMed

    Allam, Karam A; Lim, Alan A; Elsherbiny, Ahmed; Bradley, James P; Kawamoto, Henry K

    2013-08-01

    Little is written about the spectrum of late radiation-induced craniofacial abnormalities and the guidelines for treating these abnormalities. The clinical records of 13 patients (eight males and five females) who received childhood craniofacial radiation between birth and 11 years of age and who subsequently had reconstructive surgery were reviewed. Eleven patients had their irradiation at the age from 1 to 5 years. The other two patients received their treatment at a relatively older age (9 and 11 years). Their deformities ranged from isolated soft-tissue deficiency with no or minimal bony deficiency to cases having osseous deformities with or without soft-tissue deficiency but still the normal or near-normal craniofacial form can be obtained with surgical intervention and the outermost extreme of the deformity is the patients whose normal or near-normal craniofacial form and function cannot be regained even with much sophisticated surgeries. Our new classification is based on two factors: the tissue component of the deformity and the possibility of regaining a normal or near-normal craniofacial form and function with the planned surgical intervention. Based on this classification, a new treatment algorithm was created.

  7. Electromechanical simulations of dislocations

    NASA Astrophysics Data System (ADS)

    Skiba, Oxana; Gracie, Robert; Potapenko, Stanislav

    2013-04-01

    Improving the reliability of micro-electronic devices depends in part on developing a more in-depth understanding of dislocations because dislocations are barriers to charge carriers. To this end, the quasi-static simulation of discrete dislocations dynamics in materials under mechanical and electrical loads is presented. The simulations are based on the extended finite element method, where dislocations are modelled as internal discontinuities. The strong and weak forms of the boundary value problem for the coupled system are presented. The computation of the Peach-Koehler force using the J-integral is discussed. Examples to illustrate the accuracy of the simulations are presented. The motion of the network of the dislocations under different electrical and mechanical loads is simulated. It was shown that even in weak piezoelectric materials the effect of the electric field on plastic behaviour is significant.

  8. Atomistic calculations of dislocation core energy in aluminium

    DOE PAGES

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...

    2017-02-16

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin2β + B·cos2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  9. Thermally induced stresses and deformations in angle-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rousseau, Carl Q.

    1987-01-01

    Cure-induced uniform temperature change effects on the stresses, axial expansion, and thermally-induced twist of four specific angle-ply tube designs are discussed with a view to the tubes' use as major space structure components. The stresses and deformations in the tubes are studied as a function of the four designs, the off-axis angle, and the single-material and hybrid reinforcing-material construction used. It is found that tube design has a minor influence on the stresses, axial stiffness, and axial thermal expansion characteristics, which are more directly a function of off-axis angle and material selection; tube design is, however, the primary influence in the definition of thermally-induced twist and torsional stiffness characteristics. None of the designs is free of thermally induced twist.

  10. Kinetics of light-induced ordering and deformation in LC azobenzene-containing materials.

    PubMed

    Toshchevikov, Vladimir; Petrova, Tatiana; Saphiannikova, Marina

    2017-04-12

    Azobenzene-containing smart materials are able to transform the energy of light into directional mechanical stress. We develop a theory of time-dependent light-induced ordering and deformation in azobenzene materials starting from the kinetic equations of photoisomerization. The liquid crystalline (LC) interactions between rod-like trans-isomers are taken into account. Angular selectivity of the photoisomerization known as an "angular hole burning" or the Weigert effect leads to the light-induced ordering and deformation of the azobenzene materials. The time evolution of ordering and deformation is found as a function of intensity of light depending on the opto-mechanical characteristics of the materials, such as probabilities of the optical excitation of trans- and cis-isomers, angular jump during the single isomerization event, viscosity of the materials, strength of the LC interactions in both the isotropic and LC materials, and the angular distribution of chromophores in polymer chains. Established structural-property relationships are in agreement with a number of experiments and can be used for the construction of light-controllable smart materials for practical applications.

  11. Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.

    2004-03-01

    Organized substructural arrangements of dislocations formed in wavy slip, face-centred-cubic metals during cyclic stress-induced fatigue are shown analytically to engender a substantial nonlinearity in the microelastic-plastic deformation resulting from an impressed stress perturbation. The non-Hookean stress-strain relationship is quantified by a material nonlinearity parameter b that for a given fatigue state is highly sensitive to the volume fractions of veins and persistent slip bands (PSBs), PSB internal stresses, dislocation multipole configurations, dislocation loop lengths, dipole heights and the densities of secondary dislocations in the substructures. The effects on b of vacancy, microcrack and macrocrack formation are also addressed. The connection between b and acoustic harmonic generation is obtained. The model is applied to calculations of b for fatigued polycrystalline nickel as a function of per cent life to fracture. For cyclic stress-controlled loading at 241 MPa, the model predicts a monotonic increase in b of ca. 360% over the fatigue life. For strain-controlled loading at a total strain of 1.75 × 10-3, a monotonic increase in b of ca. 375% over the fatigue life is predicted.

  12. Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures

    SciTech Connect

    Kovalskiy, V. A. Vergeles, P. S.; Eremenko, V. G.; Fokin, D. A.

    2014-12-08

    An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at the buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.

  13. ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus.

    PubMed

    Ke, Danxia; Li, Xiangyong; Han, Yapeng; Cheng, Lin; Yuan, Hongyu; Wang, Lei

    2016-11-01

    Roots of leguminous plants perceive Nod factor signals, and then root hair deformation responses such as swelling and curling are activated. However, very little is known about the molecular mechanisms of such root hair deformation. We have previously shown that LjROP6, a member of the Rho family of small GTPases, was identified as an NFR5 (Nod Factor Receptor 5)-interacting protein and participated in symbiotic nodulation in Lotus japonicus. In this study, we identified ten LjROP GTPases including LjROP6, and they were distributed into groups II, III, IV but not group I by phylogenetic analysis. The expression profiles of ten LjROP genes during nodulation were examined. LjROP6 belonged to group IV and interacted with NFR5 in a GTP-dependent manner. Overexpression of either wild-type ROP6 or a constitutively active mutant (ROP6-CA) generated root hair tip growth depolarization, while overexpression of a dominant negative mutant (ROP6-DN) exhibited normal root hair growth. After inoculating with Mesorhizobium loti or adding Nod factors to hairy roots, overexpression of ROP6 and ROP6-CA exhibited extensive root hair deformation, while overexpression of ROP6-DN inhibited root hair deformation. The infection event and nodule number were increased in ROP6 and ROP6-CA overexpressing transgenic plants; but decreased in ROP6-DN overexpressing transgenic plants. These studies provide strong evidence that ROP6 GTPase, which binds NFR5 in a GTP-dependent manner, is involved in root hair development as well as root hair deformation responses induced by NFs in the early stage of symbiotic interaction in L. japonicus.

  14. Simulation of high-temperature superlocalization of plastic deformation in single-crystals of alloys with an L12 superstructure

    NASA Astrophysics Data System (ADS)

    Solov'eva, Yu. V.; Fakhrutdinova, Ya. D.; Starenchenko, V. A.

    2015-01-01

    The processes of the superlocalization of plastic deformation in L12 alloys have been studied numerically based on a combination of the model of the dislocation kinetics of the deformation-induced and heat-treatment-induced strengthening of an element of a deformable medium with the model of the mechanics of microplastic deformation described in terms of elastoplastic medium. It has been shown that the superlocalization of plastic deformation is determined by the presence of stress concentrators and by the nonmonotonic strengthening of the elements of the deformable medium. The multiple nonmonotonicity of the process of strengthening of the elementary volume of the medium can be responsible for the multiplicity of bands of microplastic localization of deformation.

  15. Investigating acoustic-induced deformations in a foam using multiple light scattering.

    PubMed

    Erpelding, M; Guillermic, R M; Dollet, B; Saint-Jalmes, A; Crassous, J

    2010-08-01

    We have studied the effect of an external acoustic wave on bubble displacements inside an aqueous foam. The signature of the acoustic-induced bubble displacements is found using a multiple light scattering technique, and occurs as a modulation on the photon correlation curve. Measurements for various sound frequencies and amplitudes are compared to analytical predictions and numerical simulations. These comparisons finally allow us to elucidate the nontrivial acoustic displacement profile inside the foam; in particular, we find that the acoustic wave creates a localized shear in the vicinity of the solid walls holding the foam, as a consequence of inertial contributions. This study of how bubbles "dance" inside a foam as a response to sound turns out to provide new insights on foam acoustics and sound transmission into a foam, foam deformation at high frequencies, and analysis of light scattering data in samples undergoing nonhomogeneous deformations.

  16. Electric dipole moment induced by CP-violating deformations in the noncommutative Standard Model

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Jian; Yan, Zhe-Hui; Guan, Rong-Hua; Wei, Xing-Ning

    2017-03-01

    The possibility to detect the noncommutative (NC) spacetime in the electric dipole moments (EDM) experiments is studied in the effective field theory of noncommutative Standard Model (NCSM) with many additional deformations. The EDM given by the previous literatures do not have any observable effect since they are spin-independent. In this work, it is found that three of the deformed terms provide extra sources of CP violation contributed to EDM. We show that these EDMs are sensitive to the spin and thus have potential to be measured in the highly precise experiments. In particular, the EDM induced by NC spacetime may not be parallel to the direction of spin, which demonstrates the intrinsic feature of NC field theory.

  17. A method for reducing pressure-induced deformation in silicone microfluidics

    PubMed Central

    Inglis, David W.

    2010-01-01

    Poly(dimethylsiloxane) or PDMS is an excellent material for replica molding, widely used in microfluidics research. Its low elastic modulus, or high deformability, assists its release from challenging molds, such as those with high feature density, high aspect ratios, and even negative sidewalls. However, owing to the same properties, PDMS-based microfluidic devices stretch and change shape when fluid is pushed or pulled through them. This paper shows how severe this change can be and gives a simple method for limiting this change that sacrifices few of the desirable characteristics of PDMS. A thin layer of PDMS between two rigid glass substrates is shown to drastically reduce pressure-induced shape changes while preserving deformability during mold separation and gas permeability. PMID:20697573

  18. Elastic anisotropy and shear-induced atomistic deformation of tetragonal silicon carbon nitride

    SciTech Connect

    Yan, Haiyan; Zhang, Meiguang; Zhao, Yaru; Zhou, Xinchun; Wei, Qun

    2014-07-14

    First-principles calculations are employed to provide a fundamental understanding of the structural features, elastic anisotropy, shear-induced atomistic deformation behaviors, and its electronic origin of the recently proposed superhard t-SiCN. According to the dependences of the elastic modulus on different crystal directions, the t-SiCN exhibits a well-pronounced elastic anisotropy which may impose certain limitations and restrictions on its applications. The further mechanical calculations demonstrated that t-SiCN shows lower elastic moduli and ideal shear strength than those of typical hard substances of TiN and TiC, suggesting that it cannot be intrinsically superhard as claimed in the recent works. We find that the failure modes of t-SiCN at the atomic level during shear deformation can be attributed to the breaking of C-C bonds through the bonding evolution and electronic localization analyses.

  19. Analysis of the induced seismicity of the Lacq gas field (Southwestern France) and model of deformation

    NASA Astrophysics Data System (ADS)

    Bardainne, T.; Dubos-Sallée, N.; Sénéchal, G.; Gaillot, P.; Perroud, H.

    2008-03-01

    The goal of this paper is to propose a model of deformation pattern for the Lacq gas field (southwest of France), considering the temporal and spatial evolution of the observed induced seismicity. This model of deformation has been determined from an updating of the earthquake locations and considering theoretical and analogue models usually accepted for hydrocarbon field deformation. The Lacq seismicity is clearly not linked to the natural seismicity of the Pyrenean range recorded 30km farther to the south since the first event was felt in 1969, after the beginning of the hydrocarbon recovery. From 1974 to 1997, more than 2000 local events (ML < 4.2) have been recorded by two permanent local seismic networks. Unlike previously published results focusing on limited time lapse studies, our analysis relies on the data from 1974 to 1997. Greater accuracy of the absolute locations have been obtained using a well adapted algorithm of 3-D location, after improvement of the 3-D P-wave velocity model and determination of specific station corrections for different clusters of events. This updated catalogue of seismicity has been interpreted taking into account the structural context of the gas field. The Lacq gas field is an anticlinal reservoir where 3-D seismic and borehole data reveal a pattern of high density of fracturing, mainly oriented WNW-ESE. Seismicity map and vertical cross-sections show that majority of the seismic events (70 per cent) occurred above the gas reservoir. Correlation is also observed between the orientation of the pre-existent faults and the location of the seismic activity. Strong and organized seismicity occurred where fault orientation is consistent with the poroelastic stress perturbation due to the gas recovery. On the contrary, the seismicity is quiescient where isobaths of the reservoir roof are closed to be perpendicular to the faults. These quiescient areas as well as the central seismic part are characterized by a surface subsidence

  20. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels.

    PubMed Central

    Lundbaek, J A; Andersen, O S

    1999-01-01

    Hydrophobic interactions between a bilayer and its embedded membrane proteins couple protein conformational changes to changes in the packing of the surrounding lipids. The energetic cost of a protein conformational change therefore includes a contribution from the associated bilayer deformation energy (DeltaGdef0), which provides a mechanism for how membrane protein function depends on the bilayer material properties. Theoretical studies based on an elastic liquid-crystal model of the bilayer deformation show that DeltaGdef0 should be quantifiable by a phenomenological linear spring model, in which the bilayer mechanical characteristics are lumped into a single spring constant. The spring constant scales with the protein radius, meaning that one can use suitable reporter proteins for in situ measurements of the spring constant and thereby evaluate quantitatively the DeltaGdef0 associated with protein conformational changes. Gramicidin channels can be used as such reporter proteins because the channels form by the transmembrane assembly of two nonconducting monomers. The monomerleft arrow over right arrow dimer reaction thus constitutes a well characterized conformational transition, and it should be possible to determine the phenomenological spring constant describing the channel-induced bilayer deformation by examining how DeltaGdef0 varies as a function of a mismatch between the hydrophobic channel length and the unperturbed bilayer thickness. We show this is possible by analyzing experimental studies on the relation between bilayer thickness and gramicidin channel duration. The spring constant in nominally hydrocarbon-free bilayers agrees well with estimates based on a continuum analysis of inclusion-induced bilayer deformations using independently measured material constants. PMID:9929490

  1. Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Watts, A. B.

    2013-11-01

    long-term rheological properties of the lithosphere are fundamental for understanding both surface tectonics and mantle dynamics on Earth. In this study, we have developed 3-D finite element models for computing the load-induced surface deformation and stress for lithosphere and mantle with realistic nonlinear viscoelastic rheology including the frictional sliding, low-temperature plasticity, and high-temperature creep. We have determined the lithospheric deformation and stress due to volcano loading in the Hawaiian Islands region for the last few million years. By comparing model predictions with seismic observations of the depth to the top of oceanic crust and depth dependence of seismicity in the Hawaiian Islands region, we have sought to constrain lithospheric rheology. Our calculations show that the load-induced surface deformation is controlled by low-temperature plasticity and frictional sliding but is insensitive to high-temperature creep. Lithospheric strength predicted from laboratory-derived low-temperature plasticity needs to be reduced significantly, and a frictional coefficient μf ranging from 0.1 to 0.7 is required in order to account for the observations. However, μf = 0.1 weakens the shallow part of the lithosphere so much that it causes the minima in strain rate and stress to occur at too large depths to be consistent with the observed depth distribution of seismicity. Our results therefore suggest a value for μf between 0.25 and 0.7. Finally, the maximum stress that accumulates in the deformed lithosphere beneath the Hawaiian Islands is about 100-200 MPa for models that match the observations, and this stress may be viewed as the largest lithospheric stress on Earth.

  2. Eye-Specific IOP-Induced Displacements and Deformations of Human Lamina Cribrosa

    PubMed Central

    Sigal, Ian A.; Grimm, Jonathan L.; Jan, Ning-Jiun; Reid, Korey; Minckler, Don S.; Brown, Donald J.

    2014-01-01

    Purpose. To measure high-resolution eye-specific displacements and deformations induced within the human LC microstructure by an acute increase in IOP. Methods. Six eyes from donors aged 23 to 82 were scanned using second harmonic-generated (SHG) imaging at various levels of IOP from 10 to 50 mm Hg. An image registration technique was developed, tested, and used to find the deformation mapping between maximum intensity projection images acquired at low and elevated IOP. The mappings were analyzed to determine the magnitude and distribution of the IOP-induced displacements and deformations and contralateral similarity. Results. Images of the LC were obtained and the registration technique was successful. IOP increases produced substantial, and potentially biologically significant, levels of in-plane LC stretch and compression (reaching 10%–25% medians and 20%–30% 75th percentiles). Deformations were sometimes highly focal and concentrated in regions as small as a few pores. Regions of largest displacement, stretch, compression, and shear did not colocalize. Displacements and strains were not normally distributed. Contralateral eyes did not always have more similar responses to IOP than unrelated eyes. Under elevated IOP, some LC regions were under bi-axial stretch, others under bi-axial compression. Conclusions. We obtained eye-specific measurements of the complex effects of IOP on the LC with unprecedented resolution in uncut and unfixed human eyes. Our technique was robust to electronic and speckle noise. Elevated IOP produced substantial in-plane LC stretch and compression. Further research will explore the effects of IOP on the LC in a three-dimensional framework. PMID:24334450

  3. Convergent and divergent dislocation of the pediatric elbow: two case reports and comprehensive review of literature.

    PubMed

    Parikh, Shital N; Lykissas, Marios G; Mehlman, Charles T; Sands, Steven; Herrera-Soto, Jose; Panchal, Anand; Crawford, Alvin H

    2014-03-01

    Convergent and divergent pediatric elbow dislocations are rare injuries. When properly diagnosed and treated without delay, both types of dislocations have a good prognosis. We describe a case of convergent elbow dislocation in a 16-year-old boy. The patient underwent operative intervention and demonstrated full range of motion at the 4-year follow-up. Our second case describes an 11-year-old boy with a divergent elbow dislocation associated with an ipsilateral distal radius fracture and distal radioulnar joint dislocation. The patient showed full range of motion 1 year after closed reduction and casting and had no residual deformities or abnormalties.

  4. Dislocations in extruded Co-49.3 at. pct Al

    NASA Technical Reports Server (NTRS)

    Yaney, D. L.; Nix, W. D.; Pelton, A. R.

    1986-01-01

    Polycrystalline Co-49.3 at. pct Al, which had been extruded at 1505 K, was examined using transmission electron microscopy. Diffraction contrast analysis showed that b = 100 as well as b = 111 line dislocations contribute to elevated temperature deformation in CoAl. Therefore, it was concluded that sufficient slip systems exist in CoAl to allow for general plasticity in the absence of diffusional mechanisms. Line dislocations of the type b = 001 were observed on both 110 and 100 planes while b = 111 line dislocations were observed on 1 -1 0 planes.

  5. Ubiquity of quantum zero-point fluctuations in dislocation glide

    NASA Astrophysics Data System (ADS)

    Landeiro Dos Reis, Marie; Choudhury, Anshuman; Proville, Laurent

    2017-03-01

    Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.

  6. Bilateral traumatic hip dislocation associated with sacro-iliac dislocation.

    PubMed

    Galois, L; Meuley, E; Pfeffer, F; Mainard, D; Delagoutte, J P

    We report a rare injury in an 18-year-old woman who sustained posterior bilateral hip dislocation with sacro-iliac dislocation after a high energy motor vehicle accident. She was treated by closed reduction and skeletal traction. Bilateral traumatic hip dislocation is an uncommon occurrence. Rarer still is bilateral traumatic hip dislocation associated with sacro-iliac dislocation because it combines two different mechanisms of trauma. (Hip International 2002; 1: 47-9).

  7. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  8. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    SciTech Connect

    Chisholm, Claire; Bei, Hongbin; Lowry, M. B.; Oh, Jason; Asif, S.A. Syed; Warren, O.; Shan, Zhiwei; George, Easo P; Minor, Andrew

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  9. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Bradby, J. E.; Haberl, B.; Cook, R. F.

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published papers on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately fivefold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of sixfold coordinated atomic arrangements. These sixfold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  10. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation

    PubMed Central

    Gerbig, Y.B; Michaels, C.A.; Bradby, J.E.; Haberl, B.; Cook, R.F.

    2016-01-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  11. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation.

    PubMed

    Gerbig, Y B; Michaels, C A; Bradby, J E; Haberl, B; Cook, R F

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  12. Bio-inspired dental multilayers: effects of layer architecture on the contact-induced deformation.

    PubMed

    Du, J; Niu, X; Rahbar, N; Soboyejo, W

    2013-02-01

    The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin-enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.

  13. Finite element analysis of the pressure-induced deformation of Schlemm’s canal endothelial cells

    PubMed Central

    Vargas-Pinto, Rocio; Lai, Julia; Gong, Haiyan; Ethier, C. Ross

    2014-01-01

    The endothelial cells lining the inner wall of Schlemm’s canal (SC) in the eye are relatively unique in that they support a basal-to-apical pressure gradient that causes these cells to deform, creating giant vacuoles and transendothelial pores through which the aqueous humor flows. Glaucoma is associated with an increased resistance to this flow. We used finite element modeling and estimates of cell modulus made using atomic force microscopy to characterize the pressure-induced deformation of SC cells and to estimate the maximum pressure drop that SC cells can support. We examined the effects of cell geometry, cell stiffness, and the contribution of the cell cortex to support the pressure-generated load. We found that the maximum strain generated by this loading occurs at the points of cell–substrate attachment and that the cortex of the cells bears nearly all of this load. The ability of these cells to support a significant transcellular pressure drop is extremely limited (on the order of 5 mmHg or less) unless these cells either stiffen very considerably with increasing deformation or have substantial attachments to their substratum away from their periphery. This puts limits on the flow resistance that this layer can generate, which has implications regarding the site where the bulk of the flow resistance is generated in healthy and glaucomatous eyes. PMID:25516410

  14. Chemopreventive activity of sesquiterpene lactones (SLs) from yacon against TPA-induced Raji cells deformation.

    PubMed

    Siriwan, D; Miyawaki, C; Miyamoto, T; Naruse, T; Okazaki, K; Tamura, H

    2011-05-15

    Yacon is a medicinal plant used as a traditional medicine by the natives in South America. In Japan, it becomes popular as a health food. Sesquiterpene Lactones (SLs) from yacon leaves were investigated and the active SLs such as enhydrin, uvedalin and sonchifolin, bearing alpha-methylene-gamma-lactone and epoxides as the active functional groups, were identified by 1H-6000 MHz-NMR. Chemopreventive and cytotoxic activities were determined using different primary screening methods. In this study, all tested SLs strongly inhibited TPA-induced deformed of Raji cells. The IC50 values of yacon SLs from anti-deforming assay were 0.04-0.4 microM. Interestingly, yacon SLs showed more potential of chemo preventive activity than both curcumin and parthenolide. However, the cytotoxicity on Raji cells was observed at high concentration of yacon SLs. The degree of anti-deformation was ranked in order: enhydrin >uvedalin >sonchifolin >parthenolide >curcumin. As according to structure-activity relationship, the high activities of enhydrin, uvedalin and sonchifolin may be due to the 2-methyl-2-butenoate and its epoxide moiety.

  15. Deformation-induced nanoscale mixing reactions in Cu/Ni and Ag/Pd multilayers

    SciTech Connect

    Wang, Z.; Perepezko, J. H.

    2013-11-04

    During the repeated cold rolling of Cu/Ni and Ag/Pd multilayers, a solid solution forms at the interfaces as nanoscale layer structure with a composition that replicates the overall multilayer composition. The interfacial mixing behavior was investigated by means of X-ray diffraction and scanning transmission electron microscopy. During deformation induced reaction, the intermixing behavior of the Cu/Ni and Ag/Pd multilayers is in contrast to thermally activated diffusion behavior. This distinct behavior can provide new kinetic pathways and offer opportunities for microstructure control that cannot be achieved by thermal processing.

  16. Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites. [Al/SiC

    SciTech Connect

    Girand, C.; Lormand, G.; Fougeres, R.; Vincent, A. )

    1993-05-01

    In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's, stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.

  17. Deformation mechanisms in a Laves phase

    SciTech Connect

    Liu, Yaping; Allen, S.M.; Livingston, J.D.

    1992-12-31

    The stress-induced phase transformation between C36 and C15 structures in Fe{sub 2}Zr is studied by electron microscopy. Nucleus of transformation is believed to be pre-existing C15 layers in C36 particles. Microstructural evidence for three mechanisms of growth of a new phase were found: Fault accumulation and rearrangement, moving of a individual partial dislocations between two phases, and the migration of microscopic ledges composed of a series of Shockley partials between C36 and C15. Plastic deformation by slip on non-basal planes of C36 caused by indentation is studied.

  18. Deformation-induced silica redistribution in banded iron formation, Hamersley Province, Australia

    NASA Astrophysics Data System (ADS)

    Egglseder, Mathias S.; Cruden, Alexander R.; Tomkins, Andrew G.; Wilson, Christopher J. L.

    2016-12-01

    The formation of banded iron formations (BIF) remains controversial despite their potential to provide key information on Precambrian atmospheres and hydrospheres. It is widely agreed that BIF are chemical sedimentary rocks comprising alternating layers of iron oxides and chert formed from poorly known precursor phases. Many models address the chemical transformation of such precursor iron oxide phases into BIF during compaction and diagenesis. However, the formation of chert and the influence of physical forces in this process have received less attention. Microstructural analysis of BIF from the Hamersley Province (Western Australia) reveals that significant amounts of silica were redistributed by dissolution-precipitation creep during both diagenesis and regional-scale deformation. This physicochemical process led to silica remobilisation and volume loss by stress-induced dissolution of microcrystalline quartz in an aqueous fluid. The dissolved solid phase was transported by diffusion and fluid flow along grain boundaries or within available porosity and then reprecipitated in low-pressure zones, leading to local volume increase. These processes were further enhanced by rheological contrasts between different minerals, resulting in significant variations of chert band thickness. Microstructural observations combined with quantitative microfabric analysis reveal domains of crystallographic preferred orientations (CPO) in quartz grains within chert layers. The CPO fabrics record strain regimes (e.g., pure and simple shear, extension and shortening) that modified quartz aggregates by dissolution-precipitation creep, providing new insights into the metamorphic and deformation history of BIF. We document microstructures that indicate that non-coaxial deformation was active during diagenesis and subsequent deformation of the Hamersley Province BIF. Further, relatively undeformed chert layers may have been similarly affected by significant amounts of dissolution

  19. Deformation mechanisms of Cu nanowires with planar defects

    SciTech Connect

    Tian, Xia Yang, Haixia; Wan, Rui; Cui, Junzhi; Yu, Xingang

    2015-01-21

    Molecular dynamics simulations are used to investigate the mechanical behavior of Cu nanowires (NWs) with planar defects such as grain boundaries (GBs), twin boundaries (TBs), stacking faults (SFs), etc. To investigate how the planar defects affect the deformation and fracture mechanisms of naowires, three types of nanowires are considered in this paper: (1) polycrystalline Cu nanowire; (2) single-crystalline Cu nanowire with twin boundaries; and (3) single-crystalline Cu nanowire with stacking faults. Because of the large fraction of atoms at grain boundaries, the energy of grain boundaries is higher than that of the grains. Thus, grain boundaries are proved to be the preferred sites for dislocations to nucleate. Moreover, necking and fracture prefer to occur at the grain boundary interface owing to the weakness of grain boundaries. For Cu nanowires in the presence of twin boundaries, it is found that twin boundaries can strength nanowires due to the restriction of the movement of dislocations. The pile up of dislocations on twin boundaries makes them rough, inducing high energy in twin boundaries. Hence, twin boundaries can emit dislocations, and necking initiates at twin boundaries. In the case of Cu nanowires with stacking faults, all pre-existing stacking faults in the nanowires are observed to disappear during deformation, giving rise to a fracture process resembling the samples without stacking fault.

  20. Multiscale characterization of dislocation processes in Al 5754

    NASA Astrophysics Data System (ADS)

    Kacher, Josh; Mishra, Raja K.; Minor, Andrew M.

    2015-07-01

    Multiscale characterization was performed on an Al-Mg alloy, Al 5754 O-temper, including in situ mechanical deformation in both the scanning electron microscope and the transmission electron microscope. Scanning electron microscopy characterization showed corresponding inhomogeneity in the dislocation and Mg distribution, with higher levels of Mg correlating with elevated levels of dislocation density. At the nanoscale, in situ transmission electron microscopy straining experiments showed that dislocation propagation through the Al matrix is characterized by frequent interactions with obstacles smaller than the imaging resolution that resulted in the formation of dislocation debris in the form of dislocation loops. Post-mortem chemical characterization and comparison to dislocation loop behaviour in an Al-Cr alloy suggests that these obstacles are small Mg clusters. Previous theoretical work and indirect experimental evidence have suggested that these Mg nanoclusters are important factors contributing to strain instabilities in Al-Mg alloys. This study provides direct experimental characterization of the interaction of glissile dislocations with these nanoclusters and the stress needed for dislocations to overcome them.

  1. THEORETICAL INVESTIGATION OF MICROSTRUCTURE EVOLUTION AND DEFORMATION OF ZIRCONIUM UNDER CASCADE DAMAGE CONDITIONS

    SciTech Connect

    Barashev, Alexander V; Golubov, Stanislav I; Stoller, Roger E

    2012-06-01

    This work is based on our reaction-diffusion model of radiation growth of Zr-based materials proposed recently in [1]. In [1], the equations for the strain rates in unloaded pure crystal under cascade damage conditions of, e.g., neutron or heavy-ion irradiation were derived as functions of dislocation densities, which include contributions from dislocation loops, and spatial distribution of their Burgers vectors. The model takes into account the intra-cascade clustering of self-interstitial atoms and their one-dimensional diffusion; explains the growth stages, including the break-away growth of pre-annealed samples; and accounts for some striking observations, such as of negative strain in prismatic direction, and co-existence of vacancy- and interstitial-type prismatic loops. In this report, the change of dislocation densities due to accumulation of sessile dislocation loops is taken into account explicitly to investigate the dose dependence of radiation growth. The dose dependence of climb rates of dislocations is calculated, which is important for the climb-induced glide model of radiation creep. The results of fitting the model to available experimental data and some numerical calculations of the strain behavior of Zr for different initial dislocation structures are presented and discussed. The computer code RIMD-ZR.V1 (Radiation Induced Microstructure and Deformation of Zr) developed is described and attached to this report.

  2. Surgical treatment for permanent dislocation of the patella in adults.

    PubMed

    Noda, Mitsuaki; Saegusa, Yasuhiro; Kashiwagi, Naoya; Seto, Yoichi

    2011-12-06

    Permanent dislocation of the patella in adults is a rare condition that presents with complete irreducible lateral dislocation of the patella, combined with secondary changes, such as valgus deformity and leg-length discrepancy. Because these secondary changes cannot heal spontaneously after skeletal maturation if left untreated, the patients frequently possess pathology not limited to the knee joint and extending to the whole lower extremity, such as malalignment or leg-length discrepancy, that can develop into osteoarthritis of the knee. However, to our knowledge, few surgeons advocate the significance of correcting the malalignment in treating adult patients. We treated a 34-year-old woman with permanent dislocation of the patella in a 2-stage surgery, consisting of first-stage correction of valgus deformity and limb shortening using a Ilizarov external fixator and second-stage realignment of the dislocated patella over the trochlea. A follow-up examination conducted 3 years after the second operation revealed plantigrade gait with normal alignment of the lower extremity without limping and medial thrust. The patella was tracking centrally in the patellofemoral groove. Radiographs showed a neutral mechanical axis of the lower extremity, no evidence of patellar subluxation, and no deteriorating osteoarthritic changes at the tibiofemoral joint. This case highlights the importance of correcting secondary changes, such as valgus deformity and leg-length discrepancy, to reduce the risk of future osteoarthrosis and postoperative dislocation, especially when these deformities are substantial.

  3. Dislocation damping and anisotropic seismic wave attenuation in Earth's upper mantle.

    PubMed

    Farla, Robert J M; Jackson, Ian; Fitz Gerald, John D; Faul, Ulrich H; Zimmerman, Mark E

    2012-04-20

    Crystal defects form during tectonic deformation and are reactivated by the shear stress associated with passing seismic waves. Although these defects, known as dislocations, potentially contribute to the attenuation of seismic waves in Earth's upper mantle, evidence for dislocation damping from laboratory studies has been circumstantial. We experimentally determined the shear modulus and associated strain-energy dissipation in pre-deformed synthetic olivine aggregates under high pressures and temperatures. Enhanced high-temperature background dissipation occurred in specimens pre-deformed by dislocation creep in either compression or torsion, the enhancement being greater for prior deformation in torsion. These observations suggest the possibility of anisotropic attenuation in relatively coarse-grained rocks where olivine is or was deformed at relatively high stress by dislocation creep in Earth's upper mantle.

  4. Dislocation core properties of β-tin: a first-principles study

    NASA Astrophysics Data System (ADS)

    Bhatia, M. A.; Azarnoush, M.; Adlakha, I.; Lu, G.; Solanki, K. N.

    2017-02-01

    Dislocation core properties of tin (β-Sn) were investigated using the semi-discrete variational Peierls–Nabarro (SVPN) model. The SVPN model, which connects the continuum elasticity treatment of the long-range strain field around a dislocation with an approximate treatment of the dislocation core, was employed to calculate various core properties, including the core energetics, widths, and Peierls stresses for different dislocation structures. The role of core energetics and properties on dislocation character and subsequent slip behavior in β-Sn was investigated. For instance, this work shows that a widely spread dislocation core on the {110} plane as compared to dislocations on the {100} and {101} planes. Physically, the narrowing or widening of the core will significantly affect the mobility of dislocations as the Peierls stress is exponentially related to the dislocation core width in β-Sn. In general, the Peierls stress for the screw dislocation was found to be orders of magnitude higher than the edge dislocation, i.e., the more the edge component of a mixed dislocation, the greater the dislocation mobility (lower the Peierls stress). The largest Peierls stress observed was 365 MPa for the dislocation on the {101} plane. Furthermore, from the density plot, we see a double peak for the 0° (screw) and 30° dislocations which suggests the dissociation of dislocations along these planes. Thus, for the {101} < \\bar{1}01> slip system, we observed dislocation dissociation into three partials with metastable states. Overall, this work provides qualitative insights that aid in understanding the plastic deformation in β-Sn.

  5. A Wireless Intracranial Brain Deformation Sensing System for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Song, S.; Race, N. S.; Kim, A.; Zhang, T.; Shi, R.; Ziaie, B.

    2015-01-01

    Blast-induced traumatic brain injury (bTBI) has been linked to a multitude of delayed-onset neurodegenerative and neuropsychiatric disorders, but complete understanding of their pathogenesis remains elusive. To develop mechanistic relationships between bTBI and post-blast neurological sequelae, it is imperative to characterize the initiating traumatic mechanical events leading to eventual alterations of cell, tissue, and organ structure and function. This paper presents a wireless sensing system capable of monitoring the intracranial brain deformation in real-time during the event of a bTBI. The system consists of an implantable soft magnet and an external head-mounted magnetic sensor that is able to measure the field in three dimensions. The change in the relative position of the soft magnet WITH respect to the external sensor as the result of the blast wave induces changes in the magnetic field. The magnetic field data in turn is used to extract the temporal and spatial motion of the brain under the blast wave in real-time. The system has temporal and spatial resolutions of 5 μs and 10 μm. Following the characterization and validation of the sensor system, we measured brain deformations in a live rodent during a bTBI. PMID:26586273

  6. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-10-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m-1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP.

  7. Electronic selection rules controlling dislocation glide in bcc metals.

    PubMed

    Jones, Travis E; Eberhart, Mark E; Clougherty, Dennis P; Woodward, Chris

    2008-08-22

    The validity of the structure-property relationships governing the low-temperature deformation behavior of many bcc metals was brought into question with recent ab initio density functional studies of isolated screw dislocations in Mo and Ta. These relationships were semiclassical in nature, having grown from atomistic investigations of the deformation properties of the group V and VI transition metals. We find that the correct form for these structure-property relationships is fully quantum mechanical, involving the coupling of electronic states with the strain field at the core of long a/<2111> screw dislocations.

  8. Contrasts between deformation accommodated by induced seismic and aseismic processes revealed by combined monitoring of seismicity and surface deformations: Brady Geothermal Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Ali, S. T.; Mellors, R. J.; Foxall, W.; Wang, H. F.; Feigl, K. L.; Drakos, P. S.; Zemach, E.

    2013-12-01

    Fluid pressure change accompanying pumping in the Brady Geothermal Field is associated with two easily measureable deformation responses: (1) surface deformations and 2) seismic slip. Surface deformation can be imaged by InSAR and appears to correspond to volume change at depth. Seismic slip on fractures is likely induced by either changes in effective normal stress or solid stress with minimal impact to volume. Both responses have potential impact on permeability structure due to dilation or compaction along natural fractures. We present an integrated data set that compares pumping records with these deformation responses to investigate their coupling and to constrain the geometry and rheology of the reservoir and surrounding crust. We also seek to clarify the relationship between induced seismicity and pumping. Currently, the dominant pumping signal is pressure reduction resulting from on-going production since 1992. Surface subsidence extends over a region of approximately 5 km by 2 km with the long axis along the strike of the major normal faults associated with the reservoir. Smaller approximately 1 km length-scale regions of intense subsidence are associated bends or intersections among individual normal fault segments. Modeling of the deformation source indicates that the broader subsidence pattern is consistent with the majority of fluid extraction from a reservoir at a depth of approximately 1 km and extending along the entire length of the mapped Brady normal fault. The more intense subsidence is consistent with fluid extraction along steep conduits from shallower depths that extend to the main reservoir. These results indicate a reservoir much larger than would be expected from the footprint of the production wells. In contrast, seismicity is primarily concentrated along a narrow path between injecting and producing wells, but outside the regions of most intense subsidence. Overall, seismicity represents only a small fraction of the strain energy

  9. Shock-induced collapse of a bubble inside a deformable vessel

    PubMed Central

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  10. Deformation Microstructure and Deformation-Induced Martensite in Austenitic Fe-Cr-Ni Alloys Depending on Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Gorbatov, Oleg I.; Borgenstam, Annika; Ruban, Andrei V.; Hedström, Peter

    2017-01-01

    The deformation microstructure of austenitic Fe-18Cr-(10-12)Ni (wt pct) alloys with low stacking fault energies, estimated by first-principles calculations, was investigated after cold rolling. The ɛ-martensite was found to play a key role in the nucleation of α'-martensite, and at low SFE, ɛ formation is frequent and facilitates nucleation of α' at individual shear bands, whereas shear band intersections become the dominant nucleation sites for α' when SFE increases and mechanical twinning becomes frequent.

  11. Constraints on Lithosphere Rheology from Observations of Volcano-induced Deformation

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2011-12-01

    Mantle rheology at lithospheric conditions (i.e., temperature < 1200 oC) is important for understanding fundamental geodynamic problems including the dynamics of plate tectonics, subducted slabs, and lithosphere-mantle interaction. Laboratory studies suggest that the rheology at lithospheric conditions can be approximately divided into three different regimes: brittle or frictional sliding, semi-brittle, and plastic flow. In this study, we seek to constrain lithospheric rheology, using observations of deformation at seamounts and oceanic islands caused by volcanic loading. Volcano-induced surface deformation depends critically on lithospheric rheology at the time of seamount and oceanic island emplacement and while it changes rapidly on short time-scales it does not change significantly on long time-scales. In an earlier study [Watts and Zhong, 2000], we used the effective elastic thickness at seamounts and oceanic islands inferred from the observations of deformation and gravity to determine an effective activation energy of 120 KJ/mol for lithospheric mantle with Newtonian rheology. We have now expanded this study to incorporate non-Newtonian power-law and frictional sliding rheologies, and more importantly, to include realistic 3-D volcanic load geometries. We use the Hawaiian Islands as an example. We construct 3-D loads for the Hawaiian Islands by applying an appropriate median filter to remove Hawaiian swell topography and correcting for lithospheric age effect on the bathymetry. The loads are then used in 3-D finite element loading models with viscoelastic, non-Newtonian and frictional sliding rheologies to determine the lithospheric response including surface vertical motions and lithospheric stresses. Comparisons of our new model predictions to observations suggest that the activation energy of lithospheric mantle is significantly smaller than most experimentally determined values for olivine at high temperatures, but may be consistent with more recent

  12. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  13. Interfacial dislocation motion and interactions in single-crystal superalloys

    SciTech Connect

    Liu, B.; Raabe, D.; Roters, F.; Arsenlis, A.

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  14. Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni-Fe alloy

    SciTech Connect

    Li, Hongqi; Wang, Y B; Ho, J C; Liao, X Z; Zhu, Y T; Ringer, S P

    2009-01-01

    Deformation induced grain growth has been widely reported in nanocrystalline materials. However, the grain growth mechanism remains an open question. This study applies high-pressure torsion to severely deform bulk nanocrystalline Ni-20 wt % Fe disks and uses transmission electron microscopy to characterize the grain growth process. Our results provide solid evidence suggesting that high pressure torsion induced grain growth is achieved primarily via grain rotation for grains much smaller than 100 nm. Dislocations are mainly seen at small-angle subgrain boundaries during the grain growth process but are seen everywhere in grains after the grains have grown large.

  15. Wall-Thickness Dependence of Cooling-Induced Deformation of Polystyrene Spherical Shells

    SciTech Connect

    Endo, T.; Kobayashi, N.; Goto, K.; Yasuda, M.; Fujima, Y.

    2003-05-15

    Experiments on the wall-thickness dependence of the cooling-induced deformation (CID) of polystyrene (PS) spherical shells were carried out. For the experiments, the PS shells were fabricated by the density-matched emulsion method using the hand-shaken microencapsulation technique. The number-averaged and weight-averaged molecular weights of the PS were M{sub n} 1.1 x 10{sup 5} and M{sub w} = 4.0 x 10{sup 5}, respectively. The diameter of the PS shells was {approx}400-550 {mu}m. To investigate the wall-thickness dependence of the CID, the wall thickness of the PS shells was varied between 5 and 60 {mu}m. In the experiments, the PS shells were cooled by using liquid nitrogen, and their images were captured at 0 and -190 deg. C. For the investigation of the CID, two shapes of each shell that were measured at 0 and -190 deg. C were compared. The thinner PS shells showed larger CID. The maximum deformation was almost 1% of the outer radius when the shell aspect ratio (outer radius)/(wall thickness) was higher than 20. The repeatability of the CID was studied, and the results implied that residual stress in the PS shells had an influence on the CID.

  16. Theory and computer simulation of photo induced deformations in liquid crystal azobenzene polymers

    NASA Astrophysics Data System (ADS)

    Saphiannikova, Marina; Toshchevikov, Vladimir; Petrova, Tatiana; Ilnytskyi, Jaroslav

    2016-09-01

    Light-controllable azobenzene materials have a remarkable potential for micro- and nanotechnologies as patterning templates, sensors, micropumps and actuators. The photoisomerization between trans and cis states of azo-chromophores is the primary source of photodeformation in azo-polymers. The direction of deformation can be controlled by the light polarization. In our analytical and computer simulation studies, description of the light-induced anisotropy is simplified by applying effective orientation potential to the trans isomers orienting them perpendicular to the light polarization. Using coarse-grained modelling we proved that effective potential approximates well the reorientation of trans isomers under linearly polarized light. The proposed orientation approach is quite promising. It allows not only the explanation of the sign and magnitude of photodeformation in azo-polymers with diverse chemical architecture and topology, but also the prediction of new effects, such as appearance of biaxial deformation in liquid crystal (LC) azo-polymers. A rich behavior is predicted for two-component polymer networks containing azobenzenes and non-chromophoric LC mesogens. Whether such two-component network expands or contracts with respect to the light polarization, depends on the art of attachment of the mesogens to the network strands.

  17. Dislocation climb models from atomistic scheme to dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Niu, Xiaohua; Luo, Tao; Lu, Jianfeng; Xiang, Yang

    2017-02-01

    We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk diffusion equation and a dislocation climb velocity formula. The effects of these microscopic mechanisms are incorporated by a Robin boundary condition near the dislocations for the bulk diffusion equation and a new contribution in the dislocation climb velocity due to vacancy pipe diffusion driven by the stress variation along the dislocation. Our climb formulation is able to quantitatively describe the translation of prismatic loops at low temperatures when the bulk diffusion is negligible. Using this new formulation, we derive analytical formulas for the climb velocity of a straight edge dislocation and a prismatic circular loop. Our dislocation climb formulation can be implemented in dislocation dynamics simulations to incorporate all the above four microscopic mechanisms of dislocation climb.

  18. Cathodoluminescence and Cross-sectional Transmission Electron Microscopy Studies for Deformation Behaviors of GaN Thin Films Under Berkovich Nanoindentation

    PubMed Central

    2008-01-01

    In this study, details of Berkovich nanoindentation-induced mechanical deformation mechanisms of metal-organic chemical-vapor deposition-derived GaN thin films have been systematic investigated with the aid of the cathodoluminescence (CL) and the cross-sectional transmission electron microscopy (XTEM) techniques. The multiple “pop-in” events were observed in the load-displacement (P–h) curve and appeared to occur randomly by increasing the indentation load. These instabilities are attributed to the dislocation nucleation and propagation. The CL images of nanoindentation show very well-defined rosette structures with the hexagonal system and, clearly display the distribution of deformation-induced extended defects/dislocations which affect CL emission. By using focused ion beam milling to accurately position the cross-section of an indented area, XTEM results demonstrate that the major plastic deformation is taking place through the propagation of dislocations. The present observations are in support to the massive dislocations activities occurring underneath the indenter during the loading cycle. No evidence of either phase transformation or formation of micro-cracking was observed by means of scanning electron microscopy and XTEM observations. We also discuss how these features correlate with Berkovich nanoindentation produced defects/dislocations structures.

  19. Shape-Induced Deformation, Capillary Bridging, and Self-Assembly of Cuboids at the Fluid-Fluid Interface.

    PubMed

    Anjali, Thriveni G; Basavaraj, Madivala G

    2017-01-24

    The controlled assembly of anisotropic particles through shape-induced interface deformations is shown to be a potential route for the fabrication of novel functional materials. In this article, the shape-induced interface deformation, capillary bridging, and directed self-assembly of cuboidal-shaped hematite particles at fluid-fluid interfaces are reported. The multipolar nature of the interface distortions is directly visualized using high-resolution scanning electron microscopy and 3D optical surface profiling. The nature of the interface deformations around cuboidal particles vary from monopolar to octupolar types depending on their orientation and position with respect to the interface. The deformations are of either hexapolar or octupolar type in the face-up orientation, quadrupolar or monopolar type in the edge-up orientation, and monopolar type in the vertex-up orientation. The particles adsorbed at the interface interact through the interface deformations, forming capillary bridges that lead to isolated assemblies of two or more particles. The arrangement of particles in any assembly is such that the condition for capillary attraction is satisfied, that is, in accordance with predictions based on the nature of interface deformations. At sufficient particle concentrations, these isolated structures interact to form a percolating network of cuboids. Furthermore, the difference in the nature of the assembly structures formed at the air-water interface and in the bulk water phase indicates that the interfacial assembly of these particles is controlled by the capillary interactions.

  20. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    SciTech Connect

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  1. Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Feo, A.; Vargas, M.; Sor, A.

    2012-01-01

    This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.

  2. Measurement and compensation of laser-induced wavefront deformations and focal shifts in near IR optics.

    PubMed

    Stubenvoll, Martin; Schäfer, Bernd; Mann, Klaus

    2014-10-20

    We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.

  3. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation

    NASA Astrophysics Data System (ADS)

    Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian

    2016-12-01

    Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex-concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex-concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing.

  4. Elbow Dislocations in Contact Sports.

    PubMed

    Morris, Mark S; Ozer, Kagan

    2017-02-01

    Elbow dislocations are more common in athletes than in the general population. Simple elbow dislocations should be managed with early range of motion and early return to sport, even with high-level contact athletes. Patients with instability on examination or with complex elbow dislocations may require surgical intervention. Overall, the outcomes after simple elbow dislocations are excellent and athletes should be able to return to play without significant limitations.

  5. Soft-sediment deformation structures induced by strong earthquakes in southern Siberia and their paleoseismic significance

    NASA Astrophysics Data System (ADS)

    Lunina, Oksana V.; Gladkov, Andrey S.

    2016-10-01

    Liquefaction-induced soft-sediment deformation structures (SSDS) formed by earthquakes in southern Siberia, that were historically mentioned or monitored by instruments, are described and analyzed. Clastic dikes are the most common among all SSDS in the epicentral areas of the investigated seismic events. They are also the most reliable paleoseismic indicators in regions where cryogenic processes are intense. We suggest seven criteria that may be useful to distinguish the seismogenic clastic dikes from non-seismogenic SSDS in a single outcrop: (1) pushed up sedimentary blocks within the dike body; (2) regular distorted contacts of a dike with host sediments, reflecting cyclic loading during propagation of seismic waves; (3) turned up layers of host deposits on contacts with a dike; (4) displacement along dike contacts usually in the form of a normal fault caused by subsidence that compensates for the removed sediment; (5) a dike structure similar to a diapir; (6) filling of a clasic dike with coarser materials than the host sediments; and (7) a sediment layer extruded on the surface or between strata, similar in composition to the dike. In the extruded sandy-gravel-pebble layer, rock fragments show normal grading (from large to small clasts). In addition to these indicators, fractures may indirectly indicate the seismogenic genesis of liquefaction-induced SSDS. Due to the close spatial relationship of dikes with the fault structures of the investigated areas, they can be used to identify seismogenic fault, and the characteristics of dikes (lateral gradual changes in the frequency, size, and type of the deformations) can help to determine the epicenter, magnitude and the local intensity of the associated earthquakes.

  6. Elastic model of a dislocation center for martensite nucleation

    SciTech Connect

    Vereshchagin, V.P.; Kashchenko, M.P.

    1995-01-01

    The possibility of spontaneous nucleation of a crystal of new phase when the original structure is metastable is usually connected with the catalyzing effect of defects playing the role of nucleation centers. In the case of the {gamma}{r_arrow}{alpha} martensite transformation in iron alloys, even individual dislocations can act as such defects, based on analysis of long-range elastic fields of isolated linear dislocations in a linearly elastic anisotropic continuum, the authors established the existence of a correlation between the geometric characteristics of the elastically deformed state in the vicinity of 60-degree and 30-degree dislocations and the structure and morphological characteristics of {alpha}-martensite observed in massive iron alloy samples. These results suggest that the dislocation affects the pathway of the martensite reaction and allows the authors to say that the specific characteristics of heterogeneous nucleation of new phase for the martensite mechanism of the {gamma}{r_arrow}{alpha} transformation involves singling out a single structural rearrangement variant which is suitable from the standpoint of adapation of the transforming lattice to the characteristic features of the elastically deformed state created by the dislocation. The possibilities for such adaption are limited by the crystallography of the transformation and the reactions of the surrounding austenite occurring when regular connections exist with the morphological characteristics of the martensite crystal, and are not necessarily compatible with the individual features of the elastic field of each dislocation. Considering this, the authors can introduce the concept of a dislocation center for nucleation of a martensite crystal about the region of the dislocation where conditions are realized which are favorable for the formation of a nucleus of martensite crystal of a certain shape and orientation, and they can develop an elastic model corresponding to this concept.

  7. Dislocated Worker Project.

    ERIC Educational Resources Information Center

    1988

    Due to the severe economic decline in the automobile manufacturing industry in southeastern Michigan, a Dislocated Workers Program has been developed through the partnership of the Flint Area Chamber of Commerce, three community colleges, the National Center for Research in Vocational Education, the Michigan State Department of Education, the…

  8. Elbow fractures and dislocations.

    PubMed

    Little, Kevin J

    2014-07-01

    Elbow fractures are common in pediatric patients. Most injuries to the pediatric elbow are stable and require simple immobilization; however, more severe fractures can occur, often requiring operative stabilization and/or close monitoring. This article highlights the common fractures and dislocations about the pediatric elbow and discusses the history, evaluation, and treatment options for specific injuries.

  9. Behavior of dislocations in silicon

    SciTech Connect

    Sumino, Koji

    1995-08-01

    A review is given of dynamic behavior of dislocations in silicon on the basis of works of the author`s group. Topics taken up are generation, motion and multiplication of dislocations as affected by oxygen impurities and immobilization of dislocations due to impurity reaction.

  10. Effect of crystal anisotropy and adhesive forces on laser induced deformation patterns in covalently bonded thin films

    NASA Astrophysics Data System (ADS)

    Walgraef, D.; Ghoniem, N. M.

    2002-04-01

    The effect of crystal structure on laser induced deformation patterns in thin films and surfaces is analyzed within the framework of a dynamical model for the coupled evolution of defect densities and deformation fields. In crystals with covalent bonding, such as Si and SiC, preferential bond breaking may occur, as a result of the relative orientation of the laser electric field and crystallographic axes. We extend here our theoretical framework to incorporate the effects of anisotropic defect diffusion, and the influence of film-substrate adhesion on deformation pattern selection and stability of thin films subjected to laser beams. We also compare theoretical predictions to experimental observations on single crystal silicon wafer surfaces. Furthermore, it is predicted that the laser induced damage threshold for SiC single crystals can be in excess of 200 J/cm2.

  11. Basic study of intrinsic elastography: Relationship between tissue stiffness and propagation velocity of deformation induced by pulsatile flow

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Iwasaki, Ryosuke; Arakawa, Mototaka; Kobayashi, Kazuto; Yoshizawa, Shin; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2015-07-01

    We proposed an estimation method for a tissue stiffness from deformations induced by arterial pulsation, and named this proposed method intrinsic elastography (IE). In IE, assuming that the velocity of the deformation propagation in tissues is closely related to the stiffness, the propagation velocity (PV) was estimated by spatial compound ultrasound imaging with a high temporal resolution of 1 ms. However, the relationship between tissue stiffness and PV has not been revealed yet. In this study, the PV of the deformation induced by the pulsatile pump was measured by IE in three different poly(vinyl alcohol) (PVA) phantoms of different stiffnesses. The measured PV was compared with the shear wave velocity (SWV) measured by shear wave imaging (SWI). The measured PV has trends similar to the measured SWV. These results obtained by IE in a healthy male show the possibility that the mechanical properties of living tissues could be evaluated by IE.

  12. Delayed treatment of a neonatal type-I Monteggia fracture-dislocation: a case report.

    PubMed

    Smith, William R; Kozin, Scott H; Zlotolow, Dan A

    2017-03-01

    Delayed diagnosis of a Monteggia fracture-dislocation changes a straightforward, treatable injury into a complex problem. Acute neonatal injuries may be missed because of the inability to visualize the unossified skeleton on radiography, interpreted later as 'congenital' dislocations. We report the case of a 14-month-old with a neonatal Monteggia type-I fracture-dislocation secondary to birth trauma, with anterior radial head dislocation and plastic deformation of the ulna. Uniplanar external fixation was used to restore ulnar length and correct angulation, with subsequent radiocapitellar joint closed reduction. Joint congruity was maintained at the 2-year follow-up, with articular remodeling shown on serial arthrogram.

  13. Electromagnetic emission under uniaxial compression of ice: III. Dynamics and statistics of dislocation avalanches and cracks

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Kazakov, A. A.

    2009-03-01

    Statistical analysis of the plastic deformation steps and fracture of polycrystalline ice has been performed. It is established that an increase in deformation leads to gradual evolution of the statistics of amplitudes of mesoscopic deformation jumps from random (with a Poisson distribution of dislocation avalanche amplitudes) to “critical” (with a power-law distribution), which indicates occurrence of long-range correlations of the dislocation mesodynamics of deformed polycrystalline ice. The state of self-organized criticality at subcritical ice fracture has been revealed from the power-law statistics of the amplitudes of electric pulses and pauses between them, flicker-noise structure, and almost monofractal character of signals.

  14. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS

    SciTech Connect

    Anter El-Azab

    2013-04-08

    The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand strain hardening and cell structure formation under monotonic loading. These aspects of crystal deformation are manifestations of the evolution of the underlying dislocation system under mechanical loading. The project had three research tasks: 1) Investigating the statistical characteristics of dislocation systems in deformed crystals. 2) Formulating kinetic equations of dislocations and coupling these kinetics equations and crystal mechanics. 3) Computational solution of coupled crystal mechanics and dislocation kinetics. Comparison of dislocation dynamics predictions with experimental results in the area of statistical properties of dislocations and their field was also a part of the proposed effort. In the first research task, the dislocation dynamics simulation method was used to investigate the spatial, orientation, velocity, and temporal statistics of dynamical dislocation systems, and on the use of the results from this investigation to complete the kinetic description of dislocations. The second task focused on completing the formulation of a kinetic theory of dislocations that respects the discrete nature of crystallographic slip and the physics of dislocation motion and dislocation interaction in the crystal. Part of this effort also targeted the theoretical basis for establishing the connection between discrete and continuum representation of dislocations and the analysis of discrete dislocation simulation results within the continuum framework. This part of the research enables the enrichment of the kinetic description with information representing the discrete dislocation systems behavior. The third task focused on the development of physics-inspired numerical methods of solution of the coupled

  15. An electron microscopy study of dislocation structures in Mg single crystals compressed along [0 0 0 1] at room temperature

    SciTech Connect

    Kumar, K. S.; Chisholm, Matthew F.; Geng, J.; Mishra, R. K.

    2016-01-09

    We compressed Mg single crystals along [0 0 0 1] at room temperature to various stress levels (40, 80, 120, 160 and 320 MPa) and the evolution of dislocation structure with stress increment was investigated by TEM slip is confirmed to be the dominant deformation mode; the predominance of edge dislocation debris lying along the <1 0 $\\bar{1}$ 0> implies that screw dislocations are more mobile than their edge counterpart. The edge dislocation may dissociate into and dislocations, and the latter can extend further on the basal plane and bound a basal-stacking fault.

  16. An electron microscopy study of dislocation structures in Mg single crystals compressed along [0 0 0 1] at room temperature

    DOE PAGES

    Kumar, K. S.; Chisholm, Matthew F.; Geng, J.; ...

    2016-01-09

    We compressed Mg single crystals along [0 0 0 1] at room temperature to various stress levels (40, 80, 120, 160 and 320 MPa) and the evolution of dislocation structure with stress increment was investigated by TEM slip is confirmed to be the dominant deformation mode; the predominance of edge dislocation debris lying along the <1 0more » $$\\bar{1}$$ 0> implies that screw dislocations are more mobile than their edge counterpart. The edge dislocation may dissociate into and dislocations, and the latter can extend further on the basal plane and bound a basal-stacking fault.« less

  17. Effect of Cyclic Pre-deformation on Uniaxial Tensile Behavior of Cu-16 at. pct Al Alloy with Low Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Qi, C. J.; Han, D.; Ji, H. M.; Zhang, M. Q.; Li, X. W.

    2017-02-01

    To explore the effect of cyclic pre-deformation on static mechanical behavior of materials with different stacking fault energies (SFEs), polycrystalline Cu-16 at. pct Al alloy with a low SFE is selected as the target material in the present work, and the strengthening micro-mechanisms induced by cyclic pre-deformation are compared with the previous studies on pure Al with a high SFE and Cu with an intermediate SFE. The results show that the movement of dislocations exhibits a high slip planarity during cyclic pre-deformation at different total strain amplitudes Δ ɛ t/2, and some nano-sized deformation twins are formed after subsequent tension. The cyclic pre-deformation at an appropriate Δ ɛ t/2 of 1.0 × 10-3 promotes a significant increase in ultimate tensile strength σ UTS nearly without loss of tensile ductility, which primarily stems from the introduction of many mobile planar slip dislocations by cyclic pre-deformation as well as the formation of nano-sized deformation twins during subsequent tension. Based on the comparison of the strengthening micro-mechanisms induced by cyclic pre-deformation in Al, Cu, and Cu-16 at. pct Al alloy, it is deduced that a low-cycle cyclic pre-deformation at an appropriate condition is expected to cause a better strengthening effect on the static tensile properties of low SFE metals.

  18. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    NASA Astrophysics Data System (ADS)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  19. Lifshitz topological transitions, induced by doping and deformation in single-crystal bismuth wires

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. A.; Konopko, L. A.; Huber, T. E.; Kobylianskaya, A. K.; Para, Gh. I.

    2017-02-01

    The features associated with the manifestation of Lifshitz electron topological transitions (ETT) in glass-insulated bismuth wires upon qualitative changes to the topology of the Fermi surface are investigated. The variation of the energy spectrum parameters was implemented by doping Bi with an acceptor impurity Sn and using elastic strain of up to 2%, relative to the elongation in the weakly-doped p-type Bi wires. Pure and doped glass-insulated single-crystal bismuth with different diameters and (1011) orientations along the axis were prepared by the Ulitovsky liquid phase casting method. For the first time, ETT-induced anomalies are observed along the temperature dependences of the thermoemf α(T) as triple-changes of the α sign (given heavy doping of Bi wires with an acceptor impurity Sn). The concentration and energy position of the Σ-band given a high degree of bismuth doping with Sn was assessed using the Shubnikov-de Haas effect oscillations, which were detected both from L-electrons and from T-holes in magnetic fields of up to 14 T. It is shown that the Lifshitz electron-topological transitions with elastic deformation of weakly-doped p-type Bi wires are accompanied by anomalies along the deformation dependences of the thermoemf at low temperatures. The effect is interpreted in terms of the formation of a selective scattering channel of L-carriers into the T-band with a high density of states, which is in good agreement with existing theoretical ETT models.

  20. Estimation of Dislocation Density in Cold-Rolled Commercially Pure Titanium by Using Synchrotron Diffraction

    NASA Astrophysics Data System (ADS)

    ALkhazraji, Hasan; Salih, Mohammed Z.; Zhong, Zhengye; Mhaede, Mansour; Brokmeier, Hans-Günter; Wagner, Lothar; Schell, N.

    2014-08-01

    Cold rolling (CR) leads to a heavy changes in the crystallographic texture and microstructure, especially crystal defects, such as dislocations, and stacking faults increase. The microstructure evolution in commercially pure titanium (cp-Ti) deformed by CR at the room temperature was determined by using the synchrotron peak profile analysis of full width at half maximum (FWHM). The computer program ANIZC has been used for the calculation of diffraction contrast factors of dislocations in elastically anisotropic hexagonal crystals. The dislocation density has a minimum value at 40 pct reduction. The increase of the dislocation density at higher deformation levels is caused by the nucleation of new generation of dislocations from the crystallite grain boundaries. The high-cycle fatigue strength (HCF) has a maximum value at 80 pct reduction and it has a minimum value at 40 pct reduction in the commercially pure titanium.

  1. A field theory of piezoelectric media containing dislocations

    SciTech Connect

    Taupin, V. Fressengeas, C.; Ventura, P.; Lebyodkin, M.

    2014-04-14

    A field theory is proposed to extend the standard piezoelectric framework for linear elastic solids by accounting for the presence and motion of dislocation fields and assessing their impact on the piezoelectric properties. The proposed theory describes the incompatible lattice distortion and residual piezoelectric polarization fields induced by dislocation ensembles, as well as the dynamic evolution of these fields through dislocation motion driven by coupled electro-mechanical loading. It is suggested that (i) dislocation mobility may be enhanced or inhibited by the electric field, depending on the polarity of the latter, (ii) plasticity mediated by dislocation motion allows capturing long-term time-dependent properties of piezoelectric polarization. Due to the continuity of the proposed electro-mechanical framework, the stress/strain and polarization fields are smooth even in the dislocation core regions. The theory is applied to gallium nitride layers for validation. The piezoelectric polarization fields associated with bulk screw/edge dislocations are retrieved and surface potential modulations are predicted. The results are extended to dislocation loops.

  2. Neglected isolated scaphoid dislocation

    PubMed Central

    Baek, Jong-Ryoon; Cho, Seung Hyun; Lee, Yong Seuk; Roh, Young Hak

    2016-01-01

    The authors present a case of isolated scaphoid dislocation in a 40-year-old male that was undiagnosed for 2 months. The patient was treated by open reduction, Kirschner wire fixation, interosseous ligament repair using a suture anchor and Blatt's dorsal capsulodesis. At 6 years followup, his radiographs of wrist showed a normal carpal alignment with a scapholunate gap of 3 mm and no evidence of avascular necrosis (AVN) of the scaphoid. PMID:27904228

  3. A technique to generate straight through thickness surface cracks and its application to studying dislocation nucleation in Si

    SciTech Connect

    Xin, Y.B.; Hsia, K.J.

    1996-03-01

    A new technique, indentation-scratch, is developed to generate high quality, cleavage surface precracks in brittle materials. An indentation roller equipped with weight attachment rolls across the specimen surfaces to generate precracks in four-point bending specimens. The residual stresses induced during indentation are effectively eliminated by mechanically grinding away the inelastically deformed surface layer. The intrinsic fracture toughness measured by the present method is in good agreement with the data in the literature. The dislocation nucleation condition, associated with the onset of the increase of subsequent room temperature fracture toughness following high-temperature prestressing at 500 C, is determined.

  4. Dislocation unpinning model of acoustic emission from alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Gour, Anubha S.; Chandra, Vivek K.; Patil, Yuvraj

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant tau_{s} for surface annihilation of dislocations and the pinning time tau_{p} of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  5. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  6. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  7. Cyclic Deformation-Induced Solute Transport in Tissue Scaffolds with Computer Designed, Interconnected, Pore Networks: Experiments and Simulations

    PubMed Central

    Op Den Buijs, Jorn; Dragomir-Daescu, Dan; Ritman, Erik L.

    2014-01-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid–structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold. PMID:19466547

  8. Dislocation Ledge Sources: Dispelling the Myth of Frank-Read Source Importance

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2016-12-01

    In the early 1960s, J.C.M. Li questioned the formation of dislocation pileups at grain boundaries, especially in high-stacking-fault free-energy fcc metals and alloys, and proposed grain boundary ledge sources for dislocations in contrast to Frank -Read sources. This article reviews these proposals and the evolution of compelling evidence for grain boundary or related interfacial ledge sources of dislocations in metals and alloys, including unambiguous observations using transmission electron microscopy. Such observations have allowed grain boundary ledge source emission profiles of dislocations to be quantified in 304 stainless steel (with a stacking-fault free energy of 23 mJ/m2) and nickel (with a stacking-fault free energy of 128 mJ/m2) as a function of engineering strain. The evidence supports the conclusion that FR dislocation sources are virtually absent in metal and alloy deformation with ledges at interfaces dominating as dislocation sources.

  9. Anterior Dislocation of Elbow Joint-Case Report of A Rare Injury

    PubMed Central

    Kumar, Rakesh; Sekhawat, Vishal; Sankhala, SS; Bijarnia, Isha

    2014-01-01

    Introduction: In view of the comparative frequency of posterior dislocations of the elbow, it is rather remarkable that anterior dislocations of that joint should be among the rarest of injuries. Authors report a case of acute anterior dislocation with old fracture of medial epicondyle. Case Report: 22 years old male presented with acute pain and tenderness with deformity of right elbow joint and inability to move the elbow joint after he fell down during an episode of seizure. There was no neurovascular deficit. Radiological examination confirmed anterior dislocation of elbow joint with an ununited medial epicondyle fracture. Elbow was reduced under general anesthesia in emergency operation theatre. Conclusion: Anterior dislocation of elbow is very rare. Early diagnosis and proper reduction of dislocation is key of normal functioning of elbow joint. PMID:27298973

  10. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  11. Congenital subtalar dislocation--a case report.

    PubMed

    Saini, Raghav; Dhillon, M S; Gill, S S

    2009-09-01

    Congenital dislocation of the subtalar joint is one of the rarest forms of presentation of a calcaneo-valgus foot. We report the second case of this type published; an 18-month female child aged was seen with calcaneo-valgus deformity of left foot since birth. She was walking over the medial malleolus and medial border of foot. Radiographs and 3D CT scan of the left foot confirmed the diagnosis of a congenital subtalar dislocation. Surgical correction was achieved through a posterolateral incision, and the reduced joint was fixed with a k-wires for 6 weeks; the foot was immobilized in below knee cast for another 6 weeks, and an ankle foot orthosis was used for another 3 years. At 3 years post-surgical follow up, the child has a plantigrade foot with no functional impairment. Follow up radiographs and 3D CT scan confirmed the maintenance of well aligned talo-calcaneal joint. This type of dislocation should be considered in the differential diagnosis of calcaneo-valgus foot; a clear understanding of the pathology, a precise operative reduction, and long-term use of orthosis results in a favourable outcome.

  12. Surface-controlled dislocation multiplication in metal micropillars.

    PubMed

    Weinberger, Christopher R; Cai, Wei

    2008-09-23

    Understanding the plasticity and strength of crystalline materials in terms of the dynamics of microscopic defects has been a goal of materials research in the last 70 years. The size-dependent yield stress observed in recent experiments of submicrometer metallic pillars provides a unique opportunity to test our theoretical models, allowing the predictions from defect dynamics simulations to be directly compared with mechanical strength measurements. Although depletion of dislocations from submicrometer face-centered-cubic (FCC) pillars provides a plausible explanation of the observed size-effect, we predict multiplication of dislocations in body-centered-cubic (BCC) pillars through a series of molecular dynamics and dislocation dynamics simulations. Under the combined effects from the image stress and dislocation core structure, a dislocation nucleated from the surface of a BCC pillar generates one or more dislocations moving in the opposite direction before it exits from the surface. The process is repeatable so that a single nucleation event is able to produce a much larger amount of plastic deformation than that in FCC pillars. This self-multiplication mechanism suggests a need for a different explanation of the size dependence of yield stress in FCC and BCC pillars.

  13. Direct observation of individual dislocation interaction processes with grain boundaries

    PubMed Central

    Kondo, Shun; Mitsuma, Tasuku; Shibata, Naoya; Ikuhara, Yuichi

    2016-01-01

    In deformation processes, the presence of grain boundaries has a crucial influence on dislocation behavior; these boundaries drastically change the mechanical properties of polycrystalline materials. It has been considered that grain boundaries act as effective barriers for dislocation glide, but the origin of this barrier-like behavior has been a matter of conjecture for many years. We directly observe how the motion of individual dislocations is impeded at well-defined high-angle and low-angle grain boundaries in SrTiO3, via in situ nanoindentation experiments inside a transmission electron microscope. Our in situ observations show that both the high-angle and low-angle grain boundaries impede dislocation glide across them and that the impediment of dislocation glide does not simply originate from the geometric effects; it arises as a result of the local structural stabilization effects at grain boundary cores as well, especially for low-angle grain boundaries. The present findings indicate that simultaneous consideration of both the geometric effects and the stabilization effects is necessary to quantitatively understand the dislocation impediment processes at grain boundaries. PMID:27847862

  14. Dislocation Substructure in the Cold-Rolled Ni-20 Mass Pct Cr Alloy Analyzed by X-ray Diffraction, Positron Annihilation Lifetime, and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Yonemura, Mitsuharu; Inoue, Koji

    2016-12-01

    The systematic change in the dislocation density and characteristics that develop under cold rolling as a simulated deformation was studied in order to examine the fundamental behavior of dislocations in terms of the dislocation substructure formation. In particular, the dislocation density was quantified by X-ray line profile analysis (XLPA), which is effective for quantifying the dislocation density and character; positron annihilation lifetime (PAL), which is sensitive to vacancy-type lattice defects; the Bailey-Hirsch equation from the hardness (Hv); and transmission electron microscopy (TEM). The strain dependency of the dislocation density analyzed by XLPA, PAL, TEM, and Hv showed a similar tendency with an increase in the dislocation. In particular, the dislocation density by XLPA had good agreement with the results of TEM at low strain levels and with PAL at high strain levels. As a result, a combination of these techniques successfully showed the behavior of the dislocation substructure.

  15. Ultrasonic excitation of a bubble inside a deformable tube: Implications for ultrasonically induced hemorrhage

    PubMed Central

    Miao, Hongyu; Gracewski, Sheryl M.; Dalecki, Diane

    2008-01-01

    Various independent investigations indicate that the presence of microbubbles within blood vessels may increase the likelihood of ultrasound-induced hemorrhage. To explore potential damage mechanisms, an axisymmetric coupled finite element and boundary element code was developed and employed to simulate the response of an acoustically excited bubble centered within a deformable tube. As expected, the tube mitigates the expansion of the bubble. The maximum tube dilation and maximum hoop stress were found to occur well before the bubble reached its maximum radius. Therefore, it is not likely that the expanding low pressure bubble pushes the tube wall outward. Instead, simulation results indicate that the tensile portion of the acoustic excitation plays a major role in tube dilation and thus tube rupture. The effects of tube dimensions (tube wall thickness 1–5 μm), material properties (Young’s modulus 1–10 MPa), ultrasound frequency (1–10 MHz), and pressure amplitude (0.2–1.0 MPa) on bubble response and tube dilation were investigated. As the tube thickness, tube radius, and acoustic frequency decreased, the maximum hoop stress increased, indicating a higher potential for tube rupture and hemorrhage. PMID:19062875

  16. Systematic studies on reactive ion etch-induced deformations of organic underlayers

    NASA Astrophysics Data System (ADS)

    Glodde, Martin; Engelmann, Sebastian; Guillorn, Michael; Kanakasabapathy, Sivananda; Mclellan, Erin; Koay, Chiew-Seng; Yin, Yunpeng; Sankarapandian, Muthumanickam; Arnold, John C.; Petrillo, Karen; Brink, Markus; Miyazoe, Hiroyuki; de Silva, E. Anuja; Yusuff, Hakeem; Yoon, Kwang-sub; Wei, Yayi; Wu, Chung-hsi J.; Varanasi, P. Rao

    2011-04-01

    Underlayers (UL), such as organic planarizing layers (OPLs) or spin-on carbon (SOC) layers, play a very important role in various integration schemes of chip manufacturing. One function of OPLs is to fill in pre-existing patterns on the substrate, such as previously patterned vias, to enable lithographic patterning of the next level. More importantly, OPL resistance to reactive ion etch (RIE) processes used to etch silicon-containing materials is essential for the successful pattern transfer from the resist into the substrate. Typically, the pattern is first transferred into the OPL through a two-step RIE sequence, followed by the transfer into the substrate by a fluorine-containing RIE step that leaves the OPL pattern mainly intact. However, when the line/space patterns are scaled down to line widths below 35 nm, it was found that this last RIE step induces severe pattern deformation ("wiggling") of the OPL material, which ultimately prevents the successful pattern transfer into the substrate. In this work, we developed an efficient process to evaluate OPL materials with respect to their pattern transfer performance. This allowed us to systematically study material, substrate and etch process parameters and draw conclusions about how changes in these parameters may improve the overall pattern transfer margin.

  17. A remotely driven and controlled micro-gripper fabricated from light-induced deformation smart material

    NASA Astrophysics Data System (ADS)

    Huang, Chaolei; Lv, Jiu-an; Tian, Xiaojun; Wang, Yuechao; Liu, Jie; Yu, Yanlei

    2016-09-01

    Micro-gripper is an important tool to manipulate and assemble micro-scale objects. Generally, as micro-gripper is too small to be directly driven by general motors, it always needs special driving devices and suitable structure design. In this paper, two-finger micro-grippers are designed and fabricated, which utilize light-induced deformation smart material to make one of the two fingers. As the smart material is directly driven and controlled by remote lights instead of lines and motors, this light-driven mode simplifies the design of the two-finger micro-gripper and avoids special drivers and complex mechanical structure. In addition, a micro-manipulation experiment system is set up which is based on the light-driven micro-gripper. Experimental results show that this remotely light-driven micro-gripper has ability to manipulate and assemble micro-scale objects both in air and water. Furthermore, two micro-grippers can also work together for cooperation which can further enhance the assembly ability. On the other hand, this kind of remotely controllable micro-gripper that does not require on-board energy storage, can be used in mobile micro-robot as a manipulation hand.

  18. Tailoring noncollinear magnetism by misfit dislocation lines

    NASA Astrophysics Data System (ADS)

    Finco, Aurore; Hsu, Pin-Jui; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland

    2016-12-01

    The large epitaxial stress induced by the misfit between a triple atomic layer Fe film and an Ir(111) substrate is relieved by the formation of a dense dislocation line network. Spin-polarized scanning tunneling microscopy investigations show that the strain is locally varying within the Fe film and that this variation affects the magnetic state of the system. Two types of dislocation line regions can be distinguished and both exhibit spin spirals with strain-dependent periods (ranging from 3 to 10 nm ). Using a simple micromagnetic model, we attribute the changes of the period of the spin spirals to variations of the effective exchange coupling in the magnetic film. This assumption is supported by the observed dependence of the saturation magnetic field on the period of the zero-field spin spiral. Moreover, magnetic skyrmions appear in an external magnetic field only in one type of dislocation line area, which we impute to the different pinning properties of the dislocation lines.

  19. Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties

    NASA Astrophysics Data System (ADS)

    Reznik, Boris; Kontny, Agnes; Fritz, Jörg; Gerhards, Uta

    2016-06-01

    This study investigates the effects of shock waves on magnetic and microstructural behavior of multidomain magnetite from a magnetite-bearing ore, experimentally shocked to pressures of 5, 10, 20, and 30 GPa. Changes in apparent crystallite size and lattice parameter were determined by X-ray diffraction, and grain fragmentation and defect accumulation were studied by scanning and transmission electron microscopy. Magnetic properties were characterized by low-temperature saturation isothermal remanent magnetization (SIRM), susceptibility measurements around the Verwey transition as well as by hysteresis parameters at room temperature. It is established that the shock-induced refinement of magnetic domains from MD to SD-PSD range is a result of cooperative processes including brittle fragmentation of magnetite grains, plastic deformation with shear bands and twins as well as structural disordering in form of molten grains and amorphous nanoclusters. Up to 10 GPa, a decrease of coherent crystallite size, lattice parameter, saturation magnetization (Ms), and magnetic susceptibility and an increase in coercivity, SIRM, and width of Verwey transition are mostly associated with brittle grain fragmentation. Starting from 20 GPa, a slight recovery is documented in all magnetic and nonmagnetic parameters. In particular, the recovery in SIRM is correlated with an increase of the lattice constant. The recovery effect is associated with the increasing influence of shock heating/annealing at high shock pressures. The strong decrease of Ms at 30 GPa is interpreted as a result of strong lattice damage and distortion. Our results unravel the microstructural mechanisms behind the loss of magnetization and the modification of magnetic properties of magnetite and contribute to our understanding of shock-induced magnetic phenomena in impacted rocks on earth and in meteorites.

  20. Predicting dislocation climb and creep from explicit atomistic details.

    PubMed

    Kabir, Mukul; Lau, Timothy T; Rodney, David; Yip, Sidney; Van Vliet, Krystyn J

    2010-08-27

    Here we report kinetic Monte Carlo simulations of dislocation climb in heavily deformed, body-centered cubic iron comprising a supersaturation of vacancies. This approach explicitly incorporates the effect of nonlinear vacancy-dislocation interaction on vacancy migration barriers as determined from atomistic calculations, and enables observations of diffusivity and climb over time scales and temperatures relevant to power-law creep. By capturing the underlying microscopic physics, the calculated stress exponents for steady-state creep rates agree quantitatively with the experimentally measured range, and qualitatively with the stress dependence of creep activation energies.

  1. On the influence of plastic deformation on discontinuous precipitation in Mg-Al

    SciTech Connect

    Duly, D.; Audier, M.; Brechet, Y. . Lab. de Thermodynamique et de Physico-Chimie Metallurgique)

    1993-12-15

    The influence of a prestrain on intragranular precipitation is well known: the dislocations created by plastic deformation act as nucleation sites for heterogeneous precipitation. The influence of a similar prestrain on discontinuous precipitation is much less documented. There appears to be no general rule: depending on the systems considered, the kinetics of discontinuous precipitation can either be accelerated or slowed down. Moreover, in certain alloys, discontinuous precipitation is associated with recrystallization phenomena. In this paper, the authors results on the influence of plastic strain at room temperature on discontinuous precipitation in a Mg-8.5 wt% Al alloy. The interesting feature of this alloy is that plastic deformation induces both dislocation glide and twinning.

  2. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. II. In situ transmission electron microscopy study of deformation mechanism change of a Zr-2.5Nb alloy upon heavy ion irradiation

    SciTech Connect

    Long, Fei; Daymond, Mark R. Yao, Zhongwen; Kirk, Marquis A.

    2015-03-14

    The effect of heavy-ion irradiation on deformation mechanisms of a Zr-2.5Nb alloy was investigated by using the in situ transmission electron microscopy deformation technique. The gliding behavior of prismatic 〈a〉 dislocations has been dynamically observed before and after irradiation at room temperature and 300 °C. Irradiation induced loops were shown to strongly pin the gliding dislocations. Unpinning occurred while loops were incorporated into or eliminated by 〈a〉 dislocations. In the irradiated sample, loop depleted areas with a boundary parallel to the basal plane trace were found by post-mortem observation after room temperature deformation, supporting the possibility of basal channel formation in bulk neutron irradiated samples. Strong activity of pyramidal slip was also observed at both temperatures, which might be another important mechanism to induce plastic instability in irradiated zirconium alloys. Finally, (011{sup ¯}1)〈01{sup ¯}12〉 twinning was identified in the irradiated sample deformed at 300 °C.

  3. Dislocation Diffusion in Metallic Materials

    DTIC Science & Technology

    2011-09-08

    DATES COVERED (From - To) April 1,2007-March 31, 2010 4. TITLE AND SUBTITLE Dislocation Diffusion in Metallic Materials 5a. CONTRACT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT The goals of this project were: (1) perform a fundamental study of atomic diffusion along dislocation cores in metals and...alloys, (2) develop new methods for the calculation of dislocation diffusion coefficients as functions of temperature and chemical composition and (3

  4. Deformation induced topographic effects in inversion of temporal gravity changes: First look at Free Air and Bouguer terms

    NASA Astrophysics Data System (ADS)

    Vajda, Peter; Zahorec Pavol, Pavol; Papčo, Juraj; Kubová, Anna

    2015-06-01

    We review here the gravitational effects on the temporal (time-lapse) gravity changes induced by the surface deformation (vertical displacements). We focus on two terms, one induced by the displacement of the benchmark (gravity station) in the ambient gravity field, and the other imposed by the attraction of the masses within the topographic deformation rind. The first term, coined often the Free Air Effect (FAE), is the product of the vertical gradient of gravity (VGG) and the vertical displacement of the benchmark. We examine the use of the vertical gradient of normal gravity, typically called the theoretical or normal Free Air Gradient (normal FAG), as a replacement for the true VGG in the FAE, as well as the contribution of the topography to the VGG. We compute a topographic correction to the normal FAG, to offer a better approximation of the VGG, and evaluate its size and shape (spatial behavior) for a volcanic study area selected as the Central Volcanic Complex (CVC) on Tenerife, where this correction reaches 77% of the normal FAG and varies rapidly with terrain. The second term, imposed by the attraction of the vertically displaced topo-masses, referred to here as the Topographic Deformation Effect (TDE) must be computed by numerical evaluation of the Newton volumetric integral. As the effect wanes off quickly with distance, a high resolution DEM is required for its evaluation. In practice this effect is often approximated by the planar or spherical Bouguer deformation effect (BDE). By a synthetic simulation at the CVC of Tenerife we show the difference between the rigorously evaluated TDE and its approximation by the planar BDE. The complete effect, coined here the Deformation Induced Topographic Effect (DITE) is the sum of FAE and TDE. Next we compare by means of synthetic simulations the DITE with two approximations of DITE typically used in practice: one amounting only to the first term in which the VGG is approximated by normal FAG, the other adopting a

  5. Correlation of photothermal conversion on the photo-induced deformation of amorphous carbon nitride films prepared by reactive sputtering

    SciTech Connect

    Harata, T.; Aono, M. Kitazawa, N.; Watanabe, Y.

    2014-08-04

    The photo-induced deformation of hydrogen-free amorphous carbon nitride (a-CN{sub x}) films was investigated under visible-light illumination. The films gave rise to photothermal conversion by irradiation. In this study, we investigated the effects of thermal energy generated by irradiation on the deformation of a-CN{sub x}/ultrathin substrate bimorph specimens. The films were prepared on both ultrathin Si and SiO{sub 2} substrates by reactive radio-frequency magnetron sputtering from a graphite target in the presence of pure nitrogen gas. The temperature of the film on the SiO{sub 2} substrate increased as the optical band-gap of the a-CN{sub x} was decreased. For the film on Si, the temperature remained constant. The deformation degree of the films on Si and SiO{sub 2} substrates were approximately the same. Thus, the deformation of a-CN{sub x} films primarily induced by photon energy directly.

  6. Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Martin, Stefan; Wolf, Steffen; Martin, Ulrich; Krüger, Lutz; Rafaja, David

    2016-01-01

    A high-alloy austenitic CrMnNi steel was deformed at temperatures between 213 K and 473 K (-60 °C and 200 °C) and the resulting microstructures were investigated. At low temperatures, the deformation was mainly accompanied by the direct martensitic transformation of γ-austenite to α'-martensite (fcc → bcc), whereas at ambient temperatures, the transformation via ɛ-martensite (fcc → hcp → bcc) was observed in deformation bands. Deformation twinning of the austenite became the dominant deformation mechanism at 373 K (100 °C), whereas the conventional dislocation glide represented the prevailing deformation mode at 473 K (200 °C). The change of the deformation mechanisms was attributed to the temperature dependence of both the driving force of the martensitic γ → α' transformation and the stacking fault energy of the austenite. The continuous transition between the ɛ-martensite formation and the twinning could be explained by different stacking fault arrangements on every second and on each successive {111} austenite lattice plane, respectively, when the stacking fault energy increased. A continuous transition between the transformation-induced plasticity effect and the twinning-induced plasticity effect was observed with increasing deformation temperature. Whereas the formation of α'-martensite was mainly responsible for increased work hardening, the stacking fault configurations forming ɛ-martensite and twins induced additional elongation during tensile testing.

  7. Effects of Temperature on Structure and Mobility of the <100> Edge Dislocation in Body-Centred Cubic Iron

    SciTech Connect

    Terentyev, Dmitry; Osetskiy, Yury N; Bacon, David J

    2010-01-01

    Dislocation segments with Burgers vector b = <1 0 0> are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2<1 1 1>. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight <1 0 0> edge dislocation is investigated here by atomic-scale computer simulation for {alpha}-iron using three different interatomic potentials. At low temperature the dislocation has a non-planar core consisting of two 1/2<1 1 1> fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the <1 0 0> dislocation. It is concluded that the response of the <1 0 0> edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2<1 1 1> dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples.

  8. Low temperature deformation detwinning - a reverse mode of twinning.

    SciTech Connect

    Wang, Y. D.; Liu, W.; Lu, L.; Ren, Y.; Nie, Z. H.; Almer, J.; Cheng, S.; Shen, Y. F.; Zuo, L.; Liaw, P. K.; Lu, K.

    2010-01-01

    The origin of the plasticity in bulk nanocrystalline metals have, to date, been attributed to the grain-boundary-mediated process, stress-induced grain coalescence, dislocation plasticity, and/or twinning. Here we report a different mechanism - detwinning, which operates at low temperatures during the tensile deformation of an electrodeposited Cu with a high density of nanosized growth twins. Both three-dimensional XRD microscopy using the Laue method with a submicron-sized polychromatic beam and high-energy XRD technique with a monochromatic beam provide the direct experimental evidences for low temperature detwinning of nanoscale twins.

  9. Plastic deformation mechanisms in nanocrystalline metallic materials

    NASA Astrophysics Data System (ADS)

    Ovid'ko, Ilya A.

    2013-11-01

    This article discusses the experiments, computer simulations, and theoretical models addressing the conventional and specific mechanisms of plastic deformation in nanocrystalline metallic materials. Particular attention is devoted to the competition between lattice dislocation slip and specific deformation mechanisms mediated by grain boundaries as well as its sensitivity to grain size and other parameters of nanocrystalline metallic structures.

  10. Period-doubling reconstructions of semiconductor partial dislocations

    DOE PAGES

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai; ...

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90° partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantly reduced;more » hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. Lastly, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less

  11. Period-doubling reconstructions of semiconductor partial dislocations

    SciTech Connect

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai; Kang, Joongoo; McMahon, William E.

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90° partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantly reduced; hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. Lastly, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.

  12. Atomistic deformation mechanisms in twinned copper nanospheres.

    PubMed

    Bian, Jianjun; Niu, Xinrui; Zhang, Hao; Wang, Gangfeng

    2014-01-01

    In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

  13. Misfit dislocations in epitaxy

    NASA Astrophysics Data System (ADS)

    van der Merwe, Jan H.

    2002-08-01

    This article on epitaxy highlights the following: the definition and some historical milestones; the introduction by Frenkel and Kontorowa (FK) of a truncated Fourier series to model the periodic interaction at crystalline interfaces; the invention by Frank and van der Merwe (FvdM)—using the FK model—of (interfacial) misfit dislocations as an important mechanism in accommodating misfit at epilayer-substrate interfaces; the generalization of the FvdM theory to multilayers; the application of the parabolic model by Jesser and van der Merwe to describe, for growing multilayers and superlattices, the impact of Fourier coefficients in the realization of epitaxial orientations and the stability of modes of misfit accommodation; the involvement of intralayer interaction in the latter—all features that impact on the attainment of perfection in crystallinity of thin films, a property that is so vital in the fabrication of useful uniformly thick epilayers (uniformity being another technological requirement), which also depends on misfit accommodation through the interfacial energy that function strongly in the criterion for growth modes, proposed by Bauer; and the ingenious application of the Volterra model by Matthews and others to describe misfit accommodation by dislocations in growing epilayers.

  14. Geometric aspects of shear jamming induced by deformation of frictionless sphere packings

    NASA Astrophysics Data System (ADS)

    Vinutha, H. A.; Sastry, Srikanth

    2016-09-01

    It has recently been demonstrated that shear deformation of frictionless sphere packings leads to structures that will undergo jamming in the presence of friction, at densities well below the isotropic jamming point {φj}≈ 0.64 , and at high enough strains. Here, we show that the geometric features induced by strain are robust with respect to finite size effects, and include the feature of hyperuniformity, previously studied in the context of jamming, and more recently in driven systems. We study the approach to jamming as strain is increased, by evolving frictionless sheared configurations through frictional dynamics, and thereby identify a critical, or jamming, strain for each density, for a chosen value of the coefficient of friction. In the presence of friction above a certain strain value the sheared frictionless packings begin to develop finite stresses, which marks the onset of shear jamming. At a higher strain value, the shear stress reaches a saturation value after rising rapidly above the onset of shear jamming, which permits identification of the shear jamming transition. The onset of shear jamming and shear jamming are found to occur when the coordination number Z reaches values of Z  =  3 and Z  =  4 respectively. By considering percolation probabilities for the contact network, clusters of four coordinated and six coordinated spheres, we show that the percolation of four coordinated spheres corresponds to the onset of shear jamming behaviour, whereas the percolation of six coordinated spheres corresponds to shear jamming, for the chosen friction coefficients. At the onset of shear jamming, the force distribution begins to develop a peak at finite value and the force network is anisotropic and heterogeneous. And at the shear jamming transition, the force distribution has a well defined peak close to < f> and the force network is less anisotropic and homogeneous. We briefly discuss mechanical aspects of the jamming behaviour by

  15. Yielding transitions and grain-size effects in dislocation theory

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2017-03-01

    The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of yielding transitions and grain-size effects in polycrystalline solids. Calculations are based on the 1995 experimental results of Meyers, Andrade, and Chokshi [Metall. Mater. Trans. A 26, 2881 (1995), 10.1007/BF02669646] for polycrystalline copper under strain-hardening conditions. The main assertion is that the well-known Hall-Petch effects are caused by enhanced strengths of dislocation sources at the edges of grains instead of the commonly assumed resistance to dislocation flow across grain boundaries. The theory describes rapid transitions between elastic and plastic deformation at yield points; thus it can be used to predict grain-size dependence of both yield stresses and flow stresses.

  16. Dislocation development in V-5CR-5TI and pure vanadium

    SciTech Connect

    Gelles, D.S.; Grossbeck, M.L.

    1995-04-01

    The objective of this work is to explain notch sensitivity noted in the candidate alloy V-5Cr-5Ti. Microstructural examinations have been performed on deformed tensile specimens of V-5Cr-5Ti and pure vanadium in order to explain notch sensitivity noted in the candidate alloy V-5Cr-5Ti. SS-3 tensile specimens have been prepared, stress relieved and deformed to 5% strain. The resulting deformation structures have been examined by transmission electron microscopy. It is found that 5% deformation in V-5Cr-5Ti produces a higher dislocation density consisting of long straight dislocations, typical of Stage II, and many small loops, whereas in pure vanadium, the dislocation arrangements are more complex, typical of Stage III, and the small loops are at a lower density.

  17. Some effects of thermal-cycle-induced deformation in rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Price, R. G., Jr.

    1981-01-01

    The deformation process observed in the hot gas side wall of rocket combustion chambers was investigaged for three different liner materials. Five thrust chambers were cycled to failure by using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/cu m. The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the problems of life prediction associated with the types of failures encountered in the present work. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers. From these deformation data and observation of the failure sites it is evident that modeling the failure process as classic low cycle thermal fatigue is inadequate as a life prediction method.

  18. Holographic investigation of residual deformations induced by a pulsed ion implanter

    NASA Astrophysics Data System (ADS)

    Kaufmann, Guillermo H.; Feugeas, Jorge N.; Marino, B. M.; Galizzi, Gustavo E.

    1990-07-01

    An ap1ication of holcgraphic interferartry to investigate the residual deformations izi1uc1 in nitrogen implantel specirrens by a plana focus device is reported. ExperilTental results Obtained for AISI 304 stainless steel specinns are presented.

  19. Inelastic deformation and phenomenological modeling of aluminum including transient effect

    SciTech Connect

    Cho, C.W.

    1980-01-01

    A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelastic spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.

  20. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: Molecular dynamics study

    SciTech Connect

    Ilnytskyi, Jaroslav M.; Neher, Dieter; Saphiannikova, Marina

    2011-07-28

    Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.

  1. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah

    NASA Astrophysics Data System (ADS)

    Verdon, James P.; Kendall, J.-Michael; Stork, Anna L.; Chadwick, R. Andy; White, Don J.; Bissell, Rob C.

    2013-07-01

    Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ∼1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.

  2. Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components.

    PubMed

    Puppulin, Leonardo; Sugano, Nobuhiko; Zhu, Wenliang; Pezzotti, Giuseppe

    2014-03-01

    Structural modifications were studied at the molecular scale in two highly crosslinked UHMWPE materials for hip-joint acetabular components, as induced upon application of (uniaxial) compressive strain to the as-manufactured microstructures. The two materials, quite different in their starting resins and belonging to different manufacturing generations, were a single-step irradiated and a sequentially irradiated polyethylene. The latter material represents the most recently launched gamma-ray-irradiated polyethylene material in the global hip implant market. Confocal/polarized Raman spectroscopy was systematically applied to characterize the initial microstructures and the microstructural response of the materials to plastic deformation. Crystallinity fractions and preferential orientation of molecular chains have been followed up during in vitro deformation tests on unused cups and correlated to plastic strain magnitude and to the recovery capacity of the material. Moreover, analyses of the in vivo deformation behavior of two short-term retrieved hip cups are also presented. Trends of preferential orientation of molecular chains as a function of residual strain were similar for both materials, but distinctly different in their extents. The sequentially irradiated material was more resistant to plastic deformation and, for the same magnitude of residual plastic strain, possessed a higher capacity of recovery as compared to the single-step irradiated one.

  3. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah

    PubMed Central

    Verdon, James P.; Kendall, J.-Michael; Stork, Anna L.; Chadwick, R. Andy; White, Don J.; Bissell, Rob C.

    2013-01-01

    Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ∼1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site. PMID:23836635

  4. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: Molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ilnytskyi, Jaroslav M.; Neher, Dieter; Saphiannikova, Marina

    2011-07-01

    Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.

  5. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah.

    PubMed

    Verdon, James P; Kendall, J-Michael; Stork, Anna L; Chadwick, R Andy; White, Don J; Bissell, Rob C

    2013-07-23

    Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ~1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.

  6. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching

    USGS Publications Warehouse

    Gratz, A.J.; Fisler, D.K.; Bohor, B.F.

    1996-01-01

    Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.

  7. Structure, stability, and motion of dislocations in double-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Wang; Li, Zhong-Qiu; Wu, Jian; Peng, Xiang-Yang; Tan, Xin-Jun; Sun, Li-Zhong; Zhong, Jian-Xin

    2012-10-01

    In this paper, a novel double-wall carbon nanotube (DWCNT) with both edge and screw dislocations is studied by using the molecular dynamics (MD) method. The differences between two adjacent tubule indexes of armchair and zigzag nanotubes are determined to be 5 and 9, respectively, by taking into account the symmetry, integrality, and thermal stability of the composite structures. It is found that melting first occurs near the dislocations, and the melting temperatures of the dislocated armchair and zigzag DWCNTs are around 2600 K—2700 K. At the pre-melting temperatures, the shrink of the dislocation loop, which is comprised of edge and screw dislocations, implies that the composite dislocation in DWCNTs has self-healing ability. The dislocated DWCNTs first fracture at the edge dislocations, which induces the entire break in axial tensile test. The dislocated DWCNTs have a smaller fracture strength compared to the perfect DWCNTs. Our results not only match with the dislocation glide of carbon nanotubes (CNTs) in experiments, but also can free from the electron beam radiation under experimental conditions observed by the high resolution transmission electron microscope (HRTEM), which is deemed to cause the motion of dislocation loop.

  8. Impact-Induced Chondrule Deformation and Aqueous Alteration of CM2 Murchison

    NASA Technical Reports Server (NTRS)

    Hanna, R. D.; Zolensky, M.; Ketcham, R. A.; Behr, W. M.; Martinez, J. E.

    2014-01-01

    Deformed chondrules in CM2 Murchison have been found to define a prominent foliation [1,2] and lineation [3] in 3D using X-ray computed tomography (XCT). It has been hypothesized that chondrules in foliated chondrites deform by "squeezing" into surrounding pore space [4,5], a process that also likely removes primary porosity [6]. However, shock stage classification based on olivine extinction in Murchison is consistently low (S1-S2) [4-5,7] implying that significant intracrystalline plastic deformation of olivine has not occurred. One objective of our study is therefore to determine the microstructural mechanisms and phases that are accommodating the impact stress and resulting in relative displacements within the chondrules. Another question regarding impact deformation in Murchison is whether it facilitated aqueous alteration as has been proposed for the CMs which generally show a positive correlation between degree of alteration and petrofabric strength [7,2]. As pointed out by [2], CM Murchison represents a unique counterpoint to this correlation: it has a strong petrofabric but a relatively low degree of aqueous alteration. However, Murchison may not represent an inconsistency to the proposed causal relationship between impact and alteration, if it can be established that the incipient aqueous alteration post-dated chondrule deformation. Methods: Two thin sections from Murchison sample USNM 5487 were cut approximately perpendicular to the foliation and parallel to lineation determined by XCT [1,3] and one section was additionally polished for EBSD. Using a combination of optical petrography, SEM, EDS, and EBSD several chondrules were characterized in detail to: determine phases, find microstructures indicative of strain, document the geometric relationships between grain-scale microstructures and the foliation and lineation direction, and look for textural relationships of alteration minerals (tochilinite and Mg-Fe serpentine) that indicate timing of their

  9. Hardening by annealing and softening by deformation in nanostructured metals.

    PubMed

    Huang, Xiaoxu; Hansen, Niels; Tsuji, Nobuhiro

    2006-04-14

    We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation-dislocation and dislocation-interface reactions, such that heat treatment reduces the generation and interaction of dislocations, leading to an increase in strength and a reduction in ductility. A subsequent deformation step may restore the dislocation structure and facilitate the yielding process when the metal is stressed. As a consequence, the strength decreases and the ductility increases. These observations suggest that for materials such as the nanostructured aluminum studied here, deformation should be used as an optimizing procedure instead of annealing.

  10. Mesoscale modeling of strain induced solid state amorphization in crystalline materials

    NASA Astrophysics Data System (ADS)

    Lei, Lei

    Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with

  11. The Evolution of Deformation-Induced Grain-Boundary Porosity and Dynamic Permeability in Crustal Fault Zones: Insights From the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Sauer, K. M.; Toy, V.

    2015-12-01

    Fluids and minor phases have an important influence on the bulk rheology of a deforming rock mass, but they are not uniformly distributed at any scale within fault zones. Additionally, exhumed ductile shear zones show little interconnected porosity or static permeability, requiring a dynamic process at depth to allow fluids to access the deforming rock mass. It was recently recognized that reactive fluids interact with high-strain sites to generate cavities on quartz grain boundaries, increasing the grain-scale porosity and dynamic permeability of the rock and allowing for additional fluids to infiltrate the shear zone along interlinking cavities, stimulating further reaction and cavitation. Grain-boundary cavities and fine-grained secondary phases impede grain-boundary mobility and cause a transition in deformation mechanisms from grain-size insensitive dislocation creep to grain-size sensitive creep, which is recognized as a weakening mechanism that promotes strain localisation. At present, it is unclear how the distribution of grain-boundary pores within fault rocks reflects the bulk mineralogy and phase arrangement, which is a function of shear strain. We have used micro-computed x-ray tomography (μ-CT), SEM imaging, and EDS analyses to examine how the distribution of grain-boundary pores varies in relation to the arrangement of secondary phases in exhumed protomylonites, mylonites, and ultramylonites within the actively-deforming Alpine Fault zone, and in samples acquired from the Deep Fault Drilling Project (DFDP). Additionally, EBSD is coupled with µ-CT and EDS analyses to characterise the evolution of microstructures in three dimensions across a finite strain gradient. Here we examine the relationship and competition between grain-boundary cavitation and microstructural processes during deformation in a high-strain shear zone, and discuss the implications of these grain-scale deformation processes on strain localisation and continental fault zone dynamics.

  12. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications.

    PubMed

    Guo, S; Meng, Q K; Cheng, X N; Zhao, X Q

    2014-10-01

    The deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn (wt%) alloy subjected to different thermo-mechanical treatments was discussed by the combining results from transmission electron microscope, tensile test and in-situ synchrotron X-ray diffraction. Visible "double yielding" behavior, which is characterized by the presence of stress-plateau, was observed in the solution treated specimen. Upon a cold rolling treatment, the Ti-25Nb-2Mo-4Sn alloy performs nonlinear deformation because of the combined effects of elastic deformation and stress-induced α″ martensitic transformation. After the subsequent annealing, the β phase is completely stabilized and no stress-induced martensitic transformation takes place on loading due to the inhibitory effect of grain boundaries and dislocations on martensitic transformation. As a result, the annealed specimen exhibits linear elastic deformation.

  13. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications

    SciTech Connect

    Guo, S.; Meng, Q. K.; Cheng, X. N.; Zhao, X. Q.

    2014-08-29

    The deformation behavior of metastable β-type Ti–25Nb–2Mo–4Sn (wt%) alloy subjected to different thermo-mechanical treatments was discussed by the combining results from transmission electron microscope, tensile test and in-situ synchrotron X-ray diffraction. Visible “double yielding” behavior, which is characterized by the presence of stress-plateau, was observed in the solution treated specimen. Upon a cold rolling treatment, the Ti–25Nb–2Mo–4Sn alloy performs nonlinear deformation because of the combined effects of elastic deformation and stress-induced α" martensitic transformation. After the subsequent annealing, the β phase is completely stabilized and no stress-induced martensitic transformation takes place on loading due to the inhibitory effect of grain boundaries and dislocations on martensitic transformation. As a result, the annealed specimen exhibits linear elastic deformation.

  14. Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Sarti, Pierguido; Abbondanza, Claudio; Petrov, Leonid; Negusini, Monia

    2011-01-01

    The impact of signal path variations (SPVs) caused by antenna gravitational deformations on geodetic very long baseline interferometry (VLBI) results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models in geodetic VLBI data analysis, estimates of the antenna reference point positions are shifted upward by 8.9 and 6.7 mm, respectively. The impact on other parameters is negligible. To simulate the impact of antenna gravitational deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects of the simulations are changes in VLBI heights in the range [-3, 73] mm and a net scale increase of 0.3-0.8 ppb. The height bias is larger than random errors of VLBI position estimates, implying the possibility of significant scale distortions related to antenna gravitational deformations. This demonstrates the need to precisely measure gravitational deformations of other VLBI telescopes, to derive their precise SPV models and to apply them in routine geodetic data analysis.

  15. Flow-induced differential lateral migration of deformable particles by inner/outer viscosity ratio

    NASA Astrophysics Data System (ADS)

    Chen, Yeng-Long; Wang, Shih-Hao; Yeh, Wei-Ting

    2016-11-01

    We investigate the practicality of flow-driven separation of deformable particles (DP) such as cells, droplets, and capsules in microfluidic flow. We use lattice Boltzmann-immersed boundary method to model the hydrodynamic coupling between DP and the fluid. We find that whether a DP migrates towards the wall or to the center at steady state depends strongly on particle Reynolds number Re, capillary numbers Ca, and viscosity ratio λ. The lateral steady state position d* and velocity is determined by the competition between the inertia- and deformation-driven forces. In the deformation-dominated regime (Ca >> Re), DP migrates towards the channel centerline and flow faster for sufficiently small λ. In the inertia-dominated regime (Ca<deformation coupling, and only occurs if the inertia- and deformation-driven lift effects are comparable. This result could provide be further utilized for separating soft particles with different internal fluid property. MOST Taiwan, NCTS.

  16. Crustal deformation induced by volcanic activity measured by InSAR time series analysis (Volcan de Colima-Mexico)

    NASA Astrophysics Data System (ADS)

    Brunori, Carlo Alberto; Norini, Gianluca; Stramondo, Salvatore; Capra, Lucia; Zucca, Francesco; Groppelli, Gianluca; Bignami, Christian; Chini, Marco; Manea, Marina; Manea, Vlad

    2010-05-01

    The Volcán de Colima (CV) is currently the most active Mexican volcano. After the 1913 plinian activity the volcano presented several eruptive phases that lasted few years, but since 1991 its activity became more persistent with vulcanian eruptions, lava and dome extrusions. During the last 15 years the volcano suffered several eruptive episodes as in 1991, 1994, 1998-1999, 2001-2003, 2004 and 2005 with the emplacement of pyroclastic flows. During rain seasons lahars are frequent affecting several infrastructures such as bridges and electric towers. This work is focused on the detection of surface deformation with centimetre or sub-centimeter accuracy of the Volcán de Colima and surrounding areas. We try to assess the amount and the spatial extension of surface movements of the CV and to get insights into the causes of the surface deformation by using Interferometric Synthetic Aperture Radar (InSAR), a powerful tool ensuring measurements at high-accuracy over large areas. The image dataset acquired by ESA ENVISAT ASAR (C band) sensor, has been processed using Advanced interferometric techniques (A-InSAR) to overcome the really challenging sources of decorrelation related to the setting context, mainly vegetation and atmosphere, in order to give us the opportunity to detect also very low rates of deformations. The main objectives of the interferometric analysis is the measurement of deformations in the CV in relation with active tectonics and gravity induced spreading, the identification of magma migration below the surface in the last decade, the detection of the incipient movements of volcanic landslides and large scale volcano instability, and the kinematics of the Colima rift. We present preliminary results of the A-InSAR processing, in the framework of the interdisciplinary Colima Deformation project (ColDef).

  17. Application and Evaluation of ALOS PALSAR Data for Monitoring of Mining Induced Surface Deformations Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang

    2008-11-01

    The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.

  18. Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars

    NASA Astrophysics Data System (ADS)

    El Goresy, Ahmed; Gillet, Ph.; Miyahara, M.; Ohtani, E.; Ozawa, S.; Beck, P.; Montagnac, G.

    2013-01-01

    Shergottites and Chassignites practiced major deformation effects whose nature, magnitude and relevance were controversially evaluated and disputatively debated. Our studies of many shocked shergottites present, contrary to numerous previous reports, ample evidence for pervasive shock-induced melting amounting of at least 23 vol.% of the shergottite consisting of maskelynite and pyrrhotite, partial melting of pyroxene, titanomagnetite, ilmenite and finding of several high-pressure polymorphs and pressure-induced dissociation reactions. Our results cast considerable doubt on using the refractive index (RI) or cathodoluminescence (CL) spectra of maskelynite, in estimating the magnitudes of peak-shock pressure in both shergottites and ordinary chondrites. RI of maskelynite was set after quenching of the feldspar liquid before decompression to maskelynite glass followed by glass relaxation after decompression at the closure temperature of relaxation. The RI procedure widely practiced in the past 38 years revealed unrealistic very high-pressure estimates discrepant with the high-pressure mineral inventory in shocked shergottites and ordinary chondrites and with results obtained by robust laboratory static experiments. Shergottites contain the silica high-pressure polymorphs: the scrutinyite-structured polymorph seifertite, a monoclinic ultra dense polymorph of silica with ZrO2-structure, stishovite, a dense liquidus assemblage consisting of stishovite + Na-hexa-aluminosilicate (Na-CAS) and both K-lingunite and Ca-lingunite. Applying individual high-pressure silica polymorphs alone like stishovite, to estimate the equilibrium shock pressure, is inadequate due to the considerable shift of their nominal upper pressure bounds intrinsically induced by spatially variable absorptions of minor oxides like Al2O3, Na2O, FeO, MgO and TiO2. This practice revealed variable pressure estimates even within the same shergottite subjected to the same peak-shock pressure. Occurrence of Na

  19. Measurement of probability distributions for internal stresses in dislocated crystals

    SciTech Connect

    Wilkinson, Angus J.; Tarleton, Edmund; Vilalta-Clemente, Arantxa; Collins, David M.; Jiang, Jun; Britton, T. Benjamin

    2014-11-03

    Here, we analyse residual stress distributions obtained from various crystal systems using high resolution electron backscatter diffraction (EBSD) measurements. Histograms showing stress probability distributions exhibit tails extending to very high stress levels. We demonstrate that these extreme stress values are consistent with the functional form that should be expected for dislocated crystals. Analysis initially developed by Groma and co-workers for X-ray line profile analysis and based on the so-called “restricted second moment of the probability distribution” can be used to estimate the total dislocation density. The generality of the results are illustrated by application to three quite different systems, namely, face centred cubic Cu deformed in uniaxial tension, a body centred cubic steel deformed to larger strain by cold rolling, and hexagonal InAlN layers grown on misfitting sapphire and silicon carbide substrates.

  20. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients

    PubMed Central

    Onofrey, John A.; Staib, Lawrence H.; Papademetris, Xenophon

    2015-01-01

    This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods. PMID:26900569

  1. Buoyancy-induced squeezing of a deformable drop through an axisymmetric ring constriction

    NASA Astrophysics Data System (ADS)

    Ratcliffe, Thomas; Zinchenko, Alexander Z.; Davis, Robert H.

    2010-08-01

    Axisymmetric boundary-integral (BI) simulations were made for buoyancy-induced squeezing of a deformable drop through a ring constriction. The algorithm uses the Hebeker representation for the solid-particle contribution. A high-order, near-singularity subtraction technique is essential for near-critical squeezing. The drop velocity and minimum drop-solid spacing were determined for different ring and hole sizes, viscosity ratios, and Bond numbers, where the latter is a dimensionless ratio of gravitational to interfacial forces. The drop velocity decelerates typically 100-fold or more, and the drop-solid spacing reduces to typically 0.1%-1% of the nondeformed drop radius as the drop passes through the constriction. The critical Bond number (below which trapping occurs) was determined for different conditions. For supercritical conditions, the nondimensional time required for the drop to pass through the ring increases for a fixed drop-to-hole size with increasing viscosity ratio and decreasing Bond number, but it has a nonmonotonic dependence on the ratio of the radii of the drop and ring cross section. Numerical results indicate that the square of the drop squeezing time is inversely proportional to the Bond number minus the critical Bond number for near-critical squeezing. The critical Bond number, determined from dynamic BI calculations, compares favorably to that obtained precisely from a static algorithm. The static algorithm uses the Young-Laplace equation to calculate the pendant and sessile portions of the drop interface coupled through the conditions of global pressure continuity and total drop volume conservation. Over a limited parameter space, the critical Bond number increases almost linearly with the drop-to-hole ratio and is a weak function of the ratio of the ring cross-sectional radius to the hole radius. Another dynamic phenomenon, in addition to drop squeezing, is a drop "dripping" around the outer edge of the ring constriction, and a critical

  2. Screw dislocation in a thin film-substrate in couple stress elasticity

    NASA Astrophysics Data System (ADS)

    Gharahi, Alireza; Dai, Ming; Schiavone, Peter

    2017-04-01

    We consider the interaction of a screw dislocation with a thin film-substrate interface in the anti-plane deformations of a couple stress elastic solid. We formulate and solve the corresponding boundary value problem in three main cases: when the screw dislocation is located inside the substrate; when the screw dislocation is located inside the film; and when the screw dislocation is located inside an unconfined (isolated) thin film in the absence of the substrate. In each case, we discuss the contribution of couple stresses to the interaction force acting on the dislocation. Moreover, we examine the changes in the interaction force resulting from the mismatch caused by the corresponding couple stress parameters.

  3. How Point Defects and Dislocations Drive Flow in the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Boioli, F.; Carrez, P.; Gouriet, K.; Hirel, P.; Kraych, A.; Ritterbex, S.

    2015-12-01

    Large scale flows which are responsible for the dynamics of planetary interiors rely ultimately on the motion of lattice defects: point defects, dislocations, grain boundaries. A description of the defects at the atomic scale is necessary to describe how their mobility depend on pressure, temperature, stress. A key stage in multiscale numerical modeling is the description of the collective behavior of defects which depends not only on their mobilities, but also on their interactions. Creep mechanisms usually involve interaction between different kind of defects. In diffusion creep, grain boundaries are sources and sinks for point defects. In dislocation creep dislocations not only glide, but also climb by emitting absorbing point defects. In this presentation we describe new results on the interaction between point defects and dislocations in mantle minerals and how dislocation mobilities are affected resulting in novel deformation mechanisms in the lower mantle.

  4. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model.

    PubMed

    Tarp, Jens M; Angheluta, Luiza; Mathiesen, Joachim; Goldenfeld, Nigel

    2014-12-31

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density 1/f2 at high frequencies f. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternates at irregular times with high populations of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.

  5. New approach to the growth of low dislocation relaxed SiGe material

    NASA Astrophysics Data System (ADS)

    Powell, A. R.; Iyer, S. S.; LeGoues, F. K.

    1994-04-01

    In this growth process a new strain relief mechanism operates, whereby the SiGe epitaxial layer relaxes without the generation of threading dislocations within the SiGe layer. This is achieved by depositing SiGe on an ultrathin silicon on insulator (SOI) substrate with a superficial silicon thickness less than the SiGe layer thickness. Initially, the thin Si layer is put under tension due to an equalization of the strain between the Si and SiGe layers. Thereafter, the strain created in the thin Si layer relaxes by plastic deformation. Since the dislocations are formed and glide in the thin Si layer, no threading dislocation is ever introduced in to the upper SiGe material, which appeared dislocation free to the limit of the cross sectional transmission electron microscopy analysis. We thus have a method for producing very low dislocation, relaxes SiGe films with the additional benefit of an SOI substrate.

  6. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.

    PubMed

    Zhao, Xiaoli; Niinomi, Mitsuo; Nakai, Masaaki

    2011-11-01

    Nowadays, there is a significant research focus on the development of bio-implant materials that have not only a low Young's modulus but also other unique characteristics such as a changeable Young's modulus and the ability to prevent calcium phosphate formation. Taking advantage of deformation-induced phases is an effective way to obtain the changeable Young's modulus. This study investigated the relationship between the various deformation-induced products and the mechanical properties-including Young's modulus, microstructure, and tensile properties-of Ti-30Zr-(5,6,7)mass%Mo alloys subjected to solution treatment (ST) and cold-rolling (CR). After ST, each alloy is composed of a β phase and a small amount of athermally formed ω phase, and exhibits a low Young's modulus. During CR, deformation-induced phase transformation occurs in all the alloys. The change in Young's modulus due to CR is highly dependent on the types of deformation-induced products. The decrease in Young's modulus due to CR is related to the deformation-induced α' phase transformation accompanying with the disappearance of athermal ω phase, and the increase in Young's modulus is attributed to the deformation-induced ω phase, which mainly exists in {332}β mechanical twins.

  7. Regularities of bainitic steel deformation transition

    NASA Astrophysics Data System (ADS)

    Gromov, V. E.; Nikitina, E. N.; Ivanov, Yu F.; Aksenova, K. V.

    2016-09-01

    Quantitative analysis of defect and carbide subsystems evolution in medium-carbon bainitic steel subjected to compressive strain up to 36% was performed by means of transmission electron diffraction microscopy. Dislocation substructure and carbide phase parameters dependence on degree of deformation are identified, possible reasons of staging in their changes are discussed. It is suggested that the reason for bainitic steel softening at high (over 15%) degrees of deformation is activation of deformation microtwinning process.

  8. Ion adsorption and its influence on direct current electric field induced deformations of flexoelectric nematic layers

    NASA Astrophysics Data System (ADS)

    Derfel, Grzegorz; Buczkowska, Mariola

    2011-07-01

    The influence of ion adsorption on the behavior of the nematic liquid crystal layers is studied numerically. The homeotropic flexoelectric layer subjected to the dc electric field is considered. Selective adsorption of positive ions is assumed. The analysis is based on the free energy formalism for ion adsorption. The distributions of director orientation angle, electric potential, and ion concentrations are calculated by numerical resolving of suitable torques equations and Poisson equation. The threshold voltages for the deformations are also determined. It was shown that adsorption affects the distributions of both cations and anions. Sufficiently large number of adsorbed ions leads to spontaneous deformation arising without any threshold if the total number of ions creates sufficiently strong electric field with significant field gradients in the neighborhood of electrodes. The spontaneous deformations are favored by strong flexoelectricity, large thickness, large ion concentrations, weak anchoring, and large adsorption energy.

  9. Compression-induced deformation of individual metal-organic framework microcrystals.

    PubMed

    Su, Zhi; Miao, Yu-Run; Mao, Shi-Min; Zhang, Guang-Hui; Dillon, Shen; Miller, Jeffrey T; Suslick, Kenneth S

    2015-02-11

    The deformation and mechanical behavior of individual zeolitic-imidazolate framework (ZIF-8) micro- and sub-microcrystals were observed under compression. Young's modulus and volume changes as a function of applied pressure were determined on individual single crystals, offering insights in the relationship among structure, morphology, and mechanical properties. Dramatic volume decreases and amorphization were detected during compression over a pressure range of 0-4 GPa for individual 1.2 μm ZIF-8 microcrystals, and the deformed microcrystals partially recovered after pressure release. The orientation and size effects on the mechanical behavior of ZIF-8 nano- and microcrystals were also investigated. The presence of solvates within the pores of the ZIF-8 has a dramatic effect on the mechanical properties of the single crystals. Methanol-solvated ZIF-8 microcrystals are much less deformable than the desolvated microcrystals and shatter completely at very low applied force.

  10. Experimental characterisation and modelling of deformation- induced microstructure in an A6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kreyca, J. F.; Falahati, A.; Kozeschnik, E.

    2016-03-01

    For industry, the mechanical properties of a material in form of flow curves are essential input data for finite element simulations. Current practice is to obtain flow curves experimentally and to apply fitting procedures to obtain constitutive equations that describe the material response to external loading as a function of temperature and strain rate. Unfortunately, the experimental procedure for characterizing flow curves is complex and expensive, which is why the prediction of flow-curves by computer modelling becomes increasingly important. In the present work, we introduce a state parameter based model that is capable of predicting the flow curves of an A6061 aluminium alloy in different heat-treatment conditions. The model is implemented in the thermo-kinetic software package MatCalc and takes into account precipitation kinetics, subgrain formation, dynamic recovery by spontaneous annihilation and dislocation climb. To validate the simulation results, a series of compression tests is performed on the thermo-mechanical simulator Gleeble 1500.

  11. Thermodynamically consistent phase field approach to dislocation evolution at small and large strains

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg-Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics

  12. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    NASA Astrophysics Data System (ADS)

    Bhatia, M. A.; Groh, S.; Solanki, K. N.

    2014-08-01

    to dislocation motion as the dislocation moves though the hydrogen-solute atmospheres. With this systematic, atomistic study of the edge dislocation with various point defects, we show significant increase in obstacle strengths in addition to an increase in the local dislocation velocity during interaction with solute atmospheres. The results have implications for constitutive development and modeling of the hydrogen effect on dislocation mobility and deformation in metals.

  13. Shockwave-induced deformation of organic particles during laser shockwave cleaning

    NASA Astrophysics Data System (ADS)

    Hoon Kim, Tae; Cho, Hanchul; Busnaina, Ahmed; Park, Jin-Goo; Kim, Dongsik

    2013-08-01

    Although the laser shockwave cleaning process offers a promising alternative to conventional dry-cleaning processes for nanoscale particle removal, its difficulty in removing organic particles has been an unexplained problem. This work elucidates the physics underlying the ineffectiveness of removing organic particles using laser shock cleaning utilizing polystyrene latex particles on silicon substrates. It is found that the shockwave pressure is high enough to deform the particles, increasing the contact radius and consequently the particle adhesion force. The particle deformation has been verified by high-angle scanning electron microscopy. The Maugis-Pollock theory has been applied to predict the contact radius, showing good agreement with the experiment.

  14. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy.

    PubMed

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P; Yu, Qian; Mao, Scott X; Ritchie, Robert O

    2017-02-20

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.

  15. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P.; Yu, Qian; Mao, Scott X.; Ritchie, Robert O.

    2017-02-01

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.

  16. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy

    PubMed Central

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P.; Yu, Qian; Mao, Scott X.; Ritchie, Robert O.

    2017-01-01

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness. PMID:28218267

  17. On the irradiation creep by climb-enabled glide of dislocations

    NASA Astrophysics Data System (ADS)

    Barashev, A. V.; Golubov, S. I.; Stoller, R. E.

    2016-08-01

    In the climb-enabled glide model of irradiation creep, the plastic deformation is defined by the elastic deflections of pinned dislocations, which is an inconsistency. We argue that this relation is incorrect; instead, as in other pinning-unpinning-type models, the dislocations move from one set of obstacles to another, so that the inter-obstacle spacing determines creep rate, whereas the dependence on the applied stress is only implicit in the unpinning time.

  18. Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing

    SciTech Connect

    Miyajima, Yoji; Okubo, Satoshi; Abe, Hiroki; Okumura, Hiroki; Fujii, Toshiyuki; Onaka, Susumu; Kato, Masaharu

    2015-06-15

    The dislocation density of pure copper fabricated by two severe plastic deformation (SPD) processes, i.e., accumulative roll bonding and equal-channel angular pressing, was evaluated using scanning transmission electron microscopy/transmission electron microscopy observations. The dislocation density drastically increased from ~ 10{sup 13} m{sup −} {sup 2} to about 5 × 10{sup 14} m{sup −} {sup 2}, and then saturated, for both SPD processes.

  19. On the irradiation creep by climb-enabled glide of dislocations

    DOE PAGES

    Barashev, A. V.; Golubov, S. I.; Stoller, R. E.

    2016-05-03

    The plastic deformation is defined by the proportional to stress elastic deflections of pinned dislocations in climb-enabled glide models of irradiation creep. Here, we argue that this relation is incorrect; instead, as in other pinning-unpinning-type models, the dislocations move from one set of obstacles to another, so that the inter-obstacle spacing determines creep rate, whereas the dependence on the applied stress is only implicit in the unpinning time.

  20. Patellar Dislocations and Reduction Procedure.

    PubMed

    Ramponi, Denise

    2016-01-01

    Acute patellar dislocations are a common injury occurring in adolescents involved in sports and dancing activities. This injury usually occurs when the knee is in full extension and sustains a valgus stress on the knee. The medial patellofemoral ligament is the medial restraint that assists in stabilizing the patella from lateral dislocations. The patella usually dislocates laterally and is usually not difficult to reduce after patient evaluation and prereduction radiographs. After postreduction radiographs confirm proper position of the patella postreduction and the absence of fractures, the patient is usually treated conservatively with initial immobilization, orthopedic referral, and physical therapy.

  1. Buckling of dislocation in graphene

    NASA Astrophysics Data System (ADS)

    Yao, Yin; Wang, Shaofeng; Bai, Jianhui; Wang, Rui

    2016-10-01

    The buckling of dislocation in graphene is discussed through the lattice theory of dislocation and elastic theory. The approximate solution of the buckling is obtained based on the inner stress distribution caused by different structure of dislocations and is proved to be suitable by the simulation. The position of the highest buckling is predicted to be at the vertex of the pentagon far away from the heptagon. The buckling is strongly influenced by the internal stress and the distance between the extrusive area and stretching area, as well as the critical stress σc. The SW defect is proved to be unbuckled due to its strong interaction between extrusion and stretching.

  2. Quenched dislocation enhanced supersolid ordering.

    PubMed

    Toner, John

    2008-01-25

    I show using Landau theory that quenched dislocations can facilitate the supersolid to normal solid transition, making it possible for the transition to occur even if it does not in a dislocation-free crystal. I make detailed predictions for the dependence of the supersolid to normal solid transition temperature T_{c}(L), superfluid density rho_{S}(T,L), and specific heat C(T,L) on temperature T and dislocation spacing L, all of which can be tested against experiments. The results should also be applicable to an enormous variety of other systems, including, e.g., ferromagnets.

  3. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    SciTech Connect

    Vignes, Ryan M.; Soules, Thomas F.; Stolken, James S.; Settgast, Randolph R.; Elhadj, Selim; Matthews, Manyalibo J.; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  4. Nonrigid image registration with crystal dislocation energy.

    PubMed

    Luo, Yishan; Chung, Albert C S

    2013-01-01

    The goal of nonrigid image registration is to find a suitable transformation such that the transformed moving image becomes similar to the reference image. The image registration problem can also be treated as an optimization problem, which tries to minimize an objective energy function that measures the differences between two involved images. In this paper, we consider image matching as the process of aligning object boundaries in two different images. The registration energy function can be defined based on the total energy associated with the object boundaries. The optimal transformation is obtained by finding the equilibrium state when the total energy is minimized, which indicates the object boundaries find their correspondences and stop deforming. We make an analogy between the above processes with the dislocation system in physics. The object boundaries are viewed as dislocations (line defects) in crystal. Then the well-developed dislocation energy is used to derive the energy assigned to object boundaries in images. The newly derived registration energy function takes the global gradient information of the entire image into consideration, and produces an orientation-dependent and long-range interaction between two images to drive the registration process. This property of interaction endows the new registration framework with both fast convergence rate and high registration accuracy. Moreover, the new energy function can be adapted to realize symmetric diffeomorphic transformation so as to ensure one-to-one matching between subjects. In this paper, the superiority of the new method is theoretically proven, experimentally tested and compared with the state-of-the-art SyN method. Experimental results with 3-D magnetic resonance brain images demonstrate that the proposed method outperforms the compared methods in terms of both registration accuracy and computation time.

  5. Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals.

    PubMed

    Ngan, A H; Wen, M

    2001-08-13

    When body-centered-cubic crystals undergo plastic deformation, the slip planes are often noncrystallographic. By performing atomistic simulation on the activation pathway of dislocation jumps in bcc iron, we show that the main reason for bcc crystals to exhibit this phenomenon is that one type of kink pair has significantly lower energy than all the other types on the same slip plane. Dislocation motion therefore cannot continue on the same slip plane, and the dislocation has to cross slip onto an intersecting slip plane after each atomic jump. Thus in the long run, the average slip plane would be zigzag and noncrystallographic.

  6. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-08-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface.

  7. Simulation of tantalum nanocrystals under shock-wave loading: Dislocations and twinning

    NASA Astrophysics Data System (ADS)

    Tramontina, D. R.; Hahn, E. N.; Meyers, M. A.; Bringa, E. M.

    2017-01-01

    We simulate strong shock waves in nanocrystalline tantalum using atomistic molecular dynamics simulations, for particle velocities in the range 0.35-2.0 km s-1, which induce pressures in the range 20-195 GPa. Our simulations explore strain rates in the range 108 s-1 - 1010 s-1, and lead to a peak strength in the range 3-15 GPa. Nanocrystalline tantalum exposed to strong shock waves demonstrates deformation enabled by concomitant dislocations, twinning, and grain boundary activity at a variety of particle velocities. Twinning is observed for a mean grain size of 7 nm, starting at around 32 GPa, in disagreement with models which predict a Hall-Petch behavior for twinning, i.e. a twinning stress scaling with grain size d as d-0.5, and supporting the presence of an inverse Hall-Petch effect for twinning at small grain sizes.

  8. Dislocation Creep of Ice At Glaciological Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Qi, C.; Goldsby, D. L.

    2015-12-01

    The Glen law, a power law between effective strain rate ɛdot and effective stress τ of the form ɛdot=Aτn, where A is a temperature-dependent parameter, and n is the stress exponent of value 3, attributed to dislocation creep, has underpinned models and calculations of glacier flow for over six decades. Compilations of ice creep data from tests at ambient and elevated confining pressures, however, suggest that dislocation creep of ice is characterized by a value of n=4, not 3. While high-pressure experiments on ice provide the best constraints on the dislocation creep regime and have consistently yielded a stress exponent of ~4, most of these tests have been conducted at much-lower-than-glaciological temperatures (Durham et al., 1992). To investigate dislocation creep of ice at glaciological conditions, we deformed samples at temperatures ≥264 K and elevated confining pressures up to ~30 MPa, the maximum cryostatic pressure in the ice sheets. Samples were formed by flooding evacuated cylindrical compacts of distilled-water seed ice of particle sizes 0.18-0.25 mm or 1-1.6 mm at 273 K, followed by freezing at 243 K. Each indium-jacketed specimen was deformed in compression in a gas-medium apparatus at a single constant displacement rate to ~20% strain, at nominally constant strain rates of from 10-6 to 10-3 s-1. In each test, we obtain the peak stress after ~2-3% strain and the steady-state flow stress at larger strains. Plots of strain rate vs. both peak stress and flow stress yield a value of n=4, consistent with previous data from higher-pressure, lower-temperature tests (Durham et al., 1992) and from some ambient pressure experiments (Goldsby and Kohlstedt, 2001), and with models of climb-limited dislocation creep (Weertman, 1968). At stresses <3 MPa, tests on the finer-grained samples show a slight decrease in n to a value <4, while data for the coarser-grained samples show no such transition, consistent with the onset of dislocation-accommodated grain

  9. Plastic deformation of a model glass induced by a local shear transformation

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai V.

    2015-03-01

    The effect of a local shear transformation on plastic deformation of a three-dimensional amorphous solid is studied using molecular dynamics simulations. We consider a spherical inclusion, which is gradually transformed into an ellipsoid of the same volume and then converted back into the sphere. It is shown that at sufficiently large strain amplitudes, the deformation of the material involves localized plastic events that are identified based on the relative displacement of atoms before and after the shear transformation. We find that the density profiles of cage jumps decay away from the inclusion, which correlates well with the radial dependence of the local deformation of the material. At the same strain amplitude, the plastic deformation becomes more pronounced in the cases of weakly damped dynamics or large time scales of the shear transformation. We show that the density profiles can be characterized by the universal function of the radial distance multiplied by a dimensionless factor that depends on the friction coefficient and the time scale of the shear event.

  10. Adaptive optical beam shaping for compensating projection-induced focus deformation

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-02-01

    Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.

  11. Deformation-induced structural transition in body-centred cubic molybdenum.

    PubMed

    Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X

    2014-03-07

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.

  12. Deformation-induced structural transition in body-centred cubic molybdenum

    PubMed Central

    Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.

    2014-01-01

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655

  13. Post-seismic induced deformation after great earthquakes in the 21st century

    NASA Astrophysics Data System (ADS)

    Koulali, A.; McClusky, S.; Tregoning, P.; Moore, M.

    2015-12-01

    Surface deformation after major earthquakes shows an ongoing transient signal known as post-seismic relaxation, which extends thousands of kilometers from the rupture area and continues in time for up to decades. The magnitude of this transient motion violates the secular/linear assumption made in current terrestrial reference frame definitions, which have significant ramifications for regional tectonic interpretations and global studies such as sea level rise that require reference frame accuracy greater than this level. In this study we show the importance of accounting for the post-seismic relaxation signal in GPS time series when defining a stable reference frame and estimating inter-seismic velocities. We investigate by means of long-term GPS time series analysis the far-field post-seismic effect of Sumatra Mw 9.1 and Macquarie Ridge Mw 8.1 earthquakes and show how deformation from great earthquakes can introduce a change in the long-term horizontal velocity rate of up to 5mm/yr. We show also how post-seismic deformation can affect regional tectonic interpretations and the detection of low strain fault zones in rapid rotating micro-plates. We highlight the role of post-seismic deformation on the characterization of the earthquake cycle as seen from long-term GPS time series.

  14. Hyperelastic bodies under homogeneous Cauchy stress induced by non-homogeneous finite deformations

    NASA Astrophysics Data System (ADS)

    Mihai, L. Angela; Neff, Patrizio

    2017-03-01

    We discuss whether homogeneous Cauchy stress implies homogeneous strain in isotropic nonlinear elasticity. While for linear elasticity the positive answer is clear, we exhibit, through detailed calculations, an example with inhomogeneous continuous deformation but constant Cauchy stress. The example is derived from a non rank-one convex elastic energy.

  15. In situ high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy

    SciTech Connect

    Zhang, Xuan; Li, Meimei; Park, Jun -Sang; Kenesei, Peter; Almer, Jonathan; Xu, Chi; Stubbins, James F.

    2016-12-30

    The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen. The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.

  16. Seismically induced soft-sediment deformation structures revealed by X-ray computed tomography of boring cores

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    2016-06-01

    X-ray computed tomography (CT) allows us to visualize three-dimensional structures hidden in boring cores nondestructively. We applied medical X-ray CT to cores containing seismically induced soft-sediment deformation structures (SSDSs) obtained from the Kanto region of Japan, where the 2011 off the Pacific coast of Tohoku Earthquake occurred. The CT images obtained clearly revealed various types of the seismically induced SSDSs embedded in the cores: a propagating sand dyke bent complexly by the preexisting geological structure, deformed laminations of fluidized sandy layers, and two types of downward mass movement (ductile downward folding and brittle normal faulting) as compensation for upward sand transport through sand dykes. Two advanced image analysis techniques were applied to the sand dyke CT images for the first time. The GrowCut algorithm, a specific digital image segmentation technique that uses cellular automata, was used successfully to extract the three-dimensional complex sand dyke structures embedded in the sandy sediments, which would have been difficult to achieve using a conventional image processing technique. Local autocorrelation image analysis was performed to detect the flow pattern aligned along the sand dykes objectively. The results demonstrate that X-ray CT coupled with advanced digital image analysis techniques is a promising approach to studying the seismically induced SSDSs in boring cores.

  17. In Situ TEM Observation of Dislocation Evolutionin Polycrystalline UO2

    SciTech Connect

    L. F. HE; 1 M. A. KIRK; Argonne National Laboratory; J. Gan; T. R. ALLEN

    2014-10-01

    In situ transmission electron microscopy observation of polycrystalline UO2 (with average grain size of about 5 lm) irradiated with Kr ions at 600C and 800C was conducted to understand the radiation-induced dislocation evolution under the influence of grain boundaries. The dislocation evolution in the grain interior of polycrystalline UO2 was similar under Kr irradiation at different ion energies and temperatures. As expected, it was characterized by the nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation lines and tangles at high doses. For the first time, a dislocation-denuded zone was observed near a grain boundary in the 1-MeV Kr-irradiated UO2 sample at 800C. The denuded zone in the vicinity of grain boundary was not found when the irradiation temperature was at 600C. The suppression of dislocation loop formation near the boundary is likely due to the enhanced interstitial diffusion toward grain boundary at the high temperature.

  18. Pediatric complex divergent elbow dislocation.

    PubMed

    van Wagenberg, Jan-Maarten F; van Huijstee, Pieter J; Verhofstad, Michiel H J

    2011-01-01

    A divergent dislocation of the elbow is a very rare injury, and only a few cases have been described in the literature. It is characterized as a dorsal dislocation of the ulnohumeral joint combined with a lateral dislocation of the proximal radius. All three articulations of the elbow joint are involved. Like in our case, it can be accompanied by an avulsion fracture of the coronoid and a distal radius fracture. For correct understanding of the injury, proper radiographic studies are imperative. In contrast to some earlier reports that advise a conservative approach, we performed a very aggressive operative treatment. To ensure anatomic reconstruction of the elbow, surgical exposure of the various injuries was performed first. After gross reduction of the joint dislocation, definitive osteosynthesis of the distal radius fracture was performed. Subsequently, the coronoid process and lateral collateral ligament could be repaired anatomically, improving the stability of the elbow. An uneventful recovery with excellent elbow motion and stability was achieved.

  19. EBIC and LBIC studies of the properties of extended defects in plastically deformed silicon

    SciTech Connect

    Orlov, V. I.; Feklisova, O. V.; Yakimov, E. B.

    2015-06-15

    The results of comparative experimental studies of one- and two-dimensional defects in plastically deformed silicon by the electron-beam-induced current (EBIC) and light-beam-induced current (LBIC) techniques are reported. It is shown that the contrast of two-dimensional defects (dislocation trails) in the LBIC method can by much more pronounced than that in the EBIC technique, which is in good agreement with the results of calculations. The higher sensitivity of the LBIC technique is mainly due to deeper penetration of the optical beam into the material in comparison to the penetration of the electron beam of a scanning electron microscope.

  20. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Lin, Dong; Suslov, Sergey; Cheng, Gary J.

    2012-08-01

    In this study, laser shock peening (LSP) was utilized to generate localized deformation induced martensite (DIM) in NiTi shape memory alloy. The DIM was investigated by x-ray diffraction and transmission electron microscopy. The effects of temperature and laser intensity on DIM transformation were investigated. It has been found that higher laser intensity and lower processing temperature leads to higher volume fraction of DIM. This is attributed to the increase of the chemical driving force and the increase in the density of potential martensite variant for martensite nucleation at low temperatures. The localized shape memory effect in micrometer scale after low temperature LSP has been evaluated.

  1. Atomistic mechanisms of intermittent plasticity in metals: Dislocation avalanches and defect cluster pinning

    NASA Astrophysics Data System (ADS)

    Niiyama, Tomoaki; Shimokawa, Tomotsugu

    2015-02-01

    Intermittent plastic deformation in crystals with power-law behaviors has been reported in previous experimental studies. The power-law behavior is reminiscent of self-organized criticality, and mesoscopic models have been proposed that describe this behavior in crystals. In this paper, we show that intermittent plasticity in metals under tensile deformation can be observed in molecular dynamics models, using embedded atom method potentials for Ni, Cu, and Al. Power-law behaviors of stress drop and waiting time of plastic deformation events are observed. It is shown that power-law behavior is due to dislocation avalanche motions in Cu and Ni. A different mechanism of dislocation pinning is found in Al. These different stress relaxation mechanisms give different power-law exponents. We propose a probabilistic model to describe the novel dislocation motion in Al and analytically deduce the power-law behavior.

  2. Atomistic mechanisms of intermittent plasticity in metals: dislocation avalanches and defect cluster pinning.

    PubMed

    Niiyama, Tomoaki; Shimokawa, Tomotsugu

    2015-02-01

    Intermittent plastic deformation in crystals with power-law behaviors has been reported in previous experimental studies. The power-law behavior is reminiscent of self-organized criticality, and mesoscopic models have been proposed that describe this behavior in crystals. In this paper, we show that intermittent plasticity in metals under tensile deformation can be observed in molecular dynamics models, using embedded atom method potentials for Ni, Cu, and Al. Power-law behaviors of stress drop and waiting time of plastic deformation events are observed. It is shown that power-law behavior is due to dislocation avalanche motions in Cu and Ni. A different mechanism of dislocation pinning is found in Al. These different stress relaxation mechanisms give different power-law exponents. We propose a probabilistic model to describe the novel dislocation motion in Al and analytically deduce the power-law behavior.

  3. Dynamics of Edge Dislocations in a Low-Stability FCC-System Irradiated by High-Energy Particles

    NASA Astrophysics Data System (ADS)

    Starostenkov, M. D.; Potekaev, A. I.; Markidonov, A. V.; Kulagina, V. V.; Grinkevich, L. S.

    2017-01-01

    Using the method of molecular dynamics, the behavior of plastic deformation and defect structure selforganization are investigated in a low-stability condensed FCC-system irradiated with high-energy particles. An analysis of the dynamics of a single edge dislocation and elementary dislocation ensembles, subjected to the action of a post-cascade shock wave, demonstrates that as a result of this action the dislocations are displaced towards the wave source. As this goes on, the roles of both collective effects and external influences on the ensembles of complex interacting defects increase. In particular, the investigation performed in this work demonstrates that the post-cascade shock waves can give rise to migration of not only single edge dislocation but also elementary dislocation ensembles. It is demonstrated that the changes in the dislocation structure of the irradiated material result from the unloading waves following the post-cascade waves, rather than from the latter waves themselves.

  4. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  5. Transient deformation induced by groundwater change in Taipei metropolitan area revealed by high resolution X-band SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tung, Hsin; Chen, Horng-Yue; Hu, Jyr-Ching; Ching, Kuo-En; Chen, Hongey; Yang, Kuo-Hsin

    2016-12-01

    We present precise deformation velocity maps for the two year period from September 2011 to July 2013 of the northern Taiwan area, Taipei, by using persistent scatterer interferometry (PSI) technique for processing 18 high resolution X-band synthetic aperture radar (SAR) images archived from COSMO-SkyMed (CSK) constellation. According to the result, the highest subsidence rates are found in Luzou and Wuku area in which the rate is about 15 mm/yr and 10 mm/yr respectively in the whole dataset. However, dramatic change from serve subsidence to uplift in surface deformation was revealed in the Taipei Basin in two different time spans: 2011/09-2012/09 and 2012/09-2013/07. This result shows good agreement with robust continuous GPS measurement and precise leveling survey data across the central Taipei Basin. Moreover, it also represents high correlation with groundwater table. From 8 well data in the Taipei basin, the storativity is roughly constant across most of the aquifer with values between 0.5 × 10- 4 and 1.6 × 10- 3 in Jingmei Formation and 0.8 × 10- 4 and 1.4 × 10- 3 in Wuku Formation. This high correlation indicated that one meter groundwater level change could induce about 9 and 16 mm surface deformation change in Luzou and Wuku area respectively, which is about eight times faster the long-term tectonic deformation rate in this area. Thus, to access the activity of the Shanchiao Fault, it is important to discriminate tectonic movement from anthropogenic or seasonal effect in the Taipei Basin to better understand the geohazards and mitigation in the Taipei metropolitan area.

  6. Role of molecule flexibility on the nucleation of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Munday, Lynn B.; Mitchell, Robert L.; Knap, Jaroslaw; Chung, Peter W.

    2013-10-01

    We show that a molecule's flexibility described by changes to its conformation and orientation during deformation is vital for the proper representation of dislocation nucleation in molecular crystals. This is shown for the molecular crystal hexahydro-1,3,5-trinitro-s-triazine (RDX) by comparing direct atomistic simulations to two alternate forms of a continuum dislocation nucleation model for a crack tip loaded in pure shear. The atomistic simulations show the emission of partial dislocations. These are compared to continuum dislocation nucleation models based on generalized stacking fault (GSF) energy surfaces where the molecules are allowed to be either rigid or flexible. The rigid molecules are unable to represent the partial dislocations whereas the flexible molecules agree with the direct atomistic model to within 17% of the stress intensity factor for emission of the first partial dislocation and to within 1% for the second partial. This agreement first indicates that the molecule flexibility serves a critical role in the ductile behavior of the molecular crystal and, second, the continuum dislocation nucleation model represents the correct atomistic behavior, showing two partial dislocations connected by a stacking fault, when parameterized with GSF energy surfaces that account for the molecule flexibility.

  7. Displacement field for an edge dislocation in a layered half-space

    USGS Publications Warehouse

    Savage, J.C.

    1998-01-01

    The displacement field for an edge dislocation in an Earth model consisting of a layer welded to a half-space of different material is found in the form of a Fourier integral following the method given by Weeks et al. [1968]. There are four elementary solutions to be considered: the dislocation is either in the half-space or the layer and the Burgers vector is either parallel or perpendicular to the layer. A general two-dimensional solution for a dip-slip faulting or dike injection (arbitrary dip) can be constructed from a superposition of these elementary solutions. Surface deformations have been calculated for an edge dislocation located at the interface with Burgers vector inclined 0??, 30??, 60??, and 90?? to the interface for the case where the rigidity of the layer is half of that of the half-space and the Poisson ratios are the same. Those displacement fields have been compared to the displacement fields generated by similarly situated edge dislocations in a uniform half-space. The surface displacement field produced by the edge dislocation in the layered half-space is very similar to that produced by an edge dislocation at a different depth in a uniform half-space. In general, a low-modulus (high-modulus) layer causes the half-space equivalent dislocation to appear shallower (deeper) than the actual dislocation in the layered half-space.

  8. Avalanches and scaling in plastic deformation

    SciTech Connect

    Koslowski, M.

    2004-01-01

    Plastic deformation of crystalline materials is a complex non-homogeneous process characterized by avalanches in the motion of dislocations. We study the evolution of dislocations loops using an analytically solvable phase-field model of dislocations for ductile single crystals during monotonic loading. We present simulations of dislocations under slow external loading that generate scale-free avalanches and power-law behavior that are characteristics of self organized criticality. The distribution of dislocation loop sizes is given by P(A) {approx} A{sup -{sigma}}, with {sigma} = 1.8 {+-} 0.1. The power law exponent is in agreement with those found in acoustic emission measurements on stressed ice single crystals. In addition to the jerky character of dislocation motion, this model also predicts a range of macroscopic behaviors in agreement with observation, including hardening and dislocation multiplication with monotonic loading and a maximum in the acoustic emission signal at the onset of yielding. At sufficient large stress, the hardening rate drops and the stress-strain curve saturates. At the same time the acoustic emission as well as the dislocation production decreases in agreement with experimental observation.

  9. Deformation and dewetting of thin liquid films induced by moving gas jets.

    PubMed

    Berendsen, Christian W J; Zeegers, Jos C H; Darhuber, Anton A

    2013-10-01

    We study the deformation of thin liquid films subjected to impinging air-jets that are moving with respect to the substrate. The height profile and shape of the deformed liquid film is evaluated experimentally and numerically for different jet Reynolds numbers and translation speeds, for different liquids and substrate materials. Experiments and numerical results are in good agreement. On partially wetting substrates film rupture occurs. We imaged the appearance of dry spots and emergence of droplet patterns by high-speed, dual-wavelength interference microscopy. We systematically evaluated the resulting average droplet size and droplet density as a function of the experimental conditions. We show that within experimental accuracy the distribution of dry spots is dependent only on the residual film thickness and is not directly influenced by the shear stress and pressure gradients of the air-jet, nor by the speed of the substrate.

  10. On the hierarchy of interfacial dislocation structure

    NASA Astrophysics Data System (ADS)

    Balluffi, R. W.; Olson, G. B.

    1985-04-01

    Many different types of dislocations have been defined in dislocation models for grain boundaries and interphase boundaries. It is emphasized that there is no unique dislocation model for a boundary, and that the formal dislocation content depends upon the choice of the lattice correspondence relating the adjoining lattices. However, it is concluded that no problems of real physical significance arise from this lack of uniqueness. “Best≓, or most useful, descriptions often exist, and these are discussed. A hierarchy consisting of four different types of interfacial dislocations may be distinguished, which is useful in describing the dislocation content of interfaces. These entities are termed: (1) primary interfacial dislocations; (2) secondary interfacial dislocations; (3) coherency interfacial dislocations; and (4) translational interfacial dislocations. While there may be a lack of agreement on terminology in the literature, it is believed that these dislocation types are distinguishable and play unique roles in useful dislocation models for interfaces. Detailed descriptions of these dislocation types are given, and actual examples in real interfaces are presented. It is concluded that dislocation descriptions of interface structures become of purely formal significance in the limit of fully incoherent interfaces since the cores are then delocalized. The utility of various dislocation descriptions therefore depends on the degree to which various types of local coherency exist.

  11. Movement of basal plane dislocations in GaN during electron beam irradiation

    SciTech Connect

    Yakimov, E. B.; Vergeles, P. S.; Polyakov, A. Y.; Lee, In-Hwan; Pearton, S. J.

    2015-03-30

    The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can be moved by irradiation and only until they meet the latter pinning sites.

  12. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2015-11-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide Pu240 as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate nonadiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behavior. Those beginning just beyond the barrier explore large-amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.

  13. Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

    PubMed Central

    Sisquella, Xavier; Nebl, Thomas; Thompson, Jennifer K; Whitehead, Lachlan; Malpede, Brian M; Salinas, Nichole D; Rogers, Kelly; Tolia, Niraj H; Fleig, Andrea; O’Neill, Joseph; Tham, Wai-Hong; David Horgen, F; Cowman, Alan F

    2017-01-01

    The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion. DOI: http://dx.doi.org/10.7554/eLife.21083.001 PMID:28226242

  14. Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories

    NASA Astrophysics Data System (ADS)

    Ertürk, İ.; van Dommelen, J. A. W.; Geers, M. G. D.

    2009-11-01

    This paper focuses on the unification of two frequently used and apparently different strain gradient crystal plasticity frameworks: (i) the physically motivated strain gradient crystal plasticity models proposed by Evers et al. [2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52, 2379-2401; 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. International Journal of Solids and Structures 41, 5209-5230] and Bayley et al. [2006. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structure 43, 7268-7286; 2007. A three dimensional dislocation field crystal plasticity approach applied to miniaturized structures. Philosophical Magazine 87, 1361-1378] (here referred to as Evers-Bayley type models), where a physical back stress plays the most important role and which are further extended here to deal with truly large deformations, and (ii) the thermodynamically consistent strain gradient crystal plasticity model of Gurtin (2002-2008) (here referred to as the Gurtin type model), where the energetic part of a higher order micro-stress is derived from a non-standard free energy function. The energetic micro-stress vectors for the Gurtin type models are extracted from the definition of the back stresses of the improved Evers-Bayley type models. The possible defect energy forms that yield the derived physically based micro-stresses are discussed. The duality of both type of formulations is shown further by a comparison of the micro-boundary conditions. As a result, this paper provides a direct physical interpretation of the different terms present in Gurtin's model.

  15. Rheo-optical investigation of viscoelastic orientation behavior and deformation-induced structure formation in stereoregular polypropylenes

    NASA Astrophysics Data System (ADS)

    Sevegney, Michael Stuart

    Rheo-optical Fourier Transform infrared (rheo-FTIR) spectroscopy, a novel characterization technique, is used to characterize polypropylene homopolymers with very well defined tacticity (stereochemical) distributions. Elements of step-scan interferometry, polarimetry, rheometry, and digital signal processing are combined to create an instrument capable of measuring orientation anisotropy and detecting morphological moieties in polymers over a broad range of temperatures. Small changes in linear dichroism and absorbance spectra are measured simultaneously and sensitively as solid-state thin films undergo tensile perturbation. Two modes of deformation are employed: small-amplitude, oscillatory strain, used to characterize component viscoelastic orientation behavior, and large-amplitude, irreversible strain, which induces overall morphology transformation in the materials studied. Semi-crystalline, stereospecific polypropylenes, synthesized using Ziegler-Natta and metallocene catalysts, are characterized with rheo-FTIR as tacticity, temperature, and processing history are varied. Under large deformation, highly isotactic polypropylene (iPP) shows, sequentially, orientation of crystalline domains, a "saturation" of crystal orientation (corresponding to mechanical yielding), and finally, orientation of amorphous domains. Results are qualitatively similar for melt-quenched iPP, which contains more disordered "smectic" crystals, and melt-slow-cooled iPP, which possesses ordered crystals. Moreover, dynamic dichroism spectra of iPP manifest bimodal peaks and quantitative out-of-phase responses. These reveal the viscoelastic and multi-component nature of characteristic IR bands. Highly syndiotactic material (sPP) exhibits mechanical behavior somewhat similar to iPP, but also a very complex polymorphism under large tensile strain. Rheo-FTIR spectra detail gradual deformation-induced transformations in chain conformation and morphology, from helical-rich crystalline to planar

  16. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    SciTech Connect

    Diot, Quentin Kavanagh, Brian; Vinogradskiy, Yevgeniy; Gaspar, Laurie; Miften, Moyed; Garg, Kavita

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20 lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.

  17. Electrical characterization of dislocations in gallium nitride using advanced scanning probe techniques

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake Shelley Ginsberg

    GaN-based materials are promising for high speed and power applications such as amplifier and communications circuits. Ga, In, and AIN-based alloys span a wide optical range (2--6.1 eV) and exhibit strong polarizations making them useful in many devices; however, films are highly defective (˜10 8 dislocations cm-2) due to lack of suitable substrates. Thus, nanoscale electronic characterization of these dislocations is critical for device and growth optimization. Scanning probe techniques enable characterization at length-scales unattainable by conventional techniques. First, scanning Kelvin probe microscopy (SKPM) was used to image surface potential variations due to charged dislocations in HVPE-grown GaN. The film's structural evolution "with thickness was monitored showing a decrease in dislocation density, likely through dislocation reaction. Numerical simulations were used to investigate tip-size effects when imaging highly localized (tens of nm) potential variations indicating that measured dislocation induced potential features in GaN can be much smaller (˜80%) than true variations. Next, capacitance variations in MBE-grown HFETs, due to dislocations-induced carrier depletion, were imaged with scanning capacitance microscopy (SCM). The distribution of these charged centers was correlated with buffer schemes showing that an AIN buffer leads to pseudomorphic (2D) nucleation and randomly distributed misfit dislocations while deposition directly on SiC results in island (3D) nucleation and a domain structure with dislocations grouped at domain boundaries. Hall measurements and numerical simulations were also carried out to further study the implications of these microstructures. Numerical results indicated that randomly distributed dislocations deplete a larger fraction of free carriers than the same density of grouped dislocations and correlated favorably with Hall results. Correlated SKPM and conductive AFM (C-AFM) measurements were then used to study

  18. Dislocation-Radiation Obstacle Interactions: Developing Improved Mechanical Property Constitutive Models

    SciTech Connect

    Ian Robertson

    2008-10-10

    The objective of this program was to understand the interaction of dislocations with a wide range of obstacles commonly produced in materials under irradiation (dislocation loops, voids, helium bubbles, stacking fault tetrahedra and radiation-induced precipitates). The approach employed in this program combined multi-scale modeling and dynamic in-situ and static ex-situ transmission electron microscopy experiments.

  19. Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    Thermodynamically consistent, three-dimensional (3D) phase field approach (PFA) for coupled multivariant martensitic transformations (PTs), including cyclic PTs, variant-variant transformations (i.e., twinning), and dislocation evolution is developed at large strains. One of our key points is in the justification of the multiplicative decomposition of the deformation gradient into elastic, transformational, and plastic parts. The plastic part includes four mechanisms: dislocation motion in martensite along slip systems of martensite and slip systems of austenite inherited during PT and dislocation motion in austenite along slip systems of austenite and slip systems of martensite inherited during reverse PT. The plastic part of the velocity gradient for all these mechanisms is defined in the crystal lattice of the austenite utilizing just slip systems of austenite and inherited slip systems of martensite, and just two corresponding types of order parameters. The explicit expressions for the Helmholtz free energy and the transformation and plastic deformation gradients are presented to satisfy the formulated conditions related to homogeneous thermodynamic equilibrium states of crystal lattice and their instabilities. In particular, they result in a constant (i.e., stress- and temperature-independent) transformation deformation gradient and Burgers vectors. Thermodynamic treatment resulted in the determination of the driving forces for change of the order parameters for PTs and dislocations. It also determined the boundary conditions for the order parameters that include a variation of the surface energy during PT and exit of dislocations. Ginzburg-Landau equations for dislocations include variation of properties during PTs, which in turn produces additional contributions from dislocations to the Ginzburg-Landau equations for PTs. A complete system of coupled PFA and mechanics equations is presented. A similar theory can be developed for PFA to dislocations and other

  20. The Neighbor Switching Mechanism of Superplastic Deformation

    NASA Astrophysics Data System (ADS)

    Sherwood, David John

    At one time the notion that crystal plasticity resulted from the simultaneous motion of lattice planes over one another was entertained. This idea was displaced by the concept that relative atomic motions occur sequentially when dislocations move through the crystal. Similarly, McLean suggested that grains switch neighbors sequentially in a polycrystalline material undergoing superplastic flow. Morral and Ashby observed that the neighbor switching reactions in a froth occurred at irregular cells, and that these irregularities were associated with dislocations in the cellular array. They introduced cellular dislocation glide as a model for superplastic flow, and suggested that if the concentration of these defects required to make the froth flow increased with the flow stress, then the froth would have a non-Newtonian viscosity, like many superplastic materials. Cahn and Padawer pointed out that cellular dislocation climb was used as a model for grain growth by Hillert; this process results in the elimination of cells from the froth. Sato, Kuribayashi and Horiuchi used cellular dislocation climb to model both grain motion and the deformation-enhanced grain growth which can accompany superplastic flow. Here, the neighbor switching mechanism of superplastic deformation is developed as a topic in dislocation theory. The compatibility theory of dislocations is developed at an introductory level with exterior calculus. "Compatibility" of a cellular array corresponds to statements, a la Rivier, about the distribution of edges amongst the cells. The theory of dislocation motion, or crystal plasticity, is also developed with exterior calculus. Morral and Ashby's constitutive relationship for superplastic flow is analyzed and two models for deformation-enhanced grain growth are developed. The constitutive relationship and grain growth kinetics for superplastic flow are illustrated by modelling the behavior exhibited by single phase (Sn-1% Bi) and quasi -single phase (7475 Al

  1. Loading-path dependent deformation of nanocrystalline Ta under single- and double-shock, and quasi-isentropic compression

    NASA Astrophysics Data System (ADS)

    Tang, M. X.; E, J. C.; Wang, L.; Luo, S. N.

    2017-03-01

    We investigate dynamic deformation of nanocrystalline Ta under single- and double-shock, and quasi-isentropic compression, with large-scale molecular dynamics simulations. Orientation mapping, selected area electron diffraction, and x-ray diffraction are implemented for microstructure analysis. Different deformation modes are found for different loading paths, and are attributed to the differences in temperature rise induced by dynamic compression. For sufficiently strong shocks, catastrophic activation of slip systems and their growth in single-shock loading with the largest temperature rise lead to amorphization and recrystallization, while stacking faults and dislocation slip dominate deformation in double-shock loading with intermediate temperature rise, and deformation twinning is the principal mode in quasi-isentropic loading with the least temperature rise.

  2. Overview of the recommended procedures dealing with the evaluation of liquefaction-induced deformation allong a pipeline corridor

    NASA Astrophysics Data System (ADS)

    Papathanassiou, George

    2016-04-01

    The last decade several pipeline corridors have been designed in order to transmit to Europe natural gas and oil from Asia. Although the fact that a pipeline is considered as an underground structure, an analysis of earthquake-induced structural failures should be conducted in prone to earthquake countries e.g. Greece, Italy in EU. The aim of these specific analyses is to assess and evaluate the hazard and the relevant risk induced by earthquake-induced slope failures and soil liquefaction. The latter is a phenomenon that is triggered under specific site conditions. In particular the basic ingredients for the occurrence of liquefaction is the surficial water table, the existence of non-plastic or low plasticity soil layer and the generation of strong ground motion. Regarding the liquefaction-induced deformation that should be assessed and evaluated in order to minimize the risk, it is concluded that the pervasive types of ground failures for level to gently sloping sites are the ground settlements and lateral spreads. The goal of this study is to overview the most widely approaches used for the computation of liquefaction-induced settlement and to present a more detailed description, step by step, of the methodology that is recommended to follow for the evaluation of lateral spreading.

  3. Abnormal Deformation Behavior of Oxygen-Modified β-Type Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Cong, Xin; Cho, Ken; Boehlert, Carl J.; Khademi, Vahid

    2017-01-01

    Oxygen was added to the biomedical β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ, mass pct) in order to improve its strength, while keeping its Young's modulus low. Conventionally, with an increase in the oxygen content, an alloy's tensile strength increases, while its tensile elongation-to-failure decreases. However, an abnormal deformation behavior has been reported in the case of oxygen-modified TNTZ alloys in that their strength increases monotonically while their elongation-to-failure initially decreases and then increases with the increase in the oxygen content. In this study, this abnormal tensile deformation behavior of oxygen-modified TNTZ alloys was investigated systematically. A series of TNTZ-(0.1, 0.3, and 0.7 mass pct)O alloy samples was prepared, treated thermomechanically, and finally solution treated; these samples are denoted as 0.1ST, 0.3ST, and 0.7ST, respectively. The main tensile deformation mechanisms in 0.1ST are a deformation-induced α″-martensitic transformation and {332}<113> mechanical twinning. The large elongation-to-failure of 0.1ST is attributable to multiple deformation mechanisms, including the deformation-induced martensitic transformation and mechanical twinning as well as dislocation glide. In both 0.3ST and 0.7ST, dislocation glide is the predominant deformation mode. 0.7ST shows more homogeneous and extensive dislocation glide along with multiple slip systems and a higher frequency of cross slip. As a result, it exhibits a higher work-hardening rate and greater resistance to local stress concentration, both of which contribute to its elongation-to-failure being greater than that of 0.3ST.

  4. Effect of injection-molding-induced residual stress on microchannel deformation irregularity during thermal bonding

    NASA Astrophysics Data System (ADS)

    Yu, H.; Tor, S. B.; Loh, N. H.; Asundi, A. K.

    2013-01-01

    Micro injection molding offers a promising approach to rapidly produce thermoplastic microfluidic substrates in large volumes. Many research works have been focused on the replication fidelity of microstructures by injection molding. However, there has not been any investigation on the effect of molded-in residual stress on microchannel deformation during the subsequent thermal bonding process. These effects could be important, because the residual stress developed due to anisotropic polymer flow orientation and inhomogeneous cooling may lead to abnormal microchannel distortion. In the direct thermal bonding process, asymmetric cross-sectional distortion was observed in well-formed microchannels aligned perpendicular to the polymer melt injection direction. This asymmetric distortion is attributed to the residual stress introduced into the substrates during molding, particularly in the surface region where microchannels are molded. Design of experiment on injection molding was carried out to reduce the residual stress in order to achieve the lowest microchannel deformation irregularity, which is a new term defined in this study. The direct thermal bonding was utilized as a feasible non-destructive indirectly quantitative method to evaluate the effect of residual stress around microchannel regarding deformation irregularity. The dominant molding parameters with positive effects were found to be melt temperature, mold temperature as well as cooling time after packing. The presence of the residual stress was also demonstrated through photoelastic stress analysis in terms of phase retardation. With improved molding condition, the absolute retardation difference around microchannels aligned parallel and perpendicular to the molding direction could be tuned to the same level, which indicates that the molded-in residual stresses have been moderated.

  5. Dislocations and other topological oddities

    NASA Astrophysics Data System (ADS)

    Pieranski, Pawel

    2016-03-01

    We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook ;for research students at University and for students at engineering schools as well as for research engineers;. Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases ;topological oddities;. Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.

  6. Numerical modelling of physical processes and structural changes in metals under intensive irradiation with use of CRS code: dislocations, twinning, evaporation and stress waves

    NASA Astrophysics Data System (ADS)

    Mayer, A. E.; Borodin, E. N.; Krasnikov, V. S.; Mayer, P. N.

    2014-11-01

    CRS computer program is presented, which calculates the dynamical deformation of metals under irradiation by high-current electron and powerful ion beams. The incorporated mathematical models allow one to calculate stresses, deformations and structural changes induced by the irradiation. The CRS code numerically solves the equations system, which consists of continua mechanics equations, supplemented by equations of dynamics and kinetics of structural defects: dislocations, grain boundaries, twins, micro-cracks and vapour bubbles. The dislocation plasticity model, the grain boundary sliding model, the mechanical twinning model, the spall fracture model and the non-equilibrium evaporation model are incorporated in the code. The energy release function for electron beam can be calculated within the code, while it can be exported from over programs for ion beam. The CRS code can be a useful tool in theoretical estimation and interpretation of experiments in the field of materials modification by intensive energy fluxes. Restricted rate of plastic deformation provides high values of shear stresses and action of several competitive plasticity mechanisms. Non-equilibrium evaporation of metal in the energy release zone leads to a metastable state of overheated melt, which results in formation of tensile wave following the stress wave in the solid part of the irradiated metal.

  7. Nonlinear laser-induced deformations of liquid-liquid interfaces: An optical fiber model

    NASA Astrophysics Data System (ADS)

    Birkeland, Ole Jakob; Brevik, Iver

    2008-12-01

    Experimentally, it turns out that radiation forces from a cw laser on a liquid-liquid interface are able to produce giant deformations (up to about 100μm ), if the system is close to the critical point where the surface tension becomes small. We present a model for such a fingerlike deformation, implying that the system is described as an optical fiber. One reason for introducing such a model is that the refractive index difference in modern experiments, such as those of the Bordeaux group, is small, of the same order as in practical fibers in optics. It is natural therefore to adopt the hybrid HE11 mode, known from fiber theory as the fundamental mode for the liquid system. We show how the balance between hydrodynamical and radiation forces leads to a stable equilibrium point for the liquid column. Also, we calculate the narrowing of the column radius as the depth increases. Comparison with experimental results of the Bordeaux group yields quite satisfactory agreement as regards the column width.

  8. Comparative Studies of Constitutive properties of Nanocrystalline and Bulk Iron During Compressive Deformation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohui; Zhang, Jianzhong; Wang, Liping; Zhao, Yusheng

    2011-03-01

    We present a comparative study of mechanical properties of bcc nano-crystalline iron and microncrystalline iron by in-situ high-pressure synchrotron x-ray diffraction under tri-axial compression. For nano-Fe with a starting high dislocation density of 1016 m -2 , the peak broadening is almost reversible upon unloading from 8.6 GPa to ambient pressure, indicating that no additional dislocations are built up during compressive deformation inside grains, at grain boundaries or twin boundaries. Furthermore, an orientation dependent surface strain is found to be stored in the surface layer of the bcc nano Fe, which is in agreement with the core-shell model of the nano crystals. For micron-Fe, a significant and continuous peak sharpening and the associated work softening were observed after the sample is yielded at pressures above 2.0 GPa, which can be presumably attributed to a pressure-induced dislocation annihilation. This finding/interpretation supports the hypothesis that the annihilation of dislocations is one of the dominant mechanisms underlying the plastic energy dissipation. The determined yield strength of 2.0 GPa for nano-Fe is more than 15 times higher than that for micron-Fe (0.13 GPa), indicating that the nano scale grain-size reduction is a substantially more effective strengthening mechanism than the conventional carbon infusion in iron.

  9. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit

    PubMed Central

    Wang, Lihua; Liu, Pan; Guan, Pengfei; Yang, Mingjie; Sun, Jialin; Cheng, Yongqiang; Hirata, Akihiko; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong

    2013-01-01

    The elastic strain sustainable in crystal lattices is usually limited by the onset of inelastic yielding mediated by discrete dislocation activity, displacive deformation twinning and stress-induced phase transformations, or fracture associated with flaws. Here we report a continuous and gradual lattice deformation in bending nickel nanowires to a reversible shear strain as high as 34.6%, which is approximately four times that of the theoretical elastic strain limit for unconstrained loading. The functioning deformation mechanism was revealed on the atomic scale by an in situ nanowire bending experiments inside a transmission electron microscope. The complete continuous lattice straining process of crystals has been witnessed in its entirety for the straining path, which starts from the face-centred cubic lattice, transitions through the orthogonal path to reach a body-centred tetragonal structure and finally to a re-oriented face-centred cubic structure. PMID:24022231

  10. On deformation twinning in a 17.5%Mn-TWIP steel: A physically-based phenomenological model

    SciTech Connect

    Soulami, Ayoub; Choi, Kyoo Sil; Shen, Y. F.; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2011-01-25

    TWinning Induced Plasticity (TWIP) steel is a typical representative of the 2nd generation of advanced high strength steel (AHSS) which exhibits a combination of high strength and excellent ductility due to the twinning mechanisms. This paper discusses the principal features of deformation twinning in faced-centered cubic austenitic steels and shows how a physiscally-based macroscopic model can be derived from microscopic considerations. In fact, a dislocation-based phenomenological model, with internal state variables such as dislocation density and micro-twins volume fraction representing the microstructure evolution during deformation process, is proposed to describe the deformation behavior of TWIP steels. The contribution of this work is the incorporation of a physically-based twin’s nucleation and volume fraction evolution model in a conventional dislocation-based approach. Microstructural level investigations, using scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques, for the TWIP steel Fe–17.5 wt.% Mn–1.4 wt.% Al- 0.56 wt.% C, are used to validate and verify modeling assumptions. The model could be regarded as a semi-phenomenological approach with sufficient links between microstructure and overall properties and therefore offers good predictive capabilities. Its simplicity also allows a modular implementation in finite element-based metal forming simulations.

  11. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.

    2017-01-01

    We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.

  12. Detection of the 2015 Gorkha earthquake-induced landslide surface deformation in Kathmandu using InSAR images from PALSAR-2 data

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi P.; Une, Hiroshi

    2016-03-01

    Previous studies reported that the 2015 Gorkha earthquake (Mw 7.8), which occurred in Nepal, triggered landslides in mountainous areas. In Kathmandu, earthquake-induced land subsidence was identified by interpreting local phase changes in interferograms produced from Advanced Land Observing Satellite-2/Phased Array type L-band Synthetic Aperture Radar-2 data. However, the associated ground deformation was not discussed in detail. We studied line-of-sight (LoS) changes from InSAR images in the SE area of Tribhuvan International Airport, Kathmandu. To obtain the change in LoS caused only by local, short-wavelength surface deformation, we subtracted the change in LoS attributed to coseismic deformation from the original change in LoS. The resulting change in LoS showed that the river terrace was driven to the bottom of the river valley. We also studied the changes in LoS in both ascending and descending InSAR images of the area along the Bishnumati River and performed 2.5D analysis. Removing the effect of coseismic deformation revealed east-west and up-down components of local surface deformation, indicating that the river terrace deformed eastward and subsided on the western riverbank of the river. On the east riverbank, the river terrace deformed westward and subsided. However, in the southern part of the river basin, the river terrace deformed westward and was uplifted. The deformation data and field survey results indicate that local surface deformation in these two areas was not caused by land subsidence but by a landslide (specifically, lateral spread).

  13. Poster — Thur Eve — 77: Implanted Brachythearpy Seed Movement due to Transrectal Ultrasound Probe-Induced Prostate Deformation

    SciTech Connect

    Liu, D; Usmani, N; Sloboda, R; Meyer, T; Husain, S; Angyalfi, S; Kay, I

    2014-08-15

    The study investigated the movement of implanted brachytherapy seeds upon transrectal US probe removal, providing insight into the underlying prostate deformation and an estimate of the impact on prostate dosimetry. Implanted seed distributions, one obtained with the prostate under probe compression and another with the probe removed, were reconstructed using C-arm fluoroscopy imaging. The prostate, delineated on ultrasound images, was registered to the fluoroscopy images using seeds and needle tracks identified on ultrasound. A deformation tensor and shearing model was developed to correlate probe-induced seed movement with position. Changes in prostate TG-43 dosimetry were calculated. The model was used to infer the underlying prostate deformation and to estimate the location of the prostate surface in the absence of probe compression. Seed movement patterns upon probe removal reflected elastic decompression, lateral shearing, and rectal bending. Elastic decompression was characterized by expansion in the anterior-posterior direction and contraction in the superior-inferior and lateral directions. Lateral shearing resulted in large anterior movement for extra-prostatic seeds in the lateral peripheral region. Whole prostate D90 increased up to 8 Gy, mainly due to the small but systematic seed movement associated with elastic decompression. For selected patients, lateral shearing movement increased prostate D90 by 4 Gy, due to increased dose coverage in the anterior-lateral region at the expense of the posterior-lateral region. The effect of shearing movement on whole prostate D90 was small compared to elastic decompression due to the subset of peripheral seeds involved, but is expected to have greater consequences for local dose coverage.

  14. Dislocations in nanostructured two-phase Fe30Ni20Mn20Al30.

    PubMed

    Wu, X; Baker, I

    2013-03-01

    In a previous study, the dislocations in Fe(30)Ni(20)Mn(25)Al(25) (at. %), which consist of 50 nm wide alternating b.c.c. and B2 phases, were shown to have a/2<111> Burgers vectors after room temperature deformation. The dislocations were found to glide in pairs on both {110} and {112} slip planes and were relatively widely separated in the b.c.c. phase, where the dislocations were uncoupled, and closely spaced in the B2 phase, where the dislocations were connected by an anti-phase boundary. In this article, we analyze the dislocations in the two ~5 nm-wide B2 phases in a related two-phase alloy Fe(30)Ni(20)Mn(20)Al(30), with compositions Fe-23Ni-21Mn-24Al and Fe-39Ni-12Mn-34Al, compressed to ~3% strain at a strain rate 5 × 10(-4) s(-1) at 873 K (the lowest temperature at which substantial plastic flow was observed). It is shown that slip occursby the glide of a<100> dislocations. A review of the literature suggests that the differences in the observed slip vector between these B2 phases could be due to the differences in composition, differences in deformation temperature, or possibly both.

  15. Deformation analysis for understanding landslide-induced brittle fractures at the Super-Sauze landslide

    NASA Astrophysics Data System (ADS)

    Rothmund, Sabrina; Häfner, Rolf; Joswig, Manfred

    2016-04-01

    Applying passive seismic analysis techniques realized by Nanoseismic Monitoring to creeping or slow-moving, soft-rock landslides in the Alps, we observed fracture processes (M_L < 0) of slope material, also called slidequakes. Their time-frequency signature is similar to impulsive signals from local earthquakes, and indicates brittle fracturing of slope material. Slidequakes are weak signals with poor signal-to-noise ratio (SNR); thus neither precise depths nor moment tensor solutions could be derived. Another type of non-impulsive, very weak signals that are recorded are called tremors. These signals are visible on too few single stations and thus cannot be located, but the source can be attributed to the immediate vicinity of the seismometers. Seismic analysis tools alone do not help to understand the occurrence and the possible generation mechanisms of these seismic signals. For several years, seismic strain-rate tensors derived from earthquake observations and crustal geodetic strain-rate were combined to provide insights into the deformation process of tectonically active zones. This showed that the axes of the seismic and the geodetic strain rate tensors have similar orientation and are of similar style. We applied a deformation analysis of the temporal and spatial heterogeneous displacement fields of the Super-Sauze landslide (Southern French Alps) that were derived from multi-temporal aerial photographs, DGPS and TLS measurements. The geodetic strain rate at the surface and the shear rates in the direction of movement were determined. The strain rate fields exhibit heterogeneous patterns, reflecting the temporally and spatially variable extension and compression of subareas. In regions with a temporal strain drop a preferred occurrence of slidequakes can be expected. The areas with increased shear rates, however are presumed to be the source of tremor signals, which are infact most often encountered in the boundary regions between hard rock and slope

  16. Optical coherence tomography for visualizing transient strains and measuring large deformations in laser-induced tissue reshaping

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Omelchenko, Alexander I.; Shabanov, Dmitry V.; Baum, Olga I.; Svistushkin, Valery M.; Sobol, Emil N.

    2016-11-01

    In the context of the development of emerging laser-assisted thermo-mechanical technologies for non-destructive reshaping of avascular collagenous tissues (cartilages and cornea), we report the first application of phase-sensitive optical coherence tomography (OCT) for visualizing transient strains involving supra-wavelength inter-frame displacements of scatterers. Usually phase-sensitive OCT assumes the visualization of sub-pixel and even sub-wavelength displacements of scatterers and fairly small strains (say, <10-3), which conventionally implies the necessity of averaging for enhancing the effective signal-to-noise ratio and, correspondingly, the application of small-amplitude actuators producing periodic deformations. The original approach used here allows for direct estimation of elevated strains ~10-2 (close to onset of intense speckle blinking) obviating the necessity of averaging and phase unwrapping for supra-wavelength inter-frame displacements. We demonstrate the possibility of mapping aperiodic thermally-induced transient strains with resultant large deformations on order of tens per cent. Such strains are typical in laser tissue reshaping, but are far beyond the range of conventionally discussed OCT-based strain mapping.

  17. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGES

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  18. Surface-force-induced deformations of monodisperse polystyrene spheres on planar silicon substrates

    NASA Astrophysics Data System (ADS)

    Rimai, D. S.; DeMejo, L. P.; Bowen, R. C.

    1990-12-01

    The contact radii between polystyrene spheres, having diameters between approximately 1.5 and 12 μm, and polished silicon wafers, arising from adhesion forces, were determined using scanning electron microscopy. It was found that the contact radius varied approximately as the square root of the particle radius. This dependence is consistent with nonelastic response models of adhesion, such as those proposed by Krupp [H. Krupp, Adv. Colloid Interface Sci. 1, 111 (1967)] and by Maugis and Pollock [D. Maugis and H. M. Pollock, Acta Metall. 32, 1323 (1984)], but is inconsistent with various elastic response models which assume Hertzian deformations. The experimentally determined contact radii are also compared to those obtained for polystyrene spheres on a polyurethane substrate [D. S. Rimai, L. P. DeMejo, and R. C. Bowen, J. Appl. Phys. 66, 3574 (1989)].

  19. Sheet on a deformable sphere: Wrinkle patterns suppress curvature-induced delamination

    NASA Astrophysics Data System (ADS)

    Hohlfeld, Evan; Davidovitch, Benny

    2015-01-01

    The adhesion of a stiff film onto a curved substrate often generates elastic stresses in the film that eventually give rise to its delamination. Here we predict that delamination of very thin films can be dramatically suppressed through tiny, smooth deformations of the substrate, dubbed here "wrinklogami," that barely affect the macro-scale topography. This "prolamination" effect reflects a surprising capability of smooth wrinkles to suppress compression in elastic films even when spherical or other doubly curved topography is imposed, in a similar fashion to origami folds that enable construction of curved structures from an unstretchable paper. We show that the emergence of a wrinklogami pattern signals a nontrivial isometry of the sheet to its planar, undeformed state, in the doubly asymptotic limit of small thickness and weak tensile load exerted by the adhesive substrate. We explain how such an "asymptotic isometry" concept broadens the standard usage of isometries for describing the response of elastic sheets to geometric constraints and mechanical loads.

  20. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.