Deformation invariant bounding spheres for dynamic active constraints in surgery.
Bowyer, Stuart A; Rodriguez Y Baena, Ferdinando
2014-04-01
Active constraints are collaborative robot control strategies, which can be used to guide a surgeon or protect delicate tissue structures during robot-assisted surgery. Tissue structures of interest often move and deform throughout a surgical intervention, and therefore, dynamic active constraints, which adapt and conform to these changes, are required. A fundamental element of an active constraint controller is the computation of the geometric relationship between the constraint geometry and the surgical instrument. For a static active constraint, there are a variety of computationally efficient methods for computing this relative configuration; however, for a dynamic active constraint, it becomes significantly more challenging. Deformation invariant bounding spheres are a novel bounding volume formulation, which can be used within a hierarchy to allow efficient proximity queries within dynamic active constraints. These bounding spheres are constructed in such a way that as the surface deforms, they do not require time-consuming rebuilds or updates, rather they are implicitly updated and continue to represent the underlying geometry as it changes. Experimental results show that performing proximity queries with deformation invariant bounding sphere hierarchies is faster than common methods from the literature when the deformation rate is within the range expected from conventional imaging systems. PMID:24622983
Origin, Problematic Aspects and Invariant Formulation of Classical and Operator Deformations
NASA Astrophysics Data System (ADS)
Santilli, Ruggero Maria
In this paper we study three aspects of generalized classical and operator theories, herein generically called deformations, which do not appear to have propagated in the rather vast literature in the field: (1) the first known studies on classical and operator deformations; (2) their rather serious physical and mathematical shortcomings due to lack of invariance when conventionally formulated; and (3) the ongoing efforts for the achievement of invariant formulations preserving the axiomatic consistency of the original theories. We begin by recalling the mathematical beauty, axiomatic consistency and experimental verifications of the special relativity at both classical and quantum levels, and its main axiomatic properties: universal invariance of the fundamental units of space and time; preservation of hermiticity-observability at all times; uniqueness and invariance of numerical predictions; and other known properties. We then review the first known, generally ignored, classical and operator deformations. We then study the generally ignored problematic aspects of classical and operator deformations in their current formulation which include: lack of invariance of the fundamental units of space and times with consequential inapplicability to real measurements; loss of observability in time; lack of uniqueness and invariance of numerical predictions; violation of causality and probability laws; and, above all, violation of Einstein's special relativity. We finally outline the generally ignored ongoing efforts for the resolutions of the above shortcomings, and show that they require the necessary use of new mathematics specifically constructed for the task. We finally present a systematic study for the identical reformulation of existing classical and operator deformations in an invariant form.
Analysis of Unresolved Spectral Infrared Signature for the Extraction of Invariant Features
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Payne, T.; Wilhelm, S.; Gregory, S.; Skinner, M.; Rudy, R.; Russell, R.; Brown, J.; Dao, P.
2010-09-01
This paper demonstrates a simple analytical technique for extraction of spectral radiance values for the solar panel and body from an unresolved spectral infrared signature of 3-axis stabilized low-earth orbit (LEO) satellites. It uses data collected by The Aerospace Corporation’s Broad-band Array Spectrograph System (BASS) instrument at the Air Force Maui Optical and Supercomputing (AMOS) site. The observation conditions were such that the signatures were due to the emissive phenomenology and contribution of earthshine was negligible. The analysis is based on a two-facet orientation model of the satellite. This model captures the basic, known behavior of the satellite body and its solar panels. One facet points to nadir and the second facet tracks the sun. The facet areas are unknown. Special conditions are determined on the basis of observational geometry that allows separation of the spectral radiance values of the solar panel and body. These values remain unchanged (i.e., are invariant) under steady illumination conditions even if the signature appears different from one observation to another. In addition, they provide information on the individual spectral makeup of the satellite solar panel and body materials.
NASA Astrophysics Data System (ADS)
Deng, Zhipeng; Lei, Lin; Zhou, Shilin
2015-10-01
Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.
NASA Astrophysics Data System (ADS)
Xu, Feng-Jun; Yang, Fu-Zhong
2014-04-01
We calculate the D-brane superpotentials for two Calabi-Yau manifolds with three deformations by the generalized hypergeometric GKZ systems, which give rise to the flux superpotentials 𝒲GVW of the dual F-theory compactification on the relevant Calabi-Yau fourfolds in the weak decoupling limit. We also compute the Ooguri-Vafa invariants from A-model expansion with mirror symmetry, which are related to the open Gromov-Witten invariants.
Xu, Xuemiao; Jin, Qiang; Zhou, Le; Qin, Jing; Wong, Tien-Tsin; Han, Guoqiang
2015-01-01
We propose a novel biometric recognition method that identifies the inner knuckle print (IKP). It is robust enough to confront uncontrolled lighting conditions, pose variations and low imaging quality. Such robustness is crucial for its application on portable devices equipped with consumer-level cameras. We achieve this robustness by two means. First, we propose a novel feature extraction scheme that highlights the salient structure and suppresses incorrect and/or unwanted features. The extracted IKP features retain simple geometry and morphology and reduce the interference of illumination. Second, to counteract the deformation induced by different hand orientations, we propose a novel structure-context descriptor based on local statistics. To our best knowledge, we are the first to simultaneously consider the illumination invariance and deformation tolerance for appearance-based low-resolution hand biometrics. Settings in previous works are more restrictive. They made strong assumptions either about the illumination condition or the restrictive hand orientation. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of recognition accuracy, especially under uncontrolled lighting conditions and the flexible hand orientation requirement. PMID:25686317
NASA Astrophysics Data System (ADS)
Quesne, C.
2016-10-01
The quantum oscillator and Kepler-Coulomb problems in d-dimensional spaces with constant curvature are analyzed from several viewpoints. In a deformed supersymmetric framework, the corresponding nonlinear potentials are shown to exhibit a deformed shape invariance property. By using the point canonical transformation method, the two deformed Schrödinger equations are mapped onto conventional ones corresponding to some shape-invariant potentials, whose rational extensions are well known. The inverse point canonical transformations then provide some rational extensions of the oscillator and Kepler-Coulomb potentials in curved space. The oscillator on the sphere and the Kepler-Coulomb potential in a hyperbolic space are studied in detail and their extensions are proved to be consistent with already known ones in Euclidean space. The partnership between nonextended and extended potentials is interpreted in a deformed supersymmetric framework. Those extended potentials that are isospectral to some nonextended ones are shown to display deformed shape invariance, which in the Kepler-Coulomb case is enlarged by also translating the degree of the polynomial arising in the rational part denominator.
Age and gender-invariant features of handwritten signatures for verification systems
NASA Astrophysics Data System (ADS)
AbdAli, Sura; Putz-Leszczynska, Joanna
2014-11-01
Handwritten signature is one of the most natural biometrics, the study of human physiological and behavioral patterns. Behavioral biometrics includes signatures that may be different due to its owner gender or age because of intrinsic or extrinsic factors. This paper presents the results of the author's research on age and gender influence on verification factors. The experiments in this research were conducted using a database that contains signatures and their associated metadata. The used algorithm is based on the universal forgery feature idea, where the global classifier is able to classify a signature as a genuine one or, as a forgery, without the actual knowledge of the signature template and its owner. Additionally, the reduction of the dimensionality with the MRMR method is discussed.
NASA Astrophysics Data System (ADS)
Brown, R. G.; Hann, C. E.; Chase, J. Geoffrey; Ray, L. A.
2007-03-01
A Digital Image-based Elasto-Tomography (DIET) system for breast cancer screening has been proposed in which the elastic properties of breast tissue are recovered by solving an inverse problem on the surface motion of a breast under low frequency (50-100 Hz) mechanical actuation. The proposed means for capturing the surface motion of the breast in 3D is to use a stroboscope to capture images from multiple digital cameras at preselected phase angles. Photogrammetric techniques are then used to reconstruct matched point features in 3D. Since human skin lacks high contrast visual features, it is necessary to introduce artificial fiducials which can be easily extracted from digital images. The chosen fiducials are points in three different colours in differing proportions randomly applied to the skin surface. A three-dimensional signature which is invariant to locally Euclidean transformations between images is defined on the points of the lowest proportion colour. The approximate local Euclidean invariance between adjacent frames enables these points to be matched using this signature. The remaining points are matched by interpolating the transformation of the matched points. This algorithm has significant performance gains over conventional gradient-based tracking algorithms because it utilises the intrinsic problem geometry. Successful results are presented for simulated image sequences and for images of a mechanically actuated viscoelastic gel phantom with tracking errors within 3 pixels. The errors in the phantom sequence correspond to less than 0.3 mm error in space, which is more than sufficient accuracy for the DIET system.
The geometry and invariance properties for certain classes of metrics with neutral signature
NASA Astrophysics Data System (ADS)
Bashingwa, Jean J. H.; Bokhari, Ashfaque H.; Kara, A. H.; Zaman, F. D.
2016-04-01
In this paper, we study anti-self dual manifolds endowed with metrics of neutral signature. Since the metrics depend on solutions of, in some cases, well-known partial differential equations (PDEs), we determine exact solutions using Lie group methods. This concludes specific forms of the metrics. We then determine the isometries and the variational symmetries of the underlying metrics and corresponding Euler-Lagrange (geodesic) equations, respectively, and establish relationships between the resultant Lie algebras. In some cases, we construct conservation laws via these symmetries or the “multiplier approach”.
NASA Astrophysics Data System (ADS)
Paganelli, Chiara; Peroni, Marta; Riboldi, Marco; Sharp, Gregory C.; Ciardo, Delia; Alterio, Daniela; Orecchia, Roberto; Baroni, Guido
2013-01-01
Adaptive radiation therapy (ART) aims at compensating for anatomic and pathological changes to improve delivery along a treatment fraction sequence. Current ART protocols require time-consuming manual updating of all volumes of interest on the images acquired during treatment. Deformable image registration (DIR) and contour propagation stand as a state of the ART method to automate the process, but the lack of DIR quality control methods hinder an introduction into clinical practice. We investigated the scale invariant feature transform (SIFT) method as a quantitative automated tool (1) for DIR evaluation and (2) for re-planning decision-making in the framework of ART treatments. As a preliminary test, SIFT invariance properties at shape-preserving and deformable transformations were studied on a computational phantom, granting residual matching errors below the voxel dimension. Then a clinical dataset composed of 19 head and neck ART patients was used to quantify the performance in ART treatments. For the goal (1) results demonstrated SIFT potential as an operator-independent DIR quality assessment metric. We measured DIR group systematic residual errors up to 0.66 mm against 1.35 mm provided by rigid registration. The group systematic errors of both bony and all other structures were also analyzed, attesting the presence of anatomical deformations. The correct automated identification of 18 patients who might benefit from ART out of the total 22 cases using SIFT demonstrated its capabilities toward goal (2) achievement.
NON-CONTACT ACOUSTO-THERMAL SIGNATURES OF PLASTIC DEFORMATION IN TI-6AL-4V
Welter, J. T.; Jata, K. V.; Blodgett, M. P.; Malott, G.; Schehl, N.; Sathish, S.
2010-02-22
Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.
Second order gauge invariant measure of a tidally deformed black hole
Ahmadi, Nahid
2012-08-01
In this paper, a Lagrangian perturbation theory for the second order treatment of small disturbances of the event horizon in Schwarzchild black holes is introduced. The issue of gauge invariance in the context of general relativistic theory is also discussed. The developments of this paper is a logical continuation of the calculations presented in [1], in which the first order coordinate dependance of the intrinsic and exterinsic geometry of the horizon is examined and the first order gauge invariance of the intrinsic geometry of the horizon is shown. In context of second order perturbation theory, It is shown that the rate of the expansion of the congruence of the horizon generators is invariant under a second order reparametrization; so it can be considered as a measure of tidal perturbation. A generally non-vanishing expression for this observable, which accomodates tidal perturbations and implies nonlinear response of the horizon, is also presented.
Bi, Lei; Yang, Ping
2013-05-01
The invariant imbedding T-matrix method (II-TM) is employed to simulate the optical properties of normal biconcave and deformed red blood cells (RBCs). The phase matrix elements of a RBC model computed with the II-TM are compared with their counterparts computed with the discrete-dipole approximation (DDA) method. As expected, the DDA results approach the II-TM results with an increase in the number of dipoles per incident wavelength. Computationally, the II-TM is faster than the DDA when multiple RBC orientations are considered. For a single orientation, the DDA is comparable with or even faster than the II-TM because the DDA efficiently converges for optically soft particles; however, the DDA method demands significantly more computer memory than the II-TM. After the applicability of the II-TM is numerically confirmed, a comparison is conducted of the optical properties of oxygenated and deoxygenated RBCs and of normal and deformed RBCs. The spectral variations of RBCs' optical properties are investigated in the wavelength range from 0.25 to 1.0 μm. Furthermore, the statistically averaged phase matrix of spheres and biconcave RBCs are compared. Conducted numerical simulations suggest the applicability of the II-TM for the inverse light scattering analysis and radiative transfer simulations in blood.
Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)
NASA Astrophysics Data System (ADS)
Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo
2016-04-01
Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10-2 - 10-1 Hz) and Ultra Long Period (ULP, 10-4 - 10-2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10-4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection and mixing
NASA Astrophysics Data System (ADS)
Uma, V. S.; Goel, Alpana
2015-06-01
Several signature partner pairs in super-deformed rotational bands in the A = 190 mass region have exhibited ΔI = 1 staggering effects in its transition energies. A total of twenty signature partner pairs of super-deformed (SD) rotational bands in the A = 190 mass region were investigated in this study. The intrinsic structure and the band head moment of inertia J 0 of these signature partner pairs were found to be identical. The band head spin I 0 and the band head moment of inertia J 0 of these pairs were assigned by using the VMI (variable moment of inertia) equation. The ΔI = 1 staggering was also examined through the staggering index S( I) formula, where interlinking transition energies between signature partner pairs were experimentally known. A large amplitude staggering was observed in these signature partner pairs. The paper indicates the possibility of a high signature splitting property and will be useful for further studies.
Stratigraphic signature of lithospheric deformation style in post-rift passive margin basins
NASA Astrophysics Data System (ADS)
Rouby, Delphine; Huismans, Ritske; Robin, Cecile; Braun, Jean; Granjeon, Didier
2016-04-01
We revise commonly accepted models explaining long-term stratigraphic trends along Atlantic-type passive margins by including the impact of complex lithosphere deformation at depth and it's coupling with surface processes. To achieve this, we simulated the evolution of a passive margin basin using a cascade of three modeling tools: a thermo-mechanical model of the syn-rift stretching of the lithosphere, a flexural and thermal model of the post-rift stage that includes coupling with surface processes and, finally, a stratigraphic model of the associated sedimentary basin architecture. We compare two necking styles that lead to different margin geometries: wide and narrow margins that form by heterogeneous stretching. Wide margins, forming thinner and wider sedimentary wedges, show significantly larger aggradation component and longer preservation duration, in more continental/proximal depositional facies. Narrow margins are characterized by enhanced erosion and by-pass during transgression. Through a parametric analysis we constrain the relative contribution of lithosphere deformation and surface processes on the stratigraphic trends and show that both may contribute equally to the stratigraphic architecture. For example, enhanced erosion in narrow margins impacts the volume of sediments delivered to the basin, which, in turn, significantly increases the subsidence. Our simulations also underline the importance of the assumed sediment transport length, which controls whether the main depocentres remain in the necking zone or reach the more distal parts of the margin.
Deformation signature from the Gamow-Teller decay of N=Z nuclei
Miehe, Ch.; Dessagne, Ph.; Huck, A.; Knipper, A.; Marguier, G.; Longour, C.; Rauch, V.; Giovinazzo, J.; Borge, M. J. G.; Piqueras, I.; Tengblad, O.; Jokinen, A.; Ramdhane, M.
1998-12-21
The {sup 76}Sr (N=Z=38) and the {sup 72}Kr (N=Z=36) {beta}{sup +} EC decay have been studied at the CERN/ISOLDE PSB facility where their beta-gamma and delayed particle decay modes have been investigated. The established decay schemes yield new information on the Gamow-Teller (GT) strength spread over the J{sup {pi}}=1{sup +} states in the daughter nuclei. The delayed proton emission of an N=Z nucleus is observed for the first time in the case of {sup 76}Sr. The experimental GT strength intensities and distributions are discussed in the light of the theoretical estimates for oblate and prolate deformations.
The Teton fault, Wyoming: Topographic signature, neotectonics, and mechanisms of deformation
NASA Technical Reports Server (NTRS)
Byrd, John O. D.; Smith, Robert B.; Geissman, John W.
1994-01-01
We integrated geophysical and geological methods to evalute the structural evolution of the active Teton normal fault, Wyoming, and its role in the development of the dramatic topography of Teton Range and Jackson Hole. Comparison of variations in surface offsets with the topographic expression of the Teton range crest and drainage divide, and the overall structure of the range, suggests that the effects ofpostglacial faulting cannot be discriminated from the influence of pre-extensional structures and differential; erosion on the footwall topography. In contrast, the effects of multiple scarp-forming normal faulting earthquakes are expressed by the anomalous drainage pattern and westward tilt of the hanging wall, Jackson Hole, toward the Teton fault. Kinematic boundary element fault models suggest that the westward tilt of the valley floor is the product of 110-125 m of displacement on a 45 deg-75 deg E dipping Teton fault in the past 25,000-75,000 years. Comparisons with historic normal faulting earthquake displacements imply that this range of displacement corresponds to 10-50, M greater than 7 scarp-forming earthquakes. A total throw of 2.5 to 3.5 km across the Teton fault is suggested by inverse ray-tracing and forward gravity models. These models also suggest that Laramide age structures have been offset across the Teton fault and obscure its geophysical signature but also continue to influence the structural and topographic expression of the footwall and hanging wall blocks. Paleomagnetic analyses of the approximately 2.0 Ma Huckelberry Ridge Tuff suggest that the overall westward tilt of the Teton Range is a result ofabout 10 deg of west side down tilt across the Teton fault since tuff emplacement. This suggests that much if not all of the throw across the Teton fault has accumulated in the past 2 m.y. Complex demagnetization and rock magnetic behavior and local emplacement of the Huckleberry Ridge Tuff on preexisting topogrpahy preclude determination of
Temporal shape analysis via the spectral signature.
Bernardis, Elena; Konukoglu, Ender; Ou, Yangming; Metaxas, Dimitris N; Desjardins, Benoit; Pohl, Kilian M
2012-01-01
In this paper, we adapt spectral signatures for capturing morphological changes over time. Advanced techniques for capturing temporal shape changes frequently rely on first registering the sequence of shapes and then analyzing the corresponding set of high dimensional deformation maps. Instead, we propose a simple encoding motivated by the observation that small shape deformations lead to minor refinements in the spectral signature composed of the eigenvalues of the Laplace operator. The proposed encoding does not require registration, since spectral signatures are invariant to pose changes. We apply our representation to the shapes of the ventricles extracted from 22 cine MR scans of healthy controls and Tetralogy of Fallot patients. We then measure the accuracy score of our encoding by training a linear classifier, which outperforms the same classifier based on volumetric measurements. PMID:23286031
Scale invariance vs conformal invariance
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2015-03-01
In this review article, we discuss the distinction and possible equivalence between scale invariance and conformal invariance in relativistic quantum field theories. Under some technical assumptions, we can prove that scale invariant quantum field theories in d = 2 space-time dimensions necessarily possess the enhanced conformal symmetry. The use of the conformal symmetry is well appreciated in the literature, but the fact that all the scale invariant phenomena in d = 2 space-time dimensions enjoy the conformal property relies on the deep structure of the renormalization group. The outstanding question is whether this feature is specific to d = 2 space-time dimensions or it holds in higher dimensions, too. As of January 2014, our consensus is that there is no known example of scale invariant but non-conformal field theories in d = 4 space-time dimensions under the assumptions of (1) unitarity, (2) Poincaré invariance (causality), (3) discrete spectrum in scaling dimensions, (4) existence of scale current and (5) unbroken scale invariance in the vacuum. We have a perturbative proof of the enhancement of conformal invariance from scale invariance based on the higher dimensional analogue of Zamolodchikov's c-theorem, but the non-perturbative proof is yet to come. As a reference we have tried to collect as many interesting examples of scale invariance in relativistic quantum field theories as possible in this article. We give a complementary holographic argument based on the energy-condition of the gravitational system and the space-time diffeomorphism in order to support the claim of the symmetry enhancement. We believe that the possible enhancement of conformal invariance from scale invariance reveals the sublime nature of the renormalization group and space-time with holography. This review is based on a lecture note on scale invariance vs conformal invariance, on which the author gave lectures at Taiwan Central University for the 5th Taiwan School on Strings and
NASA Astrophysics Data System (ADS)
Vilaseca, Géraud; Deplus, Christine; Escartin, Javier; Ballu, Valérie; Nomikou, Paraskevi; Mével, Catherine; Andreani, Muriel
2016-04-01
Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. In addition, we illustrate that tilt sensor can roughly record seismic induced ground motion which in our case led to a shift in sensors attitude for one seismic event. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.
NASA Astrophysics Data System (ADS)
Lease, Richard Oliver
document a middle Miocene change in the kinematic style of plateau deformation from initial north-south contraction along a trajectory that mimicked the India-Asia collision to the later onset of east-west contraction and intensified shortening. This kinematic shift in northeastern Tibet coincides with significant changes in style and rate of deformation across the plateau and may herald a plateau-wide reorganization of deformation.
NASA Astrophysics Data System (ADS)
Gomez, F. G.; Johnson, H. E., III; LeWinter, A. L.; Finnegan, D. C.; Sandvol, E. A.; Nayak, A.; Hurwitz, S.
2014-12-01
Geysers are important subjects for studying processes involved with multi-phase eruptions. As part of a larger field effort, this study applies imaging geodesy and seismology to study eruptive cycles of the Lone Star Geyser in Yellowstone National Park. Lone Star Geyser is an ideal candidate for such study, as it erupts with a nearly regular period of approximately 3 hours. The geyser includes a 5 m diameter cone that rises 2 meters above the sinter terrace, and the entire system can be viewed from a nearby hillside. Fieldwork was accomplished during April 2014. Ground-based interferometric radar (GBIR) and terrestrial laser scanning (TLS) were used to image possible surface deformations associated with Lone Star Geyer's eruption cycles. Additional observations were provided by global positioning system (GPS) measurements and six broad-band seismometers deployed in the immediate vicinity of the geyser. The GBIR and TLS were deployed approximately 65 meters from the sinter cone of the geyser. The GBIR involves a ku-band radar (1.7 cm wavelength) that is sensitive to approximately half-millimeter changes in the line-of-sight distance. Radar images were acquired every minute for 3 or more eruptions per day. Temporally redundant, overlapping interferograms were used to improve the sensitivity and interpolate a minute-wise time series of line-of-sight displacement, and efforts were made to account for possible path-delay effects resulting from water vapor around the geyser cone. Repeat (every minute) high-speed TLS scans were acquired for multiple eruption cycles over the course of two-days. Resulting measurement point spacing on the sinter cone was ~3cm. The TLS point-clouds were geo-referenced using static surveyed reflectors and scanner positions. In addition to measuring ground deformation, filtering and classification of the TLS point cloud was used to construct a mask that allows radar interferometry to exclude non-ground areas (vegetation, snow, sensors
NASA Astrophysics Data System (ADS)
Long, Maureen D.; Jackson, Kenneth G.; McNamara, John F.
2016-01-01
Seismic anisotropy in the upper mantle beneath continental interiors is generally complicated, with contributions from both the lithosphere and the asthenosphere. Previous studies of SKS splitting beneath the eastern United States have yielded evidence for complex and laterally variable anisotropy, but until the recent arrival of the USArray Transportable Array (TA) the station coverage has been sparse. Here we present SKS splitting measurements at TA stations in eastern North America and compare the measured fast directions with indicators such as absolute plate motion, surface geology, and magnetic lineations. We find few correlations between fast directions and absolute plate motion, except in the northeastern U.S. and southern Canada, where some stations exhibit variations in apparent splitting with backazimuth that would suggest multiple layers of anisotropy. A region of the southeastern U.S. is dominated by null SKS arrivals over a range of backazimuths, consistent with previous work. We document a pattern of fast directions parallel to the Appalachian mountain chain, suggesting a contribution from lithospheric deformation associated with Appalachian orogenesis. Overall, our measurements suggest that upper mantle anisotropy beneath the eastern United States is complex, with likely contributions from both asthenospheric and lithospheric anisotropy in many regions.
NASA Astrophysics Data System (ADS)
Agliardi, F.; Vinciguerra, S.; Dobbs, M. R.; Zanchetta, S.
2014-12-01
Fabric anisotropy is a key control of rock behavior in different geological settings and over different timescales. However, the effect of tectonically folded fabrics on the brittle strength and failure mode of metamorphic rocks is poorly understood. Recent data, obtained from uniaxial compression experiments on folded gneiss (Agliardi et al., 2014), demonstrated that their brittle failure modes depend upon the arrangement of two anisotropies (i.e. foliation and fold axial planes) and that rock strength correlates with failure mode. Since lithostatic pressure may significantly affect this rock behavior, we investigated its effect in triaxial compression experiments. We tested the Monte Canale Gneiss (Italian Alps), characterized by low phyllosilicate content and compositional layering folded at the cm-scale. We used a servo-controlled hydraulic loading system to test 19 air-dry cylindrical specimens (ø = 54 mm) that were characterized both in terms of fold geometry and orientation of foliation and fold axial planes to the axial load direction. The specimens were instrumented with direct contact axial and circumferential strain gauges. Acoustic emissions and P- and S-wave velocities were measured by piezoelectric transducers mounted in the compression platens. The tests were performed at confining pressures of 40 MPa and axial strain rates of 5*10-6 s-1. Post-failure study of fracture mechanisms and related microfabric controls was undertaken using X-ray CT, optical microscopy and SEM. Samples failed in three distinct brittle modes produced by different combinations of fractures parallel to foliation, fractures parallel to fold axial planes, or mm-scale shear bands. The failure modes, consistent with those described in uniaxial compression experiments, were found to be associated with distinct stress-strain and acoustic emission signatures. Failure modes involving quartz-dominated axial plane anisotropy correspond to higher peak strength and axial strain, less
Frank, Steven A.
2016-01-01
In nematodes, environmental or physiological perturbations alter death’s scaling of time. In human cancer, genetic perturbations alter death’s curvature of time. Those changes in scale and curvature follow the constraining contours of death’s invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death’s scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes. PMID:27785361
NASA Astrophysics Data System (ADS)
Chitea, F.; Mitrofan, H.; Marin, C.; Anghelache, M. A.; Tudorache, A.
2009-04-01
recorded one of the main crustal events (3.3≤Mw≤4.4) of the Marasesti-Galati lineament. The above-indicated time-lags provided obvious evidence that the considered crustal earthquakes were neither foreshocks, nor aftershocks of the strong intermediate-depth events. Instead, each succession of "Vrancioaia crustal - strong subcrustal - Marasesti-Galati crustal" events appeared to define a major lithospheric deformation episode. In the case of the last recorded episode ("centered" on the strong subcrustal earthquake of 27 October 2004), corroborating evidence that some kind of long-range lithospheric deformation indeed took place has been provided by Na-K-Mg geothermometry anomalies recorded at a deep-origin groundwater discharge (Slanic Moldova): while the corresponding "forerunning" crustal earthquake of Vrancioaia region had occurred on 10 February 2003, the hydrogeochemically anomalous behavior has been continuously manifest from April 2003 until October 2004. The previously-discussed results revealed that some kind of long-range interdependence seemed to exist between various phenomena (subcrustal and crustal seismicity, groundwater chemistry fluctuations) that occurred in a broad region associated to the Vrancea "nest" of strong earthquakes. Integrated monitoring of the indicated phenomena might further provide precursor signatures of impending catastrophic Vrancea earthquakes. At the same time, there can be assessed possible influences that major lithospheric deformation episodes, related to Vrancea zone, might exert on the seismicity of apparently remote areas (that of the major city of Galati, for instance).
Geometry-invariant resonant cavities
Liberal, I.; Mahmoud, A. M.; Engheta, N.
2016-01-01
Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103
Hidden structures of knot invariants
NASA Astrophysics Data System (ADS)
Sleptsov, Alexey
2014-11-01
We discuss a connection of HOMFLY polynomials with Hurwitz covers and represent a generating function for the HOMFLY polynomial of a given knot in all representations as Hurwitz partition function, i.e. the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and the loop expansion through Vassiliev invariants explicitly demonstrate this phenomenon. We study the genus expansion and discuss its properties. We also consider the loop expansion in details. In particular, we give an algorithm to calculate Vassiliev invariants, give some examples and discuss relations among Vassiliev invariants. Then we consider superpolynomials for torus knots defined via double affine Hecke algebra. We claim that the superpolynomials are not functions of Hurwitz type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are beta-deformed to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials.
Neutrinos as Probes of Lorentz Invariance
Díaz, Jorge S.
2014-01-01
Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.
Invariant variational structures on fibered manifolds
NASA Astrophysics Data System (ADS)
Krupka, Demeter
2015-12-01
The aim of this paper is to present a relatively complete theory of invariance of global, higher-order integral variational functionals in fibered spaces, as developed during a few past decades. We unify and extend recent results of the geometric invariance theory; new results on deformations of extremals are also included. We show that the theory can be developed by means of the general concept of invariance of a differential form in geometry, which does not require different ad hoc modifications. The concept applies to invariance of Lagrangians, source forms and Euler-Lagrange forms, as well as to extremals of the given variational functional. Equations for generators of invariance transformations of the Lagrangians and the Euler-Lagrange forms are characterized in terms of Lie derivatives. As a consequence of invariance, we derive the global Noether's theorem on existence of conserved currents along extremals, and discuss the meaning of conservation equations. We prove a theorem describing extremals, whose deformations by a vector field are again extremals. The general settings and structures we use admit extension of the global invariance theory to variational principles in physics, especially in field theory.
The classical Korteweg capillarity system: geometry and invariant transformations
NASA Astrophysics Data System (ADS)
Rogers, C.; Schief, W. K.
2014-08-01
A class of invariant transformations is presented for the classical Korteweg capillarity system. The invariance is an extension of a kind originally introduced in an anisentropic gasdynamics context. In a particular instance, application of the invariant transformation leads to a deformed one-parameter class of Kármán-Tsien-type capillarity laws associated with a deformation of an integrable nonlinear Schrödinger-type equation which incorporates a de Broglie-Bohm potential. The latter and another integrable case associated with the classical Boussinesq equation may be linked to the motion of curves in Euclidean and projective space so that both the invariant transformation and the Galilean invariance of the capillarity system may be interpreted in a geometric and soliton-theoretic manner. The work is set in the broader context of other connections of invariant transformations in gasdynamics with soliton theory.
Gauge-invariant massive BF models
NASA Astrophysics Data System (ADS)
Bizdadea, Constantin; Saliu, Solange-Odile
2016-02-01
Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, and Poincaré invariance, supplemented with the requirement of the preservation of the number of derivatives on each field with respect to the free theory, we see that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field A_{μ } with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking.
Barnard, E; Casasent, D
1991-01-01
Application of neural nets to invariant pattern recognition is considered. The authors study various techniques for obtaining this invariance with neural net classifiers and identify the invariant-feature technique as the most suitable for current neural classifiers. A novel formulation of invariance in terms of constraints on the feature values leads to a general method for transforming any given feature space so that it becomes invariant to specified transformations. A case study using range imagery is used to exemplify these ideas, and good performance is obtained.
Conformal Invariance of Graphene Sheets.
Giordanelli, I; Posé, N; Mendoza, M; Herrmann, H J
2016-03-10
Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces.
Conformal Invariance of Graphene Sheets
Giordanelli, I.; Posé, N.; Mendoza, M.; Herrmann, H. J.
2016-01-01
Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces. PMID:26961723
q-Deformed and c-Deformed Harmonic Oscillators
NASA Astrophysics Data System (ADS)
Sogami, I. S.; Koizumi, K.; Mir-Kasimov, R. M.
2003-10-01
Hamilton functions of classical deformed oscillators (c-deformed oscillators) are derived from Hamiltonians of q-deformed oscillators of the Macfarlane and Dubna types. A new scale parameter, lq, with the dimension of length, is introduced to relate a dimensionless parameter characterizing the deformation with the natural length of the harmonic oscillator. Contraction from q-deformed oscillators to c-deformed oscillators is accomplished by keeping lq finite while taking the limit hbar → 0. The c-deformed Hamilton functions for both types of oscillators are found to be invariant under discrete translations: the step of the translation for the Dubna oscillator is half of that for the Macfarlane oscillator. The c-deformed oscillator of the Macfarlane type has propagating solutions in addition to localized ones. Reinvestigation of the q-deformed oscillator carried out in the light of these findings for the c-deformed systems proves that the q-deformed systems are invariant under the same translation symmetries as the c-deformed systems and have propagating waves of the Bloch type.
A position, rotation, and scale invariant image descriptor based on rays and circular paths
NASA Astrophysics Data System (ADS)
Solorza-Calderón, Selene
2015-09-01
In this paper a rotation, scale and translation (RST) invariant image descriptor based on 1D signatures is presented. The position invariant is obtained using the amplitude spectrum of the Fourier transform of the image. That spectrum is introduced in the analytical Fourier-Mellin transform (AFMT) to obtain the scale invariance. From the normalized AFMT amplitude spectrum two 1D signatures are constructed. To build a 1D circular signature, circular path binary masks are used to filter the spectrum image. On the other hand, ray path binary filters are utilized in the construction of the 1D ray signature. These 1D signatures are RST invariant image descriptors. The Latin alphabet letters in Arial font style were used to test the descriptor efficiency. According with the statistical analysis of bootstrap with a constant replacement B = 1000 and normal distribution, the descriptor has a confidence level at least of 95%.
Generalized relativistic kinematics in Poincaré-invariant models
NASA Astrophysics Data System (ADS)
Ivetić, B.; Mignemi, S.; Samsarov, A.
2016-09-01
Assuming the validity of the relativity principle, we discuss the implications on relativistic kinematics of a deformation of the Poincaré invariance that preserves the Poincaré algebra, and only modifies its action on spacetime in a Lorentz-invariant way. We show that, in contrast to the case in which the Poincaré algebra is deformed, the action of boosts on two-particle states is not affected, while the addition law of momenta is to a large extent arbitrary. We discuss some nontrivial examples of deformed addition laws related to the Snyder model.
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Rainbow gravity and scale-invariant fluctuations
NASA Astrophysics Data System (ADS)
Amelino-Camelia, Giovanni; Arzano, Michele; Gubitosi, Giulia; Magueijo, João
2013-08-01
We reexamine a recently proposed scenario where the deformed dispersion relations associated with a flow of the spectral dimension to a UV value of 2 leads to a scale-invariant spectrum of cosmological fluctuations, without the need for inflation. In that scenario Einstein gravity was assumed. The theory displays a wavelength-dependent speed of light but by transforming to a suitable “rainbow frame” this feature can be removed, at the expense of modifying gravity. We find that the ensuing rainbow gravity theory is such that gravity switches off at high energy (or at least leads to a universal conformal coupling). This explains why the fluctuations are scale invariant on all scales: there is no horizon scale as such. For dispersion relations that do not lead to exact scale invariance we find instead esoteric inflation in the rainbow frame. We argue that these results shed light on the behavior of gravity under the phenomenon of dimensional reduction.
Cosmological disformal invariance
NASA Astrophysics Data System (ADS)
Domènech, Guillem; Naruko, Atsushi; Sasaki, Misao
2015-10-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.
Digital system of invariant correlation to position and rotation
NASA Astrophysics Data System (ADS)
Solorza, Selene; Álvarez-Borrego, Josué
2010-10-01
A new correlation digital system invariant to position and rotation is presented. This new algorithm requires low computational cost, because it uses uni-dimensional signatures (vectors). The signature of the target so like the signature of the object to be recognized in the problem image is obtained using a binary ring mask constructed based on the real positive values of the Fourier transform of the corresponding image. In this manner, each image will have one unique binary ring mask, avoiding in this form the relevant information leak. Using linear and non-linear correlations, this methodology is applied first in the identification of the alphabet letters in Arial font style and then in the classification of fossil diatoms images. Also, this system is tested using the diatom images with additive Gaussian noise. The non-linear correlation results were excellent, obtaining in this way a simple but efficient method to achieve rotation and translation invariance pattern recognition.
Yang-Baxter invariance of the Nappi-Witten model
NASA Astrophysics Data System (ADS)
Kyono, Hideki; Yoshida, Kentaroh
2016-04-01
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical r-matrices satisfying (modified) classical Yang-Baxter equations. We show that the sigma-model metric is invariant under arbitrary deformations (while the coefficient of B-field is changed) by utilizing the most general classical r-matrix. Furthermore, the coefficient of B-field is determined to be the original value from the requirement that the one-loop β-function should vanish. After all, the Nappi-Witten model is the unique conformal theory within the class of the Yang-Baxter deformations preserving the conformal invariance.
Scale invariance in biophysics
NASA Astrophysics Data System (ADS)
Stanley, H. Eugene
2000-06-01
In this general talk, we offer an overview of some problems of interest to biophysicists, medical physicists, and econophysicists. These include DNA sequences, brain plaques in Alzheimer patients, heartbeat intervals, and time series giving price fluctuations in economics. These problems have the common feature that they exhibit features that appear to be scale invariant. Particularly vexing is the problem that some of these scale invariant phenomena are not stationary-their statistical properties vary from one time interval to the next or form one position to the next. We will discuss methods, such as wavelet methods and multifractal methods, to cope with these problems. .
Pokhozhaev, Stanislav I
2011-06-30
The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-01
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.
Idiographic Measurement Invariance?
ERIC Educational Resources Information Center
Willoughby, Michael T.; Sideris, John
2007-01-01
In this article, the authors comment on Nesselroade, Gerstorf, Hardy, and Ram's efforts (this issue) to grapple with the challenge of accommodating idiographic assessment as it pertains to measurement invariance (MI). Although the authors are in complete agreement with the motivation for Nesselroade et al.'s work, the authors have concerns about…
Measurement Invariance versus Selection Invariance: Is Fair Selection Possible?
ERIC Educational Resources Information Center
Borsman, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in…
Smooth Crossed Products of Rieffel's Deformations
NASA Astrophysics Data System (ADS)
Neshveyev, Sergey
2014-03-01
Assume is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel's deformation of . We construct an explicit isomorphism between the smooth crossed products and . When combined with the Elliott-Natsume-Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel's and Kasprzak's approaches to deformation.
Are there p-adic knot invariants?
NASA Astrophysics Data System (ADS)
Morozov, A. Yu.
2016-04-01
We suggest using the Hall-Littlewood version of the Rosso-Jones formula to define the germs of p-adic HOMFLY-PT polynomials for torus knots [ m, n] as coefficients of superpolynomials in a q-expansion. In this form, they have at least the [ m, n] ↔ [ n, m] topological invariance. This opens a new possibility to interpret superpolynomials as p-adic deformations of HOMFLY polynomials and poses a question of generalizing to other knot families, which is a substantial problem for several branches of modern theory.
Gauge invariant quantum cosmology
NASA Technical Reports Server (NTRS)
Berger, Beverly K.
1987-01-01
The study of boundary conditions, the Hamiltonian constraint, reparameterization-invariance, and quantum dynamics, is presently approached by means of the path-integral quantization of minisuperspace models. The separation of the wave functions for expansion and contraction by the Feynman boundary conditions is such that there can be no interference between them. This is implemented by the choice of a contour in the complex plane, in order to define the phase of the square-root Arnowitt, Deser, and Misner (1960) Hamiltonian for expansion, collapse, and the classically forbidden region.
... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...
Entanglement, Invariants, and Phylogenetics
NASA Astrophysics Data System (ADS)
Sumner, J. G.
2007-10-01
This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.
Lorentz-invariant formulation of Cherenkov radiation by tachyons
NASA Technical Reports Server (NTRS)
Jones, F. C.
1972-01-01
Previous treatments of Cherenkov radiation, electromagnetic and gravitational, by tachyons were in error because the prescription employed to cut off the divergent integral over frequency is not a Lorentz invariant procedure. The resulting equation of motion for the tachyon is therefore not covariant. The proper procedure requires an extended, deformable distribution of charge or mass and yields a particularly simple form for the tachyon's world line, one that could be deduced from simple invariance considerations. It is shown that Cherenkov radiation by tachyons implys their ultimate annihilation with an antitachyon and demonstrates a disturbing property of tachyons, namely the impossibility of specifying arbitrary Cauchy data even in a purely classical theory.
On the new translational shape-invariant potentials
NASA Astrophysics Data System (ADS)
Ramos, Arturo
2011-08-01
Recently, several authors have found new translational shape-invariant potentials not present in classic classifications like those of Infeld and Hull. For example, Quesne on the one hand and Bougie, Gangopadhyaya and Mallow on the other have provided examples of them, consisting on deformations of the classical ones. We analyze the basic properties of the new examples and observe a compatibility equation which has to be satisfied by them. We study particular cases of such an equation and give more examples of new translational shape-invariant potentials.
Invariants from classical field theory
Diaz, Rafael; Leal, Lorenzo
2008-06-15
We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
Kahler stabilized, modular invariant heterotic string models
Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.
2007-03-19
We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.
A Discussion of Population Invariance
ERIC Educational Resources Information Center
Brennan, Robert L.
2008-01-01
The discussion here covers five articles that are linked in the sense that they all treat population invariance. This discussion of population invariance is a somewhat broader treatment of the subject than simply a discussion of these five articles. In particular, occasional reference is made to publications other than those in this issue. The…
Deformations of non-semisimple Poisson pencils of hydrodynamic type
NASA Astrophysics Data System (ADS)
Della Vedova, Alberto; Lorenzoni, Paolo; Savoldi, Andrea
2016-09-01
We study the deformations of two-component non-semisimple Poisson pencils of hydrodynamic type associated with Balinskiǐ–Novikov algebras. We show that in most cases the second order deformations are parametrized by two functions of a single variable. We find that one function is invariant with respect to the subgroup of Miura transformations, preserving the dispersionless limit, and another function is related to a one-parameter family of truncated structures. In two exceptional cases the second order deformations are parametrized by four functions. Among these two are invariants and two are related to a two-parameter family of truncated structures. We also study the lift of the deformations of n-component semisimple structures. This example suggests that deformations of non-semisimple pencils corresponding to the lifted invariant parameters are unobstructed.
Deformations of non-semisimple Poisson pencils of hydrodynamic type
NASA Astrophysics Data System (ADS)
Della Vedova, Alberto; Lorenzoni, Paolo; Savoldi, Andrea
2016-09-01
We study the deformations of two-component non-semisimple Poisson pencils of hydrodynamic type associated with Balinskiǐ-Novikov algebras. We show that in most cases the second order deformations are parametrized by two functions of a single variable. We find that one function is invariant with respect to the subgroup of Miura transformations, preserving the dispersionless limit, and another function is related to a one-parameter family of truncated structures. In two exceptional cases the second order deformations are parametrized by four functions. Among these two are invariants and two are related to a two-parameter family of truncated structures. We also study the lift of the deformations of n-component semisimple structures. This example suggests that deformations of non-semisimple pencils corresponding to the lifted invariant parameters are unobstructed.
Invariant Measures for Cherry Flows
NASA Astrophysics Data System (ADS)
Saghin, Radu; Vargas, Edson
2013-01-01
We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.
Physical Invariants of Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
A program of research is dedicated to development of a mathematical formalism that could provide, among other things, means by which living systems could be distinguished from non-living ones. A major issue that arises in this research is the following question: What invariants of mathematical models of the physics of systems are (1) characteristic of the behaviors of intelligent living systems and (2) do not depend on specific features of material compositions heretofore considered to be characteristic of life? This research at earlier stages has been reported, albeit from different perspectives, in numerous previous NASA Tech Briefs articles. To recapitulate: One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Mathematical models of motor dynamics are used to simulate the observable physical behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. At the time of reporting the information for this article, the focus of this research was upon the following aspects of the formalism: Intelligence is considered to be a means by which a living system preserves itself and improves its ability to survive and is further considered to manifest itself in feedback from the mental dynamics to the motor dynamics. Because of the feedback from the mental dynamics, the motor dynamics attains quantum-like properties: The trajectory of the physical aspect of the system in the space of dynamical variables splits into a family of different trajectories, and each of those trajectories can be chosen with a probability prescribed by the mental dynamics. From a slightly different perspective
Conformal invariance of loop ensembles under Kardar-Parisi-Zhang dynamics
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Rosso, Alberto; Santachiara, Raoul
2015-07-01
We study scaling properties of the honeycomb fully packed loop ensemble associated with a lozenge tiling model of rough surface, when the latter is driven out of equilibrium by Kardar-Parisi-Zhang (KPZ)-type dynamics. We show numerically that conformal invariance and signatures of critical percolation appear in the stationary KPZ state. In terms of the two-component Coulomb gas description of the Edwards-Wilkinson stationary state, our finding is understood as the invariance of one component under the effect of the non-linear KPZ term. On the other hand, we show a breaking of conformal invariance when the level lines of the other component are considered.
Shaping propagation invariant laser beams
NASA Astrophysics Data System (ADS)
Soskind, Michael; Soskind, Rose; Soskind, Yakov
2015-11-01
Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.
Invariant manifolds and global bifurcations.
Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn
2015-09-01
Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems. PMID:26428557
Invariant manifolds and global bifurcations.
Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn
2015-09-01
Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems.
Invariant manifolds and global bifurcations
NASA Astrophysics Data System (ADS)
Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M.; Sandstede, Björn
2015-09-01
Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems.
Generating maps, invariant manifolds, conjugacy
NASA Astrophysics Data System (ADS)
Chaperon, Marc
2015-01-01
The idea of generating functions and maps is presented, first in global symplectic geometry and then in the theory of invariant manifolds, as introduced by McGehee and Sander in 1996. Their result on the stable manifold theorem is generalised and simplified; the proofs no longer use any functional analysis. Then comes an original "non-autonomous" version of the previous results, yielding-besides Pesin's invariant laminations-seemingly unrelated results on invariant manifolds and conjugacies, presented in the end after a basic example.
Hidden scale invariance of metals
NASA Astrophysics Data System (ADS)
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.; Pedersen, Ulf R.
2015-11-01
Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general "hidden" scale invariance of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals (Ga, In, Sn, and Tl), and the metalloids Si and Ge cannot be explained by the IPL assumption. The virial-energy correlation coefficients of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules.
NASA Astrophysics Data System (ADS)
Hawley, Chadwick T.
2009-05-01
The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.
Bunnell, W P
1986-12-01
Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010
Exposing local symmetries in distorted driven lattices via time-averaged invariants
NASA Astrophysics Data System (ADS)
Wulf, T.; Morfonios, C. V.; Diakonos, F. K.; Schmelcher, P.
2016-05-01
Time-averaged two-point currents are derived and shown to be spatially invariant within domains of local translation or inversion symmetry for arbitrary time-periodic quantum systems in one dimension. These currents are shown to provide a valuable tool for detecting deformations of a spatial symmetry in static and driven lattices. In the static case the invariance of the two-point currents is related to the presence of time-reversal invariance and/or probability current conservation. The obtained insights into the wave functions are further exploited for a symmetry-based convergence check which is applicable for globally broken but locally retained potential symmetries.
Jordanian deformation of the open sℓ(2) Gaudin model
NASA Astrophysics Data System (ADS)
António, N. Cirilo; Manojlović, N.; Nagy, Z.
2014-04-01
We derive a deformed sℓ( 2) Gaudin model with integrable boundaries. Starting from the Jordanian deformation of the SL( 2)-invariant Yang R-matrix and generic solutions of the associated reflection equation and the dual reflection equation, we obtain the corresponding inhomogeneous spin- 1/2 XXX chain. The semiclassical expansion of the transfer matrix yields the deformed sℓ( 2) Gaudin Hamiltonians with boundary terms.
CPT violation implies violation of Lorentz invariance.
Greenberg, O W
2002-12-01
A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal. PMID:12484997
Weyl invariance with a nontrivial mass scale
NASA Astrophysics Data System (ADS)
Álvarez, Enrique; González-Martín, Sergio
2016-09-01
A theory with a mass scale and yet Weyl invariant is presented. The theory is not invariant under all diffeomorphisms but only under transverse ones. This is the reason why Weyl invariance does not imply scale invariance in a free falling frame. Physical implications of this framework are discussed.
CPT violation implies violation of Lorentz invariance.
Greenberg, O W
2002-12-01
A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.
Topological invariants in Fermi systems with time-reversal invariance
NASA Astrophysics Data System (ADS)
Avron, J. E.; Sadun, L.; Segert, J.; Simon, B.
1988-09-01
We discuss topological invariants for Fermi systems that have time-reversal invariance. The TKN2 integers (first Chern numbers) are replaced by second Chern numbers, and Berry's phase becomes a unit quaternion, or equivalently an element of SU(2). The canonical example playing much the same role as spin (1/2 in a magnetic field is spin (3/2 in a quadrupole electric field. In particular, the associated bundles are nontrivial and have +/-1 second Chern number. The connection that governs the adiabatic evolution coincides with the symmetric SU(2) Yang-Mills instanton.
Machine learning strategies for systems with invariance properties
Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan
2016-05-06
Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neuralmore » networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.« less
Machine learning strategies for systems with invariance properties
NASA Astrophysics Data System (ADS)
Ling, Julia; Jones, Reese; Templeton, Jeremy
2016-08-01
In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.
Dark coupling and gauge invariance
Gavela, M.B.; Honorez, L. Lopez; Rigolin, S. E-mail: llopezho@ulb.ac.be E-mail: stefano.rigolin@pd.infn.it
2010-11-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Critical phenomena of invariant circles
Hu, B.; Shi, J. ); Kim, S. )
1991-04-15
Some novel critical phenomena are discovered in a class of nonanalytic twist maps. It is found that the degree of inflection {ital z} plays a role reminiscent of that of dimensionality in phase transitions with {ital z}=2 and 3 corresponding to the lower and upper critical dimensions, respectively. Moreover, recurrence of invariant circles has also been observed. An inverse residue criterion,'' complementary to the residue criterion'' for the determination of the disappearance point, is introduced to determine the reappearance point of invariant circles.
Brown, R.D. Jr.
1990-01-01
Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.
Optical tweezer for probing erythrocyte membrane deformability
NASA Astrophysics Data System (ADS)
Khan, Manas; Soni, Harsh; Sood, A. K.
2009-12-01
We report that the average rotation speed of optically trapped crenated erythrocytes is direct signature of their membrane deformability. When placed in hypertonic buffer, discocytic erythrocytes are subjected to crenation. The deformation of cells brings in chirality and asymmetry in shape that makes them rotate under the scattering force of a linearly polarized optical trap. A change in the deformability of the erythrocytes, due to any internal or environmental factor, affects the rotation speed of the trapped crenated cells. Here we show how the increment in erythrocyte membrane rigidity with adsorption of Ca++ ions can be exhibited through this approach.
Scale invariance and superfluid turbulence
NASA Astrophysics Data System (ADS)
Sen, Siddhartha; Ray, Koushik
2013-11-01
We construct a Schroedinger field theory invariant under local spatial scaling. It is shown to provide an effective theory of superfluid turbulence by deriving, analytically, the observed Kolmogorov 5/3 law and to lead to a Biot-Savart interaction between the observed filament excitations of the system as well.
Thomas, Anthony
2008-11-01
We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between "chiral" and "invariant" spin. This is particularly significant with respect to the possible presence of polarized strange quarks.
Thomas, Anthony W.
2008-10-13
We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between 'chiral' and 'invariant' spin. This is particularly significant with respect to the possible presence of polarized strange quarks.
Identity from classical invariant theory
Stein, P.R.
1982-01-01
A simple derivation is given of a well-known relation involving the so-called Cayley Operator of classical invariant theory. The proof is induction-free and independent of Capelli's identity; it makes use only of a known-theorem in the theory of determinants and some elementary combinatorics.
Holographic signatures of cosmological singularities.
Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T
2014-09-19
To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.
Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms
NASA Astrophysics Data System (ADS)
Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.
2014-12-01
The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.
Buhusi, Catalin V; Oprisan, Sorinel A
2013-05-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. PMID:23518297
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons
Buhusi, Catalin V.; Oprisan, Sorinel A.
2013-01-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion (interval timing) based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher-order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively-connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. PMID:23518297
Perception of Invariance Over Perspective Transformations in Five Month Old Infants.
ERIC Educational Resources Information Center
Gibson, Eleanor; And Others
This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…
Scale invariance of parity-invariant three-dimensional QED
NASA Astrophysics Data System (ADS)
Karthik, Nikhil; Narayanan, Rajamani
2016-09-01
We present numerical evidences using overlap fermions for a scale-invariant behavior of parity-invariant three-dimensional QED with two flavors of massless two-component fermions. Using finite-size scaling of the low-lying eigenvalues of the massless anti-Hermitian overlap Dirac operator, we rule out the presence of a bilinear condensate and estimate the mass anomalous dimension. The eigenvectors associated with these low-lying eigenvalues suggest critical behavior in the sense of a metal-insulator transition. We show that there is no mass gap in the scalar and vector correlators in the infinite-volume theory. The vector correlator does not acquire an anomalous dimension. The anomalous dimension associated with the long-distance behavior of the scalar correlator is consistent with the mass anomalous dimension.
The solar system's invariable plane
NASA Astrophysics Data System (ADS)
Souami, D.; Souchay, J.
2012-07-01
Context. The dynamics of solar system objects, such as dwarf planets and asteroids, has become a well-established field of celestial mechanics in the past thirty years, owing to the improvements that have been made in observational techniques and numerical studies. In general, the ecliptic is taken as the reference plane in these studies, although there is no dynamical reason for doing so. In contrast, the invariable plane as originally defined by Laplace, seems to be a far more natural choice. In this context, the latest study of this plane dates back to Burkhardt. Aims: We define and determine the orientation of the invariable plane of the solar system with respect to both the ICRF and the equinox-ecliptic of J2000.0, and evaluate the accuracy of our determination. Methods: Using the long-term numerical ephemerides DE405, DE406, and INPOP10a over their entire available time span, we computed the total angular momentum of the solar system, as well as the individual contribution to it made by each of the planets, the dwarf planets Pluto and Ceres, and the two asteroids Pallas and Vesta. We then deduced the orientation of the invariable plane from these ephemerides. Results: We update the previous results on the determination of the orientation of the invariable plane with more accurate data, and a more complete analysis of the problem, taking into account the effect of the dwarf planet (1) Ceres as well as two of the biggest asteroids, (4) Vesta and (2) Pallas. We show that the inclusion of these last three bodies significantly improves the accuracy of determination of the invariable plane, whose orientation over a 100 y interval does not vary more than 0.1 mas in inclination, and 0.3 mas in longitude of the ascending node. Moreover, we determine the individual contributions of each body to the total angular momentum of the solar system, as well as the inclination and longitude of the node with respect to this latter plane. Conclusions: Owing to the high accuracy
NASA Astrophysics Data System (ADS)
Larson, Kristine M.
1995-07-01
Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.
Identification of the Origin of Monojet Signatures at the LHC
Rizzo, Thomas G.; /SLAC
2008-05-13
Several new physics scenarios can lead to monojet signatures at the LHC. If such events are observed above the Standard Model background it will be important to identify their origin. In this paper we compare and contrast these signatures as produced in two very different pictures: vector or scalar unparticle production in the scale-invariant/conformal regime and graviton emission in the Arkani-Hamed, Dimopoulos and Dvali extra-dimensional model. We demonstrate that these two scenarios can be distinguished at the LHC for a reasonable range of model parameters through the shape of their respective monojet and/or missing E{sub T} distributions.
ERIC Educational Resources Information Center
Hassler, Vesna; Biely, Helmut
1999-01-01
Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…
Foulke, K.W. )
1992-08-01
Low observable technologies for military and tactical aircraft are reviewed including signature-reduction techniques and signal detection/jamming. Among the applications considered are low-signature sensors and the reduction of radar cross section in conjunction with radar-absorbing structures and materials. Technologies for reducing radar cross section are shown to present significant technological challenges, although they afford enhanced aircraft survivability.
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods. PMID:26390453
Emerging universe from scale invariance
Del Campo, Sergio; Herrera, Ramón; Guendelman, Eduardo I.; Labraña, Pedro E-mail: guendel@bgu.ac.il E-mail: plabrana@ubiobio.cl
2010-06-01
We consider a scale invariant model which includes a R{sup 2} term in action and show that a stable ''emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R{sup 2} term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.
Quantum mechanics from invariance principles
NASA Astrophysics Data System (ADS)
Moldoveanu, Florin
2015-07-01
Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.
Anisotropic invariance in minisuperspace models
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Sabido, Miguel
2016-06-01
In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.
Anisotropic invariance in minisuperspace models
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Sabido, Miguel
2016-06-01
In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski-Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann-Robertson-Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.
Boosting Shift-Invariant Features
NASA Astrophysics Data System (ADS)
Hörnlein, Thomas; Jähne, Bernd
This work presents a novel method for training shift-invariant features using a Boosting framework. Features performing local convolutions followed by subsampling are used to achieve shift-invariance. Other systems using this type of features, e.g. Convolutional Neural Networks, use complex feed-forward networks with multiple layers. In contrast, the proposed system adds features one at a time using smoothing spline base classifiers. Feature training optimizes base classifier costs. Boosting sample-reweighting ensures features to be both descriptive and independent. Our system has a lower number of design parameters as comparable systems, so adapting the system to new problems is simple. Also, the stage-wise training makes it very scalable. Experimental results show the competitiveness of our approach.
Holographic multiverse and conformal invariance
Garriga, Jaume; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu
2009-11-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.
Disformal invariance of curvature perturbation
NASA Astrophysics Data System (ADS)
Motohashi, Hayato; White, Jonathan
2016-02-01
We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.
Similarity, invariance, and musical variation.
McAdams, S; Matzkin, D
2001-06-01
Perceptual similarity underlies a number of important psychological properties of musical materials, including perceptual invariance under transformation, categorization, recognition, and the sense of familiarity. Mental processes involved in the perception of musical similarity may be an integral part of the functional logic of music composition and thus underly important aspects of musical experience. How much and in what ways can musical materials be varied and still be considered as perceptually related or as belonging to the same category? The notions of musical material, musical variation, perceptual similarity and invariance, and form-bearing dimensions are considered in this light. Recent work on similarity perception has demonstrated that the transformation space for a given musical material is limited by several factors ranging from degree of match of the values of auditory attributes of the events composing the sequences to their relations of various levels of abstraction and to the degree that the transformation respects the grammar of the musical system within which the material was composed. These notions and results are considered in the light of future directions of research, particularly concerning the role of similarity and invariance in the understanding of musical form during listening.
Elementary examples of adiabatic invariance
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1990-04-01
Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product Eτ of energy E and period τ for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found—a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form V=axn, with a=a(t) slowly varying in time. Then, the horizontal bouncer is considered—a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving ``turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform ``betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.
Similarity, invariance, and musical variation.
McAdams, S; Matzkin, D
2001-06-01
Perceptual similarity underlies a number of important psychological properties of musical materials, including perceptual invariance under transformation, categorization, recognition, and the sense of familiarity. Mental processes involved in the perception of musical similarity may be an integral part of the functional logic of music composition and thus underly important aspects of musical experience. How much and in what ways can musical materials be varied and still be considered as perceptually related or as belonging to the same category? The notions of musical material, musical variation, perceptual similarity and invariance, and form-bearing dimensions are considered in this light. Recent work on similarity perception has demonstrated that the transformation space for a given musical material is limited by several factors ranging from degree of match of the values of auditory attributes of the events composing the sequences to their relations of various levels of abstraction and to the degree that the transformation respects the grammar of the musical system within which the material was composed. These notions and results are considered in the light of future directions of research, particularly concerning the role of similarity and invariance in the understanding of musical form during listening. PMID:11458867
Study of hadron deformation in lattice QCD
Alexandrou, Constantia; Koutsou, Giannis
2008-11-01
We develop the formalism for the evaluation of density-density correlators in lattice QCD that includes techniques for the computation of the all-to-all propagators involved. A novel technique in this context is the implementation of the one-end trick in the meson sector. Density-density correlators provide a gauge invariant definition for the hadron wave function and yield information on hadron deformation. We evaluate density-density correlators using two degenerate flavors of dynamical Wilson fermions for the pion, the rho meson, the nucleon, and the {delta}. Using the one-end trick we obtain results that clearly show deformation of the rho meson.
Signature detection and matching for document image retrieval.
Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan
2009-11-01
As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches. PMID:19762928
Shape invariant potentials in higher dimensions
Sandhya, R.; Sree Ranjani, S.; Kapoor, A.K.
2015-08-15
In this paper we investigate the shape invariance property of a potential in one dimension. We show that a simple ansatz allows us to reconstruct all the known shape invariant potentials in one dimension. This ansatz can be easily extended to arrive at a large class of new shape invariant potentials in arbitrary dimensions. A reformulation of the shape invariance property and possible generalizations are proposed. These may lead to an important extension of the shape invariance property to Hamiltonians that are related to standard potential problems via space time transformations, which are found useful in path integral formulation of quantum mechanics.
On the question of adiabatic invariants
NASA Astrophysics Data System (ADS)
Mitropol'Skii, Iu. A.
Some aspects of the construction of adiabadic invariants for dynamic systems with a single degree of freedom are discussed. Adiabatic invariants are derived using classical principles and the method proposed by Djukic (1981). The discussion covers an adiabatic invariant for a dynamic system with slowly varying parameters; derivation of an expression for an adiabatic invariant by the Djukic method for a second-order equation with a variable mass; and derivation of an expression for the adiabatic invariant for a nearly integrable differential equation.
Cosmological Signatures of a UV-Conformal Standard Model
NASA Astrophysics Data System (ADS)
Dorsch, Glauber C.; Huber, Stephan J.; No, Jose Miguel
2014-09-01
Quantum scale invariance in the UV has been recently advocated as an attractive way of solving the gauge hierarchy problem arising in the standard model. We explore the cosmological signatures at the electroweak scale when the breaking of scale invariance originates from a hidden sector and is mediated to the standard model by gauge interactions (gauge mediation). These scenarios, while being hard to distinguish from the standard model at LHC, can give rise to a strong electroweak phase transition leading to the generation of a large stochastic gravitational wave signal in possible reach of future space-based detectors such as eLISA and BBO. This relic would be the cosmological imprint of the breaking of scale invariance in nature.
2014-01-01
Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245
NASA Technical Reports Server (NTRS)
Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.
2000-01-01
Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).
An archaeal genomic signature.
Graham, D E; Overbeek, R; Olsen, G J; Woese, C R
2000-03-28
Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
A coarse-grained spectral signature generator
NASA Astrophysics Data System (ADS)
Lam, K. P.; Austin, J. C.; Day, C. R.
2007-01-01
This paper investigates the method for object fingerprinting in the context of element specific x-ray imaging. In particular, the use of spectral descriptors that are illumination invariant and viewpoint independent for pattern identification was examined in some detail. To improve generating the relevant "signature", the spectral descriptor constructed is enhanced with a differentiator which has built-in noise filtration capability and good localisation properties, thus facilitating the extraction of element specific features at a coarse-grained level. In addition to the demonstrable efficacy in identifying significant image intensity transitions that are associated with the underlying physical process of interest, the method has the distinct advantage of being conceptually simple and computationally efficient. These latter properties allow the descriptor to be further utilised by an intelligent system capable of performing a fine-grained analysis of the extracted pattern signatures. The performance of the spectral descriptor has been studied in terms of the quality of the signature vectors that it generated, quantitatively based on the established framework of Spectral Information Measure (SIM). Early results suggested that such a multiscale approach of image sequence analysis offers a considerable potential for real-time applications.
Quantum Weyl invariance and cosmology
NASA Astrophysics Data System (ADS)
Dabholkar, Atish
2016-09-01
Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Relativistic chaos is coordinate invariant.
Motter, Adilson E
2003-12-01
The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents. PMID:14683170
Vector spaces, invariance, and camouflage
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Garcia-Martinez, Pascuala
2004-12-01
We present a method based on an orthonormal vector space basis representation to detect camouflaged targets in natural environments. Because the method is intensity invariant we detect camouflage targets independently of the illumination conditions. The detection technique does not require knowing the exact camouflage pattern, but only the class of patterns (foliage, netting, woods...). We used nonlinear filtering based on the calculation of several correlations. Moreover, the nonlinearity of the filtering process allows a high discrimination against false targets. Several experiments confirm the target detectability where strong camouflage might delude even human viewers.
Invariant metrics for Hamiltonian systems
Rangarajan, G. ); Dragt, A.J. ); Neri, F. )
1991-05-01
In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs.
Are there molecular signatures?
Bennett, W.P.
1995-10-01
This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.
Meteor signature interpretation
Canavan, G.H.
1997-01-01
Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.
Limit cycles and conformal invariance
NASA Astrophysics Data System (ADS)
Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas
2013-01-01
There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cyclic" CFTs, and point out that the a-theorem still governs the asymptotic behavior of renormalization-group flows.
Invariant imbedding in two dimensions
Faber, V.; Seth, D.L.; Wing, G.M.
1988-01-01
J. Corones has noted that the doubling and addition formulas of invariant imbedding can be extended conceptually to very general situations. All that is needed is a black box ''process'' with n ''ports.'' The /ital i/th port has vector input I/sub i/ and vector output J/sub i/. Addition formulas result when two or more of these processes are joined together to form a new process in some regular way. For example, four congruent squares can be juxtaposed to form a larger square. At each join, the output of one process becomes the input of the other and vice versa. (We always suppose the join to occur at one or more ports.) Addition formulas result from the combination of these shared quantities. Corones has thus pointed out that invariant imbedding is not, as is sometimes asserted, an inherently one-dimensional (1-D) method, but works conceptually in any number of dimensions; some previous work that is conceptually along these lines, with references to other such works, can be found in Refs. 2-4. The details can, of course, become very complicated. We shall show that the method is computationally feasible for certain two-dimensional (2-D) problems. To conform to the thrust of these proceedings, we shall usually phrase our discussions in terms of transport theory rather than speaking of more abstract processes. 7 refs., 13 figs.
A Local Galilean Invariant Thermostat.
Groot, Robert D
2006-05-01
The thermostat introduced recently by Stoyanov and Groot (J. Chem. Phys. 2005, 122, 114112) is analyzed for inhomogeneous systems. This thermostat has one global feature, because the mean temperature used to drive the system toward equilibrium is a global average. The consequence is that the thermostat locally conserves energy rather than temperature. Thus, local temperature variations can be long-lived, although they do average out by thermal diffusion. To obtain a faster local temperature equilibration, a truly local thermostat must be introduced. To conserve momentum and, hence, to simulate hydrodynamic interactions, the thermostat must be Galilean invariant. Such a local Galilean invariant thermostat is studied here. It is shown that, by defining a local temperature on each particle, the ensemble is locally isothermal. The local temperature is obtained from a local square velocity average around each particle. Simulations on the ideal gas show that this local Nosé-Hoover algorithm has a similar artifact as dissipative particle dynamics: the ideal gas pair correlation function is slightly distorted. This is attributed to the fact that the thermostat compensates fluctuations that are natural within a small cluster of particles. When the cutoff range rc for the square velocity average is increased, systematic errors decrease proportionally to rc(-)(3/2); hence, the systematic error can be made arbitrary small.
U(N) invariant dynamics for a simplified loop quantum gravity model
NASA Astrophysics Data System (ADS)
Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.
2011-09-01
The implementation of the dynamics in Loop Quantum Gravity (LQG) is still an open problem. Here, we discuss a tentative dynamics for the simplest class of graphs in LQG: Two vertices linked with an arbitrary number of edges. We use the recently introduced U(N) framework in order to construct SU(2) invariant operators and define a global U(N) symmetry that will select the homogeneous/isotropic states. Finally, we propose a Hamiltonian operator invariant under area-preserving deformations of the boundary surface and we identify possible connections of this model with Loop Quantum Cosmology.
NASA Astrophysics Data System (ADS)
Lahamy, H.; Lichti, D.
2012-07-01
The automatic interpretation of human gestures can be used for a natural interaction with computers without the use of mechanical devices such as keyboards and mice. The recognition of hand postures have been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem even with the use of 2D images. The objective of the current study is to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. An heuristic and voxelbased signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process and the tracking procedure have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 98.24% recognition rate after testing 12723 samples of 12 gestures taken from the alphabet of the American Sign Language.
Multiple-invariance esprit for DOA estimation
NASA Astrophysics Data System (ADS)
Linczuk, Maciej
2004-07-01
We consider the problem of estimating the direction of arrival (DOA) of multiple sources in the presence of noise. First, we introduce a narrowband signal model disturbed by white, Gaussian noise. This signal is detected by Uniform Linear Antenna Array -- ULA. Next, we discuss some properties of this signal model and its cross correlation matrix. Using this properties we introduce SINGLE SHIFT INVARIANCE algorithm for DOA estimation: ESPRIT. Next, we describe an idea of MULTIPLE INVARIANCE algorithm based on MULTIPLE INVARIANCE ESPRIT. In the last section we examine some statistical properties of both algorithms: ESPRIT and MULTIPLE INVARIANCE ESPRIT.
Reappraisal of a model for deformed special relativity
NASA Astrophysics Data System (ADS)
Gubitosi, Giulia; Magueijo, João
2016-06-01
We revisit one of the earliest proposals for deformed dispersion relations in the light of recent results on dynamical dimensional reduction and production of cosmological fluctuations. Depending on the specification of the measure of integration and the addition rule in momentum space the model may be completed so as to merely deform Lorentz invariance, or so as to introduce a preferred frame. Models which violate Lorentz invariance have a negative UV asymptotic dimension and a very red spectrum of quantum vacuum fluctuations. Instead, models which preserve frame independence can exhibit running to a UV dimension of two, and a scale-invariant spectrum of fluctuations. The bispectrum of the fluctuations is another point of divergence between the two casings proposed here for the original model.
Asymptotic invariants of homotopy groups
NASA Astrophysics Data System (ADS)
Manin, Fedor
We study the homotopy groups of a finite CW complex X via constraints on the geometry of representatives of their elements. For example, one can measure the "size" of alpha ∈ pi n (X) by the optimal Lipschitz constant or volume of a representative. By comparing the geometrical structure thus obtained with the algebraic structure of the group, one can define functions such as growth and distortion in pin(X), analogously to the way that such functions are studied in asymptotic geometric group theory. We provide a number of examples and techniques for studying these invariants, with a special focus on spaces with few rational homotopy groups. Our main theorem characterizes those X in which all non-torsion homotopy classes are undistorted, that is, their volume distortion functions, and hence also their Lipschitz distortion functions, are linear.
Uncertainty in hydrological signatures
NASA Astrophysics Data System (ADS)
McMillan, Hilary; Westerberg, Ida
2015-04-01
Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty
Practical quantum digital signature
NASA Astrophysics Data System (ADS)
Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing
2016-03-01
Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)
2005-01-01
A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.
Factor models for cancer signatures
NASA Astrophysics Data System (ADS)
Kakushadze, Zura; Yu, Willie
2016-11-01
We present a novel method for extracting cancer signatures by applying statistical risk models (http://ssrn.com/abstract=2732453) from quantitative finance to cancer genome data. Using 1389 whole genome sequenced samples from 14 cancers, we identify an "overall" mode of somatic mutational noise. We give a prescription for factoring out this noise and source code for fixing the number of signatures. We apply nonnegative matrix factorization (NMF) to genome data aggregated by cancer subtype and filtered using our method. The resultant signatures have substantially lower variability than those from unfiltered data. Also, the computational cost of signature extraction is cut by about a factor of 10. We find 3 novel cancer signatures, including a liver cancer dominant signature (96% contribution) and a renal cell carcinoma signature (70% contribution). Our method accelerates finding new cancer signatures and improves their overall stability. Reciprocally, the methods for extracting cancer signatures could have interesting applications in quantitative finance.
Majorana dark matter in a classically scale invariant model
NASA Astrophysics Data System (ADS)
Benić, Sanjin; Radovčić, Branimir
2015-01-01
We analyze a classically scale invariant extension of the Standard Model with a dark gauge U(1) X broken by a doubly charge scalar Φ leaving a remnant Z 2 symmetry. Dark fermions are introduced as dark matter candidates and for anomaly reasons we introduce two chiral fermions. Due to classical scale invariance, bare mass term that would mix these two states is absent and they end up as stable Majorana fermions N 1 and N 2. We calculate cross sections for N a N a → ϕϕ, N a N a → X μ ϕ and N 2 N 2 → N 1 N 1 annihilation channels. We put constraints to the model from the Higgs searches at the LHC, dark matter relic abundance and dark matter direct detection limits by LUX. The dark gauge boson plays a crucial role in the Coleman-Weinberg mechanism and has to be heavier than 680 GeV. The viable mass region for dark matter is from 470 GeV up to a few TeV. In the case when the two Majorana fermions have different masses, two dark matter signals at direct detection experiments could provide a distinctive signature of this model.
Real-time pose invariant logo and pattern detection
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Kottmann, Michal; Benesova, Wanda
2011-01-01
The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.
Cross-National Invariance of Children's Temperament
ERIC Educational Resources Information Center
Benson, Nicholas; Oakland, Thomas; Shermis, Mark
2009-01-01
Measurement of temperament is an important endeavor with international appeal; however, cross-national invariance (i.e., equivalence of test scores across countries as established by empirical comparisons) of temperament tests has not been established in published research. This study examines the cross-national invariance of school-aged…
Invariance or Noninvariance, that Is the Question
ERIC Educational Resources Information Center
Widaman, Keith F.; Grimm, Kevin J.
2009-01-01
Nesselroade, Gerstorf, Hardy, and Ram developed a new and interesting way to enforce invariance at the second-order level in P-technique models, while allowing first-order structure to stray from invariance. We discuss our concerns with this approach under the headings of falsifiability, the nature of manifest variables included in models, and…
Multipartite invariant states. I. Unitary symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2006-06-15
We propose a natural generalization of bipartite Werner and isotropic states to multipartite systems consisting of an arbitrary even number of d-dimensional subsystems (qudits). These generalized states are invariant under the action of local unitary operations. We study basic properties of multipartite invariant states and present necessary and sufficient separability criteria.
Intrinsic geometry of a tidally deformed Kerr horizon
NASA Astrophysics Data System (ADS)
Poisson, Eric
2013-04-01
The intrinsic metric of a tidally deformed black-hole horizon can be presented in a coordinate system adapted to the horizon's null generators, with one coordinate acting as a running parameter along each generator, and two coordinates acting as constant generator labels. The metric is invariant under reparametrizations of the generators, and as such the horizon's intrinsic geometry is known to be gauge invariant. We consider a Kerr black hole deformed by a slowly-evolving external tidal field, and describe the intrinsic geometry of its event horizon in terms of the electric and magnetic tidal moments that characterize the tidal environment. When the black hole is slowly rotating, the horizon's geometry can be described in terms of a deviation from an otherwise spherical surface, and the deformation can be characterized by gauge invariant Love numbers. Some aspects of this tidal deformation have direct analogues in Newtonian physics. Some do not, and I will describe the similarities and differences between the tidal deformation of rotating black holes in general relativity and rotating fluid bodies in Newtonian physics.
Factorial invariance in multilevel confirmatory factor analysis.
Ryu, Ehri
2014-02-01
This paper presents a procedure to test factorial invariance in multilevel confirmatory factor analysis. When the group membership is at level 2, multilevel factorial invariance can be tested by a simple extension of the standard procedure. However level-1 group membership raises problems which cannot be appropriately handled by the standard procedure, because the dependency between members of different level-1 groups is not appropriately taken into account. The procedure presented in this article provides a solution to this problem. This paper also shows Muthén's maximum likelihood (MUML) estimation for testing multilevel factorial invariance across level-1 groups as a viable alternative to maximum likelihood estimation. Testing multilevel factorial invariance across level-2 groups and testing multilevel factorial invariance across level-1 groups are illustrated using empirical examples. SAS macro and Mplus syntax are provided.
Geometric invariance of compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Emergence of Lorentzian signature and scalar gravity
Girelli, F.; Liberati, S.; Sindoni, L.
2009-02-15
In recent years, a growing momentum has been gained by the emergent gravity framework. Within the latter, the very concepts of geometry and gravitational interaction are not seen as elementary aspects of nature but rather as collective phenomena associated to the dynamics of more fundamental objects. In this paper we want to further explore this possibility by proposing a model of emergent Lorentzian signature and scalar gravity. Assuming that the dynamics of the fundamental objects can give rise in first place to a Riemannian manifold and a set of scalar fields we show how time (in the sense of hyperbolic equations) can emerge as a property of perturbations dynamics around some specific class of solutions of the field equations. Moreover, we show that these perturbations can give rise to a spin-0 gravity via a suitable redefinition of the fields that identifies the relevant degrees of freedom. In particular, we find that our model gives rise to Nordstroem gravity. Since this theory is invariant under general coordinate transformations, this also shows how diffeomorphism invariance (albeit of a weaker form than the one of general relativity) can emerge from much simpler systems.
ERIC Educational Resources Information Center
Smiles, Robin V.
2005-01-01
This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…
Two-Stage Deformation of Olivine Aggregates with Changing Deformation Kinematics
NASA Astrophysics Data System (ADS)
Mahan, B. M.; Skemer, P. A.; Griera, A.
2011-12-01
Two-stage deformation experiments have been conducted on synthetic olivine aggregates to investigate the influence of pre-existing fabric on the evolution of lattice-preferred orientation (LPO), seismic anisotropy, and grain morphology. This study is motivated by recent work on naturally and experimentally deformed peridotites, which suggest that the alignment of olivine axes with the shear plane requires more strain in samples with a strong pre-existing LPO than in samples with weak or random LPO. In the first stage of deformation, aggregates synthesized from San Carlos olivine are deformed at P = 1 GPa and T = 1500 K in a triaxial geometry to produce axi-symmetric LPOs of varying strength. In a second stage of deformation, the aggregates are re-deformed in simple shear to varying shear strains. Microstructural analyses are performed after each step (synthesis, triaxial deformation, simple shear deformation) using optical microscopy and electron backscatter diffraction (EBSD). These results are compared to numerical models of microstructural evolution. Our results provide constraints on the evolution of LPO and consequent seismic signature as a function of preexisting rock fabric. These data are necessary to interpret seismic anisotropy in settings where kinematics are complex, such as mid-ocean ridges and subduction zones.
Stereo Correspondence Using Moment Invariants
NASA Astrophysics Data System (ADS)
Premaratne, Prashan; Safaei, Farzad
Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.
Pose-Invariant Face Recognition via RGB-D Images.
Sang, Gaoli; Li, Jing; Zhao, Qijun
2016-01-01
Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions. PMID:26819581
Pose-Invariant Face Recognition via RGB-D Images
Sang, Gaoli; Li, Jing; Zhao, Qijun
2016-01-01
Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions. PMID:26819581
Feedback-Driven Dynamic Invariant Discovery
NASA Technical Reports Server (NTRS)
Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz
2014-01-01
Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.
Holography beyond conformal invariance and AdS isometry?
Barvinsky, A. O.
2015-03-15
We suggest that the principle of holographic duality be extended beyond conformal invariance and AdS isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on its boundary, provided that the boundary operator represents the inverse propagators of the theory induced on the boundary by the Dirichlet boundary value problem in the bulk spacetime. This relation holds for operators of a general spin-tensor structure on generic manifolds with boundaries irrespective of their background geometry and conformal invariance, and it apparently underlies numerous O(N{sup 0}) tests of the AdS/CFT correspondence, based on direct calculation of the bulk and boundary partition functions, Casimir energies, and conformal anomalies. The generalized holographic duality is discussed within the concept of the “double-trace” deformation of the boundary theory, which is responsible in the case of large-N CFT coupled to the tower of higher-spin gauge fields for the renormalization group flow between infrared and ultraviolet fixed points. Potential extension of this method beyond the one-loop order is also briefly discussed.
Multiperiod Maximum Loss is time unit invariant.
Kovacevic, Raimund M; Breuer, Thomas
2016-01-01
Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant. PMID:27563531
Comment on ``Pairing interaction and Galilei invariance''
NASA Astrophysics Data System (ADS)
Arias, J. M.; Gallardo, M.; Gómez-Camacho, J.
1999-05-01
A recent article by Dussel, Sofia, and Tonina studies the relation between Galilei invariance and dipole energy weighted sum rule (EWSR). The authors find that the pairing interaction, which is neither Galilei nor Lorentz invariant, produces big changes in the EWSR and in effective masses of the nucleons. They argue that these effects of the pairing force could be realistic. In this Comment we stress the validity of Galilei invariance to a very good approximation in this context of low-energy nuclear physics and show that the effective masses and the observed change in the EWSR for the electric dipole operator relative to its classical value are compatible with this symmetry.
Moment Invariants for 2D Flow Fields via Normalization in Detail.
Bujack, Roxana; Hotz, Ingrid; Scheuermann, Gerik; Hitzer, Eckhard
2015-08-01
The analysis of 2D flow data is often guided by the search for characteristic structures with semantic meaning. One way to approach this question is to identify structures of interest by a human observer, with the goal of finding similar structures in the same or other datasets. The major challenges related to this task are to specify the notion of similarity and define respective pattern descriptors. While the descriptors should be invariant to certain transformations, such as rotation and scaling, they should provide a similarity measure with respect to other transformations, such as deformations. In this paper, we propose to use moment invariants as pattern descriptors for flow fields. Moment invariants are one of the most popular techniques for the description of objects in the field of image recognition. They have recently also been applied to identify 2D vector patterns limited to the directional properties of flow fields. Moreover, we discuss which transformations should be considered for the application to flow analysis. In contrast to previous work, we follow the intuitive approach of moment normalization, which results in a complete and independent set of translation, rotation, and scaling invariant flow field descriptors. They also allow to distinguish flow features with different velocity profiles. We apply the moment invariants in a pattern recognition algorithm to a real world dataset and show that the theoretical results can be extended to discrete functions in a robust way. PMID:26357255
Invarient patterns in articulatory movements
NASA Astrophysics Data System (ADS)
Bonaventura, Patrizia
2004-04-01
The purpose of the reported study is to discover an effective method of characterizing movement patterns of the crucial articulator as the function of an abstract syllable magnitude and the adjacent boundary, and at the same time to investigate effects of prosodic control on utterance organization. In particular, the speed of movement when a flesh point on the tongue blade or the lower lip crosses a selected position relative to the occlusion plane is examined. The time of such crossing provides an effective measure of syllable timing and syllable duration according to previous work. In the present work, using a very limited vocabulary with only a few consonants and one vowel as the key speech materials, effects of contrastive emphasis on demisyllabic movement patterns were studied. The theoretical framework for this analysis is the C/D model of speech production in relation to the concept of an invariant part of selected articulatory movements. The results show evidence in favor of the existence of ``iceberg'' patterns, but a linear dependence of slope on the total excursion of the demisyllabic movement, instead of the approximate constancy of the threshold crossing speed as suggested in the original proposal of the iceberg, has been found. Accordingly, a revision of the original concept of iceberg, seems necessary. This refinement is consistent with the C/D model assumption on ``prominence control'' that the syllable magnitude determines the movement amplitude, accompanying directly related syllable duration change. In this assumption, the movement of a consonantal component should also be proportional to syllable magnitude. The results suggests, however, systematic outliers deviating from the linear dependence of movement speed on excursion. This deviation may be caused by the effect of the immediately following boundary, often referred to as phrase-final elongation. Thesis advisor: Osamu Fujimura Copies of this thesis written in English can be obtained from
NASA Astrophysics Data System (ADS)
Spedding, Geoffrey R.
2014-01-01
An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.
Global point signature for shape analysis of carpal bones
Chaudhari, Abhijit J; Leahy, Richard M; Wise, Barton L; Lane, Nancy E; Badawi, Ramsey D; Joshi, Anand A
2014-01-01
We present a method based on spectral theory for the shape analysis of carpal bones of the human wrist. We represent the cortical surface of the carpal bone in a coordinate system based on the eigensystem of the two-dimensional Helmholtz equation. We employ a metric—global point signature (GPS)—that exploits the scale and isometric invariance of eigenfunctions to quantify overall bone shape. We use a fast finite-element-method to compute the GPS metric. We capitalize upon the properties of GPS representation—such as stability, a standard Euclidean (ℓ2) metric definition, and invariance to scaling, translation and rotation—to perform shape analysis of the carpal bones of ten women and ten men from a publicly-available database. We demonstrate the utility of the proposed GPS representation to provide a means for comparing shapes of the carpal bones across populations. PMID:24503490
Global point signature for shape analysis of carpal bones.
Chaudhari, Abhijit J; Leahy, Richard M; Wise, Barton L; Lane, Nancy E; Badawi, Ramsey D; Joshi, Anand A
2014-02-21
We present a method based on spectral theory for the shape analysis of carpal bones of the human wrist. We represent the cortical surface of the carpal bone in a coordinate system based on the eigensystem of the two-dimensional Helmholtz equation. We employ a metric--global point signature (GPS)--that exploits the scale and isometric invariance of eigenfunctions to quantify overall bone shape. We use a fast finite-element-method to compute the GPS metric. We capitalize upon the properties of GPS representation--such as stability, a standard Euclidean (ℓ(2)) metric definition, and invariance to scaling, translation and rotation--to perform shape analysis of the carpal bones of ten women and ten men from a publicly-available database. We demonstrate the utility of the proposed GPS representation to provide a means for comparing shapes of the carpal bones across populations.
Global point signature for shape analysis of carpal bones
NASA Astrophysics Data System (ADS)
Chaudhari, Abhijit J.; Leahy, Richard M.; Wise, Barton L.; Lane, Nancy E.; Badawi, Ramsey D.; Joshi, Anand A.
2014-02-01
We present a method based on spectral theory for the shape analysis of carpal bones of the human wrist. We represent the cortical surface of the carpal bone in a coordinate system based on the eigensystem of the two-dimensional Helmholtz equation. We employ a metric—global point signature (GPS)—that exploits the scale and isometric invariance of eigenfunctions to quantify overall bone shape. We use a fast finite-element-method to compute the GPS metric. We capitalize upon the properties of GPS representation—such as stability, a standard Euclidean (ℓ2) metric definition, and invariance to scaling, translation and rotation—to perform shape analysis of the carpal bones of ten women and ten men from a publicly-available database. We demonstrate the utility of the proposed GPS representation to provide a means for comparing shapes of the carpal bones across populations.
Reversing the critical Casimir force by shape deformation
NASA Astrophysics Data System (ADS)
Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran
2015-04-01
The exact critical Casimir force between periodically deformed boundaries of a 2D semi-infinite strip is obtained for conformally invariant classical systems. Only two parameters (conformal charge, dimension of a boundary changing operator), along with the solution of an electrostatic problem, determine the Casimir force, rendering the theory practically applicable to any shape. The attraction between any two mirror symmetric objects follows directly from our general result. The possibility of purely shape induced reversal of the force, as well as occurrence of stable equilibrium is demonstrated for certain conformally invariant models, including the tricritical Ising model.
Topological invariants and renormalization of Lorenz maps
NASA Astrophysics Data System (ADS)
Silva, Luis; Sousa Ramos, J.
2002-02-01
We prove that the invariants of the topological semiconjugation of Lorenz maps with β-transformations remains constant on the renormalization archipelagoes and analyze how the dynamics on the archipelagoes depends on its structure.
Position, rotation, and intensity invariant recognizing method
Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.
1989-01-01
A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.
Invariance in the isoheptanes of petroleum
Mango, F.D.
1987-07-31
Four isoheptanes in petroleum display a remarkable invariance in a ratio of sums of concentrations. The isoheptanes are not at thermodynamic equilibrium, nor are they fixed to some constant composition. The four isomers display coherent change in relative amounts but maintain invariance in the ratio of sums. Within sets of genetically related petroleum samples, invariance reaches levels that approach the limits of their analytical precision. The invariance is inconsistent with a chemical origin that involves the thermal fragmentation of natural products or their derivatives. It suggests a reaction process at steady state, in which relative rates of product formation are constant. A mechanism is proposed in which the four isoheptanes are formed pairwise and sequentially through two intermediates in a catalytic process that operates at steady state. 13 references, 3 figures, 1 table.
Scattering matrix invariants of Floquet topological insulators
NASA Astrophysics Data System (ADS)
Fulga, I. C.; Maksymenko, M.
2016-02-01
Similar to static systems, periodically driven systems can host a variety of topologically nontrivial phases. Unlike the case of static Hamiltonians, the topological indices of bulk Floquet bands may fail to describe the presence and robustness of edge states, prompting the search for new invariants. We develop a unified description of topological phases and their invariants in driven systems by using scattering theory. We show that scattering matrix invariants correctly describe the topological phase, even when all bulk Floquet bands are trivial. Additionally, we use scattering theory to introduce and analyze new periodically driven phases, such as weak topological Floquet insulators, for which invariants were previously unknown. We highlight some of their similarities with static systems, including robustness to disorder, as well as some of the features unique to driven systems, showing that the weak phase may be destroyed by breaking translational symmetry not in space, but in time.
On Lorentz invariants in relativistic magnetic reconnection
NASA Astrophysics Data System (ADS)
Yang, Shu-Di; Wang, Xiao-Gang
2016-08-01
Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.
Galilean invariance at quantum Hall edge
NASA Astrophysics Data System (ADS)
Moroz, Sergej; Hoyos, Carlos; Radzihovsky, Leo
2015-05-01
We construct the theory of a chiral Luttinger liquid that lives on the boundary of a Galilean invariant quantum Hall fluid. In contrast to previous studies, Galilean invariance of the total (bulk plus edge) theory is guaranteed. We consider electromagnetic response at the edge and calculate momentum- and frequency-dependent electric conductivity and argue that its experimental measurement can provide a new means to determine the "shift" and bulk Hall viscosity.
Computer calculation of Witten's 3-manifold invariant
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Gompf, Robert E.
1991-10-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.
Invariant distributions on compact homogeneous spaces
Gorbatsevich, V V
2013-12-31
In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.
Four motional invariants in axisymmetric tori equilibria
A ring gren, O.; Moiseenko, V.E.
2006-05-15
In addition to the standard set ({epsilon},{mu},p{sub {phi}}) of three invariants in axisymmetric tori, there exists a fourth independent radial drift invariant I{sub r}. For confined particles, the net radial drift has to be zero, whereby the drift orbit average I{sub r}=
Shift-invariant target in allocation problems.
Mandal, Saumen; Biswas, Atanu
2014-07-10
We provide a template for finding target allocation proportions in optimal allocation designs where the target will be invariant for both shifts in location and scale of the response distributions. One possible application of such target allocation proportions is to carry out a response-adaptive allocation. While most of the existing designs are invariant for any change in scale of the underlying distributions, they are not location invariant in most of the cases. First, we indicate this serious flaw in the existing literature and illustrate how this lack of location invariance makes the performance of the designs very poor in terms of allocation for any drastic change in location, such as the changes from degrees centigrade to degrees Fahrenheit. We illustrate that unless a target allocation is location invariant, it might lead to a completely irrelevant and useless target for allocation. Then we discuss how such location invariance can be achieved for general continuous responses. We illustrate the proposed method using some real clinical trial data. We also indicate the possible extension of the procedure for more than two treatments at hand and in the presence of covariates.
On gauge-invariant and phase-invariant spinor analysis. II
NASA Astrophysics Data System (ADS)
Buchdahl, H. A.
1992-01-01
Granted customary definitions, the operations of juggling indices and covariant differentiation do not commute with one another in a Weyl space. The same noncommutativity obtains in the spinor calculus of Infeld and van der Waerden. Gauge-invariant and phase-invariant calculations therefore tend to be rather cumbersome. Here, a modification of the definition of covariant derivative leads immediately to a manifestly gauge-invariant and phase-invariant version of Weyl-Cartan space and of the two-spinor calculus associated with it in which the metric tensor and the metric spinor are both covariant constant.
Injuries to law enforcement officers: the backface signature injury.
Wilhelm, Marianne; Bir, Cynthia
2008-01-15
In today's law enforcement community, one of the most vital tools an officer can possess is personal body armor. However, a recent Department of Justice investigation has raised important questions regarding the protection actually afforded officers through the use of personal body armor, and the current test methods used to assess the armor. Test results show that most Zylon-containing vests showed deformations in excess of the 0101.04 Standard's 44 mm backface signature limit. Such increased deformation can lead to serious injuries, including backface signature injuries, which have occurred in the field. Although the vest is successful in containing the round, it is not effectively dissipating the energy enough to prevent large amounts of vest deformation at the area of impact. Therefore, open, penetrating wounds occur even though the bullet did not penetrate the vest. The objective of the current study was to further define the backface signature injury through the use of case studies and laboratory experiments. Following the case study investigation, backface signature testing was conducted using a clay medium based on the NIJ 0101.04 Standard. The final component of this research involved the use of post-mortem human specimens (PMHS) for further investigation of the backface signature injury. Although the underlying cause of backface signature injuries is unknown, energy density is likely to play a role in the mechanism. Energy density (E/a) is defined as the energy per unit area and has been previously used in less lethal skin penetration research. Further research into the underlying causes of backface signature injuries is necessary. In addition to armor testing, the study of law enforcement personnel who have been shot while wearing soft body armor is also a valuable tool for determining the effectiveness of certification standards. Finally, it is important for medical personnel to recognize the backface signature injury and document this as a type of
Injuries to law enforcement officers: the backface signature injury.
Wilhelm, Marianne; Bir, Cynthia
2008-01-15
In today's law enforcement community, one of the most vital tools an officer can possess is personal body armor. However, a recent Department of Justice investigation has raised important questions regarding the protection actually afforded officers through the use of personal body armor, and the current test methods used to assess the armor. Test results show that most Zylon-containing vests showed deformations in excess of the 0101.04 Standard's 44 mm backface signature limit. Such increased deformation can lead to serious injuries, including backface signature injuries, which have occurred in the field. Although the vest is successful in containing the round, it is not effectively dissipating the energy enough to prevent large amounts of vest deformation at the area of impact. Therefore, open, penetrating wounds occur even though the bullet did not penetrate the vest. The objective of the current study was to further define the backface signature injury through the use of case studies and laboratory experiments. Following the case study investigation, backface signature testing was conducted using a clay medium based on the NIJ 0101.04 Standard. The final component of this research involved the use of post-mortem human specimens (PMHS) for further investigation of the backface signature injury. Although the underlying cause of backface signature injuries is unknown, energy density is likely to play a role in the mechanism. Energy density (E/a) is defined as the energy per unit area and has been previously used in less lethal skin penetration research. Further research into the underlying causes of backface signature injuries is necessary. In addition to armor testing, the study of law enforcement personnel who have been shot while wearing soft body armor is also a valuable tool for determining the effectiveness of certification standards. Finally, it is important for medical personnel to recognize the backface signature injury and document this as a type of
Signatures of nonthermal melting.
Zier, Tobias; Zijlstra, Eeuwe S; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E
2015-09-01
Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822
Signatures of nonthermal melting
Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.
2015-01-01
Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822
Position and rotation-invariant pattern recognition system by binary rings masks
NASA Astrophysics Data System (ADS)
Solorza, S.; Álvarez-Borrego, J.
2015-06-01
In this paper, algorithms invariant to position, rotation, noise and non-homogeneous illumination are presented. Here, several manners are studied to generate binary rings mask filters and the corresponding signatures associated to each image. Also, in this work it is shown that digital systems, which are based on the ?-law non-linear correlation, are ?-invariant for ?. The methodologies are tested using greyscale fossil diatoms digital images (real images), and considering the great similarity between those images the results obtained are excellent. The box plot statistical analysis and the computational cost times yield that the Bessel rings masks are the best option when the images contain a homogeneous illumination and the Fourier masks digital system is the right selection when the non-homogeneous illumination and noise is presented in the images.
NASA Astrophysics Data System (ADS)
Nag, Amit; Sau, Jay
The observed zero bias peak in tunneling conductance experiments on semiconductor Rashba nanowire is a signature of presence of Majorana zero modes. Characteristics of zero bias conductance peak (ZBCP) namely, height, width and peak splitting, are a function of microscopic parameters. Zero modes have finite splitting as a result of finiteness of the nanowire rendering the ground state only approximately topological i.e. zero modes are only approximately Majoranas. We calculate the scattering matrix topological invariant to quantify the quality of approximate Majorana modes and study its relation to observed characteristics of ZBCP. Furthermore we study the effect of dephasing on the topological invariant. Finally, we draw connection between the characteristics of the ZBCP and probability of observing non-Abelian statistics in proposed future experiments involving braiding of Majorana modes. Work is done in collaboration with Sankar Das Sarma and supported by LPS-MPO-CMTC, Microsoft Q, Univ. of Maryland startup grants and JQI-NSF-PFC.
Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Spatial Signature Estimation with an Uncalibrated Uniform Linear Array.
Cao, Xiang; Xin, Jingmin; Nishio, Yoshifumi; Zheng, Nanning
2015-01-01
In this paper, the problem of spatial signature estimation using a uniform linear array (ULA) with unknown sensor gain and phase errors is considered. As is well known, the directions-of-arrival (DOAs) can only be determined within an unknown rotational angle in this array model. However, the phase ambiguity has no impact on the identification of the spatial signature. Two auto-calibration methods are presented for spatial signature estimation. In our methods, the rotational DOAs and model error parameters are firstly obtained, and the spatial signature is subsequently calculated. The first method extracts two subarrays from the ULA to construct an estimator, and the elements of the array can be used several times in one subarray. The other fully exploits multiple invariances in the interior of the sensor array, and a multidimensional nonlinear problem is formulated. A Gauss-Newton iterative algorithm is applied for solving it. The first method can provide excellent initial inputs for the second one. The effectiveness of the proposed algorithms is demonstrated by several simulation results. PMID:26076405
Spatial Signature Estimation with an Uncalibrated Uniform Linear Array †
Cao, Xiang; Xin, Jingmin; Nishio, Yoshifumi; Zheng, Nanning
2015-01-01
In this paper, the problem of spatial signature estimation using a uniform linear array (ULA) with unknown sensor gain and phase errors is considered. As is well known, the directions-of-arrival (DOAs) can only be determined within an unknown rotational angle in this array model. However, the phase ambiguity has no impact on the identification of the spatial signature. Two auto-calibration methods are presented for spatial signature estimation. In our methods, the rotational DOAs and model error parameters are firstly obtained, and the spatial signature is subsequently calculated. The first method extracts two subarrays from the ULA to construct an estimator, and the elements of the array can be used several times in one subarray. The other fully exploits multiple invariances in the interior of the sensor array, and a multidimensional nonlinear problem is formulated. A Gauss–Newton iterative algorithm is applied for solving it. The first method can provide excellent initial inputs for the second one. The effectiveness of the proposed algorithms is demonstrated by several simulation results. PMID:26076405
Model of the Newtonian cosmology: Symmetries, invariant and partially invariant solutions
NASA Astrophysics Data System (ADS)
Klebanov, I.; Startsun, O.; Ivanov, S.
2016-10-01
Symmetry group of the equation system of ideal nonrelativistic self-gravitating fluid with zero pressure is calculated. Submodel invariant under the subgroup of rotations SO(3) is built and symmetry group of the factorsystem is calculated. A particular analytical invariant solution of the factorsystem is obtained.
Local and gauge invariant observables in gravity
NASA Astrophysics Data System (ADS)
Khavkine, Igor
2015-09-01
It is well known that general relativity (GR) does not possess any non-trivial local (in a precise standard sense) and diffeomorphism invariant observable. We propose a generalized notion of local observables, which retain the most important properties that follow from the standard definition of locality, yet is flexible enough to admit a large class of diffeomorphism invariant observables in GR. The generalization comes at a small price—that the domain of definition of a generalized local observable may not cover the entire phase space of GR and two such observables may have distinct domains. However, the subset of metrics on which generalized local observables can be defined is in a sense generic (its open interior is non-empty in the Whitney strong topology). Moreover, generalized local gauge invariant observables are sufficient to separate diffeomorphism orbits on this admissible subset of the phase space. Connecting the construction with the notion of differential invariants gives a general scheme for defining generalized local gauge invariant observables in arbitrary gauge theories, which happens to agree with well-known results for Maxwell and Yang-Mills theories.
Defending the beauty of the Invariance Principle
NASA Astrophysics Data System (ADS)
Barkana, Itzhak
2014-01-01
Customary stability analysis methods for nonlinear nonautonomous systems seem to require a strict condition of uniform continuity. Although extensions of LaSalle's Invariance Principle to nonautonomous systems that mitigate this condition have been available for a long time, they have remained surprisingly unknown or open to misinterpretations. The large scope of the Principle might have misled the prospective users and its application to Control problems has been received with amazing yet clear uneasiness. Counterexamples have been used in order to claim that the Invariance Principle cannot be applied to nonlinear nonautonomous systems. Because the original formulation of the Invariance Principle still imposes conditions that are not necessarily needed, this paper presents a new Invariance Principle that further mitigates previous conditions and thus further expands the scope of stability analysis. A brief comparative review of various alternatives to stability analysis of nonautonomous nonlinear systems and their implications is also presented in order to illustrate that thorough analysis of same examples may actually confirm the efficiency of the Invariance Principle approach when dealing with stability of nonautonomous nonlinear systems problems that may look difficult or even unsolvable otherwise.
Dimensional Analysis Using Toric Ideals: Primitive Invariants
Atherton, Mark A.; Bates, Ronald A.; Wynn, Henry P.
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer matrix from the initial integer matrix holding the exponents for the derived quantities. The matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by . One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of , is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774
Forgoston, Eric; Billings, Lora; Yecko, Philip; Schwartz, Ira B.
2011-01-01
We consider the problem of stochastic prediction and control in a time-dependent stochastic environment, such as the ocean, where escape from an almost invariant region occurs due to random fluctuations. We determine high-probability control-actuation sets by computing regions of uncertainty, almost invariant sets, and Lagrangian coherent structures. The combination of geometric and probabilistic methods allows us to design regions of control, which provide an increase in loitering time while minimizing the amount of control actuation. We show how the loitering time in almost invariant sets scales exponentially with respect to the control actuation, causing an exponential increase in loitering times with only small changes in actuation force. The result is that the control actuation makes almost invariant sets more invariant. PMID:21456830
Multimodal signature modeling of humans
NASA Astrophysics Data System (ADS)
Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan
2010-04-01
Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.
Lahamy, Hervé; Lichti, Derek D
2012-01-01
The automatic interpretation of human gestures can be used for a natural interaction with computers while getting rid of mechanical devices such as keyboards and mice. In order to achieve this objective, the recognition of hand postures has been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem, even with the use of 2D images. The objective of the current study was to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. A heuristic and voxel-based signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process, the tracking procedure and the segmentation algorithm have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 93.88% recognition rate after testing 14,732 samples of 12 postures taken from the alphabet of the American Sign Language. PMID:23202168
Lahamy, Hervé; Lichti, Derek D.
2012-01-01
The automatic interpretation of human gestures can be used for a natural interaction with computers while getting rid of mechanical devices such as keyboards and mice. In order to achieve this objective, the recognition of hand postures has been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem, even with the use of 2D images. The objective of the current study was to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. A heuristic and voxel-based signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process, the tracking procedure and the segmentation algorithm have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 93.88% recognition rate after testing 14,732 samples of 12 postures taken from the alphabet of the American Sign Language. PMID:23202168
Lahamy, Hervé; Lichti, Derek D
2012-10-29
The automatic interpretation of human gestures can be used for a natural interaction with computers while getting rid of mechanical devices such as keyboards and mice. In order to achieve this objective, the recognition of hand postures has been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem, even with the use of 2D images. The objective of the current study was to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. A heuristic and voxel-based signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process, the tracking procedure and the segmentation algorithm have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 93.88% recognition rate after testing 14,732 samples of 12 postures taken from the alphabet of the American Sign Language.
Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential
Bonatsos, Dennis; Georgoudis, P. E.; Lenis, D.; Minkov, N.; Quesne, C.
2011-04-15
Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.
Graef, L.L.; Brandenberger, R. E-mail: rhb@physics.mcgill.ca
2015-10-01
Standard inflationary models yield a characteristic signature of a primordial power spectrum with a red tensor and scalar tilt. Nevertheless, Cannone et al. [1] recently suggested that, by breaking the assumption of spatial diffeomorphism invariance in the context of the effective field theory of inflation, a blue tensor spectrum can be achieved without violating the Null Energy Condition. In this context, we explore in which cases the inflationary model of [2] can yield a blue tilt of the tensor modes along with a red tilt in the scalar spectrum. Ultimately, we analyze under which conditions the model of [3] can reproduce the specific consistency relation of String Gas Cosmology.
Conformal field theories from deformations of theories with Wn symmetry
NASA Astrophysics Data System (ADS)
Babaro, Juan Pablo; Giribet, Gaston; Ranjbar, Arash
2016-10-01
We construct a set of nonrational conformal field theories that consist of deformations of Toda field theory for s l (n ). In addition to preserving conformal invariance, the theories may still exhibit a remnant infinite-dimensional affine symmetry. The case n =3 is used to illustrate this phenomenon, together with further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute N -point correlation functions on the Riemann sphere and show that these can be expressed in terms of s l (n ) Toda field theory ((N -2 )n +2 ) -point correlation functions.
Lorentz invariance in chiral kinetic theory.
Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A; Yee, Ho-Ung; Yin, Yi
2014-10-31
We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1/2 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance. We also show how the classical action can be obtained by taking the classical limit of the path integral for a Weyl particle. PMID:25396362
Gauge-Invariant Formulation of Circular Dichroism.
Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A
2016-07-12
Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment. PMID:27295541
Scale without conformal invariance at three loops
NASA Astrophysics Data System (ADS)
Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas
2012-08-01
We carry out a three-loop computation that establishes the existence of scale without conformal invariance in dimensional regularization with the MS scheme in unitary theories in d = 4 - ɛ spacetime dimensions. We also comment on the effects of scheme changes in theories with many couplings, as well as in theories that live on non-conformal scale-invariant renormalization group trajectories. Stability properties of such trajectories are analyzed, revealing both attractive and repulsive directions in a specific example. We explain how our results are in accord with those of Jack & Osborn on a c-theorem in d = 4 (and d = 4 - ɛ) dimensions. Finally, we point out that limit cycles with turning points are unlike limit cycles with continuous scale invariance.
The Grassmannian origin of dual superconformal invariance
NASA Astrophysics Data System (ADS)
Arkani-Hamed, Nima; Cachazo, Freddy; Cheung, Clifford
2010-03-01
A dual formulation of the S Matrix for mathcal {N} = 4 SYM has recently been presented, where all leading singularities of n-particle N k-2MHV amplitudes are given as an integral over the Grassmannian G( k, n), with cyclic symmetry, parity and superconformal invariance manifest. In this short note we show that the dual superconformal invariance of this object is also manifest. The geometry naturally suggests a partial integration and simple change of variable to an integral over G( k - 2, n). This change of variable precisely corresponds to the mapping between usual momentum variables and the “momentum twistors” introduced by Hodges, and yields an elementary derivation of the momentumtwistor space formula very recently presented by Mason and Skinner, which is manifestly dual superconformal invariant. Thus the G( k, n) Grassmannian formulation allows a direct understanding of all the important symmetries of mathcal {N} = 4 SYM scattering amplitudes.
Gauge-invariant decomposition of nucleon spin
Wakamatsu, M.
2010-06-01
We investigate the relation between the known decompositions of the nucleon spin into its constituents, thereby clarifying in what respect they are common and in what respect they are different essentially. The decomposition recently proposed by Chen et al. can be thought of as a nontrivial generalization of the gauge-variant Jaffe-Manohar decomposition so as to meet the gauge-invariance requirement of each term of the decomposition. We however point out that there is another gauge-invariant decomposition of the nucleon spin, which is closer to the Ji decomposition, while allowing the decomposition of the gluon total angular momentum into the spin and orbital parts. After clarifying the reason why the gauge-invariant decomposition of the nucleon spin is not unique, we discuss which decomposition is more preferable from an experimental viewpoint.
Modular categories and 3-manifold invariants
Tureav, V.G. )
1992-06-01
The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds.
Relaxing Lorentz invariance in general perturbative anomalies
Salvio, A.
2008-10-15
We analyze the role of Lorentz symmetry in the perturbative nongravitational anomalies for a single family of fermions. The theory is assumed to be translational-invariant, power-counting renormalizable and based on a local action, but is allowed to have general Lorentz violating operators. We study the conservation of global and gauge currents associated with general internal symmetry groups and find, by using a perturbative approach, that Lorentz symmetry does not participate in the clash of symmetries that leads to the anomalies. We first analyze the triangle graphs and prove that there are regulators for which the anomalous part of the Ward identities exactly reproduces the Lorentz-invariant case. Then we show, by means of a regulator independent argument, that the anomaly cancellation conditions derived in Lorentz-invariant theories remain necessary ingredients for anomaly freedom.
The invariable plane of the solar system
NASA Astrophysics Data System (ADS)
Souami, D.; Souchay, J.
2012-04-01
The invariable plane of the solar system is defined as the plane perpendicular to the total angular momentum of the system and passing through its centre of mass. The idea of using the invariable plane as a reference plane in the study of the dynamics of solar system bodies goes back at least to Laplace [3]. The latest study on this plane dates back to Burkhardt [2]. The aim of this work is to determine at best the orientation of the invariable plane with respect to both the ICRS and the equinox-ecliptic of J2000.0, and to evaluate the accuracy of its determination. Such a determination is of fundamental interest in the topic of solar system studies, as suggested by the WGCCRE 2009 [1] for the determination of planet's and satellites' rotational elements. Using the long-term numerical ephemerides DE405, DE406 [6] and INPOP10a[4] over their entire available time span, we compute the total angular momentum of the solar system, as well as the individual contribution of each planet. We then deduce the orientation of the invariable plane for each ephemeris, and establish their relative differences. Preliminary results can be found in [5]. Here we update them with more accurate data, and a more complete analysis of the problem, taking into account the effect of the dwarf planet (1) Ceres as well as two of the biggest asteroids, (4) Vesta and (2) Pallas. Moreover, we give the orbital elements (inclination, longitude of the ascending node) with respect to the invariable plane. As given its accuracy of determination, and its fundamental dynamical meaning, the invariable plane provides a permanent natural reference plane that should be used when studying solar system dynamics, instead of the ecliptic. Thus, we recommend referring to it when working on long-term dynamics.
Some cosmological consequences of Weyl invariance
Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario
2015-03-19
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp
2015-10-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
Affine Invariant Character Recognition by Progressive Removing
NASA Astrophysics Data System (ADS)
Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro
Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.
An invariance theorem in acoustic scattering theory
NASA Astrophysics Data System (ADS)
Ha-Duong, T.
1996-10-01
Karp's theorem states that if the far-field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle is invariant under the group of orthogonal transformations in 0266-5611/12/5/007/img1 (rotations in 0266-5611/12/5/007/img2), then the scatterer is a sphere (circle). The theorem is generalized to the case where the invariant group of the far field pattern is only a subgroup of the orthogonal group, and for a class of mixed boundary conditions.
Scaling theory of {{{Z}}_{2}} topological invariants
NASA Astrophysics Data System (ADS)
Chen, Wei; Sigrist, Manfred; Schnyder, Andreas P.
2016-09-01
For inversion-symmetric topological insulators and superconductors characterized by {{{Z}}2} topological invariants, two scaling schemes are proposed to judge topological phase transitions driven by an energy parameter. The scaling schemes renormalize either the phase gradient or the second derivative of the Pfaffian of the time-reversal operator, through which the renormalization group flow of the driving energy parameter can be obtained. The Pfaffian near the time-reversal invariant momentum is revealed to display a universal critical behavior for a great variety of models examined.
Cosmological constant in scale-invariant theories
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.
2011-10-01
The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
None
2016-07-12
Le DG W.Jentschke souhaite la bienvenue Ã l'assemblÃ©e et aux invitÃ©s pour la signature du protocole entre le Cern et l'URSS qui est un Ã©vÃ©nement important. C'est en 1955 que 55 visiteurs soviÃ©tiques ont visitÃ© le Cern pour la premiÃ¨re fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi prÃ©sents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.
NASA Astrophysics Data System (ADS)
Bethencourt, John; Shi, Elaine; Song, Dawn
Reputation systems have become an increasingly important tool for highlighting quality information and filtering spam within online forums. However, the dependence of a user's reputation on their history of activities seems to preclude any possibility of anonymity. We show that useful reputation information can, in fact, coexist with strong privacy guarantees. We introduce and formalize a novel cryptographic primitive we call signatures of reputation which supports monotonic measures of reputation in a completely anonymous setting. In our system, a user can express trust in others by voting for them, collect votes to build up her own reputation, and attach a proof of her reputation to any data she publishes, all while maintaining the unlinkability of her actions.
NASA Astrophysics Data System (ADS)
Baltz, Edward Anthony
It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for
Multisensors signature prediction workbench
NASA Astrophysics Data System (ADS)
Latger, Jean; Cathala, Thierry
2015-10-01
Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.
NASA Astrophysics Data System (ADS)
Wylezalek, D.; Zakamska, N.
2016-06-01
Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1
Tracking visual objects using pyramidal rotation invariant features
NASA Astrophysics Data System (ADS)
Paheding, Sidike; Essa, Almabrok; Krieger, Evan; Asari, Vijayan
2016-02-01
Challenges in object tracking such as object deformation, occlusion, and background variations require a robust tracker to ensure accurate object location estimation. To address these issues, we present a Pyramidal Rotation Invariant Features (PRIF) that integrates Gaussian Ringlet Intensity Distribution (GRID) and Fourier Magnitude of Histogram of Oriented Gradients (FMHOG) methods for tracking objects from videos in challenging environments. In this model, we initially partition a reference object region into increasingly fine rectangular grid regions to construct a pyramid. Histograms of local features are then extracted for each level of pyramid. This allows the appearance of a local patch to be captured at multiple levels of detail to make the algorithm insensitive to partial occlusion. Then GRID and magnitude of discrete Fourier transform of the oriented gradient are utilized to achieve a robust rotation invariant feature. The GRID feature creates a weighting scheme to emphasize the object center. In the tracking stage, a Kalman filter is employed to estimate the center of the object search regions in successive frames. Within the search regions, we use a sliding window technique to extract the PRIF of candidate objects, and then Earth Mover's Distance (EMD) is used to classify the best matched candidate features with respect to the reference. Our PRIF object tracking algorithm is tested on two challenging Wide Area Motion Imagery (WAMI) datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness. Experimental results show that the proposed PRIF approach yields superior results compared to state-of-the-art feature based object trackers.
New online signature acquisition system
NASA Astrophysics Data System (ADS)
Oulefki, Adel; Mostefai, Messaoud; Abbadi, Belkacem; Djebrani, Samira; Bouziane, Abderraouf; Chahir, Youssef
2013-01-01
We present a nonconstraining and low-cost online signature acquisition system that has been developed to enhance the performances of an existing multimodal biometric authentication system (based initially on both voice and image modalities). A laboratory prototype has been developed and validated for an online signature acquisition.
Disambiguating seesaw models using invariant mass variables at hadron colliders
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-19
Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less
Disambiguating seesaw models using invariant mass variables at hadron colliders
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-01
We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.
Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming
2013-01-01
Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409
Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming
2013-07-18
Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes.
Understanding Parameter Invariance in Unidimensional IRT Models
ERIC Educational Resources Information Center
Rupp, Andre A.; Zumbo, Bruno D.
2006-01-01
One theoretical feature that makes item response theory (IRT) models those of choice for many psychometric data analysts is parameter invariance, the equality of item and examinee parameters from different examinee populations or measurement conditions. In this article, using the well-known fact that item and examinee parameters are identical only…
Scale invariance, conformality, and generalized free fields
NASA Astrophysics Data System (ADS)
Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina
2016-02-01
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.
Position, rotation, and intensity invariant recognizing method
Ochoa, E.; Schils, G.F.; Sweeney, D.W.
1987-09-15
A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.
Invariant algebraic surfaces for a virus dynamics
NASA Astrophysics Data System (ADS)
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
Invariant of dynamical systems: A generalized entropy
Meson, A.M.; Vericat, F. |
1996-09-01
In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes. {copyright} {ital 1996 American Institute of Physics.}
Broken Scale Invariance and Anomalous Dimensions
DOE R&D Accomplishments Database
Wilson, K. G.
1970-05-01
Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.
Harrison-Zeldovich spectrum from conformal invariance
Rubakov, V.A.
2009-09-01
We show that flat spectrum of small perturbations of field(s) is generated in a simple way in a theory of multi-component scalar field provided this theory is conformally invariant, it has some global symmetry and the quartic potential is negative. We suggest a mechanism of converting these field perturbations into adiabatic scalar perturbations with flat spectrum.
A Discussion of Population Invariance of Equating
ERIC Educational Resources Information Center
Petersen, Nancy S.
2008-01-01
This article discusses the five studies included in this issue. Each article addressed the same topic, population invariance of equating. They all used data from major standardized testing programs, and they all used essentially the same statistics to evaluate their results, namely, the root mean square difference and root expected mean square…
Scale invariance, conformality, and generalized free fields
Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina
2016-02-16
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum fi eld theories with scale invariance but not conformal invariance. We present an important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen that is the trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unlessmore » the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Finally, despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.« less
Scale invariant density perturbations from cyclic cosmology
NASA Astrophysics Data System (ADS)
Frampton, Paul Howard
2016-04-01
It is shown how quantum fluctuations of the radiation during the contraction era of a comes back empty (CBE) cyclic cosmology can provide density fluctuations which re-enter the horizon during the subsequent expansion era and at lowest order are scale invariant, in a Harrison-Zel’dovich-Peebles sense. It is necessary to be consistent with observations of large scale structure.
Multipartite invariant states. II. Orthogonal symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2006-06-15
We construct a class of multipartite states possessing orthogonal symmetry. This new class contains multipartite states which are invariant under the action of local unitary operations introduced in our preceding paper [Phys. Rev. A 73, 062314 (2006)]. We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.
Invariance Properties for General Diagnostic Classification Models
ERIC Educational Resources Information Center
Bradshaw, Laine P.; Madison, Matthew J.
2016-01-01
In item response theory (IRT), the invariance property states that item parameter estimates are independent of the examinee sample, and examinee ability estimates are independent of the test items. While this property has long been established and understood by the measurement community for IRT models, the same cannot be said for diagnostic…
NASA Technical Reports Server (NTRS)
Moreman, O. S., III (Inventor)
1977-01-01
A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.
Weak associativity and deformation quantization
NASA Astrophysics Data System (ADS)
Kupriyanov, V. G.
2016-09-01
Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
Global invariant methods for object recognition
NASA Astrophysics Data System (ADS)
Stiller, Peter F.
2001-11-01
The general problem of single-view recognition is central to man image understanding and computer vision tasks; so central, that it has been characterized as the holy grail of computer vision. In previous work, we have shown how to approach the general problem of recognizing three dimensional geometric configurations (such as arrangements of lines, points, and conics) from a single two dimensional view, in a manner that is view independent. Our methods make use of advanced mathematical techniques from algebraic geometry, notably the theory of correspondences, and a novel equivariant geometric invariant theory. The machinery gives us a way to understand the relationship that exists between the 3D geometry and its residual in a 2D image. This relationship is shown to be a correspondence in the technical sense of algebraic geometry. Exploiting this, one can compute a set of fundamental equations in 3D and 2D invariants which generate the ideal of the correspondence, and which completely describe the mutual 3D/2D constraints. We have chosen to call these equations object/image equations. They can be exploited in a number of ways. For example, from a given 2D configuration, we can determine a set of non-linear constraints on the geometric invariants of a 3D configurations capable of imaging to the given 2D configuration (features on an object), we can derive a set of equations that constrain the images of that object; helping us to determine if that particular object appears in various images. One previous difficulty has been that the usual numerical geometric invariants get expressed as rational functions of the geometric parameters. As such they are not always defined. This leads to degeneracies in algorithms based on these invariants. We show how to replace these invariants by certain toric subvarieties of Grassmannians where the object/image equations become resultant like expressions for the existence of a non- trivial intersection of these subvarieties with
NASA Astrophysics Data System (ADS)
Arzano, Michele; Kowalski-Glikman, Jerzy
2016-09-01
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.
Fluctuations as stochastic deformation
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.
Fluctuations as stochastic deformation.
Kazinski, P O
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774
Complex-linear invariants of biochemical networks.
Karp, Robert L; Pérez Millán, Mercedes; Dasgupta, Tathagata; Dickenstein, Alicia; Gunawardena, Jeremy
2012-10-21
The nonlinearities found in molecular networks usually prevent mathematical analysis of network behaviour, which has largely been studied by numerical simulation. This can lead to difficult problems of parameter determination. However, molecular networks give rise, through mass-action kinetics, to polynomial dynamical systems, whose steady states are zeros of a set of polynomial equations. These equations may be analysed by algebraic methods, in which parameters are treated as symbolic expressions whose numerical values do not have to be known in advance. For instance, an "invariant" of a network is a polynomial expression on selected state variables that vanishes in any steady state. Invariants have been found that encode key network properties and that discriminate between different network structures. Although invariants may be calculated by computational algebraic methods, such as Gröbner bases, these become computationally infeasible for biologically realistic networks. Here, we exploit Chemical Reaction Network Theory (CRNT) to develop an efficient procedure for calculating invariants that are linear combinations of "complexes", or the monomials coming from mass action. We show how this procedure can be used in proving earlier results of Horn and Jackson and of Shinar and Feinberg for networks of deficiency at most one. We then apply our method to enzyme bifunctionality, including the bacterial EnvZ/OmpR osmolarity regulator and the mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase glycolytic regulator, whose networks have deficiencies up to four. We show that bifunctionality leads to different forms of concentration control that are robust to changes in initial conditions or total amounts. Finally, we outline a systematic procedure for using complex-linear invariants to analyse molecular networks of any deficiency.
Statistical clumped isotope signatures.
Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G
2016-08-18
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.
Harmonic 'signatures' of microorganisms.
Blake-Coleman, B C; Hutchings, M J; Silley, P
1994-01-01
The frequency/amplitude effect of various microorganisms exposed to periodic (time varying) electric fields, when proximate to immersed electrodes, has been studied using a novel analytical instrument. The harmonic distribution, in complex signals caused by cells exposed to harmonic free waveforms and occupying part of the electrode/suspension interface volume, was shown to be almost entirely due to the change in the standing interfacial transfer function by the (dielectrically nonlinear) presence of cells. Thus, the characteristic interfacial non-linearity is viewed as variable, being uniquely modulated by the presence of particular cells in the interfacial region. Little can be attributed to bulk (far field) effects. The tendency for subtle (characteristic) signal distortion to occur as a function of particulate (cell or molecular) occupancy of the near electrode interfacial region under controlled current conditions leads to the method of sample characterisation by harmonic (Fourier) analysis. We report here, as a sequel to our original studies (Hutchings et al., 1993; Hutchings and Blake-Coleman, 1993), preliminary results of the harmonic analysis of microbial suspensions under controlled signal conditions using a three-electrode configuration. These data provide three-dimensional graphical representations producing harmonic 'surfaces' for various microorganisms. Thus, cell type differences are characterised by their 'harmonic signature'. The visual distinction provided by these 'surface' forming three-dimensional plots is striking and gives a convincing impression of the ability to identify and enumerate specific microorganisms by acquisition of cell-modulated electrode interfacial Fourier spectra. PMID:8060593
NASA Astrophysics Data System (ADS)
Olson, J.
2012-09-01
This presentation reviews the work performed by our research group at the Geophysical Institute as we have applied the tools of infrasound research to rocket studies. This report represents one aspect of the effort associated with work done for the National Consortium for MASINT Research (NCMR) program operated by the National MASINT Office (NMO) of the Defense Intelligence Agency (DIA). Infrasound, the study of acoustic signals and their propagation in a frequency band below 15 Hz, enables an investigator to collect and diagnose acoustic signals from distant sources. Absorption of acoustic energy in the atmosphere decreases as the frequency is reduced. In the infrasound band signals can propagate hundreds and thousands of kilometers with little degradation. We will present an overview of signatures from rockets ranging from small sounding rockets such as the Black Brandt and Orion series to larger rockets such as Delta 2,4 and Atlas V. Analysis of the ignition transients provides information that can uniquely identify the motor type. After the rocket ascends infrasound signals can be used to characterize the rocket and identify the various events that take place along a trajectory such as staging and maneuvering. We have also collected information on atmospheric shocks and sonic booms from the passage of supersonic vehicles such as the shuttle. This review is intended to show the richness of the unique signal set that occurs in the low-frequency infrasound band.
Statistical clumped isotope signatures
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Statistical clumped isotope signatures
NASA Astrophysics Data System (ADS)
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-08-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.
Statistical clumped isotope signatures.
Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
NASA Astrophysics Data System (ADS)
Berezinsky, V.
2013-06-01
The signatures of Ultra High Energy (E ≳ 1 EeV) proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible characteristics of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E1/2 in integral spectrum. Measured by HiRes and Telescope Array (TA) these characteristics agree with theoretical predictions. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The models based on the Auger and HiRes/TA data are considered independently and classified using the transition from galactic to extragalactic cosmic rays. The ankle cannot provide this transition. since data of all three detector at energy (1-3) EeV agree with pure proton composition (or at least not heavier than Helium). If produced in Galaxy these particles result in too high anisotropy. This argument excludes or strongly disfavours all ankle models with ankle energy Ea > 3 EeV. The calculation of elongation curves, Xmax(E), for different ankle models strengthens further this conclusion. Status of other models, the dip, mixed composition and Auger based models are discussed.
An Invariant-Preserving ALE Method for Solids under Extreme Conditions
Sambasivan, Shiv Kumar; Christon, Mark A
2012-07-17
We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore
A proposed neutral line signature
NASA Technical Reports Server (NTRS)
Doxas, I.; Speiser, T. W.; Dusenbery, P. B.; Horton, W.
1992-01-01
An identifying signature is proposed for the existence and location of the neutral line in the magnetotail. The signature, abrupt density, and temperature changes in the Earthtail direction, was first discovered in test particle simulations. Such temperature variations have been observed in ISEE data (Huang et. al. 1992), but their connection to the possible existence of a neutral line in the tail has not yet been established. The proposed signature develops earlier than the ion velocity space ridge of Martin and Speiser (1988), but can only be seen by spacecraft in the vicinity of the neutral line, while the latter can locate a neutral line remotely.
Scale invariant texture descriptors for classifying celiac disease
Hegenbart, Sebastian; Uhl, Andreas; Vécsei, Andreas; Wimmer, Georg
2013-01-01
Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods provide classification results improving the current state of the art. However, not each of the investigated scale invariant methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be. Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset. PMID:23481171
Resurgent deformation quantisation
Garay, Mauricio; Goursac, Axel de; Straten, Duco van
2014-03-15
We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2014-08-01
We consider the minimal bosonization realization of supersymmetric shape-invariant systems where generalized supercharge operators are constructed using the partner supersymmetric operators, the parameter potential translation formalism and the reflection operator. We obtain the solution of the eigenvalue equation and study the quantum dynamics of the supersymmetric system including terms in the Hamiltonian which are constructed using the combination of the bosonized supercharge operators. The connections between the bosonized supersymmetric formalism, the Bose-Fermi transformation and the generalization of the R-deformed Heisenberg algebra are discussed. As an illustration, we apply the generalized formalism for the case of the trigonometric Rosen-Morse potential.
Invariance of the bit error rate in the ancilla-assisted homodyne detection
Yoshida, Yuhsuke; Takeoka, Masahiro; Sasaki, Masahide
2010-11-15
We investigate the minimum achievable bit error rate of the discrimination of binary coherent states with the help of arbitrary ancillary states. We adopt homodyne measurement with a common phase of the local oscillator and classical feedforward control. After one ancillary state is measured, its outcome is referred to the preparation of the next ancillary state and the tuning of the next mixing with the signal. It is shown that the minimum bit error rate of the system is invariant under the following operations: feedforward control, deformations, and introduction of any ancillary state. We also discuss the possible generalization of the homodyne detection scheme.
Deformation mechanisms in experimentally deformed Boom Clay
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex
Leibo, Joel Z.; Liao, Qianli; Anselmi, Fabio; Poggio, Tomaso
2015-01-01
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions. PMID:26496457
Highly Deformed Rotational Bands in ^65Zn
NASA Astrophysics Data System (ADS)
Yu, C.-H.; Baktash, C.; Paul, S. D.; Radford, D. C.; Cameron, J. A.; Haslip, D. S.; Lampman, T.; Svensson, C. E.; Waddington, J. C.; Wilson, J. N.; Lafosse, D. R.; Lerma, F.; Sarantites, D. G.; Rudolph, D.; Eberth, J.; Lee, I. Y.; Macchiavelli, A. O.
1998-04-01
High spin states of ^65Zn were populated using the ^40Ca(^29Si, 4p) reaction at a beam energy of 130 MeV. The experiment was performed at the LBL 88" cyclotron using the Gammasphere in conjunction with the Microball. A total of about 88 million 4-proton gated events were collected from the experiment. Two highly deformed rotational bands were established in ^65Zn. Among the two bands, band 1 is more strongly populated and has only one signature. Band 2 is much weaker and has two signatures connected by M1 transitions. These highly deformed rotational bands are consistent with the excitation of the g_9/2 orbitals, which previously were associated(C.E. Svensson et al.,) Phys. Rev. Lett. 79, 1233 (1997). with the superdeformed band in ^62Zn. Lifetimes were also extracted for these bands in ^65Zn using the Centroid Shift Method. Average Qt values of the two bands were determined and will be compared with the Q_t's of the neighboring nuclei.
Tidal deformation, Orbital Dynamics and JIMO
NASA Astrophysics Data System (ADS)
Ratcliff, J. T.; Wu, X.; Williams, J. G.
2003-12-01
Observations of Europa, Ganymede and Callisto obtained from encounters by the Galileo spacecraft strongly suggest the possibility of liquid oceans under the icy shells of these Jovian satellites. The strong tidal environments in which these moons are found and the fact that a planetary body with internal fluid undergoes greater deformation than an otherwise solid body make a compelling case for using tidal observations as a method for ocean detection. Given the high degree of uncertainty in our knowledge of the interiors of these moons, a comprehensive geodetic program measuring different physical signatures related to tidal deformation and interior structure is preferred to using separate and various interior parameters that may not be as closely tied to actual measurable quantities. Potential and displacement tidal Love numbers, libration amplitudes of the surface ice shell and rocky mantle, static topography and gravity fields and other quantities should all be included in the measurement objectives. Many geodetic techniques rely heavily upon orbital positions of the spacecraft. Their accurate determination depend on factors such as the orbital configuration, the gravity fields of the icy moons, as well as the duration and geometry of tracking. Given the competing science, engineering and planetary protection demands, orbital accuracy subject to constraints has become a critical mission design issue. Orbit determination simulations and covariance analyses will be used to investigate the achievable accuracies of spacecraft position and geodetic signatures under different orbital and tracking scenarios.
Intrusion detection using secure signatures
Nelson, Trent Darnel; Haile, Jedediah
2014-09-30
A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.
Retail applications of signature verification
NASA Astrophysics Data System (ADS)
Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens
2004-08-01
The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.
Multigroup Confirmatory Factor Analysis: Locating the Invariant Referent Sets
ERIC Educational Resources Information Center
French, Brian F.; Finch, W. Holmes
2008-01-01
Multigroup confirmatory factor analysis (MCFA) is a popular method for the examination of measurement invariance and specifically, factor invariance. Recent research has begun to focus on using MCFA to detect invariance for test items. MCFA requires certain parameters (e.g., factor loadings) to be constrained for model identification, which are…
Testing Factorial Invariance in Multilevel Data: A Monte Carlo Study
ERIC Educational Resources Information Center
Kim, Eun Sook; Kwok, Oi-man; Yoon, Myeongsun
2012-01-01
Testing factorial invariance has recently gained more attention in different social science disciplines. Nevertheless, when examining factorial invariance, it is generally assumed that the observations are independent of each other, which might not be always true. In this study, we examined the impact of testing factorial invariance in multilevel…
Breaking scale invariance with quantum gravity
Amendola, L.; Occhionero, F.; Saez, D. )
1990-02-01
It is argued that the closed, nonsingular cosmological model of Starobinsky (1980) allows a self-consistent, albeit schematic, description of the history of the universe from its beginning to now and even provides, given a suitable scenario, the possibility of breaking in a natural way the scale invariance of the perturbation spectrum. A double inflationary scenario is specified in detail to explain the anomalous power observed in the large-scale astronomical structures by assuming that the first inflation is driven by quantum gravity and that the second inflation is driven by the usual inflation. An example of a power spectrum where the scale invariance has been broken and extra power is put above 10 Mpc is presented. The model is now compatible with the observed upper limits from the large angular scale isotropy of the microwave background. 52 refs.
Testing CPT Invariance with Antiprotonic Helium Atoms
Horvath, Dezso
2008-08-08
The structure of matter is related to symmetries at every level of study. CPT symmetry is one of the most important laws of field theory: it states the invariance of physical properties when one simultaneously changes the signs of the charge and of the spatial and time coordinates of free elementary particles. Although in general opinion CPT symmetry is not violated in Nature, there are theoretical attempts to develop CPT-violating models. The Antiproton Decelerator at CERN has been built to test CPT invariance. The ASACUSA experiment compares the properties of particles and antiparticles by studying the antiprotonic helium atom via laser spectroscopy and measuring the mass, charge and magnetic moment of the antiproton as compared to those of the proton.
Localized, partially space-invariant filtering
NASA Astrophysics Data System (ADS)
Zalevsky, Zeev; Mendlovic, David; Caulfield, John H.
1997-02-01
In cases in which the image-to-image spatial variability of the input pattern changes with the spatial location, a localized-filtering method should be used for pattern recognition. Localized space-invariant filtering is investigated, and its improved recognition abilities are demonstrated with the recognition of fingerprints. The motivation for the investigated implementation is related to the fact that a person never presses his finger on a surface with equal pressure. This variation results in different amounts of spatial shifting being required from the optical processor in different regions of the fingerprint. A two-region mathematical model for representing the human finger is presented and investigated by use of localized space-invariant filtering by means of a computer.
Monopoles, Abelian projection, and gauge invariance
Bonati, Claudio; Di Giacomo, Adriano; Lepori, Luca; Pucci, Fabrizio
2010-04-15
A direct connection is proved between the non-Abelian Bianchi Identities (NABI's) and the Abelian Bianchi identities for the 't Hooft tensor. As a consequence, the existence of a nonzero magnetic current is related to the violation of the NABI's and is a gauge-invariant property. The construction allows us to show that not all Abelian projections can be used to expose monopoles in lattice configurations: each field configuration with nonzero magnetic charge identifies its natural projection, up to gauge transformations which tend to unity at large distances. It is shown that the so-called maximal-Abelian gauge is a legitimate choice. It is also proven, starting from the NABI, that monopole condensation is a physical gauge-invariant phenomenon, independent of the choice of the Abelian projection.
Hidden invariance of the free classical particle
Garcia, S. )
1994-06-01
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group [ital G] is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under [ital G] leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by [ital U](1) leads to quantum mechanics.
Scale-invariant geometric random graphs.
Xie, Zheng; Rogers, Tim
2016-03-01
We introduce and analyze a class of growing geometric random graphs that are invariant under rescaling of space and time. Directed connections between nodes are drawn according to influence zones that depend on node position in space and time, mimicking the heterogeneity and increased specialization found in growing networks. Through calculations and numerical simulations we explore the consequences of scale invariance for geometric random graphs generated this way. Our analysis reveals a dichotomy between scale-free and Poisson distributions of in- and out-degree, the existence of a random number of hub nodes, high clustering, and unusual percolation behavior. These properties are similar to those of empirically observed web graphs. PMID:27078369
Revisiting R-invariant direct gauge mediation
NASA Astrophysics Data System (ADS)
Chiang, Cheng-Wei; Harigaya, Keisuke; Ibe, Masahiro; Yanagida, Tsutomu T.
2016-03-01
We revisit a special model of gauge mediated supersymmetry breaking, the " R-invariant direct gauge mediation." We pay particular attention to whether the model is consistent with the minimal model of the μ-term, i.e., a simple mass term of the Higgs doublets in the superpotential. Although the incompatibility is highlighted in view of the current experimental constraints on the superparticle masses and the observed Higgs boson mass, the minimal μ-term can be consistent with the R-invariant gauge mediation model via a careful choice of model parameters. We derive an upper limit on the gluino mass from the observed Higgs boson mass. We also discuss whether the model can explain the 3 σ excess of the Z + jets + E T miss events reported by the ATLAS collaboration.
Symmetric form-invariant dual Pearcey beams.
Ren, Zhijun; Fan, Changjiang; Shi, Yile; Chen, Bo
2016-08-01
We introduce another type of Pearcey beam, namely, dual Pearcey (DP) beams, based on the Pearcey function of catastrophe theory. DP beams are experimentally generated by applying Fresnel diffraction of bright elliptic rings. Form-invariant Bessel distribution beams can be regarded as a special case of DP beams. Subsequently, the basic propagation characteristics of DP beams are identified. DP beams are the result of the interference of two half DP beams instead of two classical Pearcey beams. Moreover, we also verified that half DP beams (including special-case parabolic-like beams) generated by half elliptical rings (circular rings) are a new member of the family of form-invariant beams. PMID:27505650
Natural inflation with hidden scale invariance
NASA Astrophysics Data System (ADS)
Barrie, Neil D.; Kobakhidze, Archil; Liang, Shelley
2016-05-01
We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns - 1 ≈ - 0.025 (N⋆/60)-1 and r ≈ 0.0667 (N⋆/60)-1, where N⋆ ≈ 30- 65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.
Adiabatic invariance of oscillons/I -balls
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki
2015-11-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.
Hiding Lorentz invariance violation with MOND
Sanders, R. H.
2011-10-15
Horava-Lifshitz gravity is an attempt to construct a renormalizable theory of gravity by breaking the Lorentz invariance of the gravitational action at high energies. The underlying principle is that Lorentz invariance is an approximate symmetry and its violation by gravitational phenomena is somehow hidden to present limits of observational precision. Here I point out that a simple modification of the low-energy limit of Horava-Lifshitz gravity in its nonprojectable form can effectively camouflage the presence of a preferred frame in regions where the Newtonian gravitational field gradient is higher than cH{sub 0}; this modification results in the phenomenology of modified Newtonian dynamics (MOND) at lower accelerations. As a relativistic theory of MOND, this modified Horava-Lifshitz theory presents several advantages over its predecessors.
Ballastic signature identification systems study
NASA Technical Reports Server (NTRS)
Reich, A.; Hine, T. L.
1976-01-01
The results are described of an attempt to establish a uniform procedure for documenting (recording) expended bullet signatures as effortlessly as possible and to build a comprehensive library of these signatures in a form that will permit the automated comparison of a new suspect bullet with the prestored library. The ultimate objective is to achieve a standardized format that will permit nationwide interaction between police departments, crime laboratories, and other interested law enforcement agencies.
Color signatures in Amorsolo paintings
NASA Astrophysics Data System (ADS)
Soriano, Maricor N.; Palomero, Cherry May; Cruz, Larry; Yambao, Clod Marlan Krister; Dado, Julie Mae; Salvador-Campaner, Janice May
2010-02-01
We present the results of a two-year project aimed at capturing quantifiable color signatures of oil paintings of Fernando Amorsolo, the Philippine's first National Artists. Color signatures are found by comparing CIE xy measurements of skin color in portraits and ground, sky and foliage in landscapes. The results are compared with results of visual examination and art historical data as well as works done by Amorsolo's contemporaries and mentors.
Scale-invariant breaking of conformal symmetry
NASA Astrophysics Data System (ADS)
Dymarsky, Anatoly; Zhiboedov, Alexander
2015-10-01
Known examples of unitary relativistic scale but not conformal-invariant field theories (SFTs) can be embedded into conventional conformal field theories (CFTs). We show that any SFT which is a subsector of a unitary CFT is a free theory. Our discussion applies to an arbitrary number of spacetime dimensions and explains triviality of known SFTs in four spacetime dimensions. We comment on examples of unitary SFTs which are not captured by our construction.
Neutrino velocity and local Lorentz invariance
NASA Astrophysics Data System (ADS)
Cardone, Fabio; Mignani, Roberto; Petrucci, Andrea
2015-09-01
We discuss the possible violation of local Lorentz invariance (LLI) arising from a faster-than-light neutrino speed. A toy calculation of the LLI violation parameter δ, based on the (disclaimed) OPERA data, suggests that the values of δ are determined by the interaction involved, and not by the energy range. This hypothesis is further corroborated by the analysis of the more recent results of the BOREXINO, LVD and ICARUS experiments.
OSRI: a rotationally invariant binary descriptor.
Xu, Xianwei; Tian, Lu; Feng, Jianjiang; Zhou, Jie
2014-07-01
Binary descriptors are becoming widely used in computer vision field because of their high matching efficiency and low memory requirements. Since conventional approaches, which first compute a floating-point descriptor then binarize it, are computationally expensive, some recent efforts have focused on directly computing binary descriptors from local image patches. Although these binary descriptors enable a significant speedup in processing time, their performances usually drop a lot due to orientation estimation errors and limited description abilities. To address these issues, we propose a novel binary descriptor based on the ordinal and spatial information of regional invariants (OSRIs) over a rotation invariant sampling pattern. Our main contributions are twofold: 1) each bit in OSRI is computed based on difference tests of regional invariants over pairwise sampling-regions instead of difference tests of pixel intensities commonly used in existing binary descriptors, which can significantly enhance the discriminative ability and 2) rotation and illumination changes are handled well by ordering pixels according to their intensities and gradient orientations, meanwhile, which is also more reliable than those methods that resort to a reference orientation for rotation invariance. Besides, a statistical analysis of discriminative abilities of different parts in the descriptor is conducted to design a cascade filter which can reject nonmatching descriptors at early stages by comparing just a small portion of the whole descriptor, further reducing the matching time. Extensive experiments on four challenging data sets (Oxford, 53 Objects, ZuBuD, and Kentucky) show that OSRI significantly outperforms two state-of-the-art binary descriptors (FREAK and ORB). The matching performance of OSRI with only 512 bits is also better than the well-known floating-point descriptor SIFT (4K bits) and is comparable with the state-of-the-art floating-point descriptor MROGH (6K bits
Nonequilibrium invariant measure under heat flow.
Delfini, Luca; Lepri, Stefano; Livi, Roberto; Politi, Antonio
2008-09-19
We provide an explicit representation of the nonequilibrium invariant measure for a chain of harmonic oscillators with conservative noise in the presence of stationary heat flow. By first determining the covariance matrix, we are able to express the measure as the product of Gaussian distributions aligned along some collective modes that are spatially localized with power-law tails. Numerical studies show that such a representation applies also to a purely deterministic model, the quartic Fermi-Pasta-Ulam chain.
Tests of Lorentz invariance using hydrogen molecules
Mueller, Holger; Herrmann, Sven; Saenz, Alejandro; Peters, Achim; Laemmerzahl, Claus
2004-10-01
We discuss the consequences of Lorentz violation (as expressed within the Lorentz-violating extension of the standard model) for the hydrogen molecule, which represents a generic model of a molecular binding. Lorentz-violating shifts of electronic, vibrational and rotational energy levels, and of the internuclear distance are calculated. This offers the possibility of obtaining improved bounds on Lorentz invariance by experiments using molecules.
Geoid, topography, and convection-driven crustal deformation on Venus
NASA Technical Reports Server (NTRS)
Simons, Mark; Hager, Bradford H.; Solomon, Sean C.
1992-01-01
High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between surface topography, crustal deformation, and the observed gravity field.
Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2012-01-01
The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.
Tseng, Y H; Hwang, J N; Sheehan, F H
1997-01-01
3D object recognition under partial object viewing is a difficult pattern recognition task. In this paper, we introduce a neural-network solution that is robust to partial viewing of objects and noise corruption. This method directly utilizes the acquired 3D data and requires no feature extraction. The object is first parametrically represented by a continuous distance transform neural network (CDTNN) trained by the surface points of the exemplar object. The CDTNN maps any 3D coordinate into a value that corresponds to the distance between the point and the nearest surface point of the object. Therefore, a mismatch between the exemplar object and an unknown object can be easily computed. When encountered with deformed objects, this mismatch information can be backpropagated through the CDTNN to iteratively determine the deformation in terms of affine transform. Application to 3D heart contour delineation and invariant recognition of 3D rigid-body objects is presented.
Invariance algorithms for processing NDE signals
NASA Astrophysics Data System (ADS)
Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William
1996-11-01
Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.
Permutation-invariant distance between atomic configurations.
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-09-14
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.
Spectrally Invariant Approximation within Atmospheric Radiative Transfer
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2011-01-01
Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These spectrally invariant relationships are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.
Permutation-invariant distance between atomic configurations
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-09-14
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.
Correlation functions in conformal invariant stochastic processes
NASA Astrophysics Data System (ADS)
Alcaraz, Francisco C.; Rittenberg, Vladimir
2015-11-01
We consider the problem of correlation functions in the stationary states of one-dimensional stochastic models having conformal invariance. If one considers the space dependence of the correlators, the novel aspect is that although one considers systems with periodic boundary conditions, the observables are described by boundary operators. From our experience with equilibrium problems one would have expected bulk operators. Boundary operators have correlators having critical exponents being half of those of bulk operators. If one studies the space-time dependence of the two-point function, one has to consider one boundary and one bulk operators. The Raise and Peel model has conformal invariance as can be shown in the spin 1/2 basis of the Hamiltonian which gives the time evolution of the system. This is an XXZ quantum chain with twisted boundary condition and local interactions. This Hamiltonian is integrable and the spectrum is known in the finite-size scaling limit. In the stochastic base in which the process is defined, the Hamiltonian is not local anymore. The mapping into an SOS model, helps to define new local operators. As a byproduct some new properties of the SOS model are conjectured. The predictions of conformal invariance are discussed in the new framework and compared with Monte Carlo simulations.
Passive estimation of the waveguide invariant per pair of modes.
Le Gall, Yann; Bonnel, Julien
2013-08-01
In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data.
Scope and applications of translation invariant wavelets to image registration
NASA Technical Reports Server (NTRS)
Chettri, Samir; LeMoigne, Jacqueline; Campbell, William
1997-01-01
The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.
Simulating realistic predator signatures in quantitative fatty acid signature analysis
Bromaghin, Jeffrey F.
2015-01-01
Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.
Quantum messages with signatures forgeable in arbitrated quantum signature schemes
NASA Astrophysics Data System (ADS)
Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon
2015-02-01
Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.
A framework for mining signatures from event sequences and its applications in healthcare data.
Wang, Fei; Lee, Noah; Hu, Jianying; Sun, Jimeng; Ebadollahi, Shahram; Laine, Andrew F
2013-02-01
This paper proposes a novel temporal knowledge representation and learning framework to perform large-scale temporal signature mining of longitudinal heterogeneous event data. The framework enables the representation, extraction, and mining of high-order latent event structure and relationships within single and multiple event sequences. The proposed knowledge representation maps the heterogeneous event sequences to a geometric image by encoding events as a structured spatial-temporal shape process. We present a doubly constrained convolutional sparse coding framework that learns interpretable and shift-invariant latent temporal event signatures. We show how to cope with the sparsity in the data as well as in the latent factor model by inducing a double sparsity constraint on the β-divergence to learn an overcomplete sparse latent factor model. A novel stochastic optimization scheme performs large-scale incremental learning of group-specific temporal event signatures. We validate the framework on synthetic data and on an electronic health record dataset.
Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states
NASA Astrophysics Data System (ADS)
Slater, Paul B.
2016-09-01
Milz and Strunz (J Phys A 48:035306, 2015) recently studied the probabilities that two-qubit and qubit-qutrit states, randomly generated with respect to Hilbert-Schmidt (Euclidean/flat) measure, are separable. They concluded that in both cases, the separability probabilities (apparently exactly 8/33 in the two-qubit scenario) hold constant over the Bloch radii ( r) of the single-qubit subsystems, jumping to 1 at the pure state boundaries (r=1). Here, firstly, we present evidence that in the qubit-qutrit case, the separability probability is uniformly distributed, as well, over the generalized Bloch radius ( R) of the qutrit subsystem. While the qubit (standard) Bloch vector is positioned in three-dimensional space, the qutrit generalized Bloch vector lives in eight-dimensional space. The radii variables r and R themselves are the lengths/norms (being square roots of quadratic Casimir invariants) of these ("coherence") vectors. Additionally, we find that not only are the qubit-qutrit separability probabilities invariant over the quadratic Casimir invariant of the qutrit subsystem, but apparently also over the cubic one—and similarly the case, more generally, with the use of random induced measure. We also investigate two-qutrit (3 × 3) and qubit- qudit (2 × 4) systems—with seemingly analogous positive partial transpose-probability invariances holding over what has been termed by Altafini the partial Casimir invariants of these systems.
Arctic sea ice microwave signature and geophysical processes study
NASA Technical Reports Server (NTRS)
Onstott, Robert G.; Shuchman, Robert A.
1993-01-01
Studies on the validation and utilization of ERS-1 SAR (Synthetic Aperture Radar) derived liquid and solid ocean information and the study of the interregional, regional, and temporal variation of the microwave signatures of sea ice and snow, are reported. Initial interests are focused on the accuracy of the estimates of ice type, ice form, deformation state, or thickness, and the ability to retrieve ice physical property information. Two in situ campaigns were conducted for the purpose of 'truth' ERS-1 SAR products and to gather data in support of the above science studies.
A Graph Based Methodology for Temporal Signature Identification from HER.
Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang
2015-01-01
Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches. PMID:26958267
A Graph Based Methodology for Temporal Signature Identification from HER.
Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang
2015-01-01
Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches.
A Graph Based Methodology for Temporal Signature Identification from EHR
Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang
2015-01-01
Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches. PMID:26958267
Signature effects in some [ital N]=90 odd-[ital Z] rare-earth nuclei
Rath, A.K.; Praharaj, C.R.; Khadkikar, S.B. Institute of Physics, Bhubaneswar 751005 )
1993-05-01
Using axially symmetric deformed configuration mixing and angular momentum projection techniques, we have studied the signature effects in the [pi][ital h][sub 11/2] bands of [sup 147]La, [sup 149]Pr, and [sup 151]Pm nuclei. Effects of rotation alignment on the signature splitting in energy and signature inversion in the [ital B]([ital E]2,[ital I][r arrow][ital I][minus]1) values are discussed. We find that transition from a strongly rotation-aligned limit to a weakly rotation-aligned (or more regular rotational behavior) regime or vice versa leads to signature inversion of the [ital B]([ital E]2) values.
Principles of rock deformation
Nicolas, A.
1987-01-01
This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.
Signature molecular descriptor : advanced applications.
Visco, Donald Patrick, Jr.
2010-04-01
In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report
NASA Astrophysics Data System (ADS)
Antonellini, Marco; Mollema, Pauline Nella
2015-12-01
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.
NASA Astrophysics Data System (ADS)
Antonellini, Marco; Mollema, Pauline Nella
2015-12-01
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.
Invariant solutions and Noether symmetries in hybrid gravity
NASA Astrophysics Data System (ADS)
Borowiec, Andrzej; Capozziello, Salvatore; De Laurentis, Mariafelicia; Lobo, Francisco S. N.; Paliathanasis, Andronikos; Paolella, Mariacristina; Wojnar, Aneta
2015-01-01
Symmetries play a crucial role in physics and, in particular, the Noether symmetries are a useful tool both to select models motivated at a fundamental level, and to find exact solutions for specific Lagrangians. In this work, we apply Noether point symmetries to metric-Palatini hybrid gravity in order to select the f (R ) functional form and to find analytical solutions for the field equations and for the related Wheeler-DeWitt (WDW) equation. It is important to stress that hybrid gravity implies two definitions of curvature scalar: R for standard metric gravity and R for further degrees of freedom related to the Palatini formalism. We use conformal transformations in order to find out integrable f (R ) models. In this context, we explore two conformal transformations of the forms d τ =N (a )d t and d τ =N (ϕ )d t . For the former, we found two cases of f (R ) functions where the field equations admit Noether symmetries. In the second case, the Lagrangian reduces to a Brans-Dicke-like theory with a general coupling function. For each case, it is possible to transform the field equations by using normal coordinates to simplify the dynamical system and to obtain exact solutions. Furthermore, we perform quantization and derive the WDW equation for the minisuperspace model. The Lie point symmetries for the WDW equation are determined and used to find invariant solutions. In particular, hybrid gravity introduces a further term in cosmic dynamics whose interpretation is related to the signature of an auxiliary scalar field. Solutions are compared with Λ CDM .
Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H; J Zahra, Sophia
2016-01-01
An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics--such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient--are insufficient for achieving adequate results under different image deformations. Thus, new descriptor's similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996
Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia
2016-01-01
An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996
A Spatial Layout and Scale Invariant Feature Representation for Indoor Scene Classification
NASA Astrophysics Data System (ADS)
Hayat, Munawar; Khan, Salman H.; Bennamoun, Mohammed; An, Senjian
2016-10-01
Unlike standard object classification, where the image to be classified contains one or multiple instances of the same object, indoor scene classification is quite different since the image consists of multiple distinct objects. Further, these objects can be of varying sizes and are present across numerous spatial locations in different layouts. For automatic indoor scene categorization, large scale spatial layout deformations and scale variations are therefore two major challenges and the design of rich feature descriptors which are robust to these challenges is still an open problem. This paper introduces a new learnable feature descriptor called "spatial layout and scale invariant convolutional activations" to deal with these challenges. For this purpose, a new Convolutional Neural Network architecture is designed which incorporates a novel 'Spatially Unstructured' layer to introduce robustness against spatial layout deformations. To achieve scale invariance, we present a pyramidal image representation. For feasible training of the proposed network for images of indoor scenes, the paper proposes a new methodology which efficiently adapts a trained network model (on a large scale data) for our task with only a limited amount of available training data. Compared with existing state of the art, the proposed approach achieves a relative performance improvement of 3.2%, 3.8%, 7.0%, 11.9% and 2.1% on MIT-67, Scene-15, Sports-8, Graz-02 and NYU datasets respectively.
Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers
Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton
2015-09-01
This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.
Calculations of signature for Dy, Er, Yb nuclei
Mueller, W.F.; Jensen, H.J.; Reviot, W.
1993-10-01
Energy signature splitting {Delta}e` of rotational bands depends sensitively on deformation, pair correlations, and Fermi level in the particular nucleus. Calculating {Delta}e` is therefore very useful in understanding the experimentally observed properties of such bands. In principal, one can extract {Delta}e` from Total Routhian Surface (TRS) calculations as well as from the Cranked Shell Model (CSM). However, the codes available are not based on a fully self-consistent treatment of all critical parameters, deformation, pairing, and Fermi level. The TRS calculations, while modeling the deformation in a {open_quote}realistic{close_quotes} manner as a function of rotational frequency and changes in the quasiparticle configuration, have deficiencies particularly in the treatment of pairing. The CSM codes, on the other hand, estimate pairing and the location of the Fermi level more precisely than the TRS codes, but work under the assumption of a constant deformation. We have developed a method to calculate {Delta}e` that utilizes the most advanced features of both types of codes. This ensures that the best parameter values are used as input for calculating the routhians. As a test, we have used a series of odd-A Dy, Er, and Yb nuclei around A = 160 and compared the results for the vi{sub 13/2} shell with experimental data on {Delta}e`. Details of our method will be discussed and the comparison will be presented.
ERIC Educational Resources Information Center
Penfield, Randall D.; Myers, Nicholas D.; Wolfe, Edward W.
2008-01-01
Measurement invariance in the partial credit model (PCM) can be conceptualized in several different but compatible ways. In this article the authors distinguish between three forms of measurement invariance in the PCM: step invariance, item invariance, and threshold invariance. Approaches for modeling these three forms of invariance are proposed,…
Invariant quantities of a nondepolarizing Mueller matrix.
Gil, José J; José, Ignacio San
2016-07-01
Orthogonal Mueller matrices can be considered as corresponding either to retarders or to generalized transformations of the polarization basis for the representation of Stokes vectors, so that they constitute the only type of Mueller matrices that preserve the degree of polarization and the intensity of any partially polarized input Stokes vector. The physical quantities that remain invariant when a nondepolarizing Mueller matrix is transformed through its product by different types of orthogonal Mueller matrices are identified and interpreted, providing a better knowledge of the information contained in a nondepolarizing Mueller matrix. PMID:27409687
A Note on Invariant Temporal Functions
NASA Astrophysics Data System (ADS)
Müller, Olaf
2016-07-01
The purpose of this article is to present a result on the existence of Cauchy temporal functions invariant by the action of a compact group of conformal transformations in arbitrary globally hyperbolic manifolds. Moreover, the previous results about the existence of Cauchy temporal functions with additional properties on arbitrary globally hyperbolic manifolds are unified in a very general theorem. To make the article more accessible for non-experts, and in the lack of an appropriate single reference for the Lorentzian geometry background of the result, the latter is provided in an introductory section.
Gauge Invariance of Thermal Transport Coefficients
NASA Astrophysics Data System (ADS)
Ercole, Loris; Marcolongo, Aris; Umari, Paolo; Baroni, Stefano
2016-10-01
Thermal transport coefficients are independent of the specific microscopic expression for the energy density and current from which they can be derived through the Green-Kubo formula. We discuss this independence in terms of a kind of gauge invariance resulting from energy conservation and extensivity, and demonstrate it numerically for a Lennard-Jones fluid, where different forms of the microscopic energy density lead to different time correlation functions for the heat flux, all of them, however, resulting in the same value for the thermal conductivity.
Origin of gauge invariance in string theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Gauge invariant actions for string models
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.
Invariant mass spectroscopy of halo nuclei
Nakamura, Takashi
2008-11-11
We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.
The axion mass in modular invariant supergravity
Butter, Daniel; Gaillard, Mary K.
2005-02-09
When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).
Measurement of sniper infrared signatures
NASA Astrophysics Data System (ADS)
Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.
2009-09-01
The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper and background in typical scenarios has been presented. We take into consideration sniper activities in open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement class devices with high accuracy and speed. The others are microbolometer cameras with FPA detector similar to those used in real commercial counter-sniper systems. The registration was made in SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented.
Graph Analytics for Signature Discovery
Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei
2013-06-01
Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.
Materials with controllable signature properties
NASA Astrophysics Data System (ADS)
Dickman, O.; Holmberg, B.; Karlsson, T.; Savage, S.
1995-02-01
We have in this report considered some types of material with potential for use in signature control of structures. The material types selected for inclusion in this study were electrically conductive polymers, fullerenes, nanostructured materials and Langmuir-Blodgett films. To control the signature of a structure in real time it must be possible to vary the material emissivity, structural transmission, and reflection or absorption of electromagnetic radiation in the relevant wavelength region. This may be achieved by changes in temperature, pressure, electrical or magnetic field or by the concentration of a chemical substance within the material. It is concluded that it is feasible to develop electrically conductive polymeric materials with controllable properties for practical signature control application within 5 to 10 years.
Signature Visualization of Software Binaries
Panas, T
2008-07-01
In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.
Reverse Kirner's deformity: case report.
Lau, Yeong J; Tonkin, Michael A
2009-03-01
Kirner's deformity is a rare congenital deformity, usually of the little finger, with volar and radial bowing of the distal phalanx. The etiology of this deformity is unclear. We describe a case of a 9-year-old girl with radiographic changes classic for Kirner's deformity but with the curvature and nail changes in the dorsal direction.
Geometric local invariants and pure three-qubit states
Williamson, Mark S.; Ericsson, Marie; Johansson, Markus; Sjoeqvist, Erik; Sudbery, Anthony; Vedral, Vlatko; Wootters, William K.
2011-06-15
We explore a geometric approach to generating local SU(2) and SL(2,C) invariants for a collection of qubits inspired by lattice gauge theory. Each local invariant or ''gauge'' invariant is associated with a distinct closed path (or plaquette) joining some or all of the qubits. In lattice gauge theory, the lattice points are the discrete space-time points, the transformations between the points of the lattice are defined by parallel transporters, and the gauge invariant observable associated with a particular closed path is given by the Wilson loop. In our approach the points of the lattice are qubits, the link transformations between the qubits are defined by the correlations between them, and the gauge invariant observable, the local invariants associated with a particular closed path, are also given by a Wilson looplike construction. The link transformations share many of the properties of parallel transporters, although they are not undone when one retraces one's steps through the lattice. This feature is used to generate many of the invariants. We consider a pure three-qubit state as a test case and find we can generate a complete set of algebraically independent local invariants in this way; however, the framework given here is applicable to generating local unitary invariants for mixed states composed of any number of d-level quantum systems. We give an operational interpretation of these invariants in terms of observables.
Průša, Vít; Rajagopal, K R; Saravanan, U
2013-08-01
Practically all experimental measurements related to the response of nonlinear bodies that are made within a purely mechanical context are concerned with inhomogeneous deformations, though, in many experiments, much effort is taken to engender homogeneous deformation fields. However, in experiments that are carried out in vivo, one cannot control the nature of the deformation. The quantity of interest is the deformation gradient and/or its invariants. The deformation gradient is estimated by tracking positions of a finite number of markers placed in the body. Any experimental data-reduction procedure based on tracking a finite number of markers will, for a general inhomogeneous deformation, introduce an error in the determination of the deformation gradient, even in the idealized case, when the positions of the markers are measured with no error. In our study, we are interested in a quantitative description of the difference between the true gradient and its estimate obtained by tracking the markers, that is, in the quantitative description of the induced error due to the data reduction. We derive a rigorous upper bound on the error, and we discuss what factors influence the error bound and the actual error itself. Finally, we illustrate the results by studying a practically interesting model problem. We show that different choices of the tracked markers can lead to substantially different estimates of the deformation gradient and its invariants. It is alarming that even qualitative features of the material under consideration, such as the incompressibility of the body, can be evaluated differently with different choices of the tracked markers. We also demonstrate that the derived error estimate can be used as a tool for choosing the appropriate marker set that leads to the deformation gradient estimate with the least guaranteed error. PMID:23760183
Ballistic Signature Identification System Study
NASA Technical Reports Server (NTRS)
1976-01-01
The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.
Deformations of anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Detournay, Stephane
2006-11-01
This PhD thesis mainly deals with deformations of locally anti-de Sitter black holes, focusing in particular on BTZ black holes. We first study the generic rotating and (extended) non-rotating BTZ black holes within a pseudo-Riemannian symmetric spaces framework, emphasize on the role played by solvable subgroups of SL(2,R) in the black hole structure and derive their global geometry in a group-theoretical way. We analyse how these observations are transposed in the case of higher-dimensional locally AdS black holes. We then show that there exists, in SL(2,R), a family of twisted conjugacy classes which give rise to winding symmetric WZW D1-branes in a BTZ black hole background. The term "deformation" is then considered in two distinct ways. On the one hand, we deform the algebra of functions on the branes in the sense of (strict) deformation quantization, giving rise to a "noncommutative black hole". In the same context, we investigate the question of invariant deformations of the hyperbolic plane and present explicit formulae. On the other hand, we explore the moduli space of the (orbifolded) SL(2,R) WZW model by studying its marginal deformations, yielding namely a new class of exact black string solutions in string theory. These deformations also allow us to relate the D1-branes in BTZ black holes to D0-branes in the 2D black hole. A fair proportion of this thesis consists of (hopefully) pedagogical short introductions to various subjects: deformation quantization, string theory, WZW models, symmetric spaces, symplectic and Poisson geometry.
Dynamics of deformable multibody systems using recursive projection methods
NASA Astrophysics Data System (ADS)
Shabana, A. A.
1992-12-01
In this investigation, generalized Newton-Euler equations are developed for deformable bodies that undergo large translational and rotational displacements. The configuration of the deformable body is identified using coupled sets of reference and elastic variables. The nonlinear generalized Newton-Euler equations are formulated in terms of a set of time invariant scalars and matrices that depend on the spatial coordinates as well as the assumed displacement field. These time-invariant quantities appear in the nonlinear terms that represent the dynamic coupling between the rigid body modes and the elastic deformation. A set of recursive kinematic equations, in which the absolute accelerations are expressed in terms of the joint and elastic accelerations are developed for several joint types. The recursive kinematic equations and the joint reaction relationships are combined with the generalized Newton-Euler equations in order to obtain a system of loosely coupled equations which have sparse matrix structure. Using matrix partitioning and recursive projection techniques based on optimal block factorization an order n solution for the system equations is obtained.
Casimir invariants for systems undergoing collective motion
Bishop, C. Allen; Byrd, Mark S.; Wu Lianao
2011-06-15
Dicke states are an important class of states which exhibit collective behavior in many-body systems. They are interesting because (1) the decay rates of these states can be quite different from a set of independently evolving particles and (2) a particular class of these states are decoherence-free or noiseless with respect to a set of errors. These noiseless states, or more generally subsystems, avoid certain types of errors in quantum-information-processing devices. Here we provide a method for determining a set of transformations of these states which leave the states in their subsystems but still enable them to evolve in particular ways. For subsystems of particles undergoing collective motions, these transformations can be calculated by using essentially the same construction which is used to determine the famous Casimir invariants for quantum systems. Such invariants can be used to determine a complete set of commuting observables for a class of Dicke states as well as to identify possible logical operations for decoherence-free-noiseless subsystems. Our method is quite general and provides results for cases where the constituent particles have more than two internal states.
Rotational invariant visual object extraction and understanding
NASA Astrophysics Data System (ADS)
Ternovskiy, Igor V.; Jannson, Tomasz P.
2000-08-01
In this paper, we discuss a novel method, base don singularity representation, for integrating a rotational invariant visual object extraction and understanding technique. This new compression method applies Arnold's Differential Mapping Singularities Theory in the context of 3D object projection onto the 2D image plane. It takes advantage of the fact that object edges can be interpreted in terms of singularities, which can be described by simple polynomials. We discuss the relationship between traditional approaches, including wavelet transform and differential mapping singularities theory or catastrophe theory (CT) in the context of image understanding and rotational invariant object extraction and compression. CT maps 3D surfaces with exact results to construct an image-compression algorithm based on an expanded set of operations. This set includes shift, scaling rotation, and homogeneous nonlinear transformations. This approach permits the mathematical description of a ful set of singularities that describes edges and other specific points of objects. The edges and specific points are the products of mapping smooth 3D surfaces, which can be described by a simple set of polynomials that are suitable for image compression and ATR.
Noise-assisted estimation of attractor invariants
NASA Astrophysics Data System (ADS)
Restrepo, Juan F.; Schlotthauer, Gastón
2016-07-01
In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D ), the correlation entropy (K2), and the noise level (σ ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U -correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (DmU), the correlation entropy (KmU), and the noise level (σmU). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators DmU and σmU behave in a similar manner to those based on the GCI. However, for the calculation of K2, the estimator KmU outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D ,K2, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants.
Lorentz invariant dark-spinor and inflation
Basak, Abhishek; Bhatt, Jitesh R. E-mail: jeet@prl.res.in
2011-06-01
We investigate the possibility of the inflation driven by a Lorentz invariant non-standard spinor field. As these spinors are having dominant interaction via gravitational field only, they are considered as Dark Spinors. We study how these dark-spinors can drive the inflation and investigate the cosmological (scalar) perturbations generated by them. Though the dark-spinors obey a Klein-Gordon like equation, the underlying theory of the cosmological perturbations is far more complex than the theories which are using a canonical scalar field. For example the sound speed of the perturbations is not a constant but varies with time. We find that in order to explain the observed value of the spectral-index n{sub s} one must have upper bound on the values of the background NSS-field. The tensor to scalar ratio remains as small as that in the case of canonical scalar field driven inflation because the correction to tensor spectrum due to NSS is required to be very small. In addition we discuss the relationship of results with previous results obtained by using the Lorentz invariance violating theories.
Are face representations depth cue invariant?
Dehmoobadsharifabadi, Armita; Farivar, Reza
2016-06-01
The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition. PMID:27271993
Criticality in translation-invariant parafermion chains
NASA Astrophysics Data System (ADS)
Li, Wei; Yang, Shuo; Tu, Hong-Hao; Cheng, Meng
2015-03-01
In this work, we numerically study critical phases in translation-invariant ZN parafermion chains with both nearest- and next-nearest-neighbor hopping terms. The model can be mapped to a ZN spin model with nearest-neighbor couplings via a generalized Jordan-Wigner transformation and translational invariance ensures that the spin model is always self-dual. We first study the low-energy spectrum of chains with only nearest-neighbor coupling, which are mapped onto standard self-dual ZN clock models. For 3 ≤N ≤6 , we match the numerical results to the known conformal field theory(CFT) identification. We then analyze in detail the phase diagram of a N =3 chain with both nearest and next-nearest-neighbor hopping and six critical phases with central charges being 4 /5 , 1, or 2 are found. We find continuous phase transitions between c =1 and 2 phases, while the phase transition between c =4 /5 and 1 is conjectured to be of Kosterlitz-Thouless type.
Primordial fluctuations from deformed quantum algebras
Day, Andrew C.; Brown, Iain A.; Seahra, Sanjeev S. E-mail: ibrown@astro.uio.no
2014-03-01
We study the implications of deformed quantum algebras for the generation of primordial perturbations from slow-roll inflation. Specifically, we assume that the quantum commutator of the inflaton's amplitude and momentum in Fourier space gets modified at energies above some threshold M{sub *}. We show that when the commutator is modified to be a function of the momentum only, the problem of solving for the post-inflationary spectrum of fluctuations is formally equivalent to solving a one-dimensional Schr and quot;odinger equation with a time dependent potential. Depending on the class of modification, we find results either close to or significantly different from nearly scale invariant spectra. For the former case, the power spectrum is characterized by step-like behaviour at some pivot scale, where the magnitude of the jump is O(H{sup 2}/M{sub *}{sup 2}). (H is the inflationary Hubble parameter.) We use our calculated power spectra to generate predictions for the cosmic microwave background and baryon acoustic oscillations, hence demonstrating that certain types of deformations are incompatible with current observations.
Topological Signatures for Population Admixture
Technology Transfer Automated Retrieval System (TEKTRAN)
Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...
Graph signatures for visual analytics.
Wong, Pak Chung; Foote, Harlan; Chin, George; Mackey, Patrick; Perrine, Ken
2006-01-01
We present a visual analytics technique to explore graphs using the concept of a data signature. A data signature, in our context, is a multidimensional vector that captures the local topology information surrounding each graph node. Signature vectors extracted from a graph are projected onto a low-dimensional scatterplot through the use of scaling. The resultant scatterplot, which reflects the similarities of the vectors, allows analysts to examine the graph structures and their corresponding real-life interpretations through repeated use of brushing and linking between the two visualizations. The interpretation of the graph structures is based on the outcomes of multiple participatory analysis sessions with intelligence analysts conducted by the authors at the Pacific Northwest National Laboratory. The paper first uses three public domain data sets with either well-known or obvious features to explain the rationale of our design and illustrate its results. More advanced examples are then used in a customized usability study to evaluate the effectiveness and efficiency of our approach. The study results reveal not only the limitations and weaknesses of the traditional approach based solely on graph visualization, but also the advantages and strengths of our signature-guided approach presented in the paper.
Invisibly Sanitizable Digital Signature Scheme
NASA Astrophysics Data System (ADS)
Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki
A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.
Interfacial Bubble Deformations
NASA Astrophysics Data System (ADS)
Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert
Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.
Crustal deformation and earthquakes
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1984-01-01
The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.
Minster, B.; Prescott, W.; Royden, L.
1991-02-01
Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2010-04-06
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2009-04-14
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
NASA Astrophysics Data System (ADS)
Inomata, Akira
1997-03-01
To understand possible physical consequences of quantum deformation, we investigate statistical behaviors of a quon gas. The quon is an object which obeys the minimally deformed commutator (or q-mutator): a a† - q a†a=1 with -1≤ q≤ 1. Although q=1 and q=-1 appear to correspond respectively to boson and fermion statistics, it is not easy to create a gas which unifies the boson gas and the fermion gas. We present a model which is able to interpolates between the two limits. The quon gas shows the Bose-Einstein condensation near the Boson limit in two dimensions.
Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema
2014-01-01
Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient.
Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema
2014-01-01
Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861
Metric Ranking of Invariant Networks with Belief Propagation
Tao, Changxia; Ge, Yong; Song, Qinbao; Ge, Yuan; Omitaomu, Olufemi A
2014-01-01
The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A promising approach is to discover invariant relationships among the monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, because system faults usually propagate among the monitoring data and eventually lead to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. Thus, a critical challenge is how to effectively and efficiently rank metrics (nodes) of invariant networks according to the anomaly levels of metrics. The ranked list of metrics will provide system experts with useful guidance for them to localize and diagnose the system faults. To this end, we propose to model the nodes and the broken links as a Markov Random Field (MRF), and develop an iteration algorithm to infer the anomaly of each node based on belief propagation (BP). Finally, we validate the proposed algorithm on both realworld and synthetic data sets to illustrate its effectiveness.
Binary optical filters for scale invariant pattern recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Downie, John D.; Hine, Butler P.
1992-01-01
Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.
The metrizability problem for Lorentz-invariant affine connections
NASA Astrophysics Data System (ADS)
Urban, Zbyněk; Volná, Jana
2016-07-01
The invariant metrizability problem for affine connections on a manifold, formulated by Tanaka and Krupka for connected Lie groups actions, is considered in the particular cases of Lorentz and Poincaré (inhomogeneous Lorentz) groups. Conditions under which an affine connection on the open submanifold ℝ × (ℝ3\\{(0, 0, 0)}) of the Euclidean space ℝ4 coincides with the Levi-Civita connection of some SO(3, 1), respectively (ℝ4 × sSO(3, 1))-invariant metric field are studied. We give complete description of metrizable Lorentz-invariant connections. Explicit solutions (metric fields) of the invariant metrizability equations are found and their properties are discussed.
Some implications of signature-change in cosmological models of loop quantum gravity
Bojowald, Martin; Mielczarek, Jakub E-mail: jakub.mielczarek@uj.edu.pl
2015-08-01
Signature change at high density has been obtained as a possible consequence of deformed space-time structures in models of loop quantum gravity. This article provides a conceptual discussion of implications for cosmological scenarios, based on an application of mathematical results for mixed-type partial differential equations (the Tricomi problem). While the effective equations from which signature change has been derived are shown to be locally regular and therefore reliable, the underlying theory of loop quantum gravity may face several global problems in its semiclassical solutions.
Block truncation signature coding for hyperspectral analysis
NASA Astrophysics Data System (ADS)
Chakravarty, Sumit; Chang, Chein-I.
2008-08-01
This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.
Deformation and shape changes in 167W
NASA Astrophysics Data System (ADS)
Li, C. B.; Ma, H. L.; Wu, X. G.; Chen, Q. M.; He, C. Y.; Zheng, Y.; Li, G. S.; Wu, Y. H.; Hu, S. P.; Li, H. W.; Luo, L. P.; Zhong, J.; Zhu, B. J.
2016-10-01
Lifetime measurements of yrast levels in 167W were measured using the recoil-distance Doppler-shift method. The differential decay-curve method was applied for a lifetime determination. Excited states of the nucleus 167W were populated by the reaction 142Nd (28Si, 3 n ) at a beam energy of 144 MeV. The energy spectra and measured transition quadrupole moments inferred from the lifetimes of 167W are compared with the predictions of the cranked Nilsson-Strutinsky-Bogoliubov calculations. The changes of deformations and shapes with increasing spin due to the γ -polarization effect of aligned particles are discussed. The signature inversion visible in the negative parity yrast band is explained to be related to the triaxial shapes.
Experimental investigation of cyclic thermomechanical deformation in torsion
NASA Technical Reports Server (NTRS)
Ellis, John R.; Castelli, Michael G.; Bakis, Charles E.
1992-01-01
An investigation of thermomechanical testing and deformation behavior of tubular specimens under torsional loading is described. Experimental issues concerning test accuracy and control specific to thermomechanical loadings under a torsional regime are discussed. A series of shear strain-controlled tests involving the nickel-base superalloy Hastelloy X were performed with various temperature excursions and compared to similar thermomechanical uniaxial tests. The concept and use of second invariants of the deviatoric stress and strain tensors as a means of comparing uniaxial and torsional specimens is also briefly presented and discussed in light of previous thermomechanical tests conducted under uniaxial conditions.
Engineering SU(2) invariant spin models to mimic quantum dimer physics on the square lattice
NASA Astrophysics Data System (ADS)
Mambrini, M.; Capponi, S.; Alet, F.
2015-10-01
We consider the spin-1 /2 Hamiltonians proposed by Cano and Fendley [Phys. Rev. Lett. 105, 067205 (2010), 10.1103/PhysRevLett.105.067205], which were built to promote the well-known Rokshar-Kivelson (RK) point of quantum dimer models to spin-1 /2 wave functions. We first show that these models, besides the exact degeneracy of RK point, support gapless spinless excitations as well as a spin gap in the thermodynamic limit, signatures of an unusual spin liquid. We then extend the original construction to create a continuous family of SU(2) invariant spin models that reproduces the phase diagram of the quantum dimer model and, in particular, show explicit evidences for existence of columnar and staggered phases. The original models thus appear as multicritical points in an extended phase diagram. Our results are based on the use of a combination of numerical exact simulations and analytical mapping to effective generalized quantum dimer models.
Spiking Models for Level-Invariant Encoding
Brette, Romain
2012-01-01
Levels of ecological sounds vary over several orders of magnitude, but the firing rate and membrane potential of a neuron are much more limited in range. In binaural neurons of the barn owl, tuning to interaural delays is independent of level differences. Yet a monaural neuron with a fixed threshold should fire earlier in response to louder sounds, which would disrupt the tuning of these neurons. How could spike timing be independent of input level? Here I derive theoretical conditions for a spiking model to be insensitive to input level. The key property is a dynamic change in spike threshold. I then show how level invariance can be physiologically implemented, with specific ionic channel properties. It appears that these ingredients are indeed present in monaural neurons of the sound localization pathway of birds and mammals. PMID:22291634
Multivariate dice recognition using invariant features
NASA Astrophysics Data System (ADS)
Hsu, Gee-Sern; Peng, Hsiao-Chia; Yeh, Shang-Min; Lin, Chyi-Yeu
2013-04-01
A system is proposed for automatic reading of the number of dots on dice in general table game settings. Different from previous dice recognition systems that recognize dice of a specific color using a single top-view camera in an enclosure with controlled settings, the proposed one uses multiple cameras to recognize dice of various colors and under uncontrolled conditions. It is composed of three modules. Module-1 locates the dice using the gradient-conditioned color segmentation, proposed, to segment dice of arbitrary colors from the background. Module-2 exploits the local invariant features good for building homographies, giving a solution to segment the top faces of the dice. To identify the dots on the segmented top faces, a maximally stable extremal region detector is embedded in module-3 for its consistency in locating the dot region. Experiments show that the proposed system performs satisfactorily in various test conditions.
Spiking models for level-invariant encoding.
Brette, Romain
2011-01-01
Levels of ecological sounds vary over several orders of magnitude, but the firing rate and membrane potential of a neuron are much more limited in range. In binaural neurons of the barn owl, tuning to interaural delays is independent of level differences. Yet a monaural neuron with a fixed threshold should fire earlier in response to louder sounds, which would disrupt the tuning of these neurons. How could spike timing be independent of input level? Here I derive theoretical conditions for a spiking model to be insensitive to input level. The key property is a dynamic change in spike threshold. I then show how level invariance can be physiologically implemented, with specific ionic channel properties. It appears that these ingredients are indeed present in monaural neurons of the sound localization pathway of birds and mammals. PMID:22291634
Onboard Image Registration from Invariant Features
NASA Technical Reports Server (NTRS)
Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C
2008-01-01
This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.
Invariant conserved currents in generalized gravity
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Portales-Oliva, Felipe; Puetzfeld, Dirk; Rubilar, Guillermo F.
2015-11-01
We study conservation laws for gravity theories invariant under general coordinate transformations. The class of models under consideration includes Einstein's general relativity theory as a special case as well as its generalizations to non-Riemannian spacetime geometry and nonminimal coupling. We demonstrate that an arbitrary vector field on the spacetime manifold generates a current density that is conserved under certain conditions, and find the expression of the corresponding superpotential. For a family of models including nonminimal coupling between geometry and matter, we discuss in detail the differential conservation laws and the conserved quantities defined in terms of covariant multipole moments. We show that the equations of motion for the multipole moments of extended microstructured test bodies lead to conserved quantities that are closely related to the conserved currents derived in the field-theoretic framework.
Hydrodynamic approach to boost invariant free streaming
NASA Astrophysics Data System (ADS)
Calzetta, E.
2015-08-01
We consider a family of exact boost invariant solutions of the transport equation for free-streaming massless particles, where the one-particle distribution function is defined in terms of a function of a single variable. The evolution of second and third moments of the one-particle distribution function [the second moment being the energy momentum tensor (EMT) and the third moment the nonequilibrium current (NEC)] depends only on two moments of that function. Given those two moments, we show how to build a nonlinear hydrodynamic theory which reproduces the early time evolution of the EMT and the NEC. The structure of these theories may give insight on nonlinear hydrodynamic phenomena on short time scales.
Truesdell invariance in relativistic electromagnetic fields
NASA Astrophysics Data System (ADS)
Walwadkar, B. B.; Virkar, K. V.
1984-01-01
The Truesdell derivative of a contravariant tensor fieldX ab is defined with respect to a null congruencel a analogous to the Truesdell stress rate in classical continuum mechanics. The dynamical consequences of the Truesdell invariance with respect to a timelike vectoru a of the stress-energy tensor characterizing a charged perfect fluid with null conductivity are the conservation of pressure (p), charged density (e) an expansion-free flow, constancy of the Maxwell scalars, and vanishing spin coefficientsα+¯β = ¯σ - λ = τ = 0 (assuming freedom conditionsk = λ = ɛ ψ + ¯γ = 0). The electromagnetic energy momentum tensor for the special subcases of Ruse-Synge classification for typesA andB are described in terms of the spin coefficients introduced by Newman-Penrose.
Rotationally invariant ensembles of integrable matrices
NASA Astrophysics Data System (ADS)
Yuzbashyan, Emil A.; Shastry, B. Sriram; Scaramazza, Jasen A.
2016-05-01
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)—a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N -M independent commuting N ×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.
Bacterial phenotype identification using Zernike moment invariants
NASA Astrophysics Data System (ADS)
Bayraktar, Bulent; Banada, Padmapriya P.; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul; Rajwa, Bartek
2006-02-01
Pathogenic bacterial contamination in food products is costly to the public and to industry. Traditional methods for detection and identification of major food-borne pathogens such as Listeria monocytogenes typically take 3-7 days. Herein, the use of optical scattering for rapid detection, characterization, and identification of bacteria is proposed. Scatter patterns produced by the colonies are recognized without the need to use any specific model of light scattering on biological material. A classification system was developed to characterize and identify the scatter patterns obtained from colonies of various species of Listeria. The proposed classification algorithm is based on Zernike moment invariants (features) calculated from the scatter images. It has also been demonstrated that even a simplest approach to multivariate analysis utilizing principal component analysis paired with clustering or linear discriminant analysis can be successfully used to discriminate and classify feature vectors computed from the bacterial scatter patterns.
Criticality in Translation-Invariant Parafermion Chains
NASA Astrophysics Data System (ADS)
Li, Wei; Yang, Shuo; Tu, Hong-Hao; Cheng, Meng
2014-03-01
Parafermionic zero modes have been recently proposed to emerge at certain topological defects in Abelian fractional quantum Hall systems. In this work, we investigate the phase diagram of a translationally invariant Z3 parafermion chain, with nearest- and next-nearest-neighbor hopping terms. The model can be mapped to a Z3 Potts model with nearest-neighbor couplings via a generalized Jordan-Wigner transformation. The phase diagram is obtained numerically via accurate density matrix renormalization group method, and six gapless phases with central charges being 4/5, 1 or 2 are found. By checking the energy derivatives, we observe continuous phase transitions between c = 1 and c = 2 phases, while the phase transition between c = 4 / 5 and c = 1 is conjectured to be of Kosterlitz-Thouless type.
Conformally invariant fractals and potential theory
Duplantier
2000-02-14
The multifractal (MF) distribution of the electrostatic potential near any conformally invariant fractal boundary, like a critical O(N) loop or a Q-state Potts cluster, is solved in two dimensions. The dimension &fcirc;(straight theta) of the boundary set with local wedge angle straight theta is &fcirc;(straight theta) = pi / straight theta-25-c / 12 (pi-straight theta)(2) / straight theta(2pi-straight theta), with c the central charge of the model. As a corollary, the dimensions D(EP) of the external perimeter and D(H) of the hull of a Potts cluster obey the duality equation (D(EP)-1) (D(H)-1) = 1 / 4. A related covariant MF spectrum is obtained for self-avoiding walks anchored at cluster boundaries.
Orthogonal wavelet moments and their multifractal invariants
NASA Astrophysics Data System (ADS)
Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.
2015-02-01
This paper introduces a new family of moments, namely orthogonal wavelet moments (OWMs), which are orthogonal realization of wavelet moments (WMs). In contrast to WMs with nonorthogonal kernel function, these moments can be used for multiresolution image representation and image reconstruction. The paper also introduces multifractal invariants (MIs) of OWMs which can be used instead of OWMs. Some reconstruction tests performed with noise-free and noisy images demonstrate that MIs of OWMs can also be used for image smoothing, sharpening and denoising. It is established that the reconstruction quality for MIs of OWMs can be better than corresponding orthogonal moments (OMs) and reduces to the reconstruction quality for the OMs if we use the zero scale level.
Invariant relationships deriving from classical scaling transformations
Bludman, Sidney; Kennedy, Dallas C.
2011-04-15
Because scaling symmetries of the Euler-Lagrange equations are generally not variational symmetries of the action, they do not lead to conservation laws. Instead, an extension of Noether's theorem reduces the equations of motion to evolutionary laws that prove useful, even if the transformations are not symmetries of the equations of motion. In the case of scaling, symmetry leads to a scaling evolutionary law, a first-order equation in terms of scale invariants, linearly relating kinematic and dynamic degrees of freedom. This scaling evolutionary law appears in dynamical and in static systems. Applied to dynamical central-force systems, the scaling evolutionary equation leads to generalized virial laws, which linearly connect the kinetic and potential energies. Applied to barotropic hydrostatic spheres, the scaling evolutionary equation linearly connects the gravitational and internal energy densities. This implies well-known properties of polytropes, describing degenerate stars and chemically homogeneous nondegenerate stellar cores.
Gauge invariance and reciprocity in quantum mechanics
Leung, P. T.; Young, K.
2010-03-15
Reciprocity in wave propagation usually refers to the symmetry of the Green's function under the interchange of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials, including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion allows for specific phase factors separable into functions of the source and observer coordinates and that this condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments: the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.
Time reversal invariance in polarized neutron decay
Wasserman, E.G.
1994-03-01
An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.
Lorentz invariance violation and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag
2016-01-01
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.
Noise-assisted estimation of attractor invariants.
Restrepo, Juan F; Schlotthauer, Gastón
2016-07-01
In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D), the correlation entropy (K_{2}), and the noise level (σ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U-correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (D_{m}^{U}), the correlation entropy (K_{m}^{U}), and the noise level (σ_{m}^{U}). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators D_{m}^{U} and σ_{m}^{U} behave in a similar manner to those based on the GCI. However, for the calculation of K_{2}, the estimator K_{m}^{U} outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D,K_{2}, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants.
Scale invariance and universality of economic fluctuations
NASA Astrophysics Data System (ADS)
Stanley, H. E.; Amaral, L. A. N.; Gopikrishnan, P.; Plerou, V.
2000-08-01
In recent years, physicists have begun to apply concepts and methods of statistical physics to study economic problems, and the neologism “econophysics” is increasingly used to refer to this work. Much recent work is focused on understanding the statistical properties of time series. One reason for this interest is that economic systems are examples of complex interacting systems for which a huge amount of data exist, and it is possible that economic time series viewed from a different perspective might yield new results. This manuscript is a brief summary of a talk that was designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena - scale invariance and universality - can be useful in guiding research on economics. We shall see that while scale invariance has been tested for many years, universality is relatively less frequently discussed. This article reviews the results of two recent studies - (i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes - from tiny fluctuations to drastic events, such as market crashes. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ in size by as much as eight orders of magnitude. (ii) Quantifying business firm fluctuations: We analyze the Computstat database comprising all publicly traded United States manufacturing companies within the years 1974-1993. We find that the distributions of growth rates is different for different bins of firm size, with a width that varies inversely with a power of firm size. Similar variation is found for other complex organizations, including country size, university research budget size, and size of species of bird populations.
Noise-assisted estimation of attractor invariants.
Restrepo, Juan F; Schlotthauer, Gastón
2016-07-01
In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate the invariants of a dynamical system, namely the correlation dimension (D), the correlation entropy (K_{2}), and the noise level (σ). This correlation integral is induced by using random noise in a modified version of the correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special cases of the NCI. A third particular case is the U-correlation integral proposed herein, from which we derived coarse-grained estimators of the correlation dimension (D_{m}^{U}), the correlation entropy (K_{m}^{U}), and the noise level (σ_{m}^{U}). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these estimators under different noise conditions and data lengths. The results show that the estimators D_{m}^{U} and σ_{m}^{U} behave in a similar manner to those based on the GCI. However, for the calculation of K_{2}, the estimator K_{m}^{U} outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an automatic algorithm to find D,K_{2}, and σ from a given time series. The results show that by using this approach, we are able to achieve statistically reliable estimations of those invariants. PMID:27575128
MEMS Actuated Deformable Mirror
Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M
2005-11-10
This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.
Transfer involving deformed nuclei
Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.
1985-03-01
Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Signatures. 232.302 Section 232.302 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Preparation of Electronic Submissions § 232.302 Signatures. (a) Required signatures to, or within,...
48 CFR 4.102 - Contractor's signature.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed,...
The Application of Spatial Signature Analysis to Electrical Test Data: Validation Study
Gleason, S.S.; Karnowski, T.P.; Lakhani, F.; Tobin, K.W.
1999-03-15
This paper presents the results of the Spatial Signature Analysis (SSA) Electrical-test (e-test) validation study that was conducted between February and June, 1998. SSA is an automated procedure developed by researchers at the Oak Ridge National Laboratory to address the issue of intelligent data reduction while providing feedback on current manufacturing processes. SSA was initially developed to automate the analysis of optical defect data. Optical defects can form groups, or clusters, which may have a distinct shape. These patterns can reveal information about the manufacturing process. Optical defect SSA uses image processing algorithms and a classifier system to interpret and identify these patterns, or signatures. SSA has been extended to analyze and interpret electrical test data. The algorithms used for optical defect SSA have been adapted and applied to e-test binmaps. An image of the binmap is created, and features such as geometric and invariant moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier. The classifier itself was prepared by manually training, which consists of storing example signatures of interest in a library, then executing an automated process which treats the examples as prototype signatures. The training process includes a procedure for automatically determining which features are most relevant to each class. The evaluation was performed by installing the SSA software as a batch process at three SEMATECH member company sites. Feedback from member company representatives was incorporated and classifiers were built to automatically assign labels to the binmap signatures. The three sites produced memory devices (DRAM) and microprocessors in a mature process fabrication environment. For all of these products, 5,620 signatures that encompassed approximately 552 wafers were human-classified and analyzed. The performance of the SSA E-test system indicates that the approach was successful in reliably classifying binmap
Conducting fixed points for inhomogeneous quantum wires: A conformally invariant boundary theory
NASA Astrophysics Data System (ADS)
Sedlmayr, N.; Morath, D.; Sirker, J.; Eggert, S.; Affleck, I.
2014-01-01
Inhomogeneities and junctions in wires are natural sources of scattering, and hence resistance. A conducting fixed point usually requires an adiabatically smooth system. One notable exception is "healing," which has been predicted in systems with special symmetries, where the system is driven to the homogeneous fixed point. Here we present theoretical results for a different type of conducting fixed point which occurs in inhomogeneous wires with an abrupt jump in hopping and interaction strength. We show that it is always possible to tune the system to an unstable conducting fixed point which does not correspond to translational invariance. We analyze the temperature scaling of correlation functions at and near this fixed point and show that two distinct boundary exponents appear, which correspond to different effective Luttinger liquid parameters. Even though the system consists of two separate interacting parts, the fixed point is described by a single conformally invariant boundary theory. We present details of the general effective bosonic field theory including the mode expansion and the finite size spectrum. The results are confirmed by numerical quantum Monte Carlo simulations on spinless fermions. We predict characteristic experimental signatures of the local density of states near junctions.
Robust estimation of albedo for illumination-invariant matching and shape recovery.
Biswas, Soma; Aggarwal, Gaurav; Chellappa, Rama
2009-05-01
We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error statistics of surface normals and illumination direction for robust estimation of albedo, for images illuminated by single and multiple light sources. The albedo estimate obtained is subsequently used to generate albedo-free normalized images for recovering the shape of an object. Traditional Shape-from-Shading (SFS) approaches often assume constant/piecewise constant albedo and known light source direction to recover the underlying shape. Using the estimated albedo, the general problem of estimating the shape of an object with varying albedo map and unknown illumination source is reduced to one that can be handled by traditional SFS approaches. Experimental results are provided to show the effectiveness of the approach and its application to illumination-invariant matching and shape recovery. The estimated albedo maps are compared with the ground truth. The maps are used as illumination-invariant signatures for the task of face recognition across illumination variations. The recognition results obtained compare well with the current state-of-the-art approaches. Impressive shape recovery results are obtained using images downloaded from the Web with little control over imaging conditions. The recovered shapes are also used to synthesize novel views under novel illumination conditions. PMID:19299862
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2011-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
Evolutionary Signatures of River Networks
NASA Astrophysics Data System (ADS)
Paik, K.
2014-12-01
River networks exhibit fractal characteristics and it has long been wondered how such regular patterns have been formed. This subject has been actively investigated mainly by two great schools of thoughts, i.e., chance and organization. Along this line, several fundamental questions have partially been addressed or remained. They include whether river networks pursue certain optimal conditions, and if so what is the ultimate optimality signature. Hydrologists have traditionally perceived this issue from fluvial-oriented perspectives. Nevertheless, geological processes can be more dominant in the formation of river networks in reality. To shed new lights on this subject, it is necessary to better understand complex feedbacks between various processes over different time scales, and eventually the emerging characteristic signature. Here, I will present highlights of earlier studies on this line and some noteworthy approaches being tried recently.
Signatures of topological Josephson junctions
NASA Astrophysics Data System (ADS)
Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix
2016-08-01
Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.
Signatures of a Shadow Biosphere
NASA Astrophysics Data System (ADS)
Davies, Paul C. W.; Benner, Steven A.; Cleland, Carol E.; Lineweaver, Charles H.; McKay, Christopher P.; Wolfe-Simon, Felisa
2009-03-01
Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere.
Signatures of a shadow biosphere.
Davies, Paul C W; Benner, Steven A; Cleland, Carol E; Lineweaver, Charles H; McKay, Christopher P; Wolfe-Simon, Felisa
2009-03-01
Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere. PMID:19292603
Polarization signatures of airborne particulates
NASA Astrophysics Data System (ADS)
Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.
2013-07-01
Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.
Nonlinear control of magnetic signatures
NASA Astrophysics Data System (ADS)
Niemoczynski, Bogdan
Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and
Quantification of organ motion based on an adaptive image-based scale invariant feature method
Paganelli, Chiara; Peroni, Marta
2013-11-15
Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT
Putting a Classroom Spin on Invariance in Circles
ERIC Educational Resources Information Center
Staples, Ed
2009-01-01
An old chestnut goes something like this. The surface area of a pond in the form of an annulus is required, but the only measurement possible is the length of the chord across the outer circumference and tangent to the inner circumference. It is a beautiful example of invariance. Invariance in mathematics usually refers to a quantity that remains…
Model Misspecification and Invariance Testing Using Confirmatory Factor Analytic Procedures
ERIC Educational Resources Information Center
French, Brian F.; Finch, W. Holmes
2011-01-01
Confirmatory factor analytic procedures are routinely implemented to provide evidence of measurement invariance. Current lines of research focus on the accuracy of common analytic steps used in confirmatory factor analysis for invariance testing. However, the few studies that have examined this procedure have done so with perfectly or near…
Galilean invariance and homogeneous anisotropic randomly stirred flows
Berera, Arjun; Hochberg, David
2005-11-01
The Ward-Takahashi identities for incompressible flow implied by Galilean invariance are derived for the randomly forced Navier-Stokes equation, in which both the mean and fluctuating velocity components are explicitly present. The consequences of the Galilean invariance for the vertex renormalization are drawn from this identity.
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
Measurement Invariance: A Foundational Principle for Quantitative Theory Building
ERIC Educational Resources Information Center
Nimon, Kim; Reio, Thomas G., Jr.
2011-01-01
This article describes why measurement invariance is a critical issue to quantitative theory building within the field of human resource development. Readers will learn what measurement invariance is and how to test for its presence using techniques that are accessible to applied researchers. Using data from a LibQUAL+[TM] study of user…
Comment on the invariant envelope solution in rf photoinjectors.
Wang, C.-x.; Accelerator Systems Division
2006-02-01
The beam envelope equation has been used to address the beam dynamics in rf photoinjectors. A special solution of the envelope equation, known as the invariant envelope, plays a critical role in the theory of emittance compensation. In this comment, I will present a different view of the invariant envelope solution that better delineates its properties and simplifies the picture of beam dynamics.
Factorial Invariance in Multiple Populations: A Multiple Testing Procedure
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E.
2013-01-01
A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…
Dragging and Making Sense of Invariants in Dynamic Geometry
ERIC Educational Resources Information Center
Baccaglini-Frank, Anna E.
2012-01-01
Perceiving and interpreting invariants is a complex task for a nonexpert geometry student, as various studies have shown. Nevertheless, having students work through particular kinds of activities that involve perception and interpretation of invariants and engage in discussions with classmates, guided by the teacher, can help them learn…
Factorial Invariance of a Pan-Hispanic Familism Scale
ERIC Educational Resources Information Center
Villarreal, Ricardo; Blozis, Shelley A.; Widaman, Keith F.
2005-01-01
This article considers the validity and factorial invariance of an attitudinal measure of familism. Using a large, nationally representative sample of U.S. Hispanics, the validity and factorial invariance of the measure was tested across country of origin (United States, Mexico, and Latin America) and the language in which the survey was conducted…
Coordinate Projection-based Solver for ODE with Invariants
2008-04-08
CPODES is a general purpose (serial and parallel) solver for systems of ordinary differential equation (ODE) with invariants. It implements a coordinate projection approach using different types of projection (orthogonal or oblique) and one of several methods for the decompositon of the Jacobian of the invariant equations.
Finding Mutual Exclusion Invariants in Temporal Planning Domains
NASA Technical Reports Server (NTRS)
Bernardini, Sara; Smith, David E.
2011-01-01
We present a technique for automatically extracting temporal mutual exclusion invariants from PDDL2.2 planning instances. We first identify a set of invariant candidates by inspecting the domain and then check these candidates against properties that assure invariance. If these properties are violated, we show that it is sometimes possible to refine a candidate by adding additional propositions and turn it into a real invariant. Our technique builds on other approaches to invariant synthesis presented in the literature, but departs from their limited focus on instantaneous discrete actions by addressing temporal and numeric domains. To deal with time, we formulate invariance conditions that account for both the entire structure of the operators (including the conditions, rather than just the effects) and the possible interactions between operators. As a result, we construct a technique that is not only capable of identifying invariants for temporal domains, but is also able to find a broader set of invariants for non-temporal domains than the previous techniques.
Historical Perspectives on Invariant Measurement: Guttman, Rasch, and Mokken
ERIC Educational Resources Information Center
Engelhard, George, Jr.
2008-01-01
The purpose of this study is to describe how Guttman, Rasch, and Mokken approached issues related to invariant measurement. These measurement theorists were chosen to illustrate the evolution of our conceptualizations of invariant measurement during the 20th century within the research tradition of item response theory. Item response theory can be…
Microbial Lifestyle and Genome Signatures
Dutta, Chitra; Paul, Sandip
2012-01-01
Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity. PMID:23024607
Selection signatures in Shetland ponies.
Frischknecht, M; Flury, C; Leeb, T; Rieder, S; Neuditschko, M
2016-06-01
Shetland ponies were selected for numerous traits including small stature, strength, hardiness and longevity. Despite the different selection criteria, Shetland ponies are well known for their small stature. We performed a selection signature analysis including genome-wide SNPs of 75 Shetland ponies and 76 large-sized horses. Based upon this dataset, we identified a selection signature on equine chromosome (ECA) 1 between 103.8 Mb and 108.5 Mb. A total of 33 annotated genes are located within this interval including the IGF1R gene at 104.2 Mb and the ADAMTS17 gene at 105.4 Mb. These two genes are well known to have a major impact on body height in numerous species including humans. Homozygosity mapping in the Shetland ponies identified a region with increased homozygosity between 107.4 Mb and 108.5 Mb. None of the annotated genes in this region have so far been associated with height. Thus, we cannot exclude the possibility that the identified selection signature on ECA1 is associated with some trait other than height, for which Shetland ponies were selected. PMID:26857482
NASA Astrophysics Data System (ADS)
Solorza, S.; Álvarez-Borrego, J.
2013-11-01
The effects of illumination variations in digital images are a trend topic of the pattern recognition field. The luminance information of the objects help to classify them, however the environment illumination could cause a lot of problem if the system is not illumination invariant. Some applications of this topic include image and video quality, biometrics classification, etc. In this work an illumination analysis for a digital system invariant to position and rotation based on Fourier transform, Bessel masks, one-dimensional signatures and linear correlations are presented. The digital system was tested using a reference database of 21 fossil diatoms images of gray-scale and 307 x 307 pixels. The digital system has shown an excellent performance in the classification of 60,480 problem images which have different non-homogeneous illumination.
Comparison of MMW ground vehicle signatures
NASA Astrophysics Data System (ADS)
Saylor, Ph. D., Annie V.; Kissell, Ann
2006-05-01
A continuing question asked of MMW target signature and model providers is the applicability of data from one frequency band to another. Recent monopulse Ka-band ground target signature measurements made by US Army programs provide an opportunity to do an in-depth comparison of signatures of several ground vehicles. The vehicles measured correspond to those measured at W-band by another Army program. This paper provides a comparison of vehicle signatures produced by models derived by AMRDEC from the measurements. The results have implications for missile programs that do not have an extensive measurement budget but require target signatures and models for algorithm development.
Comparison of GLR and invariant detectors under structured clutter covariance.
Kim, H S; Hero, A O
2001-01-01
This paper addresses a target detection problem in radar imaging for which the covariance matrix of unknown Gaussian clutter has block diagonal structure. This block diagonal structure is the consequence of a target lying along a boundary between two statistically independent clutter regions. Here, we design adaptive detection algorithms using both the generalized likelihood ratio (GLR) and the invariance principles. There has been considerable interest in applying invariant hypothesis testing as an alternative to the GLR test. This interest has been motivated by several attractive properties of invariant tests including: exact robustness to variation of nuisance parameters and possible finite-sample min-max optimality. However, in our deep-hide target detection problem, there are regimes for which neither the GLR nor the invariant tests uniformly outperforms the other. We discuss the relative advantages of GLR and invariance procedures in the context of this radar imaging and target detection application.
Image Deconvolution by Means of Frequency Blur Invariant Concept
2014-01-01
Different blur invariant descriptors have been proposed so far, which are either in the spatial domain or based on the properties available in the moment domain. In this paper, a frequency framework is proposed to develop blur invariant features that are used to deconvolve a degraded image caused by a Gaussian blur. These descriptors are obtained by establishing an equivalent relationship between the normalized Fourier transforms of the blurred and original images, both normalized by their respective fixed frequencies set to one. Advantage of using the proposed invariant descriptors is that it is possible to estimate both the point spread function (PSF) and the original image. The performance of frequency invariants will be demonstrated through experiments. An image deconvolution is done as an additional application to verify the proposed blur invariant features. PMID:25202743
NASA Astrophysics Data System (ADS)
Chen, Jingyi; Zebker, Howard A.; Knight, Rosemary
2015-11-01
Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique for measuring surface deformation to millimeter-level accuracy at meter-scale resolution. Obtaining accurate deformation measurements in agricultural regions is difficult because the signal is often decorrelated due to vegetation growth. We present here a new algorithm for retrieving InSAR deformation measurements over areas with severe vegetation decorrelation using adaptive phase interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. We apply this algorithm to L-band ALOS interferograms acquired over the San Luis Valley, Colorado, and the Tulare Basin, California. In both areas, the pumping of groundwater for irrigation results in deformation of the land that can be detected using InSAR. We show that the PS-based algorithm can significantly reduce the artifacts due to vegetation decorrelation while preserving the deformation signature.
Formal Definition and Construction of Nominative Signature
NASA Astrophysics Data System (ADS)
Liu, Dennis Y. W.; Wong, Duncan S.; Huang, Xinyi; Wang, Guilin; Huang, Qiong; Mu, Yi; Susilo, Willy
Since the introduction of nominative signature in 1996, there are three problems that have still not been solved. First, there is no convincing application proposed; second, there is no formal security model available; and third, there is no proven secure scheme constructed, given that all the previous schemes have already been found flawed. In this paper, we give positive answers to these problems. First, we illustrate that nominative signature is a better tool for building user certification systems which were originally implemented using universal designated-verifier signature. Second, we propose a formal definition and adversarial model for nominative signature. Third, we show that Chaum's undeniable signature can be transformed to an efficient nominative signature by simply using a standard signature. The security of our transformation can be proven under the standard number-theoretic assumption.
[Babies with cranial deformity].
Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J
2009-01-01
Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299
Probing deformed quantum commutators
NASA Astrophysics Data System (ADS)
Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.
2016-07-01
Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.
de Miranda, Joachim R; Genersch, Elke
2010-01-01
Deformed wing virus (DWV; Iflaviridae) is one of many viruses infecting honeybees and one of the most heavily investigated due to its close association with honeybee colony collapse induced by Varroadestructor. In the absence of V.destructor DWV infection does not result in visible symptoms or any apparent negative impact on host fitness. However, for reasons that are still not fully understood, the transmission of DWV by V.destructor to the developing pupae causes clinical symptoms, including pupal death and adult bees emerging with deformed wings, a bloated, shortened abdomen and discolouration. These bees are not viable and die soon after emergence. In this review we will summarize the historical and recent data on DWV and its relatives, covering the genetics, pathobiology, and transmission of this important viral honeybee pathogen, and discuss these within the wider theoretical concepts relating to the genetic variability and population structure of RNA viruses, the evolution of virulence and the development of disease symptoms.
Congenital idiopathic clubfoot deformities.
Kyzer, S P; Stark, S L
1995-03-01
Clubfoot is a birth defect that is marked primarily by a deformed talus (ie, ankle) and calcaneous (ie, heel) that give the foot a characteristic "club-like" appearance. In congenital idiopathic clubfoot (ie, talipes equinovarus), the infant's foot points downward (ie, equinus) and turns inward (ie, varus), while the forefoot curls toward the heel (ie, adduction). This congenital disorder has an incidence of 1 in 400 live births, with boys affected twice as often as girls. Unilateral clubfoot is somewhat more common than bilateral clubfoot and may occur as an isolated defect or in association with other disorders (eg, chromosomal aberrations, cerebral palsy, spina bifida, arthrogryposis). Infantile clubfoot deformity is painless and is correctable with early diagnosis and prompt treatment. PMID:7778903
Partially segmented deformable mirror
Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.
1991-05-21
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.
Partially segmented deformable mirror
Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.
1991-01-01
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
Postlaminectomy cervical deformity.
Deutsch, Harel; Haid, Regis W; Rodts, Gerald E; Mummaneni, Praveen V
2003-09-15
Postlaminectomy cervical kyphosis is an important consideration when performing surgery. Identifying factors predisposing to postoperative deformity is essential. The goal is to prevent postlaminectomy cervical kyphosis while exposing the patient to minimal additional morbidity. When postlaminectomy kyphosis does occur, surgical correction is often required and performed via an anterior, posterior, or combined approach. The authors discuss the indications for surgical approaches as well as clinical results. PMID:15347223
Deformation of wrinkled graphene.
Li, Zheling; Kinloch, Ian A; Young, Robert J; Novoselov, Kostya S; Anagnostopoulos, George; Parthenios, John; Galiotis, Costas; Papagelis, Konstantinos; Lu, Ching-Yu; Britnell, Liam
2015-04-28
The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609
Deformation of Wrinkled Graphene
2015-01-01
The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609
Deformable micro torque swimmer
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke
2015-11-01
We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.
Treatment of Madelung's deformity.
Saffar, P; Badina, A
2015-12-01
Treatment of Madelung's deformity is still controversial. We reviewed retrospectively 19 patients with Madelung's deformity (two bilateral, 21 cases) who underwent surgery to the radius and ulna to improve range of motion, decrease pain and improve appearance of the wrist. Nineteen patients underwent 21 distal radial osteotomy procedures using three different techniques: subtraction, addition or dome osteotomy. Ulnar shortening and redirection of the distal ulna was performed in 12 cases; a long oblique osteotomy was used in 10 of these cases. The Sauvé-Kapandji technique was performed in five cases, an ulnar distal epiphysiodesis in two cases and a combination of osteotomy and epiphysiodesis in one case. The aim was to reduce the distal radial slope and to restore the orientation and congruity of the distal radio-ulnar joint and to improve its function. Pain was reduced as a result of the procedure: more than 75% of the cases had no or intermittent pain at the review. Pronation improved from 63° to 68° (P=0.467, not significant) and supination improved from 48° to 72° on average (P=0.034, significant). Grip strength increased from 11 to 18 kgf (P=0.013, significant). Madelung's deformity is not always a benign condition and it responds well to corrective osteotomies. PMID:26525609
Optical implementation of neocognitron and its applications to radar signature discrimination
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1991-01-01
A feature-extraction-based optoelectronic neural network is introduced. The system implementation approach applies the principle of the neocognitron paradigm first introduced by Fukushima et al. (1983). A multichannel correlator is used as a building block of a generic single layer of the neocognitron for shift-invariant feature correlation. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator. Successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved using this optoelectronic neocognitron. Detailed system analysis is described. Experimental demonstration of radar signature processing is also provided.
Fuzzy Intervals for Designing Structural Signature: An Application to Graphic Symbol Recognition
NASA Astrophysics Data System (ADS)
Luqman, Muhammad Muzzamil; Delalandre, Mathieu; Brouard, Thierry; Ramel, Jean-Yves; Lladós, Josep
The motivation behind our work is to present a new methodology for symbol recognition. The proposed method employs a structural approach for representing visual associations in symbols and a statistical classifier for recognition. We vectorize a graphic symbol, encode its topological and geometrical information by an attributed relational graph and compute a signature from this structural graph. We have addressed the sensitivity of structural representations to noise, by using data adapted fuzzy intervals. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set. The Bayesian network is deployed in a supervised learning scenario for recognizing query symbols. The method has been evaluated for robustness against degradations & deformations on pre-segmented 2D linear architectural & electronic symbols from GREC databases, and for its recognition abilities on symbols with context noise i.e. cropped symbols.
A non-linear elastic constitutive framework for replicating plastic deformation in solids.
Roberts, Scott Alan; Schunk, Peter Randall
2014-02-01
Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.
The deformation of Poincaré subgroups concerning very special relativity
NASA Astrophysics Data System (ADS)
Zhang, Lei; Xue, Xun
2014-05-01
We investigate here various kinds of semi-product subgroups of Poincaré group in the scheme of Cohen-Glashow's very special relativity along the deformation approach by Gibbons-Gomis-Pope. For each proper Poincaré subgroup which is a semi-product of proper lorentz group with the spacetime translation group T(4), we investigate all possible deformations and obtain all the possible natural representations inherited from the 5 - d representation of Poincaré group. We find from the obtained natural representation that rotation operation may have additional accompanied scale transformation when the original Lorentz subgroup is deformed and the boost operation gets the additional accompanied scale transformation in all the deformation cases. The additional accompanied scale transformation has a strong constrain on the possible invariant metric function of the corresponding geometry and the field theories in the spacetime with the corresponding geometry.
Noninflationary model with scale invariant cosmological perturbations
Peter, Patrick; Pinho, Emanuel J. C.; Pinto-Neto, Nelson
2007-01-15
We show that a contracting universe which bounces due to quantum cosmological effects and connects to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations provided the perturbations are produced during an almost matter dominated era in the contraction phase. This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum (n{sub S}-1>0). Taking into account the spectral index constraint as well as the cosmic microwave background normalization measure yields an equation of state that should be less than {omega} < or approx. 8x10{sup -4}, implying n{sub S}-1{approx}O(10{sup -4}), and that the characteristic curvature scale of the Universe at the bounce is L{sub 0}{approx}10{sup 3}l{sub Pl}, a region where one expects that the Wheeler-DeWitt equation should be valid without being spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between the tensor-to-scalar ratio T/S and the scalar spectral index as T/S{approx}4.6x10{sup -2}{radical}(n{sub S}-1), leading to potentially measurable differences with inflationary predictions.
Magnetic monopoles, Galilean invariance, and Maxwell's equations
Crawford, F.S. . Physics Department)
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamics are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities {ital v}{much lt}{ital c} are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.
On invariants of free restricted Lie algebras
NASA Astrophysics Data System (ADS)
Petrogradsky, V. M.; Subbotin, I. A.
2014-12-01
We prove that the invariant subalgebra L^G is infinitely generated, where L=L(X) is the free restricted Lie algebra of finite rank k with free generating set X=\\{x_1,\\dots,x_k\\} over an arbitrary field of positive characteristic and G is a non-trivial finite group of homogeneous automorphisms of L(X). We show that the sequence \\vert Y_n\\vert, n≥1, grows exponentially with base k, where Y=\\bigcupn=1^∞ Y_n is a free homogeneous generating set of L^G and all the elements of Y_n are of degree n in X, n≥1. We prove that the radius of convergence of the generating function H(Y,t)=\\sumn=1^∞\\vert Y_n\\vert t^n is equal to 1/k and find an asymptotic formula for the growth of H(Y,t) as t\\to1/k-0.
Computing with scale-invariant neural representations
NASA Astrophysics Data System (ADS)
Howard, Marc; Shankar, Karthik
The Weber-Fechner law is perhaps the oldest quantitative relationship in psychology. Consider the problem of the brain representing a function f (x) . Different neurons have receptive fields that support different parts of the range, such that the ith neuron has a receptive field at xi. Weber-Fechner scaling refers to the finding that the width of the receptive field scales with xi as does the difference between the centers of adjacent receptive fields. Weber-Fechner scaling is exponentially resource-conserving. Neurophysiological evidence suggests that neural representations obey Weber-Fechner scaling in the visual system and perhaps other systems as well. We describe an optimality constraint that is solved by Weber-Fechner scaling, providing an information-theoretic rationale for this principle of neural coding. Weber-Fechner scaling can be generated within a mathematical framework using the Laplace transform. Within this framework, simple computations such as translation, correlation and cross-correlation can be accomplished. This framework can in principle be extended to provide a general computational language for brain-inspired cognitive computation on scale-invariant representations. Supported by NSF PHY 1444389 and the BU Initiative for the Physics and Mathematics of Neural Systems,.
ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION
Amelino-Camelia, Giovanni; Guetta, D.; Piran, Tsvi
2015-06-20
The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.
Protein Surface Characterization Using an Invariant Descriptor
Abu Deeb, Zainab; Adjeroh, Donald A.; Jiang, Bing-Hua
2011-01-01
Aim. To develop a new invariant descriptor for the characterization of protein surfaces, suitable for various analysis tasks, such as protein functional classification, and search and retrieval of protein surfaces over a large database. Methods. We start with a local descriptor of selected circular patches on the protein surface. The descriptor records the distance distribution between the central residue and the residues within the patch, keeping track of the number of particular pairwise residue cooccurrences in the patch. A global descriptor for the entire protein surface is then constructed by combining information from the local descriptors. Our method is novel in its focus on residue-specific distance distributions, and the use of residue-distance co-occurrences as the basis for the proposed protein surface descriptors. Results. Results are presented for protein classification and for retrieval for three protein families. For the three families, we obtained an area under the curve for precision and recall ranging from 0.6494 (without residue co-occurrences) to 0.6683 (with residue co-occurrences). Large-scale screening using two other protein families placed related family members at the top of the rank, with a number of uncharacterized proteins also retrieved. Comparative results with other proposed methods are included. PMID:22144981
Time Reversal Invariant Topologically Insulating Circuit
NASA Astrophysics Data System (ADS)
Jia, Ningyuan; Sommer, Ariel; Schuster, David; Simon, Jonathan
2014-03-01
With the discovery of the quantum hall effect and topological insulators, there has been an outpouring of ideas to harness topologically knotted band-structures in the design of state-of-the art, disorder-insensitive materials. From studies of exotic quantum many- body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed matter frontier. Here we demonstrate, for the first time, a circuit that behaves as a time-reversal invariant topological insulator for RF photons. In this meta-material, composed of capacitively coupled high-Q inductors, we observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of phi=pi/2. In-situ probes further reveal time-resolved, spin-dependent edge-transport. We leverage the unique flexibility of our materials to investigate, for the first time, features of topological insulators on manifolds such as the Mobius strip. This new approach elucidates the fundamental ingredients essential to topologically active materials, whilst providing a powerful laboratory to study topological physics and a promising route to topological quantum science.
Deformation of the Dirac equation
NASA Astrophysics Data System (ADS)
Faizal, Mir; Kruglov, Sergey I.
2016-10-01
In this paper, we will first clarify the physical meaning of having a minimum measurable time. Then we will combine the deformation of the Dirac equation due to the existence of minimum measurable length and time scales with its deformation due to the doubly special relativity. We will also analyze this deformed Dirac equation in curved spacetime, and observe that this deformation of the Dirac equation also leads to a nontrivial modification of general relativity. Finally, we will analyze the stochastic quantization of this deformed Dirac equation on curved spacetime.
NASA Technical Reports Server (NTRS)
Strauss, Karl F.; Sheldon, Douglas J.
2011-01-01
Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic
NASA Technical Reports Server (NTRS)
Brace, L. H.; Hoegy, W. R.; Chappel, C. R.; Chandler, M. O.; Comfort, R. H.; Horwitz, J. L.
1988-01-01
A large DE 1 and 2 database covering all local times is used to explore the relationship between electron temperature (Te) signatures in the F region and plamaspheric density structures. The quiet time Te signature remains in the vicinity of 60 deg invariant latitude at all local times, while the plasmapause is found to bulge to about 60 deg at 1500 LT. The plasmasphere in the bulge region is shown to exhibit an internal feature in the vicinity of 60 deg which takes the form of a sharp H(+) gradient. It is suggested that the light-ion gradient may represent a recently created sharp boundary between an old plasmasphere and a new plasmasphere. The present Te characteristics are consisent with plasmasphere depletion and refilling time constants.
Wall-crossing invariants: from quantum mechanics to knots
Galakhov, D. E-mail: galakhov@physics.rutgers.edu; Mironov, A. Morozov, A.
2015-03-15
We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change of moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones (N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.
Invariant-tori-like Lagrangian coherent structures in geophysical flows.
Beron-Vera, Francisco J; Olascoaga, María J; Brown, Michael G; Koçak, Huseyin; Rypina, Irina I
2010-03-01
The term "Lagrangian coherent structure" (LCS) is normally used to describe numerically detected structures whose properties are similar to those of stable and unstable manifolds of hyperbolic trajectories. The latter structures are invariant curves, i.e., material curves of fluid that serve as transport barriers. In this paper we use the term LCS to describe a different type of structure whose properties are similar to those of invariant tori in certain classes of two-dimensional incompressible flows. Like stable and unstable manifolds, invariant tori are invariant curves that serve as transport barriers. There are many differences, however, between traditional LCSs and invariant-tori-like LCSs. These differences are discussed with an emphasis on numerical techniques that can be used to identify invariant-tori-like LCSs. Structures of this type are often present in geophysical flows where zonal jets are present. A prime example of an invariant-torus-like LCS is the transport barrier near the core of the polar night jet in the Earth's lower and middle stratospheres in the austral winter and early spring; this is the barrier that traps ozone-depleted air inside the ozone hole. This example is investigated using both a simple analytically prescribed flow and a velocity field produced by a general circulation model of the Earth's atmosphere. PMID:20370304
Song, S. X.; Nieh, T. G.; Lai, Y. H.; Huang, J. C.
2009-02-09
We performed high-temperature microcompression tests on micron-sized pillar samples fabricated from Au{sub 49}Ag{sub 5.5}Pd{sub 2.3}Cu{sub 26.9}Si{sub 16.3} metallic glass near the glass transition temperature to investigate the homogeneous deformation behavior. Samples were invariably deformed uniformly. The strength was observed to decrease with increasing temperature and decreasing strain rate. Plastic flow behavior can be described by a shear transition zone model. The activation energy and the size of the basic flow unit were both deduced and compared favorably with the theory.
Genetic signatures of heroin addiction
Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang
2016-01-01
Abstract Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086
Genetic signatures of heroin addiction.
Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang
2016-08-01
Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086
Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L. )
1991-02-15
We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum ({ital k}) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like log{ital V} with the lattice volume {ital V}. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being {ital c}-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the {phi}{sup 4} model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator {l angle}{phi}({ital k}){phi}({ital k}{prime}){r angle} in the {phi}{sup 4} model, investigate Euclidean invariance, and extract {ital m}{sub {ital R}} as well as {ital Z}{sub {ital R}}. Moreover we compute {l angle}{ital F}{sub {mu}{nu}}({ital k}){ital F}{sub {mu}{nu}}({ital k}{prime}){r angle} in the SU(2) model.
Constructive methods of invariant manifolds for kinetic problems
NASA Astrophysics Data System (ADS)
Gorban, Alexander N.; Karlin, Iliya V.; Zinovyev, Andrei Yu.
2004-06-01
The concept of the slow invariant manifold is recognized as the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space ( the invariance equation). The equation of motion for immersed manifolds is obtained ( the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. Among them, iteration methods based on incomplete linearization, relaxation method and the method of invariant grids are developed. The systematic use of thermodynamics structures and of the quasi-chemical representation allow to construct approximations which are in concordance with physical restrictions. The following examples of applications are presented: nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn∼1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; model reduction in chemical kinetics; derivation and numerical implementation of constitutive equations for polymeric fluids; the limits of macroscopic description for polymer molecules, etc.
Gut microbiota signatures of longevity.
Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao
2016-09-26
An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging. PMID:27676296
Quantum signatures of chimera states
NASA Astrophysics Data System (ADS)
Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.
2015-12-01
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.
Spectroscopic signature for ferroelectric ice
NASA Astrophysics Data System (ADS)
Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz
2014-09-01
Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.
Quantum signatures of chimera states.
Bastidas, V M; Omelchenko, I; Zakharova, A; Schöll, E; Brandes, T
2015-12-01
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.
Quantum broadcasting multiple blind signature with constant size
NASA Astrophysics Data System (ADS)
Xiao, Min; Li, Zhenli
2016-09-01
Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.
Quantum broadcasting multiple blind signature with constant size
NASA Astrophysics Data System (ADS)
Xiao, Min; Li, Zhenli
2016-06-01
Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.
Rotational invariant similarity measurement for content-based image indexing
NASA Astrophysics Data System (ADS)
Ro, Yong M.; Yoo, Kiwon
2000-04-01
We propose a similarity matching technique for contents based image retrieval. The proposed technique is invariant from rotated images. Since image contents for image indexing and retrieval would be arbitrarily extracted from still image or key frame of video, the rotation invariant property of feature description of image is important for general application of contents based image indexing and retrieval. In this paper, we propose a rotation invariant similarity measurement in cooperating with texture featuring base on HVS. To simplify computational complexity, we employed hierarchical similarity distance searching. To verify the method, experiments with MPEG-7 data set are performed.
Two Lagrange-like optical invariants and some applications.
Corrente, Fabio; Onorato, Pasquale
2011-05-01
Geometric optics can be completely derived from Fermat's principle, as classical mechanics can be obtained by the application of the Hamilton principle. In Lagrangian optics, for optical systems with rotational symmetry, is known the invariant L₃, the Lagrange optical invariant. For systems built only with spherical lenses, we demonstrate there are two other optical invariants, L₁ and L₂, analogous to L₃. A proof based on Snell's law, the Weierstrass-Erdman jump condition, and the expression of the ray between two optical surfaces in the Hamiltonian formalism is reported. The presence of a conserved vector, L, allows us to write the equation of an emerging ray without any approximation. PMID:21540974
Conformal invariant cosmological perturbations via the covariant approach
Li, Mingzhe; Mou, Yicen E-mail: moinch@mail.ustc.edu.cn
2015-10-01
It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible to do equivalent analysis in a certain frame in which the perturbation equations are simpler. In this paper we revisit the problem of conformal invariances of cosmological perturbations in terms of the covariant approach in which the perturbation variables have clear geometric and physical meanings. We show that with this approach the conformal invariant perturbations are easily identified.
Moment invariants for automated inspection of printed material
Simpson, M.L.; Schmoyer, R.L.; Hunt, M.A. )
1991-04-01
In this paper, the use of moment invariants for the detection of flaws in automated image processing inspection of printed graphic material is investigated. Prior work with moment invariants has concentrated on two-dimensional image pattern recognition. a major limitation in pattern recognition applications has been the segmentation of the image from its background, Automated image processing inspection of printed material does not suffer form this limitation because a standard image background exists. The potential for separating flawed and unflawed printed material using moment invariants is demonstrated with formal statistical experiments.
Verification of Java Programs using Symbolic Execution and Invariant Generation
NASA Technical Reports Server (NTRS)
Pasareanu, Corina; Visser, Willem
2004-01-01
Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.
Isospin invariance and the vacuum polarization energy of cosmic strings
NASA Astrophysics Data System (ADS)
Weigel, H.; Quandt, M.; Graham, N.
2016-08-01
We corroborate the previously applied spectral approach to compute the vacuum polarization energy of string configurations in models similar to the standard model of particle physics. The central observation underlying this corroboration is the existence of a particular global isospin transformation of the string configuration. Under this transformation the single particle energies of the quantum fluctuations are invariant, while the inevitable implementation of regularization and renormalization requires operations that are not invariant. We verify numerically that all such variances eventually cancel, and that the vacuum polarization energy obtained in the spectral approach is indeed gauge invariant.
Optimal affine-invariant matching: performance characterization
NASA Astrophysics Data System (ADS)
Costa, Mauro S.; Haralick, Robert M.; Shapiro, Linda G.
1992-04-01
The geometric hashing scheme proposed by Lamdan and Wolfson can be very efficient in a model-based matching system, not only in terms of the computational complexity involved, but also in terms of the simplicity of the method. In a recent paper, we discussed errors that can occur with this method due to quantization, stability, symmetry, and noise problems. These errors make the original geometric hashing technique unsuitable for use on the factory floor. Beginning with an explicit noise model, which the original Lamdan and Wolfson technique lacks, we derived an optimal approach that overcomes these problems. We showed that the results obtained with the new algorithm are clearly better than the results from the original method. This paper addresses the performance characterization of the geometric hashing technique, more specifically the affine-invariant point matching, applied to the problem of recognizing and determining the pose of sheet metal parts. The experiments indicate that with a model having 10 to 14 points, with 2 points of the model undetected and 10 extraneous points detected, and with the model points perturbed by Gaussian noise of standard deviation 3 (0.58 of range), the average amount of computation required to obtain an answer is equivalent to trying 11 of the possible three-point bases. The misdetection rate, measured by the percentage of correct bases matches that fail to verify, is 0.9. The percentage of incorrect bases that successfully produced a match that did verify (false alarm rate) is 13. And, finally, 2 of the experiments failed to find a correct match and verify it. Results for experiments with real images are also presented.
Theoretical Characterizaiton of Visual Signatures
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.
2015-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.
NASA Astrophysics Data System (ADS)
Matyas, Vashek
We promised a year back some data on the experiment that we ran with chip and PIN. If you recall, it was the first phase that we reported on here last year, where we used the University bookstore, and two PIN pads, one with very solid privacy shielding, the other one without any. We ran 17 people through the first one, 15 people through the second one, and we also had the students do, about half of them forging the signature, half of them signing their own signature, on the back of the card that is used for purchasing books, or whatever.We had a second phase of the experiment, after long negotiations, and very complicated logistics, with a supermarket in Brno where we were able to do anything that we wanted through the experiment for five hours on the floor, with only the supermarket manager, the head of security, and the camera operators knowing about the experiment. So the shop assistants, the ground floor security, everybody basically on the floor, did not know about the experiment. That was one of the reasons why the supermarket, or management, agreed to take part, they wanted to control their own internal security procedures.
(Convertible) Undeniable Signatures Without Random Oracles
NASA Astrophysics Data System (ADS)
Yuen, Tsz Hon; Au, Man Ho; Liu, Joseph K.; Susilo, Willy
We propose a convertible undeniable signature scheme without random oracles. Our construction is based on Waters' and Kurosawa and Heng's schemes that were proposed in Eurocrypt 2005. The security of our scheme is based on the CDH and the decision linear assumption. Comparing only the part of undeniable signatures, our scheme uses more standard assumptions than the existing undeniable signatures without random oracles due to Laguillamie and Vergnaud.
Narrow terahertz attenuation signatures in Bacillus thuringiensis.
Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal
2014-10-01
Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection.
Cryptanalysis of Quantum Blind Signature Scheme
NASA Astrophysics Data System (ADS)
Zuo, Huijuan
2013-01-01
In this paper, we study the cryptanalysis of two quantum blind signature schemes and one quantum proxy blind signature protocol. We show that in these protocols the verifier can forge the signature under known message attack. The attack strategies are described in detail respectively. This kind of problem deserves more research attention in the following related study. We further point out that the arbitrator should be involved in the procedure of any dispute and some discussions of these protocols are given.
Imaging radar polarization signatures - Theory and observation
NASA Technical Reports Server (NTRS)
Van Zyl, Jakob J.; Zebker, Howard A.; Elachi, Charles
1987-01-01
Radar polarimetry theory is reviewed, and comparison between theory and experimental results obtained with an imaging radar polarimeter employing two orthogonally polarized antennas is made. Knowledge of the scattering matrix permits calculation of the scattering cross section of a scatterer for any transmit and receive polarization combination, and a new way of displaying the resulting scattering cross section as a function of polarization is introduced. Examples of polarization signatures are presented for several theoretical models of surface scattering, and these signatures are compared with experimentally measured polarization signatures. The coefficient of variation, derived from the polarization signature, may provide information regarding the amount of variation in scattering properties for a given area.
5 CFR 850.106 - Electronic signatures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... card; (iii) Digitized signature; or (iv) Biometrics, such as fingerprints, retinal patterns, and voice recognition; (2) Cryptographic control methods, including— (i) Shared symmetric key cryptography; (ii)...
Input apparatus for dynamic signature verification systems
EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.
1978-01-01
The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.
Novel Quantum Proxy Signature without Entanglement
NASA Astrophysics Data System (ADS)
Xu, Guang-bao
2015-08-01
Proxy signature is an important research topic in classic cryptography since it has many application occasions in our real life. But only a few quantum proxy signature schemes have been proposed up to now. In this paper, we propose a quantum proxy signature scheme, which is designed based on quantum one-time pad. Our scheme can be realized easily since it only uses single-particle states. Security analysis shows that it is secure and meets all the properties of a proxy signature, such as verifiability, distinguishability, unforgeability and undeniability.
Intrusion signature creation via clustering anomalies
NASA Astrophysics Data System (ADS)
Hendry, Gilbert R.; Yang, Shanchieh J.
2008-03-01
Current practices for combating cyber attacks typically use Intrusion Detection Systems (IDSs) to detect and block multistage attacks. Because of the speed and impacts of new types of cyber attacks, current IDSs are limited in providing accurate detection while reliably adapting to new attacks. In signature-based IDS systems, this limitation is made apparent by the latency from day zero of an attack to the creation of an appropriate signature. This work hypothesizes that this latency can be shortened by creating signatures via anomaly-based algorithms. A hybrid supervised and unsupervised clustering algorithm is proposed for new signature creation. These new signatures created in real-time would take effect immediately, ideally detecting new attacks. This work first investigates a modified density-based clustering algorithm as an IDS, with its strengths and weaknesses identified. A signature creation algorithm leveraging the summarizing abilities of clustering is investigated. Lessons learned from the supervised signature creation are then leveraged for the development of unsupervised real-time signature classification. Automating signature creation and classification via clustering is demonstrated as satisfactory but with limitations.
Secure Obfuscation for Encrypted Group Signatures
Fan, Hongfei; Liu, Qin
2015-01-01
In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686
Loop Invariants, Exploration of Regularities, and Mathematical Games.
ERIC Educational Resources Information Center
Ginat, David
2001-01-01
Presents an approach for illustrating, on an intuitive level, the significance of loop invariants for algorithm design and analysis. The illustration is based on mathematical games that require the exploration of regularities via problem-solving heuristics. (Author/MM)
Communication: Fitting potential energy surfaces with fundamental invariant neural network
NASA Astrophysics Data System (ADS)
Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.
2016-08-01
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.
Webs on surfaces, rings of invariants, and clusters.
Fomin, Sergey; Pylyavskyy, Pavlo
2014-07-01
We construct and study cluster algebra structures in rings of invariants of the special linear group action on collections of 3D vectors, covectors, and matrices. The construction uses Kuperberg's calculus of webs on marked surfaces with boundary. PMID:24982186
Bianchi type-I models with conformally invariant scalar field
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-05-15
The solutions of the Einstein equations with the trace-free energy-momentum tensor of conformally invariant scalar field as source are obtained in a spatially homogeneous anisotropic space-time. Some interesting features of the solutions are discussed.
Interrelation of Social Resources: Evidence of Pancultural Invariance.
ERIC Educational Resources Information Center
Foa, Uriel G.; And Others
1987-01-01
Research in five cultures indicates a similar pattern of interrelationship among interpersonal resources, in spite of differences in instrumentation, language, and background of subjects. Results support the notion that interrelationship of resources may be cross-culturally invariant. (PS)
Gauge-invariant Green function dynamics: A unified approach
Swiecicki, Sylvia D. Sipe, J.E.
2013-11-15
We present a gauge-invariant description of Green function dynamics introduced by means of a generalized Peirels phase involving an arbitrary differentiable path in space–time. Two other approaches to formulating a gauge-invariant description of systems, the Green function treatment of Levanda and Fleurov [M. Levanda, V. Fleurov, J. Phys.: Condens. Matter 6 (1994) 7889] and the usual multipolar expansion for an atom, are shown to arise as special cases of our formalism. We argue that the consideration of paths in the generalized Peirels phase that do not lead to introduction of an effective gauge-invariant Hamiltonian with polarization and magnetization fields may prove useful for the treatment of the response of materials with short electron correlation lengths. -- Highlights: •Peirels phase for an arbitrary path in space–time established. •Gauge-invariant Green functions and the Power–Zienau–Wooley transformation connected. •Limitations on possible polarization and magnetization fields established.
Dynamics of 3D view invariance in monkey inferotemporal cortex.
Ratan Murty, N Apurva; Arun, Sripati P
2015-04-01
Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent.
Communication: Fitting potential energy surfaces with fundamental invariant neural network.
Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H
2016-08-21
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.
Demonstration of the invariance principle for active sonar.
Quijano, Jorge E; Zurk, Lisa M; Rouseff, Daniel
2008-03-01
Active sonar systems can provide good target detection potential but are limited in shallow water environments by the high level of reverberation produced by the interaction between the acoustic signal and the ocean bottom. The nature of the reverberation is highly variable and depends critically on the ocean and seabed properties, which are typically poorly known. This has motivated interest in techniques that are invariant to the environment. In passive sonar, a scalar parameter termed the waveguide invariant, has been introduced to describe the slope of striations observed in lofargrams. In this work, an invariant for active sonar is introduced. This active invariant is shown to be present in the time-frequency structure observed in sonar data from the Malta Plateau, and the structure agrees with results produced from normal mode simulations. The application of this feature in active tracking algorithms is discussed.
Conformal invariance and Hamilton Jacobi theory for dissipative systems
NASA Technical Reports Server (NTRS)
Kiehn, R. M.
1975-01-01
For certain dissipative systems, a comparison can be made between the Hamilton-Jacobi theory and the conformal invariance of action theory. The two concepts are not identical, but the conformal action theory covers the Hamilton-Jacobi theory.
Communication: Fitting potential energy surfaces with fundamental invariant neural network.
Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H
2016-08-21
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations. PMID:27544080
Z2 Invariants of Topological Insulators as Geometric Obstructions
NASA Astrophysics Data System (ADS)
Fiorenza, Domenico; Monaco, Domenico; Panati, Gianluca
2016-05-01
We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to -1. We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2 d, the obstruction to the existence of such a frame is shown to be encoded in a Z_2-valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3 d, instead, four Z_2 invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.
Geoid, topography, and convection-driven crustal deformation on Venus
NASA Technical Reports Server (NTRS)
Simons, Mark; Hager, Bradford H.; Solomon, Sean C.
1993-01-01
High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between the observed surface topography, crustal deformation, and the gravity field. Therefore, comparison of model results with observational data can help to constrain such parameters as crustal and thermal boundary layer thicknesses as well as the character of mantle flow below different Venusian features. We explore in this paper the effects of this coupling by means of a finite element modelling technique.
Ultrasoft, highly deformable microgels.
Bachman, Haylee; Brown, Ashley C; Clarke, Kimberly C; Dhada, Kabir S; Douglas, Alison; Hansen, Caroline E; Herman, Emily; Hyatt, John S; Kodlekere, Purva; Meng, Zhiyong; Saxena, Shalini; Spears, Mark W; Welsch, Nicole; Lyon, L Andrew
2015-03-14
Microgels are colloidally stable, hydrogel microparticles that have previously been used in a range of (soft) material applications due to their tunable mechanical and chemical properties. Most commonly, thermo and pH-responsive poly(N-isopropylacrylamide) (pNIPAm) microgels can be fabricated by precipitation polymerization in the presence of the co-monomer acrylic acid (AAc). Traditionally pNIPAm microgels are synthesized in the presence of a crosslinking agent, such as N,N'-methylenebisacrylamide (BIS), however, microgels can also be synthesized under 'crosslinker free' conditions. The resulting particles have extremely low (<0.5%), core-localized crosslinking resulting from rare chain transfer reactions. AFM nanoindentation of these ultralow crosslinked (ULC) particles indicate that they are soft relative to crosslinked microgels, with a Young's modulus of ∼10 kPa. Furthermore, ULC microgels are highly deformable as indicated by a high degree of spreading on glass surfaces and the ability to translocate through nanopores significantly smaller than the hydrodynamic diameter of the particles. The size and charge of ULCs can be easily modulated by altering reaction conditions, such as temperature, monomer, surfactant and initiator concentrations, and through the addition of co-monomers. Microgels based on the widely utilized, biocompatible polymer polyethylene glycol (PEG) can also be synthesized under crosslinker free conditions. Due to their softness and deformability, ULC microgels are a unique base material for a wide variety of biomedical applications including biomaterials for drug delivery and regenerative medicine.
A translation invariant bipolaron in the Holstein model and superconductivity.
Lakhno, Victor
2016-01-01
Large-radius translation invariant (TI) bipolarons are considered in a one-dimensional Holstein molecular chain. Criteria of their stability are obtained. The energy of a translation invariant bipolaron is shown to be lower than that of a bipolaron with broken symmetry. The results obtained are applied to the problem of superconductivity in 1D-systems. It is shown that TI-bipolaron mechanism of Bose-Einstein condensation can support superconductivity even for infinite chain.
Disformal invariance of Maxwell’s field equations
NASA Astrophysics Data System (ADS)
Goulart, E.; Falciano, F. T.
2013-08-01
We show that Maxwell’s electrodynamics in vacuum is invariant under active transformations of the metric. These metrics are related by disformal mappings induced by derivatives of the gauge vector Aμ such that the gauge symmetry is preserved. Our results generalize the well-known conformal invariance of electrodynamics and characterize a new type of internal symmetry of the theory. The group structure associated with these transformations is also investigated in details.
A translation invariant bipolaron in the Holstein model and superconductivity.
Lakhno, Victor
2016-01-01
Large-radius translation invariant (TI) bipolarons are considered in a one-dimensional Holstein molecular chain. Criteria of their stability are obtained. The energy of a translation invariant bipolaron is shown to be lower than that of a bipolaron with broken symmetry. The results obtained are applied to the problem of superconductivity in 1D-systems. It is shown that TI-bipolaron mechanism of Bose-Einstein condensation can support superconductivity even for infinite chain. PMID:27547652
Bulk-Boundary Duality, Gauge Invariance, and Quantum Error Corrections
NASA Astrophysics Data System (ADS)
Mintun, Eric; Polchinski, Joseph; Rosenhaus, Vladimir
2015-10-01
Recently, Almheiri, Dong, and Harlow have argued that the localization of bulk information in a boundary dual should be understood in terms of quantum error correction. We show that this structure appears naturally when the gauge invariance of the boundary theory is incorporated. This provides a new understanding of the nonuniqueness of the bulk fields (precursors). It suggests a close connection between gauge invariance and the emergence of spacetime.
Construction of Superconvergent Discretizations with Differential-Difference Invariants
R.A. Axford
2005-08-12
To incorporate symmetry properties of second-order differential equations into finite difference equations, the concept of differential-difference invariants is introduced. This concept is applied to discretizing homogeneous eigenvalue problems and inhomogeneous two-point boundary value problems with various combinations of Dirichlet, Neumann, and Robin boundary conditions. It is demonstrated that discretizations constructed with differential-difference invariants yield exact results for eigenvalue spectra and superconvergent results for numerical solutions of differential equations.
Gauge invariance and non-Gaussianity in inflation
NASA Astrophysics Data System (ADS)
Rigopoulos, Gerasimos
2011-07-01
We clarify the role of gauge invariance for the computation of quantum non-Gaussian correlators in inflation. A gauge invariant generating functional for n-point functions is given and the special status of the spatially flat gauge is pointed out. We also comment on the relation between gauge transformations, field redefinitions, the choice of t=const hypersurfaces and the use of boundary terms in computations of non-Gaussianity.
Adiabatic invariant value variation under shortwave band subcritical conditions
NASA Astrophysics Data System (ADS)
Svistunov, K. V.; Tinin, M. V.
1985-04-01
The possibility of significant variations of the adiabatic invariant is examined for the propagation of radio waves in an irregular Earth-ionosphere waveguide with a parabolic dependence of permittivity on height. Numerical and analytical results indicate that nonexponential deviations of the adiabatic invariant can occur not only when the characteristic size of horizontal irregularity decreases (e.g., during resonant beam excitation) but also in quasi-critical conditions and for smoothly irregular waveguides.
FAST TRACK COMMUNICATION: Lorentzian manifolds and scalar curvature invariants
NASA Astrophysics Data System (ADS)
Coley, Alan; Hervik, Sigbjørn; Pelavas, Nicos
2010-05-01
We discuss (arbitrary-dimensional) Lorentzian manifolds and the scalar polynomial curvature invariants constructed from the Riemann tensor and its covariant derivatives. Recently, we have shown that in four dimensions a Lorentzian spacetime metric is either \\mathcal {I}-non-degenerate, and hence locally characterized by its scalar polynomial curvature invariants, or is a degenerate Kundt spacetime. We present a number of results that generalize these results to higher dimensions and discuss their consequences and potential physical applications.
On higher holonomy invariants in higher gauge theory II
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2016-06-01
This is the second of a series of two technical papers devoted to the analysis of holonomy invariants in strict higher gauge theory with end applications in higher Chern-Simons theory. We provide a definition of trace over a crossed module to yield surface knot invariants upon application to 2-holonomies. We show further that the properties of the trace are best described using the theory quandle crossed modules.
Surgery, Yamabe invariant, and Seiberg-Witten theory
NASA Astrophysics Data System (ADS)
Sung, Chanyoung
2009-02-01
By using the gluing formula of the Seiberg-Witten invariant, we compute the Yamabe invariant Y(X) of 4-manifolds X obtained by performing surgeries along points, circles or tori on compact Kähler surfaces. For instance, if M is a compact Kähler surface of nonnegative Kodaira dimension, and N is a smooth closed oriented 4-manifold with b2+(N)=0 and Y(N)≥0, then we show that Y(M#N)=Y(M).
Wavelet-based moment invariants for pattern recognition
NASA Astrophysics Data System (ADS)
Chen, Guangyi; Xie, Wenfang
2011-07-01
Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.
M-Theory with Framed Corners and Tertiary Index Invariants
NASA Astrophysics Data System (ADS)
Sati, Hisham
2014-03-01
The study of the partition function in M-theory involves the use of index theory on a twelve-dimensional bounding manifold. In eleven dimensions, viewed as a boundary, this is given by secondary index invariants such as the Atiyah-Patodi-Singer eta-invariant, the Chern-Simons invariant, or the Adams e-invariant. If the eleven-dimensional manifold itself has a boundary, the resulting ten-dimensional manifold can be viewed as a codimension two corner. The partition function in this context has been studied by the author in relation to index theory for manifolds with corners, essentially on the product of two intervals. In this paper, we focus on the case of framed manifolds (which are automatically Spin) and provide a formulation of the refined partition function using a tertiary index invariant, namely the f-invariant introduced by Laures within elliptic cohomology. We describe the context globally, connecting the various spaces and theories around M-theory, and providing a physical realization and interpretation of some ingredients appearing in the constructions due to Bunke-Naumann and Bodecker. The formulation leads to a natural interpretation of anomalies using corners and uncovers some resulting constraints in the heterotic corner. The analysis for type IIA leads to a physical identification of various components of eta-forms appearing in the formula for the phase of the partition function.
Ground Deformation Extraction Using Visible Images and LIDAR Data in Mining Area
NASA Astrophysics Data System (ADS)
Hu, Wenmin; Wu, Lixin
2016-06-01
Recognition and extraction of mining ground deformation can help us understand the deformation process and space distribution, and estimate the deformation laws and trends. This study focuses on the application of ground deformation detection and extraction combining with high resolution visible stereo imagery, LiDAR observation point cloud data and historical data. The DEM in large mining area is generated using high-resolution satellite stereo images, and ground deformation is obtained through time series analysis combined with historical DEM data. Ground deformation caused by mining activities are detected and analyzed to explain the link between the regional ground deformation and local deformation. A district of covering 200 km2 around the West Open Pit Mine in Fushun of Liaoning province, a city located in the Northeast China is chosen as the test area for example. Regional and local ground deformation from 2010 to 2015 time series are detected and extracted with DEMs derived from ZY-3 images and LiDAR point DEMs in the case study. Results show that the mean regional deformation is 7.1 m of rising elevation with RMS 9.6 m. Deformation of rising elevation and deformation of declining elevation couple together in local area. The area of higher elevation variation is 16.3 km2 and the mean rising value is 35.8 m with RMS 15.7 m, while the deformation area of lower elevation variation is 6.8 km2 and the mean declining value is 17.6 m with RMS 9.3 m. Moreover, local large deformation and regional slow deformation couple together, the deformation in local mining activities has expanded to the surrounding area, a large ground fracture with declining elevation has been detected and extracted in the south of West Open Pit Mine, the mean declining elevation of which is 23.1 m and covering about 2.3 km2 till 2015. The results in this paper are preliminary currently; we are making efforts to improve more precision results with invariant ground control data for validation.
Shape Determination for Deformed Cavities
Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Lixin; Li, Zenghai; Ng, Cho; Xiao, Liling; Ko, Kwok; Ghattas, Omar; /Texas U.
2006-10-04
A realistic superconducting RF cavity has its shape deformed comparing to its designed shape due to the loose tolerance in the fabrication process and the frequency tuning for its accelerating mode. A PDE-constrained optimization problem is proposed to determine the deformation of the cavity. A reduce space method is used to solve the PDE-constrained optimization problem where design sensitivities were computed using a continuous adjoint approach. A proof-of-concept example is given in which the deformation parameters of a single cavity-cell with two different types of deformation were computed.
Metabolic Signatures of Bacterial Vaginosis
Morgan, Martin T.; Fiedler, Tina L.; Djukovic, Danijel; Hoffman, Noah G.; Raftery, Daniel; Marrazzo, Jeanne M.
2015-01-01
ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. PMID:25873373
Bi-invariant functions on the group of transformations leaving a measure quasi-invariant
Neretin, Yu A
2014-09-30
Let Gms be the group of transformations of a Lebesgue space leaving the measure quasi-invariant. Let Ams be a subgroup of it consisting of transformations preserving the measure. We describe canonical forms of double cosets of Gms by the subgroup Ams and show that all continuous Ams-bi-invariant functions on Gms are functionals of the distribution of a Radon-Nikodym derivative. Bibliography: 14 titles.
Packwood, D. M.; Reaves, K. T.; Federici, F. L.; Katzgraber, H. G.; Teizer, W.
2013-01-01
An open problem in applied mathematics is to predict interesting molecules that are realistic targets for chemical synthesis. In this paper, we use a spin Hamiltonian-type model to predict molecular magnets (MMs) with magnetic moments that are intrinsically robust under random shape deformations to the molecule. Using the concept of convergence in probability, we show that for MMs in which all spin centres lie in-plane and all spin centre interactions are ferromagnetic, the total spin of the molecule is a ‘weak topological invariant’ when the number of spin centres is sufficiently large. By weak topological invariant, we mean that the total spin of the molecule depends only upon the arrangement of spin centres in the molecule, and is unlikely to change under shape deformations to the molecule. Our calculations show that only between 20 and 50 spin centres are necessary for the total spin of these MMs to be a weak topological invariant. The robustness effect is particularly enhanced for two-dimensional ferromagnetic MMs that possess a small number of spin rings in the structure. PMID:24353469
21 CFR 11.200 - Electronic signature components and controls.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Electronic signature components and controls. 11... SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.200 Electronic signature components and controls. (a) Electronic signatures that are not based upon biometrics shall:...