The Superluminal Neutrinos from Deformed Lorentz Invariance
NASA Astrophysics Data System (ADS)
Huo, Yunjie; Li, Tianjun; Liao, Yi; Nanopoulos, Dimitri V.; Qi, Yonghui; Wang, Fei
2012-10-01
We study two superluminal neutrino scenarios where δ v≡ (v-c)/(c) is a constant. To be consistent with the OPERA, Borexino and ICARUS experiments and with the SN1987a observations, we assume that δvν on the Earth is about three-order larger than that on the interstellar scale. To explain the theoretical challenges from the Bremsstrahlung effects and pion decays, we consider the deformed Lorentz invariance, and show that the superluminal neutrino dispersion relations can be realized properly while the modifications to the dispersion relations of the other Standard Model particles can be negligible. In addition, we propose the deformed energy and momentum conservation laws for a generic physical process. In Scenario I the momentum conservation law is preserved while the energy conservation law is deformed. In Scenario II the energy conservation law is preserved while the momentum conservation law is deformed. We present the energy and momentum conservation laws in terms of neutrino momentum in Scenario I and in terms of neutrino energy in Scenario II. In such formats, the energy and momentum conservation laws are exactly the same as those in the traditional quantum field theory with Lorentz symmetry. Thus, all the above theoretical challenges can be automatically solved. We show explicitly that the Bremsstrahlung processes are forbidden and there is no problem for pion decays.
Feature-aided tracking using invariant features of HRR signatures
NASA Astrophysics Data System (ADS)
Gross, David C.; Oppenheimer, Michael W.; Schmitz, James L.; Sturtz, Kirk
2001-08-01
The present era of limited warfare demands that warfighters have the capability for timely acquisition and precision strikes against enemy ground targets with minimum collateral damage. As a result, automatic target recognition (ATR) and Feature Aided Tracking (FAT) of moving ground vehicles using High Range Resolution (HRR) radar has received increased interest in the community. HRR radar is an excellent sensor for potentially identifying moving targets under all-weather, day/night, long-standoff conditions. This paper presents preliminary results of a Veridian Engineering Internal Research and Development effort to determine the feasibility of using invariant HRR signature features to assist a FAT algorithm. The presented method of invariant analysis makes use of Lie mathematics to determine geometric and system invariants contained within an Object/Image (O/I) relationship. The fundamental O/I relationship expresses a geometric relationship (constraint) between a 3-D object (scattering center) and its image (a 1-D HRR profile). The HRR radar sensor model is defined, and then the O/I relationship for invariant features is derived. Although constructing invariants is not a trivial task, once an invariant is determined, it is computationally simple to implement into a FAT algorithm.
Deformation and signature splitting in 74Br
NASA Astrophysics Data System (ADS)
Holcomb, J. W.; Johnson, T. D.; Womble, P. C.; Cottle, P. D.; Tabor, S. L.; Durham, F. E.; Buccino, S. G.
1991-02-01
The high-spin states of 74Br were studied via the 48Ti(32S,αpn)74Br and the 58Ni(19F,2pn)74Br fusion-evaporation reactions at energies of 105 and 62 MeV, respectively, using the Florida State University Tandem LINAC. γ-γ coincidence arrays were produced using four Compton-suppressed Ge detectors. Two independent groups of γ rays were studied-one of positive parity and one of negative parity, both of which appear to be based on an isomeric 4(+) state. Lifetimes were measured using both the Doppler-shift attenuation and recoil-distance methods. A cranking-model analysis of the bands shows that the kinematic and dynamic moments of inertia for the bands are rather similar and fairly constant for high spins with values of (20-23)ħ2/MeV. A phase reversal occurs in the signature splitting in the yrast band around spin 9 which is related to the quasiparticle alignments. The lifetimes imply an average axial quadrupole deformation of 0.37 in the yrast band and 0.34 in the negative-parity band. These deformations are close to those predicted by Hartree-Fock-Bogolyubov cranking calculations.
Brst-Invariant Deformations of Geometric Structures in Sigma Models
NASA Astrophysics Data System (ADS)
Bytsenko, A. A.
The closed string correlators can be constructed from the open ones using topological string theories as a model. The space of physical closed string states is isomorphic to the Hochschild cohomology of (A,Q) (operator Q of ghost number one), - this statement has been verified by means of computation of the Hochschild cohomology of the category of D-branes. We study a Lie algebra of formal vector fields Wn with its application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are describing by a Hochschild cohomology theory of the DG-algebra, {A} = (A, Q), Q = bar ∂ + {∂ {deform}}, which is defined to be the cohomology of (-1)nQ+dHoch. Here bar ∂ is the initial non-deformed BRST operator while ∂deform is the deformed part whose algebra is a Lie algebra of linear vector fields gln. We assume that if in the theory exists a single D-brane then all the information associated with deformations is encoded in an associative algebra A equipped with a differential Q = bar ∂ + {∂ {deform}}. In addition equivalence classes of deformations of these data are described by a Hochschild cohomology of (A,Q), an important geometric invariant of the (anti)holomorphic structure on X. We also discuss the identification of the harmonic structure (HT•(X) HΩ•(X)) of affine space X and the group {Ext}Xn ({ {O}_Δ }, { {O}Δ }) (the HKR isomorphism), and bulk-boundary deformation pairing.
Brst-Invariant Deformations of Geometric Structures in Sigma Models
NASA Astrophysics Data System (ADS)
Bytsenko, A. A.
2011-06-01
The closed string correlators can be constructed from the open ones using topological string theories as a model. The space of physical closed string states is isomorphic to the Hochschild cohomology of (A, Q) (operator Q of ghost number one), - this statement has been verified by means of computation of the Hochschild cohomology of the category of D-branes. We study a Lie algebra of formal vector fields Wn with its application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are describing by a Hochschild cohomology theory of the DG-algebra {A} = (A, Q), Q = /line{\\part} + \\part { deform}, which is defined to be the cohomology of (-1)n Q + dHoch. Here /line{\\part} is the initial non-deformed BRST operator while \\partdeform is the deformed part whose algebra is a Lie algebra of linear vector fields gln. We assume that if in the theory exists a single D-brane then all the information associated with deformations is encoded in an associative algebra A equipped with a differential Q = /line{\\part}+\\part { deform}. In addition equivalence classes of deformations of these data are described by a Hochschild cohomology of (A, Q), an important geometric invariant of the (anti)holomorphic structure on X. We also discuss the identification of the harmonic structure (HT•(X); HΩ•(X)) of affine space X and the group ExtXn({O}\\triangle , {O}\\triangle ) (the HKR isomorphism), and bulk-boundary deformation pairing.
Analysis of Unresolved Spectral Infrared Signature for the Extraction of Invariant Features
2010-09-01
satellite is illuminated continuously and is operating under steady-state conditions, its solar panel and body reach a thermal equilibrium with its...environment such that the thermal energy emitted by the solar panel and the body remain constant . Thus the signature is a function of entities that...remain constant (or, are invariant) and entities that are varying. The invariant entities are the spectral radiance values (i.e., the thermal energy
A properly invariant theory of infinitesimal deformations of an elastic Cosserat point
NASA Astrophysics Data System (ADS)
O'Reilly, Oliver M.
1996-03-01
In the context of a mechanical theory of a Cosserat point developed by Green and Naghdi [1=Quart. J. Mech. and Appl. Math., 44, 335 355 (1991)], this paper establishes a properly invariant theory for infinitesimal deformations. The invariant theory is valid for an elastic Cosserat point with an arbitrary number of directors. Its construction is based on a method developed by Casey and Naghdi [2=Arch. Rational Mech. Anal., 76, 355 391 (1981)] for unconstrained non-polar elastic bodies.
Analysis on volume invariability of metal circular shaft in torsion deformation
NASA Astrophysics Data System (ADS)
Yang, Li-Hong; Zou, Guang-Ping; He, Yun-Zeng; Wang, Hui
2009-12-01
Volume invariability of metal circular shaft in the case of small strain torsion deformation and large strain torsion deformation was, respectively, discussed experimentally and theoretically in this study. In accordance with the elastoplastic theory, it was given that the shear stress did not cause the change of volume in the large strain range. By utilizing torsion experiment with the solid shaft of low carbon steel, it was proved that metal can meet the conditions of the volume invariability in torsion deformation while the cumulative damage was not very serious. Volumetric deformation was analyzed in torsion of circular shaft in the perspective of micromechanics. Finally, Swift effect of solid circular shaft and tubular shaft of brass material were interpreted by using the formulae of elastoplastic critic load obtained from double-limb bar model test presented by Shanley.
Analysis on volume invariability of metal circular shaft in torsion deformation
NASA Astrophysics Data System (ADS)
Yang, Li-Hong; Zou, Guang-Ping; He, Yun-Zeng; Wang, Hui
2010-03-01
Volume invariability of metal circular shaft in the case of small strain torsion deformation and large strain torsion deformation was, respectively, discussed experimentally and theoretically in this study. In accordance with the elastoplastic theory, it was given that the shear stress did not cause the change of volume in the large strain range. By utilizing torsion experiment with the solid shaft of low carbon steel, it was proved that metal can meet the conditions of the volume invariability in torsion deformation while the cumulative damage was not very serious. Volumetric deformation was analyzed in torsion of circular shaft in the perspective of micromechanics. Finally, Swift effect of solid circular shaft and tubular shaft of brass material were interpreted by using the formulae of elastoplastic critic load obtained from double-limb bar model test presented by Shanley.
Signatures of time-reversal-invariant topological superconductivity in the Josephson effect
NASA Astrophysics Data System (ADS)
Mellars, Ehren; Béri, Benjamin
2016-11-01
For Josephson junctions based on s -wave superconductors, time-reversal symmetry is known to allow for powerful relations between the normal-state junction properties, the excitation spectrum, and the Josephson current. Here we provide analogous relations for Josephson junctions involving one-dimensional time-reversal-invariant topological superconductors supporting Majorana-Kramers pairs, considering both topological-topological and s -wave-topological junctions. Working in the regime where the junction is much shorter than the superconducting coherence length, we obtain a number of analytical and numerical results that hold for arbitrary normal-state conductance and the most general forms of spin-orbit coupling. The signatures of topological superconductivity we find include the fractional ac Josephson effect, which arises in topological-topological junctions provided that the energy relaxation is sufficiently slow. We also show, for both junction types, that robust signatures of topological superconductivity arise in the dc Josephson effect in the form of switches in the Josephson current due to zero-energy crossings of Andreev levels. The junction spin-orbit coupling enters the Josephson current only in the topological-topological case and in a manner determined by the switch locations, thereby allowing quantitative predictions for experiments with the normal-state conductance, the induced gaps, and the switch locations as inputs.
NASA Astrophysics Data System (ADS)
Deng, Zhipeng; Lei, Lin; Zhou, Shilin
2015-10-01
Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.
Structural Signature of Plastic Deformation in Metallic Glasses
NASA Astrophysics Data System (ADS)
Peng, H. L.; Li, M. Z.; Wang, W. H.
2011-04-01
The structure feature of a model CuZr metallic glass during deformation is investigated by molecular dynamics simulations. A spatially heterogeneous irreversible rearrangement is observed in terms of nonaffine displacement. We find that regions with smaller nonaffine displacement have more Voronoi pentagons, while in those with larger nonaffine displacement other types of faces are more populated. We use the degree of local fivefold symmetry (LFFS) as the structural indicator to predict plastic deformation of local structures and find that the plastic events prefer to be initiated in regions with a lower degree of LFFS and propagate toward regions with a higher degree of LFFS.
Xu, Xuemiao; Jin, Qiang; Zhou, Le; Qin, Jing; Wong, Tien-Tsin; Han, Guoqiang
2015-02-12
We propose a novel biometric recognition method that identifies the inner knuckle print (IKP). It is robust enough to confront uncontrolled lighting conditions, pose variations and low imaging quality. Such robustness is crucial for its application on portable devices equipped with consumer-level cameras. We achieve this robustness by two means. First, we propose a novel feature extraction scheme that highlights the salient structure and suppresses incorrect and/or unwanted features. The extracted IKP features retain simple geometry and morphology and reduce the interference of illumination. Second, to counteract the deformation induced by different hand orientations, we propose a novel structure-context descriptor based on local statistics. To our best knowledge, we are the first to simultaneously consider the illumination invariance and deformation tolerance for appearance-based low-resolution hand biometrics. Settings in previous works are more restrictive. They made strong assumptions either about the illumination condition or the restrictive hand orientation. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of recognition accuracy, especially under uncontrolled lighting conditions and the flexible hand orientation requirement.
Age and gender-invariant features of handwritten signatures for verification systems
NASA Astrophysics Data System (ADS)
AbdAli, Sura; Putz-Leszczynska, Joanna
2014-11-01
Handwritten signature is one of the most natural biometrics, the study of human physiological and behavioral patterns. Behavioral biometrics includes signatures that may be different due to its owner gender or age because of intrinsic or extrinsic factors. This paper presents the results of the author's research on age and gender influence on verification factors. The experiments in this research were conducted using a database that contains signatures and their associated metadata. The used algorithm is based on the universal forgery feature idea, where the global classifier is able to classify a signature as a genuine one or, as a forgery, without the actual knowledge of the signature template and its owner. Additionally, the reduction of the dimensionality with the MRMR method is discussed.
Del Gado, Emanuela; Ilg, Patrick; Kröger, Martin; Ottinger, Hans Christian
2008-08-29
We unveil the existence of nonaffinely rearranging regions in the inherent structures (IS) of supercooled liquids by numerical simulations of model glass formers subject to static shear deformations combined with local energy minimizations. In the liquid state IS, we find a broad distribution of large rearrangements which are correlated only over small distances. At low temperatures, the onset of the cooperative dynamics corresponds to much smaller displacements correlated over larger distances. This finding indicates the presence of nonaffinely rearranging domains of relevant size in the IS deformation, which can be seen as the static counterpart of the cooperatively rearranging regions in the dynamics. This idea provides new insight into possible structural signatures of slow cooperative dynamics of supercooled liquids and supports the connections with elastic heterogeneities found in amorphous solids.
NASA Astrophysics Data System (ADS)
Paganelli, Chiara; Peroni, Marta; Riboldi, Marco; Sharp, Gregory C.; Ciardo, Delia; Alterio, Daniela; Orecchia, Roberto; Baroni, Guido
2013-01-01
Adaptive radiation therapy (ART) aims at compensating for anatomic and pathological changes to improve delivery along a treatment fraction sequence. Current ART protocols require time-consuming manual updating of all volumes of interest on the images acquired during treatment. Deformable image registration (DIR) and contour propagation stand as a state of the ART method to automate the process, but the lack of DIR quality control methods hinder an introduction into clinical practice. We investigated the scale invariant feature transform (SIFT) method as a quantitative automated tool (1) for DIR evaluation and (2) for re-planning decision-making in the framework of ART treatments. As a preliminary test, SIFT invariance properties at shape-preserving and deformable transformations were studied on a computational phantom, granting residual matching errors below the voxel dimension. Then a clinical dataset composed of 19 head and neck ART patients was used to quantify the performance in ART treatments. For the goal (1) results demonstrated SIFT potential as an operator-independent DIR quality assessment metric. We measured DIR group systematic residual errors up to 0.66 mm against 1.35 mm provided by rigid registration. The group systematic errors of both bony and all other structures were also analyzed, attesting the presence of anatomical deformations. The correct automated identification of 18 patients who might benefit from ART out of the total 22 cases using SIFT demonstrated its capabilities toward goal (2) achievement.
NON-CONTACT ACOUSTO-THERMAL SIGNATURES OF PLASTIC DEFORMATION IN TI-6AL-4V
Welter, J. T.; Jata, K. V.; Blodgett, M. P.; Malott, G.; Schehl, N.; Sathish, S.
2010-02-22
Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.
Second order gauge invariant measure of a tidally deformed black hole
Ahmadi, Nahid
2012-08-01
In this paper, a Lagrangian perturbation theory for the second order treatment of small disturbances of the event horizon in Schwarzchild black holes is introduced. The issue of gauge invariance in the context of general relativistic theory is also discussed. The developments of this paper is a logical continuation of the calculations presented in [1], in which the first order coordinate dependance of the intrinsic and exterinsic geometry of the horizon is examined and the first order gauge invariance of the intrinsic geometry of the horizon is shown. In context of second order perturbation theory, It is shown that the rate of the expansion of the congruence of the horizon generators is invariant under a second order reparametrization; so it can be considered as a measure of tidal perturbation. A generally non-vanishing expression for this observable, which accomodates tidal perturbations and implies nonlinear response of the horizon, is also presented.
Gabor frame sets of invariance: a Hamiltonian approach to Gabor frame deformations.
Faulhuber, Markus
In this work we study families of pairs of window functions and lattices which lead to Gabor frames which all possess the same frame bounds. To be more precise, for every generalized Gaussian g, we will construct an uncountable family of lattices [Formula: see text] such that each pairing of g with some [Formula: see text] yields a Gabor frame, and all pairings yield the same frame bounds. On the other hand, for each lattice we will find a countable family of generalized Gaussians [Formula: see text] such that each pairing leaves the frame bounds invariant. Therefore, we are tempted to speak about Gabor Frame Sets of Invariance.
Brst-Invariant Deformations of Geometric Structures in Topological Field Theories
NASA Astrophysics Data System (ADS)
Bytsenko, A. A.; Chaichian, M.; Tureanu, A.; Williams, F. L.
2013-06-01
We study a Lie algebra of formal vector fields Wn with its application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. A relevant concept in the vertex operator algebra and the BRST cohomology is that of the elliptic genera (the one-loop string partition function). We show that the elliptic genera can be written in terms of spectral functions of the hyperbolic three-geometry (which inherits the cohomology structure of BRST-like operator). We show that equivalence classes of deformations are described by a Hochschild cohomology theory of the DG-algebra {A} = (A, Q), Q = \\bar {∂ } + ∂ deform, which is defined to be the cohomology of (-1)n Q + dHoch. Here, \\bar {∂ } is the initial nondeformed BRST operator while ∂deform is the deformed part whose algebra is a Lie algebra of linear vector fields gln. We discuss the identification of the harmonic structure (HT•(X);HΩ•(X)) of affine space X and the group {Ext}Xn({{O}}\\triangle, {{O}}\\triangle ) (the HKR isomorphism), and bulk-boundary deformation pairing.
Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)
NASA Astrophysics Data System (ADS)
Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo
2016-04-01
Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10-2 - 10-1 Hz) and Ultra Long Period (ULP, 10-4 - 10-2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10-4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection and mixing
Stratigraphic signature of lithospheric deformation style in post-rift passive margin basins
NASA Astrophysics Data System (ADS)
Rouby, Delphine; Huismans, Ritske; Robin, Cecile; Braun, Jean; Granjeon, Didier
2016-04-01
We revise commonly accepted models explaining long-term stratigraphic trends along Atlantic-type passive margins by including the impact of complex lithosphere deformation at depth and it's coupling with surface processes. To achieve this, we simulated the evolution of a passive margin basin using a cascade of three modeling tools: a thermo-mechanical model of the syn-rift stretching of the lithosphere, a flexural and thermal model of the post-rift stage that includes coupling with surface processes and, finally, a stratigraphic model of the associated sedimentary basin architecture. We compare two necking styles that lead to different margin geometries: wide and narrow margins that form by heterogeneous stretching. Wide margins, forming thinner and wider sedimentary wedges, show significantly larger aggradation component and longer preservation duration, in more continental/proximal depositional facies. Narrow margins are characterized by enhanced erosion and by-pass during transgression. Through a parametric analysis we constrain the relative contribution of lithosphere deformation and surface processes on the stratigraphic trends and show that both may contribute equally to the stratigraphic architecture. For example, enhanced erosion in narrow margins impacts the volume of sediments delivered to the basin, which, in turn, significantly increases the subsidence. Our simulations also underline the importance of the assumed sediment transport length, which controls whether the main depocentres remain in the necking zone or reach the more distal parts of the margin.
Deformation signature from the Gamow-Teller decay of N=Z nuclei
Miehe, Ch.; Dessagne, Ph.; Huck, A.; Knipper, A.; Marguier, G.; Longour, C.; Rauch, V.; Giovinazzo, J.; Borge, M. J. G.; Piqueras, I.; Tengblad, O.; Jokinen, A.; Ramdhane, M.
1998-12-21
The {sup 76}Sr (N=Z=38) and the {sup 72}Kr (N=Z=36) {beta}{sup +} EC decay have been studied at the CERN/ISOLDE PSB facility where their beta-gamma and delayed particle decay modes have been investigated. The established decay schemes yield new information on the Gamow-Teller (GT) strength spread over the J{sup {pi}}=1{sup +} states in the daughter nuclei. The delayed proton emission of an N=Z nucleus is observed for the first time in the case of {sup 76}Sr. The experimental GT strength intensities and distributions are discussed in the light of the theoretical estimates for oblate and prolate deformations.
The Teton fault, Wyoming: Topographic signature, neotectonics, and mechanisms of deformation
NASA Technical Reports Server (NTRS)
Byrd, John O. D.; Smith, Robert B.; Geissman, John W.
1994-01-01
We integrated geophysical and geological methods to evalute the structural evolution of the active Teton normal fault, Wyoming, and its role in the development of the dramatic topography of Teton Range and Jackson Hole. Comparison of variations in surface offsets with the topographic expression of the Teton range crest and drainage divide, and the overall structure of the range, suggests that the effects ofpostglacial faulting cannot be discriminated from the influence of pre-extensional structures and differential; erosion on the footwall topography. In contrast, the effects of multiple scarp-forming normal faulting earthquakes are expressed by the anomalous drainage pattern and westward tilt of the hanging wall, Jackson Hole, toward the Teton fault. Kinematic boundary element fault models suggest that the westward tilt of the valley floor is the product of 110-125 m of displacement on a 45 deg-75 deg E dipping Teton fault in the past 25,000-75,000 years. Comparisons with historic normal faulting earthquake displacements imply that this range of displacement corresponds to 10-50, M greater than 7 scarp-forming earthquakes. A total throw of 2.5 to 3.5 km across the Teton fault is suggested by inverse ray-tracing and forward gravity models. These models also suggest that Laramide age structures have been offset across the Teton fault and obscure its geophysical signature but also continue to influence the structural and topographic expression of the footwall and hanging wall blocks. Paleomagnetic analyses of the approximately 2.0 Ma Huckelberry Ridge Tuff suggest that the overall westward tilt of the Teton Range is a result ofabout 10 deg of west side down tilt across the Teton fault since tuff emplacement. This suggests that much if not all of the throw across the Teton fault has accumulated in the past 2 m.y. Complex demagnetization and rock magnetic behavior and local emplacement of the Huckleberry Ridge Tuff on preexisting topogrpahy preclude determination of
NASA Astrophysics Data System (ADS)
Chatzinikos, Miltiadis; Dermanis, Athanasios
2016-11-01
By considering a deformable geodetic network, deforming in a linear-in-time mode, according to a coordinate-invariant model, it becomes possible to get an insight into the rank deficiency of the stacking procedure, which is the standard method for estimating initial station coordinates and constant velocities, from coordinate time series. Comparing any two out of the infinitely many least squares estimates of stacking unknowns (initial station coordinates, velocity components and transformation parameters for the reference system in each data epoch), it is proven that the two solutions differ only by a linear-in-time trend in the transformation parameters. These pass over to the initial coordinates (the constant term) and to the velocity estimates (the time coefficient part). While the difference in initial coordinates is equivalent to a change of the reference system at the initial epoch, the differences in velocity components do not comply with those predicted by the same change of reference system for all epochs. Consequently, the different velocity component estimates, obtained by introducing different sets of minimal constraints, correspond to physically different station velocities, which are therefore non-estimable quantities. The theoretical findings are numerically verified for a global, a regional and a local network, by obtaining solutions based on four different types of minimal constraints, three usual algebraic ones (inner or partial inner) and the lately introduced kinematic constraints. Finally, by resorting to the basic ideas of Felix Tisserand, it is explained why the station velocities are non-estimable quantities in a very natural way. The problem of the optimal choice of minimal constraints and, hence, of the corresponding spatio-temporal reference system is shortly discussed.
NASA Astrophysics Data System (ADS)
Chatzinikos, Miltiadis; Dermanis, Athanasios
2017-04-01
By considering a deformable geodetic network, deforming in a linear-in-time mode, according to a coordinate-invariant model, it becomes possible to get an insight into the rank deficiency of the stacking procedure, which is the standard method for estimating initial station coordinates and constant velocities, from coordinate time series. Comparing any two out of the infinitely many least squares estimates of stacking unknowns (initial station coordinates, velocity components and transformation parameters for the reference system in each data epoch), it is proven that the two solutions differ only by a linear-in-time trend in the transformation parameters. These pass over to the initial coordinates (the constant term) and to the velocity estimates (the time coefficient part). While the difference in initial coordinates is equivalent to a change of the reference system at the initial epoch, the differences in velocity components do not comply with those predicted by the same change of reference system for all epochs. Consequently, the different velocity component estimates, obtained by introducing different sets of minimal constraints, correspond to physically different station velocities, which are therefore non-estimable quantities. The theoretical findings are numerically verified for a global, a regional and a local network, by obtaining solutions based on four different types of minimal constraints, three usual algebraic ones (inner or partial inner) and the lately introduced kinematic constraints. Finally, by resorting to the basic ideas of Felix Tisserand, it is explained why the station velocities are non-estimable quantities in a very natural way. The problem of the optimal choice of minimal constraints and, hence, of the corresponding spatio-temporal reference system is shortly discussed.
Scale invariance vs conformal invariance
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2015-03-01
In this review article, we discuss the distinction and possible equivalence between scale invariance and conformal invariance in relativistic quantum field theories. Under some technical assumptions, we can prove that scale invariant quantum field theories in d = 2 space-time dimensions necessarily possess the enhanced conformal symmetry. The use of the conformal symmetry is well appreciated in the literature, but the fact that all the scale invariant phenomena in d = 2 space-time dimensions enjoy the conformal property relies on the deep structure of the renormalization group. The outstanding question is whether this feature is specific to d = 2 space-time dimensions or it holds in higher dimensions, too. As of January 2014, our consensus is that there is no known example of scale invariant but non-conformal field theories in d = 4 space-time dimensions under the assumptions of (1) unitarity, (2) Poincaré invariance (causality), (3) discrete spectrum in scaling dimensions, (4) existence of scale current and (5) unbroken scale invariance in the vacuum. We have a perturbative proof of the enhancement of conformal invariance from scale invariance based on the higher dimensional analogue of Zamolodchikov's c-theorem, but the non-perturbative proof is yet to come. As a reference we have tried to collect as many interesting examples of scale invariance in relativistic quantum field theories as possible in this article. We give a complementary holographic argument based on the energy-condition of the gravitational system and the space-time diffeomorphism in order to support the claim of the symmetry enhancement. We believe that the possible enhancement of conformal invariance from scale invariance reveals the sublime nature of the renormalization group and space-time with holography. This review is based on a lecture note on scale invariance vs conformal invariance, on which the author gave lectures at Taiwan Central University for the 5th Taiwan School on Strings and
NASA Astrophysics Data System (ADS)
Vilaseca, Géraud; Deplus, Christine; Escartin, Javier; Ballu, Valérie; Nomikou, Paraskevi; Mével, Catherine; Andreani, Muriel
2016-04-01
Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. In addition, we illustrate that tilt sensor can roughly record seismic induced ground motion which in our case led to a shift in sensors attitude for one seismic event. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.
NASA Astrophysics Data System (ADS)
Gomez, F. G.; Johnson, H. E., III; LeWinter, A. L.; Finnegan, D. C.; Sandvol, E. A.; Nayak, A.; Hurwitz, S.
2014-12-01
Geysers are important subjects for studying processes involved with multi-phase eruptions. As part of a larger field effort, this study applies imaging geodesy and seismology to study eruptive cycles of the Lone Star Geyser in Yellowstone National Park. Lone Star Geyser is an ideal candidate for such study, as it erupts with a nearly regular period of approximately 3 hours. The geyser includes a 5 m diameter cone that rises 2 meters above the sinter terrace, and the entire system can be viewed from a nearby hillside. Fieldwork was accomplished during April 2014. Ground-based interferometric radar (GBIR) and terrestrial laser scanning (TLS) were used to image possible surface deformations associated with Lone Star Geyer's eruption cycles. Additional observations were provided by global positioning system (GPS) measurements and six broad-band seismometers deployed in the immediate vicinity of the geyser. The GBIR and TLS were deployed approximately 65 meters from the sinter cone of the geyser. The GBIR involves a ku-band radar (1.7 cm wavelength) that is sensitive to approximately half-millimeter changes in the line-of-sight distance. Radar images were acquired every minute for 3 or more eruptions per day. Temporally redundant, overlapping interferograms were used to improve the sensitivity and interpolate a minute-wise time series of line-of-sight displacement, and efforts were made to account for possible path-delay effects resulting from water vapor around the geyser cone. Repeat (every minute) high-speed TLS scans were acquired for multiple eruption cycles over the course of two-days. Resulting measurement point spacing on the sinter cone was ~3cm. The TLS point-clouds were geo-referenced using static surveyed reflectors and scanner positions. In addition to measuring ground deformation, filtering and classification of the TLS point cloud was used to construct a mask that allows radar interferometry to exclude non-ground areas (vegetation, snow, sensors
Biswas, Tora; Pawale, Vijaykumar S; Choudhury, Devapriya; Roy, Rajendra P
2014-04-22
Transpeptidase sortase catalyzes the covalent anchoring of surface proteins to the cell wall in Gram-positive bacteria. Sortase A (SrtA) of Staphylococcus aureus is a prototype enzyme and considered a bona fide drug target because several substrate proteins are virulence-related and implicated in pathogenesis. Besides, SrtA also works as a versatile tool in protein engineering. Surface proteins destined for cell wall anchoring contain a LPXTG sequence located in their C-terminus which serves as a substrate recognition motif for SrtA. Recent studies have implicated substrate-induced conformational dynamics in SrtA. In the present work, we have explored the roles of invariant Leu and Pro residues of the substrate in modulating the enzyme dynamics with a view to understand the selection process of a catalytically competent substrate. Overall results of molecular dynamics simulations and experiments carried out with noncanonical substrates and site-directed mutagenesis reveal that the kinked conformation due to Pro in LPXTG is obligatory for productive binding but does not per se control the enzyme dynamics. The Leu residue of the substrate appears to play the crucial role of an anchor to the beta6-beta7 loop directing the conformational transition of the enzyme from an "open" to a "closed" state subsequent to which the Pro residue facilitates the consummation of binding through predominant engagement of the loop and catalytic motif residues in hydrophobic interactions. Collectively, our study provides insights about specificity, tolerance, and conformational sorting of substrate by SrtA. These results have important implications in designing newer substrates and inhibitors for this multifaceted enzyme.
NASA Astrophysics Data System (ADS)
Long, Maureen D.; Jackson, Kenneth G.; McNamara, John F.
2016-01-01
Seismic anisotropy in the upper mantle beneath continental interiors is generally complicated, with contributions from both the lithosphere and the asthenosphere. Previous studies of SKS splitting beneath the eastern United States have yielded evidence for complex and laterally variable anisotropy, but until the recent arrival of the USArray Transportable Array (TA) the station coverage has been sparse. Here we present SKS splitting measurements at TA stations in eastern North America and compare the measured fast directions with indicators such as absolute plate motion, surface geology, and magnetic lineations. We find few correlations between fast directions and absolute plate motion, except in the northeastern U.S. and southern Canada, where some stations exhibit variations in apparent splitting with backazimuth that would suggest multiple layers of anisotropy. A region of the southeastern U.S. is dominated by null SKS arrivals over a range of backazimuths, consistent with previous work. We document a pattern of fast directions parallel to the Appalachian mountain chain, suggesting a contribution from lithospheric deformation associated with Appalachian orogenesis. Overall, our measurements suggest that upper mantle anisotropy beneath the eastern United States is complex, with likely contributions from both asthenospheric and lithospheric anisotropy in many regions.
Frank, Steven A
2016-01-01
In nematodes, environmental or physiological perturbations alter death's scaling of time. In human cancer, genetic perturbations alter death's curvature of time. Those changes in scale and curvature follow the constraining contours of death's invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death's scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes.
Frank, Steven A.
2016-01-01
In nematodes, environmental or physiological perturbations alter death’s scaling of time. In human cancer, genetic perturbations alter death’s curvature of time. Those changes in scale and curvature follow the constraining contours of death’s invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death’s scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes. PMID:27785361
View Invariant Gait Recognition
NASA Astrophysics Data System (ADS)
Seely, Richard D.; Goffredo, Michela; Carter, John N.; Nixon, Mark S.
Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on current large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group, the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated toward view-invariant gait recognition.
Geometry-invariant resonant cavities
Liberal, I.; Mahmoud, A. M.; Engheta, N.
2016-01-01
Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103
Geometry-invariant resonant cavities
NASA Astrophysics Data System (ADS)
Liberal, I.; Mahmoud, A. M.; Engheta, N.
2016-03-01
Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.
Neutrinos as Probes of Lorentz Invariance
Díaz, Jorge S.
2014-01-01
Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.
Invariant variational structures on fibered manifolds
NASA Astrophysics Data System (ADS)
Krupka, Demeter
2015-12-01
The aim of this paper is to present a relatively complete theory of invariance of global, higher-order integral variational functionals in fibered spaces, as developed during a few past decades. We unify and extend recent results of the geometric invariance theory; new results on deformations of extremals are also included. We show that the theory can be developed by means of the general concept of invariance of a differential form in geometry, which does not require different ad hoc modifications. The concept applies to invariance of Lagrangians, source forms and Euler-Lagrange forms, as well as to extremals of the given variational functional. Equations for generators of invariance transformations of the Lagrangians and the Euler-Lagrange forms are characterized in terms of Lie derivatives. As a consequence of invariance, we derive the global Noether's theorem on existence of conserved currents along extremals, and discuss the meaning of conservation equations. We prove a theorem describing extremals, whose deformations by a vector field are again extremals. The general settings and structures we use admit extension of the global invariance theory to variational principles in physics, especially in field theory.
Generalizing twisted gauge invariance
Duenas-Vidal, Alvaro; Vazquez-Mozo, Miguel A.
2009-05-01
We discuss the twisting of gauge symmetry in noncommutative gauge theories and show how this can be generalized to a whole continuous family of twisted gauge invariances. The physical relevance of these twisted invariances is discussed.
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2017-02-01
We show that 11-dimensional supergravity in Euclidean signature admits an exact classical solution with isometry corresponding to a three-dimensional scale-invariant field theory without conformal invariance. We also construct the holographic renormalization group flow that connects the known UV conformal fixed point and the new scale-invariant but not conformal fixed point. In view of holography, the existence of such classical solutions suggests that the topologically twisted M2-brane gauge theory possesses a scale-invariant but not conformal phase.
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Bansal, Neeraj; Bhati, A. K.; Kumar, R.; Sharma, Vijay R.; Kapoor, K.; Kumar, V.; Kaur, Navneet
2017-02-01
The g-factor and the static quadrupole moment of a magnetic rotational band head 21/2- at 2121 keV in 131La have been determined by means of the time-differential perturbed angular distribution technique. The measured value of the g-factor, + 1.060 (4), is in agreement with the theoretical value for a three quasi-proton, π3 {11/2- [ 505 ] ⊗5/2+ [ 422 ] ⊗5/2+ [ 413 ] } Nilsson configuration assignment. The observed spectroscopic quadrupole moment ratio, Qs (21/2- ,131 La)/Qs (19/2- ,137 La) = 0.457 (4), supports the collective oblate shape (γ ∼ - 60 °) with quadrupole deformation β2 < 0.07. The half-life of the 21/2- state, 37.2(1) ns, is re-measured with better accuracy.
Conformal Invariance of Graphene Sheets
Giordanelli, I.; Posé, N.; Mendoza, M.; Herrmann, H. J.
2016-01-01
Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces. PMID:26961723
NASA Astrophysics Data System (ADS)
Pyati, Vittal P.
The reduction of vehicle radar signature is accomplished by means of vehicle shaping, the use of microwave frequencies-absorbent materials, and either passive or active cancellation techniques; such techniques are also useful in the reduction of propulsion system-associated IR emissions. In some anticipated scenarios, the objective is not signature-reduction but signature control, for deception, via decoy vehicles that mimic the signature characteristics of actual weapons systems. As the stealthiness of airframes and missiles increases, their propulsion systems' exhaust plumes assume a more important role in detection by an adversary.
Conformal differential invariants
NASA Astrophysics Data System (ADS)
Kruglikov, Boris
2017-03-01
We compute the Hilbert polynomial and the Poincaré function counting the number of fixed jet-order differential invariants of conformal metric structures modulo local diffeomorphisms, and we describe the field of rational differential invariants separating generic orbits of the diffeomorphism pseudogroup action. This resolves the local recognition problem for conformal structures.
Cosmological disformal invariance
Domènech, Guillem; Sasaki, Misao; Naruko, Atsushi E-mail: naruko@th.phys.titech.ac.jp
2015-10-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.
Explicit Krawtchouk moment invariants for invariant image recognition
NASA Astrophysics Data System (ADS)
Xiao, Bin; Zhang, Yanhong; Li, Linping; Li, Weisheng; Wang, Guoyin
2016-03-01
The existing Krawtchouk moment invariants are derived by a linear combination of geometric moment invariants. This indirect method cannot achieve perfect performance in rotation, scale, and translation (RST) invariant image recognition since the derivation of these invariants are not built on Krawtchouk polynomials. A direct method to derive RST invariants from Krawtchouk moments, named explicit Krawtchouk moment invariants, is proposed. The proposed method drives Krawtchouk moment invariants by algebraically eliminating the distorted (i.e., rotated, scaled, and translated) factor contained in the Krawtchouk moments of distorted image. Experimental results show that, compared with the indirect methods, the proposed approach can significantly improve the performance in terms of recognition accuracy and noise robustness.
Möbius Invariants of Shapes and Images
NASA Astrophysics Data System (ADS)
Marsland, Stephen; McLachlan, Robert I.
2016-08-01
Identifying when different images are of the same object despite changes caused by imaging technologies, or processes such as growth, has many applications in fields such as computer vision and biological image analysis. One approach to this problem is to identify the group of possible transformations of the object and to find invariants to the action of that group, meaning that the object has the same values of the invariants despite the action of the group. In this paper we study the invariants of planar shapes and images under the Möbius group PSL(2,C), which arises in the conformal camera model of vision and may also correspond to neurological aspects of vision, such as grouping of lines and circles. We survey properties of invariants that are important in applications, and the known Möbius invariants, and then develop an algorithm by which shapes can be recognised that is Möbius- and reparametrization-invariant, numerically stable, and robust to noise. We demonstrate the efficacy of this new invariant approach on sets of curves, and then develop a Möbius-invariant signature of grey-scale images.
Invariants of Boundary Link Cobordism
NASA Astrophysics Data System (ADS)
Sheiham, Desmond
2001-10-01
An n-dimensional μ-component boundary link is a codimension 2 embedding of spheres L=bigsqcup_{μ}S^n subset S^{n+2} such that there exist μ disjoint oriented embedded (n+1)-manifolds which span the components of L. An F_μ-link is a boundary link together with a cobordism class of such spanning manifolds. The F_μ-link cobordism group C_n(F_μ) is known to be trivial when n is even but not finitely generated when n is odd. Our main result is an algorithm to decide whether two odd-dimensional F_μ-links represent the same cobordism class in C_{2q-1}(F_μ) assuming q>1. We proceed to compute the isomorphism class of C_{2q-1}(F_μ), generalizing Levine's computation of the knot cobordism group C_{2q-1}(F_1). Our starting point is the algebraic formulation of Levine, Ko and Mio who identify C_{2q-1}(F_μ) with a surgery obstruction group, the Witt group G^{(-1)^q,μ}(Z) of μ-component Seifert matrices. We obtain a complete set of torsion-free invariants by passing from integer coefficients to complex coefficients and by applying the algebraic machinery of Quebbemann, Scharlau and Schulte. Signatures correspond to `algebraically integral' simple self-dual representations of a certain quiver (directed graph with loops). These representations, in turn, correspond to algebraic integers on an infinite disjoint union of real affine varieties. To distinguish torsion classes, we consider rational coefficients in place of complex coefficients, expressing G^{(-1)^q,μ}(Q) as an infinite direct sum of Witt groups of finite-dimensional division Q-algebras with involution. Numerical invariants of such Witt groups are available in the literature.
Yang-Baxter invariance of the Nappi-Witten model
NASA Astrophysics Data System (ADS)
Kyono, Hideki; Yoshida, Kentaroh
2016-04-01
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical r-matrices satisfying (modified) classical Yang-Baxter equations. We show that the sigma-model metric is invariant under arbitrary deformations (while the coefficient of B-field is changed) by utilizing the most general classical r-matrix. Furthermore, the coefficient of B-field is determined to be the original value from the requirement that the one-loop β-function should vanish. After all, the Nappi-Witten model is the unique conformal theory within the class of the Yang-Baxter deformations preserving the conformal invariance.
Generalized scale invariant theories
NASA Astrophysics Data System (ADS)
Padilla, Antonio; Stefanyszyn, David; Tsoukalas, Minas
2014-03-01
We present the most general actions of a single scalar field and two scalar fields coupled to gravity, consistent with second-order field equations in four dimensions, possessing local scale invariance. We apply two different methods to arrive at our results. One method, Ricci gauging, was known to the literature and we find this to produce the same result for the case of one scalar field as a more efficient method presented here. However, we also find our more efficient method to be much more general when we consider two scalar fields. Locally scale invariant actions are also presented for theories with more than two scalar fields coupled to gravity and we explain how one could construct the most general actions for any number of scalar fields. Our generalized scale invariant actions have obvious applications to early Universe cosmology and include, for example, the Bezrukov-Shaposhnikov action as a subset.
Reparametrization invariant collinear operators
Marcantonini, Claudio; Stewart, Iain W.
2009-03-15
In constructing collinear operators, which describe the production of energetic jets or energetic hadrons, important constraints are provided by reparametrization invariance (RPI). RPI encodes Lorentz invariance in a power expansion about a collinear direction, and connects the Wilson coefficients of operators at different orders in this expansion to all orders in {alpha}{sub s}. We construct reparametrization invariant collinear objects. The expansion of operators built from these objects provides an efficient way of deriving RPI relations and finding a minimal basis of operators, particularly when one has an observable with multiple collinear directions and/or soft particles. Complete basis of operators is constructed for pure glue currents at twist-4, and for operators with multiple collinear directions, including those appearing in e{sup +}e{sup -}{yields}3 jets, and for pp{yields}2 jets initiated via gluon fusion.
Supersymmetric invariant theories
NASA Astrophysics Data System (ADS)
Esipova, S. R.; Lavrov, P. M.; Radchenko, O. V.
2014-04-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is a direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Idiographic Measurement Invariance?
ERIC Educational Resources Information Center
Willoughby, Michael T.; Sideris, John
2007-01-01
In this article, the authors comment on Nesselroade, Gerstorf, Hardy, and Ram's efforts (this issue) to grapple with the challenge of accommodating idiographic assessment as it pertains to measurement invariance (MI). Although the authors are in complete agreement with the motivation for Nesselroade et al.'s work, the authors have concerns about…
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-08
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.
Pokhozhaev, Stanislav I
2011-06-30
The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-01
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.
Measurement Invariance versus Selection Invariance: Is Fair Selection Possible?
ERIC Educational Resources Information Center
Borsman, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in…
Are there p-adic knot invariants?
NASA Astrophysics Data System (ADS)
Morozov, A. Yu.
2016-04-01
We suggest using the Hall-Littlewood version of the Rosso-Jones formula to define the germs of p-adic HOMFLY-PT polynomials for torus knots [ m, n] as coefficients of superpolynomials in a q-expansion. In this form, they have at least the [ m, n] ↔ [ n, m] topological invariance. This opens a new possibility to interpret superpolynomials as p-adic deformations of HOMFLY polynomials and poses a question of generalizing to other knot families, which is a substantial problem for several branches of modern theory.
NASA Astrophysics Data System (ADS)
Chung, Won Sang; Kim, Jae Yoon
In this paper, the q-deformed circular unit and hyperbolic imaginary unit are studied. With a help of these units, the invariant q-deformed length is defined. As applications, the q-deformed rotation in two dimension and q-deformed special relativity in 1 + 1 dimension are also investigated.
NASA Astrophysics Data System (ADS)
Vollmer, Gerhard
2010-10-01
Scientific knowledge should not only be true, it should be as objective as possible. It should refer to a reality independent of any subject. What can we use as a criterion of objectivity? Intersubjectivity (i.e., intersubjective understandability and intersubjective testability) is necessary, but not sufficient. Other criteria are: independence of reference system, independence of method, non-conventionality. Is there some common trait? Yes, there is: invariance under some specified transformations. Thus, we say: A proposition is objective only if its truth is invariant against a change in the conditions under which it was formulated. We give illustrations from geometry, perception, neurobiology, relativity theory, and quantum theory. Such an objectivist position has many advantages.
2010-12-02
evaluating the function ΘP (A) for any fixed A,P is equivalent to solving the so-called Quadratic Assignment Problem ( QAP ), and thus we can employ various...tractable linear programming, spectral, and SDP relaxations of QAP [40, 11, 33]. In particular we discuss recent work [14] on exploiting group...symmetry in SDP relaxations of QAP , which is useful for approximately computing elementary convex graph invariants in many interesting cases. Finally in
Perspective Projection Invariants,
1986-02-01
ORGANIZATION NAME ANC ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Inteligence Laboratory AREA & WORK UNIT NUMBERSO 545 Technology Square dCambridge...AD-AI67 793 PERSPECTIVE PROJECTION INVARIANTS(U) MASSACHUSETTS INST 1/1~ OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB VERRI ET AL, FEB 86 AI-M-832...0R020I4 661 SEC R TVC PAGE fjSr .W IlIII UI A 8 gT@OFTNS21 07 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER
Entanglement, Invariants, and Phylogenetics
NASA Astrophysics Data System (ADS)
Sumner, J. G.
2007-10-01
This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.
Lorentz-invariant formulation of Cherenkov radiation by tachyons
NASA Technical Reports Server (NTRS)
Jones, F. C.
1972-01-01
Previous treatments of Cherenkov radiation, electromagnetic and gravitational, by tachyons were in error because the prescription employed to cut off the divergent integral over frequency is not a Lorentz invariant procedure. The resulting equation of motion for the tachyon is therefore not covariant. The proper procedure requires an extended, deformable distribution of charge or mass and yields a particularly simple form for the tachyon's world line, one that could be deduced from simple invariance considerations. It is shown that Cherenkov radiation by tachyons implys their ultimate annihilation with an antitachyon and demonstrates a disturbing property of tachyons, namely the impossibility of specifying arbitrary Cauchy data even in a purely classical theory.
On the new translational shape-invariant potentials
NASA Astrophysics Data System (ADS)
Ramos, Arturo
2011-08-01
Recently, several authors have found new translational shape-invariant potentials not present in classic classifications like those of Infeld and Hull. For example, Quesne on the one hand and Bougie, Gangopadhyaya and Mallow on the other have provided examples of them, consisting on deformations of the classical ones. We analyze the basic properties of the new examples and observe a compatibility equation which has to be satisfied by them. We study particular cases of such an equation and give more examples of new translational shape-invariant potentials.
Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory
Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H.; Gu, Xianfeng
2016-01-01
Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing
Invariants from classical field theory
Diaz, Rafael; Leal, Lorenzo
2008-06-15
We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
Tractors, mass, and Weyl invariance
NASA Astrophysics Data System (ADS)
Gover, A. R.; Shaukat, A.; Waldron, A.
2009-05-01
Deser and Nepomechie established a relationship between masslessness and rigid conformal invariance by coupling to a background metric and demanding local Weyl invariance, a method which applies neither to massive theories nor theories which rely upon gauge invariances for masslessness. We extend this method to describe massive and gauge invariant theories using Weyl invariance. The key idea is to introduce a new scalar field which is constant when evaluated at the scale corresponding to the metric of physical interest. This technique relies on being able to efficiently construct Weyl invariant theories. This is achieved using tractor calculus—a mathematical machinery designed for the study of conformal geometry. From a physics standpoint, this amounts to arranging fields in multiplets with respect to the conformal group but with novel Weyl transformation laws. Our approach gives a mechanism for generating masses from Weyl weights. Breitenlohner-Freedman stability bounds for Anti-de Sitter theories arise naturally as do direct derivations of the novel Weyl invariant theories given by Deser and Nepomechie. In constant curvature spaces, partially massless theories—which rely on the interplay between mass and gauge invariance—are also generated by our method. Another simple consequence is conformal invariance of the maximal depth partially massless theories. Detailed examples for spins s⩽2 are given including tractor and component actions, on-shell and off-shell approaches and gauge invariances. For all spins s⩾2 we give tractor equations of motion unifying massive, massless, and partially massless theories.
Kahler stabilized, modular invariant heterotic string models
Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.
2007-03-19
We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.
Bifurcation from an invariant to a non-invariant attractor
NASA Astrophysics Data System (ADS)
Mandal, D.
2016-12-01
Switching dynamical systems are very common in many areas of physics and engineering. We consider a piecewise linear map that periodically switches between more than one different functional forms. We show that in such systems it is possible to have a border collision bifurcation where the system transits from an invariant attractor to a non-invariant attractor.
Integrable amplitude deformations for N =4 super Yang-Mills and ABJM theory
NASA Astrophysics Data System (ADS)
Bargheer, Till; Huang, Yu-Tin; Loebbert, Florian; Yamazaki, Masahito
2015-01-01
We study Yangian-invariant deformations of scattering amplitudes in 4d N =4 super Yang-Mills theory and 3d N =6 Aharony-Bergman-Jafferis-Maldacena (ABJM) theory. In particular, we obtain the deformed Graßmannian integral for 4d N =4 supersymmetric Yang-Mills theory, both in momentum and momentum-twistor space. For 3d ABJM theory, we initiate the study of deformed scattering amplitudes. We investigate general deformations of on-shell diagrams, and find the deformed Graßmannian integral for this theory. We furthermore introduce the algebraic R-matrix construction of deformed Yangian invariants for ABJM theory.
Invariant Measures for Cherry Flows
NASA Astrophysics Data System (ADS)
Saghin, Radu; Vargas, Edson
2013-01-01
We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.
mathcal{PT} Invariant Complex E 8 Root Spaces
NASA Astrophysics Data System (ADS)
Fring, Andreas; Smith, Monique
2011-04-01
We provide a construction procedure for complex root spaces invariant under antilinear transformations, which may be applied to any Coxeter group. The procedure is based on the factorisation of a chosen element of the Coxeter group into two factors. Each of the factors constitutes an involution and may therefore be deformed in an antilinear fashion. Having the importance of the E 8-Coxeter group in mind, such as underlying a particular perturbation of the Ising model and the fact that for it no solution could be found previously, we exemplify the procedure for this particular case. As a concrete application of this construction we propose new generalisations of Calogero-Moser-Sutherland models and affine Toda field theories based on the invariant complex root spaces and deformed complex simple roots, respectively.
Physical Invariants of Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
A program of research is dedicated to development of a mathematical formalism that could provide, among other things, means by which living systems could be distinguished from non-living ones. A major issue that arises in this research is the following question: What invariants of mathematical models of the physics of systems are (1) characteristic of the behaviors of intelligent living systems and (2) do not depend on specific features of material compositions heretofore considered to be characteristic of life? This research at earlier stages has been reported, albeit from different perspectives, in numerous previous NASA Tech Briefs articles. To recapitulate: One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Mathematical models of motor dynamics are used to simulate the observable physical behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. At the time of reporting the information for this article, the focus of this research was upon the following aspects of the formalism: Intelligence is considered to be a means by which a living system preserves itself and improves its ability to survive and is further considered to manifest itself in feedback from the mental dynamics to the motor dynamics. Because of the feedback from the mental dynamics, the motor dynamics attains quantum-like properties: The trajectory of the physical aspect of the system in the space of dynamical variables splits into a family of different trajectories, and each of those trajectories can be chosen with a probability prescribed by the mental dynamics. From a slightly different perspective
Rotation, scale and translation invariant pattern recognition system for color images
NASA Astrophysics Data System (ADS)
Barajas-García, Carolina; Solorza-Calderón, Selene; Álvarez-Borrego, Josué
2016-12-01
This work presents a color image pattern recognition system invariant to rotation, scale and translation. The system works with three 1D signatures, one for each RGB color channel. The signatures are constructed based on Fourier transform, analytic Fourier-Mellin transform and Hilbert binary rings mask. According with the statistical theory of box-plots, the pattern recognition system has a confidence level at least of 95.4%.
On Lorentz Transformations in Symplectic Deformations
Cuesta, R.; Sabido, M.; Guzman, W.
2010-07-12
In this paper we study noncommutative Lorentz transformations using symplectic deformations. In this framework we define an infinitesimal line element that is invariant under this noncommutative Lorentz transformations. Using the symplectic geometry formalism, we find that noncommutative Lorentz transformations intertwine the canonical momentums with canonical position coordinates.
Does the nontrivially deformed field-antifield formalism exist?
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2015-06-01
We reformulate the Lagrange deformed field-antifield BV-formalism suggested, in terms of the general Euler vector field N generated by the antisymplectic potential. That N generalizes, in a natural anticanonically-invariant manner, the usual power-counting operator. We provide for the "usual" gauge-fixing mechanism as applied to the deformed BV-formalism.
Quadratic Generalized Scale Invariance
NASA Astrophysics Data System (ADS)
Lovejoy, S.; Schertzer, D.; Addor, J. B.
Nearly twenty years ago, two of us argued that in order to account for the scaling strat- ification of the atmosphere, that an anisotropic "unified scaling model" of the atmo- sphere was required with elliptical dimension 23/9=2.555... "in between" the standard 3-D (small scale) and 2-D large scale model. This model was based on the formal- ism of generalized scale invariance (GSI). Physically, GSI is justified by arguing that various conserved fluxes (energy, buoyancy force variance etc.) should define the ap- propriate notion of scale. In a recent large scale satellite cloud image analysis, we directly confirmed this model by studying the isotropic (angle averaged) horizontal cloud statistics. Mathematically, GSI is based on a a group of scale changing opera- tors and their generators but to date, both analyses (primarily of cloud images) and nu- merical (multifractal) simulations, have been limited to the special case of linear GSI. This has shown that cloud texture can plausibly be associated with local linearizations. However realistic morphologies involve spatially avarying textures; the full non linear GSI is clearly necessary. In this talk, we first show that the observed angle averaged (multi)scaling statistics only give a realtively weak constraint on the nonlinear gner- ator: that the latter can be expressed by self-similar (isotropic) part, and a deviatoric part described (in two dimensions) by an arbitrary scalar potential which contains all the information about the cloud morphology. We then show (using a theorem due to Poincaré) how to reduce nonlinear GSI to linear GSI plus a nonlinear coordinate trans- formation numerically, using this to take multifractal GSI modelling to the next level of approximation: quadratic GSI. We show many examples of the coresponding simu- lations which include transitions from various morphologies (including cyclones) and we discuss the results in relation to satellite cloud images.
Orthosymplectically invariant functions in superspace
NASA Astrophysics Data System (ADS)
Coulembier, K.; De Bie, H.; Sommen, F.
2010-08-01
The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schrödinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally, the obtained machinery is used to prove the Funk-Hecke theorem and Bochner's relations in superspace.
Bunnell, W P
1986-12-01
Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis.
NASA Astrophysics Data System (ADS)
Hawley, Chadwick T.
2009-05-01
The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.
Jordanian deformation of the open sℓ(2) Gaudin model
NASA Astrophysics Data System (ADS)
António, N. Cirilo; Manojlović, N.; Nagy, Z.
2014-04-01
We derive a deformed sℓ( 2) Gaudin model with integrable boundaries. Starting from the Jordanian deformation of the SL( 2)-invariant Yang R-matrix and generic solutions of the associated reflection equation and the dual reflection equation, we obtain the corresponding inhomogeneous spin- 1/2 XXX chain. The semiclassical expansion of the transfer matrix yields the deformed sℓ( 2) Gaudin Hamiltonians with boundary terms.
Exposing local symmetries in distorted driven lattices via time-averaged invariants
NASA Astrophysics Data System (ADS)
Wulf, T.; Morfonios, C. V.; Diakonos, F. K.; Schmelcher, P.
2016-05-01
Time-averaged two-point currents are derived and shown to be spatially invariant within domains of local translation or inversion symmetry for arbitrary time-periodic quantum systems in one dimension. These currents are shown to provide a valuable tool for detecting deformations of a spatial symmetry in static and driven lattices. In the static case the invariance of the two-point currents is related to the presence of time-reversal invariance and/or probability current conservation. The obtained insights into the wave functions are further exploited for a symmetry-based convergence check which is applicable for globally broken but locally retained potential symmetries.
CPT violation implies violation of Lorentz invariance.
Greenberg, O W
2002-12-02
A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.
Weyl invariance with a nontrivial mass scale
Álvarez, Enrique; González-Martín, Sergio
2016-09-07
A theory with a mass scale and yet Weyl invariant is presented. The theory is not invariant under all diffeomorphisms but only under transverse ones. This is the reason why Weyl invariance does not imply scale invariance in a free falling frame. Physical implications of this framework are discussed.
Machine learning strategies for systems with invariance properties
NASA Astrophysics Data System (ADS)
Ling, Julia; Jones, Reese; Templeton, Jeremy
2016-08-01
In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.
Machine learning strategies for systems with invariance properties
Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan
2016-05-06
Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.
Machine learning strategies for systems with invariance properties
Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan
2016-05-06
Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neuralmore » networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.« less
Test of charge conjugation invariance.
Nefkens, B M K; Prakhov, S; Gårdestig, A; Allgower, C E; Bekrenev, V; Briscoe, W J; Clajus, M; Comfort, J R; Craig, K; Grosnick, D; Isenhower, D; Knecht, N; Koetke, D; Koulbardis, A; Kozlenko, N; Kruglov, S; Lolos, G; Lopatin, I; Manley, D M; Manweiler, R; Marusić, A; McDonald, S; Olmsted, J; Papandreou, Z; Peaslee, D; Phaisangittisakul, N; Price, J W; Ramirez, A F; Sadler, M; Shafi, A; Spinka, H; Stanislaus, T D S; Starostin, A; Staudenmaier, H M; Supek, I; Tippens, W B
2005-02-04
We report on the first determination of upper limits on the branching ratio (BR) of eta decay to pi0pi0gamma and to pi0pi0pi0gamma. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(eta-->pi0pi0gamma)<5 x 10(-4) at the 90% confidence level, in support of C invariance of isoscalar electromagnetic interactions of the light quarks. We have also measured BR(eta-->pi0pi0pi0gamma)<6 x 10(-5) at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions.
Uncertainty in hydrological signatures
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; McMillan, H. K.
2015-09-01
Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.
Invariants of broken discrete symmetries.
Kalozoumis, P A; Morfonios, C; Diakonos, F K; Schmelcher, P
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
Invariants of Broken Discrete Symmetries
NASA Astrophysics Data System (ADS)
Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms
NASA Astrophysics Data System (ADS)
Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.
2014-12-01
The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.
Algebraic invariants for homotopy types
NASA Astrophysics Data System (ADS)
Blanc, David
1999-11-01
We define a sequence of purely algebraic invariants - namely, classes in the Quillen cohomology of the [Pi]-algebra [pi][low asterisk]X - for distinguishing between different homotopy types of spaces. Another sequence of such cohomology classes allows one to decide whether a given abstract [Pi]-algebra can be realized as the homotopy [Pi]-algebra of a space.
Galilean invariance in Lagrangian mechanics
NASA Astrophysics Data System (ADS)
Mohallem, J. R.
2015-10-01
The troublesome topic of Galilean invariance in Lagrangian mechanics is discussed in two situations: (i) A particular case involving a rheonomic constraint in uniform motion and (ii) the general translation of an entire system and the constants of motion involved. A widespread impropriety in most textbooks is corrected, concerning a condition for the equality h = E to hold.
Thomas, Anthony W.
2008-10-13
We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between 'chiral' and 'invariant' spin. This is particularly significant with respect to the possible presence of polarized strange quarks.
Perception of Invariance Over Perspective Transformations in Five Month Old Infants.
ERIC Educational Resources Information Center
Gibson, Eleanor; And Others
This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…
Measurement invariance versus selection invariance: is fair selection possible?
Borsboom, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M
2008-06-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in the location but not in the variance of the latent distribution, sensitivity and positive predictive value will be higher in the group at the higher end of the latent dimension, whereas specificity and negative predictive value will be higher in the group at the lower end of the latent dimension. When latent variances are unequal, the differences in these quantities depend on the size of group differences in variances relative to the size of group differences in means. The effect originates as a special case of Simpson's paradox, which arises because the observed score distribution is collapsed into an accept-reject dichotomy. Simulations show the effect can be substantial in realistic situations. It is suggested that the effect may be partly responsible for overprediction in minority groups as typically found in empirical studies on differential academic performance. A methodological solution to the problem is suggested, and social policy implications are discussed.
ERIC Educational Resources Information Center
Hassler, Vesna; Biely, Helmut
1999-01-01
Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…
Cohomological invariants of central simple algebras
NASA Astrophysics Data System (ADS)
Merkurjev, A. S.
2016-10-01
We determine the indecomposable degree 3 cohomological invariants of tuples of central simple algebras with linear relations. Equivalently, we determine the degree 3 reductive cohomological invariants of all split semisimple groups of type A.
Invariance of visual operations at the level of receptive fields
Lindeberg, Tony
2013-01-01
The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the
Invariance in Measurement and Prediction Revisited
ERIC Educational Resources Information Center
Millsap, Roger E.
2007-01-01
Borsboom (Psychometrika, 71:425-440, 2006) noted that recent work on measurement invariance (MI) and predictive invariance (PI) has had little impact on the practice of measurement in psychology. To understand this contention, the definitions of MI and PI are reviewed, followed by results on the consistency between the two forms of invariance in…
Anisotropic invariance in minisuperspace models
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Sabido, Miguel
2016-06-01
In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski-Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann-Robertson-Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.
Emerging universe from scale invariance
Del Campo, Sergio; Herrera, Ramón; Guendelman, Eduardo I.; Labraña, Pedro E-mail: guendel@bgu.ac.il E-mail: plabrana@ubiobio.cl
2010-06-01
We consider a scale invariant model which includes a R{sup 2} term in action and show that a stable ''emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R{sup 2} term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.
Quantum mechanics from invariance principles
NASA Astrophysics Data System (ADS)
Moldoveanu, Florin
2015-07-01
Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.
Proton spin: A topological invariant
NASA Astrophysics Data System (ADS)
Tiwari, S. C.
2016-11-01
Proton spin problem is given a new perspective with the proposition that spin is a topological invariant represented by a de Rham 3-period. The idea is developed generalizing Finkelstein-Rubinstein theory for Skyrmions/kinks to topological defects, and using non-Abelian de Rham theorems. Two kinds of de Rham theorems are discussed applicable to matrix-valued differential forms, and traces. Physical and mathematical interpretations of de Rham periods are presented. It is suggested that Wilson lines and loop operators probe the local properties of the topology, and spin as a topological invariant in pDIS measurements could appear with any value from 0 to ℏ 2, i.e. proton spin decomposition has no meaning in this approach.
Invariance of the Noether charge
NASA Astrophysics Data System (ADS)
Silagadze, Z. K.
2016-01-01
Surprisingly, an interesting property of the Noether charge that it is by itself invariant under the corresponding symmetry transformation is never discussed in quantum field theory or classical mechanics textbooks we have checked. This property is also almost never mentioned in articles devoted to Noether’s theorem. Nevertheless, to prove this property in the context of Lagrangian formalism is not quite trivial and the proof, outlined in this article, can constitute an useful and interesting exercise for students.
[Invariants of the anthropometrical proportions].
Smolianinov, V V
2012-01-01
In this work a general interpretation of a modulor as scales of segments proportions of anthropometrical modules (extremities and a body) is made. The objects of this study were: 1) to reason the idea of the growth modulor; 2) using the modern empirical data, to prove the validity of a principle of linear similarity for anthropometrical segments; 3) to specify the system of invariants for constitutional anthropometrics.
Shift and Scale Invariant Preprocessor.
1981-12-01
1982 THESIS D V SHIFT AND SCALE INVARIANT ?PREPROCESSOR by Norman E. Huston, Jr. December 1981 0 Thesis Advisor: L. A. Wilson Approved for public...SCHOOL December 1981 Author: - . 4 ,/ A pp ro0ved by: rYY. ( Thesis Advisor Co-Ad isor Chairman, De artment of 4n n eing Dean of Science and...large range of problems/disciplines. Fields where it is particularly common include optical imagery, acoustic signal processing , radiology, radio
Disformal invariance of curvature perturbation
Motohashi, Hayato; White, Jonathan E-mail: jwhite@post.kek.jp
2016-02-01
We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.
Inflationary quasiscale-invariant attractors
NASA Astrophysics Data System (ADS)
Rinaldi, Massimiliano; Vanzo, Luciano; Zerbini, Sergio; Venturi, Giovanni
2016-01-01
In a series of recent papers Kallosh, Linde, and collaborators provide a unified description of single-field inflation with several types of potentials ranging from power law to supergravity, in terms of just one parameter α . These so-called α attractors predict a spectral index ns and a tensor-to-scalar ratio r , which are fully compatible with the latest Planck data. The only common feature of all α attractors is a noncanonical kinetic term with a pole, and a potential analytic around the pole. In this paper, starting from the same Einstein frame with a noncanonical scalar kinetic energy, we explore the case of nonanalytic potentials. We find the functional form that corresponds to quasiscale-invariant gravitational models in the Jordan frame characterized by a universal relation between r and ns that fits the observational data but is clearly distinct from the one of the α attractors. It is known that the breaking of the exact classical scale invariance in the Jordan frame can be attributed to one-loop corrections. Therefore we conclude that there exists a class of nonanalytic potentials in the noncanonical Einstein frame that is physically equivalent to a class of models in the Jordan frame, with scale invariance softly broken by one-loop quantum corrections.
Scalar Field Theory on κ-MINKOWSKI Space-Time and Translation and Lorentz Invariance
NASA Astrophysics Data System (ADS)
Meljanac, S.; Samsarov, A.
We investigate the properties of κ-Minkowski space-time by using representations of the corresponding deformed algebra in terms of undeformed Heisenberg-Weyl algebra. The deformed algebra consists of κ-Poincaré algebra extended with the generators of the deformed Weyl algebra. The part of deformed algebra, generated by rotation, boost and momentum generators, is described by the Hopf algebra structure. The approach used in our considerations is completely Lorentz covariant. We further use an advantage of this approach to consistently construct a star product, which has a property that under integration sign, it can be replaced by a standard pointwise multiplication, a property that was since known to hold for Moyal but not for κ-Minkowski space-time. This star product also has generalized trace and cyclic properties, and the construction alone is accomplished by considering a classical Dirac operator representation of deformed algebra and requiring it to be Hermitian. We find that the obtained star product is not translationally invariant, leading to a conclusion that the classical Dirac operator representation is the one where translation invariance cannot simultaneously be implemented along with hermiticity. However, due to the integral property satisfied by the star product, noncommutative free scalar field theory does not have a problem with translation symmetry breaking and can be shown to reduce to an ordinary free scalar field theory without nonlocal features and tachyonic modes and basically of the very same form. The issue of Lorentz invariance of the theory is also discussed.
Scale invariance implies conformal invariance for the three-dimensional Ising model.
Delamotte, Bertrand; Tissier, Matthieu; Wschebor, Nicolás
2016-01-01
Using the Wilson renormalization group, we show that if no integrated vector operator of scaling dimension -1 exists, then scale invariance implies conformal invariance. By using the Lebowitz inequalities, we prove that this necessary condition is fulfilled in all dimensions for the Ising universality class. This shows, in particular, that scale invariance implies conformal invariance for the three-dimensional Ising model.
2014-01-01
Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245
NASA Technical Reports Server (NTRS)
Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.
2000-01-01
Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).
Twin Signature Schemes, Revisited
NASA Astrophysics Data System (ADS)
Schäge, Sven
In this paper, we revisit the twin signature scheme by Naccache, Pointcheval and Stern from CCS 2001 that is secure under the Strong RSA (SRSA) assumption and improve its efficiency in several ways. First, we present a new twin signature scheme that is based on the Strong Diffie-Hellman (SDH) assumption in bilinear groups and allows for very short signatures and key material. A big advantage of this scheme is that, in contrast to the original scheme, it does not require a computationally expensive function for mapping messages to primes. We prove this new scheme secure under adaptive chosen message attacks. Second, we present a modification that allows to significantly increase efficiency when signing long messages. This construction uses collision-resistant hash functions as its basis. As a result, our improvements make the signature length independent of the message size. Our construction deviates from the standard hash-and-sign approach in which the hash value of the message is signed in place of the message itself. We show that in the case of twin signatures, one can exploit the properties of the hash function as an integral part of the signature scheme. This improvement can be applied to both the SRSA based and SDH based twin signature scheme.
Shape invariant potentials in higher dimensions
Sandhya, R.; Sree Ranjani, S.; Kapoor, A.K.
2015-08-15
In this paper we investigate the shape invariance property of a potential in one dimension. We show that a simple ansatz allows us to reconstruct all the known shape invariant potentials in one dimension. This ansatz can be easily extended to arrive at a large class of new shape invariant potentials in arbitrary dimensions. A reformulation of the shape invariance property and possible generalizations are proposed. These may lead to an important extension of the shape invariance property to Hamiltonians that are related to standard potential problems via space time transformations, which are found useful in path integral formulation of quantum mechanics.
On asymptotically lacunary invariant statistical equivalent set sequences
NASA Astrophysics Data System (ADS)
Pancaroglu, Nimet; Nuray, Fatih; Savas, Ekrem
2013-10-01
In this paper, we define asymptotically invariant equivalence, strongly asymptotically invariant equivalence, asymptotically invariant statistical equivalence, asymptotically lacunary invariant statistical equivalence, strongly asymptotically lacunary invariant equivalence, asymptotically lacunary invariant equivalence (Wijsman sense) for sequences of sets. Also we investigate some relations between asymptotically lacunary invariant statistical equivalence and asymptotically invariant statistical equivalence for sequences of sets. We introduce some notions and theorems as follows, asymptotically lacunary invariant statistical equivalence, strongly asymptotically lacunary invariant equivalence, asymptotically lacunary invariant equivalence (Wijsman sense) for sequences of sets.
Are there molecular signatures?
Bennett, W.P.
1995-10-01
This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
Scale Invariant Gabor Descriptor-Based Noncooperative Iris Recognition
NASA Astrophysics Data System (ADS)
Du, Yingzi; Belcher, Craig; Zhou, Zhi
2010-12-01
A new noncooperative iris recognition method is proposed. In this method, the iris features are extracted using a Gabor descriptor. The feature extraction and comparison are scale, deformation, rotation, and contrast-invariant. It works with off-angle and low-resolution iris images. The Gabor wavelet is incorporated with scale-invariant feature transformation (SIFT) for feature extraction to better extract the iris features. Both the phase and magnitude of the Gabor wavelet outputs were used in a novel way for local feature point description. Two feature region maps were designed to locally and globally register the feature points and each subregion in the map is locally adjusted to the dilation/contraction/deformation. We also developed a video-based non-cooperative iris recognition system by integrating video-based non-cooperative segmentation, segmentation evaluation, and score fusion units. The proposed method shows good performance for frontal and off-angle iris matching. Video-based recognition methods can improve non-cooperative iris recognition accuracy.
Cohen, Bruce E; Nicholson, Christopher W
2007-05-01
The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.
Meteor signature interpretation
Canavan, G.H.
1997-01-01
Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.
Invariant Quantities in Shear Flow
NASA Astrophysics Data System (ADS)
Baule, A.; Evans, R. M. L.
2008-12-01
The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity.
A Characterization of Invariant Connections
NASA Astrophysics Data System (ADS)
Hanusch, Maximilian
2014-03-01
Given a principal fibre bundle with structure group S and a fibre transitive Lie group G of automorphisms thereon, Wang's theorem identifies the invariant connections with certain linear maps ψ\\colon {g}→ {s}. In the present paper we prove an extension of this theorem that applies to the general situation where G acts non-transitively on the base manifold. We consider several special cases of the general theorem including the result of Harnad, Shnider and Vinet which applies to the situation where G admits only one orbit type. Along the way we give applications to loop quantum gravity.
Invisibly Sanitizable Signature without Pairings
NASA Astrophysics Data System (ADS)
Yum, Dae Hyun; Lee, Pil Joong
Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.
Prognostic value of a 92-probe signature in breast cancer.
Akter, Salima; Choi, Tae Gyu; Nguyen, Minh Nam; Matondo, Abel; Kim, Jin-Hwan; Jo, Yong Hwa; Jo, Ara; Shahid, Muhammad; Jun, Dae Young; Yoo, Ji Youn; Nguyen, Ngoc Ngo Yen; Seo, Seong-Wook; Ali, Liaquat; Lee, Ju-Seog; Yoon, Kyung-Sik; Choe, Wonchae; Kang, Insug; Ha, Joohun; Kim, Jayoung; Kim, Sung Soo
2015-06-20
Clinical applications of gene expression signatures in breast cancer prognosis still remain limited due to poor predictive strength of single training datasets and appropriate invariable platforms. We proposed a gene expression signature by reducing baseline differences and analyzing common probes among three recent Affymetrix U133 plus 2 microarray data sets. Using a newly developed supervised method, a 92-probe signature found in this study was associated with overall survival. It was robustly validated in four independent data sets and then repeated on three subgroups by incorporating 17 breast cancer microarray datasets. The signature was an independent predictor of patients' survival in univariate analysis [(HR) 1.927, 95% CI (1.237-3.002); p < 0.01] as well as multivariate analysis after adjustment of clinical variables [(HR) 7.125, 95% CI (2.462-20.618); p < 0.001]. Consistent predictive performance was found in different multivariate models in increased patient population (p = 0.002). The survival signature predicted a late metastatic feature through 5-year disease free survival (p = 0.006). We identified subtypes within the lymph node positive (p < 0.001) and ER positive (p = 0.01) patients that best reflected the invasive breast cancer biology. In conclusion using the Common Probe Approach, we present a novel prognostic signature as a predictor in breast cancer late recurrences.
A Local Galilean Invariant Thermostat.
Groot, Robert D
2006-05-01
The thermostat introduced recently by Stoyanov and Groot (J. Chem. Phys. 2005, 122, 114112) is analyzed for inhomogeneous systems. This thermostat has one global feature, because the mean temperature used to drive the system toward equilibrium is a global average. The consequence is that the thermostat locally conserves energy rather than temperature. Thus, local temperature variations can be long-lived, although they do average out by thermal diffusion. To obtain a faster local temperature equilibration, a truly local thermostat must be introduced. To conserve momentum and, hence, to simulate hydrodynamic interactions, the thermostat must be Galilean invariant. Such a local Galilean invariant thermostat is studied here. It is shown that, by defining a local temperature on each particle, the ensemble is locally isothermal. The local temperature is obtained from a local square velocity average around each particle. Simulations on the ideal gas show that this local Nosé-Hoover algorithm has a similar artifact as dissipative particle dynamics: the ideal gas pair correlation function is slightly distorted. This is attributed to the fact that the thermostat compensates fluctuations that are natural within a small cluster of particles. When the cutoff range rc for the square velocity average is increased, systematic errors decrease proportionally to rc(-)(3/2); hence, the systematic error can be made arbitrary small.
NASA Astrophysics Data System (ADS)
Lahamy, H.; Lichti, D.
2012-07-01
The automatic interpretation of human gestures can be used for a natural interaction with computers without the use of mechanical devices such as keyboards and mice. The recognition of hand postures have been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem even with the use of 2D images. The objective of the current study is to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. An heuristic and voxelbased signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process and the tracking procedure have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 98.24% recognition rate after testing 12723 samples of 12 gestures taken from the alphabet of the American Sign Language.
Interacting scale invariant but nonconformal field theories
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2017-03-01
There is a dilemma in constructing interacting scale invariant Euclidean field theories that are not conformal invariant. On one hand, scale invariance without conformal invariance seems more generic by requiring only a smaller symmetry. On the other hand, the existence of a nonconserved current with exact scaling dimension d -1 in d dimensions seems to require extra fine-tuning. To understand the competition better, we explore some examples without the reflection positivity. We show that a theory of elasticity (also known as Riva-Cardy theory) coupled with massless fermions in d =4 -ɛ dimensions does not possess an interacting scale invariant fixed point except for an unstable (and unphysical) one with an infinite coefficient of compression. We do, however, find interacting scale invariant but nonconformal field theories in gauge fixed versions of the Banks-Zaks fixed points in d =4 dimensions.
Reappraisal of a model for deformed special relativity
NASA Astrophysics Data System (ADS)
Gubitosi, Giulia; Magueijo, João
2016-06-01
We revisit one of the earliest proposals for deformed dispersion relations in the light of recent results on dynamical dimensional reduction and production of cosmological fluctuations. Depending on the specification of the measure of integration and the addition rule in momentum space the model may be completed so as to merely deform Lorentz invariance, or so as to introduce a preferred frame. Models which violate Lorentz invariance have a negative UV asymptotic dimension and a very red spectrum of quantum vacuum fluctuations. Instead, models which preserve frame independence can exhibit running to a UV dimension of two, and a scale-invariant spectrum of fluctuations. The bispectrum of the fluctuations is another point of divergence between the two casings proposed here for the original model.
A new affine-invariant image matching method based on SIFT
NASA Astrophysics Data System (ADS)
Wang, Peng-cheng; Chen, Qian; Chen, Hai-xin; Cheng, Hong-chang; Gong, Zhen-fei
2013-09-01
Local invariant feature extraction, as one of the main problems in the field of computer vision, has been widely applied to image matching, splicing and target recognition etc. Lowe's scale invariant feature transform (known as SIFT) algorithm has attracted much attention due to its invariance to scale, rotation and illumination. However, SIFT is not robust to affine deformations, because it is based on the DoG detector which extracts keypoints in a circle region. Besides, the feature descriptor is represented by a 128-dimensional vector, which means that the algorithm complexity is extremely large especially when there is a great quantity of keypoints in the image. In this paper, a new feature descriptor, which is robust to affine deformations, is proposed. Considering that circles turn to be ellipses after affine deformations, some improvements have been made. Firstly, the Gaussian image pyramids are constructed by convoluting the source image and the elliptical Gaussian kernel with two volatile parameters, orientation and eccentricity. In addition, the two parameters are discretely selected in order to imitate the possibilities of the affine deformation, which can make sure that anisotropic regions are transformed into isotropic ones. Next, all extreme points can be extracted as the candidates for the affine-invariant keypoints in the image pyramids. After accurate keypoints localization is performed, the secondary moment of the keypoints' neighborhood is calculated to identify the elliptical region which is affineinvariant, the same as SIFT, the main orientation of the keypoints can be determined and the feature descriptor is generated based on the histogram constructed in this region. At last, the PCA method for the 128-dimensional descriptor's reduction is used to improve the computer calculating efficiency. The experiments show that this new algorithm inherits all SIFT's original advantages, and has a good resistance to affine deformations; what's more, it
Galilei invariant technique for quantum system description
Kamuntavičius, Gintautas P.
2014-04-15
Problems with quantum systems models, violating Galilei invariance are examined. The method for arbitrary non-relativistic quantum system Galilei invariant wave function construction, applying a modified basis where center-of-mass excitations have been removed before Hamiltonian matrix diagonalization, is developed. For identical fermion system, the Galilei invariant wave function can be obtained while applying conventional antisymmetrization methods of wave functions, dependent on single particle spatial variables.
Practical quantum digital signature
NASA Astrophysics Data System (ADS)
Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing
2016-03-01
Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.
Quantum gravity signatures in the Unruh effect
NASA Astrophysics Data System (ADS)
Alkofer, Natalia; D'Odorico, Giulio; Saueressig, Frank; Versteegen, Fleur
2016-11-01
We study quantum gravity signatures emerging from phenomenologically motivated multiscale models, spectral actions, and causal set theory within the detector approach to the Unruh effect. We show that while the Unruh temperature is unaffected, Lorentz-invariant corrections to the two-point function leave a characteristic fingerprint in the induced emission rate of the accelerated detector. Generically, quantum gravity models exhibiting dynamical dimensional reduction exhibit a suppression of the Unruh rate at high energy while the rate is enhanced in Kaluza-Klein theories with compact extra dimensions. We quantify this behavior by introducing the "Unruh dimension" as the effective spacetime dimension seen by the Unruh effect and show that it is related, though not identical, to the spectral dimension used to characterize spacetime in quantum gravity. We comment on the physical origins of these effects and their relevance for black hole evaporation.
Scale invariance in road networks
NASA Astrophysics Data System (ADS)
Kalapala, Vamsi; Sanwalani, Vishal; Clauset, Aaron; Moore, Cristopher
2006-02-01
We study the topological and geographic structure of the national road networks of the United States, England, and Denmark. By transforming these networks into their dual representation, where roads are vertices and an edge connects two vertices if the corresponding roads ever intersect, we show that they exhibit both topological and geographic scale invariance. That is, we show that for sufficiently large geographic areas, the dual degree distribution follows a power law with exponent 2.2⩽α⩽2.4 , and that journeys, regardless of their length, have a largely identical structure. To explain these properties, we introduce and analyze a simple fractal model of road placement that reproduces the observed structure, and suggests a testable connection between the scaling exponent α and the fractal dimensions governing the placement of roads and intersections.
Quantum groups with invariant integrals
Van Daele, Alfons
2000-01-01
Quantum groups have been studied intensively for the last two decades from various points of view. The underlying mathematical structure is that of an algebra with a coproduct. Compact quantum groups admit Haar measures. However, if we want to have a Haar measure also in the noncompact case, we are forced to work with algebras without identity, and the notion of a coproduct has to be adapted. These considerations lead to the theory of multiplier Hopf algebras, which provides the mathematical tool for studying noncompact quantum groups with Haar measures. I will concentrate on the *-algebra case and assume positivity of the invariant integral. Doing so, I create an algebraic framework that serves as a model for the operator algebra approach to quantum groups. Indeed, the theory of locally compact quantum groups can be seen as the topological version of the theory of quantum groups as they are developed here in a purely algebraic context. PMID:10639115
Asymptotic invariants of homotopy groups
NASA Astrophysics Data System (ADS)
Manin, Fedor
We study the homotopy groups of a finite CW complex X via constraints on the geometry of representatives of their elements. For example, one can measure the "size" of alpha ∈ pi n (X) by the optimal Lipschitz constant or volume of a representative. By comparing the geometrical structure thus obtained with the algebraic structure of the group, one can define functions such as growth and distortion in pin(X), analogously to the way that such functions are studied in asymptotic geometric group theory. We provide a number of examples and techniques for studying these invariants, with a special focus on spaces with few rational homotopy groups. Our main theorem characterizes those X in which all non-torsion homotopy classes are undistorted, that is, their volume distortion functions, and hence also their Lipschitz distortion functions, are linear.
Rotationally Invariant Holographic Tracking System
NASA Astrophysics Data System (ADS)
Lambert, James L.; Chao, Tien-Hsin; Gheen, Gregory; Johnston, Alan R.; Liu, Hua-Kuang
1989-06-01
A multi-channel holographic correlator has been constructed which can identify and track objects of a given shape across the input field independent of their in-plane rotation. This system, derived from the classic Vander Lugt correlator, incorporates a hololens to store an array of matched spatial filters (MSFs) on thermoplastic film. Each member of the MSF array is generated from a different incrementally rotated version of the training object. Rotational invariant tracking is achieved through superposition of the corresponding array of the correlations in the output plane. Real time tracking is accomplished by utilizing a liquid crystal light valve (LCLV) illuminated with a CRT to process video input signals. The system can be programmed to recognize different objects by recording the MSF array on re-usable thermoplastic film. Discussion of the system architecture and laboratory results are presented.
Invariant Coordinates in Breakup Reactions
NASA Astrophysics Data System (ADS)
Skwira-Chalot, I.; Ciepał, I.; Kistryn, St.; Kozela, A.; Parol, W.; Stephan, E.
2017-03-01
Systematic experimental studies of few-nucleon systems expose various dynamical ingredients which play an important role in correct description of observables, such as three-nucleon force, Coulomb force and relativistic effects. A large set of existing experimental data for ^1H(d, p p)n reaction allows for systematic investigations of these dynamical effects, which vary with energy and appear with different strength in certain observables and phase space regions. Moreover, systematic comparisons with exact theoretical calculations, done in variables related to the system dynamics in a possibly direct ways is a very important tool to verify and improve the existing description of the nucleon interaction. Examples of experimental data for a breakup reaction, transformed to the variables based on Lorentz-invariants are compared with modern theoretical calculations.
A Note on Invariant Observables
NASA Astrophysics Data System (ADS)
Lendelová, Katarína
2006-05-01
The ergodic theory and particularly the individual ergodic theorem were studied in many structures. Recently the individual ergodic theorem has been proved for MV-algebras of fuzzy sets (Riečan, 2000; Riečan and Neubrunn, 1997) and even in general MV-algebras (Jurečková, 2000). The notion of almost everywhere equality of observables was introduced by B. Riečan and M. Jurečková in Riečan and Jurečková (2005). They proved that the limit of Cesaro means is an invariant observable for P-observables. In this paper show that the assumption of P-observable can be omitted.
Factor models for cancer signatures
NASA Astrophysics Data System (ADS)
Kakushadze, Zura; Yu, Willie
2016-11-01
We present a novel method for extracting cancer signatures by applying statistical risk models (http://ssrn.com/abstract=2732453) from quantitative finance to cancer genome data. Using 1389 whole genome sequenced samples from 14 cancers, we identify an "overall" mode of somatic mutational noise. We give a prescription for factoring out this noise and source code for fixing the number of signatures. We apply nonnegative matrix factorization (NMF) to genome data aggregated by cancer subtype and filtered using our method. The resultant signatures have substantially lower variability than those from unfiltered data. Also, the computational cost of signature extraction is cut by about a factor of 10. We find 3 novel cancer signatures, including a liver cancer dominant signature (96% contribution) and a renal cell carcinoma signature (70% contribution). Our method accelerates finding new cancer signatures and improves their overall stability. Reciprocally, the methods for extracting cancer signatures could have interesting applications in quantitative finance.
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)
2005-01-01
A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Mario (Inventor); Bassignani, Karin E. (Inventor)
2005-01-01
A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.
Real-time pose invariant logo and pattern detection
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Kottmann, Michal; Benesova, Wanda
2011-01-01
The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.
Structural assessment of glycyl mutations in invariantly conserved motifs.
Prakash, Tulika; Sandhu, Kuljeet Singh; Singh, Nitin Kumar; Bhasin, Yasha; Ramakrishnan, C; Brahmachari, Samir K
2007-11-15
Motifs that are evolutionarily conserved in proteins are crucial to their structure and function. In one of our earlier studies, we demonstrated that the conserved motifs occurring invariantly across several organisms could act as structural determinants of the proteins. We observed the abundance of glycyl residues in these invariantly conserved motifs. The role of glycyl residues in highly conserved motifs has not been studied extensively. Thus, it would be interesting to examine the structural perturbations induced by mutation in these conserved glycyl sites. In this work, we selected a representative set of invariant signature (IS) peptides for which both the PDB structure and mutation information was available. We thoroughly analyzed the conformational features of the glycyl sites and their local interactions with the surrounding residues. Using Ramachandran angles, we showed that the glycyl residues occurring in these IS peptides, which have undergone mutation, occurred more often in the L-disallowed as compared with the L-allowed region of the Ramachandran plot. Short range contacts around the mutation site were analyzed to study the steric effects. With the results obtained from our analysis, we hypothesize that any change of activity arising because of such mutations must be attributed to the long-range interaction(s) of the new residue if the glycyl residue in the IS peptide occurred in the L-allowed region of the Ramachandran plot. However, the mutation of those conserved glycyl residues that occurred in the L-disallowed region of the Ramachandran plot might lead to an altered activity of the protein as a result of an altered conformation of the backbone in the immediate vicinity of the glycyl residue, in addition to long range effects arising from the long side chains of the new residue. Thus, the loss of activity because of mutation in the conserved glycyl site might either relate to long range interactions or to local perturbations around the site
Cross-National Invariance of Children's Temperament
ERIC Educational Resources Information Center
Benson, Nicholas; Oakland, Thomas; Shermis, Mark
2009-01-01
Measurement of temperament is an important endeavor with international appeal; however, cross-national invariance (i.e., equivalence of test scores across countries as established by empirical comparisons) of temperament tests has not been established in published research. This study examines the cross-national invariance of school-aged…
Rotation-invariant of Quantum Gross Laplacian
Horrigue, Samah; Ouerdiane, Habib
2010-05-04
In this paper, we prove that the quantum Gross Laplacian denoted DELTA{sub QG} is a rotation-invariant operator. For this purpose, we use the Schwartz-Grothendieck kernel theorem and the characterization theorem of rotation-invariant distributions and operators.
Discernment of Invariants in Dynamic Geometry Environments
ERIC Educational Resources Information Center
Leung, Allen; Baccaglini-Frank, Anna; Mariotti, Maria Alessandra
2013-01-01
In this paper, we discuss discernment of invariants in dynamic geometry environments (DGE) based on a combined perspective that puts together the lens of variation and the maintaining dragging strategy developed previously by the authors. We interpret and describe a model of discerning invariants in DGE through types of variation awareness and…
Invariant Ordering of Item-Total Regressions
ERIC Educational Resources Information Center
Tijmstra, Jesper; Hessen, David J.; van der Heijden, Peter G. M.; Sijtsma, Klaas
2011-01-01
A new observable consequence of the property of invariant item ordering is presented, which holds under Mokken's double monotonicity model for dichotomous data. The observable consequence is an invariant ordering of the item-total regressions. Kendall's measure of concordance "W" and a weighted version of this measure are proposed as measures for…
Rejoinder: Continuing the Dialogue on Invariant Measurement
ERIC Educational Resources Information Center
Engelhard, George, Jr.
2008-01-01
The major purpose of my focus article was to stimulate discussion regarding the concept of invariant measurement. My intent was to provide a historical lens for considering how our views of invariant measurement have evolved over time through the work of three key measurement theorists: Guttman, Rasch, and Mokken. The commentators have offered a…
Multipartite invariant states. I. Unitary symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2006-06-15
We propose a natural generalization of bipartite Werner and isotropic states to multipartite systems consisting of an arbitrary even number of d-dimensional subsystems (qudits). These generalized states are invariant under the action of local unitary operations. We study basic properties of multipartite invariant states and present necessary and sufficient separability criteria.
Invariance or Noninvariance, that Is the Question
ERIC Educational Resources Information Center
Widaman, Keith F.; Grimm, Kevin J.
2009-01-01
Nesselroade, Gerstorf, Hardy, and Ram developed a new and interesting way to enforce invariance at the second-order level in P-technique models, while allowing first-order structure to stray from invariance. We discuss our concerns with this approach under the headings of falsifiability, the nature of manifest variables included in models, and…
ERIC Educational Resources Information Center
Smiles, Robin V.
2005-01-01
This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…
Online signature recognition using principal component analysis and artificial neural network
NASA Astrophysics Data System (ADS)
Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan
2016-12-01
In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.
On jordanian deformations of AdS5 and supergravity
NASA Astrophysics Data System (ADS)
Hoare, Ben; van Tongeren, Stijn J.
2016-10-01
We consider various homogeneous Yang-Baxter deformations of the {{AdS}}5× {{{S}}}5 superstring that can be obtained from the η-deformed superstring and related models by singular boosts. The jordanian deformations we obtain in this way behave similarly to the η-deformed model with regard to supergravity: T dualizing the classical sigma model it is possible to find corresponding solutions of supergravity, which, however, have dilatons that prevent T dualizing back. Hence the backgrounds of these jordanian deformations are not solutions of supergravity. Still, they do satisfy a set of recently found modified supergravity equations which implies that the corresponding sigma models are scale invariant. The abelian models that we obtain by singular boosts do directly correspond to solutions of supergravity. In addition to our main results we consider contraction limits of our main example, which do correspond to supergravity solutions.
2007-12-20
shoe was that? The use of computerised image database to assist in identification”. Forensic Science International , 82(1):7–20, 9/15 1996. 3. Bay...biometric systems”. Forensic science international , 155(2-3):126–140, 2005. 7. Haibin Ling; Jacobs, D.W. “Deformation invariant image matching”. Computer...Image match- ing algorithms for breech face marks and firing pins in a database of spent car- tridge cases of firearms”. Forensic science international , 2001
A Gaussian Distribution for Refined DT Invariants and 3D Partitions
NASA Astrophysics Data System (ADS)
Morrison, Andrew
2014-11-01
We show that the refined Donaldson-Thomas invariants of , suitably normalized, have a Gaussian distribution as limit law. Combinatorially, these numbers are given by weighted counts of 3D partitions. Our technique is to use the Hardy-Littlewood circle method to analyze the bivariate asymptotics of a q-deformation of MacMahon's function. The proof is based on that of E.M. Wright, who explored the single variable case.
Rotational Invariant Dimensionality Reduction Algorithms.
Lai, Zhihui; Xu, Yong; Yang, Jian; Shen, Linlin; Zhang, David
2016-06-30
A common intrinsic limitation of the traditional subspace learning methods is the sensitivity to the outliers and the image variations of the object since they use the L₂ norm as the metric. In this paper, a series of methods based on the L₂,₁-norm are proposed for linear dimensionality reduction. Since the L₂,₁-norm based objective function is robust to the image variations, the proposed algorithms can perform robust image feature extraction for classification. We use different ideas to design different algorithms and obtain a unified rotational invariant (RI) dimensionality reduction framework, which extends the well-known graph embedding algorithm framework to a more generalized form. We provide the comprehensive analyses to show the essential properties of the proposed algorithm framework. This paper indicates that the optimization problems have global optimal solutions when all the orthogonal projections of the data space are computed and used. Experimental results on popular image datasets indicate that the proposed RI dimensionality reduction algorithms can obtain competitive performance compared with the previous L₂ norm based subspace learning algorithms.
South Pole Lorentz Invariance Test
NASA Astrophysics Data System (ADS)
Hedges, Morgan; Smiciklas, Marc; Romalis, Michael
2015-05-01
Searches for Lorentz and CPT violation play an important role in testing current theories of space-time. To test one of the consequences of local Lorentz invariance we have performed a precision test of spatial isotropy at the Amundsen-Scott station near the geographic South Pole. This location provides the most isotropic environment available on Earth. The experiment is a rotating atomic-spin co-magnetometer which compares energy levels of 21Ne and Rubidium atoms as a function of direction. The experimental sensitivity obtained is more than an order of magnitude better than in previous such measurements, known as Hughes-Drever experiments. By operating the experiment at the Pole we are able to eliminate background signals due to the gyroscopic interactions of spins with Earth's rotation as well as diurnal environmental effects. Here we will present final results from the experiment's 2-year data collection period. This is the first precision atomic physics experiment performed at the Pole, and we will discuss the potential for future such measurements.
South Pole Lorentz Invariance Test
NASA Astrophysics Data System (ADS)
Hedges, Morgan; Smiciklas, Marc; Romalis, Michael
2015-04-01
Tests of Lorentz and CPT symmetries are important because they form a cornerstone of quantum field theory and general relativity. To test one of the consequences of local Lorentz invariance we have performed a precision test of spatial isotropy at the Amundsen-Scott station near the geographic South Pole. This location provides the most isotropic environment available on Earth. We use an atomic spin co-magnetometer to compare energy levels in 21 Ne and Rubidium atoms as the apparatus rotates with respect to the cosmos. Our experimental sensitivity is more than an order of magnitude greater than in previous such measurements, known as Hughes-Drever experiments. By operating at the South Pole we eliminate background signals due to the gyroscopic interactions of spins with Earth's rotation as well as diurnal environmental effects. The experiment has finished a 2-year data collection period and we expect to present the final results at the meeting. This is the first precision atomic physics experiment performed at the Pole and we will discuss the potential for future such measurements.
Pose-Invariant Face Recognition via RGB-D Images
Sang, Gaoli; Li, Jing; Zhao, Qijun
2016-01-01
Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions. PMID:26819581
Feedback-Driven Dynamic Invariant Discovery
NASA Technical Reports Server (NTRS)
Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz
2014-01-01
Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.
Characterization of cerebral aneurysms using 3D moment invariants
NASA Astrophysics Data System (ADS)
Millan, Raul D.; Hernandez, Monica; Gallardo, Daniel; Cebral, Juan R.; Putman, Christopher; Dempere-Marco, Laura; Frangi, Alejandro F.
2005-04-01
The rupture mechanism of intracranial aneurysms is still not fully understood. Although the size of the aneurysm is the shape index most commonly used to predict rupture, some controversy still exists about its adequateness as an aneurysm rupture predictor. In this work, an automatic method to geometrically characterize the shape of cerebral saccular aneurysms using 3D moment invariants is proposed. Geometric moments are efficiently computed via application of the Divergence Theorem over the aneurysm surface using a non-structured mesh. 3D models of the aneurysm and its connected parent vessels have been reconstructed from segmentations of both 3DRA and CTA images. Two alternative approaches have been used for segmentation, the first one based on isosurface deformable models, and the second one based on the level set method. Several experiments were also conducted to both assess the influence of pre-processing steps in the stability of the aneurysm shape descriptors, and to know the robustness of the proposed method. Moment invariants have proved to be a robust technique while providing a reliable way to discriminate between ruptured and unruptured aneurysms (Sensitivity=0.83, Specificity=0.74) on a data set containing 55 aneurysms. Further investigation over larger databases is necessary to establish their adequateness as reliable predictors of rupture risk.
Holography beyond conformal invariance and AdS isometry?
Barvinsky, A. O.
2015-03-15
We suggest that the principle of holographic duality be extended beyond conformal invariance and AdS isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on its boundary, provided that the boundary operator represents the inverse propagators of the theory induced on the boundary by the Dirichlet boundary value problem in the bulk spacetime. This relation holds for operators of a general spin-tensor structure on generic manifolds with boundaries irrespective of their background geometry and conformal invariance, and it apparently underlies numerous O(N{sup 0}) tests of the AdS/CFT correspondence, based on direct calculation of the bulk and boundary partition functions, Casimir energies, and conformal anomalies. The generalized holographic duality is discussed within the concept of the “double-trace” deformation of the boundary theory, which is responsible in the case of large-N CFT coupled to the tower of higher-spin gauge fields for the renormalization group flow between infrared and ultraviolet fixed points. Potential extension of this method beyond the one-loop order is also briefly discussed.
NASA Astrophysics Data System (ADS)
Spedding, Geoffrey R.
2014-01-01
An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.
1974-10-01
were generally inversely proportional to the size assesments of the flash and smoke . Table 26 shows the percent of change in average judgments of...Average Time of Gunner’s View Obscuration by Smoke During Firings From the Wood Line .. .. ..... ..... ...... ..... .. 18 7. Average Obscuration Times...of Gunner’s View Obscuration by Smoke - Grass Line 19 8. Normalized Comparisons of the Relative Grades Assigned to Systems Signature Components
Invarient patterns in articulatory movements
NASA Astrophysics Data System (ADS)
Bonaventura, Patrizia
2004-04-01
The purpose of the reported study is to discover an effective method of characterizing movement patterns of the crucial articulator as the function of an abstract syllable magnitude and the adjacent boundary, and at the same time to investigate effects of prosodic control on utterance organization. In particular, the speed of movement when a flesh point on the tongue blade or the lower lip crosses a selected position relative to the occlusion plane is examined. The time of such crossing provides an effective measure of syllable timing and syllable duration according to previous work. In the present work, using a very limited vocabulary with only a few consonants and one vowel as the key speech materials, effects of contrastive emphasis on demisyllabic movement patterns were studied. The theoretical framework for this analysis is the C/D model of speech production in relation to the concept of an invariant part of selected articulatory movements. The results show evidence in favor of the existence of ``iceberg'' patterns, but a linear dependence of slope on the total excursion of the demisyllabic movement, instead of the approximate constancy of the threshold crossing speed as suggested in the original proposal of the iceberg, has been found. Accordingly, a revision of the original concept of iceberg, seems necessary. This refinement is consistent with the C/D model assumption on ``prominence control'' that the syllable magnitude determines the movement amplitude, accompanying directly related syllable duration change. In this assumption, the movement of a consonantal component should also be proportional to syllable magnitude. The results suggests, however, systematic outliers deviating from the linear dependence of movement speed on excursion. This deviation may be caused by the effect of the immediately following boundary, often referred to as phrase-final elongation. Thesis advisor: Osamu Fujimura Copies of this thesis written in English can be obtained from
Knowledge Signatures for Information Integration
Thomson, Judi; Cowell, Andrew J.; Paulson, Patrick R.; Butner, R. Scott; Whiting, Mark A.
2003-10-25
This paper introduces the notion of a knowledge signature: a concise, ontologically-driven representation of the semantic characteristics of data. Knowledge signatures provide programmatic access to data semantics while allowing comparisons to be made across different types of data such as text, images or video, enabling efficient, automated information integration. Through observation, which determines the degree of association between data and ontological concepts, and refinement, which uses the axioms and structure of the domain ontology to place the signature more accurately within the context of the domain, knowledge signatures can be created. A comparison of such signatures for two different pieces of data results in a measure of their semantic separation. This paper discusses the definition of knowledge signatures along with the design and prototype implementation of a knowledge signature generator.
Numerical considerations in computing invariant subspaces
Dongarra, J.J. . Dept. of Computer Science Oak Ridge National Lab., TN ); Hammarling, S. ); Wilkinson, J.H. )
1990-11-01
This paper describes two methods for computing the invariant subspace of a matrix. The first involves using transformations to interchange the eigenvalues; the second involves direct computation of the vectors. 10 refs.
Position, rotation, and intensity invariant recognizing method
Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.
1989-01-01
A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.
Convecting reference frames and invariant numerical models
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Nave, Jean-Christophe
2014-09-01
In the recent paper by Bernardini et al. [1] the discrepancy in the performance of finite difference and spectral models for simulations of flows with a preferential direction of propagation was studied. In a simplified investigation carried out using the viscous Burgers equation the authors attributed the poorer numerical results of finite difference models to a violation of Galilean invariance in the discretization and propose to carry out the computations in a reference frame moving with the bulk velocity of the flow. Here we further discuss this problem and relate it to known results on invariant discretization schemes. Non-invariant and invariant finite difference discretizations of Burgers equation are proposed and compared with the discretization using the remedy proposed by Bernardini et al.
Invariance in the isoheptanes of petroleum
Mango, F.D.
1987-07-31
Four isoheptanes in petroleum display a remarkable invariance in a ratio of sums of concentrations. The isoheptanes are not at thermodynamic equilibrium, nor are they fixed to some constant composition. The four isomers display coherent change in relative amounts but maintain invariance in the ratio of sums. Within sets of genetically related petroleum samples, invariance reaches levels that approach the limits of their analytical precision. The invariance is inconsistent with a chemical origin that involves the thermal fragmentation of natural products or their derivatives. It suggests a reaction process at steady state, in which relative rates of product formation are constant. A mechanism is proposed in which the four isoheptanes are formed pairwise and sequentially through two intermediates in a catalytic process that operates at steady state. 13 references, 3 figures, 1 table.
Testing Lorentz invariance of dark matter
Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey E-mail: mm.ivanov@physics.msu.ru
2012-10-01
We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.
Injuries to law enforcement officers: the backface signature injury.
Wilhelm, Marianne; Bir, Cynthia
2008-01-15
In today's law enforcement community, one of the most vital tools an officer can possess is personal body armor. However, a recent Department of Justice investigation has raised important questions regarding the protection actually afforded officers through the use of personal body armor, and the current test methods used to assess the armor. Test results show that most Zylon-containing vests showed deformations in excess of the 0101.04 Standard's 44 mm backface signature limit. Such increased deformation can lead to serious injuries, including backface signature injuries, which have occurred in the field. Although the vest is successful in containing the round, it is not effectively dissipating the energy enough to prevent large amounts of vest deformation at the area of impact. Therefore, open, penetrating wounds occur even though the bullet did not penetrate the vest. The objective of the current study was to further define the backface signature injury through the use of case studies and laboratory experiments. Following the case study investigation, backface signature testing was conducted using a clay medium based on the NIJ 0101.04 Standard. The final component of this research involved the use of post-mortem human specimens (PMHS) for further investigation of the backface signature injury. Although the underlying cause of backface signature injuries is unknown, energy density is likely to play a role in the mechanism. Energy density (E/a) is defined as the energy per unit area and has been previously used in less lethal skin penetration research. Further research into the underlying causes of backface signature injuries is necessary. In addition to armor testing, the study of law enforcement personnel who have been shot while wearing soft body armor is also a valuable tool for determining the effectiveness of certification standards. Finally, it is important for medical personnel to recognize the backface signature injury and document this as a type of
Recognizing 3D Object Using Photometric Invariant.
1995-02-01
model and the data space coordinates, using centroid invariance of corresponding groups of feature positions. Tests are given to show the stability and...positions in the model and the data space coordinates, using centroid invariance of corresponding groups of feature positions. Tests are given to show the...ognizing 3D objects. In our testing , it took only 0.2 seconds to derive corresponding positions in the model and the image for natural pictures. 2
'Breaking' position-invariant object recognition.
Cox, David D; Meier, Philip; Oertelt, Nadja; DiCarlo, James J
2005-09-01
While it is often assumed that objects can be recognized irrespective of where they fall on the retina, little is known about the mechanisms underlying this ability. By exposing human subjects to an altered world where some objects systematically changed identity during the transient blindness that accompanies eye movements, we induced predictable object confusions across retinal positions, effectively 'breaking' position invariance. Thus, position invariance is not a rigid property of vision but is constantly adapting to the statistics of the environment.
Invariant distributions on compact homogeneous spaces
Gorbatsevich, V V
2013-12-31
In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.
Invariants of Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Abe, Sumiyoshi
2017-02-01
A weak invariant of a stochastic system is defined in such a way that its expectation value with respect to the distribution function as a solution of the associated Fokker-Planck equation is constant in time. A general formula is given for time evolution of the fluctuations of the invariant. An application to the problem of share price in finance is illustrated. It is shown how this theory makes it possible to reduce the growth rate of the fluctuations.
Computer calculation of Witten's 3-manifold invariant
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Gompf, Robert E.
1991-10-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.
The invariances of power law size distributions.
Frank, Steven A
2016-01-01
Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things as different as tree size and enzyme rate follow similarly simple patterns? Here I analyze such patterns by their invariant properties. For example, a common pattern should not change when adding a constant value to all observations. That shift is essentially the renumbering of the points on a ruler without changing the metric information provided by the ruler. A ruler is shift invariant only when its scale is properly calibrated to the pattern being measured. Stretch invariance corresponds to the conservation of the total amount of something, such as the total biomass and consequently the average size. Rotational invariance corresponds to pattern that does not depend on the order in which underlying processes occur, for example, a scale that additively combines the component processes leading to observed values. I use tree size as an example to illustrate how the key invariances shape pattern. A simple interpretation of common pattern follows. That simple interpretation connects the normal distribution to a wide variety of other common patterns through the transformations of scale set by the fundamental invariances.
The invariances of power law size distributions
Frank, Steven A.
2016-01-01
Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things as different as tree size and enzyme rate follow similarly simple patterns? Here I analyze such patterns by their invariant properties. For example, a common pattern should not change when adding a constant value to all observations. That shift is essentially the renumbering of the points on a ruler without changing the metric information provided by the ruler. A ruler is shift invariant only when its scale is properly calibrated to the pattern being measured. Stretch invariance corresponds to the conservation of the total amount of something, such as the total biomass and consequently the average size. Rotational invariance corresponds to pattern that does not depend on the order in which underlying processes occur, for example, a scale that additively combines the component processes leading to observed values. I use tree size as an example to illustrate how the key invariances shape pattern. A simple interpretation of common pattern follows. That simple interpretation connects the normal distribution to a wide variety of other common patterns through the transformations of scale set by the fundamental invariances. PMID:27928497
Preimpact porosity controls the gravity signature of lunar craters
NASA Astrophysics Data System (ADS)
Milbury, C.; Johnson, B. C.; Melosh, H. J.; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Nimmo, F.; Bierson, C. J.; Phillips, R. J.; Zuber, M. T.
2015-11-01
We model the formation of lunar complex craters and investigate the effect of preimpact porosity on their gravity signatures. We find that while preimpact target porosities less than ~7% produce negative residual Bouguer anomalies (BAs), porosities greater than ~7% produce positive anomalies whose magnitude is greater for impacted surfaces with higher initial porosity. Negative anomalies result from pore space creation due to fracturing and dilatant bulking, and positive anomalies result from destruction of pore space due to shock wave compression. The central BA of craters larger than ~215 km in diameter, however, are invariably positive because of an underlying central mantle uplift. We conclude that the striking differences between the gravity signatures of craters on the Earth and Moon are the result of the higher average porosity and variable porosity of the lunar crust.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Thomsen, P.
1988-01-01
A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.
Signatures of nonthermal melting
Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.
2015-01-01
Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822
2006-01-24
Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.
Advanced spectral signature discrimination algorithm
NASA Astrophysics Data System (ADS)
Chakravarty, Sumit; Cao, Wenjie; Samat, Alim
2013-05-01
This paper presents a novel approach to the task of hyperspectral signature analysis. Hyperspectral signature analysis has been studied a lot in literature and there has been a lot of different algorithms developed which endeavors to discriminate between hyperspectral signatures. There are many approaches for performing the task of hyperspectral signature analysis. Binary coding approaches like SPAM and SFBC use basic statistical thresholding operations to binarize a signature which are then compared using Hamming distance. This framework has been extended to techniques like SDFC wherein a set of primate structures are used to characterize local variations in a signature together with the overall statistical measures like mean. As we see such structures harness only local variations and do not exploit any covariation of spectrally distinct parts of the signature. The approach of this research is to harvest such information by the use of a technique similar to circular convolution. In the approach we consider the signature as cyclic by appending the two ends of it. We then create two copies of the spectral signature. These three signatures can be placed next to each other like the rotating discs of a combination lock. We then find local structures at different circular shifts between the three cyclic spectral signatures. Texture features like in SDFC can be used to study the local structural variation for each circular shift. We can then create different measure by creating histogram from the shifts and thereafter using different techniques for information extraction from the histograms. Depending on the technique used different variant of the proposed algorithm are obtained. Experiments using the proposed technique show the viability of the proposed methods and their performances as compared to current binary signature coding techniques.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
NASA Astrophysics Data System (ADS)
Nag, Amit; Sau, Jay
The observed zero bias peak in tunneling conductance experiments on semiconductor Rashba nanowire is a signature of presence of Majorana zero modes. Characteristics of zero bias conductance peak (ZBCP) namely, height, width and peak splitting, are a function of microscopic parameters. Zero modes have finite splitting as a result of finiteness of the nanowire rendering the ground state only approximately topological i.e. zero modes are only approximately Majoranas. We calculate the scattering matrix topological invariant to quantify the quality of approximate Majorana modes and study its relation to observed characteristics of ZBCP. Furthermore we study the effect of dephasing on the topological invariant. Finally, we draw connection between the characteristics of the ZBCP and probability of observing non-Abelian statistics in proposed future experiments involving braiding of Majorana modes. Work is done in collaboration with Sankar Das Sarma and supported by LPS-MPO-CMTC, Microsoft Q, Univ. of Maryland startup grants and JQI-NSF-PFC.
Finite elasto-plastic deformation. I - Theory and numerical examples
NASA Technical Reports Server (NTRS)
Osias, J. R.; Swedlow, J. L.
1974-01-01
It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate. Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admitting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.
Gauge theory in deformed mathcal{N} = (1, 1) superspace
NASA Astrophysics Data System (ADS)
Buchbinder, I. L.; Ivanov, E. A.; Lechtenfeld, O.; Samsonov, I. B.; Zupnik, B. M.
2008-09-01
We review the non-anticommutative Q-deformations of mathcal{N} = (1, 1) supersymmetric theories in four-dimensional Euclidean harmonic superspace. These deformations preserve chirality and harmonic Grassmann analyticity. The associated field theories arise as a low-energy limit of string theory in specific backgrounds and generalize the Moyal-deformed supersymmetric field theories. A characteristic feature of the Q-deformed theories is the half-breaking of supersymmetry in the chiral sector of the Euclidean superspace. Our main focus is on the chiral singlet Q-deformation, which is distinguished by preserving the SO(4) ˜ Spin(4) “Lorentz” symmetry and the SU(2) R-symmetry. We present the superfield and component structures of the deformed mathcal{N} = (1, 0) supersymmetric gauge theory as well as of hypermultiplets coupled to a gauge superfield: invariant actions, deformed transformation rules, and so on. We discuss quantum aspects of these models and prove their renormalizability in the Abelian case. For the charged hypermultiplet in an Abelian gauge superfield background we construct the deformed holomorphic effective action.
Multimodal signature modeling of humans
NASA Astrophysics Data System (ADS)
Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan
2010-04-01
Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.
NASA Astrophysics Data System (ADS)
Milton, Graeme Walter
2013-07-01
A complete characterization is given of the possible macroscopic deformations of periodic non-linear affine unimode metamaterials constructed from rigid bars and pivots. The materials are affine in the sense that their macroscopic deformations can only be affine deformations: on a local level the deformation may vary from cell to cell. Unimode means that macroscopically the material can only deform along a one dimensional trajectory in the six dimensional space of invariants describing the deformation (excluding translations and rotations). We show by explicit construction that any continuous trajectory is realizable to an arbitrarily high degree of approximation provided at all points along the trajectory the geometry does not collapse to a lower dimensional one. In particular, we present two and three dimensional dilational materials having an arbitrarily large flexibility window. These are perfect auxetic materials for which a dilation is the only easy mode of deformation. They are free to dilate to arbitrarily large strain with zero bulk modulus.
Invariants for time-dependent Hamiltonian systems.
Struckmeier, J; Riedel, C
2001-08-01
An exact invariant is derived for n-degree-of-freedom Hamiltonian systems with general time-dependent potentials. The invariant is worked out in two equivalent ways. In the first approach, we define a special Ansatz for the invariant and determine its time-dependent coefficients. In the second approach, we perform a two-step canonical transformation of the initially time-dependent Hamiltonian to a time-independent one. The invariant is found to contain a function of time f(2)(t), defined as a solution of a linear third-order differential equation whose coefficients depend in general on the explicitly known configuration space trajectory that follows from the system's time evolution. It is shown that the invariant can be interpreted as the time integral of an energy balance equation. Our result is applied to a one-dimensional, time-dependent, damped non-linear oscillator, and to a three-dimensional system of Coulomb-interacting particles that are confined in a time-dependent quadratic external potential. We finally show that our results can be used to assess the accuracy of numerical simulations of time-dependent Hamiltonian systems.
Dimensional Analysis Using Toric Ideals: Primitive Invariants
Atherton, Mark A.; Bates, Ronald A.; Wynn, Henry P.
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer matrix from the initial integer matrix holding the exponents for the derived quantities. The matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by . One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of , is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774
Local and gauge invariant observables in gravity
NASA Astrophysics Data System (ADS)
Khavkine, Igor
2015-09-01
It is well known that general relativity (GR) does not possess any non-trivial local (in a precise standard sense) and diffeomorphism invariant observable. We propose a generalized notion of local observables, which retain the most important properties that follow from the standard definition of locality, yet is flexible enough to admit a large class of diffeomorphism invariant observables in GR. The generalization comes at a small price—that the domain of definition of a generalized local observable may not cover the entire phase space of GR and two such observables may have distinct domains. However, the subset of metrics on which generalized local observables can be defined is in a sense generic (its open interior is non-empty in the Whitney strong topology). Moreover, generalized local gauge invariant observables are sufficient to separate diffeomorphism orbits on this admissible subset of the phase space. Connecting the construction with the notion of differential invariants gives a general scheme for defining generalized local gauge invariant observables in arbitrary gauge theories, which happens to agree with well-known results for Maxwell and Yang-Mills theories.
Lahamy, Hervé; Lichti, Derek D
2012-10-29
The automatic interpretation of human gestures can be used for a natural interaction with computers while getting rid of mechanical devices such as keyboards and mice. In order to achieve this objective, the recognition of hand postures has been studied for many years. However, most of the literature in this area has considered 2D images which cannot provide a full description of the hand gestures. In addition, a rotation-invariant identification remains an unsolved problem, even with the use of 2D images. The objective of the current study was to design a rotation-invariant recognition process while using a 3D signature for classifying hand postures. A heuristic and voxel-based signature has been designed and implemented. The tracking of the hand motion is achieved with the Kalman filter. A unique training image per posture is used in the supervised classification. The designed recognition process, the tracking procedure and the segmentation algorithm have been successfully evaluated. This study has demonstrated the efficiency of the proposed rotation invariant 3D hand posture signature which leads to 93.88% recognition rate after testing 14,732 samples of 12 postures taken from the alphabet of the American Sign Language.
Graef, L.L.; Brandenberger, R. E-mail: rhb@physics.mcgill.ca
2015-10-01
Standard inflationary models yield a characteristic signature of a primordial power spectrum with a red tensor and scalar tilt. Nevertheless, Cannone et al. [1] recently suggested that, by breaking the assumption of spatial diffeomorphism invariance in the context of the effective field theory of inflation, a blue tensor spectrum can be achieved without violating the Null Energy Condition. In this context, we explore in which cases the inflationary model of [2] can yield a blue tilt of the tensor modes along with a red tilt in the scalar spectrum. Ultimately, we analyze under which conditions the model of [3] can reproduce the specific consistency relation of String Gas Cosmology.
Signature effects in 2qp bands of doubly even rare-earth nuclei
NASA Astrophysics Data System (ADS)
Kalra, Kawalpreet; Goel, Alpana; Jain, A. K.
2016-12-01
The two-quasiparticle rotational bands in deformed doubly even nuclei in the rare-earth region have been studied in detail. A number of interesting features like odd-even staggering and signature inversion have been observed. The phenomenon of signature inversion/reversal is observed experimentally in 162 66Dy, 170 0Yb and 170 74W in even-even nuclei. Two quasiparticle plus rotor model (TQPRM) calculations are carried out to explain the reverse pattern of signature in 170 74W for the rotational band having configuration {(h_{11/2})p ⊗ (d_{5/2})p}.
κ-Deformations and Extended κ-Minkowski Spacetimes
NASA Astrophysics Data System (ADS)
Borowiec, Andrzej; Pachoł, Anna
2014-11-01
We extend our previous study of Hopf-algebraic κ-deformations of all inhomogeneous orthogonal Lie algebras iso(g) as written in a tensorial and unified form. Such deformations are determined by a vector τ which for Lorentzian signature can be taken time-, light- or space-like. We focus on some mathematical aspects related to this subject. Firstly, we describe real forms with connection to the metric's signatures and their compatibility with the reality condition for the corresponding κ-Minkowski (Hopf) module algebras. Secondly, h-adic vs q-analog (polynomial) versions of deformed algebras including specialization of the formal deformation parameter &kappa to some numerical value are considered. In the latter the general covariance is lost and one deals with an orthogonal decomposition. The last topic treated in this paper concerns twisted extensions of κ-deformations as well as the description of resulting noncommutative spacetime algebras in terms of solvable Lie algebras. We found that if the type of the algebra does not depend on deformation parameters then specialization is possible.
Techni-Dilaton Signatures at LHC
NASA Astrophysics Data System (ADS)
Matsuzaki, S.; Yamawaki, K.
2012-02-01
We explore discovery signatures of techni-dilaton (TD) at LHC. The TD was predicted long ago as a composite pseudo Nambu-Goldstone boson (pNGB) associated with the spontaneous breaking of the approximate scale symmetry in the walking technicolor (WTC) (initially dubbed ``scale-invariant technicolor''). Being pNGB, whose mass arises from the explicit scale-symmetry breaking due to the spontaneous breaking itself (dynamical mass generation), the TD as a composite scalar should have a mass M_{TD} lighter than other techni-hadrons, say M_{TD} ≃ 600 GeV for the typical WTC model, which is well in the discovery range of the ongoing LHC experiment. We develop a spurion method of nonlinear realization to calculate the TD couplings to the standard model (SM) particles and explicitly evaluate the TD LHC production cross sections at √{s} = 7 TeV times the branching ratios in terms of M_{TD} as an input parameter for the region 200 GeV < M_{TD} < 1000 GeV in the typical WTC models. It turns out that the TD signatures are quite different from those of the SM Higgs: In the one-doublet model (1DM) all the cross sections including the WW/ZZ mode are suppressed compared to those of the SM Higgs due to the suppressed TD couplings, while in the one-family model (1FM) all those cross sections get highly enhanced because of the presence of extra colored fermion (techni-quark) contributions. We compare the {TD} → WW/ZZ signature with the recent ATLAS and CMS bounds and find that in the case of 1DM the signature is consistent over the whole mass range 200 GeV < M_{TD} < 1000 GeV due to the large suppression of TD couplings, and by the same token the signal is too tiny for the TD to be visible through this channel at LHC. As for the 1FMs, on the other hand, a severe constraint is given on the TD mass to exclude the TD with mass ≲ 600 GeV, which, however, would imply an emergence of somewhat dramatic excess as the TD signature at 600 GeV ≲ M_{TD} < 1000 GeV in the near future. We
None
2016-07-12
Le DG W.Jentschke souhaite la bienvenue Ã l'assemblÃ©e et aux invitÃ©s pour la signature du protocole entre le Cern et l'URSS qui est un Ã©vÃ©nement important. C'est en 1955 que 55 visiteurs soviÃ©tiques ont visitÃ© le Cern pour la premiÃ¨re fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi prÃ©sents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.
Drell, S.; Jeanloz, R.; Cornwall, J.; Dyson, F.; Eardley, D.
1998-03-18
This study is a follow-on to the review made by JASON during its 1997 Summer Study of what is known about the aging of critical constituents, particularly the high explosives, metals (Pu, U), and polymers in the enduring stockpile. The JASON report (JSR-97-320) that summarized the findings was based on briefings by the three weapons labs (LANL, LLNL, SNL). They presented excellent technical analyses covering a broad range of scientific and engineering problems pertaining to determining signatures of aging. But the report also noted: `Missing, however, from the briefings and the written documents made available to us by the labs and DOE, was evidence of an adequately sharp focus and high priorities on a number of essential near-term needs of maintaining weapons in the stockpile.
Landsat Signature Development Program
NASA Technical Reports Server (NTRS)
Hall, R. N.; Mcguire, K. G.; Bland, R. A.
1976-01-01
The Landsat Signature Development Program, LSDP, is designed to produce an unsupervised classification of a scene from a Landsat tape. This classification is based on the clustering tendencies of the multispectral scanner data processed from the scene. The program will generate a character map that, by identifying each of the general classes of surface features extracted from the scene data with a specific line printer symbol, indicates the approximate locations and distributions of these general classes within the scene. Also provided with the character map are a number of tables each of which describes either some aspect of the spectral properties of the resultant classes, some inter-class relationship, the incidence of picture elements assigned to the various classes in the character map classification of the scene, or some significant intermediate stage in the development of the final classes.
Multisensors signature prediction workbench
NASA Astrophysics Data System (ADS)
Latger, Jean; Cathala, Thierry
2015-10-01
Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.
NASA Astrophysics Data System (ADS)
Baltz, Edward Anthony
It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for
NASA Astrophysics Data System (ADS)
Wylezalek, D.; Zakamska, N.
2016-06-01
Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1
Lorentz invariance in chiral kinetic theory.
Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A; Yee, Ho-Ung; Yin, Yi
2014-10-31
We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1/2 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance. We also show how the classical action can be obtained by taking the classical limit of the path integral for a Weyl particle.
Feedback network with space invariant coupling.
Häusler, G; Lange, E
1990-11-10
Processing images by a neural network means performing a repeated sequence of operations on the images. The sequence consists of a general linear transformation and a nonlinear mapping of pixel intensities. The general (shift variant) linear transformation is time consuming for large images if done with a serial computer. A shift invariant linear transformation can be implemented much easier by fast Fourier transform or optically, but the shift invariant transform has fewer degrees of freedom because the coupling matrix is Toeplitz. We present a neural convolution network with shift invariant coupling that nevertheless exhibits autoassociative restoration of distorted images. Besides the simple implementation, the network has one more advantage: associative recall does not depend on object position.
Renormalization group invariant of lepton Yukawa couplings
NASA Astrophysics Data System (ADS)
Tsuyuki, Takanao
2015-04-01
By using quark Yukawa matrices only, we can construct renormalization invariants that are exact at the one-loop level in the standard model. One of them, Iq, is accidentally consistent with unity, even though quark masses are strongly hierarchical. We calculate a lepton version of the invariant Il for Dirac and Majorana neutrino cases and find that Il can also be close to unity. For the Dirac neutrino and inverted hierarchy case, if the lightest neutrino mass is 3.0 meV to 8.8 meV, an equality Iq=Il can be satisfied. These invariants are not changed even if new particles couple to the standard model particles, as long as those couplings are generation independent.
The Grassmannian origin of dual superconformal invariance
NASA Astrophysics Data System (ADS)
Arkani-Hamed, Nima; Cachazo, Freddy; Cheung, Clifford
2010-03-01
A dual formulation of the S Matrix for mathcal {N} = 4 SYM has recently been presented, where all leading singularities of n-particle N k-2MHV amplitudes are given as an integral over the Grassmannian G( k, n), with cyclic symmetry, parity and superconformal invariance manifest. In this short note we show that the dual superconformal invariance of this object is also manifest. The geometry naturally suggests a partial integration and simple change of variable to an integral over G( k - 2, n). This change of variable precisely corresponds to the mapping between usual momentum variables and the “momentum twistors” introduced by Hodges, and yields an elementary derivation of the momentumtwistor space formula very recently presented by Mason and Skinner, which is manifestly dual superconformal invariant. Thus the G( k, n) Grassmannian formulation allows a direct understanding of all the important symmetries of mathcal {N} = 4 SYM scattering amplitudes.
Blurred image recognition by legendre moment invariants
Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis
2010-01-01
Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003
Scale Invariant Gravity - a Simple Formulation
NASA Astrophysics Data System (ADS)
Wesson, P. S.
1981-09-01
Using the Cosmological Principle as justification, it is suggested that the scale-invariant theory of gravity be based on a Conspiracy Hypothesis (CH). The CH says: The matter parameters of a system (mass, density, pressure, etc.), the "constants" of physics and the coordinates occur together in dimensionless combinations (η-numbers) in which the components may vary but in such a manner that the variations conspire to keep the -numbers constant. This hypothesis yields a formulation of the scale-invariant theory that is simpler than other versions of it in which the Newtonian gravitational parameter G is treated as a field variable (Dirac, Hoyle/Narlikar, Canuto et al.). This simple formulation of scale-invariant gravity agrees with a recent reformulation of the (Perfect) Cosmological Principle. It also agrees with observations that have been made to date, and the equations suggest several new tests that can possibly be carried out.
Learning invariant face recognition from examples.
Müller, Marco K; Tremer, Michael; Bodenstein, Christian; Würtz, Rolf P
2013-05-01
Autonomous learning is demonstrated by living beings that learn visual invariances during their visual experience. Standard neural network models do not show this sort of learning. On the example of face recognition in different situations we propose a learning process that separates learning of the invariance proper from learning new instances of individuals. The invariance is learned by a set of examples called model, which contains instances of all situations. New instances are compared with these on the basis of rank lists, which allow generalization across situations. The result is also implemented as a spike-time-based neural network, which is shown to be robust against disturbances. The learning capability is demonstrated by recognition experiments on a set of standard face databases.
Index of Spectrum Signature Data
1985-05-01
Frederick Research Corporation. Alexandria. VA 163 AN/APG-030 Radar Receiver Heasureaents Electromagnetic Coapatibilitv Analysis Center, US Navv Marine ... Electromagnetic Compatibility Characteristics of the W 86 Gun Fire Control Svstem. Naval HEapons Lab, Dahlgren, VA 501 Partial Spectrum Signature...ECAC-I-IO-(SS) DEPARTMENT OF DEFENSE Electromagnetic Compatibility Analysis Center Annapolis, Maryland 21402 INDEX OF SPECTRUM SIGNATURE DATA
Cell short circuit, preshort signature
NASA Technical Reports Server (NTRS)
Lurie, C.
1980-01-01
Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
An invariance theorem in acoustic scattering theory
NASA Astrophysics Data System (ADS)
Ha-Duong, T.
1996-10-01
Karp's theorem states that if the far-field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle is invariant under the group of orthogonal transformations in 0266-5611/12/5/007/img1 (rotations in 0266-5611/12/5/007/img2), then the scatterer is a sphere (circle). The theorem is generalized to the case where the invariant group of the far field pattern is only a subgroup of the orthogonal group, and for a class of mixed boundary conditions.
Cosmological constant in scale-invariant theories
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.
2011-10-01
The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp
2015-10-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Some cosmological consequences of Weyl invariance
Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario
2015-03-19
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.
Some cosmological consequences of Weyl invariance
Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario E-mail: sergio.gonzalez.martin@csic.es
2015-03-01
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.
Galilean invariant resummation schemes of cosmological perturbations
NASA Astrophysics Data System (ADS)
Peloso, Marco; Pietroni, Massimo
2017-01-01
Many of the methods proposed so far to go beyond Standard Perturbation Theory break invariance under time-dependent boosts (denoted here as extended Galilean Invariance, or GI). This gives rise to spurious large scale effects which spoil the small scale predictions of these approximation schemes. By using consistency relations we derive fully non-perturbative constraints that GI imposes on correlation functions. We then introduce a method to quantify the amount of GI breaking of a given scheme, and to correct it by properly tailored counterterms. Finally, we formulate resummation schemes which are manifestly GI, discuss their general features, and implement them in the so called Time-Flow, or TRG, equations.
Invariant measures on multimode quantum Gaussian states
NASA Astrophysics Data System (ADS)
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-01
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Approaching Moons from Resonance via Invariant Manifolds
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.
2012-01-01
In this work, the approach phase from the final resonance of the endgame scenario in a tour design is examined within the context of invariant manifolds. Previous analyses have typically solved this problem either by using numerical techniques or by computing a catalog of suitable trajectories. The invariant manifolds of a selected set of libration orbits and unstable resonant orbits are computed here to serve as guides for desirable approach trajectories. The analysis focuses on designing an approach phase that may be tied into the final resonance in the endgame sequence while also targeting desired conditions at the moon.
Deformations of superconformal theories
NASA Astrophysics Data System (ADS)
Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth
2016-11-01
We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d ≥ 3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.
Tracking visual objects using pyramidal rotation invariant features
NASA Astrophysics Data System (ADS)
Paheding, Sidike; Essa, Almabrok; Krieger, Evan; Asari, Vijayan
2016-02-01
Challenges in object tracking such as object deformation, occlusion, and background variations require a robust tracker to ensure accurate object location estimation. To address these issues, we present a Pyramidal Rotation Invariant Features (PRIF) that integrates Gaussian Ringlet Intensity Distribution (GRID) and Fourier Magnitude of Histogram of Oriented Gradients (FMHOG) methods for tracking objects from videos in challenging environments. In this model, we initially partition a reference object region into increasingly fine rectangular grid regions to construct a pyramid. Histograms of local features are then extracted for each level of pyramid. This allows the appearance of a local patch to be captured at multiple levels of detail to make the algorithm insensitive to partial occlusion. Then GRID and magnitude of discrete Fourier transform of the oriented gradient are utilized to achieve a robust rotation invariant feature. The GRID feature creates a weighting scheme to emphasize the object center. In the tracking stage, a Kalman filter is employed to estimate the center of the object search regions in successive frames. Within the search regions, we use a sliding window technique to extract the PRIF of candidate objects, and then Earth Mover's Distance (EMD) is used to classify the best matched candidate features with respect to the reference. Our PRIF object tracking algorithm is tested on two challenging Wide Area Motion Imagery (WAMI) datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness. Experimental results show that the proposed PRIF approach yields superior results compared to state-of-the-art feature based object trackers.
Weak associativity and deformation quantization
NASA Astrophysics Data System (ADS)
Kupriyanov, V. G.
2016-09-01
Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
Invariant Discretization Schemes Using Evolution-Projection Techniques
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Nave, Jean-Christophe
2013-08-01
Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical p! roperties of invariant discretization schemes using the proposed evolution-projection strategy.
Disambiguating seesaw models using invariant mass variables at hadron colliders
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-01
We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.
Disambiguating seesaw models using invariant mass variables at hadron colliders
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-19
Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less
Disambiguating seesaw models using invariant mass variables at hadron colliders
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-19
Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the $\\sqrt{s}$ = 14 and 100TeV hadron colliders.
Conformal invariance and new exact solutions of the elastostatics equations
NASA Astrophysics Data System (ADS)
Chirkunov, Yu. A.
2017-03-01
We fulfilled a group foliation of the system of n-dimensional (n ≥ 2) Lame equations of the classical static theory of elasticity with respect to the infinite subgroup contained in normal subgroup of main group of this system. It permitted us to move from the Lame equations to the equivalent unification of two first-order systems: automorphic and resolving. We obtained a general solution of the automorphic system. This solution is an n-dimensional analogue of the Kolosov-Muskhelishvili formula. We found the main Lie group of transformations of the resolving system of this group foliation. It turned out that in the two-dimensional and three-dimensional cases, which have a physical meaning, this system is conformally invariant, while the Lame equations admit only a group of similarities of the Euclidean space. This is a big success, since in the method of group foliation, resolving equations usually inherit Lie symmetries subgroup of the full symmetry group that was not used for the foliation. In the three-dimensional case for the solutions of the resolving system, we found the general form of the transformations similar to the Kelvin transformation. These transformations are the consequence of the conformal invariance of the resolving system. In the three-dimensional case with a help of the complex dependent and independent variables, the resolving system is written as a simple complex system. This allowed us to find non-trivial exact solutions of the Lame equations, which direct for the Lame equations practically impossible to obtain. For this complex system, all the essentially distinct invariant solutions of the maximal rank we have found in explicit form, or we reduced the finding of those solutions to the solving of the classical one-dimensional equations of the mathematical physics: the heat equation, the telegraph equation, the Tricomi equation, the generalized Darboux equation, and other equations. For the resolving system, we obtained double wave of a
Scale invariance, conformality, and generalized free fields
Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina
2016-02-16
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum fi eld theories with scale invariance but not conformal invariance. We present an important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen that is the trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Finally, despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.
Constitutive laws, tensorial invariance and chocolate cake
NASA Astrophysics Data System (ADS)
Rundle, John B.; Passman, S. L.
1982-04-01
Although constitutive modeling is a well-established branch of mathematics which has found wide industrial application, geophysicists often do not take full advantage of its known results. We present a synopsis of the theory of constitutive modeling, couched in terms of the ‘simple material’, which has been extensively studied and is complex enough to include most of the correct models proposed to describe the behavior of geological materials. Critical in the development of the theory are various invariance requirements, the principal ones being coordinate invariance, peer group invariance (isotropy), and frame-indifference. Each places distinet restrictions on constitutive equations. A noncomprehensive list of properly invariant and commonly used constitutive equations is given. To exemplify use of the equations, we consider two problems in detail: steady extension, which models the commonly performed constant strain rate triaxial test, and simple shearing. We note that each test is so restricted kinematically that only the most trivial aspects of material behavior are manifested in these tests, no matter how complex the material. Furthermore, the results of one test do not generally determine the results of the other.
Scale invariant density perturbations from cyclic cosmology
NASA Astrophysics Data System (ADS)
Frampton, Paul Howard
2016-04-01
It is shown how quantum fluctuations of the radiation during the contraction era of a comes back empty (CBE) cyclic cosmology can provide density fluctuations which re-enter the horizon during the subsequent expansion era and at lowest order are scale invariant, in a Harrison-Zel’dovich-Peebles sense. It is necessary to be consistent with observations of large scale structure.
Understanding Parameter Invariance in Unidimensional IRT Models
ERIC Educational Resources Information Center
Rupp, Andre A.; Zumbo, Bruno D.
2006-01-01
One theoretical feature that makes item response theory (IRT) models those of choice for many psychometric data analysts is parameter invariance, the equality of item and examinee parameters from different examinee populations or measurement conditions. In this article, using the well-known fact that item and examinee parameters are identical only…
Position, rotation, and intensity invariant recognizing method
Ochoa, E.; Schils, G.F.; Sweeney, D.W.
1987-09-15
A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.
Scale invariance, conformality, and generalized free fields
Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; ...
2016-02-16
This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum fi eld theories with scale invariance but not conformal invariance. We present an important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen that is the trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unlessmore » the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Finally, despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.« less
Invariance Properties for General Diagnostic Classification Models
ERIC Educational Resources Information Center
Bradshaw, Laine P.; Madison, Matthew J.
2016-01-01
In item response theory (IRT), the invariance property states that item parameter estimates are independent of the examinee sample, and examinee ability estimates are independent of the test items. While this property has long been established and understood by the measurement community for IRT models, the same cannot be said for diagnostic…
Gauge-invariant hydrogen-atom Hamiltonian
Sun Weimin; Wang Fan; Chen Xiangsong; Lue Xiaofu
2010-07-15
For quantum mechanics of a charged particle in a classical external electromagnetic field, there is an apparent puzzle that the matrix element of the canonical momentum and Hamiltonian operators is gauge dependent. A resolution to this puzzle was recently provided by us [X.-S. Chen et al., Phys. Rev. Lett. 100, 232002 (2008)]. Based on the separation of the electromagnetic potential into pure-gauge and gauge-invariant parts, we have proposed a new set of momentum and Hamiltonian operators which satisfy both the requirement of gauge invariance and the relevant commutation relations. In this paper we report a check for the case of the hydrogen-atom problem: Starting from the Hamiltonian of the coupled electron, proton, and electromagnetic field, under the infinite proton mass approximation, we derive the gauge-invariant hydrogen-atom Hamiltonian and verify explicitly that this Hamiltonian is different from the Dirac Hamiltonian, which is the time translation generator of the system. The gauge-invariant Hamiltonian is the energy operator, whose eigenvalue is the energy of the hydrogen atom. It is generally time dependent. In this case, one can solve the energy eigenvalue equation at any specific instant of time. It is shown that the energy eigenvalues are gauge independent, and by suitably choosing the phase factor of the time-dependent eigenfunction, one can ensure that the time-dependent eigenfunction satisfies the Dirac equation.
Invariant functionals in higher-spin theory
NASA Astrophysics Data System (ADS)
Vasiliev, M. A.
2017-03-01
A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
Multipartite invariant states. II. Orthogonal symmetry
Chruscinski, Dariusz; Kossakowski, Andrzej
2006-06-15
We construct a class of multipartite states possessing orthogonal symmetry. This new class contains multipartite states which are invariant under the action of local unitary operations introduced in our preceding paper [Phys. Rev. A 73, 062314 (2006)]. We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.
Permutation centralizer algebras and multimatrix invariants
NASA Astrophysics Data System (ADS)
Mattioli, Paolo; Ramgoolam, Sanjaye
2016-03-01
We introduce a class of permutation centralizer algebras which underly the combinatorics of multimatrix gauge-invariant observables. One family of such noncommutative algebras is parametrized by two integers. Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators, which were introduced in the physics literature to describe open strings attached to giant gravitons and were subsequently used to diagonalize the Gaussian inner product for gauge invariants of two-matrix models. The structure of the algebra, notably its dimension, its center and its maximally commuting subalgebra, is related to Littlewood-Richardson numbers for composing Young diagrams. It gives a precise characterization of the minimal set of charges needed to distinguish arbitrary matrix gauge invariants, which are related to enhanced symmetries in gauge theory. The algebra also gives a star product for matrix invariants. The center of the algebra allows efficient computation of a sector of multimatrix correlators. These generate the counting of a certain class of bicoloured ribbon graphs with arbitrary genus.
Broken Scale Invariance and Anomalous Dimensions
DOE R&D Accomplishments Database
Wilson, K. G.
1970-05-01
Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.
NASA Astrophysics Data System (ADS)
Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.; Alam, Mohammad S.
2014-04-01
A new rotation-invariant pattern recognition technique, based on spectral fringe-adjusted joint transform correlator (SFJTC) and histogram representation, is proposed. Synthetic discriminant function (SDF) based joint transform correlation (JTC) techniques have shown attractive performance in rotation-invariant pattern recognition applications. However, when the targets present in a complex scene, SDF-based JTC techniques may produce false detections due to inaccurate estimation of rotation angle of the object. Therefore, we herein propose an efficient rotation-invariant JTC scheme which does not require a priori rotation training of the reference image. In the proposed technique, a Vectorized Gaussian Ringlet Intensity Distribution (VGRID) descriptor is also proposed to obtain rotation-invariant features from the reference image. In this step, we divide the reference image into multiple Gaussian ringlets and extract histogram distribution of each ringlet, and then concatenate them into a vector as a target signature. Similarly, an unknown input scene is also represented by the VGRID which produces a multidimensional input image. Finally, the concept of the SFJTC is incorporated and utilized for target detection in the input scene. The classical SFJTC was proposed for detecting very small objects involving only few pixels in hyperspectral imagery. However, in our proposed algorithm, the SFJTC is applied for a two-dimensional image without limitation of the size of objects and most importantly it achieves rotation-invariant target discriminability. Simulation results verify that the proposed scheme performs satisfactorily in detecting targets in the input scene irrespective of rotation of the object.
NASA Astrophysics Data System (ADS)
Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team
2017-01-01
Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!
Statistical clumped isotope signatures
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
Three dimensional quantum geometry and deformed symmetry
NASA Astrophysics Data System (ADS)
Joung, E.; Mourad, J.; Noui, K.
2009-05-01
We study a three dimensional noncommutative space emerging in the context of three dimensional Euclidean quantum gravity. Our starting point is the assumption that the isometry group is deformed to the Drinfeld double D(SU(2)). We generalize to the deformed case the construction of E3 as the quotient of its isometry group ISU(2) by SU(2). We show that the algebra of functions on E3 becomes the noncommutative algebra of SU(2) distributions, C(SU(2))∗, endowed with the convolution product. This construction gives the action of ISU(2) on the algebra and allows the determination of plane waves and coordinate functions. In particular, we show the following: (i) plane waves have bounded momenta; (ii) to a given momentum are associated several SU(2) elements leading to an effective description of ϕ ɛC(SU(2))∗ in terms of several physical scalar fields on E3; (iii) their product leads to a deformed addition rule of momenta consistent with the bound on the spectrum. We generalize to the noncommutative setting the "local" action for a scalar field. Finally, we obtain, using harmonic analysis, another useful description of the algebra as the direct sum of the algebra of matrices. The algebra of matrices inherits the action of ISU(2): rotations leave the order of the matrices invariant, whereas translations change the order in a way we explicitly determine.
An Invariant-Preserving ALE Method for Solids under Extreme Conditions
Sambasivan, Shiv Kumar; Christon, Mark A
2012-07-17
We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore
Deformation mechanisms in experimentally deformed Boom Clay
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures
''Electron Conic'' Signatures observed in the nightside auroral zone and over the polar cap
Menietti, J.D.; Burch, J.L.
1985-06-01
A preliminary search of the Dynamics Explorer 1 high-altitude plasma instrument data base has yielded examples of ''electron conic'' signatures. The three example passes show an association with regions of downward electron acceleration and upward ion beams, but this is not true of all the electron conic events. The electron conic signatures are clearly discernible on energy-flux-versus-time color spectrograms as pairs of discrete vertical bands which are symmetric about a pitch angle of approximately 180/sup 0/. One of the examples is a polar cap pass with electron conic signatures observed at invariant latitudes from 84/sup 0/ to 75/sup 0/. The other two cases are nightside auroral zone passes in which the regions of detectable electron conics are spatially more confined, covering only about 1/sup 0/ in invariant latitude. The conic signatures have been found at energies that range from 50 eV
NASA Astrophysics Data System (ADS)
Bazhenov, V. A.; Sakharov, A. S.; Maksimyuk, Yu. V.; Shkryl', A. A.
2016-03-01
Numerical experiments are performed to analyze the invariance and reliability of the results of evaluation of the J-integral by the modified method of reactions in problems of mixed fracture. Bodies with cracks undergoing elastoplastic deformation under static loading are considered. To demonstrate the universality of the method to finite-element schemes, prismatic bodies are considered. This allows using not only conventional finite-element schemes, but also the semi-analytical finite-element method
De Roover, Kim; Timmerman, Marieke E.; De Leersnyder, Jozefien; Mesquita, Batja; Ceulemans, Eva
2014-01-01
The issue of measurement invariance is ubiquitous in the behavioral sciences nowadays as more and more studies yield multivariate multigroup data. When measurement invariance cannot be established across groups, this is often due to different loadings on only a few items. Within the multigroup CFA framework, methods have been proposed to trace such non-invariant items, but these methods have some disadvantages in that they require researchers to run a multitude of analyses and in that they imply assumptions that are often questionable. In this paper, we propose an alternative strategy which builds on clusterwise simultaneous component analysis (SCA). Clusterwise SCA, being an exploratory technique, assigns the groups under study to a few clusters based on differences and similarities in the component structure of the items, and thus based on the covariance matrices. Non-invariant items can then be traced by comparing the cluster-specific component loadings via congruence coefficients, which is far more parsimonious than comparing the component structure of all separate groups. In this paper we present a heuristic for this procedure. Afterwards, one can return to the multigroup CFA framework and check whether removing the non-invariant items or removing some of the equality restrictions for these items, yields satisfactory invariance test results. An empirical application concerning cross-cultural emotion data is used to demonstrate that this novel approach is useful and can co-exist with the traditional CFA approaches. PMID:24999335
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2014-08-01
We consider the minimal bosonization realization of supersymmetric shape-invariant systems where generalized supercharge operators are constructed using the partner supersymmetric operators, the parameter potential translation formalism and the reflection operator. We obtain the solution of the eigenvalue equation and study the quantum dynamics of the supersymmetric system including terms in the Hamiltonian which are constructed using the combination of the bosonized supercharge operators. The connections between the bosonized supersymmetric formalism, the Bose-Fermi transformation and the generalization of the R-deformed Heisenberg algebra are discussed. As an illustration, we apply the generalized formalism for the case of the trigonometric Rosen-Morse potential.
Intrusion detection using secure signatures
Nelson, Trent Darnel; Haile, Jedediah
2014-09-30
A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.
Retail applications of signature verification
NASA Astrophysics Data System (ADS)
Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens
2004-08-01
The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.
Ballastic signature identification systems study
NASA Technical Reports Server (NTRS)
Reich, A.; Hine, T. L.
1976-01-01
The results are described of an attempt to establish a uniform procedure for documenting (recording) expended bullet signatures as effortlessly as possible and to build a comprehensive library of these signatures in a form that will permit the automated comparison of a new suspect bullet with the prestored library. The ultimate objective is to achieve a standardized format that will permit nationwide interaction between police departments, crime laboratories, and other interested law enforcement agencies.
Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2012-01-01
The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex
Leibo, Joel Z.; Liao, Qianli; Anselmi, Fabio; Poggio, Tomaso
2015-01-01
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions. PMID:26496457
Evidence of Discrete Scale Invariance in DLA and Time-to-Failure by Canonical Averaging
NASA Astrophysics Data System (ADS)
Johansen, A.; Sornette, D.
Discrete scale invariance, which corresponds to a partial breaking of the scaling symmetry, is reflected in the existence of a hierarchy of characteristic scales l0,l0λ,l0λ2,…, where λ is a preferred scaling ratio and l0 a microscopic cut-off. Signatures of discrete scale invariance have recently been found in a variety of systems ranging from rupture, earthquakes, Laplacian growth phenomena, "animals" in percolation to financial market crashes. We believe it to be a quite general, albeit subtle phenomenon. Indeed, the practical problem in uncovering an underlying discrete scale invariance is that standard ensemble averaging procedures destroy it as if it was pure noise. This is due to the fact, that while λ only depends on the underlying physics, l0 on the contrary is realization-dependent. Here, we adapt and implement a novel so-called "canonical" averaging scheme which re-sets the l0 of different realizations to approximately the same value. The method is based on the determination of a realization-dependent effective critical point obtained from, e.g., a maximum susceptibility criterion. We demonstrate the method on diffusion limited aggregation and a model of rupture.
Perturbative and gauge invariant treatment of gravitational wave memory
NASA Astrophysics Data System (ADS)
Bieri, Lydia; Garfinkle, David
2014-04-01
We present a perturbative treatment of gravitational wave memory. The coordinate invariance of Einstein's equations leads to a type of gauge invariance in perturbation theory. As with any gauge invariant theory, results are more clear when expressed in terms of manifestly gauge invariant quantities. Therefore we derive all our results from the perturbed Weyl tensor rather than the perturbed metric. We derive gravitational wave memory for the Einstein equations coupled to a general energy-momentum tensor that reaches null infinity.
Possible universal quantum algorithms for generalized Turaev-Viro invariants
NASA Astrophysics Data System (ADS)
Vélez, Mario; Ospina, Juan
2011-05-01
An emergent trend in quantum computation is the topological quantum computation (TQC). Briefly, TQC results from the application of quantum computation with the aim to solve the problems of quantum topology such as topological invariants for knots and links (Jones polynomials, HOMFLY polynomials, Khovanov polynomials); topological invariants for graphs (Tutte polynomial and Bollobás-Riordan polynomial); topological invariants for 3-manifolds (Reshetiskin-Turaev, Turaev-Viro and Turaer-Viro-Ocneanu invariants) and topological invariants for 4-manifolds( Crane-Yetter invariants). In a few words, TQC is concerned with the formulation of quantum algorithms for the computation of these topological invariants in quantum topology. Given that one of the fundamental achievements of quantum topology was the discovery of strong connections between monoidal categories and 3-dimensional manifolds, in TQC is possible and necessary to exploit such connections with the purpose to formulate universal quantum algorithms for topological invariants of 3-manifolds. In the present work we make an exploration of such possibilities. Specifically we search for universal quantum algorithms for generalized Turaev-Viro invariants of 3-manifolds such as the Turaev-Viro-Ocneanu invariants, the Kashaev-Baseilhac-Benedetti invariants of 3-manifolds with links and the Geer-Kashaev-Turaev invariants of 3-manifolds with a link and a principal bundle. We also look for physical systems (three dimensional topological insulators and three-dimensional gravity) over which implement the resulting universal topological quantum algorithms.
Testing Factorial Invariance in Multilevel Data: A Monte Carlo Study
ERIC Educational Resources Information Center
Kim, Eun Sook; Kwok, Oi-man; Yoon, Myeongsun
2012-01-01
Testing factorial invariance has recently gained more attention in different social science disciplines. Nevertheless, when examining factorial invariance, it is generally assumed that the observations are independent of each other, which might not be always true. In this study, we examined the impact of testing factorial invariance in multilevel…
Permutation-invariant codes encoding more than one qubit
NASA Astrophysics Data System (ADS)
Ouyang, Yingkai; Fitzsimons, Joseph
2016-04-01
A permutation-invariant code on m qubits is a subspace of the symmetric subspace of the m qubits. We derive permutation-invariant codes that can encode an increasing amount of quantum information while suppressing leading-order spontaneous decay errors. To prove the result, we use elementary number theory with prior theory on permutation-invariant codes and quantum error correction.
Gauge-invariant approach to quark dynamics
NASA Astrophysics Data System (ADS)
Sazdjian, H.
2016-02-01
The main aspects of a gauge-invariant approach to the description of quark dynamics in the nonperturbative regime of quantum chromodynamics (QCD) are first reviewed. The role of the parallel transport operation in constructing gauge-invariant Green's functions is then presented, and the relevance of Wilson loops for the representation of the interaction is emphasized. Recent developments, based on the use of polygonal lines for the parallel transport operation, are presented. An integro-differential equation, obtained for the quark Green's function defined with a phase factor along a single, straight line segment, is solved exactly and analytically in the case of two-dimensional QCD in the large- N c limit. The solution displays the dynamical mass generation phenomenon for quarks, with an infinite number of branch-cut singularities that are stronger than simple poles.
Fast forward to the classical adiabatic invariant
NASA Astrophysics Data System (ADS)
Jarzynski, Christopher; Deffner, Sebastian; Patra, Ayoti; Subaşı, Yiǧit
2017-03-01
We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions. Specifically, for a time-dependent Hamiltonian H =p2/2 m +U (q ,t ) in one degree of freedom, and for an arbitrary choice of action I0, we construct a so-called fast-forward potential energy function VFF(q ,t ) that, when added to H , guides all trajectories with initial action I0 to end with the same value of action. We use this result to construct a local dynamical invariant J (q ,p ,t ) whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.
Adiabatic invariance with first integrals of motion.
Adib, Artur B
2002-10-01
The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.
Testing CPT Invariance with Antiprotonic Helium Atoms
Horvath, Dezso
2008-08-08
The structure of matter is related to symmetries at every level of study. CPT symmetry is one of the most important laws of field theory: it states the invariance of physical properties when one simultaneously changes the signs of the charge and of the spatial and time coordinates of free elementary particles. Although in general opinion CPT symmetry is not violated in Nature, there are theoretical attempts to develop CPT-violating models. The Antiproton Decelerator at CERN has been built to test CPT invariance. The ASACUSA experiment compares the properties of particles and antiparticles by studying the antiprotonic helium atom via laser spectroscopy and measuring the mass, charge and magnetic moment of the antiproton as compared to those of the proton.
Hidden invariance of the free classical particle
Garcia, S. )
1994-06-01
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group [ital G] is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under [ital G] leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by [ital U](1) leads to quantum mechanics.
Remarks on holography with broken Lorentz invariance
NASA Astrophysics Data System (ADS)
Gordeli, Ivan; Koroteev, Peter
2009-12-01
Recently a family of solutions of Einstein equations in backgrounds with broken Lorentz invariance was found. We show that the gravitational solution recently obtained by Kachru et al. is a part of the former solution which was derived earlier in the framework of extra-dimensional theories. We show how the energy-momentum and Einstein tensors are related and establish a correspondence between parameters which govern Lorentz invariance violation. Then we demonstrate that scaling behavior of two point correlation functions of local operators in scalar field theory is reproduced correctly for two cases with critical values of scaling parameters. Therefore, we complete the dictionary of “tree-level” duality for all known solutions of the bulk theory. In the end we speculate on relations between renormalization group flow of a boundary theory and asymptotic behavior of gravitational solutions in the bulk.
Elastic wave invariants for acoustic emission
NASA Astrophysics Data System (ADS)
Pardee, W. J.
1981-07-01
It is shown that there are four conserved properties of an elastic wave in an infinite isotropic plate: the energy, the two components of wave momentum parallel to the surface, and wave angular momentum normal to the surface. All four invariants are volume integrals of quadratic functions of the spatial (Eulerian) coordinates. The canonical energy-momentum density tensor and the orbital, spin, and total angular momentum density tensors are constructed and sufficient conditions for their conservation are demonstrated. A procedure for measuring the wave momentum of a surface wave is proposed. It is argued that these invariants are likely to be particularly useful characterizations of acoustic emission, e.g., from a growing crack. Experimental tests are proposed, and possible applications to practical monitoring problems described.
Invariant metrics, contractions and nonlinear matrix equations
NASA Astrophysics Data System (ADS)
Lee, Hosoo; Lim, Yongdo
2008-04-01
In this paper we consider the semigroup generated by the self-maps on the open convex cone of positive definite matrices of translations, congruence transformations and matrix inversion that includes symplectic Hamiltonians and show that every member of the semigroup contracts any invariant metric distance inherited from a symmetric gauge function. This extends the results of Bougerol for the Riemannian metric and of Liverani-Wojtkowski for the Thompson part metric. A uniform upper bound of the Lipschitz contraction constant for a member of the semigroup is given in terms of the minimum eigenvalues of its determining matrices. We apply this result to a variety of nonlinear equations including Stein and Riccati equations for uniqueness and existence of positive definite solutions and find a new convergence analysis of iterative algorithms for the positive definite solution depending only on the least contraction coefficient for the invariant metric from the spectral norm.
Evans, D
1975-08-01
A discussion of the essential deformity in calcaneo-valgus feet develops a theme originally put forward in 1961 on the relapsed club foot (Evans 1961). Whereas in the normal foot the medial and lateral columns are about equal in length, in talipes equino-varus the lateral column is longer and in calcaneo-valgus shorter than the medial column. The suggestion is that in the treatment of both deformities the length of the columns be made equal. A method is described of treating calcaneo-valgus deformity by inserting cortical bone grafts taken from the tibia to elongate the anterior end of the calcaneus.
Invariant measures for singular hyperbolic attractors
Sataev, Evgueni A
2010-05-11
This paper continues the author's previous paper, where strong unstable spaces were constructed for a singular hyperbolic attractor. In this paper the existence of local strongly unstable manifolds and invariant measures of Sinai-Bowen-Ruelle type is established. The properties of such measures are studied. It is proved that the number of ergodic components is finite and the set of periodic trajectories is dense. Bibliography: 34 titles.
Neutrino velocity and local Lorentz invariance
NASA Astrophysics Data System (ADS)
Cardone, Fabio; Mignani, Roberto; Petrucci, Andrea
2015-09-01
We discuss the possible violation of local Lorentz invariance (LLI) arising from a faster-than-light neutrino speed. A toy calculation of the LLI violation parameter δ, based on the (disclaimed) OPERA data, suggests that the values of δ are determined by the interaction involved, and not by the energy range. This hypothesis is further corroborated by the analysis of the more recent results of the BOREXINO, LVD and ICARUS experiments.
Global invariants in ideal magnetohydrodynamic turbulence
Shebalin, John V.
2013-10-15
Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.
Data series embedding and scale invariant statistics.
Michieli, I; Medved, B; Ristov, S
2010-06-01
Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated.
Time-warp-invariant neuronal processing.
Gütig, Robert; Sompolinsky, Haim
2009-07-01
Fluctuations in the temporal durations of sensory signals constitute a major source of variability within natural stimulus ensembles. The neuronal mechanisms through which sensory systems can stabilize perception against such fluctuations are largely unknown. An intriguing instantiation of such robustness occurs in human speech perception, which relies critically on temporal acoustic cues that are embedded in signals with highly variable duration. Across different instances of natural speech, auditory cues can undergo temporal warping that ranges from 2-fold compression to 2-fold dilation without significant perceptual impairment. Here, we report that time-warp-invariant neuronal processing can be subserved by the shunting action of synaptic conductances that automatically rescales the effective integration time of postsynaptic neurons. We propose a novel spike-based learning rule for synaptic conductances that adjusts the degree of synaptic shunting to the temporal processing requirements of a given task. Applying this general biophysical mechanism to the example of speech processing, we propose a neuronal network model for time-warp-invariant word discrimination and demonstrate its excellent performance on a standard benchmark speech-recognition task. Our results demonstrate the important functional role of synaptic conductances in spike-based neuronal information processing and learning. The biophysics of temporal integration at neuronal membranes can endow sensory pathways with powerful time-warp-invariant computational capabilities.
Invariance algorithms for processing NDE signals
NASA Astrophysics Data System (ADS)
Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William
1996-11-01
Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.
On local invariants of singular symplectic forms
NASA Astrophysics Data System (ADS)
Domitrz, Wojciech
2017-04-01
We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.
Against relative timing invariance in movement kinematics.
Burgess-Limerick, R; Neal, R J; Abernethy, B
1992-05-01
The kinematics of stair climbing were examined to test the assertion that relative timing is an invariant feature of human gait. Six male and four female subjects were video-recorded (at 60 Hz) while they climbed a flight of stairs 10 times at each of three speeds. Each gait cycle was divided into three segments by the maximum and minimum angular displacement of the left knee and left foot contact. Gentner's (1987) analysis methods were applied to the individual subject data to determine whether the duration of the segments remained a fixed proportion of gait cycle duration across changes in stair-climbing speed. A similar analysis was performed using knee velocity maxima to partition the gait cycle. Regardless of how the gait cycle was divided, relative timing was not found to remain strictly invariant across changes in speed. This conclusion is contrary to previous studies of relative timing that involved less conservative analysis but is consistent with the wider gait literature. Strict invariant relative timing may not be a fundamental feature of movement kinematics.
Global invariants in ideal magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Shebalin, John V.
2013-10-01
Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.
Permutation-invariant distance between atomic configurations
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-09-14
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.
Quantum messages with signatures forgeable in arbitrated quantum signature schemes
NASA Astrophysics Data System (ADS)
Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon
2015-02-01
Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.
Simulating realistic predator signatures in quantitative fatty acid signature analysis
Bromaghin, Jeffrey F.
2015-01-01
Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.
A framework for mining signatures from event sequences and its applications in healthcare data.
Wang, Fei; Lee, Noah; Hu, Jianying; Sun, Jimeng; Ebadollahi, Shahram; Laine, Andrew F
2013-02-01
This paper proposes a novel temporal knowledge representation and learning framework to perform large-scale temporal signature mining of longitudinal heterogeneous event data. The framework enables the representation, extraction, and mining of high-order latent event structure and relationships within single and multiple event sequences. The proposed knowledge representation maps the heterogeneous event sequences to a geometric image by encoding events as a structured spatial-temporal shape process. We present a doubly constrained convolutional sparse coding framework that learns interpretable and shift-invariant latent temporal event signatures. We show how to cope with the sparsity in the data as well as in the latent factor model by inducing a double sparsity constraint on the β-divergence to learn an overcomplete sparse latent factor model. A novel stochastic optimization scheme performs large-scale incremental learning of group-specific temporal event signatures. We validate the framework on synthetic data and on an electronic health record dataset.
Significance Analysis of Prognostic Signatures
Beck, Andrew H.; Knoblauch, Nicholas W.; Hefti, Marco M.; Kaplan, Jennifer; Schnitt, Stuart J.; Culhane, Aedin C.; Schroeder, Markus S.; Risch, Thomas; Quackenbush, John; Haibe-Kains, Benjamin
2013-01-01
A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that “random” gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically annotated
NASA Astrophysics Data System (ADS)
Green, Harry
The Third Rock Deformation Colloquium was held December 4, 1989, at the AGU Fall Meeting in San Francisco. Steve Kirby of the U.S. Geological Survey, Menlo Park, Calif., reported on actions taken by the rock deformation steering committee. Brian Wernicke of Harvard University, Cambridge, Mass., talked on the structural geology of the Great Basin.The steering committee voted for “Committee on Deformation of Earth Materials” as the name for the AGU technical committee on rock deformation, Kirby said. Considerable discussion has occurred in the steering committee over our relationship to the AGU Mineral Physics Committee. Indeed, Kirby will become chairman of that committee in 1990, underlining the overlap of the two groups. It was agreed that we will pursue closer association with Mineral Physics.
Wrist deformities after fracture.
Vanheest, Ann
2006-02-01
Wrist deformities can occur after fracture because of malunion of the fracture or injury to the growth plate leading to imbalance of growth. Prevention of malunion is paramount by early recognition with proper reduction and casting or fixation with casting. If a mal-union occurs, an osteotomy may be necessary if anticipated growth will not correct the deformity. Injury of the growth plate may lead to wrist deformity in two ways: angular growth or growth arrest. Angular growth deformities are corrected most commonly by osteotomy. Growth arrest of the radius or the ulna leads to an ulnar-positive or an ulnar-negative variance at the wrist. If the ulnar variance is symptomatic, treatment is centered on achieving a level joint. Options for joint leveling procedures include epiphysiodesis or physeal stapling of the longer bone, lengthening osteotomy of the shorter bone, or shortening osteotomy of the longer bone.
Signature effects in some [ital N]=90 odd-[ital Z] rare-earth nuclei
Rath, A.K.; Praharaj, C.R.; Khadkikar, S.B. Institute of Physics, Bhubaneswar 751005 )
1993-05-01
Using axially symmetric deformed configuration mixing and angular momentum projection techniques, we have studied the signature effects in the [pi][ital h][sub 11/2] bands of [sup 147]La, [sup 149]Pr, and [sup 151]Pm nuclei. Effects of rotation alignment on the signature splitting in energy and signature inversion in the [ital B]([ital E]2,[ital I][r arrow][ital I][minus]1) values are discussed. We find that transition from a strongly rotation-aligned limit to a weakly rotation-aligned (or more regular rotational behavior) regime or vice versa leads to signature inversion of the [ital B]([ital E]2) values.
Principles of rock deformation
Nicolas, A.
1987-01-01
This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.
Scope and applications of translation invariant wavelets to image registration
NASA Technical Reports Server (NTRS)
Chettri, Samir; LeMoigne, Jacqueline; Campbell, William
1997-01-01
The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.
A Graph Based Methodology for Temporal Signature Identification from HER.
Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang
2015-01-01
Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches.
A Graph Based Methodology for Temporal Signature Identification from EHR
Wang, Fei; Liu, Chuanren; Wang, Yajuan; Hu, Jianying; Yu, Guoqiang
2015-01-01
Data driven technology is believed to be a promising technique for transforming the current status of healthcare. Electronic Health Records (EHR) is one of the main carriers for conducting the data driven healthcare research, where the goal is to derive insights from healthcare data and utilize such insights to improve the quality of care delivery. Due to the progression nature of human disease, one important aspect for analyzing healthcare data is temporality, which suggests the temporal relationships among different healthcare events and how their values evolve over time. Sequential pattern mining is a popular tool to extract time-invariant patterns from discrete sequences and has been applied in analyzing EHR before. However, due to the complexity of EHR, those approaches usually suffers from the pattern explosion problem, which means that a huge number of patterns will be detected with improper setting of the support threshold. To address this challenge, in this paper, we develop a novel representation, namely the temporal graph, for event sequences like EHR, wherein the nodes are medical events and the edges indicate the temporal relationships among those events in patient EHRs. Based on the temporal graph representation, we further develop an approach for temporal signature identification to identify the most significant and interpretable graph bases as temporal signatures, and the expressing coefficients can be treated as the embeddings of the patients in such temporal signature space. Our temporal signature identification framework is also flexible to incorporate semi-supervised/supervised information. We validate our framework on two real-world tasks. One is predicting the onset risk of heart failure. The other is predicting the risk of heart failure related hospitalization for patients with COPD pre-condition. Our results show that the prediction performance in both tasks can be improved by the proposed approaches. PMID:26958267
NASA Astrophysics Data System (ADS)
Antonellini, Marco; Mollema, Pauline Nella
2015-12-01
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.
Signature molecular descriptor : advanced applications.
Visco, Donald Patrick, Jr.
2010-04-01
In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report
Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers
Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton
2015-09-01
This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.
Finite-size effect of η-deformed AdS5 × S5 at strong coupling
NASA Astrophysics Data System (ADS)
Ahn, Changrim
2017-04-01
We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5)η using the su(2 | 2) q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2 | 2) q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.
Derivation of deformation characteristics in fast-moving glaciers
NASA Astrophysics Data System (ADS)
Herzfeld, Ute C.; Clarke, Garry K. C.; Mayer, Helmut; Greve, Ralf
2004-04-01
Crevasse patterns are the writings in a glacier's history book—the movement, strain and deformation frozen in ice. Therefore by analysis of crevasse patterns we can learn about the ice-dynamic processes which the glacier has experienced. Direct measurement of ice movement and deformation is time-consuming and costly, in particular for large glaciers; typically, observations are lacking when sudden changes occur. Analysis of crevasse patterns provides a means to reconstruct past and ongoing deformation processes mathematically. This is especially important for fast-moving ice. Ice movement and deformation are commonly described and analyzed using continuum mechanics and measurements of ice velocities or strain rates. Here, we present a different approach to the study of ice deformation based on principles of structural geology. Fast ice movement manifests itself in the occurrence of crevasses. Because crevasses remain after the deformation event and may be transported, overprinted or closed, their analysis based on aerial videography and photography or satellite data gives information on past deformation events and resulting strain states. In our treatment, we distinguish (A) continuously fast-moving glaciers and ice streams, and (B) surge-type glaciers, based on observations of two prototypes, Jakobshavns Isbræ, Greenland, for (A), and Bering Glacier, Alaska, during the 1993-1995 surge, for (B). Classes of ice-deformation types are derived from aerial images of ice surfaces using structural geology, i.e. structural glaciology. For each type, the deformation gradient matrix is formed. Relationships between invariants used in structural geology and continuum mechanics and the singular value decomposition are established and applied to ice-surface classification. Deformation during a surge is mostly one of the extensional deformation types. Continuously, or infinitesimally repeated, deformation acting in continuously fast-moving ice causes different typical
Renormalization group invariants in the MSSM and its extensions
NASA Astrophysics Data System (ADS)
Demir, Durmus A.
2005-11-01
We derive one-loop renormalization group (RG) invariant observables and analyze their phenomenological implications in the MSSM and its μ problem solving extensions, U(1)' model and NMSSM. We show that there exist several RG invariants in the gauge, Yukawa and soft-breaking sectors of each model. In general, RG invariants are highly useful for projecting experimental data to messenger scale, for revealing correlations among the model parameters, and for probing the mechanism that breaks supersymmetry. The Yukawa couplings and trilinear soft terms in U(1)' model and NMSSM do not form RG invariants though there exist approximate invariants in low tan β domain. In the NMSSM, there are no invariants that contain the Higgs mass-squareds. We provide a comparative analysis of RG invariants in all three models and analyze their model-building and phenomenological implications by a number of case studies.
Watson-Crick pairing, the Heisenberg group and Milnor invariants.
Gadgil, Siddhartha
2009-07-01
We study the secondary structure of RNA determined by Watson-Crick pairing without pseudo-knots using Milnor invariants of links. We focus on the first non-trivial invariant, which we call the Heisenberg invariant. The Heisenberg invariant, which is an integer, can be interpreted in terms of the Heisenberg group as well as in terms of lattice paths. We show that the Heisenberg invariant gives a lower bound on the number of unpaired bases in an RNA secondary structure. We also show that the Heisenberg invariant can predict allosteric structures for RNA. Namely, if the Heisenberg invariant is large, then there are widely separated local maxima (i.e., allosteric structures) for the number of Watson-Crick pairs found.
Do scale-invariant fluctuations imply the breaking of de Sitter invariance?
NASA Astrophysics Data System (ADS)
Youssef, A.
2013-01-01
The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-spectrum - certainly one of the most successful predictions of modern cosmology - is widely believed to be inconsistent with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is not a necessary consequence of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e. the discrete series of representations of the de Sitter group, that suffer from similar strong IR effects.
Ben Ayed, Ismail; Punithakumar, Kumaradevan; Garvin, Gregory; Romano, Walter; Li, Shuo
2011-01-01
This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.
Signature Visualization of Software Binaries
Panas, T
2008-07-01
In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.
Graph Analytics for Signature Discovery
Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei
2013-06-01
Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.
Measurement of sniper infrared signatures
NASA Astrophysics Data System (ADS)
Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.
2009-09-01
The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper and background in typical scenarios has been presented. We take into consideration sniper activities in open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement class devices with high accuracy and speed. The others are microbolometer cameras with FPA detector similar to those used in real commercial counter-sniper systems. The registration was made in SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented.
Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia
2016-01-01
An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996
Experimental Deformation of Magnetite
NASA Astrophysics Data System (ADS)
Till, J. L.; Rybacki, E.; Morales, L. F. G.
2015-12-01
Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.
Conservation law for massive scale-invariant photons in Weyl-invariant gravity
NASA Astrophysics Data System (ADS)
Shukla, Aradhya; Abhinav, Kumar; Panigrahi, Prasanta K.
2016-12-01
It is demonstrated that a Stückelberg-type gauge theory, coupled to the scalar-tensor theory of gravity, is invariant under both gauge and Weyl transformations. Unlike the pure Stückelberg theory, this coupled Lagrangian has a genuine Weyl symmetry, with a non-vanishing current. The above is true in the Jordan frame, whereas in the Einstein frame, the same theory manifests as Proca theory in presence of pure gravity. It is found that broken scale invariance leads to simultaneous spontaneous breaking of the gauge symmetry.
Generic dark matter signature for gamma-ray telescopes
NASA Astrophysics Data System (ADS)
Barger, V.; Gao, Y.; Keung, W.-Y.; Marfatia, D.
2009-09-01
We describe a characteristic signature of dark matter (DM) annihilation or decay into gamma rays. We show that if the total angular momentum of the initial DM particle(s) vanishes, and helicity suppression operates to prevent annihilation/decay into light fermion pairs, then the amplitude for the dominant 3-body final state f+f-γ has a unique form dictated by gauge invariance. This amplitude and the corresponding energy spectra hold for annihilation of DM Majorana fermions or self-conjugate scalars, and for decay of DM scalars, thus encompassing a variety of possibilities. Within this scenario, we analyze Fermi LAT, PAMELA, and HESS data, and predict a hint in future Fermi gamma-ray data that portends a striking signal at atmospheric Cherenkov telescopes.
Textural signatures for wetland vegetation
NASA Technical Reports Server (NTRS)
Whitman, R. I.; Marcellus, K. L.
1973-01-01
This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.
Ballistic Signature Identification System Study
NASA Technical Reports Server (NTRS)
1976-01-01
The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.
Deformations of anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Detournay, Stephane
2006-11-01
This PhD thesis mainly deals with deformations of locally anti-de Sitter black holes, focusing in particular on BTZ black holes. We first study the generic rotating and (extended) non-rotating BTZ black holes within a pseudo-Riemannian symmetric spaces framework, emphasize on the role played by solvable subgroups of SL(2,R) in the black hole structure and derive their global geometry in a group-theoretical way. We analyse how these observations are transposed in the case of higher-dimensional locally AdS black holes. We then show that there exists, in SL(2,R), a family of twisted conjugacy classes which give rise to winding symmetric WZW D1-branes in a BTZ black hole background. The term "deformation" is then considered in two distinct ways. On the one hand, we deform the algebra of functions on the branes in the sense of (strict) deformation quantization, giving rise to a "noncommutative black hole". In the same context, we investigate the question of invariant deformations of the hyperbolic plane and present explicit formulae. On the other hand, we explore the moduli space of the (orbifolded) SL(2,R) WZW model by studying its marginal deformations, yielding namely a new class of exact black string solutions in string theory. These deformations also allow us to relate the D1-branes in BTZ black holes to D0-branes in the 2D black hole. A fair proportion of this thesis consists of (hopefully) pedagogical short introductions to various subjects: deformation quantization, string theory, WZW models, symmetric spaces, symplectic and Poisson geometry.
Transformation invariant on-line target recognition.
Iftekharuddin, Khan M
2011-06-01
Transformation invariant automatic target recognition (ATR) has been an active research area due to its widespread applications in defense, robotics, medical imaging and geographic scene analysis. The primary goal for this paper is to obtain an on-line ATR system for targets in presence of image transformations, such as rotation, translation, scale and occlusion as well as resolution changes. We investigate biologically inspired adaptive critic design (ACD) neural network (NN) models for on-line learning of such transformations. We further exploit reinforcement learning (RL) in ACD framework to obtain transformation invariant ATR. We exploit two ACD designs, such as heuristic dynamic programming (HDP) and dual heuristic dynamic programming (DHP) to obtain transformation invariant ATR. We obtain extensive statistical evaluations of proposed on-line ATR networks using both simulated image transformations and real benchmark facial image database, UMIST, with pose variations. Our simulations show promising results for learning transformations in simulated images and authenticating out-of plane rotated face images. Comparing the two on-line ATR designs, HDP outperforms DHP in learning capability and robustness and is more tolerant to noise. The computational time involved in HDP is also less than that of DHP. On the other hand, DHP achieves a 100% success rate more frequently than HDP for individual targets, and the residual critic error in DHP is generally smaller than that of HDP. Mathematical analyses of both our RL-based on-line ATR designs are also obtained to provide a sufficient condition for asymptotic convergence in a statistical average sense.
A Note on Invariant Temporal Functions
NASA Astrophysics Data System (ADS)
Müller, Olaf
2016-07-01
The purpose of this article is to present a result on the existence of Cauchy temporal functions invariant by the action of a compact group of conformal transformations in arbitrary globally hyperbolic manifolds. Moreover, the previous results about the existence of Cauchy temporal functions with additional properties on arbitrary globally hyperbolic manifolds are unified in a very general theorem. To make the article more accessible for non-experts, and in the lack of an appropriate single reference for the Lorentzian geometry background of the result, the latter is provided in an introductory section.
Light-bending tests of Lorentz invariance
Tso, Rhondale; Bailey, Quentin G.
2011-10-15
Classical light-bending is investigated for weak gravitational fields in the presence of hypothetical local Lorentz violation. Using an effective field theory framework that describes general deviations from local Lorentz invariance, we derive a modified deflection angle for light passing near a massive body. The results include anisotropic effects not present for spherical sources in General Relativity as well as Weak Equivalence Principle violation. We develop an expression for the relative deflection of two distant stars that can be used to analyze data in past and future solar-system observations. The measurement sensitivities of such tests to coefficients for Lorentz violation are discussed.
Visual Distinctness Determined by Partially Invariant Features
2000-03-01
DISTINCTNESS DETERMINED BY PARTIALLY INVARIANT FEATURES. J.A. Garcia, J. Fdez-Valdivia Departamento de Ciencias de la Computacion e I.A. Univ. de Granada...E.T.S. de Ingenieria Informatica. 18071 Granada. Spain E-mail: jagsadecsai.ugr.es, J.Fdez-Valdivia@decsai.ugr.es Xose R. Fdez-Vidal Departamento de... Fisica Aplicada. Univ. de Santiago de Compostela. Facultad de Fisica . 15706 Santiago de Compostela. Spain E-mail: faxose@usc.es Rosa Rodriguez-Sanchez
Gauge invariant actions for string models
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.
Thermodynamic Entropy as a Noether Invariant.
Sasa, Shin-Ichi; Yokokura, Yuki
2016-04-08
We study a classical many-particle system with an external control represented by a time-dependent extensive parameter in a Lagrangian. We show that thermodynamic entropy of the system is uniquely characterized as the Noether invariant associated with a symmetry for an infinitesimal nonuniform time translation t→t+ηℏβ, where η is a small parameter, ℏ is the Planck constant, β is the inverse temperature that depends on the energy and control parameter, and trajectories in the phase space are restricted to those consistent with quasistatic processes in thermodynamics.
Thermodynamic Entropy as a Noether Invariant
NASA Astrophysics Data System (ADS)
Sasa, Shin-ichi; Yokokura, Yuki
2016-04-01
We study a classical many-particle system with an external control represented by a time-dependent extensive parameter in a Lagrangian. We show that thermodynamic entropy of the system is uniquely characterized as the Noether invariant associated with a symmetry for an infinitesimal nonuniform time translation t →t +η ℏβ , where η is a small parameter, ℏ is the Planck constant, β is the inverse temperature that depends on the energy and control parameter, and trajectories in the phase space are restricted to those consistent with quasistatic processes in thermodynamics.
Invariant mass spectroscopy of halo nuclei
Nakamura, Takashi
2008-11-11
We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.
Parabolic Refined Invariants and Macdonald Polynomials
NASA Astrophysics Data System (ADS)
Chuang, Wu-yen; Diaconescu, Duiliu-Emanuel; Donagi, Ron; Pantev, Tony
2015-05-01
A string theoretic derivation is given for the conjecture of Hausel, Letellier and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of a local root stack, generalizing previous work of the first two authors in collaboration with Pan. Haiman's geometric construction for Macdonald polynomials is shown to emerge naturally in this context via geometric engineering. In particular this yields a new conjectural relation between Macdonald polynomials and refined local orbifold curve counting invariants. The string theoretic approach also leads to a new spectral cover construction for parabolic Higgs bundles in terms of holomorphic symplectic orbifolds.
Origin of gauge invariance in string theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Superluminality in dilatationally invariant generalized Galileon theories
NASA Astrophysics Data System (ADS)
Kolevatov, R. S.
2015-12-01
We consider small perturbations about homogeneous backgrounds in dilatationally invariant Galileon models. The issues we address are stability (absence of ghosts and gradient instabilities) and superluminality. We show that in the Minkowski background, it is possible to construct the Lagrangian in such a way that any homogeneous Galileon background solution is stable and small perturbations about it are subluminal. On the other hand, in the case of Friedmann-Lemaitre-Robertson-Walker (FLRW) backgrounds, for any Lagrangian functions there exist homogeneous background solutions to the Galileon equation of motion and time dependence of the scale factor, such that the stability conditions are satisfied, but the Galileon perturbations propagate with superluminal speed.
Dijet invariant mass spectrum at CDF
Incagli, M. )
1992-11-01
A summary of QCD results obtained using the dijet invariant mass spectrum d[sigma]/dM[sub jj] is presented. The spectrum is compared with QCD Leader Order and with the recently published Next to Leading Order calculations. A limit on the scale of an eventual quark compositness can be set at [Lambda]=1300 GeV. Limits on the production of new particles, decaying hadronically, are presented, too. Axigluons are ruled out in the mass range [240, 640] GeV, for a theory with N=10 strong interacting fermions, and in the two windows [260, 280] GeV and [450, 550] GeV, for N=20.
Higher helicity invariants and solar dynamo
NASA Astrophysics Data System (ADS)
Sokolov, D. D.; Illarionov, E. A.; Akhmet'ev, P. M.
2017-01-01
Modern models of nonlinear dynamo saturation in celestial bodies (specifically, on the Sun) are largely based on the consideration of the balance of magnetic helicity. This physical variable has also a topological meaning: it is associated with the linking coefficient of magnetic tubes. In addition to magnetic helicity, magnetohydrodynamics has a number of topological integrals of motion (the so-called higher helicity moments). We have compared these invariants with magnetic helicity properties and concluded that they can hardly serve as nonlinear constraints on dynamo action.
Gauge Invariance of Thermal Transport Coefficients
NASA Astrophysics Data System (ADS)
Ercole, Loris; Marcolongo, Aris; Umari, Paolo; Baroni, Stefano
2016-10-01
Thermal transport coefficients are independent of the specific microscopic expression for the energy density and current from which they can be derived through the Green-Kubo formula. We discuss this independence in terms of a kind of gauge invariance resulting from energy conservation and extensivity, and demonstrate it numerically for a Lennard-Jones fluid, where different forms of the microscopic energy density lead to different time correlation functions for the heat flux, all of them, however, resulting in the same value for the thermal conductivity.
Dowling, N. Maritza; Hermann, Bruce; La Rue, Asenath; Sager, Mark A.
2010-01-01
Objective To examine the latent structure of a test battery currently being used in a longitudinal study of asymptomatic middle-aged adults with a parental history of Alzheimer’s disease (AD) and test the invariance of the factor solution across subgroups defined by selected demographic variables and known genetic risk factors for AD. Method An exploratory factor analysis (EFA) and a sequence of confirmatory factor analyses (CFA) were conducted on 24 neuropsychological measures selected to provide a comprehensive estimate of cognitive abilities most likely to be affected in preclinical AD. Once the underlying latent model was defined and the structural validity established through model comparisons, a multi-group confirmatory factor analysis model was used to test for factorial invariance across groups. Results The EFA solution revealed a factor structure consisting of 5 constructs: verbal ability, visuo-spatial ability, speed & executive function, working memory, and verbal learning & memory. The CFA models provided support for the hypothesized 5-factor structure. Results indicated factorial invariance of the model across all groups examined. Conclusions Collectively, the results suggested a relatively strong psychometric basis for using the factor structure in clinical samples that match the characteristics of this cohort. This confirmed an invariant factor structure should prove useful in research aimed to detect the earliest cognitive signature of preclinical AD in similar middle aged cohorts. PMID:21038965
Geometric local invariants and pure three-qubit states
Williamson, Mark S.; Ericsson, Marie; Johansson, Markus; Sjoeqvist, Erik; Sudbery, Anthony; Vedral, Vlatko; Wootters, William K.
2011-06-15
We explore a geometric approach to generating local SU(2) and SL(2,C) invariants for a collection of qubits inspired by lattice gauge theory. Each local invariant or ''gauge'' invariant is associated with a distinct closed path (or plaquette) joining some or all of the qubits. In lattice gauge theory, the lattice points are the discrete space-time points, the transformations between the points of the lattice are defined by parallel transporters, and the gauge invariant observable associated with a particular closed path is given by the Wilson loop. In our approach the points of the lattice are qubits, the link transformations between the qubits are defined by the correlations between them, and the gauge invariant observable, the local invariants associated with a particular closed path, are also given by a Wilson looplike construction. The link transformations share many of the properties of parallel transporters, although they are not undone when one retraces one's steps through the lattice. This feature is used to generate many of the invariants. We consider a pure three-qubit state as a test case and find we can generate a complete set of algebraically independent local invariants in this way; however, the framework given here is applicable to generating local unitary invariants for mixed states composed of any number of d-level quantum systems. We give an operational interpretation of these invariants in terms of observables.
Primordial fluctuations from deformed quantum algebras
Day, Andrew C.; Brown, Iain A.; Seahra, Sanjeev S. E-mail: ibrown@astro.uio.no
2014-03-01
We study the implications of deformed quantum algebras for the generation of primordial perturbations from slow-roll inflation. Specifically, we assume that the quantum commutator of the inflaton's amplitude and momentum in Fourier space gets modified at energies above some threshold M{sub *}. We show that when the commutator is modified to be a function of the momentum only, the problem of solving for the post-inflationary spectrum of fluctuations is formally equivalent to solving a one-dimensional Schr and quot;odinger equation with a time dependent potential. Depending on the class of modification, we find results either close to or significantly different from nearly scale invariant spectra. For the former case, the power spectrum is characterized by step-like behaviour at some pivot scale, where the magnitude of the jump is O(H{sup 2}/M{sub *}{sup 2}). (H is the inflationary Hubble parameter.) We use our calculated power spectra to generate predictions for the cosmic microwave background and baryon acoustic oscillations, hence demonstrating that certain types of deformations are incompatible with current observations.
Crustal deformation and earthquakes
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1984-01-01
The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.
Interfacial Bubble Deformations
NASA Astrophysics Data System (ADS)
Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert
Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.
Improved method of signature extraction
NASA Technical Reports Server (NTRS)
Christianson, D.; Gordon, M.; Kistler, R.; Kriegler, F. J.; Lampert, S.; Marshall, R. E.; Mclaughlin, R.; Smith, V.
1977-01-01
System promises capability of rapidly processing large amounts of data generated by currently available and planned multispectral sensors, such as those utilized on aircraft and spacecraft. Techniques developed for system, greatly decrease operator time required for signature extraction from multispectral data base.
Topological Signatures for Population Admixture
Technology Transfer Automated Retrieval System (TEKTRAN)
Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...
MK 66 Rocket Signature Reduction
1982-04-01
Indian Head, Maryland. ’The objec- tive of the study was to reduce the visible signature of the rocket motor. The rocket motor used for demonstration tests...15 6. Actual Emmiissions . . . . . . ........... . 16 7. Human Eye Adjusted Emmissions ..................... .. 16 8. Cross...altered. Additives are commonly used in gun propellants for elimination of muzzle flash. Their use in tactical rockets has been very limited, and
Disaster relief through composite signatures
NASA Astrophysics Data System (ADS)
Hawley, Chadwick T.; Hyde, Brian; Carpenter, Tom; Nichols, Steve
2012-06-01
A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper builds on previous work developing innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral. For the composite signature approach to be successful it requires effective data fusion and visualization. This plays a key role in both preparedness and the response and recovery which are critical to saving lives. Visualization tools enhance the overall understanding of the crisis by pulling together and analyzing the data, and providing a clear and complete analysis of the information to the organizations/agencies dependant on it for a successful operation. An example of this, Freedom Web, is an easy-to-use data visualization and collaboration solution for use in homeland security, emergency preparedness, situational awareness, and event management. The solution provides a nationwide common operating picture for all levels of government through a web based, map interface. The tool was designed to be utilized by non-geospatial experts and is easily tailored to the specific needs of the users. Consisting of standard COTS and open source databases and a web server, users can view, edit, share, and highlight information easily and quickly through a standard internet browser.
Minster, B.; Prescott, W.; Royden, L.
1991-02-01
Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.
Translational invariance in nucleation theories: theoretical formulation.
Drossinos, Y; Kevrekidis, P G; Georgopoulos, P G
2001-03-01
The consequences of spontaneously broken translational invariance on the nucleation-rate statistical prefactor in theories of first-order phase transitions are analyzed. A hybrid, semiphenomenological approach based on field-theoretic analyses of condensation and modern density-functional theories of nucleation is adopted to provide a unified prescription for the incorporation of translational-invariance corrections to nucleation-rate predictions. A connection between these theories is obtained starting from a quantum-mechanical Hamiltonian and using methods developed in the context of studies on Bose-Einstein condensation. An extremum principle is used to derive an integro-differential equation for the spatially nonuniform mean-field order-parameter profile; the appropriate order parameter becomes the square root of the fluid density. The importance of the attractive intermolecular potential is emphasized, whereas the repulsive two-body potential is approximated by considering hard-sphere collisions. The functional form of the degenerate translational eigenmodes in three dimensions is related to the mean-field order parameter, and their contribution to the nucleation-rate prefactor is evaluated. The solution of the Euler-Lagrange variational equation is discussed in terms of either a proposed variational trial function or the complete numerical solution of the associated boundary-value integro-differential problem. Alternatively, if the attractive potential is not explicitly known, an approach that allows its formal determination from its moments is presented.
Translation Invariant Extensions of Finite Volume Measures
NASA Astrophysics Data System (ADS)
Goldstein, S.; Kuna, T.; Lebowitz, J. L.; Speer, E. R.
2017-02-01
We investigate the following questions: Given a measure μ _Λ on configurations on a subset Λ of a lattice L, where a configuration is an element of Ω ^Λ for some fixed set Ω , does there exist a measure μ on configurations on all of L, invariant under some specified symmetry group of L, such that μ _Λ is its marginal on configurations on Λ ? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which L=Z^d and the symmetries are the translations. For the case in which Λ is an interval in Z we give a simple necessary and sufficient condition, local translation invariance ( LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which L is the Bethe lattice. On Z we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When Λ subset Z is not an interval, or when Λ subset Z^d with d>1, the LTI condition is necessary but not sufficient for extendibility. For Z^d with d>1, extendibility is in some sense undecidable.
Generalized Galilei-Invariant Classical Mechanics
NASA Astrophysics Data System (ADS)
Woodcock, Harry W.; Havas, Peter
To describe the "slow" motions of n interacting mass points, we give the most general four-dimensional (4D) noninstantaneous, nonparticle symmetric Galilei-invariant variational principle. It involves two-body invariants constructed from particle 4-positions and 4-velocities of the proper orthochronous inhomogeneous Galilei group. The resulting 4D equations of motion and multiple-time conserved quantities involve integrals over the worldlines of the other n-1 interacting particles. For a particular time-asymmetric retarded (advanced) interaction, we show the vanishing of all integrals over worldlines in the ten standard 4D multiple-time conserved quantities, thus yielding a Newtonian-like initial value problem. This interaction gives 3D noninstantaneous, nonparticle symmetric, coupled nonlinear second-order delay-differential equations of motion that involve only algebraic combinations of nonsimultaneous particle positions, velocities, and accelerations. The ten 3D noninstantaneous, nonparticle symmetric conserved quantities involve only algebraic combinations of nonsimultaneous particle positions and velocities. A two-body example with a generalized Newtonian gravity is provided. We suggest that this formalism might be useful as an alternative slow-motion mechanics for astrophysical applications.
Non-boost-invariant dissipative hydrodynamics
NASA Astrophysics Data System (ADS)
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael; Tinti, Leonardo
2016-12-01
The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably produced during the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous and anisotropic hydrodynamics. We neglect transverse dynamics and assume homogeneous conditions in the transverse plane but, differently from Bjorken expansion, we relax longitudinal boost invariance in order to study the rapidity dependence of various hydrodynamical observables. We compare the results obtained using several formulations of second-order viscous hydrodynamics with a recent approach to anisotropic hydrodynamics, which treats the large initial pressure anisotropy in a nonperturbative fashion. The results obtained with second-order viscous hydrodynamics depend on the particular choice of the second-order terms included, which suggests that the latter should be included in the most complete way. The results of anisotropic hydrodynamics and viscous hydrodynamics agree for the central hot part of the system, however, they differ at the edges where the approach of anisotropic hydrodynamics helps to control the undesirable growth of viscous corrections observed in standard frameworks.
Selective Frequency Invariant Uniform Circular Broadband Beamformer
NASA Astrophysics Data System (ADS)
Zhang, Xin; Ser, Wee; Zhang, Zhang; Krishna, AnoopKumar
2010-12-01
Frequency-Invariant (FI) beamforming is a well known array signal processing technique used in many applications. In this paper, an algorithm that attempts to optimize the frequency invariant beampattern solely for the mainlobe, and relax the FI requirement on the sidelobe is proposed. This sacrifice on performance in the undesired region is traded off for better performance in the desired region as well as reduced number of microphones employed. The objective function is designed to minimize the overall spatial response of the beamformer with a constraint on the gain being smaller than a pre-defined threshold value across a specific frequency range and at a specific angle. This problem is formulated as a convex optimization problem and the solution is obtained by using the Second Order Cone Programming (SOCP) technique. An analysis of the computational complexity of the proposed algorithm is presented as well as its performance. The performance is evaluated via computer simulation for different number of sensors and different threshold values. Simulation results show that, the proposed algorithm is able to achieve a smaller mean square error of the spatial response gain for the specific FI region compared to existing algorithms.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2009-04-14
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2010-04-06
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
Micromachined, Electrostatically Deformable Reflectors
NASA Technical Reports Server (NTRS)
Bartman, Randall K.; Wang, Paul K. C.; Miller, Linda M.; Kenny, Thomas W.; Kaiser, William J.; Hadaegh, Fred Y.; Agronin, Michael L.
1995-01-01
Micromachined, closed-loop, electrostatically actuated reflectors (microCLEARs) provide relatively simple and inexpensive alternatives to large, complex, expensive adaptive optics used to control wavefronts of beams of light in astronomy and in experimental laser weapons. Micromachining used to make deformable mirror, supporting structure, and actuation circuitry. Development of microCLEARs may not only overcome some of disadvantages and limitations of older adaptive optics but may also satisfy demands of potential market for small, inexpensive deformable mirrors in electronically controlled film cameras, video cameras, and other commercial optoelectronic instruments.
Some implications of signature-change in cosmological models of loop quantum gravity
Bojowald, Martin; Mielczarek, Jakub E-mail: jakub.mielczarek@uj.edu.pl
2015-08-01
Signature change at high density has been obtained as a possible consequence of deformed space-time structures in models of loop quantum gravity. This article provides a conceptual discussion of implications for cosmological scenarios, based on an application of mathematical results for mixed-type partial differential equations (the Tricomi problem). While the effective equations from which signature change has been derived are shown to be locally regular and therefore reliable, the underlying theory of loop quantum gravity may face several global problems in its semiclassical solutions.
Gauge invariance of quantum gravity in the causal approach
NASA Astrophysics Data System (ADS)
Schorn, Ivo
1997-03-01
We investigate gauge invariance of perturbative quantum gravity without matter fields in the causal Epstein - Glaser approach. This approach uses free fields only so that all objects of the theory are mathematically well defined. The first-order graviton self-couplings are obtained from the Einstein - Hilbert Lagrangian written in terms of Goldberg variables and expanded to lowest order on the flat Minkowski background metric (linearized Einstein theory). Similar to Yang - Mills theory, gauge invariance to first order requires an additional coupling to fermionic ghost fields. For second-order tree graphs, gauge invariance generates four-graviton normalization terms, which agree exactly with the next order of the expansion of the Einstein - Hilbert Lagrangian. Gauge invariance of the ghost sector is then examined in detail. It is stressed that, despite some formal similarities, the concept of operator gauge invariance used in the causal method is different from the conventional BRS-invariance commonly used in the literature.
Cotton-type and joint invariants for linear elliptic systems.
Aslam, A; Mahomed, F M
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.
Deformation and shape changes in 167W
NASA Astrophysics Data System (ADS)
Li, C. B.; Ma, H. L.; Wu, X. G.; Chen, Q. M.; He, C. Y.; Zheng, Y.; Li, G. S.; Wu, Y. H.; Hu, S. P.; Li, H. W.; Luo, L. P.; Zhong, J.; Zhu, B. J.
2016-10-01
Lifetime measurements of yrast levels in 167W were measured using the recoil-distance Doppler-shift method. The differential decay-curve method was applied for a lifetime determination. Excited states of the nucleus 167W were populated by the reaction 142Nd (28Si, 3 n ) at a beam energy of 144 MeV. The energy spectra and measured transition quadrupole moments inferred from the lifetimes of 167W are compared with the predictions of the cranked Nilsson-Strutinsky-Bogoliubov calculations. The changes of deformations and shapes with increasing spin due to the γ -polarization effect of aligned particles are discussed. The signature inversion visible in the negative parity yrast band is explained to be related to the triaxial shapes.
Block truncation signature coding for hyperspectral analysis
NASA Astrophysics Data System (ADS)
Chakravarty, Sumit; Chang, Chein-I.
2008-08-01
This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.
No fifth force in a scale invariant universe
NASA Astrophysics Data System (ADS)
Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.
2017-03-01
We revisit the possibility that the Planck mass is spontaneously generated in scale-invariant scalar-tensor theories of gravity, typically leading to a "dilaton." The fifth force, arising from the dilaton, is severely constrained by astrophysical measurements. We explore the possibility that nature is fundamentally scale invariant and argue that, as a consequence, the fifth-force effects are dramatically suppressed and such models are viable. We discuss possible obstructions to maintaining scale invariance and how these might be resolved.
Strength, Deformation and Fracture in Metallic Nanostructures
NASA Astrophysics Data System (ADS)
Gu, Xun Wendy
An understanding of the mechanics of nanoscale metals and semiconductors is necessary for the safe and prolonged operation of nanostructured devices from transistors to nanowire- based solar cells to miniaturized electrodes. This is a fascinating but challenging pursuit because mechanical properties that are size-invariant in conventional materials, such as strength, ductility and fracture behavior, can depend critically on sample size when materials are reduced to sub-micron dimensions. In this thesis, the effect of nanoscale sample size, microstructure and structural geometry on mechanical strength, deformation and fracture are explored for several classes of solid materials. Nanocrystalline platinum nano-cylinders with diameters of 60 nm to 1 μm and 12 nm sized grains are fabricated and tested in compression. We find that nano-sized metals containing few grains weaken as sample diameter is reduced relative to grain size due to a change from deformation governed by internal grains to surface grain governed deformation. Fracture at the nanoscale is explored by performing in-situ SEM tension tests on nanocrystalline platinum and amorphous, metallic glass nano-cylinders containing purposely introduced structural flaws. It is found that failure location, mechanism and strength are determined by the stress concentration with the highest local stress whether this is at the structural flaw or a microstructural feature. Principles of nano-mechanics are used to design and test mechanically robust hierarchical nanostructures with structural and electrochemical applications. 2-photon lithography and electroplating are used to fabricate 3D solid Cu octet meso-lattices with micron-scale features that exhibit strength higher than that of bulk Cu. An in-situ SEM lithiation stage is developed and used to simultaneously examine morphological and electrochemical changes in Si-coated Cu meso-lattices that are of interest as high energy capacity electrodes for Li-ion batteries.
Experimental investigation of cyclic thermomechanical deformation in torsion
NASA Technical Reports Server (NTRS)
Ellis, John R.; Castelli, Michael G.; Bakis, Charles E.
1992-01-01
An investigation of thermomechanical testing and deformation behavior of tubular specimens under torsional loading is described. Experimental issues concerning test accuracy and control specific to thermomechanical loadings under a torsional regime are discussed. A series of shear strain-controlled tests involving the nickel-base superalloy Hastelloy X were performed with various temperature excursions and compared to similar thermomechanical uniaxial tests. The concept and use of second invariants of the deviatoric stress and strain tensors as a means of comparing uniaxial and torsional specimens is also briefly presented and discussed in light of previous thermomechanical tests conducted under uniaxial conditions.
Partially Blind Signatures Based on Quantum Cryptography
NASA Astrophysics Data System (ADS)
Cai, Xiao-Qiu; Niu, Hui-Fang
2012-12-01
In a partially blind signature scheme, the signer explicitly includes pre-agreed common information in the blind signature, which can improve the availability and performance. We present a new partially blind signature scheme based on fundamental properties of quantum mechanics. In addition, we analyze the security of this scheme, and show it is not possible to forge valid partially blind signatures. Moreover, the comparisons between this scheme and those based on public-key cryptography are also discussed.
A simple solution for marginal deformations in open string field theory
NASA Astrophysics Data System (ADS)
Maccaferri, Carlo
2014-05-01
We derive a new open string field theory solution for boundary marginal deformations generated by chiral currents with singular self-OPE. The solution is algebraically identical to the Kiermaier-Okawa-Soler solution and it is gauge equivalent to the TakahashiTanimoto identity-based solution. It is wedge-based and we can analytically evaluate the Ellwood invariant and the action, reproducing the expected results from BCFT. By studying the isomorphism between the states of the initial and final background a dual derivation of the Ellwood invariant is also obtained.
Binary optical filters for scale invariant pattern recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Downie, John D.; Hine, Butler P.
1992-01-01
Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.
Metric Ranking of Invariant Networks with Belief Propagation
Tao, Changxia; Ge, Yong; Song, Qinbao; Ge, Yuan; Omitaomu, Olufemi A
2014-01-01
The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A promising approach is to discover invariant relationships among the monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, because system faults usually propagate among the monitoring data and eventually lead to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. Thus, a critical challenge is how to effectively and efficiently rank metrics (nodes) of invariant networks according to the anomaly levels of metrics. The ranked list of metrics will provide system experts with useful guidance for them to localize and diagnose the system faults. To this end, we propose to model the nodes and the broken links as a Markov Random Field (MRF), and develop an iteration algorithm to infer the anomaly of each node based on belief propagation (BP). Finally, we validate the proposed algorithm on both realworld and synthetic data sets to illustrate its effectiveness.
Some topics on scale-invariant perturbations from noninflationary universe
NASA Astrophysics Data System (ADS)
Li, Mingzhe
In this paper, we review some topics on generations of scale-invariant primordial scalar and tensor perturbations in the early universe models different from inflation. The content includes generation of scale-invariant and Gaussian scalar perturbation in the ekpyrotic/cyclic universe, and production scale-invariant tensor perturbation in contracting universe. The main property of the models reviewed in this paper is the nonminimal couplings, include nonminimal couplings between the scalar fields and those to the gravity. By introducing these couplings, it is not difficult to achieve scale-invariances for the perturbations in the early universe models alternative to inflation.
48 CFR 4.102 - Contractor's signature.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed,...
Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2009-01-01
The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.
Observation of Time-Invariant Coherence in a Nuclear Magnetic Resonance Quantum Simulator.
Silva, Isabela A; Souza, Alexandre M; Bromley, Thomas R; Cianciaruso, Marco; Marx, Raimund; Sarthour, Roberto S; Oliveira, Ivan S; Lo Franco, Rosario; Glaser, Steffen J; deAzevedo, Eduardo R; Soares-Pinto, Diogo O; Adesso, Gerardo
2016-10-14
The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realizing an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and it highlights the natural resilience of quantum effects in complex systems.
Essential functions for ID proteins at multiple checkpoints in invariant NKT cell development.
Verykokakis, Mihalis; Krishnamoorthy, Veena; Iavarone, Antonio; Lasorella, Anna; Sigvardsson, Mikael; Kee, Barbara L
2013-12-15
Invariant NKT (iNKT) cells display characteristics of both adaptive and innate lymphoid cells (ILCs). Like other ILCs, iNKT cells constitutively express ID proteins, which antagonize the E protein transcription factors that are essential for adaptive lymphocyte development. However, unlike ILCs, ID2 is not essential for thymic iNKT cell development. In this study, we demonstrated that ID2 and ID3 redundantly promoted iNKT cell lineage specification involving the induction of the signature transcription factor PLZF and that ID3 was critical for development of TBET-dependent NKT1 cells. In contrast, both ID2 and ID3 limited iNKT cell numbers by enforcing the postselection checkpoint in conventional thymocytes. Therefore, iNKT cells show both adaptive and innate-like requirements for ID proteins at distinct checkpoints during iNKT cell development.
Observation of Time-Invariant Coherence in a Nuclear Magnetic Resonance Quantum Simulator
NASA Astrophysics Data System (ADS)
Silva, Isabela A.; Souza, Alexandre M.; Bromley, Thomas R.; Cianciaruso, Marco; Marx, Raimund; Sarthour, Roberto S.; Oliveira, Ivan S.; Lo Franco, Rosario; Glaser, Steffen J.; deAzevedo, Eduardo R.; Soares-Pinto, Diogo O.; Adesso, Gerardo
2016-10-01
The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realizing an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and it highlights the natural resilience of quantum effects in complex systems.
Diffeomorphism invariance and black hole entropy
NASA Astrophysics Data System (ADS)
Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning
2003-11-01
The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.
Onboard Image Registration from Invariant Features
NASA Technical Reports Server (NTRS)
Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C
2008-01-01
This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.
Electromagnetic fields with vanishing scalar invariants
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Pravda, Vojtěch
2016-06-01
We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.
Fourier-Bessel rotational invariant eigenimages.
Zhao, Zhizhen; Singer, Amit
2013-05-01
We present an efficient and accurate algorithm for principal component analysis (PCA) of a large set of two-dimensional images and, for each image, the set of its uniform rotations in the plane and its reflection. The algorithm starts by expanding each image, originally given on a Cartesian grid, in the Fourier-Bessel basis for the disk. Because the images are essentially band limited in the Fourier domain, we use a sampling criterion to truncate the Fourier-Bessel expansion such that the maximum amount of information is preserved without the effect of aliasing. The constructed covariance matrix is invariant to rotation and reflection and has a special block diagonal structure. PCA is efficiently done for each block separately. This Fourier-Bessel-based PCA detects more meaningful eigenimages and has improved denoising capability compared to traditional PCA for a finite number of noisy images.
Rotationally invariant ensembles of integrable matrices.
Yuzbashyan, Emil A; Shastry, B Sriram; Scaramazza, Jasen A
2016-05-01
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)-a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N-M independent commuting N×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.
Invariant high resolution optical skin imaging
NASA Astrophysics Data System (ADS)
Murali, Supraja; Rolland, Jannick
2007-02-01
Optical Coherence Microscopy (OCM) is a bio-medical low coherence interferometric imaging technique that has become a topic of active research because of its ability to provide accurate, non-invasive cross-sectional images of biological tissue with much greater resolution than the current common technique ultrasound. OCM is a derivative of Optical Coherence Tomography (OCT) that enables greater resolution imposed by the implementation of an optical confocal design involving high numerical aperture (NA) focusing in the sample. The primary setback of OCM, however is the depth dependence of the lateral resolution obtained that arises from the smaller depth of focus of the high NA beam. We propose to overcome this limitation using a dynamic focusing lens design that can achieve quasi-invariant lateral resolution up to 1.5mm depth of skin tissue.
Optimal Affine-Invariant Point Matching
NASA Astrophysics Data System (ADS)
Costa, Mauro S.; Haralick, Robert M.; Phillips, Tsaiyun I.; Shapiro, Linda G.
1989-03-01
The affine-transformation matching scheme proposed by Hummel and Wolfson (1988) is very efficient in a model-based matching system, not only in terms of the computational complexity involved, but also in terms of the simplicity of the method. This paper addresses the implementation of the affine-invariant point matching, applied to the problem of recognizing and determining the pose of sheet metal parts. It points out errors that can occur with this method due to quantization, stability, symmetry, and noise problems. By beginning with an explicit noise model which the Hummel and Wolfson technique lacks, we can derive an optimal approach which overcomes these problems. We show that results obtained with the new algorithm are clearly better than the results from the original method.
Positively invariant manifolds: concept and applications
NASA Astrophysics Data System (ADS)
Sazhin, Sergei S.; Shchepakina, Elena; Sobolev, Vladimir
2017-02-01
In many applications of the system order reduction models, including those focused on spray ignition and combustion processes, it is assumed that all functions in corresponding differential equations are Lipschitzian. This assumption has not been checked in most cases and the cases when these functions were non-Lipschitzian have sometimes been overlooked. This allows us to question the results of application of the conventional theory of integral manifolds to some such systems. The aim of this paper is to demonstrate that even in the case of singular perturbed systems with non-Lipschitzian nonlinearities the order reduction can be performed, using a new concept of positively invariant manifolds. This is illustrated by several examples including the problem of heating, evaporation, ignition and combustion of Diesel fuel sprays.
Invariant relationships deriving from classical scaling transformations
Bludman, Sidney; Kennedy, Dallas C.
2011-04-15
Because scaling symmetries of the Euler-Lagrange equations are generally not variational symmetries of the action, they do not lead to conservation laws. Instead, an extension of Noether's theorem reduces the equations of motion to evolutionary laws that prove useful, even if the transformations are not symmetries of the equations of motion. In the case of scaling, symmetry leads to a scaling evolutionary law, a first-order equation in terms of scale invariants, linearly relating kinematic and dynamic degrees of freedom. This scaling evolutionary law appears in dynamical and in static systems. Applied to dynamical central-force systems, the scaling evolutionary equation leads to generalized virial laws, which linearly connect the kinetic and potential energies. Applied to barotropic hydrostatic spheres, the scaling evolutionary equation linearly connects the gravitational and internal energy densities. This implies well-known properties of polytropes, describing degenerate stars and chemically homogeneous nondegenerate stellar cores.
Invariant box-parameterization of neutrino oscillations
Weiler, Thomas J.; Wagner, DJ
1998-10-19
The model-independent 'box' parameterization of neutrino oscillations is examined. The invariant boxes are the classical amplitudes of the individual oscillating terms. Being observables, the boxes are independent of the choice of parameterization of the mixing matrix. Emphasis is placed on the relations among the box parameters due to mixing-matrix unitarity, and on the reduction of the number of boxes to the minimum basis set. Using the box algebra, we show that CP-violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. General analyses of neutrino oscillations among n{>=}3 flavors can readily determine the boxes, which can then be manipulated to yield magnitudes of mixing matrix elements.
Gauge invariance and reciprocity in quantum mechanics
Leung, P. T.; Young, K.
2010-03-15
Reciprocity in wave propagation usually refers to the symmetry of the Green's function under the interchange of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials, including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion allows for specific phase factors separable into functions of the source and observer coordinates and that this condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments: the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.
Rotationally invariant ensembles of integrable matrices
NASA Astrophysics Data System (ADS)
Yuzbashyan, Emil A.; Shastry, B. Sriram; Scaramazza, Jasen A.
2016-05-01
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)—a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N -M independent commuting N ×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.
Time reversal invariance in polarized neutron decay
Wasserman, E.G.
1994-03-01
An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.
Lorentz invariance violation and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag
2016-01-01
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.
NASA Astrophysics Data System (ADS)
Tavares, Gustavo Marques
The Standard Model of particle physics describes all known elementary particles and their interactions. Despite its great experimental success, we know that the Standard Model is not a complete description of Nature and therefore new phenomena should be observed at higher energies. In the coming years the Large Hadron Collider will test the Standard Model by colliding protons with center of mass energies of up to 14 TeV providing some of the most stringent tests on the Standard Model. Experimental searches for Dark Matter provide a complementary program to test physics at the weak scale. In the near future new experimental data coming from direct detection experiments, and from satellites and telescopes will drastically improve our sensitivity to weak scale dark matter. This could lead to the first direct observation of dark matter, and thus of physics beyond the Standard Model. In this thesis I propose different extensions of the Standard Model and discuss their experimental consequences. I first discuss models for Axigluons, which are spin one particles in the adjoint representation of the SU(3) color gauge group. These models were motivated by the measurement of higher than predicted forward-backward asymmetry in top quark pair production at the Tevatron. I study different scenarios for Axigluon models that can explain the Tevatron result and explore their signatures at the Large Hadron Collider. Second I discuss the implications of ultraviolet scale invariance for the Standard Model, which has been advocated as a solution to the hierarchy problem. I show that in order to solve the hierarchy problem with scale invariance, new physics is required not far from the weak scale. In the last part of this thesis I propose a new model for dark matter, in which dark matter is charged under a hidden non-Abelian gauge group. This leads to modifications in the sensitivity of the usual experimental searches for dark matter in addition to distinct signatures in the Cosmic
The Application of Spatial Signature Analysis to Electrical Test Data: Validation Study
Gleason, S.S.; Karnowski, T.P.; Lakhani, F.; Tobin, K.W.
1999-03-15
This paper presents the results of the Spatial Signature Analysis (SSA) Electrical-test (e-test) validation study that was conducted between February and June, 1998. SSA is an automated procedure developed by researchers at the Oak Ridge National Laboratory to address the issue of intelligent data reduction while providing feedback on current manufacturing processes. SSA was initially developed to automate the analysis of optical defect data. Optical defects can form groups, or clusters, which may have a distinct shape. These patterns can reveal information about the manufacturing process. Optical defect SSA uses image processing algorithms and a classifier system to interpret and identify these patterns, or signatures. SSA has been extended to analyze and interpret electrical test data. The algorithms used for optical defect SSA have been adapted and applied to e-test binmaps. An image of the binmap is created, and features such as geometric and invariant moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier. The classifier itself was prepared by manually training, which consists of storing example signatures of interest in a library, then executing an automated process which treats the examples as prototype signatures. The training process includes a procedure for automatically determining which features are most relevant to each class. The evaluation was performed by installing the SSA software as a batch process at three SEMATECH member company sites. Feedback from member company representatives was incorporated and classifiers were built to automatically assign labels to the binmap signatures. The three sites produced memory devices (DRAM) and microprocessors in a mature process fabrication environment. For all of these products, 5,620 signatures that encompassed approximately 552 wafers were human-classified and analyzed. The performance of the SSA E-test system indicates that the approach was successful in reliably classifying binmap
Signatures of topological Josephson junctions
NASA Astrophysics Data System (ADS)
Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix
2016-08-01
Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.
Polarization signatures of airborne particulates
NASA Astrophysics Data System (ADS)
Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.
2013-07-01
Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.
Signatures of a shadow biosphere.
Davies, Paul C W; Benner, Steven A; Cleland, Carol E; Lineweaver, Charles H; McKay, Christopher P; Wolfe-Simon, Felisa
2009-03-01
Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere.
Nonlinear analysis of dynamic signature
NASA Astrophysics Data System (ADS)
Rashidi, S.; Fallah, A.; Towhidkhah, F.
2013-12-01
Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.
Nanoscale deformation mechanisms in bone.
Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter
2005-10-01
Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2011-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.
Robust estimation of albedo for illumination-invariant matching and shape recovery.
Biswas, Soma; Aggarwal, Gaurav; Chellappa, Rama
2009-05-01
We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error statistics of surface normals and illumination direction for robust estimation of albedo, for images illuminated by single and multiple light sources. The albedo estimate obtained is subsequently used to generate albedo-free normalized images for recovering the shape of an object. Traditional Shape-from-Shading (SFS) approaches often assume constant/piecewise constant albedo and known light source direction to recover the underlying shape. Using the estimated albedo, the general problem of estimating the shape of an object with varying albedo map and unknown illumination source is reduced to one that can be handled by traditional SFS approaches. Experimental results are provided to show the effectiveness of the approach and its application to illumination-invariant matching and shape recovery. The estimated albedo maps are compared with the ground truth. The maps are used as illumination-invariant signatures for the task of face recognition across illumination variations. The recognition results obtained compare well with the current state-of-the-art approaches. Impressive shape recovery results are obtained using images downloaded from the Web with little control over imaging conditions. The recovered shapes are also used to synthesize novel views under novel illumination conditions.
NASA Astrophysics Data System (ADS)
Chen, Jingyi; Zebker, Howard A.; Knight, Rosemary
2015-11-01
Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique for measuring surface deformation to millimeter-level accuracy at meter-scale resolution. Obtaining accurate deformation measurements in agricultural regions is difficult because the signal is often decorrelated due to vegetation growth. We present here a new algorithm for retrieving InSAR deformation measurements over areas with severe vegetation decorrelation using adaptive phase interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. We apply this algorithm to L-band ALOS interferograms acquired over the San Luis Valley, Colorado, and the Tulare Basin, California. In both areas, the pumping of groundwater for irrigation results in deformation of the land that can be detected using InSAR. We show that the PS-based algorithm can significantly reduce the artifacts due to vegetation decorrelation while preserving the deformation signature.
NASA Astrophysics Data System (ADS)
Solorza, S.; Álvarez-Borrego, J.
2013-11-01
The effects of illumination variations in digital images are a trend topic of the pattern recognition field. The luminance information of the objects help to classify them, however the environment illumination could cause a lot of problem if the system is not illumination invariant. Some applications of this topic include image and video quality, biometrics classification, etc. In this work an illumination analysis for a digital system invariant to position and rotation based on Fourier transform, Bessel masks, one-dimensional signatures and linear correlations are presented. The digital system was tested using a reference database of 21 fossil diatoms images of gray-scale and 307 x 307 pixels. The digital system has shown an excellent performance in the classification of 60,480 problem images which have different non-homogeneous illumination.
First-order character and observable signatures of topological quantum phase transitions.
Amaricci, A; Budich, J C; Capone, M; Trauzettel, B; Sangiovanni, G
2015-05-08
Topological quantum phase transitions are characterized by changes in global topological invariants. These invariants classify many-body systems beyond the conventional paradigm of local order parameters describing spontaneous symmetry breaking. For noninteracting electrons, it is well understood that such transitions are continuous and always accompanied by a gap closing in the energy spectrum, given that the symmetries protecting the topological phase are maintained. Here, we demonstrate that a sufficiently strong electron-electron interaction can fundamentally change the situation: we discover a topological quantum phase transition of first-order character in the genuine thermodynamic sense that occurs without a gap closing. Our theoretical study reveals the existence of a quantum critical endpoint associated with an orbital instability on the transition line between a 2D topological insulator and a trivial band insulator. Remarkably, this phenomenon entails unambiguous signatures related to the orbital occupations that can be detected experimentally.
NASA Astrophysics Data System (ADS)
Ishida, H.; Wortmann, D.
2016-03-01
The embedding potential defined on the boundary surface of a semi-infinite crystal relates the value and normal derivative of generalized Bloch states propagating or decaying toward the interior of the crystal. It becomes Hermitian when the electron energy ɛ is located in a projected bulk band gap at a given wave vector k in the surface Brillouin zone (SBZ). If one plots the real eigenvalues of the embedding potential for a time-reversal invariant insulator in the projected bulk band gap along a path ɛ =ɛ0(k ) passing between two time-reversal invariant momentum (TRIM) points in the SBZ, then, they form Kramers doublets at both end points. We will demonstrate that the Z2 topological invariant, ν , which is either 0 or 1, depending on the product of time-reversal polarizations at the two TRIM points, can be determined from the two different ways these eigenvalues are connected between the two TRIM points. Furthermore, we will reveal a relation, ν =P mod 2, where P denotes the number of poles that the embedding potential exhibits along the path. We also discuss why gapless surface states crossing the bulk band gap inevitably occur on the surface of topological band insulators from the view point of the embedding theory.
Probing deformed quantum commutators
NASA Astrophysics Data System (ADS)
Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.
2016-07-01
Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.
[Babies with cranial deformity].
Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J
2009-01-01
Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.
Partially segmented deformable mirror
Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.
1991-01-01
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.
Partially segmented deformable mirror
Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.
1991-05-21
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.
On stability of diagonal actions and tensor invariants
Anisimov, Artem B
2012-04-30
For a connected simply connected semisimple algebraic group G we prove the existence of invariant tensors in certain tensor powers of rational G-modules and establish relations between the existence of such invariant tensors and stability of diagonal actions of G on affine algebraic varieties. Bibliography: 12 titles.
Measurement Invariance of the Pay Satisfaction Questionnaire across Three Countries
ERIC Educational Resources Information Center
Lievens, Filip; Anseel, Frederik; Harris, Michael M.; Eisenberg, Jacob
2007-01-01
In recent years, pay satisfaction has been increasingly studied in an international context, prompting the importance of examining whether the Pay Satisfaction Questionnaire (PSQ) is invariant across countries other than the United States. This study investigated the measurement invariance across three countries, namely, the United States (N =…
Restricted Weyl invariance in four-dimensional curved spacetime
NASA Astrophysics Data System (ADS)
Edery, Ariel; Nakayama, Yu
2014-08-01
We discuss the physics of restricted Weyl invariance, a symmetry of dimensionless actions in four-dimensional curved space time. When we study a scalar field nonminimally coupled to gravity with Weyl(conformal) weight of -1 (i.e. scalar field with the usual two-derivative kinetic term), we find that dimensionless terms are either fully Weyl invariant or are Weyl invariant if the conformal factor Ω(x) obeys the condition gμν∇μ∇νΩ =0. We refer to the latter as restricted Weyl invariance. We show that all the dimensionless geometric terms such as R2, RμνRμν and RμνστRμνστ are restricted Weyl invariant. Restricted Weyl transformations possesses nice mathematical properties such as the existence of a composition and an inverse in four-dimensional space-time. We exemplify the distinction among rigid Weyl invariance, restricted Weyl invariance and the full Weyl invariance in dimensionless actions constructed out of scalar fields and vector fields with Weyl weight zero.
Restricted Weyl invariance in four-dimensional curved spacetime
NASA Astrophysics Data System (ADS)
Edery, Ariel; Nakayama, Yu
2016-03-01
We discuss the physics of restricted Weyl invariance, a symmetry of dimensionless actions in four dimensional curved space time. When we study a scalar field nonminimally coupled to gravity with Weyl(conformal) weight of - 1 (i.e. scalar field with the usual two-derivative kinetic term), we find that dimensionless terms are either fully Weyl invariant or are Weyl invariant if the conformal factor Ω (x) obeys the condition gμν∇μ∇ν Ω = 0 . We refer to the latter as restricted Weyl invariance. We show that all the dimensionless geometric terms such as R2, RμνRμν and RμνστRμνστ are restricted Weyl invariant. Restricted Weyl transformations possesses nice mathematical properties such as the existence of a composition and an inverse in four dimensional space-time. We exemplify the distinction among rigid Weyl invariance, restricted Weyl invariance and the full Weyl invariance in dimensionless actions constructed out of scalar fields and vector fields with Weyl weight zero.
Dragging and Making Sense of Invariants in Dynamic Geometry
ERIC Educational Resources Information Center
Baccaglini-Frank, Anna E.
2012-01-01
Perceiving and interpreting invariants is a complex task for a nonexpert geometry student, as various studies have shown. Nevertheless, having students work through particular kinds of activities that involve perception and interpretation of invariants and engage in discussions with classmates, guided by the teacher, can help them learn…
Coordinate Projection-based Solver for ODE with Invariants
Serban, Radu
2008-04-08
CPODES is a general purpose (serial and parallel) solver for systems of ordinary differential equation (ODE) with invariants. It implements a coordinate projection approach using different types of projection (orthogonal or oblique) and one of several methods for the decompositon of the Jacobian of the invariant equations.
Putting a Classroom Spin on Invariance in Circles
ERIC Educational Resources Information Center
Staples, Ed
2009-01-01
An old chestnut goes something like this. The surface area of a pond in the form of an annulus is required, but the only measurement possible is the length of the chord across the outer circumference and tangent to the inner circumference. It is a beautiful example of invariance. Invariance in mathematics usually refers to a quantity that remains…
Finding Mutual Exclusion Invariants in Temporal Planning Domains
NASA Technical Reports Server (NTRS)
Bernardini, Sara; Smith, David E.
2011-01-01
We present a technique for automatically extracting temporal mutual exclusion invariants from PDDL2.2 planning instances. We first identify a set of invariant candidates by inspecting the domain and then check these candidates against properties that assure invariance. If these properties are violated, we show that it is sometimes possible to refine a candidate by adding additional propositions and turn it into a real invariant. Our technique builds on other approaches to invariant synthesis presented in the literature, but departs from their limited focus on instantaneous discrete actions by addressing temporal and numeric domains. To deal with time, we formulate invariance conditions that account for both the entire structure of the operators (including the conditions, rather than just the effects) and the possible interactions between operators. As a result, we construct a technique that is not only capable of identifying invariants for temporal domains, but is also able to find a broader set of invariants for non-temporal domains than the previous techniques.
Historical Perspectives on Invariant Measurement: Guttman, Rasch, and Mokken
ERIC Educational Resources Information Center
Engelhard, George, Jr.
2008-01-01
The purpose of this study is to describe how Guttman, Rasch, and Mokken approached issues related to invariant measurement. These measurement theorists were chosen to illustrate the evolution of our conceptualizations of invariant measurement during the 20th century within the research tradition of item response theory. Item response theory can be…
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
New two-dimensional quantum models with shape invariance
Cannata, F.; Ioffe, M. V.; Nishnianidze, D. N.
2011-02-15
Two-dimensional quantum models which obey the property of shape invariance are built in the framework of polynomial two-dimensional supersymmetric quantum mechanics. They are obtained using the expressions for known one-dimensional shape invariant potentials. The constructed Hamiltonians are integrable with symmetry operators of fourth order in momenta, and they are not amenable to the conventional separation of variables.
Factorial Invariance in Multiple Populations: A Multiple Testing Procedure
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E.
2013-01-01
A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…
Evaluation of the IRT Parameter Invariance Property for the MCAT.
ERIC Educational Resources Information Center
Kelkar, Vinaya; Wightman, Linda F.; Luecht, Richard M.
The purpose of this study was to investigate the viability of the property of parameter invariance for the one-parameter (1P), two-parameter (2P), and three-parameter (3P) item response theory (IRT) models for the Medical College Admissions Tests (MCAT). Invariance of item parameters across different gender, ethnic, and language groups and the…
Model Misspecification and Invariance Testing Using Confirmatory Factor Analytic Procedures
ERIC Educational Resources Information Center
French, Brian F.; Finch, W. Holmes
2011-01-01
Confirmatory factor analytic procedures are routinely implemented to provide evidence of measurement invariance. Current lines of research focus on the accuracy of common analytic steps used in confirmatory factor analysis for invariance testing. However, the few studies that have examined this procedure have done so with perfectly or near…
Measurement Invariance: A Foundational Principle for Quantitative Theory Building
ERIC Educational Resources Information Center
Nimon, Kim; Reio, Thomas G., Jr.
2011-01-01
This article describes why measurement invariance is a critical issue to quantitative theory building within the field of human resource development. Readers will learn what measurement invariance is and how to test for its presence using techniques that are accessible to applied researchers. Using data from a LibQUAL+[TM] study of user…
Factorial Invariance of a Pan-Hispanic Familism Scale
ERIC Educational Resources Information Center
Villarreal, Ricardo; Blozis, Shelley A.; Widaman, Keith F.
2005-01-01
This article considers the validity and factorial invariance of an attitudinal measure of familism. Using a large, nationally representative sample of U.S. Hispanics, the validity and factorial invariance of the measure was tested across country of origin (United States, Mexico, and Latin America) and the language in which the survey was conducted…
NASA Astrophysics Data System (ADS)
Kvasil, J.; Nazmitdinov, R. G.
1985-06-01
Collective states near the yrast line in nuclei with stable octupole deformation are discussed in the framework of the random phase approximation (RPA) based on the cranking model. These vibrational states are characterized by the quantum number of generalized signature (eigenvalue of the operator Sx = PRx-1( π)). In the zero-octupole deformation limit the RPA equations of motion are reduced to the well-known ones characterized by both values of parity and signature, respectively. The connection of the translational and rotational symmetry of the model hamiltonian with the spurious solutions of the RPA equation of motion is discussed. Expressions for the reduced probabilities B(E1), B(E2) and B(E3) are obtained. These expressions confirm the conclusions of phenomenological models for the strong E1 and E3 intraband transitions in nuclei with stable octupole deformation.
Osteotomies for bunionette deformity.
Weil, Lowell; Weil, Lowell Scott
2011-12-01
A variety of surgical osteotomy procedures have been described for the bunionette deformity.Metatarsal osteotomies narrow the forefoot, maintain the length of the metatarsal, and preserve function of the metatarsophalangeal joint. Distal metatarsal osteotomies produce less correction and reduce postoperative disability; however, they pose a risk of inadequate correction because of the small width of the fifth metatarsal head and transfer lesions if shortened or dorsiflexed excessively. The sliding oblique metaphyseal osteotomy described by Smith and Weil (without fixation) and later by Steinke (with fixation) is easy to perform and provides good cancellous bone contact. Fixation is sometimes difficult and bone healing can take a few months owing to the unstable construct of this osteotomy. Kitaoka described a distal chevron osteotomy, which provides lateral pressure relief and reduced plantar pressure. This osteotomy is currently the most common procedure used; however, it may prove difficult to perform if the deformity is large and the bone is narrow. Diaphyseal osteotomies are indicated when greater correction is needed; however, they require more dissection and there is greater postoperative convalescence with non–weight bearing for several weeks. Proximal base osteotomies may be used to address significantly increased 4–5 IMAs or when a large degree of sagittal plane correction is required. Approaches that have been described include opening and closing base wedges and basal chevrons. Advantages to this approach are the ability to avoid epiphyseal plates in pediatric patients and maintain function of the MTPJ, while disadvantages include inherent instability of the location of the osteotomy, embarrassment of intraosseous and extraosseus blood supply of the metatarsal, and technical demand. Non–weight bearing is essential for several weeks. The Scarfette procedure is a combination head–shaft procedure, which is indicated to treat mild to moderate
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
Advanced Curvature Deformable Mirrors
2010-09-01
designs using just a glass wafer and a wafer of Carbon Fiber Reinforced Polymer ( CFRP ). In both cases minimum bend radius decreases and the resonant... matrix is consequently nearly diagonal. The long actuators at the outer edge of the deformable mirror are largely outside the working pupil so their...formal reconstruction of the wave front either explicitly or implicitly in the control matrix . The WFS-DM combination is acting like an analog computer
Deformation of Wrinkled Graphene
2015-01-01
The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609
Deformable micro torque swimmer
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke
2015-11-01
We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.
[Neurogenic foot deformities].
Senst, S
2010-01-01
There is a multitude of neurological diseases which may lead to neuro-orthopaedic problems and subsequently to neurogenic foot deformities. For this reason the diagnostician will be consistently surprised that there is a great multitude of different foot abnormalities and that not only the typical spastic talipes equines dominates. Of particular significance here is that these deformities almost always develop progressively, whereas most diseases persist per se, cerebral palsy being a typical case in point. However, in MMC (myelomeningocele) patients, there is also the danger of a worsening of the basic problem in the case of tethered cord syndrome. Unlike congenital talipes equinovarus, neuro-orthopaedic talipes equinovarus often shows over- or undercorrection postoperatively due to a shift in muscle imbalance. It is important, therefore, that the basis of conservative therapy include regular physiotherapy and orthoses during the day and, if necessary, at night. Botulinum toxin has been established as an additional measure for spasticity; however, this cannot always prevent surgical intervention, but is able to delay this to a better point in the development of the child/patient. The present article describes the diversity of neurological deformities and presents conservative as well as surgical therapeutic approaches.
Image Deconvolution by Means of Frequency Blur Invariant Concept
2014-01-01
Different blur invariant descriptors have been proposed so far, which are either in the spatial domain or based on the properties available in the moment domain. In this paper, a frequency framework is proposed to develop blur invariant features that are used to deconvolve a degraded image caused by a Gaussian blur. These descriptors are obtained by establishing an equivalent relationship between the normalized Fourier transforms of the blurred and original images, both normalized by their respective fixed frequencies set to one. Advantage of using the proposed invariant descriptors is that it is possible to estimate both the point spread function (PSF) and the original image. The performance of frequency invariants will be demonstrated through experiments. An image deconvolution is done as an additional application to verify the proposed blur invariant features. PMID:25202743
Riddling and invariance for discontinuous maps preserving Lebesgue measure
NASA Astrophysics Data System (ADS)
Ashwin, Peter; Fu, Xin-Chu; Terry, John R.
2002-05-01
In this paper we use the mixture of topological and measure-theoretic dynamical approaches to consider riddling of invariant sets for some discontinuous maps of compact regions of the plane that preserve two-dimensional Lebesgue measure. We consider maps that are piecewise continuous and with invertible except on a closed zero measure set. We show that riddling is an invariant property that can be used to characterize invariant sets, and prove results that give a non-trivial decomposion of what we call partially riddled invariant sets into smaller invariant sets. For a particular example, a piecewise isometry that arises in signal processing (the overflow oscillation map), we present evidence that the closure of the set of trajectories that accumulate on the discontinuity is fully riddled. This supports a conjecture that there are typically an infinite number of periodic orbits for this system.
C, P, and T invariance of noncommutative gauge theories
Sheikh-Jabbari
2000-06-05
In this paper we study the invariance of the noncommutative gauge theories under C, P, and T transformations. For the noncommutative space (when only the spatial part of straight theta is nonzero) we show that noncommutative QED (NCQED) is parity invariant. In addition, we show that under charge conjugation the theory on noncommutative R(4)(straight theta) is transformed to the theory on R(4)(-straight theta), so NCQED is a CP violating theory. The theory remains invariant under time reversal if, together with proper changes in fields, we also change straight theta by -straight theta. Hence altogether NCQED is CPT invariant. Moreover, we show that the CPT invariance holds for general noncommutative space-time.
In search for graph invariants of chemical interes
NASA Astrophysics Data System (ADS)
Randić, Milan; Trinajstić, Nenad
1993-12-01
This article encourages readers to search for novel graph invariants that may be of potential interest in chemical applications of graph theory. It is also hoped that theoreticians, with their different backgrounds and different viewpoints, may identify or design novel graph invariants that have not yet been tested in chemistry and in this way enrich the pool of descriptors for use in studies of structure—property relationships. An outline of desirable attributes for graph invariants that have found use in chemistry is followed by a brief review of a selection of known ad hoc invariants. This continues with a description of families of structurally related invariants. We discuss some promising routes to construction of novel descriptors such as those based on consideration of graph fragments. A warning against useless and misleading descriptors is given. We end with a call for design of or verification of basis graphs.
NASA Technical Reports Server (NTRS)
Strauss, Karl F.; Sheldon, Douglas J.
2011-01-01
Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic
Optical implementation of neocognitron and its applications to radar signature discrimination
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1991-01-01
A feature-extraction-based optoelectronic neural network is introduced. The system implementation approach applies the principle of the neocognitron paradigm first introduced by Fukushima et al. (1983). A multichannel correlator is used as a building block of a generic single layer of the neocognitron for shift-invariant feature correlation. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator. Successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved using this optoelectronic neocognitron. Detailed system analysis is described. Experimental demonstration of radar signature processing is also provided.
A non-linear elastic constitutive framework for replicating plastic deformation in solids.
Roberts, Scott Alan; Schunk, Peter Randall
2014-02-01
Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.
Non-rigid registration of 3D point clouds under isometric deformation
NASA Astrophysics Data System (ADS)
Ge, Xuming
2016-11-01
An algorithm for pairwise non-rigid registration of 3D point clouds is presented in the specific context of isometric deformations. The critical step is registration of point clouds at different epochs captured from an isometric deformation surface within overlapping regions. Based on characteristics invariant under isometric deformation, a variant of the four-point congruent sets algorithm is applied to generate correspondences between two deformed point clouds, and subsequently a RANSAC framework is used to complete cluster extraction in preparation for global optimal alignment. Examples are presented and the results compared with existing approaches to demonstrate the two main contributions of the technique: a success rate for generating true correspondences of 90% and a root mean square error after final registration of 2-3 mm.
NASA Astrophysics Data System (ADS)
Capri, M. A. L.; Dudal, D.; Pereira, A. D.; Fiorentini, D.; Guimaraes, M. S.; Mintz, B. W.; Palhares, L. F.; Sorella, S. P.
2017-02-01
In order to construct a gauge-invariant two-point function in a Yang-Mills theory, we propose the use of the all-order gauge-invariant transverse configurations Ah . Such configurations can be obtained through the minimization of the functional Amin2 along the gauge orbit within the BRST-invariant formulation of the Gribov-Zwanziger framework recently put forward in [1,2] for the class of the linear covariant gauges. This correlator turns out to provide a characterization of nonperturbative aspects of the theory in a BRST-invariant and gauge-parameter-independent way. In particular, it turns out that the poles of ⟨Aμh(k )Aνh(-k )⟩ are the same as those of the transverse part of the gluon propagator, which are also formally shown to be independent of the gauge parameter α entering the gauge condition through the Nielsen identities. The latter follow from the new exact BRST-invariant formulation introduced before. Moreover, the correlator ⟨Aμh(k )Aνh(-k )⟩ enables us to attach a BRST-invariant meaning to the possible positivity violation of the corresponding temporal Schwinger correlator, giving thus for the first time a consistent, gauge parameter independent, setup to adopt the positivity violation of ⟨Aμh(k )Aνh(-k )⟩ as a signature for gluon confinement. Finally, in the context of gauge theories supplemented with a fundamental Higgs field, we use ⟨Aμh(k )Aνh(-k )⟩ to probe the pole structure of the massive gauge boson in a gauge-invariant fashion.
Twisted supersymmetry in a deformed Wess-Zumino model in (2 + 1) dimensions
NASA Astrophysics Data System (ADS)
Palechor, C.; Ferrari, A. F.; Quinto, A. G.
2017-01-01
Non-anticommutative deformations have been studied in the context of super-symmetry (SUSY) in three and four space-time dimensions, and the general picture is that highly nontrivial to deform supersymmetry in a way that still preserves some of its important properties, both at the formal algebraic level (e.g., preserving the associativity of the deformed theory) as well as at the physical level (e.g., maintaining renormalizability). The Hopf algebra formalism allows the definition of algebraically consistent deformations of SUSY, but this algebraic consistency does not guarantee that physical models build upon these structures will be consistent from the physical point of view. We will investigate a deformation induced by a Drinfel'd twist of the N = 1 SUSY algebra in three space-time dimensions. The use of the Hopf algebra formalism allows the construction of deformed N = 1 SUSY algebras that should still preserve a deformed version of supersymmetry. We will construct the simplest deformed version of the Wess-Zumino model in this context, but we will show that despite the consistent algebraic structure, the model in question is not invariant under SUSY transformation and is not renormalizable. We will comment on the relation of these results with previous ones discussed in the literature regarding similar four-dimensional constructions.
Forensic handwriting examiners' expertise for signature comparison.
Sita, Jodi; Found, Bryan; Rogers, Douglas K
2002-09-01
This paper reports on the performance of forensic document examiners (FDEs) in a signature comparison task that was designed to address the issue of expertise. The opinions of FDEs regarding 150 genuine and simulated questioned signatures were compared with a control group of non-examiners' opinions. On the question of expertise, results showed that FDEs were statistically better than the control group at accurately determining the genuineness or non-genuineness of questioned signatures. The FDE group made errors (by calling a genuine signature simulated or by calling a simulated signature genuine) in 3.4% of their opinions while 19.3% of the control group's opinions were erroneous. The FDE group gave significantly more inconclusive opinions than the control group. Analysis of FDEs' responses showed that more correct opinions were expressed regarding simulated signatures and more inconclusive opinions were made on genuine signatures. Further, when the complexity of a signature was taken into account, FDEs made more correct opinions on high complexity signatures than on signatures of lower complexity. There was a wide range of skill amongst FDEs and no significant relationship was found between the number of years FDEs had been practicing and their correct, inconclusive and error rates.
Austerweil, Joseph L; Griffiths, Thomas L; Palmer, Stephen E
2016-12-21
How does the visual system recognize images of a novel object after a single observation despite possible variations in the viewpoint of that object relative to the observer? One possibility is comparing the image with a prototype for invariance over a relevant transformation set (e.g., translations and dilations). However, invariance over rotations (i.e., orientation invariance) has proven difficult to analyze, because it applies to some objects but not others. We propose that the invariant transformations of an object are learned by incorporating prior expectations with real-world evidence. We test this proposal by developing an ideal learner model for learning invariance that predicts better learning of orientation dependence when prior expectations about orientation are weak. This prediction was supported in two behavioral experiments, where participants learned the orientation dependence of novel images using feedback from solving arithmetic problems.
Genetic signatures of heroin addiction.
Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang
2016-08-01
Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study.
Infrared signatures for remote sensing
McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.
1994-04-01
PNL`s capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm{sup {minus}1} at <10-MHz bandwidth; a Bruker Fourier-transform infrared (FTIR) spectrometer for the near- to far-infrared at 50-MHz resolution; and a stable line-tunable, 12-w cw CO{sub 2} laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at {approximately}10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl{sub 4} at 770--800 cm{sup {minus}1}. This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO{sub 2} laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks.
Computing with scale-invariant neural representations
NASA Astrophysics Data System (ADS)
Howard, Marc; Shankar, Karthik
The Weber-Fechner law is perhaps the oldest quantitative relationship in psychology. Consider the problem of the brain representing a function f (x) . Different neurons have receptive fields that support different parts of the range, such that the ith neuron has a receptive field at xi. Weber-Fechner scaling refers to the finding that the width of the receptive field scales with xi as does the difference between the centers of adjacent receptive fields. Weber-Fechner scaling is exponentially resource-conserving. Neurophysiological evidence suggests that neural representations obey Weber-Fechner scaling in the visual system and perhaps other systems as well. We describe an optimality constraint that is solved by Weber-Fechner scaling, providing an information-theoretic rationale for this principle of neural coding. Weber-Fechner scaling can be generated within a mathematical framework using the Laplace transform. Within this framework, simple computations such as translation, correlation and cross-correlation can be accomplished. This framework can in principle be extended to provide a general computational language for brain-inspired cognitive computation on scale-invariant representations. Supported by NSF PHY 1444389 and the BU Initiative for the Physics and Mathematics of Neural Systems,.
Noninflationary model with scale invariant cosmological perturbations
Peter, Patrick; Pinho, Emanuel J. C.; Pinto-Neto, Nelson
2007-01-15
We show that a contracting universe which bounces due to quantum cosmological effects and connects to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations provided the perturbations are produced during an almost matter dominated era in the contraction phase. This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum (n{sub S}-1>0). Taking into account the spectral index constraint as well as the cosmic microwave background normalization measure yields an equation of state that should be less than {omega} < or approx. 8x10{sup -4}, implying n{sub S}-1{approx}O(10{sup -4}), and that the characteristic curvature scale of the Universe at the bounce is L{sub 0}{approx}10{sup 3}l{sub Pl}, a region where one expects that the Wheeler-DeWitt equation should be valid without being spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between the tensor-to-scalar ratio T/S and the scalar spectral index as T/S{approx}4.6x10{sup -2}{radical}(n{sub S}-1), leading to potentially measurable differences with inflationary predictions.
ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION
Amelino-Camelia, Giovanni; Guetta, D.; Piran, Tsvi
2015-06-20
The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.
Rotationally invariant ensembles of integrable matrices
NASA Astrophysics Data System (ADS)
Scaramazza, Jasen; Yuzbashyan, Emil; Shastry, Sriram
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT) - a counterpart of random matrix theory (RMT) for quantum integrable models. A type- M family of integrable matrices consists of exactly N - M independent commuting N × N matrices linear in a real parameter. We first develop a rotationally invariant parameterization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice-versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, in a manner similar to the construction of Gaussian ensembles in the RMT. This work was supported in part by the David and Lucille Packard Foundation. The work at UCSC was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # FG02-06ER46319.
Magnetic monopoles, Galilean invariance, and Maxwell's equations
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, ``as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamics are Galilean invariant-i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities v<
Signature of anisotropic bubble collisions
Salem, Michael P.
2010-09-15
Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.
Spectroscopic signature for ferroelectric ice
NASA Astrophysics Data System (ADS)
Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz
2014-09-01
Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.
Satellite signatures in SLR observations
NASA Technical Reports Server (NTRS)
Appleby, G. M.
1993-01-01
We examine the evidence for the detection of satellite-dependent signatures in the laser range observations obtained by the UK single-photon Satellite Laser Ranging (SLR) System models of the expected observation distributions from Ajisai and Lageos are developed from the published satellite spread functions and from the characteristics of the SLR System and compared with the observations. The effects of varying return strengths are discussed using the models and by experimental observations of Ajisai, during which a range of return levels from single to multiple photons is achieved. The implications of these results for system-dependent center for mass corrections are discussed.
Observational Signatures of Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Savage, Sabrina
2014-01-01
Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.
Gut microbiota signatures of longevity.
Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao
2016-09-26
An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging.
Quantum broadcasting multiple blind signature with constant size
NASA Astrophysics Data System (ADS)
Xiao, Min; Li, Zhenli
2016-09-01
Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.
Carbon nanotubes with temperature-invariant viscoelasticity from -196 degrees to 1000 degrees C.
Xu, Ming; Futaba, Don N; Yamada, Takeo; Yumura, Motoo; Hata, Kenji
2010-12-03
Viscoelasticity describes the ability of a material to possess both elasticity and viscosity. Viscoelastic materials, such as rubbers, possess a limited operational temperature range (for example, for silicone rubber it is -55° to 300°C), above which the material breaks down and below which the material undergoes a glass transition and hardens. We created a viscoelastic material composed from a random network of long interconnected carbon nanotubes that exhibited an operational temperature range from -196° to 1000°C. The storage and loss moduli, frequency stability, reversible deformation level, and fatigue resistance were invariant from -140° to 600°C. We interpret that the thermal stability stems from energy dissipation through the zipping and unzipping of carbon nanotubes at contacts.
Wall-crossing invariants: from quantum mechanics to knots
Galakhov, D. E-mail: galakhov@physics.rutgers.edu; Mironov, A. Morozov, A.
2015-03-15
We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change of moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones (N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.
Invariant currents and scattering off locally symmetric potential landscapes
Kalozoumis, P.A.; Morfonios, C.V.; Diakonos, F.K.; Schmelcher, P.
2015-11-15
We study the effect of discrete symmetry breaking in inhomogeneous scattering media within the framework of generic wave propagation. Our focus is on one-dimensional scattering potentials exhibiting local symmetries. We find a class of spatially invariant nonlocal currents, emerging when the corresponding generalized potential exhibits symmetries in arbitrary spatial domains. These invariants characterize the wave propagation and provide a spatial mapping of the wave function between any symmetry related domains. This generalizes the Bloch and parity theorems for broken reflection and translational symmetries, respectively. Their nonvanishing values indicate the symmetry breaking, whereas a zero value denotes the restoration of the global symmetry where the well-known forms of the two theorems are recovered. These invariants allow for a systematic treatment of systems with any local symmetry combination, providing a tool for the investigation of the scattering properties of aperiodic but locally symmetric systems. To this aim we express the transfer matrix of a locally symmetric potential unit via the corresponding invariants and derive quantities characterizing the complete scattering device which serve as key elements for the investigation of transmission spectra and particularly of perfect transmission resonances. -- Highlights: •We show that local discrete symmetries yield invariant currents. •Bloch and parity theorems are generalized when the associated symmetries are broken. •Formulation of scattering via the symmetry-induced invariant currents. •We provide sum rules for the invariant currents characterizing perfect transmission.
Invariant-tori-like Lagrangian coherent structures in geophysical flows.
Beron-Vera, Francisco J; Olascoaga, María J; Brown, Michael G; Koçak, Huseyin; Rypina, Irina I
2010-03-01
The term "Lagrangian coherent structure" (LCS) is normally used to describe numerically detected structures whose properties are similar to those of stable and unstable manifolds of hyperbolic trajectories. The latter structures are invariant curves, i.e., material curves of fluid that serve as transport barriers. In this paper we use the term LCS to describe a different type of structure whose properties are similar to those of invariant tori in certain classes of two-dimensional incompressible flows. Like stable and unstable manifolds, invariant tori are invariant curves that serve as transport barriers. There are many differences, however, between traditional LCSs and invariant-tori-like LCSs. These differences are discussed with an emphasis on numerical techniques that can be used to identify invariant-tori-like LCSs. Structures of this type are often present in geophysical flows where zonal jets are present. A prime example of an invariant-torus-like LCS is the transport barrier near the core of the polar night jet in the Earth's lower and middle stratospheres in the austral winter and early spring; this is the barrier that traps ozone-depleted air inside the ozone hole. This example is investigated using both a simple analytically prescribed flow and a velocity field produced by a general circulation model of the Earth's atmosphere.
Extended Holography: Double-Trace Deformation and Brane-Induced Gravity Models
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2017-03-01
We put forward a conjecture that for a special class of models - models of the double-trace deformation and brane-induced gravity types - the principle of holographic dualitiy can be extended beyond conformal invariance and anti-de Sitter (AdS) isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on the boundary.
NASA Technical Reports Server (NTRS)
Stenholm, Stig
1993-01-01
A single mode cavity is deformed smoothly to change its electromagnetic eigenfrequency. The system is modeled as a simple harmonic oscillator with a varying period. The Wigner function of the problem is obtained exactly by starting with a squeezed initial state. The result is evaluated for a linear change of the cavity length. The approach to the adiabatic limit is investigated. The maximum squeezing is found to occur for smooth change lasting only a fraction of the oscillational period. However, only a factor of two improvement over the adiabatic result proves to be possible. The sudden limit cannot be investigated meaningfully within the model.
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Tassi, E.; Morrison, P. J.
2011-03-15
Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving new infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium 'translated' pressure gradient, stable equilibria can either be energy stable, i.e., possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes. The ETG instability is then shown to arise through a Krein-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode, whereas the energy of the slow mode can have either positive or negative sign. A reduced model with stable equilibria shear flow that possess a continuous spectrum is also analyzed and brought to normal form by a special integral transform. In this way it is seen how continuous spectra can have signature as well.
Visual signatures in video visualization.
Chen, Min; Botchen, Ralf P; Hashim, Rudy R; Weiskopf, Daniel; Ertl, Thomas; Thornton, Ian M
2006-01-01
Video visualization is a computation process that extracts meaningful information from original video data sets and conveys the extracted information to users in appropriate visual representations. This paper presents a broad treatment of the subject, following a typical research pipeline involving concept formulation, system development, a path-finding user study, and a field trial with real application data. In particular, we have conducted a fundamental study on the visualization of motion events in videos. We have, for the first time, deployed flow visualization techniques in video visualization. We have compared the effectiveness of different abstract visual representations of videos. We have conducted a user study to examine whether users are able to learn to recognize visual signatures of motions, and to assist in the evaluation of different visualization techniques. We have applied our understanding and the developed techniques to a set of application video clips. Our study has demonstrated that video visualization is both technically feasible and cost-effective. It has provided the first set of evidence confirming that ordinary users can be accustomed to the visual features depicted in video visualizations, and can learn to recognize visual signatures of a variety of motion events.
The relativistic invariance of 4D-shapes
NASA Astrophysics Data System (ADS)
Calosi, Claudio
2015-05-01
A recent debate in the metaphysics of physics focuses on the invariance and intrinsicality of four-dimensional shapes in the Special Theory of Relativity. Davidson (2014) argues that four-dimensional shapes cannot be intrinsic properties of persisting objects because they have to be relativized to reference frames. Balashov (2014a) criticizes such an argument in that it mistakes four-dimensional shapes with their three-dimensional projections on the axes of those frames. This paper adds to that debate. Rather than criticizing an argument against the relativistic invariance of four-dimensional shapes, as Balashov did, it offers a direct argument in favor of such an invariance.
Contrast- and illumination-invariant object recognition from active sensation.
Rentschler, Ingo; Osman, Erol; Jüttner, Martin
2009-01-01
It has been suggested that the deleterious effect of contrast reversal on visual recognition is unique to faces, not objects. Here we show from priming, supervised category learning, and generalization that there is no such thing as general invariance of recognition of non-face objects against contrast reversal and, likewise, changes in direction of illumination. However, when recognition varies with rendering conditions, invariance may be restored and effects of continuous learning may be reduced by providing prior object knowledge from active sensation. Our findings suggest that the degree of contrast invariance achieved reflects functional characteristics of object representations learned in a task-dependent fashion.
A classical theory of continuous spin and hidden gauge invariance
Zoller, D.
1991-12-31
We present a classical higher derivative point particle theory whose quantization gives Wigner`s continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance.
A classical theory of continuous spin and hidden gauge invariance
Zoller, D.
1991-01-01
We present a classical higher derivative point particle theory whose quantization gives Wigner's continuous spin representation of the Poincare group. Although the theory is not reparameterization invariant in the usual sense, it does possess a hidden gauge invariance that provides a non-local representation of the reparameterization group. The Hamiltonian of the theory does not vanish and its value is the continuous spin parameter. The theory presented here represents the simplest example of a wide class of higher derivative theories possessing a hidden gauge invariance.
Gauge invariant perturbations of Petrov type D space-times
NASA Astrophysics Data System (ADS)
Whiting, Bernard; Shah, Abhay
2016-03-01
The Regge-Wheeler and Zerilli equations are satisfied by gauge invariant perturbations of the Schwarzschild black hole geometry. Both the perturbation of the imaginary part of Ψ2 (a component of the Weyl curvature), and its time derivative, are gauge invariant and solve the Regge-Wheeler equation with different sources. The Ψ0 and Ψ4 perturbations of the Weyl curvature are not only gauge, but also tetrad, invariant. We explore the framework in which these results hold, and consider what generalizations may extend to the Kerr geometry, and presumably to Petrov type D space-times in general. NSF Grants PHY 1205906 and 1314529, ERC (EU) FP7 Grant 304978.
Tuning the cosmological constant, broken scale invariance, unitarity
Förste, Stefan; Manz, Paul
2016-06-10
We study gravity coupled to a cosmological constant and a scale but not conformally invariant sector. In Minkowski vacuum, scale invariance is spontaneously broken. We consider small fluctuations around the Minkowski vacuum. At the linearised level we find that the trace of metric perturbations receives a positive or negative mass squared contribution. However, only for the Fierz-Pauli combination the theory is free of ghosts. The mass term for the trace of metric perturbations can be cancelled by explicitly breaking scale invariance. This reintroduces fine-tuning. Models based on four form field strength show similarities with explicit scale symmetry breaking due to quantisation conditions.
Two Lagrange-like optical invariants and some applications.
Corrente, Fabio; Onorato, Pasquale
2011-05-01
Geometric optics can be completely derived from Fermat's principle, as classical mechanics can be obtained by the application of the Hamilton principle. In Lagrangian optics, for optical systems with rotational symmetry, is known the invariant L₃, the Lagrange optical invariant. For systems built only with spherical lenses, we demonstrate there are two other optical invariants, L₁ and L₂, analogous to L₃. A proof based on Snell's law, the Weierstrass-Erdman jump condition, and the expression of the ray between two optical surfaces in the Hamiltonian formalism is reported. The presence of a conserved vector, L, allows us to write the equation of an emerging ray without any approximation.
Conformal invariant cosmological perturbations via the covariant approach
Li, Mingzhe; Mou, Yicen E-mail: moinch@mail.ustc.edu.cn
2015-10-01
It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible to do equivalent analysis in a certain frame in which the perturbation equations are simpler. In this paper we revisit the problem of conformal invariances of cosmological perturbations in terms of the covariant approach in which the perturbation variables have clear geometric and physical meanings. We show that with this approach the conformal invariant perturbations are easily identified.
Invariants for minimal conformal supergravity in six dimensions
NASA Astrophysics Data System (ADS)
Butter, Daniel; Kuzenko, Sergei M.; Novak, Joseph; Theisen, Stefan
2016-12-01
We develop a new off-shell formulation for six-dimensional conformal super-gravity obtained by gauging the 6D N = (1, 0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D N = (1, 0) conformal super-gravity, which contain C 3 and C□ C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F□ F invariant in curved superspace.
Discrete phase-space mappings, tomographic condition and permutation invariance
NASA Astrophysics Data System (ADS)
Muñoz, C.; Klimov, A. B.
2017-04-01
We analyze various families of discrete maps in N-qubit systems in the context of permutation invariance. We prove that the tomographic condition imposed on the self-dual (Wigner) map is incompatible with the requirement of the invariance under particle permutations (except for the two-qubit case), which makes it impossible to project the Wootters-like Wigner function into the space of symmetric measurements. We also provide several explicit forms of the self-dual mappings: (a) tomographic and (b) permutation invariant, and analyze the symmetric projection in the latter case.
Verification of Java Programs using Symbolic Execution and Invariant Generation
NASA Technical Reports Server (NTRS)
Pasareanu, Corina; Visser, Willem
2004-01-01
Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.
The yielding transition in amorphous solids under oscillatory shear deformation
NASA Astrophysics Data System (ADS)
Leishangthem, Premkumar; Parmar, Anshul D. S.; Sastry, Srikanth
2017-03-01
Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition.
The yielding transition in amorphous solids under oscillatory shear deformation
Leishangthem, Premkumar; Parmar, Anshul D. S.; Sastry, Srikanth
2017-01-01
Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition. PMID:28248289
Secure Obfuscation for Encrypted Group Signatures
Fan, Hongfei; Liu, Qin
2015-01-01
In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686
Input apparatus for dynamic signature verification systems
EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.
1978-01-01
The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.
Fast Translation Invariant Multiscale Image Denoising.
Li, Meng; Ghosal, Subhashis
2015-12-01
Translation invariant (TI) cycle spinning is an effective method for removing artifacts from images. However, for a method using O(n) time, the exact TI cycle spinning by averaging all possible circulant shifts requires O(n(2)) time where n is the number of pixels, and therefore is not feasible in practice. Existing literature has investigated efficient algorithms to calculate TI version of some denoising approaches such as Haar wavelet. Multiscale methods, especially those based on likelihood decomposition, such as penalized likelihood estimator and Bayesian methods, have become popular in image processing because of their effectiveness in denoising images. As far as we know, there is no systematic investigation of the TI calculation corresponding to general multiscale approaches. In this paper, we propose a fast TI (FTI) algorithm and a more general k-TI (k-TI) algorithm allowing TI for the last k scales of the image, which are applicable to general d-dimensional images (d = 2, 3, …) with either Gaussian or Poisson noise. The proposed FTI leads to the exact TI estimation but only requires O(n log2 n) time. The proposed k-TI can achieve almost the same performance as the exact TI estimation, but requires even less time. We achieve this by exploiting the regularity present in the multiscale structure, which is justified theoretically. The proposed FTI and k-TI are generic in that they are applicable on any smoothing techniques based on the multiscale structure. We demonstrate the FTI and k-TI algorithms on some recently proposed state-of-the-art methods for both Poisson and Gaussian noised images. Both simulations and real data application confirm the appealing performance of the proposed algorithms. MATLAB toolboxes are online accessible to reproduce the results and be implemented for general multiscale denoising approaches provided by the users.
Algorithmic deformation of matrix factorisations
NASA Astrophysics Data System (ADS)
Carqueville, Nils; Dowdy, Laura; Recknagel, Andreas
2012-04-01
Branes and defects in topological Landau-Ginzburg models are described by matrix factorisations. We revisit the problem of deforming them and discuss various deformation methods as well as their relations. We have implemented these algorithms and apply them to several examples. Apart from explicit results in concrete cases, this leads to a novel way to generate new matrix factorisations via nilpotent substitutions, and to criteria whether boundary obstructions can be lifted by bulk deformations.
Invariant natural killer T cells and mucosal-associated invariant T cells in multiple sclerosis.
Bianchini, Elena; De Biasi, Sara; Simone, Anna Maria; Ferraro, Diana; Sola, Patrizia; Cossarizza, Andrea; Pinti, Marcello
2017-03-01
Multiple sclerosis (MS) is a chronic progressive inflammatory demyelinating disorder of the central nervous system, and in several countries is a leading cause of permanent neurological disability in young adults, particularly women. MS is considered an autoimmune disease, caused by an aberrant immune response to environmental triggers in genetically susceptible subjects. However, the contribution of the innate or of the adaptive immune system to the development and progression of the disease has not yet been fully elucidated. Innate-like T lymphocytes are unconventional T cells that bridge the innate and adaptive arms of the immune system, because they use a T cell receptor to sense external ligands, but behave like innate cells when they rapidly respond to stimuli. These cells could play an important role in the pathogenesis of MS. Here, we focus on invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells, and we review the current knowledge on their biology and possible involvement in MS. Although several studies have evaluated the frequency and functions of iNKT and MAIT cells both in MS patients and in experimental mouse models, contradictory observations have been reported, and it is not clear whether they exert a protective or a pro-inflammatory and harmful role. A better understanding of how immune cells are involved in MS, and of their interactions could be of great interest for the development of new therapeutic strategies.
NASA Astrophysics Data System (ADS)
Zhou, Long-Qiao; Meleshko, Sergey V.
2017-01-01
A linear thermoviscoelastic model for homogeneous, aging materials with memory is established. A system of integro-differential equations is obtained by using two motions (a one-dimensional motion and a shearing motion) for this model. Applying the group analysis method to the system of integro-differential equations, the admitted Lie group is determined. Using this admitted Lie group, invariant and partially invariant solutions are found. The present paper gives a first example of application of partially invariant solutions to integro-differential equations.
Photon self-interaction on deformed spacetime
NASA Astrophysics Data System (ADS)
Horvat, Raul; Trampetić, Josip; You, Jiangyang
2015-12-01
A novel nonlocal four-photon interaction on the deformed spacetime is derived and studied in the three selected models (I, II, III). The first two models (I, II) are obtained via two distinct second-order θ -exact Seiberg-Witten maps of the noncommutative U(1) gauge field strength on Moyal space. The third one (III), inspired by the manifestly gauge invariant structures emerging in the first two, due to the model generality has been constructed with a different set of freedom parameters. The physical relevancy of all models is analyzed by evaluating the four-photon-tadpole diagram, which, when combined with the bubble graph, enables us to fully consider all contributions to the one-loop photon polarization tensor. For an arbitrary noncommutative matrix θμ ν, the full quadratic IR divergence cancellation in the one-loop photon two-point function is obtained with particular combinations of Seiberg-Witten map/gauge-symmetry freedom parameters in models I and II. Finally, our model III enables complete elimination of all pathological terms in the photon polarization tensor at one-loop order if a special value for the θ matrix is chosen.
Ground Deformation Extraction Using Visible Images and LIDAR Data in Mining Area
NASA Astrophysics Data System (ADS)
Hu, Wenmin; Wu, Lixin
2016-06-01
Recognition and extraction of mining ground deformation can help us understand the deformation process and space distribution, and estimate the deformation laws and trends. This study focuses on the application of ground deformation detection and extraction combining with high resolution visible stereo imagery, LiDAR observation point cloud data and historical data. The DEM in large mining area is generated using high-resolution satellite stereo images, and ground deformation is obtained through time series analysis combined with historical DEM data. Ground deformation caused by mining activities are detected and analyzed to explain the link between the regional ground deformation and local deformation. A district of covering 200 km2 around the West Open Pit Mine in Fushun of Liaoning province, a city located in the Northeast China is chosen as the test area for example. Regional and local ground deformation from 2010 to 2015 time series are detected and extracted with DEMs derived from ZY-3 images and LiDAR point DEMs in the case study. Results show that the mean regional deformation is 7.1 m of rising elevation with RMS 9.6 m. Deformation of rising elevation and deformation of declining elevation couple together in local area. The area of higher elevation variation is 16.3 km2 and the mean rising value is 35.8 m with RMS 15.7 m, while the deformation area of lower elevation variation is 6.8 km2 and the mean declining value is 17.6 m with RMS 9.3 m. Moreover, local large deformation and regional slow deformation couple together, the deformation in local mining activities has expanded to the surrounding area, a large ground fracture with declining elevation has been detected and extracted in the south of West Open Pit Mine, the mean declining elevation of which is 23.1 m and covering about 2.3 km2 till 2015. The results in this paper are preliminary currently; we are making efforts to improve more precision results with invariant ground control data for validation.
Diff-invariant kinetic terms in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Barbero G., J. Fernando; Villaseñor, Eduardo J.
2002-06-01
We study the physical content of quadratic diff-invariant Lagrangians in arbitrary dimensions by using covariant symplectic techniques. This paper extends previous results in dimension four. We discuss the difference between the even and odd dimensional cases.
Bianchi type-I models with conformally invariant scalar field
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-05-15
The solutions of the Einstein equations with the trace-free energy-momentum tensor of conformally invariant scalar field as source are obtained in a spatially homogeneous anisotropic space-time. Some interesting features of the solutions are discussed.
Dynamics of 3D view invariance in monkey inferotemporal cortex.
Ratan Murty, N Apurva; Arun, Sripati P
2015-04-01
Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent.
Communication: Fitting potential energy surfaces with fundamental invariant neural network
NASA Astrophysics Data System (ADS)
Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.
2016-08-01
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.
Conformal invariance and Hamilton Jacobi theory for dissipative systems
NASA Technical Reports Server (NTRS)
Kiehn, R. M.
1975-01-01
For certain dissipative systems, a comparison can be made between the Hamilton-Jacobi theory and the conformal invariance of action theory. The two concepts are not identical, but the conformal action theory covers the Hamilton-Jacobi theory.
Loop Invariants, Exploration of Regularities, and Mathematical Games.
ERIC Educational Resources Information Center
Ginat, David
2001-01-01
Presents an approach for illustrating, on an intuitive level, the significance of loop invariants for algorithm design and analysis. The illustration is based on mathematical games that require the exploration of regularities via problem-solving heuristics. (Author/MM)
On c_2 invariants of some 4-regular Feynman graphs
NASA Astrophysics Data System (ADS)
Doryn, Dmitry
2017-03-01
The obstruction for application of techniques like denominator reduction for the computation of the c_2 invariant of Feynman graphs in general is the absence of a 3-valent vertex. In this paper such a formula for a 4-valent vertex is derived. The formula allows us to compute the c_2 invariant of new graphs, for instance, some 4-regular graphs with small loop number.
A Bayesian Analysis of Scale-Invariant Processes
2012-01-01
Analysis of Scale-Invariant Processes Jingfeng Wang, Rafael L. Bras, Veronica Nieves Georgia Tech Research Corporation Office of Sponsored Programs...processes Veronica Nieves , Jingfeng Wang, and Rafael L. Bras Citation: AIP Conf. Proc. 1443, 56 (2012); doi: 10.1063/1.3703620 View online: http...http://proceedings.aip.org/about/rights_permissions A Bayesian Analysis of Scale-Invariant Processes Veronica Nieves ∗, Jingfeng Wang† and Rafael L. Bras
Maximum entropy distributions of scale-invariant processes.
Nieves, Veronica; Wang, Jingfeng; Bras, Rafael L; Wood, Elizabeth
2010-09-10
Organizations of many variables in nature such as soil moisture and topography exhibit patterns with no dominant scales. The maximum entropy (ME) principle is proposed to show how these variables can be statistically described using their scale-invariant properties and geometric mean. The ME principle predicts with great simplicity the probability distribution of a scale-invariant process in terms of macroscopic observables. The ME principle offers a universal and unified framework for characterizing such multiscaling processes.
Rephasing-invariant CP violating parameters with Majorana neutrinos
NASA Astrophysics Data System (ADS)
Nieves, José F.; Pal, Palash B.
2001-10-01
We analyze the dependence of the squared amplitudes on the rephasing-invariant CP-violating parameters of the lepton sector, involving Majorana neutrinos, for various lepton-conserving and lepton-violating processes. We analyze the conditions under which the CP-violating effects in such processes vanish, in terms of the minimal set of rephasing invariants, giving special attention to the dependence on the extra CP-violating parameters that are due to the Majorana nature of the neutrinos.
Differential invariants of self-dual conformal structures
NASA Astrophysics Data System (ADS)
Kruglikov, Boris; Schneider, Eivind
2017-03-01
We compute the quotient of the self-duality equation for conformal metrics by the action of the diffeomorphism group. We also determine Hilbert polynomial, counting the number of independent scalar differential invariants depending on the jet-order, and the corresponding Poincaré function. We describe the field of rational differential invariants separating generic orbits of the diffeomorphism pseudogroup action, resolving the local recognition problem for self-dual conformal structures.
A translation invariant bipolaron in the Holstein model and superconductivity.
Lakhno, Victor
2016-01-01
Large-radius translation invariant (TI) bipolarons are considered in a one-dimensional Holstein molecular chain. Criteria of their stability are obtained. The energy of a translation invariant bipolaron is shown to be lower than that of a bipolaron with broken symmetry. The results obtained are applied to the problem of superconductivity in 1D-systems. It is shown that TI-bipolaron mechanism of Bose-Einstein condensation can support superconductivity even for infinite chain.
Signature spectrale des grains interstellaires.
NASA Astrophysics Data System (ADS)
Léger, A.
Notre connaissance de la nature des grains interstellaires reposait sur un nombre très restreint de signatures spectrales dans la courbe d'extinction du milieu interstellaire. Une information considérable est contenue dans les 40 bandes interstellaires diffuses dans le visible, mais reste inexploitée. L'interprétation récente des cinq bandes IR en émission, en terme de molécules d'hydrocarbures aromatiques polycycliques, est développée. Elle permet l'utilisation d'une information spectroscopique comparable, à elle seule, à ce sur quoi était basée jusqu'alors notre connaissance de la matière interstellaire condensée. Différentes implications de cette mise en évidence sont proposées.
Metabolic Signatures of Bacterial Vaginosis
Morgan, Martin T.; Fiedler, Tina L.; Djukovic, Danijel; Hoffman, Noah G.; Raftery, Daniel; Marrazzo, Jeanne M.
2015-01-01
ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. PMID:25873373
Irma multisensor predictive signature model
NASA Astrophysics Data System (ADS)
Watson, John S.; Flynn, David S.; Wellfare, Michael R.; Richards, Mike; Prestwood, Lee
1995-06-01
The Irma synthetic signature model was one of the first high resolution synthetic infrared (IR) target and background signature models to be developed for tactical air-to-surface weapon scenarios. Originally developed in 1980 by the Armament Directorate of the Air Force Wright Laboratory (WL/MN), the Irma model was used exclusively to generate IR scenes for smart weapons research and development. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser channel. This two channel version, Irma 3.0, was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model which supported correlated frame-to-frame imagery. This and other improvements were released in Irma 2.2. Recently, Irma 3.2, a passive IR/millimeter wave (MMW) code, was completed. Currently, upgrades are underway to include an active MMW channel. Designated Irma 4.0, this code will serve as a cornerstone of sensor fusion research in the laboratory from 6.1 concept development to 6.3 technology demonstration programs for precision guided munitions. Several significant milestones have been reached in this development process and are demonstrated. The Irma 4.0 software design has been developed and interim results are available. Irma is being developed to facilitate multi-sensor smart weapons research and development. It is currently in distribution to over 80 agencies within the U.S. Air Force, U.S. Army, U.S. Navy, ARPA, NASA, Department of Transportation, academia, and industry.
Improving the performance of image classification by Hahn moment invariants.
Sayyouri, Mhamed; Hmimid, Abdeslam; Qjidaa, Hassan
2013-11-01
The discrete orthogonal moments are powerful descriptors for image analysis and pattern recognition. However, the computation of these moments is a time consuming procedure. To solve this problem, a new approach that permits the fast computation of Hahn's discrete orthogonal moments is presented in this paper. The proposed method is based, on the one hand, on the computation of Hahn's discrete orthogonal polynomials using the recurrence relation with respect to the variable x instead of the order n and the symmetry property of Hahn's polynomials and, on the other hand, on the application of an innovative image representation where the image is described by a number of homogenous rectangular blocks instead of individual pixels. The paper also proposes a new set of Hahn's invariant moments under the translation, the scaling, and the rotation of the image. This set of invariant moments is computed as a linear combination of invariant geometric moments from a finite number of image intensity slices. Several experiments are performed to validate the effectiveness of our descriptors in terms of the acceleration of time computation, the reconstruction of the image, the invariability, and the classification. The performance of Hahn's moment invariants used as pattern features for a pattern classification application is compared with Hu [IRE Trans. Inform. Theory 8, 179 (1962)] and Krawchouk [IEEE Trans. Image Process.12, 1367 (2003)] moment invariants.
NASA Astrophysics Data System (ADS)
Price, C. E.; Shepard, J. R.
1991-04-01
We compute properties of the nucleon in a hybrid chiral model based on the linear σ-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and gA. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations.
[Rheumatic forefoot deformities].
Fuhrmann, R
2014-11-01
The frequency and extent of rheumatic forefoot deformities have been greatly reduced since the introduction of disease-modifying antirheumatic drugs (DMARD). The accompanying reduction in arthritic destruction of joints opens up new treatment options whereby priority is given to joint preservation. This is true for the first middle foot ray as well as for the small toe rays. Whereas resection arthroplasty of the metatarsophalangeal joints II-V was previously considered the gold standard treatment, joint-preserving operative procedures (e.g. metatarsal osteotomy and periarticular soft tissue interventions) are now being increasingly more propagated. Resection arthroplasty of the first midfoot ray has major biomechanical disadvantages so that it is not surprising that reconstructive procedures are given priority. In patients with severe arthritic destruction of the first metatarsophalangeal joint, arthrodesis has substantial biomechanical advantages compared to resection arthroplasty. Nevertheless, it has not yet been confirmed that fusion leads to superior clinical results.
The Pedagogic Signature of the Teaching Profession
ERIC Educational Resources Information Center
Kiel, Ewald; Lerche, Thomas; Kollmannsberger, Markus; Oubaid, Viktor; Weiss, Sabine
2016-01-01
Lee S. Shulman deplores that the field of education as a profession does not have a pedagogic signature, which he characterizes as a synthesis of cognitive, practical and moral apprenticeship. In this context, the following study has three goals: 1) In the first theoretical part, the basic problems of constructing a pedagogic signature are…
21 CFR 11.50 - Signature manifestations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Records § 11.50 Signature manifestations. (a) Signed electronic... the same controls as for electronic records and shall be included as part of any human readable...
48 CFR 4.102 - Contractor's signature.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Contractor's signature. 4.102 Section 4.102 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with...
A Real Quantum Designated Verifier Signature Scheme
NASA Astrophysics Data System (ADS)
Shi, Wei-Min; Zhou, Yi-Hua; Yang, Yu-Guang
2015-09-01
The effectiveness of most quantum signature schemes reported in the literature can be verified by a designated person, however, those quantum signature schemes aren't the real traditional designated verifier signature schemes, because the designated person hasn't the capability to efficiently simulate a signature which is indistinguishable from a signer, which cannot satisfy the requirements in some special environments such as E-voting, call for tenders and software licensing. For solving this problem, a real quantum designated verifier signature scheme is proposed in this paper. According to the property of unitary transformation and quantum one-way function, only a verifier designated by a signer can verify the "validity of a signature" and the designated verifier cannot prove to a third party that the signature was produced by the signer or by himself through a transcript simulation algorithm. Moreover, the quantum key distribution and quantum encryption algorithm guarantee the unconditional security of this scheme. Analysis results show that this new scheme satisfies the main security requirements of designated verifier signature scheme and the major attack strategies.
Does Social Work Have a Signature Pedagogy?
ERIC Educational Resources Information Center
Earls Larrison, Tara; Korr, Wynne S.
2013-01-01
This article contributes to discourse on signature pedagogy by reconceptualizing how our pedagogies are understood and defined for social work education. We critique the view that field education is social work's signature pedagogy and consider what pedagogies are distinct about the teaching and learning of social work. Using Shulman's…
5 CFR 850.106 - Electronic signatures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to any provisions prescribed by the Director under § 850.104— (1) An electronic communication may be... signature of an electronic communication may be deemed to satisfy any statutory or regulatory requirement... section, an electronic signature is a method of signing an electronic communication, including...